2021届甘肃省白银市会宁县第四中学高三上学期第一次月考数学(文)试题

合集下载

甘肃省白银市会宁县第四中学2021届高三上学期第三次月考数学(文)试题

甘肃省白银市会宁县第四中学2021届高三上学期第三次月考数学(文)试题

会宁四中2019-2020学年度第一学期高三级第三次月考数学(文)试卷一、选择题 :(本大题共12小题 ,每小题5分,共60分,在每小题给出的四个 1.已知集合A {}{}1,2,3,4,3B x x ==<,则AB =( )A. {}1,2,3B. {}1,2C. {}13x x ≤≤D. {}13x x << 2.=+i12( ) A .2 2 B .2 C . 2 D .1 3. 若直线l 与平面α相交,则( )A .平面α内存在直线与l 异面B .平面α内存在唯一直线与l 平行 C. 平面α内存在唯一直线与l 垂直 D .平面α内的直线与l 都相交4. 若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则z =3x +2y 的最大值是( )A .1-B .1C .10D .125.设a R ∈,则“1a =”是“直线1l :210ax y +-=与直线2l :(1)40x a y +++=平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.一个三棱锥的正视图与侧视图如图所示(均为直角三角形),则该三棱锥的体积为( )A.4B.8C.16D.24 7、若,23cos -=α且角α的终边经过点P )2,(x ,则P 点的横坐标x 是( ) .A 32 .B 32± .C 22- .D 32-8、已知平面向量)2,1(=,),2(m -=,且//,则=+32( ) )4,2.(--A )6,3.(--B )8,4.(--C D )10,5.(-- 9、等差数列{}n a 的前n 项和为5128,11,186,n S a S a ==则= ( )A .18B .20C .21D .2210、已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <cC .b <c <aD .c <a <b11.直线0122=++y x 与02=++y x 之间的距离是( ) A.2 B.23 C.42 D.423 12、把函数sin 2y x =的图象向左平移4π个单位长度,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为( )A .sin y x =B . cos y x = C.sin()4y x π=+ D .sin y x =-二、填空题(本大题共4个小题,每小题5分,共20分,请将正确答案填入答题卡内)13.若幂函数y =f (x )的图象过点(4,2),则f (8)的值为 。

甘肃省白银市会宁县高三上学期第二次月考(12月)数学(文)试题 Word版含答案

甘肃省白银市会宁县高三上学期第二次月考(12月)数学(文)试题 Word版含答案

会宁四中2016-2017学年度第一学期高三级第二次月考数学(文科)试卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={-2,0,2},B ={x|x 2-x-2=0},则AB=( )A .∅B .{2}C .{0}D .{-2}2.若()f x =,则()f x 的定义域为( )A .1,12⎛⎫⎪⎝⎭B .1,12⎛⎤ ⎥⎝⎦ C.1,2⎛⎫+∞ ⎪⎝⎭ D.()1,+∞3.设P 是ABCD 的对角线的交点,O 为任一点,则OA OB OC OD +++=( ) A . 3OP B . 4OP C .2OP D .OP 4.将函数sin 2y x =的图象向左平移4π个单位,再向上平移1个单位,所得图象的函数解析式是( )A .22cos y x = B .22sin y x = C .1sin(2)4y x π=++D .cos 2y x =5.已知平面向量),1(m a =,)2,3(-=b ,且b b a ⊥+)(,则m=( )A .-8B .-6C .6D .86.已知tan 2α=,则22sin 1sin 2αα+= ( ) A. 53 B. 134- C. 135 D. 1347.已知α,β为锐角,且cos α=53,sin(α-β)=135,则cos β=( )A . 6516-B . 6556C . 6516 D. -65568.设6.06.0=a ,5.16.0=b ,6.05.1=c ,则c b a ,,的大小关系是( )A .a<b<cB .a<c<bC . b<a<cD .b<c<a 9.已知a 是函数3()12f x x x =-的极小值点,则a=( ) A .-16 B .-2 C .16 D .210.已知函数f(x)=Asin(ωx +φ)(A>0,ω>0,|φ|<π2)的部分图像如图所示,则f(x)的解析式是( ) A .f(x)=sin(3x +3π) B .f(x)=sin(2x +3π) C .f(x)=sin(x +3π) D .f(x)=sin(2x +6π) 11.已知函数()f x 是定义在区间[]2,2- 上的偶函数, 当[]0,2x ∈时 , ()f x 是减函数, 如果不等式()()1f m f m -<成立, 则实数m 的取值范围是( ) A .11,2⎡⎫-⎪⎢⎣⎭B .()1,2C .(),0-∞D .(),1-∞ 12.若函数)('x f 是奇函数)(x f (R x ∈)的导函数,0)1(=-f ,当x>0时,0)()('<-x f x xf ,则使得0)(>x f 成立的x 取值范围是( )A . ),1()0,1(+∞⋃-B .()(),10,1-∞-C . ()(),11,0-∞-- D . ()()0,11,+∞二、填空题:本大题共四小题,每小题5分。

甘肃省会宁县届高三上第一次月考数学试题(文)含答案.doc

甘肃省会宁县届高三上第一次月考数学试题(文)含答案.doc

高三文科数学第一次月考试题一.选择题(共12小题)1.设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.设函数y=的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A.(1,2)B.(1,2]C.(﹣2,1)D.[﹣2,1)3.设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则()A.¬p:∀x∈A,2x∉B B.¬p:∀x∉A,2x∉BC.¬p:∃x∉A,2x∈B D.¬p:∃x∈A,2x∉B5.函数y=sin2x﹣sinx﹣1的值域为()A.[﹣1,1]B.[,﹣1]C.[,1]D.[1,] 6.已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称7.函数,若f(﹣4)=f(0),f(﹣2)=﹣2,则关于x的方程f(x)=x的解的个数为()A.1 B.2 C.3 D.48.如果函数f(x)=x2+bx+c对任意实数t都有f(2+t)=f(2﹣t),那么()A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)9.函数f(x)=log(x2﹣4)的单调递增区间为()A.(0,+∞)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,﹣2)10.若幂函数y=f(x)的图象过点(5,),则为()A.B.C.D.﹣111.已知e为自然对数的底,a=()﹣0.3,b=()0.4,c=log e,则a,b,c的大小关系是()A.c<b<a B.c<a<b C.b<a<c D.a<b<c12.如果f(x)是定义在R上的奇函数,那么下列函数中,一定为偶函数的是()A.y=x+f(x)B.y=xf(x)C.y=x2+f(x)D.y=x2f(x)二.填空题(共4小题)13.已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f(x)=2x3+x2,则f(2)=.14.已知函数f(x)=是R上的增函数,则实数a的取值范围是.15.函数y=a x﹣2+1(a>0,a≠1)不论a为何值时,其图象恒过的定点为.16.f(x)=在定义域上为奇函数,则实数k=.三.解答题(共6小题)17.已知集合A={x|1≤x≤2},B={x|m≤x≤m+3}.(1)当m=2时,求A∪B;(2)若A⊆B,求实数m的取值范围.18.已知全集U=R,集合A={x|(x﹣2)(x﹣3)<0},函数y=lg的定义域为集合B.(1)若a=,求集合A∩(∁U B)(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.19.已知奇函数f(x)=2x+a•2﹣x,x∈(﹣1,1)(1)求实数a的值;(2)判断f(x)在(﹣1,1)上的单调性并进行证明;(3)若函数f(x)满足f(1﹣m)+f(1﹣2m)<0,求实数m的取值范围.20.已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f (y),f(3)=1(1)求f(9),f(27)的值(2)解不等式f(x)+f(x﹣8)<2.21.已知函数f(x)=x2+2ax+2,x∈[﹣5,5](1)当a=﹣1时,求函数f(x)的最大值和最小值.(2)函数y=f(x)在区间[﹣5,5]上是单调函数,求实数a的范围.22.在平面直角坐标系中,曲线C的参数方程为(α为参数),点P 的坐标为.(1)试判断曲线C的形状为何种圆锥曲线;(2)已知直线l过点P且与曲线C交于A,B两点,若直线l的倾斜角为45°,求|PA|•|PB|的值.第一次月考参考答案与试题解析1--5,A.D.B. D.C.6--10,C.C.A.D.C.11--12,B.B.二.填空题(共4小题)13.12.14.(﹣∞,] .15.(2,2).16.k=±1.三.解答题(共6小题)17.解:(1)当m=2时,B={x|2≤x≤5};∴A∪B={x|1≤x≤2}∪{x|2≤x≤5}={x|1≤x≤5};(2)∵A⊆B;∴;解得﹣1≤m≤1;∴实数m的取值范围为[﹣1,1].18.解:(1)因为集合A={x|2<x<3},因为a=函数y=lg,由>0,可得集合B={x|<x<}C U B={x|x或x}故A∩(C U B)={x|≤x<3}.(2)因为q是p的必要条件等价于p是q的充分条件,即A⊆B由A={x|2<x<3},而集合B应满足>0,因为a2+2﹣a=(a﹣)2+>0故B={x|a<x<a2+2},依题意就有:,即a≤﹣1或1≤a≤2所以实数a的取值范围是(﹣∞,﹣1]∪[1,2].19.解:(1)∵函数f(x)是定义在(﹣1,1)上的奇函数,∴f(0)=0,1+a=0,∴a=﹣1.(2)证明:由(1)可知,f(x)=.任取﹣1<x1<x2<1,则所以,f(x)在(﹣1,1)上单调递增.(3)∵f(x)为奇函数,∴f(﹣x)=﹣f(x).由已知f(x)在(﹣1,1)上是奇函数,∴f(1﹣m)+f(1﹣2m)<0可化为f(1﹣m)<﹣f(1﹣2m)=f(2m﹣1),又由(2)知f(x)在(﹣1,1)上单调递增,∴.20.解:(1)f(9)=f(3)+f(3)=2,f(27)=f(9)+f(3)=3(2)∵f(x)+f(x﹣8)=f[x(x﹣8)]<f(9)而函数f(x)是定义在(0,+∞)上为增函数,∴即原不等式的解集为(8,9)21.解:(1)a=﹣1,f(x)=(x﹣1)2+1;∴f(1)=1是f(x)的最小值,f(﹣5)=37是f(x)的最大值;(2)f(x)的对称轴为x=﹣a;∵f(x)在区间[﹣5,5]上是单调函数;∴﹣a≤﹣5,或﹣a≥5;∴a≥5,或a≤﹣5;∴实数a的范围为(﹣∞,﹣5]∪[5,+∞).22.解:(1)由消去α,得,则曲线C为椭圆.(2)由直线l的倾斜角为45°,可设直线l的方程为(其中t 为参数),代入,得13t2+6t﹣7=0,所以,从而.。

