表面活性剂化学
表面活性剂化学反应
表面活性剂化学反应在化学领域中,表面活性剂是一类能够改善液体表面性质的化学物质。
表面活性剂在日常生活和工业生产中都有着广泛的应用,比如洗涤剂、乳化剂、泡沫剂等等。
表面活性剂的化学反应是其发挥作用的关键,本文将对表面活性剂的化学反应进行探讨。
首先,表面活性剂在水溶液中的化学反应是其应用的重要方面之一。
当表面活性剂溶解在水中时,会发生丰富的化学反应。
比如阴离子表面活性剂在水中会形成胶束结构,这种结构在清洁剂中的应用十分广泛。
此外,阳离子表面活性剂在水中也会发生吸附作用,这种吸附作用在染料工业中有着重要的应用。
总的来说,表面活性剂在水溶液中的化学反应对其性能和功能起着决定性的作用。
其次,表面活性剂与其他化学物质之间的化学反应也是其应用的关键。
比如,表面活性剂与油脂之间的作用,是洗涤剂中的一个典型例子。
表面活性剂中的亲水基团与油脂中的疏水基团之间会发生疏水作用,从而使油脂分散在水中。
这种化学反应导致了表面活性剂在清洁剂中的有效性。
此外,表面活性剂还可以与酸碱等其他化学物质发生中和反应,从而影响其表面性质和乳化性能。
最后,表面活性剂在生物体系中的化学反应也是研究的热点之一。
在细胞膜表面,存在大量的表面活性剂,它们通过化学反应调节细胞内外环境的平衡。
表面活性剂在生物体系中的作用涉及到病毒颗粒、细胞膜融合等重要生物学过程,其化学反应机制值得深入研究。
综上所述,表面活性剂的化学反应是其在各个领域中应用的重要基础。
通过了解表面活性剂的化学反应机制,我们可以更好地理解其性质和功能,为其在日常生活和工业生产中的应用提供科学依据和技术支持。
希望本文能为读者提供一些有益的信息,促进对表面活性剂化学反应的深入理解。
表面活性剂-概论(第一章,第二章)
捕集剂
(a)
(b)
矿物浮选示意图
将粉碎好的矿粉倒入水中,加入捕集剂,捕集剂以亲水基吸附
于矿粉表面,疏水基进入水相,矿粉亲水的高能表面被疏水的碳 氢链形成的低能表面所替代,有力图逃离水包围的趋势,如图所 示。向矿粉悬浮液中加入发泡剂并通空气,产生气泡,发泡剂的 两亲分子会在气-液界面作走向排列,将疏水基伸向气泡内,而亲 水的极性头留在水中,在气-液界面形成单分子膜并使气泡稳定。 吸附了捕集剂的矿粉由于表面疏水,会向气-液界面迁移与气 泡发生“锁合”效应。即矿粉表面的捕集剂会以流水的碳氢链插 入气泡内,同时起泡剂也可以吸附在固-液界面上,进人捕集剂形 成的吸附膜内。在锁合过程中,由起泡剂吸附在气-液界面上形成 的单分子膜和捕集剂吸附在固-液界面上的单分子膜可以互相穿透 ,形成固-液-气三相稳定的接触,将矿粉吸附在气泡上。于是, 依靠气泡的浮力把矿粉带到水面上,达到选矿的目的。
羧酸盐类 阴离子表面活性剂 磺酸盐类 硫酸酯盐类 磷酸酯盐类
离子型表面活性剂
表面活性剂
胺盐 阳离子表面活性剂 季铵盐 杂环类 鎓盐 甜菜碱型 两性表面活性剂 咪唑啉型 氨基酸型 天然型 聚氧乙烯型 多元醇型 烷醇酰胺型 嵌段聚醚型
非离子表面活性剂
元素表面活性剂 特种表面活性剂 高分子表面活性剂 冠醚型表面活性剂 生物表面活性剂
的表面张力,改变体系界面状态,从而产生润湿、乳化、
质。 表面活性剂在溶液中达到一定浓度以上,会形成分子 有序组合体,从而产生一系列重要功能。表面活性剂的
这些特性不仅在生产和生活中有重要作用,而且与生命 活动本身密切相关,成为研究生命现象的奥秘和发展仿 生技术极有价值的体系,因而受到广泛的重视。
1.2 表面活性剂发展简史
17种常见的表面活性剂
月桂基磺化琥珀酸单酯二钠(DLS)一、英文名:Disodium Monolauryl Sulfosuccinate二、化学名:月桂基磺化琥珀酸单酯二钠三、化学构造式:ROCO-CH2-CH(SO3Na)-COONa四、产品特性1 .常温下为白色细腻膏体,加热后(>70βC)为透亮液体;2 .泡沫细密丰富;无滑时感,格外简洁冲洗;3 .去污力强,脱脂力低,属常见的温存性外表活性剂;4 .能与其它外表活性剂配伍,并降低其刺激性;5 .耐硬水,生物降解性好,性能价格比高。
五、技术指标:1 .外观(25βC):纯白色细腻膏状体2 .含量(%) :48.0—50.03 .Na2SO3 (%) :≤0.504 .PH 值11 %水溶液): 5.5—7.0六、用途与用量:1 .用途:配制温存高粘度高度清洁的洗手膏(液)、泡沫洁面音、泡沫洁面*、泡沫剃须膏, 也可配制爽洁无滑腻的泡沫沐浴露、珠光香波等。
2 .推举用量:10—60%。
脂肪醵聚氧乙烯醒(3)磺基琥珀酸单酯二钠MES一、英文名:Disodium Laureth(3) Sulfosuccinate二、化学名:脂肪醇聚氯乙烯酸(3)磺基琥珀酸单酯二钠三、化学构造式:RO(CH2CH2O)3COCH2CH(SO3Na)COONa四、产品特性:1 .具有优良的洗涤、*化、分散、润湿、增溶性能;2 .刺激性低,且能显著降低其他外表活性剂的刺激性;3 .泡沫丰富细密稳定;性能价格比高;4 .有优良的钙皂分散和抗硬水性能;5 .复配性能好,能与多种外表活性剂和植物提取液(如皂角、首乌)复配,形成格外稳定的体系,创制自然用品;6 .脱脂力低,去污力适中,极易冲洗且无滑腻感。
五、技术指标:1 .外观(25℃):无色至浅**透亮粘稠液体2 .活性物(%) :30.0±2.03 .PH 值(1%) : 5.5-6.54 .色泽(APHA) :≤505 .Na2SO3 (%):≤0.36 .泡沫(mm) :≥150六、用途与用量:1、用途:制造洗发香波、泡沫浴、沐浴露、洗手液、外科手术清洗及其它扮装品、洗涤日化产品等,还可作为*化剂、分散剂、润湿剂、发泡剂等。
