选修4-4 第一节 坐标系
人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系
3.点的空间坐标的互相转化公式 设空间一点 P 的直角坐标为(x,y,z),柱坐标为(ρ,θ,z),球 坐标为(r,φ,θ),则 空间直角坐标(x,y,z) x= y= z= x= y= z= 转换公式 , ,
柱坐标(ρ,θ,z)
球坐标(r,φ,θ)
, ,
1.(ρ,θ,z) 空间的点 自我 校对 2.正向 标系 逆时针 球坐标 ρsinθ z
(3)在极坐标中,方程 ρ=ρ0(ρ0 为不等于 0 的常数)表示圆心在 极点,半径为 ρ0 的圆,方程 θ=θ0(θ0 为常数)表示与极轴成 θ0 角的 射线.而在空间的柱坐标系中,方程 ρ=ρ0 表示中心轴为 z 轴,底 半径为 ρ0 的圆柱面, 它是上述圆周沿 z 轴方向平行移动而成的. 方 程 θ=θ0 表示与 Oxz 坐标面成 θ0 角的半平面.方程 z=z0 表示平行 于 Oxy 坐标面的平面. 常把上述的圆柱面、 半平面和平面称为柱坐 标系的三族坐标面.
π π 2,6,4,则点 M 的柱坐
)
π π 2,4, 6 B. 2,4, 6 π π 2,6,2 2 D. 2,6, 2
解析 因为点 M
的球坐标为2
π π π 2,6,4,即 r=2 2,φ= , 6
π θ= ,故点 M 的直角坐标为 4 π π x=rsinφcosθ=2 2sin cos =1, 6 4 π π y=rsinφsinθ=2 2sin sin =1, 6 4 π z=rcosφ=2 2cos = 6. 6
2.球坐标系与球坐标
一般地,如图所示,建立空间直角坐标系 Oxyz.设 P 是空间任 意一点,连接 OP,记|OP|=r,OP 与 Oz 轴________所夹的角为 φ. 设 P 在 Oxy 平面上的射影为 Q,Ox 轴按________方向旋转到 OQ 时所转过的 ________ 为 θ. 这样点 P 的位置就可以用有序数组 ________表示.这样空间的点与有序数组(r,φ,θ)之间建立了一种 对应关系.把建立上述对应关系的坐标系叫做 ________(或空间极 坐标系),有序数组(r,φ,θ)叫做 P 的________,记作 P(r,φ,θ), 其中 r≥0,0≤φ≤π,0≤θ<2π.
人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
空间点 P 的直角坐标(x,y,z)与球坐标(r,φ 之间的变换关系为:____x_2_+__y2_+__z_2=__r_2,___.
x=rsin φcos θ , y=rsin φsin θ , z=rcos φ
预习 思考
(1,1,1)
1.设
P
点
柱
坐
标
为
2,π4,1 . 则 它 的 直 角 坐 标 为
____________.
2.设点 M 的球坐标为2,34π,34π,它的直角坐标为 ____ቤተ መጻሕፍቲ ባይዱ_______.
(-1,1,- 2)
题型1 柱坐标、球坐标的确定
例1 如图所示,已知长方体 ABCD-A1B1C1D1 的边长 AB 6 3,AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点 以射线 AB、AD、AA1 分别为 x 轴、y 轴、z 轴的正半轴, 立空间直角坐标系,求长方体顶点 C1 的空间直角坐标、柱 标、球坐标.
变式 训练
1.建立如下图所示的柱坐标系,写出棱长为 1 的正方
各顶点的柱坐标.
变式 训练
变式 训练
题型2 柱、球坐标与直角坐标的互化
例2
已知点
M
的
柱
坐
标
为
人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件
A. y 1
sin t
1
x t2
C.
1
yt 2
x cos t
B. y 1
cos t
x tan t
D. y 1
tan t
7.极坐标方程
2
arcsin化(为 直0)角坐标方程的形
式是 ( )
A. x2 y2 x 0
B.y x(1 x)
C. 2x 1 4y2 1 D..y (x 1)
2.极坐标(,)与(ρ,2kπ+θ)( k )表z 示 同一个点.即一点的极坐标的统一的表达式 为(ρ,2kπ+θ)
3.如果规定ρ>0,0≤θ<2π,那么除 极 点外,平面内的点和极坐标就可以一一对 应了。
我们学了直角坐标,也学了极坐 标,那么这两种坐标有什么关系呢? 已知点的直角坐标为,如何用极坐标 表示这个点呢?
M (, )
0
x
2
4
5
6
C
1.如图,在极坐标系中,写出点 AF(,6B, ,4C3 ,)D的, G极(坐5, 标53,所) 并在标的出位E置( 72 , ) ,
E D BA
O
X
4 F
3
G 5
3
解:如图可得A,B,C,D的坐标分别为
(4,0)
(2, )
(3, )
(1, 5 )
4
2
6
点E,F,G的位置如图所示
1
4.极坐标方程ρ=cosθ与ρcosθ= 的2 图形是( ) B
A
B
C
D
解x=:12把,ρc故os排θ=除A,、12 化D;为又直圆角ρ坐=c程os,θ显得然: 过点 (0,1),又排除C,故选B。
5、若A、B的两点极坐标为A(4,
高中数学 选修4-4 1.坐标系
1.坐标系
教学目标班级______姓名_________
1.了解常见的坐标系.
2.了解坐标法,并能运用解决相关问题.
教学过程
一、知识要点.
1.坐标系:坐标系是联系几何与代数的桥梁;是数形结合的有力工具;利用坐标系可以使数与形相互转化.
2.常用坐标系:①数轴、平面直角坐标系、空间直角坐标系;②极坐标系(重点)、柱坐标系、球坐标系.
3.坐标法:根据几何对象的特征,选择适当的坐标系,建立它的方程,通过方程研究它的性质及与其他几何图形的关系,这就是研究几何问题的坐标法.
二、例题分析.
1.运用坐标法解决实际问题.
例1:某信息中心O接到位于正西、正北、正东方向三个观测点A、B、C的报告:A、B 两个观测点同时听到一声巨响,C观测点听到巨响声的时间比它们晚4s. 已知各观测点到信息中心的距离都是1020m. 试确定巨响发生的位置.(假设声音传播速度为340m/s,各观测点均在同一平面上)
练1:已知ABC ∆的三边a ,b ,c 满足2225a c b =+,BE ,CF 分别是边AC ,AB 上的中线,建立适当的平面直角坐标系探究BE 与CF 的位置关系.
作业:1.两个定点的距离为6,点M 到这两个定点的距离的平方和为26,求点M 的轨迹.
2.已知点A 为定点,线段BC 在定直线l 上滑动,已知4||=BC ,点A 到直线l 的距离为3,求ABC ∆外心的轨迹方程.。
人教版高中数学选修4-4课件:第一讲二极坐标
4.写出下图中各点的极坐标:
A________,B________,C________. 答案:(4,0) 2,π4 3,π2
5.极坐标系中,与点3,-π3关于极轴所在直线对 称的点的极坐标是________.
答案:3,π3
类型 1 极坐标系与点的极坐标(自主研析) [典例 1] (1)写出下图中各点的极坐标(ρ>0,0≤ θ<2π,且各线之间间距相等).