甘肃省白银市会宁县第四中学2023-2024学年高一下学期期中考试数学试题(含答案)

甘肃省白银市会宁县第四中学2023-2024学年高一下学期期中考试数学试题(含答案)

会宁县第四中学2023-2024学年高一下学期期中考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量,且 ,则向量与的夹角为( )A. B. C. D. 2. 若复数纯虚数,则实数( )A. B. C. 2 D. 33. ( )A. B. C. D. 4. 平行四边形(是原点,按逆时针排列),,则点坐标( )A. B. C. D. 5. 在中,内角A ,B ,C 所对的边分别为a ,b ,c ,若,,,则( )A. 8B. 5C. 4D. 36. 在中,,且( )A. B. 3 C. 2 D.7. 如图,,是九个相同的正方形拼接而成的九宫格中的两个角,则()A. B. C. D. 为10a = 12b = 60a b ⋅=- a b 60︒120︒135︒150︒2i 3i a a z ++=-=a 3-2-sin145cos35︒︒=sin 70-︒1sin 702-︒sin 70︒1sin 702︒OABC O ,,,O A B C ()()1,2,3,7A B -C ()4,5-()4,4-()3,5-()5,4-ABC V 6a =sin A =9cos 16B =b =ABC V 2π,3A AC ==ABC V AB =αβαβ+=π6π4π35π128. 已知向量.若与的夹角的余弦值为,则实数的值为( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 某校对参加高校综合评价测试的学生进行模拟训练,从中抽出名学生,其数学成绩的频率分布直方图如图所示.已知成绩在区间内的学生人数为2人.则( )A. 的值为0.015,的值为40B. 平均分72,众数为75C. 中位数为75D. 已知该校共1000名学生参加模拟训练,则不低于90分的人数一定为50人10. 已知直角三角形中,,,则实数k 值可以为( )A. B. C. D.11 设函数,则( )A. 是偶函数 B. 在上单调递减C. 的最大值为2 D. 的图象关于直线对称三、填空题:本题共3小题,每小题5分,共15分.12. 已知,则的值为__________.13. 已知平面向量满足,与的夹角为,则的值______.14._________.为的.()(),2,2,1a t b ==- a bt 5252-3232-N [90,100]x N ABC (2,3)AB = (1,)AC k = 23-32113ππ()sin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭()f x ()f x π0,2⎡⎤⎢⎥⎣⎦()f x ()f x π2x =1sin 3α=-cos2α,a b ||1a = ||2,b a = b 60︒|2|a b + sin 31cos59+cos31cos31︒︒︒︒=四、解答题:本题共5小题,共77分.解答题应写出文字说明、证明过程或演算步骤.15. 已知,,求以及的值.16. 已知为第二象限角,且满足.求值:(1);(2).17. 已知复数,且纯虚数.(1)求复数;(2)若,求复数以及模.18. 已知.(1)求函数的最小正周期;(2)已知均为锐角,的值.19. 在中,角,,所对的边分别为,,,且,再从条件①、条件②这两个条件中选一个条件作为已知,求:(1)的值;(2)的面积和边上的高.条件①:,;条件②:,.为3cos 5θ=()π,2πθ∈πsin 6θ⎛⎫+ ⎪⎝⎭πtan 4θ⎛⎫- ⎪⎝⎭α2sin cos αα=-sin cos 3sin cos αααα-+πcos 3α⎛⎫+ ⎪⎝⎭()3i R z b b =+∈()13i z +⋅z 2iz ω=+ωω()2cos 2sin 1222x x x f x =+-()f x ,αβ8,co 6πs 5f αβ⎛⎫+== ⎪⎝⎭()sin αβ-ABC V A B C a b c 3a =sin A ABC V AC 2cos 3C =4b =2cos 3C =1cos 9B =会宁县第四中学2023-2024学年高一下学期期中考试数学试卷答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】A【3题答案】【答案】D【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】B【8题答案】【答案】D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AB【10题答案】【答案】ACD【11题答案】【答案】ABD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】1四、解答题:本题共5小题,共77分.解答题应写出文字说明、证明过程或演算步骤.【15题答案】【答案】,7【16题答案】【答案】(1)3(2)【17题答案】【答案】(1);(2),.【18题答案】【答案】(1)(2)【19题答案】【答案】(1(2)的面积为79πsin 6θ⎛⎫+⎪⎝⎭πtan =4θ⎛⎫- ⎪⎝⎭3i z =+71i 55ω=-ω=2πABC V AC。

2024届甘肃省白银市会宁县第四中学高三上学期第一次月考数学试卷

2024届甘肃省白银市会宁县第四中学高三上学期第一次月考数学试卷

2024届甘肃省白银市会宁县第四中学高三上学期第一次月考数学试卷一、单选题1. 设集合则=A.B.C.D.2. 已知角的终边经过点,且,则的值是()A.B.C.D.3. 在△中,为边上的中线,为的中点,则A.B.C.D.4. 曲线y=2sin x+cos x在点(π,–1)处的切线方程为A.B.C.D.5. 已知,则的大小关系为()A.B.C.D.6. 若,则A.B.C.D.7. 设是定义域为R的奇函数,且.若,则()A.B.C.D.8. 若定义在的奇函数f( x)在单调递减,且f(2)=0,则满足的x的取值范围是()A.B.C.D.二、多选题9. 下列等式正确的是()A.B.C.D.10. 下列说法正确的是()A.命题“,”的否定是“,”B.命题“,”的否定是“,”C.“”是“”的必要而不充分条件D.“”是“关于x的方程有一正一负实数根”的充要条件三、单选题11. 已知函数在区间上单调递减,则实数的取值范围为()A.B.C.D.四、多选题12. 已知函数,则()A.函数有且只有2个零点B.函数的递减区间为C.函数存在最大值和最小值D.若方程有三个实数解,则五、填空题13. 已知向量,若,则 __________ .14. 若函数是上的单调函数,则实数的取值范围是__________ .15. 已知非负数满足,则的最小值是 ___________ .16. 已知是R上的单调递减函数,则实数a的取值范围为 ___________ .六、解答题17. 计算下列各式的值:(1)(2)己知,,.化简;18. 已知向量.(1)若,求和;(2)若与平行,求实数的值;(3)若与的夹角为锐角,求实数的取值范围.19. 如图,在中,是边的中点,是边上靠近点的一个三等分点,与交于点.设,.(1)用,表示.(2)过点的直线与边,分别交于点,.设,,求的值.20. 已知函数(,,)的部分图象如图所示.(1)求的解析式并求出的周期及对称轴;(2)先把的图象向右平移个单位,再向下平移1个单位,得到函数的图象,若且关于x的方程在上有解,求m的取值范围21. 已知,函数.(1)求图象的对称中心及其单调递增区间;(2)若函数,计算的值.22. 已知函数,.(1)讨论的单调性;(2)当时,,求a的取值范围.。

甘肃省会宁县第四中学2017-2018学年高三上学期第一次月考数学(文)试题 Word版含答案

甘肃省会宁县第四中学2017-2018学年高三上学期第一次月考数学(文)试题 Word版含答案

会宁四中2017-2018学年度第一学期高三级第一次月考数学试卷(文科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知全集U =Z ,集合}{2|A x x x ==,}{1,0,1,2B =-,则图中阴影部分所表示的集合为( ) A .{-1,2} B .{-1,0} C .{0,1} D .{1,2}2.“2,320x R x x ∃∈-+=”的否定是( )A. 2,320x R x x ∀∈-+=B. 2,320x R x x ∃∈-+≠C. 2,320x R x x ∀∈-+≠D. 2,320x R x x ∃∈-+>3.为了得到函数321x y -=-的图像,只需把函数2x y =的图像上所有的点( )A .向右平移3个单位长度,再向下平移1个单位长度B .向左平移3个单位长度,再向下平移1个单位长度C .向右平移3个单位长度,再向上平移1个单位长度D .向左平移3个单位长度,再向上平移1个单位长度 4. 下列图像表示的函数中能用二分法求零点的是( )5.若0.23a =, πlog 3b =,3log c =,则( )A .b c a >>B . b a c >>C .a b c >>D .c a b >>6.设函数30<5)()(5)(5)x x f x f x x ⎧ (≤=⎨- ≥⎩,那么f (2013)=( )A .27B .9C .3D .17. 设函数()()f x x R ∈满足()(),(2)()f x f x f x f x -=+=,则()y f x =的图像可能是( )8. “2a =”是“函数2()32f x x ax =--在区间(,2]-∞-内单调递减”的( )A.充分非必要条件.B.必要非充分条件.C.充要条件.D.既非充分又非必要条件. 9.已知()21cos 4f x x x =+,()f x '为()f x 的导函数,则()f x '的图象是( )10.函数x e x f x3)(+=的零点个数是 ( )A .0B .1C .2D .311.已知f (x )是定义在R 上的奇函数,且当0x <时, ()2x f x =,则4(log 9)f 的值为( )A .-3 B. 13- C.13D. 3 12.若函数)(x f 满足:在定义域D 内存在实数0x ,使得)1()()1(00f x f x f +=+成立,则称函数)(x f 为“1的饱和函数”.给出下列四个函数:①xx f 1)(=;②xx f 2)(=;③)2lg()(2+=x x f ;④x x f πcos )(=.其中是“1的饱和函数”的所有函数的序号为( ). A . ①③ B . ②④ C . ①② D .③④第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分。