表面活性剂化学(第2章)
(6) 滴外形法
表面吸附速率很慢的溶液 只能采用滴外形法。 表面张力随时间而变化, 测定平衡表面张力。
2.2.4 表面活性
1-表面张力随溶液浓度的增加而 稍有增大;(无机盐、多羟基有机物) 2-表面张力随溶液浓度的增加而 逐渐减小;(极性有机物) 3-溶液的浓度较低时,表面张力 急剧地降低,浓度到一定值后, 表面张力几乎不变化。(表面活性剂)
在温度较低时,离子型表面活性剂的溶解度一般较 小,当达到某一温度时,其溶解度突然增大,这一 温度称为Krafft点,可以认为离子型表面活性剂在 Krafft点时的溶解度与其临界胶束浓度相当;
当溶液温度升至某一温度时,非离子型表面活性剂 突然析出而使溶液混浊,这一温度称为浊点,因此 非离子型表面活性剂通常在其浊点以下使用。
2.4.4 分子形态的影响
(1) 亲水基的相对位置
一般情况下,亲水基位于分子中 间时,表面活性剂的润湿性和渗 透性比位于分子末端的强; 但是亲水基位于分子末端时,则 去污力较强。
(2) 亲油基结构中的分支
在表面活性剂类型和分子大小相同的情况下,带 有分支结构的表面活性剂通常具有较好的润湿性 和渗透性,但是去污力较弱。
(c) 非离子表面活性剂中,如醚键(-O-)和羟基(-OH)。
亲水基的亲水性大小的顺序:
-SO3Na,-SO4Na,季铵阳离子>-PO4Na,-COONa >>-O-,-OH 亲水基团将影响溶解度和临界胶束浓度。
表面活性剂的溶解度越大,临界胶束浓度将越高;
表面活性剂的溶解度越小,临界胶束浓度将越低。
(2) 临界胶束浓度的测定
(a) 表面张力法
以表面活性剂溶液的表 面张力γ对浓度的对数lgc 作图得到γ-lgc曲线,曲 线转折点所对应的浓度 即为临界胶束浓度。表 面活性剂需提纯后方可 进行测定。
表面活性剂化学第四章 阴离子表面活性剂
R
+ H 2 S O 4
R
S O 3 H
精品资料
C H 3 C 1 7 H 3 3 C O C l+ H N C H 2 C H 2 S O 3 N a
C H 3 C 1 7 H 3 3 C O N C H 2 C H 2 S O 3 N a
据统计美国1980年磺化产物的80%是表面活性剂,磺化赋予 有机化合物水溶性和酸性。
精品资料
随直链烷基苯磺酸钠烷基碳原子数的增加,SA的润湿力呈下 降趋势。图4-5 4.起泡性 带有十四烷基的直链烷基苯磺酸钠发泡性能最好,泡沫度最高 。图4-6 5.洗净力
随直链烷基中碳原子数增多,表面活性剂洗净力逐渐提高。 图4-7
磺酸基位于烷基对位(duì wèi),SA综合性能最佳。
精品资料
①皂化 将油脂与碱液放入皂化釜,加热煮沸。在开口皂化 釜中,先加入(jiārù)熔融态油脂,在慢慢加入 (jiārù)碱液。空锅时先加入(jiārù)易皂化的油脂如 椰子油,先皂化作乳化剂。反复进行反应时,留下 锅底作乳化剂即可。
精品资料
②盐析 在皂胶中加入电解质食盐,使皂胶中过量的水和 杂质分离出来,得到纯的皂胶。杂质包括水解生 成的甘油、色素、磷脂、动植物纤维、机械杂质 等。将有害杂质出去,可从废液中回收甘油。为 使分离的干净(gānjìng),盐析、碱析可进行多次 。
(zhìdiǎn),即烷基正离子,使烷基化反应容易进行。 1.以烯烃为烷基化试剂合成长链烷基苯 反应历程(质子酸做催化剂)
R C H C H 2 + H R C H C H 3
精品资料
. 以AlCl3作催化剂
H C l+ A l C l 3
H C lA l C l 3
-两性表面活性剂
6.4.6 金属防锈 6.4.7 电镀助剂
09.10.2020
表面活性剂化学
30
伪科学的美容概念炒作
1 “纯天然”型
膏霜类化妆品是油与水的乳化体,无论是天然油脂还是 矿物油脂都是碳、氢、氧的化合物,只是结构不同而已。
其实说到本源都是天然的,矿物油是从天然石油中分 离出来的,植物油也是从天然果实中分离的。
CH 3
09.10.2020
表面活性剂化学
23
2 卤代烷 + 羟基叔胺
引入羟基 再硫酸酯化
C1 2H2 5
CH2Cl
SO3 酯化
C1 2H2 5
CH 3 + N C H2C H2 OH
CH3
CH3 CH2 N+ CH2CH2OSO3
CH3
09.10.2020
表面活性剂化学
24
6.3.4 含磷甜菜碱的合成
09.10.2020
表面活性剂化学
13
7 表面活性剂结构对钙皂分散力的影响
钙皂分散力 (lime soap disporsing rate , LSAD) 钙皂分散分散指数
100g油酸钠 在 硬度333mg/L的硬水中维持分散,
恰好无钙皂沉淀发生的分散剂的质量(g)
8 去污力
烷基链为12-16个碳原子是去污效果最佳。
由于粒度的提高,使铺展后的着色层变得非常地薄,很 多细小的粉粒进入角质细胞之间的缝隙中,简单的清洗不 能去除,而且呈现出不同以往的白色感觉。
09.10.2020
表面活性剂化学
37
6 酸性的才是健康的
健康皮肤的pH是4.5~6.5
1. 通常测定皮肤pH的方法是用pH试纸擦拭唇沟处汗液, 通过比色即可检出。一般的,中性皮肤的pH值为5~ 5.6,干性皮肤的pH值为4.5~5,油性皮肤的pH值为 5.6~6.6。 ??????