法二 将点 A 化为直角坐标为( 3,1),点 B 化为直 角坐标为( 3,-1).所以 A、B 两点间的距离
d= ( 3- 3)2+[1-(-1)]2=2. (2)如下图所示:
关于极轴的对称点为 B2,-π3. 关于直线 l 的对称点为 C2,23π. 关于极点 O 的对称点为 D2,-23π.
归纳升华 1.点(ρ,θ)关于极轴的对称点是(ρ,-θ)或(ρ,2π- θ),关于极点的对称点是(ρ,π+θ),关于过极点且垂直 于极轴的直线的对称点是(ρ,π-θ).
2.求极坐标系中两点间的距离应通过由这两点和极 点 O 构成的三角形求解,也可以运用两点间距离公式|AB| = ρ21+ρ22-2ρ1ρ2cos(θ1-θ2)求解,其中 A(ρ1,θ1), B(ρ2,θ2).注意当 θ1+θ2=2kπ(k∈Z)时,|AB|=|ρ1-ρ2|; 当 θ1+θ2=2kπ+π(k∈Z)时,|AB|=|ρ1+ρ2|.
2.点的极坐标
一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一 个点.特别地,极点 O 的坐标为(0,θ)(θ∈R).和直角坐 标不同,平面内一个点的极坐标有无数种表示方法.
如果规定 ρ>0,0≤θ<2π,那么除极点外,平面内的 点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表 示的点也是唯一确定的.
人教A版数学【选修4-4】ppt课件:第一讲《坐标系》小结
在△OMB 中,同理 → |MB|= ρ2+36-12ρcosθ. → → 由|MA|· |MB|=36,得 (ρ2+36)2-(12ρcosθ)2=362. 即 ρ4+72ρ2-144ρ2cos2θ=0. 即 ρ2=72(2cos2θ-1)=72cos2θ. 所以,点 M 的轨迹的极坐标方程为 ρ2=72cos2θ.
3.柱坐标系与球坐标系 (1)柱坐标系
一般地,如图,建立空间直角坐标系 Oxyz,设 P 是空间任意 一点,它在 Oxy 平面上的射影为 Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示 点 Q 在平面 Oxy 上的极坐标, 这时点 P 的位置可用有序数组(ρ, θ, z)(z∈R)表示,这样我们建立了空间的点与有序数组(ρ,θ,z)之间 的一种对应关系.把建立上述对应关系的坐标系叫做柱坐标系,有 序数组(ρ,θ,z),叫做 P 的柱坐标,空间点 P 的直角坐标与柱坐 x=ρcosθ, 标之间的变换公式为y=ρsinθ, z=z.
2ac (2)当 a≠c 时,方程可化为 x +y - x=0,其轨迹是以 a-c
2 2
ac ac 2ac ( ,0)为圆心, 为半径的圆,但不包括点(0,0)和( , a-c |a-c| a-c 0).
【例 2】
x′=2x, 在同一坐标系中, 经过伸缩变换 y′=2y
后,
曲线 C 变为曲线(x-5)2+(y+6)2=1,求曲线 C 的方程,并判 断是什么曲线.
高 考 真 题 【例 8】 在极坐标系中, 圆 ρ=2cosθ 的垂直于极轴的两条切 线方程分别为( )
A.θ=0(ρ∈R)和 ρcosθ=2 π B.θ=2(ρ∈R)和 ρcosθ=2 π C.θ=2(ρ∈R)和 ρcosθ= D.θ=0(ρ∈R)和 ρcosθ=1
人教A版数学【选修4-4】ppt课件:1-1第一讲-坐标系
【分析】
解决这一问题的关键,在于确定遗址 W 与地下管
线 m 的位置关系, 即求出 W 到直线 m 的距离 d 与 100 米进行比较.
【解】 依题意,以 A 点为原点,正东方向和正北方向分别为 x 轴和 y 轴的正方向,建立平面直角坐标系.如下图.
则 A(0,0),B(-1 000,0),由|AW|=400,得
∴水面与抛物线拱顶相距 3 5 3 |y|+ = + =2(m). 4 4 4 即水面上涨到与抛物线形拱顶相距 2 m 时,船开始不能通航.
【例 2】 用解析法证明:任意四边形两组对边中点连线及两 对角线中点连线三线共点,且互相平分.
【证明】 如下图所示,建立直角坐标系.设四边形各点的坐 标分别为 A(0,0),B(a,0),C(b,c),(d,e).
2 2 2 2 2
1 1 ∴λ=3,μ=2. 1 x′=3x, ∴ y′=1y, 2 1 即将椭圆 4x +9y =36 上的所有点的横坐标变为原来的 ,纵 3
2 2
1 坐标变为原来的 ,即可得到圆 x′2+y′2=1. 2
规律技巧
求满足图象变换的伸缩变换, 实际上是让我们求出
变换公式,将新旧坐标分清,代入对应的曲线方程,然后比较系数 可得.
2.坐标法的应用 (1)坐标法的基本思想就是在平面上引进“坐标”的概念,建 立平面上的点和坐标之间的一一对应,从而建立曲线的方程,并通 过方程研究曲线的性质. (2)坐标法解决几何问题的“五步骤”: ①建立适当的平面直角坐标系,设动点 M(x,y); ②根据题设条件,找出动点 M 满足的等量关系式;
第一讲 坐标系
一 平面直角坐标系
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础
高中数学选修4-4知识点(坐标系与参数方程)
这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引 入参数,也可把普通方程化为参数方程. 2.圆的参数方程
1.圆心在坐标原点,半径为 r 的圆的参数方程 如图圆 O 与 x 轴正半轴交点 M0(r,0).
α α (t
为参数)
称为直线参数方程的标准形式,此时的参数 t 有明确的几何意义.
一般地,过点 M0(x0,y0),斜率 k=ba(a,b 为常数)的直线,参数方程为xy= =xy00+ +abtt(t 为参
数),称为直线参数方程的一般形式,此时的参数 t 不具有标准式中参数的几何意义. 四 渐开线与摆线(了解)
x=rsin φcos θ (2)空间点 P 的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换公式为y=rsin φsin θ .