2021届甘肃省白银市会宁县第四中学高三上学期第三次月考数学(文)试题(解析版)

2021届甘肃省白银市会宁县第四中学高三上学期第三次月考数学(文)试题(解析版)

会宁四中2019-2020学年度第一学期高三级第三次月考数学(文)试卷一、选择题 :(本大题共12小题 ,每小题5分,共60分,在每小题给出的四个1. 已知集合A {}{}1,2,3,4,3B x x ==<,则A B =( ) A. {}1,2,3 B. {}1,2 C. {}13x x ≤≤ D. {}13x x <<【答案】B 【解析】 【分析】按照求交集的定义求解即可.【详解】解:集合A {}{}1,2,3,4,3B x x ==<,则{}1,2A B =.故选:B. 2.21i+=( )A. B. 2D. 1【答案】C 【解析】因为211i i=-+,所以21i =+故选C. 【考点定位】本小题主要考查复数的四则运算、复数的模的概念,复数在高考中主要以小题形式出现,属容易题,主要考查复数的概念、几何意义与四则运算是等基础内容.3. 若直线l 与平面α相交,则( ) A. 平面α内存在直线与l 异面 B. 平面α内存在唯一一条直线与l 平行 C. 平面α内存在唯一一条直线与l 垂直 D. 平面α内的直线与l 都相交 【答案】A 【解析】当直线l 与平面α相交时,这条直线与该平面内任意一条不过交点的直线均为异面直线,故A 正确;该平面内不存在与直线l 平行的直线,故B 错误;该平面内有无数条直线与直线l 垂直,所以C 错误,平面α内的直线与l 可能异面,故D 错误,故选A.4. 若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A. 1-B. 1C. 10D. 12【答案】C 【解析】 【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y 经过平面区域的点(2,2)时,=3+2z x y 取最大值max 322210z =⨯+⨯=.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.5. 设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A【解析】试题分析:运用两直线平行的充要条件得出l1与l2平行时a的值,而后运用充分必要条件的知识来解决即可.解:∵当a=1时,直线l1:x+2y﹣1=0与直线l2:x+2y+4=0,两条直线的斜率都是﹣,截距不相等,得到两条直线平行,故前者是后者的充分条件,∵当两条直线平行时,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选A.考点:必要条件、充分条件与充要条件的判断;直线的一般式方程与直线的平行关系.6. 一个三棱锥的正视图和侧视图如图所示(均为真角三角形),则该三棱锥的体积为()A. 4B. 8C. 16D. 24【答案】B【解析】【分析】根据三视图知,三棱锥的一条长为6的侧棱与底面垂直,底面是直角边为2、4的直角三角形,利用棱锥的体积公式计算即可.【详解】由三视图知三棱锥的侧棱AO 与底OCB 垂直,其直观图如图, 可得其俯视图是直角三角形,直角边长为2,4,6OA ∴=,∴棱锥的体积11246832V =⨯⨯⨯⨯=,故选B.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状. 7. 若cos α3α的终边经过点P (x ,2),则P 点的横坐标x 是( ) 3 B. ±3 C. -2D. -3【答案】D 【解析】 【分析】利用三角函数的定义即可求解. 【详解】由三角函数的定义可得:223cos 0)22x x α==-<+, 解得2x =-3,故选:D【点睛】本题考查了三角函数的定义,考查了基本运算求解能力,属于基础题. 8. 已知向量()1,2a =,()2,b m =-,且//a b ,则23a b +=( )A. ()2,4--B. ()3,6--C. ()4,8--D. ()5,10--【答案】C 【解析】 【分析】根据条件求出m ,然后可算出答案. 【详解】因向量()1,2a =,()2,b m =-,且//a b所以()122m ⨯=⨯-,解得4m =- 所以23a b +=()4,8-- 故选:C【点睛】本题考查的是平面向量在坐标形式下的计算,较简单. 9. 等差数列{}n a 的前n 项和为 5128,11,186,n S a S a ===( ) A. 18 B. 20C. 21D. 22【答案】B 【解析】试题分析:由等差数列的前n项和公式及等差数列的性质得()()112125858126186,31,2a a S a a a a +==+=∴+=又511a =,所以820a =,故选B.考点:等差数列的前n 项和公式. 10. 已知432a =,255b =,1325c =,则( )A. b a c <<B. a b c <<C. b c a <<D. c a b <<【答案】A 【解析】 【分析】根据函数23y x =及4xy =的单调性即可判断大小关系.【详解】因为423324a ==,1233255c ==,函数23y x =在()0,∞+上单调递增,所以223345<,即a c <,又因为4235225>>,即b a <,所以b a c <<. 故选:A .【点睛】本题考查利用对数函数、幂函数的单调性比较数的大小关系,属于基础题.11. 直线2210x y ++=与20x y ++=之间的距离是( )A.B.C.4D.4【答案】D 【解析】 【分析】先将直线2210x y ++=化为102x y ++=,再根据平行线间的距离公式求解即可. 【详解】解:将直线2210x y ++=化为102x y ++=,所以根据平行线间的距离公式得:4d ==. 所以直线2210x y ++=与20x y ++=之间的距离是:4故选:D.12. 把函数sin 2y x =的图象向左平移4π个单位长度,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为( ) A. sin y x = B. cos y x =C. sin()4y x π=+D. sin y x =-【答案】B 【解析】 【分析】根据三角函数图象变换的结论可得结果.【详解】把函数sin 2y x =的图象向左平移4π个单位长度, 得到sin 2sin(2)cos 242y x x x ππ⎛⎫=+=+= ⎪⎝⎭,再把所得图象所有点横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为cos y x =. 故选:B【点睛】关键点点睛:根据三角函数图象变换的结论求解是解题关键.二、填空题(本大题共4个小题,每小题5分,共20分,请将正确答案填入答题卡内)13. 若幂函数y=f (x)的图像过点(4,2),则f (8)的值是_______________. 【答案】22 【解析】设()f x x α=,则1122142,,(),(8)82 2.2f x x f αα=∴=∴===14. 长方体的长,宽,高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为__________. 【答案】14π 【解析】长方体的体对角线长为球的直径,则222232114R =++= ,142R =,则球的表面积为2144()142ππ=. 15. 在ABC ∆中,BC=,AC=2,ABC ∆的面积为4,则AB 的长为 .【答案】4或42【解析】 试题分析:122542ABC S C ∆=⨯⨯=,得sin 5C =,∴5cos 5C =±.∴222(25)2225cos AB C =+-⨯⨯∴4AB =或2. 考点:利用余弦定理解三角形. 16. 直线142x y+=与x 轴、y 轴分别交于点A ,B ,则AB =______;以线段AB 为直径的圆的方程为_________.【答案】 (1). 5 (2). 22420x y x y +--=【解析】 【分析】先求出,A B 的坐标,再由两点之间的距离公式求出||AB ,利用中点公式求出圆心坐标,再求出半径,写出圆的方程即可.【详解】令0x =得2y =,令0y =得4x =,所以(4,0),(0,2)A B ,所以AB =416+25=,所以AB 中点坐标为()2,1,半径为5; 所以圆的方程:()222(1)5x y -+-=. 故答案为:25;22420x y x y +--=【点睛】本题考查了两点之间的距离公式和利用圆心坐标和半径求圆的方程,属于基础题.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17. 已知4,3,(23)(2)61a b a b a b ==-⋅+=. (1)求a 与b 的夹角为θ; (2)求a b +;(3)若AB =a ,BC =b ,求△ABC 的面积. 【答案】(1)23π;(213(3)33【解析】 【分析】(1)将已知条件中的式子展开,利用公式求得6a b ⋅=-,根据向量夹角公式求得1cos 2θ=-,结合角的范围,求得结果;(2)利用向量的模的平方和向量的平方是相等的,从而求得结果; (3)根据向量所成角,求得三角形内角,利用面积公式求得结果. 【详解】(1)因为(23)(2)61a b a b -⋅+=, 所以2244361aa b b-⋅-=.又4,3a b ==,所以6442761a b -⋅-=, 所以6a b ⋅=-, 所以61cos 432a ba b θ⋅-===-⨯. 又0≤θ≤π,所以23πθ=.