《表面活性剂化学》第二章习题
第二章表面活性剂的类型一、选择题1. 阴离子型表面活性剂在水中电离后,其亲水端通常是以下哪类官能团?()A. 羧酸基B. 硫酸基C. 磷酸基D. 季铵基2. 以下哪种物质是常见的阴离子型表面活性剂?()A. 十二烷基硫酸钠(SDS)B. 十六烷基三甲基氯化铵(CTAC)C. 聚氧乙烯(20) 脂肪醇醚(Brij 58)D. 氨基酸型两性表面活性剂3. 阳离子型表面活性剂的主要应用领域不包括以下哪项?()A. 洗发水B. 纺织品柔软剂C. 消毒剂D. 油田开采4. 下列哪种表面活性剂在分子结构上同时具有阳离子和阴离子特性?()A. 肥皂B. 季铵盐C. 氨基酸型表面活性剂D. 烷基硫酸盐5. 非离子表面活性剂的亲水性主要来源于以下哪种结构?()A. 羟基B. 羧基C. 硫酸酯基D. 聚氧乙烯链二、填空题1. 阴离子型表面活性剂在水中电离产生______,其亲水基团通常是______,如______。
2. 阳离子型表面活性剂在水中电离产生______,其亲水基团通常是______,如______。
3. 两性表面活性剂具有______和______两种性质,其分子结构中通常含有______和______基团,例如______。
4. 非离子表面活性剂在水中不电离,其亲水基团通常是______或______,常见的非离子表面活性剂有______和______。
5. 特种表面活性剂是指具有特殊______或______的表面活性剂,如______和______,它们在特定应用领域具有重要作用。
三、简答题1. 简述阴离子型表面活性剂的主要特点,并举例说明其在家庭洗涤剂中的应用。
2. 解释阳离子型表面活性剂在水中电离的过程,并讨论其在个人护理产品中的作用。
3. 两性表面活性剂与阴离子型和阳离子型表面活性剂相比,有哪些独特性质?请举例说明两性表面活性剂在化妆品中的应用。
4. 非离子表面活性剂为何在高温和硬水中比离子型表面活性剂更为稳定?请举例说明非离子表面活性剂在食品工业中的应用。
表面活性剂 化学名词
化学名词表面活性剂(surfactant),是指是能使目标溶液表面张力显著下降的物质。
具有固定的亲水亲油基团,在溶液的表面能定向排列。
表面活性剂的分子结构具有两性:一端为亲水基团,另一端为疏水基团;亲水基团常为极性基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,羟基、酰胺基、醚键等也可作为极性亲水基团;而疏水基团常为非极性烃链,如8个碳原子以上烃链。
表面活性剂分为离子型表面活性剂(包括阳离子表面活性剂与阴离子表面活性剂)、非离子型表面活性剂、两性表面活性剂、复配表面活性剂、其他表面活性剂等。
中文名表面活性剂外文名surfactant别名表面活性物质应用学科化学分类离子型表面活性剂(包括阳离子表面活性剂与阴离子表面活性剂)、非离子型表面活性剂、两性表面活性剂、复配表面活性剂、其他表面活性剂等特性两亲性作用降低目标溶液的表面张力简介表面活性剂(surfactant),是指加入少量能使其溶液体系的界面状态发生明显变化的物质。
具有固定的亲水亲油基团,在溶液的表面能定向排列。
表面活性剂的分子结构具有两亲性:一端为亲水基团,另一端为疏水基团;亲水基团常为极性基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,羟基、酰胺基、醚键等也可作为极性亲水基团;而疏水基团常为非极性烃链,如8个碳原子以上烃链。
表面活性剂分为离子型表面活性剂(包括阳离子表面活性剂与阴离子表面活性剂)、非离子型表面活性剂、两性表面活性剂、复配表面活性剂、其他表面活性剂等。
起源历史①公元前2500年——1850年羊油和草木灰制造肥皂羊油——三羧酸酯简称三甘酯,经碱水解→羧酸盐+单甘酯+二甘酯+甘油19世纪中叶一方面肥皂开始实现工业化大生产,另一方面,也出现了化学合成的表面活性剂。
②土耳其红油的出现:土耳其红油即蓖麻油与硫酸反应的产物,蓖麻油为蓖麻油酸的三甘酯,深度磺化,耐酸耐硬水③19世纪初,矿物原料制备洗涤剂石油工业的发展→石油硫酸(绿油)。
蜡和茶的磺化混合物,溶于酸中,呈绿黑色,用碱中和制得。
精细化学品化学第二章表面活性剂
+ 甲醇溶剂 加热
RN
C H3 C H3
2C O2
+2 H2O
高级烷基胺与低级卤代烷得反应
C16H33
CH3
N
+ CH3 CXl-
石油醚溶剂
C16H33
CH3
加压 80oC 1h
. CH3
N+ CH3 X CH3
3、6、2、2 含杂原子得季铵盐