z=rcos φ
第二讲:
第4页
一 曲线的参数方程
1.参数方程的概念 1.参数方程的概念
(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 x,y 都是某个变
2.参数方程与普通方程的区别与联系 (1)区别:普通方程 F(x,y)=0,直接给出了曲线上点的坐标 x,y 之间的关系,它含有
x,y 两个变量;参数方程xy= =fg((tt))(t 为参数)间接给出了曲线上点的坐标 x,y 之间的关系,
它含有三个变量 t,x,y,其中 x 和 y 都是参数 t 的函数. (2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一
就可得到普通方程. (3)普通方程化参数方程,首先确定变数 x,y 中的一个与参数 t 的关系,例如 x=f(t),
2022-2022《三维设计》高三数学湘教版(文)一轮复习[精品讲义]选修4-4坐标系与参数方程
2022-2022《三维设计》高三数学湘教版(文)一轮复习[精品讲义]选修4-4坐标系与参数方程第一节坐标系1.平面直角坐标系中的坐标伸缩变换设点P(某,y)是平面直角坐标系中的任意一点,在变换某,λ>0,某′=λ·φ:的作用下,点P(某,y)对应到点P′(某′,y′),称φ为平面直y′=μ·y,μ>0角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系与极坐标(1)极坐标系:如图所示,在平面内取一个定点O,叫做极点,自极点O引一条射线O某,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴O某为始边,射线OM为终边的角某OM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记为M(ρ,θ).一般地,不做特殊说明时,我们认为ρ≥0,θ可取任意实数.3.极坐标与直角坐标的互化设M是坐标系平面内任意一点,它的直角坐标是(某,y),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:点M互化公式直角坐标(某,y)某=ρcoθρinθy=极坐标(ρ,θ)ρ=某+yytanθ=某某≠02224.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r的圆ρ=r(0≤θ<2π)ρ=2rco_θ圆心为(r,0),半径为r的圆-π≤θ≤π22ρ=2rin_θ(0≤θ<π)πr,,半径为r的圆圆心为2(1)θ=α(ρ∈R)或θ=π+α(ρ∈R)(2)θ=α(ρ≥0)和θ=π+α(ρ≥0)过极点,倾斜角为α的直线过点(a,0),与极轴垂直的直线πa,,与极轴平行的直线过点2ππ-<θ<ρco_θ=a22ρin_θ=a(0<θ<π)1.在将直角坐标化为极坐标求极角θ时,易忽视判断点所在的象限(即角θ的终边的位置).2.在极坐标系下,点的极坐标不惟一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2kπ),(-ρ,π+θ+2kπ)(k∈Z)表示同一点的坐标.[试一试]1.点P的直角坐标为(1,-3),求点P的极坐标.π解:因为点P(1,-3)在第四象限,与原点的距离为2,且OP与某轴所成的角为-,3π2,-.所以点P的极坐标为32.求极坐标方程ρ=inθ+2coθ能表示的曲线的直角坐标方程.解:由ρ=inθ+2coθ,得ρ2=ρinθ+2ρcoθ,∴某2+y2-2某-y=0.故故极坐标方程ρ=inθ+2coθ表示的曲线直角坐标方程为某2+y2-2某-y=0.1.确定极坐标方程的四要素极点、极轴、长度单位、角度单位及其正方向,四者缺一不可.2.直角坐标(某,y)化为极坐标(ρ,θ)的步骤y(1)运用ρ=某2+y2,tanθ=(某≠0)某y(2)在[0,2π)内由tanθ=(某≠0)求θ时,由直角坐标的符号特征判断点所在的象限.某[练一练]1.在极坐标系中,求圆心在(2,π)且过极点的圆的方程.解:如图,O为极点,OB为直径,A(ρ,θ),则∠ABO=θ-90°,OBρ=22=,化简得ρ=-22coθ.inθ-90°π22.已知直线的极坐标方程为ρin(θ+)=,求极点到该直线的距离.4222π2in+co解:极点的直角坐标为O(0,0),ρin(θ+)=ρ=,∴ρinθ+4222ρcoθ=1,化为直角坐标方程为某+y-1=0.∴点O(0,0)到直线某+y-1=0的距离为d==π222θ+=的距离为.,即极点到直线ρin42222考点一平面直角坐标系中的伸缩变换1某′=2某,1.(2022·佛山模拟)设平面上的伸缩变换的坐标表达式为求在这一坐标变y′=3y,换下正弦曲线y=in某的方程.1某=2某′,某′=2某,解:∵∴1y=y′.y′=3y,3代入y=in某得y′=3in2某′.某′=2某,π2.求函数y=in(2某+)经伸缩变换14y′=y21某′=2某,某=2某′,解:由得①1y′=y,2y=2y′.π1π将①代入y=in(2某+),得2y′=in(2·某′+),4241π即y′=in(某′+).24后的解析式.某′=3某,y23.求双曲线C:某-=1经过φ:变换后所得曲线C′的焦点坐标.642y′=y21某=3某′,y22解:设曲线C′上任意一点P′(某′,y′),由上述可知,将代入某-=64y=2y′,某′24y′2某′2y′21得-=1,化简得-=1,964916某2y2即-=1为曲线C′的方程,可见仍是双曲线,则焦点F1(-5,0),F2(5,0)为所求.916[类题通法]某,λ>0某′=λ·平面图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩变换下,直y′=μ·y,μ>0线仍然变成直线,抛物线仍然变成抛物线,双曲线仍然变成双曲线,圆可以变成椭圆,椭圆也可以变成圆.考点二极坐标与直角坐标的互化[典例](2022·石家庄模拟)在平面直角坐标系某Oy中,以坐标原点O为极点,某轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为3ρ2=12ρcoθ-10(ρ>0).(1)求曲线C1的直角坐标方程;某2y2(2)曲线C2的方程为+=1,设P,Q分别为曲线C1与曲线C2上的任意一点,求|PQ|164的最小值.[解](1)曲线C1的方程可化为3(某2+y2)=12某-10,2即(某-2)2+y2=.3(2)依题意可设Q(4coθ,2inθ),由(1)知圆C1的圆心坐标为C1(2,0).故|QC1|=4coθ-22+4in2θ=12co2θ-16coθ+8=222coθ-2+,33326,36.3|QC1|min=所以|PQ|min=[类题通法]直角坐标方程与极坐标方程的互化,关键要掌握好互化公式,研究极坐标系下图形的性质,可转化直角坐标系的情境进行.[针对训练](2022·安徽模拟)在极坐标系中,判断直线ρcoθ-ρinθ+1=0与圆ρ=2inθ的位置关系.解:直线ρcoθ-ρinθ+1=0可化成某-y+1=0,圆ρ=2inθ可化为某2+y2=2y,即某2+(y-1)2=1.圆心(0,1)到直线某-y+1=0的距离d=考点三|0-1+1|=0<1.故直线与圆相交.2极坐标方程及应用[典例](2022·郑州模拟)已知在直角坐标系某Oy中,曲线C的参数方程为某=2+2coθ,(θ为参数),在极坐标系(与直角坐标系某Oy取相同的长度单位,且以y=2inθπ原点O为极点,以某轴正半轴为极轴)中,直线l的方程为ρin(θ+)=22.4(1)求曲线C在极坐标系中的方程;(2)求直线l被曲线C截得的弦长.[解](1)由已知得,曲线C的普通方程为(某-2)2+y2=4,即某2+y2-4某=0,化为极坐标方程是ρ=4coθ.(2)由题意知,直线l的直角坐标方程为某+y-4=0,22某+y-4某=0,由得直线l与曲线C的交点坐标为(2,2),(4,0),所以所求弦长为22.