(2)2222()2a b a b a a b b +=+=+⋅+ =42+2×(-6)+32=13,所以13a b +=; (3)因为AB 与BC 的夹角23πθ=, 所以∠ABC =233πππ-=. 又4,3AB a BC b ====,所以S △ABC =1432⨯⨯=【点睛】该题考查的是有关向量与解三角形的综合题,涉及到的知识点有向量数量积,向量夹角公式,向量的平方和向量模的平方是相等的,三角形面积公式,属于简单题目.18. 已知函数())22sin cos cos sin 2f x x x x x =+-. (1)求6f π⎛⎫⎪⎝⎭的值; (2)求()f x 的最大值及单调递增区间.【答案】(1);(2)当()12x k k Z ππ=+∈时,()f x 的最大值是1,()f x 的单调递增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. 【解析】 【分析】(1)利用三角恒等变换思想化简函数()f x 的解析式为()sin 23f x x π⎛⎫=+ ⎪⎝⎭,进而可计算得出6f π⎛⎫⎪⎝⎭的值;(2)利用正弦函数的有界性求出最大值,利用整体代换的思想令22,2322x k k πππππ⎡⎤+∈-+⎢⎥⎣⎦求出x 的范围,即为函数()f x 的单调递增区间.【详解】(1)()1sin 2sin 2223f x x x x π⎛⎫=+=+ ⎪⎝⎭,所以2sin 2sin sin sin 663333f πππππππ⎛⎫⎛⎫⎛⎫=⨯+==-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)当()2232x k k Z πππ+=+∈时,即当()12x k k Z ππ=+∈时,()f x 的最大值是1.由222232k x k πππππ-+≤+≤+,k Z ∈,得51212k x k ππππ-+≤≤+,k Z ∈. 所以()f x 的单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈.19. 已知圆C 经过点()2,1A -,和直线1x y +=相切,且圆心在直线2y x =-上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 【答案】(1)()()22122x y -+=+;(2)0x =或34y x =-. 【解析】 【分析】(1)先设圆心的坐标为(),2C a a -,根据题中条件列出等量关系求解,得出a ,求出半径,进而可求出结果;(2)讨论直线l 的斜率不存在,和直线l 的斜率存在两种情况,根据弦长,列出等式求解,即可得出直线方程.【详解】(1)设圆心的坐标为(),2C a a -, 因为圆C 经过点()2,1A -,和直线1x y +=相切,=2210a a -+=,解得1a =,∴()1,2C -,半径r AC ===∴圆C 的方程为()()22122x y -+=+.(2)①当直线l 的斜率不存在时,直线l 的方程为0x =,此时直线l 被圆C 截得的弦长为2,满足条件;②当直线l 的斜率存在时,设直线l 的方程为y kx=1=,解得34k =-,∴直线l 的方程为34y x =-, 综上所述,直线l 的方程为0x =或34y x =-. 【点睛】思路点睛:根据圆的弦长求弦所在直线方程的方法有:(1)几何法:根据圆的性质(圆心到直线距离的平方与弦长一半的平方和等于半径的平方)列出等式,即可求解;(2)代数法:设出所求直线方程,联立直线与圆的方程,根据弦长公式列出等式求解,即可得出结果.20. 已知数列{}n a 的前n 项和为n S ,且22n S n n =+,*n N ∈,数列{}n b 满足24log 3n n a b =+,*n N ∈.(1)求n a 和n b 的通项公式;(2)求数列{n n a b ⋅}的前n 项和n T .【答案】(1)*41,n a n n N =-∈;12n n b -=;(2)(45)25n n T n =-+【解析】试题分析:(1)求数列{}n a 的通项公式主要利用()()111{2n n n S n a S S n -==-≥求解,分情况求解后要验证1n =是否满足2n ≥的通项公式,将求得的{}n a 代入24log 3,n n a b =+整理即可得到n b 的通项公式;(2)整理数列{}n n a b ⋅的通项公式得()141?2n n n a b n -=-,依据特点采用错位相减法求和试题解析:(1)∵2*2,n S n n n N =+∈,∴当1n =时,113a S ==.当2n ≥时,2212[2(1)(1)]41n n n a S S n n n n n -=-=+--+-=-.∵1n =时,13a =满足上式,∴*41,n a n n N =-∈.又∵*24log 3,n n a b n N =+∈,∴2414log 3n n b -=+,解得:12n n b -=.故41,n a n =-,12n n b -=,*n N ∈.(2)∵41,n a n =-,12n n b -=,*n N ∈∴1122n n n T a b a b a b =+++01213272(45)2(41)2n n n n --=⨯+⨯++-⨯+-⨯①12123272(45)2(41)2n n n T n n -=⨯+⨯++-⨯+-⨯②由①-②得:1213424242(41)2n n n T n --=+⨯+⨯++⨯--⨯12(12)34(41)2(54)2512n n n n n --=+⨯--⨯=-⨯-- ∴(45)25n n T n =-⨯+,*n N ∈.考点:1.数列通项公式求解;2.错位相减法求和【方法点睛】求数列{}n a 的通项公式主要利用11a S =,()12n n n a S S n -=-≥分情况求解后,验证1a 的值是否满足()12n n n a S S n -=-≥关系式,解决非等差等比数列求和问题,主要有两种思路:其一,转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解(即分组求和)或错位相减来完成,其二,不能转化为等差等比数列的,往往通过裂项相消法,倒序相加法来求和,本题中()141?2n n n a b n -=-,根据特点采用错位相减法求和21. 如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD PC ⊥;(2)若60ABC ∠=,求证:平面PAB ⊥平面PAE .【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由线面垂直和菱形的性质,结合线面垂直的判定定理可证得BD ⊥平面PAC ,由线面垂直性质可证得结论;(2)利用线面垂直性质和等腰三角形三线合一,结合线面垂直的判定定理可证得AE ⊥平面PAB ,由面面垂直的判定定理可证得结论.【详解】(1)PA ⊥平面ABCD ,BD ⊂平面ABCD ,PA BD ∴⊥.又底面ABCD 为菱形,BD AC ∴⊥.,AC PA ⊂平面PAC ,PA AC A =,BD ∴⊥平面PAC ,又PC ⊂平面PAC ,BD PC ∴⊥.(2)PA ⊥平面ABCD ,AE ⊂平面ABCD ,PA AE ∴⊥.底面ABCD 为菱形,60ABC ∠=,ACD ∴为等边三角形,又E 为CD 的中点,AE CD ∴⊥,又//AB CD ,AB AE ∴⊥,,PA AB ⊂平面PAB ,PA AB A =,AE ∴⊥平面PAB ,又AE ⊂平面PAE ,∴平面PAB ⊥平面PAE .22. 已知函数()ln f x x a x =+(1)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间;(3)若函数()f x 没有零点,求a 的取值范围.【答案】(1)210x y --=;(2)答案见解析;(3)e 0a -<≤.【解析】【分析】(1)求()f x 在1x =处的导数和函数值,代入直线方程即可求出切线方程;(2)求()f x 的导函数'()f x ,分类讨论求'()0f x >和'()0f x <的解集,从而求出函数()f x 的单调区间;(3)由第(2)问的结果,分别讨论函数()f x 的情况,求出a 的取值范围.【详解】(1)当1a =时,()ln f x x x =+,1'()1(0)f x x x=+> (1)1f =,'(1)2f =所以切线方程为210x y --=(2) '()(0)x a f x x x+=> 当0a ≥时,在(0,)x ∈+∞时'()0f x >,所以()f x 的单调增区间是(0,)+∞;当0a <时,函数()f x 与'()f x 在定义域上的情况如下:所以()f x 的单调增区间是(,)a -+∞,单调减区间为(0,)a -.(3)由(2)可知①当0a >时,(0,)+∞是函数()f x 的单调增区间,且有11()1110a a f e e --=-<-=,(1)10f =>, 所以,此时函数有零点,不符合题意;②当0a =时,函数()f x 在定义域(0,)+∞上没零点;③当0a <时,()f a -是函数()f x 的极小值,也是函数()f x 的最小值,所以,当()(ln()1)0f a a a -=-->,即e a >-时,函数()f x 没有零点-综上所述,当e 0a -<≤时,()f x 没有零点.【点睛】本题考查由函数无零点求参数的范围,属于中档题.方法点睛:(1)若()f x 是单调函数,则判断()f x 是否恒大于0或恒小于0,若是则无零点,若否,则找到零点的大致范围,给出结论;(2)若()f x 不是单调函数,则求出()f x 的最小值或最大值,最小值大于0或最大值小于0,则()f x 无零点,从而解出参数a 的范围.。