1 含氧原子 含酰氨基得 含醚基得
2 含氮原子
特点:就是亲水得季铵阳 离子与烷基疏水基就是 通过酰胺键、酯键、醚 键或硫醚等基团相连接
60-80oC
CH3
C12H25
十二烷基三甲基溴化铵
CH3
醇介质
C16H33 X + N CH3
回流
CH3
C16H33
十六烷基三甲基溴化铵
. CH3
N+ CH3
Br- 溴
X
CH3
. CH3
N+ CH3 X CH3
2 高级烷基叔胺与低级卤代烷得反应
C12H25
CH3
加热
N
+ CH3 CXl-
CH3
加压
氨基酸型 R-NH2CHCHCOOH 甜菜碱型 RN+(CH3)2CH2COO-
非离子表面活性剂
在水中不会解离成离子:
聚乙二醇型(聚氧乙烯型)
多元醇型
R-O(CH2CH2O)nH R-COOCH2C(CH2OH)3
3、3 亲水亲油平衡值 HLB(hydrophile-lipophile balance)
2 可以和所有其她类型得表面活性剂复配 3 毒性低、对皮肤眼睛刺激性小 4 耐水硬性和耐高浓度电解质性 5 良好得生物降解性
表面活性剂的化学原理
表面活性剂的化学原理表面活性剂是一类广泛应用于日常生活和工业生产中的化学物质。
它们具有降低液体表面张力和增强液体与固体或气体的相互作用能力的特性。
本文将介绍表面活性剂的化学原理,包括其结构、作用机制和应用领域。
一、表面活性剂的结构表面活性剂分为两个部分:亲水基团和疏水基团。
亲水基团是具有亲水性的部分,通常是由含氧、氮或硫等原子组成的极性基团。
疏水基团是具有疏水性的部分,通常是由长链烷基或芳香基等非极性基团组成。
这种结构使得表面活性剂既能与水相互作用,又能与油脂等疏水物质相互作用。
二、表面活性剂的作用机制表面活性剂在液体表面形成一个分子层,称为吸附层。
吸附层的形成是由于表面活性剂分子的亲水基团与水分子形成氢键,同时疏水基团与空气或油脂分子相互作用。
这种吸附层能够降低液体表面的张力,使液体更容易湿润固体表面。
表面活性剂还能够形成胶束结构。
当表面活性剂的浓度超过临界胶束浓度时,表面活性剂分子会自组装形成胶束。
胶束是由亲水基团朝向水相,疏水基团朝向内部形成的微小球状结构。
胶束能够包裹住油脂等疏水物质,使其分散在水相中,从而实现乳化、分散和溶解等作用。
三、表面活性剂的应用领域1. 清洁剂:表面活性剂是清洁剂中的主要成分,能够降低水的表面张力,使水更容易湿润和渗透,从而提高清洁效果。
例如,洗衣液、洗洁精等清洁剂中都含有表面活性剂。
2. 个人护理产品:表面活性剂能够使洗发水、沐浴露等个人护理产品产生丰富的泡沫,提供良好的清洁和洗净效果。
3. 化妆品:表面活性剂在化妆品中起到乳化、分散和稳定等作用。
例如,乳液、面霜和化妆品中的乳化剂和分散剂都是表面活性剂。
4. 农药和农业助剂:表面活性剂可以提高农药的润湿性和渗透性,增强其吸附和渗透作用,提高农药的效果。
5. 石油和化工工业:表面活性剂在石油开采、油田注水、油水分离等过程中起到重要作用。
此外,表面活性剂还广泛应用于润滑剂、防锈剂、乳化剂等领域。
总结:表面活性剂是一类具有降低液体表面张力和增强液体与固体或气体相互作用能力的化学物质。
表面活性剂
表面活性剂什么是表面活性剂表面活性剂是指那些具有很强表面活性、能使液体的表面张力显著下降的物质。
表面活性剂分子一般由非极性烃链和一个以上的极性基团组成,烃链长度一般在8个碳原子以上,极性基团可以是解离的离子,也可以是不解离的亲水基团。
极性基团可以是羧酸及其盐、磺酸及其盐、硫酸酯及其可溶性盐﹑磷酸酯基﹑氨基或胺基及它们的盐,也可以是羟基、酰胺基、醚键﹑羧酸酯基等。
如肥皂是脂肪酸类(R-COO-)表面活性剂,其结构中的脂肪酸碳链(R-)为亲油基团,解离的脂肪酸根(COO-)为亲水基团。
[编辑]表面活性剂的分类[2]表面活性剂的种类很多,其分类方法亦各不相同,如可依据离子类型、溶解性、应用功能、结构等分类。
但通常根据表面活性剂分子在水溶液中离解与否将其分成离子型和非离子型两大类。
离子型表面活性剂按其所带电荷种类,又可分为阴离子、阳离子和两性离子表面活性剂。
1.阴离子表面活性剂阴离子表面活性剂是发展历史最悠久、产量最大、品种最多、应用最广的一类表面活性剂。
其分子一般由长链烃基(C10~C20)及亲水基羧酸基、磺酸基、硫酸基或磷酸基组成。
其中产量最大、应用最广的阴离子表面活性剂是亲水基为磺酸盐型,其次是硫酸(酯)盐型。
阴离子表面活性剂具有极好的去污、发泡、润湿、分散、乳化等性能,所以应用非常广泛,主要用作洗涤剂、润湿剂、乳化剂、发泡剂、增溶剂等。