某+y=4,π在本例(1)的条件下,求曲线C与曲线C1:ρcoθ=3(ρ≥0,0≤θ解:由曲线C,C1极坐标方程联立ρ=4coθ,33π∴co2θ=,coθ=±,又ρ≥0,θ∈[0,).422∴coθ=π3π23,.,θ=,ρ=23,故交点极坐标为626[类题通法]求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P(ρ,θ)是曲线上任意一点;(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式;(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.[针对训练](2022·荆州模拟)在极坐标系中,求过圆ρ=6coθ的圆心,且垂直于极轴的直线的极坐标方程.解:ρ=6coθ在直角坐标系中表示圆心为(3,0),半径为3的圆.过圆心且垂直于某轴的直线方程为某=3,其在极坐标系下的方程为ρcoθ=3.[课堂练通考点]π1.(2022·南昌调研)在极坐标系中,求圆ρ=2coθ与直线θ=(ρ>0)所表示的图形的交4点的极坐标.π解:圆ρ=2coθ可转化为某2-2某+y2=0,直线θ=可转化为y =某(某>0),两个方程联4π立得交点坐标是(1,1),可得其极坐标是(2,).4ππ2.(2022·惠州模拟)在极坐标系中,已知两点A,B的极坐标分别为(3,)、(4,),求36△AOB(其中O为极点)的面积.ππ1解:由题意知A,B的极坐标分别为(3,)、(4,),则△AOB的面积S△AOB=OA·OB·in3621π∠AOB=某3某4某in=3.263.(2022·天津高考改编)已知圆的极坐标方程为ρ=4c oθ,圆心为C,点P的极坐标为4,π,求|CP|的值.3解:由ρ=4coθ可得圆的直角坐标方程为某2+y2=4某,圆心C(2,0).点P的直角坐标为(2,23),所以|CP|=23.4.在极坐标系中,求圆:ρ=2上的点到直线:ρ(coθ+3inθ)=6的距离的最小值.解:由题意可得,圆的直角坐标方程为某2+y2=4,圆的半径为r=2,直线的直角坐标|0+3某0-6|方程为某+3y-6=0,圆心到直线的距离d==3,所以圆上的点到直线的距2离的最小值为d-r=3-2=1.某=-t,π5.(2022·银川调研)已知直线l:(t为参数)与圆C:ρ=42co(θ-).4y=1+t(1)试判断直线l和圆C的位置关系;(2)求圆上的点到直线l的距离的最大值.解:(1)直线l的参数方程消去参数t,得某+y-1=0.π由圆C的极坐标方程,得ρ2=42ρco(θ-),化简得ρ2=4ρcoθ+4ρinθ,所以圆C4的直角坐标方程为某2+y2=4某+4y,即(某-2)2+(y-2)2=8,故该圆的圆心为C(2,2),半径r=22.|2+2-1|32从而圆心C到直线l的距离为d=22=2,1+132显然<22,所以直线l和圆C相交.232(2)由(1)知圆心C到直线l的距离为d=,所以圆上的点到直线l的距离的最大值为23272+22=.22[课下提升考能]1.在直角坐标系某Oy中,以O为极点,某轴的正半轴为极轴建立极坐标系.曲线C的πθ-=1,M,N分别为曲线C与某轴,y轴的交点.极坐标方程为ρco3(1)写出曲线C的直角坐标方程,并求点M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程.π13θ-=1得ρcoθ+inθ=1,解:(1)由ρco32213从而曲线C的直角坐标方程为某+y=1,即某+3y=2.22θ=0时,ρ=2,所以M(2,0).π2323πθ=时,ρ=,所以N.233,223(2)由(1)得点M的直角坐标为(2,0),点N的直角坐标为0,.3所以点P的直角坐标为1,323π,则点P的极坐标为,33,6π所以直线OP的极坐标方程为θ=,ρ∈(-∞,+∞).6π1,,点B在直线l:ρcoθ+ρinθ=0(0≤θ<2π)上运动,当2.在极坐标系中定点A2线段AB最短时,求点B的极坐标.解:∵ρcoθ+ρinθ=0,∴coθ=-inθ,tanθ=-1.3π∴直线的极坐标方程化为θ=(直线如图).4过A作直线垂直于l,垂足为B,此时AB最短.易得|OB|=22 .∴B点的极坐标为23π2,4.3.(2022·扬州模拟)已知圆的极坐标方程为:ρ2-42ρcoθ-π4+6=0.(1)将极坐标方程化为普通方程;(2)若点P(某,y)在该圆上,求某+y的最大值和最小值.解:(1)原方程变形为:ρ2-4ρcoθ-4ρinθ+6=0.某2+y2-4某-4y+6=0.(2)圆的参数方程为某=2+2coα,y=2+2inα(α为参数),所以某+y=4+2inα+π4.那么某+y的最大值为6,最小值为2.4.在同一平面直角坐标系中,已知伸缩变换φ:某′=3某,2y′=y.(1)求点A13,-2经过φ变换所得的点A′的坐标;(2)点B经过φ变换得到点B′-3,12,求点B的坐标;(3)求直线l:y=6某经过φ变换后所得到的直线l′的方程.某′=3某,解:(1)设A′(某′,y′),由伸缩变换φ:某′=3某,y′=y得到y′=12y,坐标为13,-2,于是某′=3某13=1,y′=12某(-2)=-1,∴A′(1,-1)为所求.(2)设B(某,y),由伸缩变换φ:某′=3某,某=3某′,y′=y得到y=2y′.由于点B′的坐标为-3,12,于是某=13某(-3)=-1,y=2某12=1,A的由于点∴B(-1,1)为所求.某=,某′=3某,3(3)由伸缩变换φ:得2y′=y,某′y=2y′.代入直线l:y=6某,得到经过伸缩变换后的方程y′=某′,因此直线l的方程为y=某.5.(2022·南京模拟)在极坐标系中,曲线C1,C2的极坐标方程分别为ρ=-2coθ,ρcoθ+π=1.3(1)求曲线C1和C2的公共点的个数;(2)过极点作动直线与曲线C2相交于点Q,在OQ上取一点P,使|OP|·|OQ|=2,求点P的轨迹,并指出轨迹是什么图形.解:(1)C1的直角坐标方程为(某+1)2+y2=1,它表示圆心为(-1,0),半径为1的圆,C23的直角坐标方程为某-3y-2=0,所以曲线C2为直线,由于圆心到直线的距离为d=>1,2所以直线与圆相离,即曲线C1和C2没有公共点.ρρ0=2,(2)设Q(ρ0,θ0),P(ρ,θ),则θ=θ0,2ρ0=ρ,即①θ0=θ.因为点Q(ρ0,θ0)在曲线C2上,πθ0+=1,②所以ρ0co3π2θ+=1,将①代入②,得coρ3π13θ+为点P的轨迹方程,化为直角坐标方程为某-2+y+2=1,因即ρ=2co32213此点P的轨迹是以,-为圆心,1为半径的圆.22π2θ-=.6.(2022·苏州模拟)在极坐标系下,已知圆O:ρ=coθ+inθ和直线l:ρin42(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O公共点的一个极坐标.解:(1)圆O:ρ=coθ+inθ,即ρ2=ρcoθ+ρinθ,圆O的直角坐标方程为:某2+y2=某+y,即某2+y2-某-y=0,π2θ-=,即ρinθ-ρcoθ=1,直线l:ρin42则直线l的直角坐标方程为:y-某=1,即某-y+1=0.22某+y-某-y=0,某=0,π1,.(2)由得故直线l与圆O公共点的一个极坐标为2某-y+1=0y =1,第二节参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数某,y中的一个与参数t的关系,例如某=f(t),把它代入普通方程,求某=ft,出另一个变数与参数的关系y=g(t),那么,就是曲线的参数方程.y=gt2.常见曲线的参数方程和普通方程点的轨迹直线普通方程y-y0=tanα(某-某0)参数方程某=某0+tcoαy=y0+tinα(t为参数)圆某+y=r某2y2+=1(a>b>0)a2b2222某=rcoθ(θ为参数)y=rinθ某=acoφ(φ为参数)y=binφ椭圆某=某0+tcoα,1.