甘肃省白银市会宁县第四中学2021届高三上学期第一次月考英语试题(原卷Word版)

甘肃省白银市会宁县第四中学2021届高三上学期第一次月考英语试题(原卷Word版)

会宁四中2020-2021学年度第一学期高三级第一次月考英语试卷第一部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)AVisiting Washington, D.C. is not a waste of your time and money. There are many destinations in Washington, D.C. that you can include in your journey, which make your travel to this great city worth your time and money. Here are some notable attractions that the city can offer.Smithsonian InstitutionIt is the image of 19th sandstone called Castle. This is an institution that has got more than nine museums. A one-day tour is not enough to cover it all. The best places to visit are Air and Space Museum and Museum of Natural History.Jefferson MemorialThis place houses the 19-foot statue of America’s third president. In addition, there are some writings in the wall like Declara tion of Independence and some Jefferson’s writings.Michel Richard CitronelleThis famous chef got a restaurant at the heart of Washington, D.C. He prepares wonderful dishes to dignitaries who frequent this place. It is not only about attractive menu, but the service is professional. The multi-course is accompanied with wine. The restaurant’s wine cellar houses thousands of bottles.Mandarin OrientalThis is a taste of Asia in the district. The hotel amenities (设施) are world class with pool and spas. There staurant shows the city’s view on a flat screen TV and the rooms have Internet access.The White houseIt should not be missed. It is one of the most significant buildings in the city. Its architecture is grand and suits the city’s landscape. There are gui ded tours that you can join in.Twins JazzIf you want to enjoy jazz music, this is the place to be. You can hear grassroots musicians play. The food is also good.1. What can you visit in Smithsonian Institution?A. Castles.B. MuseumsC. StatuesD. Restaurants2. What can you do in Michel Richard Citronelle?A. Taste Asian food.B. Cook delicious dishes.C. Enjoy good food and service.D. Swim and enjoy free Wifi.3. Which of the following is your best choice as a music lover?A. Jefferson MemorialB. Mandarin OrientalC. The White House.D. Twins JazzBA robot created by Washington State University (WSU) scientists could help elderly people with dementia and other limitations live independently in their own homes.The Robot Activity Support System, or RAS, uses sensors (传感器) equipped in a WSU smart home to determine where its residents are, what they are doing and when they need assistance with daily activities. It navigates (定位) through rooms and around obstacles to find people on its own, provides video instruction on how to do simple tasks and can even lead its owners to objects like their medication or a snack in the kitchen.“RAS combines the convenience of a mobile robot with the activity detection technology of a WSU smart home to provide assistance in the moment, as the need for help is detected,” said Bryan Minor, a postdoctoral researcher in the WSU School of Electrical Engineering and Computer Science.Currently, about 50 percent adults over the age of 85 need assistance with everyday activities such as preparing meals and taking medication and the annual cost for this assistance in the US is nearby $2 trillion. With the number of adults over 85 expected to triple by 2050, researchers hope that technologies like RAS and the WSU smart home will relieve some of the financial pressure on the healthcare system by making it easier for older adults to live alone.RAS is the first robot researchers have tried to apply to their smart home environment. They recently published a study in the journal Cognitive Systems Research that shown how RAS could make life easier for older adults struggling to live independently.“While we are still in an early stage of development, our initial results with RAS have been promising,” Minor said. “The next step in the research will be to test RAS’s performance with a group of older adults to get a better data of what video reminders and other performances they have regarding the robot.”4. What plays a key role in RAS serving the elderly?A. SensorsB. Videos.C. Signal lightsD. Head size5. What can we learn about RAS?A. It is the first robot used in daily life.B. Its function remains to be tested.C. It can locate people and do any task.D. It can cook for owners on its own.6. What’s Minor’s attitude toward the future o f RAS?A. DoubtfulB. NegativeC. OptimisticD. Uncertain7. What would be a suitable title for the text?A. Elderly People Leave the Nursing Home.B. Smart Home Tests First Elder Care RobotC. RAS, the First Robot to Make Home Smart.D. Older Adults Have Benefited from RAS a Lot.CAround four years ago, I received a call from the principal of our school as to the “Parents View” talk the next morning. He asked me to speak to the group. After the call, my whole body became feverish and panicky. The time from his call to the next morning seemed like years. The whole night, I could not sleep with many ominous apprehensions in mind. One of them was to call the principal with regret and tell him that I could not come. Finally, I gathered some courage. I thought, “If I miss this opportunity, surely the school will never invite me again to any of their programs.”I reached the school in time. Before my turn came, my whole body was trembling. When my turn came and I started speaking, my heartbeat increased and my mo uth went dry. I wasn’t even able to read the written speech properly. I was not aware of where I was standing and what I was reading. That was the day when I realized my biggest weakness, Public Speaking.After my speech, I met with the principal and explained what happened to me. He told me that this happens to everyone. Even great speakers faced the same things when they started. He suggested that I come again next time.Around one month later, I was invited to refer to a topic on Motivation. This time I was feeling comfortable. My speech was not only appreciated by the principal as well as the teachers, because I was able to get my idea across to them. They encouraged and praised my efforts.After delivering successfully, I became more confident. I said t o myself, “If I can speak in front of such a learned audience, like the principal who educates others, I can now speak in front of others too.”I started delivering lectures in my plan, on various topics like Self Motivation, Personality Development, Personal Excellence, Spoken English and Presentation Skills. This has become a passion for me. I learned that everything is possible if we have the courage to take the first step.8. Why did the author have bad feelings before the speech?A. he feared he couldn't perform it properly.B.he had got a high fever before that.C. he regretted accepting the invitation.D. he disliked the idea of giving a lecture. 9. What does the underlined part “ominous apprehensions” in the first paragraph mean?A. Unlucky opportunities. B. Curious views. C. Negative ideas. D. Happy comments. 10. What can we conclude from the passage? A. Necessity is the mother of invention. B. Nothing is to be got without pains but poverty. C. Knowledge makes humble, ignorance makes proud. D. A journey of a thousand miles begins with a single step. 11. Which of the following is the best title for the passage? A. Public Speaking Makes a Man Embarrassed. B. Principal Provides the Best Chances. C. Practice Makes a Man a Better Speechmaker. D. Spoken English Develops in Speeches. D Loneliness has been linked to depression(抑郁) and other health problems. Now, a study says it can also spread.A friend of a lonely person was fifty-two percent more likely to develop feelings of loneliness. And a friend of that friend was twenty-five percent more likely to do the same.Earlier findings showed that happiness, obesity(肥胖) and the ability to stop smoking can also spread like infections within social groups. The findings all come from a major health study in the American town of Framingham, Massachusetts.The study began in 1948 to investigate the causes of heart disease. Since then, more tests have been added, including measures of loneliness and depression.The new findings involved more than five thousand people in the second generation of the Framingham Heart Study. The researchers examined friendship histories and reports of loneliness. The results established a pattern that spread as people reported fewer close friends.For example, loneliness can affect relationships between next-door neighbors. The loneliness spreads asneighbors who were close friends now spend less time together. The study also found that loneliness spreads more easily among women than men.The average person is said to experience feelings of loneliness about forty-eight days a year. The study found that having a lonely friend can add about seventeen days. But every additional friend can decrease loneliness by two and a half days.Lonely people become less and less trusting of others. This makes it more and more difficult for them to make friends—and more likely that society will reject(排斥) them. John Cacioppo at the University of Chicago led the study.He says it is important to recognize and deal with loneliness. He says people who have been pushed to the edges of society should receive help to repair their social networks.12. As an average person, if you make 2 more common friends, how many days a year might you suffer from loneliness?A. 48 daysB. 43 daysC. 65 daysD. 17 days13. What can we infer from the passage about lonely people?A. They can overcome loneliness themselvesB. They will decrease loneliness day by day.C. They need help to get back to normal social lifeD. They can help others to repair their social networks14. What's the best way to help lonely people according to this passage?A. Bring them together.B. Make friends with them.C. Help them stop smoking.D. Help them lose weight15. Which of the following would be the topic of the passage?A. Loneliness and social networkB. Social Networks and friendshipC. Loneliness and diet.D. Help A Lonely Person第二节(共5小题;每小题2分,满分10分)A Few Tips for Self-AcceptanceWe all want it… to accept and love ourselves. But at times it seems too difficult and too far out of reach.___16___ Here’s a handful of ways that will set you in the right direction.●___17___ Do not follow the people who make you feel not-good-enough Why do you follow them? Are you hoping that eventually you will feel empowered because your life is better than theirs? Know that your life is yourown;you are the only you in this world.●Forgive yourself for mistakes that you have made. We are often ashamed of our shortcomings, our mistakes and our failures. ___18___ You will make mistakes, time and time again. Rather than getting caught up in how you could have done better, why not offer yourself a compassionate (有同情心) response? "That didn’t go as planned. But, I tried my best."●Recognize all of your strengths. Write them down in a journal. Begin to train your brain to look at strength before weakness. List all of your accomplishments and achievements. You have a job, earned your degree, and you got out of bed today. ___19___ ●Now that you’ve listed your strengths,list your imperfections. Turn the page in your journal. Put into words why you feel unworthy, why you don’t feel good enough. Now, read these words back to yourself. ___20___ Turn to a page in your journal to your list of strengths and achievements. See how awesome you are?A. Feeling upset again?B. Where do you start?C. Nothing is too small to celebrate.D. Remember, you are only human.E. Set an intention for self-acceptance.F. Stop comparing yourself with others.G. When does the comparison game start?第三部分语言知识运用(共两节,满分45分)第一节(共20小题;每小题1.5分,满分30分)About six years ago I was going through a tough time,trying to work two jobs to afford my rent.On a cold Sunday morning, I went to GameStop-a video game retailer(零售商)to___21___the game I'd reserved.A woman in a car parked outside called me when I____22____the store.Though it was in broad daylight,I was___23___about it and kept some distance when I walked over.She said she couldn't walk and ___24___me to purchase a Kinect,a popular game,for her as her___25___Christmas gift.Due to her leg disease it was___26___for her to move around. She called ahead but the employee wasn't willing to___27___.She gave me about $100 in cash AND her credit card.I walked back in and bought the Kinect.Then it occurred to me that this woman,a complete stranger,___28___me.What was it that stopped me from lying about the payment method and just___29___her cash?She couldn't know I wasn't a____30____;and how could she possibly have so much___31___someone?I handed her the cash back,___32___had to pay with her card-it was above $100 at the time,and handed over the___33___and her credit card."This is what my son's been longing for.Thank you! By the way,justfrom___34___at you,I know you are the one who’ll be a friend to someone___35___.You have a face of an angel!" She said.She gave me $10 and___36___to take it back.Then she___37___,saying "Merry Christmas!" She had no idea how much of a___38___even $10 made.I was able to buy a few cheap groceries for the week and it really made a___39___time in my life a little better.She may think I helped her;___40___,I truly feel like the one who was being gifted something amazing.21. A. donate B. cancel C. win D. return22. A. kept B. approached C. decorated D. exited23. A. shy B. crazy C. disappointed D. positive24. A. forbade B. encouraged C. requested D. allowed25. A. own B. employer's C. husband's D. son's26. A. painful B. convenient C. funny D. secure27. A. order B. share C. help D. pay28. A. fooled B. trusted C. inspired D. annoyed29. A. throwing B. tearing C. pocketing D. losing30. A. video maker B. porter C. game seller D. cheat31. A. patience with B. faith in C. respect for D. mercy on32. A. arguing B. lying C. promising D. explaining33. A. game B. check C. ticket D. change34. A. laughing B. glancing C. yelling D. pointing35. A. in need B. in public C. in return D. in danger36. A. offered B. managed C. refused D. decided37. A. came over B. drove away C. fell down D. pulled up38.A. difference B. living C. bargain D. profit 39. A. happy B. carefree C. confusing D. hard 40. A. finally B. therefore C. however D. otherwise 第二节(共10小题;每小题1.5分,满分15分) 阅读下面材料,在空白处填入适当的内容(1个单词)或括号内单词的正确形式。