2.阳离子表面活性剂与各种类型表面活性剂相比,阳离子表面活性剂的调整作用最突出,杀菌作用最强,尽管有去污力差,起泡性差,配伍性差、刺激性大,价格昂贵等缺点。
阳离子表面活性剂在液体洗涤剂中作为辅助表面活性剂(配方用量很少的调理剂组分)一般用于较高档次产品,主要用于洗发香波。
作为调整剂组分在高档次液体洗涤剂洗发香波中不是其他类型表面活性剂所能替代的。
常见阳离子表面活性剂品种有十六烷基二甲基氯化铵(1631)、十八烷基三甲基氯化铵(1831)、阳离子瓜尔胶(C-14S)、阳离子泛醇、阳离子硅油、十二烷基二甲基氧化胺(OB-2)等。
表面化学-表面活性剂
3.1.1.1 阴离子型表面活性剂
该类活性剂在水中解离后,起活性作用的是阴离子 基团,其中又分两种类型。 (1)盐类型 由有机酸根与金属离子组成,如羧酸盐型RCOO· +,磺酸盐型RSO3-· +。 Na Na (2)酯盐类型 分子中既有酯的结构,又有盐的结构,如硫酸酯盐 ROSO3· +,磷酸酯盐ROPO3· +。 Na Na 阴离子型表面活性剂是目前应用最广的一类,它可 作洗涤剂、起泡剂、润湿剂、乳化剂、分散剂、增 溶剂等。
在憎水基相同时,亲水基团-CH2CH2O-越多, 亲水性越大,浊点越高;在亲水基团数相同 时,憎水基的链越长,憎水性越大,浊点越 低。因此可用浊点来大致判断非离子型表面 活性剂的亲水、亲油性。
3.4 表面活性剂的 活性
3.4 表面活性剂的活性
由前所述,可用( 活性。
d dc
)表示表面活性剂的表面
出现Krafft点的原因
在Krafft点以下,溶解度不大,表面活性剂没 有形成胶束。温度升高,溶解度缓慢增加, 直到Krafft点时溶解度达到了CMC,形成了胶 束,表现出溶解度急剧增加。由图3-3可见, 碳氢链越长,亲油性越大,Tk越高。
对非离子型表面活性剂则不同。往往一个透 明的非离子型表面活性剂水溶液在加热到一 定温度时会突然变浑浊。这表示温度升高, 溶解度反而下降了。
离子型表面活性剂, 在低浓度时的电导率 与正常电解质溶液相 似,但高浓度时却表
现出很大的偏差
表面活性剂溶液的密
度、去污能力等与浓
度的关系都有明显的 转折点。而且这些转 折点对某表面活性物 质是出现在一特定的 温度范围内。
表面活性剂化学知识点
表面活性剂化学知识点第一讲 表面活性剂概述1、降低表面张力为正吸附,溶质在溶液表面的浓度大于其在溶液本体中的浓度,此溶质为表面活性物质。
增加表面张力为负吸附,溶质在溶液表面的浓度小于其在溶液本体中的浓度,此溶质为表面惰性物质。
2、表面张力γ :作用于单位边界线上的这种力称为表面张力,用 γ表示,单位是N ·m-1。
影响纯物质的γ的因素(1) 物质本身的性质(极性液体比非极性液体大,固体比液体大)(2) 与另一相物质有关。
纯液体的表面张力是指与饱和了其本身蒸汽的空气之间的界面张力。
(3)与温度有关:一般随温度升高而下降.(4)受压力影响较小.3、表面活性剂的分子结构特点“双亲结构”亲油基:一般是由长链烃基构成,以碳氢基团为主亲水基:一般为带电的离子基团和不带电的极性基团疏水基的疏水性大小:脂肪烷基>脂肪烯基>脂肪烃-芳基>芳基>带有弱亲水基的烃基。
相同的脂肪烃疏水性强弱顺序:烷烃>环烷烃>烯烃>芳香烃。
从HLB 值考虑,亲水基亲水性的大小排序: -SO4Na 、-SO3Na 、-OPO3Na 、-COONa 、—OH 、—O -极性头 8-18C 长链烷基等非极性基团4、离子表面活性剂(一)阴离子表面活性剂:起表面活性作用的部分是阴离子。
1)高级脂肪酸盐:①通式:(RCOO)n-Mn+脂肪酸盐②分类:一价金属皂(钾、钠皂);二价或多价皂(铅、钙、铝皂);有机胺皂(三乙醇胺皂)③性质:具有良好的乳化能力,易被酸及多价盐破坏,电解质使之盐析。
④应用:具有一定的刺激性,只供外用。
2)硫酸化物:①通式:R-OSO3-M+②分类:硫酸化油(硫酸化蓖麻油称土耳其红油);高级脂肪醇硫酸脂(十二烷基硫酸钠) 。
③性质:可与水混溶,为无刺激的去污剂和润湿剂;乳化性很强,稳定、耐酸、钙,易与一些高分子阳离子药物发生沉淀。
④应用:代替肥皂洗涤皮肤;有一定刺激性,主要用于外用软膏的乳化剂。
有时也用于片剂等固体制剂的润湿剂或增溶剂。
表面活性剂的化学原理
表面活性剂的化学原理表面活性剂,又称为界面活性剂,是一类具有分子结构特殊的化合物,能够在两种不相溶的物质之间降低表面或界面张力,使其能够混合或分散的物质。
表面活性剂在日常生活和工业生产中起着重要作用,比如洗涤剂、乳化剂、分散剂等。
那么,表面活性剂的化学原理是什么呢?本文将从表面活性剂的结构特点、作用原理和应用领域等方面进行探讨。