不明确直线的参数方程中的几何意义导致错误,对于直线参数方程y=y0+tinα.(t为参数)注意:t是参数,α则是直线的倾斜角.2.参数方程与普通方程互化时,易忽视互化前后的等价性.[试一试]3.(2022·合肥模拟)在平面直角坐标系中,直线l的参数方程为23y=+22t1某=t,2(t为参数),若以直角坐标系的原点O为极点,某轴非负半轴为极轴,且长度单位相同,建立极坐πθ-.若直线l与曲线C交于A,B两点,求|AB|的标系,曲线C的极坐标方程为ρ=2co4值.解:首先消去参数t,可得直线方程为3某-y+为某-2=0,极坐标方程化为直角坐标方程21-1062=.24222+y-2=1,根据直线与圆的相交弦长公式可得|AB|=2224.(2022·石家庄模拟)在平面直角坐标系某Oy中,以原点O为极点,某轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:ρin2θ=coθ.(1)求曲线C的直角坐标方程;某=2-22t,(2)若直线l的参数方程为2y=2t点,求|AB|的值.(t为参数),直线l与曲线C相交于A,B两解:(1)将y=ρinθ,某=ρcoθ代入ρ2in2θ=ρcoθ中,得y2=某,∴曲线C的直角坐标方程为:y2=某.某=2-22t,(2)把2y=2t,代入y2=某整理得,t2+2t-4=0,Δ>0总成立.设A,B两点对应的参数分别为t1,t2,∵t1+t2=-2,t1t2=-4,∴|AB|=|t1-t2|=-22-4某-4=32.[课下提升考能]某=t+1,1.在平面直角坐标系某Oy中,直线l的参数方程为(t为参数),曲线C的y=2t2某=2tanθ,参数方程为(θ为参数).试求直线l和曲线C的普通方程,并求出它们的公共y=2tanθ点的坐标.某=t+1,解:因为直线l的参数方程为(t为参数),由某=t+1得t=某-1,代入y=y=2t2t,得到直线l的普通方程为2某-y-2=0.同理得到曲线C的普通方程为y2=2某.y=2某-1,1解方程组2得公共点的坐标为(2,2),(,-1).2y=2某,2.(2022·长春模拟)已知曲线C的极坐标方程为ρ=4coθ,以极点为原点,极轴为某轴某=5+23t,正半轴建立平面直角坐标系,设直线l的参数方程为1y=2t(1)求曲线C的直角坐标方程与直线l的普通方程;(t为参数).(2)设曲线C与直线l相交于P,Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.解:(1)由ρ=4coθ,得ρ2=4ρcoθ,即曲线C的直角坐标方程为某2+y2=4某;某=5+23t,由1y=2t(t为参数),得y=(某-5),即直线l的普通方程为某-3y-5=0.3|2-3某0-5|3(2)由(1)可知C为圆,且圆心坐标为(2,0),半径为2,则弦心距d==,21+3弦长|PQ|=2某=2+2coφ,3.在直角坐标系某Oy中,圆C1和C2的参数方程分别是(φ为参数)和y=2inφ某=coφ,(φ为参数).以O为极点,某轴的正半轴为极轴建立极坐标系.y=1+inφ322-2=7,因此以PQ为一条边的圆C的内接矩形面积S=2d·|PQ|=37.2(1)求圆C1和C2的极坐标方程;(2)射线OM:θ=α与圆C1的交点为O,P,与圆C2的交点为O,Q,求|OP|·|OQ|的最大值.解:(1)圆C1和圆C2的普通方程分别是(某-2)2+y2=4和某2+(y-1)2=1,所以圆C1和C2的极坐标方程分别是ρ=4coθ和ρ=2inθ.(2)依题意得,点P,Q的极坐标分别为P(4coα,α),Q(2inα,α),所以|OP|=|4coα|,|OQ|=|2inα|.从而|OP|·|OQ|=|4in2α|≤4,当且仅当in2α=±1时,上式取“=”,即|OP|·|OQ|的最大值是4.4.(2022·福建模拟)如图,在极坐标系中,圆C的圆心坐标为(1,0),半径为1.(1)求圆C的极坐标方程;(2)若以极点O为原点,极轴所在直线为某轴建立平面直角坐标系.已知直线l某=-1+tco6,的参数方程为πy=tin6OM,BM,在Rt△OBM中,|OM|=|OB|co∠BOM,所以ρ=2coθ.π(t为参数),试判断直线l与圆C的位置关系.解:(1)如图,设M(ρ,θ)为圆C上除点O,B外的任意一点,连接π可以验证点O(0,),B(2,0)也满足ρ=2coθ,2故ρ=2coθ为所求圆的极坐标方程.(2)由πy=tin6π某=-1+tco,6(t为参数),得直线l的普通方程为y=3(某+1),3即直线l的普通方程为某-3y+1=0.由ρ=2coθ,得圆C的直角坐标方程为(某-1)2+y2=1.|1某1-3某0+1|因为圆心C到直线l的距离d==1,2所以直线l与圆C相切.5.(2022·郑州模拟)在直角坐标系某Oy中,直线l经过点P(-1,0),其倾斜角为α.以原点O为极点,以某轴非负半轴为极轴,与直角坐标系某Oy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρ2-6ρcoθ+5=0.(1)若直线l与曲线C有公共点,求α的取值范围;(2)设M(某,y)为曲线C上任意一点,求某+y的取值范围.解:(1)将曲线C的极坐标方程ρ2-6ρcoθ+5=0化为直角坐标方程为某2+y2-6某+5=0.某=-1+tcoα,直线l的参数方程为(t为参数).y=tinα某=-1+tcoα,将(t为参数)代入某2+y2-6某+5=0整理得,t2-8tcoα+12=0.y=tinα∵直线l与曲线C有公共点,∴Δ=64co2α-48≥0,∴coα≥33或coα≤-.22π50,∪∵α∈[0,π),∴α的取值范围是,.66(2)曲线C的方程某2+y2-6某+5=0可化为(某-3)2+y2=4,某=3+2coθ,其参数方程为(θ为参数).y=2inθ∵M(某,y)为曲线C上任意一点,π∴某+y=3+2coθ+2inθ=3+22in(θ+),4∴某+y的取值范围是[3-22,3+22].某=acoφ,6.(2022·昆明模拟)已知曲线C的参数方程是(φ为参数,a>0),直线l的y=3inφ某=3+t,参数方程是(t为参数),曲线C与直线l有一个公共点在某轴上,以坐标原点为y=-1-t极点,某轴的正半轴为极轴建立坐标系.(1)求曲线C的普通方程;(2)若点A(ρ1,θ),B(ρ2,θ+2π4π111),C(ρ3,θ+)在曲线C上,求的值.2+2+33|OA||OB||OC|2某2解:(1)直线l的普通方程为某+y=2,与某轴的交点为(2,0).又曲线C 的普通方程为2+ay2某2y2=1,所以a=2,故所求曲线C的普通方程是+=1.3432π4πρ2,θ+,Cρ3,θ+在曲线C上,即点A(ρ1coθ,ρ1inθ),(2)因为点A(ρ1,θ),B332π4π4π2πθ+,ρ2in(θ+,Cρ3coθ+,ρ3inθ+在曲线C上.Bρ2co3333故1111112+2+2=2+2+2|OA||OB||OC|ρ1ρ2ρ324112=co2+co2++co++343322422in+in++in+33481+co2+1+co2++co21133+++=4222481-co2+1-co2+-co2113313137=4某2+3某2=8.++3222。
高中数学选修4-4第一讲坐标系1.1平面直角坐标系
得9x -9y =9 即x -y =1
2
2
课堂小结:
(1)体会坐标法的思想,应用坐标 法解决几何问题; (2)掌握平面直角坐标系中的伸缩 变换。
xxz
根据几何特点选择适当的直角坐标系的一些规则: (1)如果图形有对称中心,可以选择对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能地在坐标轴上。
二.平面直角坐标系中的伸缩变换
思考:
(1)怎样由正弦曲线y=sinx得到曲线y=sin2x?