甘肃省会宁县第一中学2021届高三上学期第四次月考数学(文)试题 Word版含答案

甘肃省会宁县第一中学2021届高三上学期第四次月考数学(文)试题 Word版含答案

2020-2021学年度第一学期高三第四次月考数学试卷(文科)一、选择题:(每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数z 1在复平面内对应的点为(1,3),z 2=﹣2+i (i 为虚数单位),则复数的虚部为( )A .B .C .D .2.已知全集U =R ,集合A ={x |2x <1},B ={x |log 2x <1},则(∁U A )∩B =( )A .{x |0≤x <1}B .{x |1≤x <2}C .{x |0<x <2}D .{x |0≤x <2}3.下列判断正确的是( )A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题B .命题“∀x ∈R ,2x >0”的否定是“∃x 0∈R ,2≤0” C .“”是“α=”的充分不必要条件D .命题“若xy =0,则x =0”的否命题为“若xy =0,则x ≠0”4.设a =1-3log 2,b =2log 4,c =2,则( ) A .a <b <c B .a <c <b C .c <b <a D .b <a <c5.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =﹣3处取得极大值,则函数y =xf ′(x )的图象可能是( )A .B .C.D.6.数列{a n}中,a1=2,a n+1=2a n﹣1,则a10=()A.511B.513C.1025D.10247.已知二次不等式﹣2x2+bx+c<0的解集为{x|x<或x>},则关于x的不等式cx2﹣bx﹣2>0的解集为()A.{x|2<x<3}B.{x|﹣2<x<3}C.{x|﹣3<x<2}D.{x|﹣3<x<﹣2}8.已知△ABC中,角A,B,C的对边分别为a,b,c,且sin A,sin B,sin C成等比数列,则角B 的取值范围()A.B.C.D.9.函数f(x)=sin(ωx+φ)(其中ω>0,0<φ<)的图象如图所示,为了得到y=sin x图象,则需将y=f(x)的图象()A.横坐标缩短到原来的,再向右平移个单位B.B.横坐标缩短到原来的,再向左平移个单位C.横坐标伸长到原来的2倍,再向右平移个单位D.横坐标伸长到原来的2倍,再向左平移个单位10.已知向量=(4sinα,1﹣cosα),=(1,﹣2),若=﹣2,则=()A.1B.﹣1C.D.11.已知是两个不共线的向量,若,+,,则()A.A,B,C三点共线B.A,C,D三点共线C.A,B,D三点共线D.B,C,D三点共线12.已知在x=1处取得极值,则的最小值是()A.B.2C.D.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卷相应位置上.)13.已知函数f(x)=,若f(x﹣4)<f(2x﹣3),则实数x的取值范围是.14.已知α∈(0,),β∈(0,),sin(α﹣β)=,α+β=,则cos2α的值为.15.已知数列{a n}的前n项和为S n,且S n=n2+3n﹣1,则a n的通项为.16.不等式mx2﹣mx﹣2<0对任意x∈R恒成立的充要条件是m∈.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17(本小题满分12分)已知函数.(1)求f(x)的最小正周期及单调增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c,若,,sin A=2sin B,求△ABC的周长.18(本小题满分12分)已知向量,满足:||=4,||=3,(﹣)•(+2)=0.(1)求|2+|的值;(2)若向量⊥(+λ),求实数λ的值.19(本小题满分12分)设S n为首项不为零等差数列{a n}的前n项和,已知a4a5=3a9,S5=20.(1)求数列{a n}的通项公式;(2)设T n为数列的前n项和,求的最大值.20(本小题满分12分)已知f(x)为R上的偶函数,当x≥0时,f(x)=ln(3x+2).(1)证明y=f(x)在[0,+∞)单调递增;(2)求f(x)的解析式;(3)求不等式f(x+2)≤f(2x)的解集.21(本小题满分12分)已知曲线f(x)=ax+bx2lnx在点(1,f(1))处的切线是y=2x﹣1.(1)求实数a,b的值;(2)若f(x)≥kx恒成立,求实数k的最大值.选考题:共10分。

甘肃省会宁县第一中学2021届高三数学上学期第一次月考试题

甘肃省会宁县第一中学2021届高三数学上学期第一次月考试题

甘肃省会宁县第一中学2021届高三数学上学期第一次月考试题文、理科数学注意事项:1.答题前,考生先将自己的姓名、准考证号填写清晰,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清晰3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、函数()23lg(31)1x f x x x=++-的定义域为( )A .1,3⎛⎫-+∞ ⎪⎝⎭B .1,13⎛⎫- ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭D .1,3⎛⎫-∞- ⎪⎝⎭2、设函数()1x 22,x 1,f x 1log x,x 1,-⎧≤=⎨->⎩则满足f(x)≤2的x 的取值范畴是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)3、已知幂函数y =f (x )的图象过点(2,22),且f (m -2)>1,则m 的取值范畴是( )A .m <1或m >3B .1<m <3C .m <3D .m >3 4下列说法中,正确的是:( )A .命题“若b a >,则122->b a ”的否命题为“若b a >,则122-≤ba ”B .命题“存在R x ∈,使得012<++x x ”的否定是:“任意R x ∈,都有012>++x x ” C .若命题“非p ”与命题“p 或q ”差不多上真命题,那么命题q 一定是真命题 D .命题“若022=+b a ,则0=ab ”的逆命题是真命题5、三个数6log ,7.0,67.067.0的大小顺序是( )A.7.07.0666log 7.0<< B.6log 67.07.07.06<< C.67.07.07.066log << D.7.067.067.06log <<6、“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( )A .m >14B .0<m <1C .m >0D .m >17、若命题“∃x 0∈R ,使得x 20+mx 0+2m -3<0”为假命题,则实数m 的取值范畴是( )A .[2,6]B .[-6,-2]C .(2,6)D .(-6,-2)8、函数y =lg1|1|x +的大致图象为( )9、关于R 上可导的任意函数f (x ),若满足1-0()xf x ≤',则必有 ( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)10、若函数⎪⎩⎪⎨⎧≤+->=1,1)32(1,)(x x a x x ax f 是R 上的减函数,则实数a 的取值范畴是( )A .)1,32( B .)1,43[ C .]43,32( D .),32(+∞11、设函数f (x )=x +12+sin xx 2+1的最大值为M ,最小值为m ,则M +m =( )A .-1B .1C .2D .-212、偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x ,则关于x 的方程f (x )= 110x⎛⎫⎪⎝⎭,在x ∈[0,4]上解的个数是 ( )A .1B .2C .3D .4二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卷相应位置上.13、函数的(2)()log 2x a f x x -=-的图像必通过定点 14、若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范畴是___ ____.15、已知奇函数)(x f 满足)18(log ,2)(,)1,0(),()2(21f x f x x f x f x则时且=∈-=+的值为 。