一、表面活性剂的结构特点表面活性剂的分子结构通常由亲水性头基和疏水性尾基组成。
亲水性头基通常是含有羟基、羧基、胺基等带电离子的基团,能与水分子形成氢键或离子键,使其具有亲水性;而疏水性尾基通常是长链脂肪酸基团或芳香烃基团,能与油脂等疏水性物质相互作用,使其具有疏水性。
这种结构使得表面活性剂分子在水中形成胶束结构,头基朝向水相,尾基朝向油相,从而降低了界面张力,使两种不相容的物质能够混合。
二、表面活性剂的作用原理1. 降低表面张力:表面活性剂的主要作用是降低液体表面或界面的张力,使其能够与其他物质更好地混合。
表面活性剂分子在界面上形成吸附膜,使界面张力降低,从而促进液体的分散、乳化或泡沫化。
2. 分散作用:表面活性剂能够将固体颗粒或液滴分散在液体中,防止其重新聚集沉淀。
通过表面活性剂的作用,固体颗粒或液滴能够均匀分散在溶液中,提高了溶液的稳定性。
3. 乳化作用:表面活性剂能够将油脂等疏水性物质分散在水相中,形成乳液。
表面活性剂的疏水性尾基与油脂分子相互作用,使其分散在水相中,形成乳状液体。
4. 渗透作用:表面活性剂能够改变液体的表面性质,使其在固体表面上形成薄膜,改善润湿性能,促进液体的渗透和扩散。
三、表面活性剂的应用领域1. 洗涤剂:表面活性剂是洗涤剂的主要成分,能够降低水的表面张力,使污垢与衣物分离,并在水中形成乳液,起到清洁作用。
2. 乳化剂:表面活性剂能够将油脂等疏水性物质分散在水相中,形成乳液,广泛应用于食品工业、化妆品工业等领域。
3. 分散剂:表面活性剂能够将固体颗粒或液滴分散在溶液中,防止其沉淀或聚集,广泛应用于颜料、涂料、药物等领域。
表面活性剂化学(第3章)
第3章 表面活性剂的功能和应用
3.1 增溶作用
3.1.1 增溶作用的定义
增溶作用是指溶液中由于表面活性剂胶束的 存在(表面活性剂浓度超过CMC时),使得在 溶剂中难溶乃至不溶的物质溶解度显著增加 的作用。
3.1.2 增溶作用的特点
特点1:
当被增溶物为极性有机物时,极性有机物的增溶位置处 于胶团的分子“栅栏”中其增容量随温度上升在到达表 面活性剂的“浊点”之前会出现一最大值。当温度升至 10℃以上增容量开始出现一个小的或中等程度的增加。 这是胶团中表面活性剂的热运动引起的。继续升高温度 会引起聚氧乙烯链的进一步去水化作用使其容易卷缩, 使胶团的分子“栅栏”区域可用于增溶的空间减少,于 是极性有机物的增容量也随之降低。特别使对于短碳链 的极性有机物,其增容量的降低更为明显。
(2) 石油开采
(3) 胶片生产及洗涤
3.2 乳化与破乳作用
3.2.1 乳化作用的定义
所谓乳化作用是指为了增加 乳状液稳定性而添加表面活 性剂,从而在乳液中降低表 面张力,使乳液容易生成并 稳定的作用。
所谓乳状液是指一种或多种液体以液珠形式分 散在与其不相混溶的液体中所构成的分散体系, 该体系呈现出乳白色,并且其颜色和外观与体 系中液滴的大小有关。 形成乳状液的过程称为乳化。
现象1:被增溶物的非极性碳氢链插入胶束内 部,其极性头则插入表面活性剂极性基团之间, 通过氢键或偶极子相互作用联系起来。如果极 性有机物的碳氢链较长时,其分子插入胶束的 程度将会增大,甚至将极性基也拉入胶束的内 核。 现象2:增溶后,表面活性剂胶束并不变大。
(3) 在胶束表面的吸附增溶
如图(c)所示,苯二甲酸 二甲酯等既不溶于水、也 不溶于油的小分子极性有 机化合物,通常吸附在胶 束表面而得以增溶。
化学表面活性剂
化学表面活性剂化学表面活性剂是一类常见的化学物质,具有降低液体表面张力的作用。
它们可以在固液、气液和液液界面上发挥作用,改变表面性质。
在日常生活和工业生产中,化学表面活性剂发挥着重要的作用。
本文将探讨化学表面活性剂的定义、特性、分类以及应用领域。
一、定义与特性化学表面活性剂是一类具有两亲性的化合物,通常分为亲水性头基和疏水性烃链。
这种结构特点使得表面活性剂在不同相之间形成分子层结构,在水/油等液体界面上降低表面张力。
化学表面活性剂的主要特性包括:1. 降低表面张力:表面活性剂能够在液体表面形成分子层,使液体表面张力降低,使得液体分子能够更容易相互靠近,形成胶束结构。
2. 分散性:表面活性剂具有较好的分散性,可以将固体颗粒分散在液体中,形成均匀的悬浮液。
3. 乳化性:表面活性剂可以将两种互不溶的液体乳化,形成乳状液体。
4. 渗透性:表面活性剂能够渗透到固体表面,改变其表面性质。
5. 泡沫性:一些表面活性剂在搅拌或摩擦作用下能够产生泡沫。