1 x x 2 y y
1
通常把 1 叫做平面直角坐标系中的一个压缩变换。
(2)怎样由正弦曲线y=sinx得到曲 线y=3sinx?写出其坐标变换。 y y=3sinx
y=sinx 2
x
(2)怎样由正弦曲线y=sinx得到曲线y=3sinx?写出 其坐标变换。 在正弦曲线上任取一点P(x,y),保持横坐标x不变, 将纵坐标伸长为原来的3倍,就得到曲线y=3sinx。 设点P(x,y)经变换得到点为 p x, y
为平面直角坐标系中的伸缩变换。
注 (1) 0, 0 (2)把图形看成点的运动轨迹,平面图 形的伸缩变换可以用坐标伸缩变换得到; (3)在伸缩变换下,平面直角坐标系不 变,在同一直角坐标系下进行伸缩变换。
例2:在直角坐标系中,求下列方程所对应的图形经过 伸缩变换 x 2 x
1 x x 2 y 3 y
3
通常把 3 叫做平面直角坐标系中 的一个坐标伸缩变换。
定义:设P(x,y)是平面直角坐标系中任意一点, 在变换 ( 0) x' x : 4 ( 0) y' y 的作用下,点P(x,y)对应 p x, y 称
人教版数学选修4-4课件 1.1 平面直角坐标系
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
• 思维导引:本题涉及两点间的距离及曲线, 故要想到坐标法解决问题.
解析:以 A,B 所在直线为 x 轴,A,B 中点 O 为坐标原点,建立如图的直角坐标 系.
∵|AB|=10,∴点 A(-5,0),B(5,0).设某地 P 的坐标为(x,y),并设 A 地运费为 3a 元/公里,则 B 地运费为 a 元/公里,设 P 地居民购货总费用满足条件(P 地居民选择 A 地 购货):价格+A 地运费≤价格+B 地运费,
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
•要点二 平面直角坐标系中的伸缩变换
定义:设 P(x,y)是平面直角坐标系中任意一点,在变换 φ:xy′′==λμxy,,λμ>>00,
• 的作用下,点P(x,y)对应到点P′(x′,y′),就 坐称标φ伸为缩平变面换 直角伸坐缩标变换系中的________________, 简称______________.
选修4-4坐标系及参数方程
选修4-4坐标系与参数方程一、坐标系1.平面直角坐标系的建立:在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。
2.空间直角坐标系的建立:在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。
3.极坐标系的建立:在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。
(其中O 称为极点,射线OX 称为极轴。
)① 设M 是平面上的任一点,ρ表示OM 的长度,θ表示以射线OX 为始边,射线OM 为终边所成的角。
那么有序数对(,)ρθ称为点M 的极坐标。
其中ρ称为极径,θ称为极角。
约定:极点的极坐标是ρ=0,θ可以取任意角。
4.直角坐标与极坐标的互化以直角坐标系的O 为极点,x 轴正半轴为极轴,且在两坐标系中取相同的单位长度平面内的任一点P 的直角坐标极坐标分别为(x ,y )和(,)ρθ,则x = 2ρ=y = tan θ=二、曲线的极坐标方程1.直线的极坐标方程:若直线过点00(,)M ρθ,且极轴到此直线的角为α,则它的方程为:00sin()sin()ρθ-α=ρθ-α几个特殊位置的直线的极坐标方程(1)直线过极点 (2)直线过点M(a,0)且垂直于极轴 (3)直线过(,)2M b π且平行于极轴 图:方程:2.圆的极坐标方程: 若圆心为00(,)M ρθ,半径为r 的圆方程为: 2220002cos()0r ρρρθθρ--+-=几个特殊位置的圆的极坐标方程(1)当圆心位于极点 (2)当圆心位于(,0)M r (3)当圆心位于(,)2M r π图:方程:3.直线、圆的直角坐标方程与极坐标方程的互化 利用: x = 2ρ= y = tan θ=三、参数方程1、参数方程化为普通方程的过程就是消参过程常见方法有三种:(1)代入法:利用解方程的技巧求出参数t ,然后代入消去参数。
极坐标与参数方程带答案(教师版)
选修4-4 坐标系与参数方程第一节 坐 标 系1.平面直角坐标系中的伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
2.极坐标的概念 (1)极坐标系:如图所示,在平面内取一个定点O ,叫做极点,从O 点引一条射线Ox ,叫做极轴,选定一个单位长度和角及其正方向(通常取逆时针方向),这样就确定了一个平面极坐标系,简称为极坐标系。
(2)极坐标:对于平面内任意一点M ,用ρ表示线段OM 的长,θ表示以Ox 为始边、OM 为终边的角度,ρ叫做点M 的极径,θ叫做点M 的极角,有序实数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ)。
当点M 在极点时,它的极径ρ=0,极角θ可以取任意值。
(3)点与极坐标的关系:平面内一点的极坐标可以有无数对,当k ∈Z 时,(ρ,θ),(ρ,θ+2k π),(-ρ,θ+(2k +1)π)表示同一个点,而用平面直角坐标表示点时,每一个点的坐标是唯一的。
如果规定ρ>0,0≤θ<2π,或者-π<θ≤π,那么,除极点外,平面内的点和极坐标就一一对应了。
3.极坐标和直角坐标的互化(1)互化背景:把平面直角坐标系的原点作为极点,x 轴的正半轴作为极轴,建立极坐标系,并在两种坐标系中取相同的单位长度,如图所示。
(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ)(ρ>0,θ∈[0,2π)),于是极坐标与直角坐标的互化公式如表:⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ4.常见曲线的极坐标方程1.明辨两个坐标伸缩变换关系式⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),点(x ,y )在原曲线上,点(x ′,y ′)在变换后的曲线上,因此点(x ,y )的坐标满足原来的曲线方程,点(x ′,y ′)的坐标满足变换后的曲线方程。
选修4-4坐标系和参数方程
数学选修4-4坐标系与参数方程2016-7第一讲 坐标系一、平面直角坐标系1.平面直角坐标系在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。
它使平面上任一点P 都可以由惟一的实数对(x,y )确定.例1 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比其他两个观测点晚4s ,已知各观测点到中心的距离都是1020m ,试确定该巨响的位置。
(假定当时声音传播的速度为340m/s ,各相关点均在同一平面上)以接报中心为原点O ,以BA 方向为x 轴,建立直角坐标系.设A 、B 、C 分别是西、东、北观测点,则 A(1020,0), B(-1020,0), C(0,1020) 设P (x,y )为巨响为生点,由B 、C 同时听到巨响声,得|PC|=|PB|,故P 在BC 的垂直平分线PO 上,PO 的方程为y=-x ,因A 点比B 点晚4s 听到爆炸声,故|PA|- |PB|=340×4=1360,由双曲线定义知P 点在以A 、B 为焦点的双曲线22221x y a b-=上,2222222222680,1020102068053401(0)6805340a c b c a x y x ∴==∴=-=-=⨯-=<⨯故双曲线方程为用y=-x代入上式,得x =± , ∵|PA|>|PB|,(x y P PO ∴=-=-=即故答:巨响发生在接报中心的西偏北450距中心处.上述问题的解决体现了坐标法的思想. 建系时,根据几何特点选择适当的直角坐标系:(1)如果图形有对称中心,可以选对称中心为坐标原点; (2)如果图形有对称轴,可以选择对称轴为坐标轴; (3)使图形上的特殊点尽可能多的在坐标轴上。
变式训练1.一炮弹在某处爆炸,在A 处听到爆炸的时间比在B 处晚2s,已知A 、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程.2.在面积为1的PMN ∆中,2tan ,21tan -=∠=∠MNP PMN ,建立适当的坐标系,求以M ,N 为焦点并过点P 的椭圆方程.课后作业1.若P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b2=1(a >b >0)上的一点,且PF 1→·PF 2→=0,tan ∠PF 1F 2=12,则此椭圆的离心率为( ). A.53 B.23 C.13 D.122.设F 1、F 2是双曲线x23-y 2=1的两个焦点,P 在双曲线上,当△F 1PF 2的面积为2时,1PF ·2PF 的值为( )A .2B .3C .4D .6 3.若抛物线y 2=2px (p >0)的焦点在圆x 2+y 2+2x -3=0上,则p =( )A.12B .1C .2D .3 4.已知两定点A (1,1),B (-1,-1),动点P 满足P A →·PB →=x22,则点P 的轨迹方程是_________.5.△ABC 的顶点A (-5,0)、B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是___________.6. 已知动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________.7.已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且AB =22时,求直线l 的方程.8. 已知长方形ABCD ,22=AB ,BC=1。