2021届甘肃省白银市会宁四中高三上学期第三次月考数学(理)试题

2021届甘肃省白银市会宁四中高三上学期第三次月考数学(理)试题

会宁四中2020-2021学年度第一学期高三级第三次月考理科数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合()(){}225A x x x =+-<,(){}2log 1,B x x a a N =->∈,若A B =∅,则a 的可能取值组成的集合为() A .{}0B .{}1C .{}0,1D .*N2.“0a >”是“20a >”的() A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.函数()y f x =的图象是圆心在原点的单位圆的两段弧(如图),则不等式()()f x f x x <-+的解集为()A .{25|05x x -<<或2515x ⎫⎪<≤⎬⎪⎭ B .{5|15x x -<<-或51x ⎫⎪<≤⎬⎪⎭ C .{5|1x x -<<-或50x ⎫⎪<<⎬⎪⎭D .25250x x x ⎧⎫⎪⎪-<<≠⎨⎬⎪⎪⎩⎭∣,4.设函数21,1()2,1x x f x x x⎧+≤⎪=⎨>⎪⎩,则()()3f f =()A .15B .3C .23D .1395.已知定义在R 上的奇函数()f x 在(),0-∞上单调递减,且()10f -=,若()3log 8a f =-,()2log 4b f =-,232c f ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是()A .c a b <<B .a b c <<C .a c b <<D .c b a <<6.关于x 方程2210ax x --=在01x <<内恰有一解,则() A .1a <-B .1a >C .11a -<<D .01a <≤7.函数()sin()f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的图象如图所示,为了得到()y f x =的图象,只需把()13sin cos 2g x x x ωω=-的图象上所有点()A .向左平移6π个单位长度 B .向左平移3π个单位长度 C .向右平移6π个单位长度 D .向右平移3π个单位长度8.已知1tan 22πα⎛⎫+=- ⎪⎝⎭,则2sin cos cos sin αααα+=-() A .-4B .4C .5D .-59.等差数列{}n a 的公差为d ,当首项1a 与d 变化时,21021a a a ++是一个定值,则下各项中一定为定值的是() A .10aB .11aC .12aD .13a10.已知实数x ,y 满足不等式组10,3260,530,x y x y x y ++≥⎧⎪-+≥⎨⎪+-≤⎩则目标函数2z x y =-的最小值为()A .-4B .145-C .-6D .-711.设α,β是两平面,a ,b 是两直线.下列说法正确的是()①若//,//a b a c ,则//b c ;②若a α⊥,b α⊥,则//a b ;③若a α⊥,a β⊥,则//αβ; ④若a β⊥,b αβ=,a α⊂,a b ⊥,则a β⊥ A .①③B .②③④C .①②④D .①②③④12.已知四棱锥S ABCD -的所有顶点都在半径为R (R 为常数)的一个球面上,底面ABCD 是正方形且球心O 到平面ABCD 的距离为1,若此四棱锥体积的最大值为6,则球O 的体积等于() A .323πB .8πC .16πD .163π二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a 与b 的夹角为60︒,1a =,2b =,当()2b a b λ⊥-时,实数λ= . 14.函数()ln 2f x x x =++的零点个数是__________.15.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2cosAsinB=sinA+2sinC .则B=______;16.已知{}n a 为等差数列,n S 为其前n 项和.n *∈N .若3201180a S ==-,.则10S 的值为_________. 三、解答题17.设函数329()62f x x x x a =-+-. (1)求函数的单调区间.(2)若方程()0f x =有且仅有三个实根,求实数a 的取值范围. 18.已知函数23()2cos f x x x =+. (1)求()f x 的最小正周期及()f x 的图象的对称轴方程;(2)若[4x π∈-,]4π,求()f x 的取值范围.19.在ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,已知cos sin c a B b A =+. (1)求角A 的值;(2)若5a =,22b c =,求ABC 的面积. 20.在数列{}n a 中,112a =,1(42)(21)n n n a n a +-=+. (1)设21nn a b n =-,证明:{}n b 是等比数列,并求{}n a 的通项公式; (2)设n S 为数列{}n a 的前n 项和,证明:3n S <.21.如图,正三棱柱111ABC A B C -的所有棱长都是2,D ,E 分别是AC ,1CC 的中点.(1)求证:平面AEB ⊥平面1A BD ; (2)求二面角1D BE A --的余弦值.22.已知函数2()()x f x e x ax a =+-,其中a 是常数.(1)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若存在实数k ,使得关于x 的方程()f x k =在[0,)+∞上有两个不相等的实数根,求k 的取值范围.一、选择题:二、填空题:13、 14、15、 16、三、解答题:1 214.115.2316.601-12:DAADABBDBCDA13.17.(1)增区间(-∞,1)和(2,+∞),减区间为(1,2);(2)522a <<18.(1)最小正周期为π,对称轴方程为612x k ππ=+,k Z ∈;(2)13[2-,3]2.19.(1)4π;(2)5.20.(1)证明见解析,212n nn a -=;(2)证明见解析.21.(1)证明见解析;(2)14.22.(Ⅰ)43y ex e =-(Ⅱ)24(,]e a a a ++-。

甘肃省会宁县第一中学高三上学期第四次月考试题文(数学)

甘肃省会宁县第一中学高三上学期第四次月考试题文(数学)

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数z=a 的实部与虚部相等,其中a 是实数,则a=( )A .1B .0C .﹣1D .22.已知集合A={x|x 2﹣x ﹣2>0,x ∈R},B={x|lg (x+1)<1,x ∈Z},则(∁R A )∩B=( ) A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}3.设S n 是等差数列{a n }的前n 项和,若S 3=1,S 6=3,则S 12=( ) A .15B .10C .8D .64.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0x -2y -1≤0x ≤1,则z =2x +3y -5的最小值为( ).A .15B .-10C .-5D .65.已知定义在R 上的奇函数f (x ),当x ≥0时,恒有f (x+2)=f (x ),且当x ∈[0,1]时,f (x )=e x﹣1,则f (﹣2017)+f (2018)=( ) A .0 B .eC .e ﹣1D .1﹣e6.某三棱锥的三视图如图所示,其中三个三角形都是直角三角形,则该三棱锥外接球的表面积为( )A .2πB .C .6πD .7.已知偶函数f (x )在(﹣∞,0]上是增函数.若a=f (log 2),b=f (log 3),c=f (2﹣0.8),则a ,b ,c 的大小关系为( ) A .a <b <cB .b <a <cC .c <b <aD .c <a <b8.设x ,y ∈R ,向量=(2,x ),=(y ,﹣2),=(2,﹣4)且,则x+y 等于( )A .0B .1C .2D .89.函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ<)的部分图象如图所示,则当x∈[]时,f(x)的值域是()A.[] B.[] C.[﹣] D.[﹣]10.函数y=f(x)的图象如图所示,则f(x)的解析式可以是()A.y=+x2 B.y=C.y=D.f(x)=x3+ln|x|11.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.12.函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.2 B.4 C.6 D.8二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卷相应位置上.13.△ABC的两边长分别为2,3,其夹角的余弦值为,则其外接圆的直径为14.已知函数f(x)=log0.5(x2-ax+3a)在[2,+∞)上单调递减,则a的取值范围是15.△ABC的边AB的上一点M满足:,则的最小值为16.有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是三、解答题:共70分。

甘肃省会宁县高中名校2021届高三上学期第四次月考数学(文)试题及答案

甘肃省会宁县高中名校2021届高三上学期第四次月考数学(文)试题及答案

高三年级第四次月考数 学 试 卷(文)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,0x M y y x ==>,{}lg N x y x ==,则MN 为 ( )A. (0,+∞)B. (1,+∞)C. [2,+∞)D.[1,+∞) 2.如图是一个空间几何体的三视图,则该几何体的侧面积为( ) A .433B .4 3C .8D .123. 若非零向量,a b 满223a b =,且()(32)a b a b -⊥+,则a 与b 的夹角为 ( )A.4π B.2πC.34πD. π4、下列说法中,正确的是( )A .命题“若b a <,则22bm am <”的否命题是假命题B .设βα,为两不同平面,直线α⊂l ,则“β⊥l ”是 “βα⊥” 成立的充分不必要条件C .命题“存在0,2>-∈x x R x ”的否定是“对任意0,2<-∈x x R x ” D .已知R x ∈,则“1>x ”是“2>x ”的充分不必要条件 5.函数()|2|ln f x x x =--在定义域内的零点的个数为( ) A.0B .1C .2D .36.设,25.0-=a 2016log 2015=b ,1830sin , =c 则c b a ,,的大小关系是( )A .c b a >>B .b c a >>C .a c b >>D .c a b >>7. 如图所示,点P 是函数2sin()(,0)y x x R ωϕω=+∈>图象的最高点,M 、N 是图象与x 轴的交点,若0PM PN ⋅=,则ω等于( )A. 8B.8πC.4πD. 2π8.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,有以下四个命题: ①⎭⎬⎫α∥βα∥γ⇒β∥γ ② ⎭⎬⎫α⊥βm ∥α⇒m ⊥β ③⎭⎬⎫m ⊥αm ∥β⇒α⊥β④⎭⎬⎫m ∥n n ⊂α⇒m ∥α 其中正确的命题是( ) A .①④ B .②③ C .①③ D .②④9.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.A .B .C .D .10.已知函数()|lg |f x x =,0a b >>,()()f a f b =,则22a b a b +-的最小值等于( ).A .5B . 23C .23+D .2211. 已知函数1()nn f x x,n ∈N *的图象与直线1x =交于点P ,若图象在点P 处的切线与x 轴交点的横坐标为n x ,则12013log x +22013log x +…+20122013log x 的值为( )A.-1B. 1-log 20212021C.-log 20212021D.112.已知函数()y f x =对任意的(,)22x ππ∈-满足()cos ()sin 0f x x f x x '+> (其中()f x '是函数()f x 的导函数),则下列不等式成立的是 ( )A. 2()()34f f ππ-<- B. 2()()34f f ππ<C. (0)2()3f f π> D. (0)2()4f f π>第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021届甘肃省白银市会宁县第四中学高三上学期第一次月考数学(文)试题命题: 审核:一、单选题1.若集合{0,1},{1,2}A B ==,则A B =( ) A .{0,1,2}B .{}0,1C .{}1,2D .{}12.设x R ∈,i 是虚数单位,则“2x =”是“复数()()242z x x i =-++为纯虚数”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件3.已知命题,p q ,若命题p ⌝与命题p q ∨均为真命题,下列结论正确的是( ) A .,p q 均为真命题 B .,p q 均为假命题 C .p 为真命题,q 为假命题D .p 为假命题,q 为真命题4.在ABC ∆中,30,a b A c ===则等于( )A .BC .D .以上都不对5.已知向量()()1,2,2,1a b ==-,则a b -=( ) A .()1,3-B .()3,1--C .()1,3D .()3,16,3,… ) A .8项B .7项C .6项D .5项7.等差数列{a n }的前n 项和为S n ,若S 9=36,则a 3+a 7=( ) A .4B .8C .12D .168.已知等比数列{}n a 中,24a =,42a =,那么6a 的值为( ) A .1-B .1C .3D .69.设0,0x y >>,且18x y +=,则xy 的最大值为( ) A .80 B .77 C .81 D .82 10.若a b >,则下列不等式成立的是( )A .11a b<B .22ax bx >C .22a b >D .2121x x a b>++11.不等式301x x ->-的解集为( ) A .{x |﹣3<x <1} B .{x |1<x <3} C .{x |x <1或x >3}D .{x |x <﹣3或x >1}12.为了得到函数cos 24y x π⎛⎫=+ ⎪⎝⎭的图象,可作如下变换( )A .将y =cos x 的图象上所有点向左平移4π个单位长度,然后将所得图象上所有点的横坐标变为原来的12,纵坐标不变而得到 B .将y =cos x 的图象上所有点向右平移4π个单位长度,然后将所得图象上所有点的横坐变为原来的2倍,纵坐标不变而得到C .将y =cos x 的图象上所有点的横坐标变为原来的12,纵坐标不变,然后将所得图象上所有点向左平移4π个单位长度而得到 D .将y =cos x 的图象上所有点的横坐标变为原来的12,纵坐标不变,然后将所得图象上所有点向左平移4π个单位长度而得到 二、填空题13.已知ABC ∆中,22,23,60a b B ===︒,那么A =________. 14.已知向量非零向量a 、b 的夹角为23π,且满足2a =,3b =,则2a b +=______. 15.已知向量()()2,3,1,2==-a b ,若ma b +与2a b -平行,则实数m 等于______.16.要得到函数πy sin 2x 4⎛⎫=+ ⎪⎝⎭的图象,可以将函数πy cos 2x 6⎛⎫=- ⎪⎝⎭的图象向_____( 左或右)平移______个单位长度。