二、分类根据其分子结构和作用方式的不同,化学表面活性剂可以分为阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂和两性表面活性剂四类。
1. 阴离子表面活性剂:阴离子表面活性剂的疏水基团带有阴离子基团,如烷基苯磺酸盐和烷基硫酸盐。
这类表面活性剂广泛应用于洗涤剂、肥皂等清洁产品中。
2. 阳离子表面活性剂:阳离子表面活性剂的疏水基团带有阳离子基团,如季铵盐和季胺盐。
这类表面活性剂主要用于柔顺剂、杀菌剂等产品。
3. 非离子表面活性剂:非离子表面活性剂的疏水基团不含离子基团,如聚氧乙烯醚和聚氧乙烯醚硅油。
这类表面活性剂常用于护肤品、染料助剂等领域。
4. 两性表面活性剂:两性表面活性剂的分子同时具有阳离子和阴离子性质,如脂肪醇聚醚硫酸钠和缩水甘油醚磺酸盐。
这类表面活性剂多用于油田、药品制剂等行业。
三、应用领域化学表面活性剂在各个领域有着广泛的应用,如下所示:1. 洗涤行业:洗涤剂是化学表面活性剂最常见的应用之一。
表面活性剂的化学性质与分类
表面活性剂的化学性质与分类表面活性剂是一类能够降低液体表面张力的化合物,广泛应用于洗涤、化妆品、医药、食品和工业生产等领域。
根据其电荷性质,表面活性剂可以分为阴离子、阳离子、非离子和两性离子四大类。
本文将重点介绍阴离子表面活性剂的化学性质及分类。
一、阴离子表面活性剂的化学性质阴离子表面活性剂的亲水头部通常是羧基、磺酸基、硫酸基等阴离子基团,这些基团通过离子键与水分子相互作用,使表面活性剂的亲水性增强。
同时,阴离子表面活性剂的疏水尾部通常是长链烷基或芳基,这些基团通过非极性相互作用与有机物或其他不溶于水的物质结合,使表面活性剂的溶解性增强。
二、阴离子表面活性剂的分类1.硫酸盐表面活性剂硫酸盐表面活性剂是最早使用的阴离子表面活性剂之一,具有较高的表面活性,发泡性较强,广泛应用于洗涤和化妆品等领域。
但是,由于其刺激性较大,对人体和环境有一定的负面影响,因此逐渐被其他表面活性剂所取代。
2.磷酸盐表面活性剂磷酸盐表面活性剂的亲水头部通常是磷酸基团,疏水尾部通常是由脂肪醇或芳基构成。
这些表面活性剂具有较高的稳定性和溶解性,广泛应用于清洁和工业领域。
由于其较低的刺激性,也被应用于个人护理产品中。
3.羧酸盐表面活性剂羧酸盐表面活性剂是最常见的一种阴离子表面活性剂,通常由脂肪酸和碱反应制得。
这些表面活性剂具有较低的刺激性和较好的生物降解性,因此广泛应用于个人护理和化妆品等领域。
同时,由于其较低的发泡性,也被应用于洗涤剂和工业领域。
4.氨基酸表面活性剂氨基酸表面活性剂是一种特殊的阴离子表面活性剂,以氨基酸为基础构建亲水头部和疏水尾部。
这些表面活性剂具有温和、高效、可生物降解等优点,因此广泛应用于个人护理产品、洗涤剂、化妆品等领域。
由于其特殊的分子结构,氨基酸表面活性剂还可以与其他表面活性剂进行复配,提高产品的性能和效果。
子在分子的一侧有一个胺基,在另一侧有一个羧酸基。
在生命系统中,这使得它们非常通用,因为其他分子可以通过分子两侧的不同过程非常特定地附着。
第三章 表面活性剂解读
大
碳原子个数越多 CMC取值越小
双键或支链越多 CMC取值越大
小 非离子型 表面活性剂 <0.0001mol/L
大
忽略
(CH2CH2O)n越长 CMC取值越大
3.4 临界胶束浓度
影响CMC取值的因素
2.4.1 表面活性剂化学结构的影响 ①同系物中疏水基碳氢链上的碳原子数越多,则其临界胶束 浓度越小。
浓度即为CMC。
溶解度 5.浊度法:非极性有机物(烃类)在表面活性剂中的浊度随表
面活性剂浓度而变化,浊度突变点的浓度即为CMC。
3.4 临界胶束浓度
CMC取值与表面活性剂结构的关系
表面活性剂 类型
取值范围
亲水基团 亲油基团 影响 影响 小
结论 忽略
一般离子型 表面活性剂
0.0001mol/L0.02mol/L
胶束聚集数增大
形成新的胶团
临界胶束浓度:表面活性剂分子缔合形成胶束的最低浓度
0.002%-0.5% (0.0001mol/L-0.02mol/L)
3.4 临界胶束浓度
3.4 临界胶束浓度
CMC是表面活性剂表面活性的一种度量。
形成胶束所需要的浓度愈低; 达到表面饱和吸附的浓度愈低;
CMC愈小
使表面张力降到最低值所需浓度愈低; 也就是表面活性愈高。 在使用表面活性剂时,浓度一般比CMC稍大些, 否则表面性能不能充分发挥。
C:8~20
不对称的 极性结构
非极性
极性
3.2 表面活性剂的分类 根据疏水基结构进行分类,分直链、支链、芳香 链、含氟长链等;
根据亲水基进行分类,分为羧酸盐、硫酸盐、季 铵盐、PEO衍生物、内酯等;