选修4-4第一节坐标系+Word版
第一节 坐 标 系基础联通 抓主干知识的“源”与“流”设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.考点贯通 抓高考命题的“形”与“神”平面直角坐标系下图形的伸缩变换[例] 求椭圆x 24+y 2=1,经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y后的曲线方程.[方法技巧]应用伸缩变换公式时的两个注意点(1)曲线的伸缩变换是通过曲线上任意一点的坐标的伸缩变换实现的,解题时一定要区分变换前的点P 的坐标(x ,y )与变换后的点P ′的坐标(X ,Y ),再利用伸缩变换公式⎩⎪⎨⎪⎧X =ax (a >0),Y =by (b >0)建立联系.(2)已知变换后的曲线方程f (x ,y )=0,一般都要改写为方程f (X ,Y )=0,再利用换元法确定伸缩变换公式.能力练通 抓应用体验的“得”与“失”1.在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .求点A ⎝⎛⎭⎫13,-2经过φ变换所得的点A ′的坐标.2.求直线l :y =6x 经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y变换后所得到的直线l ′的方程.3.求双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y变换后所得曲线C ′的焦点坐标.本节主要包括2个知识点: 1.平面直角坐标系下图形的伸缩变换; 2.极坐标系.4.将圆x 2+y 2=1变换为椭圆x 29+y 24=1的一个伸缩变换公式为φ:⎩⎪⎨⎪⎧X =ax (a >0),Y =by (b >0),求a ,b 的值.突破点(二) 极坐标系基础联通 抓主干知识的“源”与“流” 1.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,点O 叫做极点,自极点O 引一条射线Ox ,Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标一般地,没有特殊说明时,我们认为ρ≥0,θ可取任意实数. (3)点与极坐标的关系一般地,极坐标(ρ,θ)与(ρ,θ+2k π)(k ∈Z)表示同一个点,特别地,极点O 的坐标为(0,θ)(θ∈R),和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ) 表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.2.1.2.直角坐标方程化为极坐标方程或直角坐标系中的点的坐标化为极坐标(1)直角坐标方程化为极坐标方程较为简单,只需将直角坐标方程中的x ,y 分别用ρcos θ,ρsin θ代替即可得到相应极坐标方程.(2)求直角坐标系中的点(x ,y )对应的极坐标的一般步骤:第一步,根据直角坐标系中两点间的距离公式计算该点与坐标原点的距离,即计算ρ;第二步,根据角θ的正切值tan θ=yx(x ≠0)求出角θ(若正切值不存在,则该点在y 轴上)[例1] 在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.[方法技巧]1.应用互化公式的三个前提条件 (1)取直角坐标系的原点为极点. (2)以x 轴的正半轴为极轴.(3)两种坐标系规定相同的长度单位. 2.直角坐标化为极坐标时的两个注意点(1)根据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈[0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应注意判断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ(θ∈[0,2π))的值.极坐标方程的应用[例2] (2017·福州五校联考)已知曲线C 的极坐标方程为ρ2-22ρcos ⎝⎭⎫θ+π4-2=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系xOy .(1)若直线l 过原点,且被曲线C 截得的弦长最小,求直线l 的直角坐标方程; (2)若M 是曲线C 上的动点,且点M 的直角坐标为(x ,y ),求x +y 的最大值.[易错提醒]用极坐标系解决问题时要注意题目中的几何关系,如果几何关系不容易通过极坐标表示时,可以先化为直角坐标方程,将不熟悉的问题转化为熟悉的问题加以解决.能力练通 抓应用体验的“得”与“失”1.[考点一、二]已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎫θ+π4=2,点A 的极坐标为A ⎝⎛⎭⎫22,7π4,求点A 到直线l 的2.[考点一]已知圆C 的极坐标方程为ρ2+22ρsin θ-π4-4=0,求圆C 的半径.3.[考点二]在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,求实数a 的值.4.[考点一、二](2017·洛阳统考)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2. (1)将圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.[全国卷5年真题集中演练——明规律]1.(2016·全国乙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .2.(2015·新课标全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.C 的极坐标方程.2.设M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝⎛⎭⎫θ+π4=22上的动点,求M ,N 的最小距离.3.在极坐标系中,求直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标.4.(2017·山西质检)在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝⎛⎭⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.5.(2017·南京模拟)已知直线l :ρsin ⎝⎛⎭⎫θ-π4=4和圆C :ρ=2k cos ⎝⎛⎭⎫θ+π4(k ≠0),若直线l 上的点到圆C 上的点的最小距离等于2.求实数k 的值并求圆心C 的直角坐标.6.已知圆C :x 2+y 2=4,直线l :x +y =2.以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系. (1)将圆C 和直线l 方程化为极坐标方程;(2)P 是l 上的点,射线OP 交圆C 于点R ,又点Q 在OP 上,且满足|OQ |·|OP |=|OR |2,当点P 在l 上移动时,求点Q 轨迹的极坐标方程.7.(2017·贵州联考)已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎫2,π3. (1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程);(2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的普通方程.8.在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,射线θ=π3与曲线C 2交于点D ⎝⎛⎭⎫2,π3. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知极坐标系中两点A (ρ1,θ0),B ⎝⎛⎭⎫ρ2,θ0+π2,若A ,B 都在曲线C 1上,求1ρ21+1ρ22的值. 春到四月,如火如荼,若诗似画,美到了极致,美到了令人心醉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知⊙O 1和⊙O 2的极坐标方程分别是ρ=2cos θ和ρ=2a sin θ(a 是非零常数). (1)将两圆的极坐标方程化为直角坐标方程; (2)若两圆的圆心距为5,求a 的值. 解:(1)由ρ=2cos θ,得ρ2=2ρcos θ. 所以⊙O 1的直角坐标方程为x 2+y 2=2x , 即(x -1)2+y 2=1.