三、解答题 17.计算:(1)sin 57sin 27cos30cos 27︒-︒︒︒;(2)tan 25tan 3525tan 35︒+︒+︒-︒18.已知函数()4f x x x=-(1)判断函数的奇偶性,并说明理由: (2)证明:函数()f x 在0,上单调递增;(3)求函数()4f x x x=-,[]4,1x ∈--的值域.19.已知正项等差数列{}n a 中,n S 为其前n 项和,236a a ⋅=,410S =,等比数列{}n b 的前n项和21nn T =-.(1)求数列{}n a 、{}n b 的通项公式; (2)设n n n c a b =⋅,求数列{}n c 的前n 项和.20.已知数列{}n a 的前n 项和n S 满足22n n nS +=,*n N ∈. (1)求数列{}n a 的通项公式;(2)设()21n na n nb a =+-,*n N ∈,求数列{}n b 的前2n 项和2n T .21.已知函数3()31f x x x =-+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求()f x 在[1,2]上的最大值和最小值.四、选做题(二选一)22.在极坐标系下,已知圆C :cos sin ρθθ=+和直线l :20x y -+=. (Ⅰ)求圆C 的直角坐标方程和直线l 的极坐标方程; (Ⅱ)求圆C 上的点到直线l 的最短距离. 23.已知函数()1f x x =+. (1)求()3f x ≥的解集;(2)若()()2g x f x x =+-,求()g x 的最小值.会宁四中2020-2021学年度第一学期高三级第一次月考文科数学试卷答题卡13、 14、 15、 16、____ ____,__ ______ 三、解答题 17.计算: (1)sin 57sin 27cos30cos 27︒-︒︒︒;(2)tan 25tan 3525tan 35︒+︒+︒︒18.已知函数()4f x x x=-(1)判断函数的奇偶性,并说明理由: (2)证明:函数()f x 在0,上单调递增;(3)求函数()4f x x x=-,[]4,1x ∈--的值域.19.已知正项等差数列{}n a 中,n S 为其前n 项和,236a a ⋅=,410S =,等比数列{}n b 的前n项和21nn T =-.(1)求数列{}n a 、{}n b 的通项公式; (2)设n n n c a b =⋅,求数列{}n c 的前n 项和.20.已知数列{}n a 的前n 项和n S 满足22n n nS +=,*n N ∈. (1)求数列{}n a 的通项公式;(2)设()21n na n nb a =+-,*n N ∈,求数列{}n b 的前2n 项和2n T .21.已知函数3()31f x x x =-+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)求()f x 在[1,2]上的最大值和最小值.四、选做题(二选一)22.在极坐标系下,已知圆C :cos sin ρθθ=+和直线l :20x y -+=. (Ⅰ)求圆C 的直角坐标方程和直线l 的极坐标方程; (Ⅱ)求圆C 上的点到直线l 的最短距离. 23.已知函数()1f x x =+.(1)求()3f x ≥的解集;(2)若()()2g x f x x =+-,求()g x 的最小值.高三级第一次月考文科数学答案一、选择题1、A2、B3、D4、C5、D6、C7、B8、B9、C 10、D 11、C 12、A 二、填空题13、45o 14、 15、1-2 16、右、24π 17【详解】解:(1)由()sin 3027sin 27cos30sin 57sin 27cos30cos 27cos 27︒︒+-︒︒-=︒︒︒︒︒sin 30cos 27cos30sin 27sin 27cos30cos 27︒︒︒︒+︒︒-=.sin 30cos 271sin 30cos 272=︒︒︒=︒=;(2)由()tan 25tan 35tan 60tan 25351tan 25tan 35︒+︒=︒+︒==-︒︒可得)tan 25tan351tan 25tan35︒+︒=-︒︒,所以tan 25tan 3525tan 35︒+︒︒⋅︒)1tan 25tan3525tan35=-︒︒︒⋅︒=故原式tan 25tan 3525tan 35︒+︒+=︒︒0=. 18.(1)证明见解析;(2)证明见解析;(3)[]3,3--. 解: (1)证明:定义域为(,0)(0,)-∞+∞;444()()f x xxxf x xxx,f x 为奇函数.(2)证明:对任意的()12,0,x x ∈+∞,且12x x <,()()12112244x x f x f x x x ⎛⎫=--- ⎝-⎪⎭()121244x x x x ⎛⎫=--- ⎪⎝⎭()()1212124x x x x x x -=-+()121241x x x x ⎛⎫=-+ ⎪⎝⎭120x x <<,12120,0x x x x ,()()120f x f x ∴-<()()12f x f x ∴< f x 在0,上单调递增.(3)f x 为奇函数且在0,上是增函数,则()f x 在,0上是增函数,f x 在[]4,1--上是增函数,()()()41f f x f -≤≤-,即()33f x -≤≤,所以函数()4f x x x=-,[]4,1x ∈--的值域为[]3,3-- 19.(1)n a n =,12n n b -=;(2)()121n n -⨯+.【详解】(1)设等差数列{}n a 的公差为d ,且数列{}n a 为正项数列,则0d ≥,则23a a ≤,()()1442342102a a S a a +==+=,可得235a a +=, 又236a a =,即23232356a a a a a a+=⎧⎪=⎨⎪≤⎩,解得2323a a =⎧⎨=⎩,即11223a d a d +=⎧⎨+=⎩,解得11a d ==,()11n a a n d n ∴=+-=.当2n ≥时,()()11121212nn n n n n b T T ---=-=---=;当1n =时,111b T ==也满足上式,12n n b -∴=;(2)由题可知,n a n =,12n n n n c a b n -=⋅=⋅,记数列{}n c 的前n 项和为n G ,()01221122232122n n n G n n --=⨯+⨯+⨯++-⨯+⨯, 12312122232(1)22n n n G n n -=⨯+⨯+⨯++-⨯+⨯()11121222212112n n nn n n G n n n ---=+++-⨯=-⨯=-⨯--,故()121nn G n =-⨯+.20.(1)n a n =(2)2122n n ++- 【详解】(1)当1n =时,111a S ==;当2n ≥时,()()2211122n n n n n n n a S S n --+-+=-=-=, 综上n a n =.(2)由(1)知()21nn n b n =+-()()122222212342n n T n =++⋅⋅⋅++-+-+-⋅⋅⋅+ ()221212n n -=+-2122n n +=+-21.(1)310x y +-= ;(2)最大值f (2)3=,最小值f (1)1=- .解:(1)由3()31f x x x =-+得,'2()33f x x =-,所以(0)1f =,'(0)3f =-,所以曲线()y f x =在点(0,(0))f 处的切线方程13(0)y x -=-- 即310x y +-=;(2)令'()0f x >可得1x >或1x <-,此时函数单调递增,令'()0f x <可得11x -<<,此时函数单调递减,故函数()f x 在[1,2]上单调递增,所以()f x 的最大值f (2)3=,最小值f (1)1=-.22.(Ⅰ)C :220x y x y +--=,l :cos sin 20ρθρθ-+=;(Ⅱ)2(Ⅰ)圆C :cos sin ρθθ=+,即2cos sin ρρθρθ=+,圆C 的直角坐标方程为:22x y x y +=+,即220x y x y +--=; 直线l :20x y -+=,则直线l 的极坐标方程为cos sin 20ρθρθ-+=.(Ⅱ)由圆C 的直角坐标方程为220x y x y +--=可知圆心C 坐标为11,22⎛⎫ ⎪⎝⎭,半径为2,因为圆心C=C 上的点到直线l22=. 23.(1){2x x ≥或}4x ≤-;(2)3. 【详解】(1)因为()1f x x =+,()3f x ≥, 所以13x +≥,即13x +≥或13x +≤-, 所以2x ≥或4x ≤-,所以不等式的解集为{2x x ≥或}4x ≤-.(2)因为()()2g x f x x =+-,所以()12g x x x =++-; 因为()()12123x x x x ++-≥+--=, 所以()g x 的最小值为3.。

相关文档
最新文档