根据其水溶性、化学结构特征、原料来源等各种 分类方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二 合成
MD′M 型的合成与普通聚醚改性硅油相比有其特殊性。 因为其有机硅部分的结构确定, 只是聚醚分子链有多 分散性; 所以, 在酸性水解或平衡法制备含氢硅油时, 需精馏得到MDHM, 再与相应的单烯丙基聚醚进行 硅氢加成反应, 制成产品。如果单烯丙基聚醚另一端 带有环氧基或氨基 可进一步反应制成阳离子型、阴离 子型和两性离子型产品。
五 结论
三硅氧烷表面活性剂具有其独特的优点: 表面张力低、 润湿和铺展性好、乳化作用大、配伍性能好,具发泡、 稳泡和抑泡作用, 且无毒副作用。已大量应用于各行 各业, 应用领域十分广泛, 发展也很迅速,目前己在 纺织、化妆品、塑料、油漆、涂料、农业化学品、医药、 汽车、机械加工等方面广泛使用。三硅氧烷表面活性剂 能在非水介质中发挥优异的润湿能力, 从而避其不耐 水解之短, 开辟更广阔的应用天地。
3.2 MD′M 的润湿与扩展性能
聚醚改性硅油用于发肤日化用品时, 在制造、贮存过 中, 利用了其乳化稳定性; 使用时, 则利用了其润 湿扩展性、起泡性; 使用后, 利用了其浊点产生部分 沉积, 从而赋予发肤有机硅特有的光泽及滑爽的手感。 三硅氧烷表面活性剂能降低油水界面的界面张力;同时, 还能在低能疏水表面润湿扩展, 这一能力称为“超润 湿性” 或“超扩展性”。MD′M是最有效的润湿扩展剂, 性能优于氟系表面活性剂。也就是说, 表面活性剂在 低能疏水表面的扩展不仅取决于其表面张力, 还与液 气、液固界面张力及其扩展的动力学效应有关。
三 三硅氧烷表面活性剂的性能
3.1 MD′M 的表面与界面性能
当接枝型聚醚改性硅油的EO 的长度一样时, 其表面张 力随聚硅氧烷聚合度的降低而减小; 很明显,三硅氧 烷的表面张力最低。这是由于聚硅氧烷的分子链越短, 在空气/ 水界面的堆积越紧密, 表面的甲基越多。PO 一般被视为疏水基团。PO 的引入增加了聚醚链的疏水 性, 从而增大了聚醚改性硅油的表面张三硅氧烩结构 式中参数x 越大, 表面三硅氧烷表面活性剂的效力和 效能随EO 长度x 的增加而减小, 但每个分子所占的表 面积却在增大。
3.3 MD′M 的分散性能
三硅氧烷表面活性剂的单层分子结构模型, 即紧密堆积 的甲基伸向空气中呈伞型,有效降低了表面张力, 使得 三硅氧烷表面活性剂有非同寻常的分散行为。
3.4 MD′M 的稳定性
MD′M 极易分解, 从而失去活性。MD′M 在酸碱条件 下能很快分解, 产生MM 及水合氧化硅; 在中性条件 下则可稳EO)x(PO)yR', P=-CH(CH3) CH2-, x,y=0,1,2,3……,R'=-H,-CH3,-COCH3。
三硅氧烷表面活性剂能降低油水界面的界面张力 同时 还能在低能疏水表面润湿扩展,这一能力称为“超级 润湿性” 或“超级铺展性”; 另外,含硅表面活性剂 的生理毒性非常低。
三硅氧烷类表面活性剂的合成及应用
化学工程与工艺
三硅氧烷表面活性剂是一类具有特殊性能的表面活性 剂, 因其具有优异的表面性能、润湿扩展能力, 在国 内外得到了深入的研究。
一 结构
有机硅表面活性剂是一类新型表面活性剂。一方面, 有机硅表面活性剂的主链为柔软的Si-O 键, 既不亲水, 又不亲油, 可用于水溶液和普通烃型表面活性剂不能 应用的非水介质; 另一方面,有机硅表面活性剂是一 种支链化的高效表面活性剂,它以密集的甲基排列在 界面上, 可使水的表面张力降至20 mN/m 左右 。
(1) CHIN(Chemical Information Network) /
(2) /~cheminfo/(化学信息资 源导航系统) (3) /chempointers.html (化 学信息虚拟图书馆) (4) ChemWeb站点()
参照文献(张国栋, 韩富, 张高勇. 新型三硅 氧烷表面活性剂的合成与表征[J]. 日用化学工 业, 2006, 36 (2): 73-75.)本次使用氨乙 基氨丙基二甲氧基甲基硅烷、N,N-二甲基氨乙基 氨丙基二甲氧基甲基硅烷和六甲基二硅氧烷为原 料, 合成新型三硅氧烷表面活性剂氨乙基氨丙基 三硅氧烷和N,N-二甲基氨乙基氨丙基三硅氧烷。
四 三硅氧烷表面活性剂的应用
有机硅表面活性剂在许多领域获得了广泛应用,如: 聚 氨酯匀泡剂、涂料助剂(流平剂、润湿剂、增滑剂、除 气剂、消泡剂)、纺织助剂(亲水抗静电整理剂、消泡 剂)、日化助剂(调理剂、硅油乳化剂)、造纸助剂 (消泡剂)、油田化学品(消泡剂、去乳化剂)、煤炭 去水剂、农业化学品(润湿剂) 等。