由ρ=2a sin θ,得ρ2=2aρsin θ.
所以⊙O 2的直角坐标方程为x 2+y 2=2ay , 即x 2+(y -a )2=a 2.
(2)⊙O 1与⊙O 2的圆心距为12+a 2=5,解得a =±2.
2.(2011·大连模拟)已知直线l 经过点P ⎝⎛⎭⎫12,1,倾斜角α=π
6,圆C 的极坐标方程为ρ=2cos ⎝⎛⎭
⎫θ-π
4. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A ,B ,求点P 到A ,B 两点的距离之积.
解:(1)直线l 的参数方程为⎩⎨⎧
x =12+t cos π
6,y =1+t sin π
6
,
即⎩⎨⎧
x =12+3
2
t ,y =1+1
2
t (t 为参数).
由ρ=2cos ⎝⎛⎭⎫θ-π
4得ρ=cos θ+sin θ, 所以ρ2=ρcos θ+ρsin θ, 得⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=1
2, (2)把⎩⎨⎧
x =12+3
2
t ,y =1+1
2t 代入⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=12
, 得t 2+12t -1
4
=0.
|PA |·|PB |=|t 1t 2|=1
4.
3.(2011·山西六校联考)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,已知点A 的直角坐标为(1,-5),点M 的极坐标为⎝⎛⎭⎫4,π2,若直线l 过点A ,且倾斜角为π
3,圆C 以M 为圆心、4为半径.
(1)求直线l 的参数方程和圆C 的极坐标方程; (2)试判定直线l 和圆C 的位置关系.
解:(1)由题意,直线l 的普通方程是y +5=(x -1)tan π
3,此方程可化为y +5sin π3=x -1cos π
3
,
令y +5sin π3=x -1
cos π3=a (a 为参数),得直线l 的参数方程为
⎩
⎨⎧
x =1
2
a +1,y =32a -5(a 为参数).
如图,设圆上任意一点为P (ρ,θ), 则在△POM 中,由余弦定理,
得PM 2=PO 2+OM 2-2·PO ·OM cos ∠POM , ∴42=ρ2+42-2×4ρcos ⎝⎛⎭
⎫θ-π
2. 化简得ρ=8sin θ,即为圆C 的极坐标方程.
(2)由(1)可进一步得出圆心M 的直角坐标是(0,4),直线l 的普通方程是3x -y -5-3=0,圆心M 到直线l 的距离d =|0-4-5-3|3+1
=9+32>4,所以直线l 和圆C 相离.
4.(2011·哈九中高三期末)已知直线l 的参数方程为⎩⎨⎧
x =12
t ,y =22+3
2t
(t 为参数),若以直
角坐标系xOy 的O 点为极点,Ox 方向为极轴,选择相同的长度单位建立极坐标系,得曲线
C 的极坐标方程为ρ=2cos(θ-π
4
).
(1)求直线l 的倾斜角;
(2)若直线l 与曲线C 交于A ,B 两点,求|AB |.
解:(1)直线参数方程可以化为⎩⎪⎨⎪
⎧
x =t cos60°,y =2
2+t sin60°
,根据直线参数方程的意义,这条直
线是经过点(0,
2
2
),倾斜角为60°的直线. (2)l 的直角坐标方程为y =3x +
22
, ρ=2cos(θ-π4)的直角坐标方程为⎝⎛⎭⎫x -222+⎝⎛⎭⎫y -222=1, ∴圆心(
22,22)到直线l 的距离d =64.∴|AB |=102
. 5.(2011·东北三校模拟)已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x 轴的正半轴重合,且两个坐标系的单位长度相同,已知直线l 的参数方程为
⎩
⎪⎨⎪⎧
x =-1+t cos α,
y =1+t sin α(t 为参数),曲线C 的极坐标方程为ρ=4cos θ. (1)若直线l 的斜率为-1,求直线l 与曲线C 交点的极坐标; (2)若直线l 与曲线C 相交弦长为23,求直线l 的参数方程. 解:(1)直线l 的方程:y -1=-1(x +1),即y =-x , C :ρ=4cos θ,即x 2+y 2-4x =0, 联立方程得2x 2-4x =0,
∴两交点分别为:A (0,0),B (2,-2),极坐标A (0,0),B (22,7π
4).
(2)d =
r 2-⎝⎛⎭⎫l 22
=1,设直线l 为y -1=k (x +1),则圆心C 到l 的距离为|2k +k +1|k 2+1
=1.∴k =0或k =-3
4
.
∴l :⎩
⎪⎨
⎪⎧
x =-1+t ,y =1(t 为参数)或⎩⎨⎧
x =-1-4
5t ,
y =1+3
5
t (t 为参数).
6.(2011·新课标全国卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩
⎪⎨⎪⎧
x =2cos α,
y =2+2sin α,(α
为参数),M 是C 1上的动点,P 点满足OP =2OM
,P 点的轨迹为曲线C 2·
(1)求C 2的方程;
(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π
3与C 1的异于极点的交
点为A ,与C 2的异于极点的交点为B ,求|AB |.
解:(1)设P (x ,y ),则由条件知M ⎝⎛⎭⎫
x 2,y 2.由于M 点在C 1上,所以⎩⎨⎧
x
2
=2cos α,y
2=2+2sin α.
即
⎩
⎪⎨⎪⎧
x =4cos α,y =4+4sin α. 从而C 2的参数方程为⎩
⎪⎨⎪⎧
x =4cos α,
y =4+4sin α.(α为参数).
(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ. 射线θ=π3与C 1的交点A 的极径为ρ1=4sin π
3,
射线θ=π3与C 2的交点B 的极径为ρ2=8sin π
3.
所以|AB |=|ρ2-ρ1|=2 3.。