大跨度桥梁及城市桥梁7

合集下载

短木材形成大跨度桥梁的解决方案

短木材形成大跨度桥梁的解决方案

短木材形成大跨度桥梁的解决方案随着城市的发展和人们对交通的需求不断增长,大跨度桥梁的建设变得越来越重要。

然而,传统的大跨度桥梁建设通常需要使用大量的钢材或混凝土,这不仅造成了资源的浪费,还对环境造成了严重的污染。

因此,寻找一种新的解决方案来建造大跨度桥梁变得迫切。

短木材作为一种可再生资源,具有重要的应用潜力。

然而,由于其长度有限,传统的使用方法往往限制了它的应用范围。

如何利用短木材来形成大跨度桥梁成为了一个具有挑战性的问题。

在这篇文章中,我们将探讨一种新的解决方案,使短木材能够应用在大跨度桥梁的建设中。

我们可以利用现代的连接技术来解决短木材的长度限制问题。

传统的木结构需要使用长木材才能达到足够的强度和稳定性,但现代的连接技术使得短木材之间可以通过连接件进行结合,从而形成更大的结构。

这种连接技术可以有效地解决短木材的长度限制,使其能够应用在大跨度桥梁的建设中。

我们可以利用桁架结构来增加短木材的承载能力。

桁架结构是一种由斜杆和连接件组成的三角形结构,具有很高的刚性和稳定性。

通过将短木材组装成桁架结构,可以大大增加其承载能力,从而满足大跨度桥梁的要求。

此外,桁架结构还具有重量轻、易于安装和维护等优点,可以降低桥梁的建设成本。

我们还可以采用预应力技术来增强短木材的强度。

预应力是一种通过施加预先计算的拉力来提高结构的承载能力的技术。

通过在短木材上施加适当的预应力,可以使其在承受荷载时不易发生变形和破坏,从而提高大跨度桥梁的整体性能。

我们还可以利用先进的材料技术来改善短木材的性能。

例如,可以使用纤维增强复合材料来替代传统的木材,从而提高其强度和耐久性。

纤维增强复合材料具有很高的比强度和比刚度,可以有效地增加短木材的承载能力,同时还具有抗腐蚀和耐候性能,能够延长桥梁的使用寿命。

以短木材形成大跨度桥梁的解决方案有很多。

通过利用现代的连接技术、桁架结构、预应力技术和先进的材料技术,我们可以充分发挥短木材的潜力,实现大跨度桥梁的建设。

桥梁大小划分标准

桥梁大小划分标准

桥梁大小划分标准桥梁是现代交通建设中不可或缺的重要组成部分,其作用不仅仅是连接两地,更是促进经济发展,改善人民生活的重要手段。

而桥梁的大小划分也是影响其使用效果和建设成本的重要因素之一。

本文将介绍桥梁大小划分标准的相关内容。

一、桥梁的大小划分标准桥梁的大小划分标准主要是根据桥梁的跨度大小来进行划分的。

根据国家标准GB/T 50329-2012《公路桥梁设计规范》中的规定,桥梁的大小可以分为以下几类:1.小桥:跨度小于6米的桥梁,主要用于乡村公路和城市次干道等。

2.中桥:跨度在6米到30米之间的桥梁,主要用于城市主干道和一般公路等。

3.大桥:跨度在30米到100米之间的桥梁,主要用于高速公路和铁路等。

4.特大桥:跨度大于100米的桥梁,主要用于特殊场合,如跨越大江大河等。

二、桥梁大小划分标准的应用桥梁大小划分标准在桥梁建设中具有重要的应用价值。

首先,根据桥梁的大小划分,可以合理地选择桥梁的建设方案和设计参数,从而保证桥梁的使用效果和安全性。

例如,在设计小桥时可以采用简单的梁式结构,而在设计大桥时则需要采用更为复杂的悬索桥、斜拉桥等结构形式,以满足跨度和荷载的要求。

其次,桥梁大小划分标准还可以为桥梁的施工和维护提供参考。

不同跨度的桥梁在施工和维护上也有所区别。

例如,在施工过程中,大桥和特大桥需要采用大型施工机械和复杂的施工工艺,而小桥则可以采用简单的人工施工。

在维护方面,大桥和特大桥需要定期进行大规模的检修和维护,而小桥则可以采用定期巡查和小范围的维修。

三、桥梁大小划分标准的优化在实际的桥梁建设中,桥梁大小划分标准还存在一些问题和不足之处。

一方面,当前的桥梁大小划分标准主要以桥梁的跨度为依据,但并未考虑其他因素的影响,如桥梁的荷载、地形地貌、交通流量等。

因此,在实际应用中可能会出现一些不合理或不适用的情况。

另一方面,当前的桥梁大小划分标准也没有考虑到桥梁的功能和用途的不同。

例如,城市桥梁和乡村桥梁的使用环境和要求也有所不同,因此在设计和施工上也需要有所区别。

桥梁分类标准及类别

桥梁分类标准及类别

桥梁分类标准及类别
一、桥梁分类标准
桥梁可以根据不同的标准进行分类,以下是一些常见的分类方式:
1.按照结构类型分类:桥梁可以分为梁式桥、拱式桥、悬索桥、斜拉桥、钢
架桥、组合体系桥等。

2.按照跨度分类:桥梁可以分为小跨度桥(跨度小于20米)、中型跨度桥
(跨度在20-100米之间)和大跨度桥(跨度大于100米)。

3.按照材料分类:桥梁可以分为钢桥、钢筋混凝土桥、木桥、石桥等。

4.按照功能分类:桥梁可以分为公路桥、铁路桥、城市桥、人行桥等。

二、桥梁类别
以下是一些常见的桥梁类别:
1.梁式桥:梁式桥是一种常见的桥梁类型,其结构形式包括简支梁桥、连续
梁桥、悬臂梁桥等。

梁式桥主要用于跨越较小的河流、沟谷等。

2.拱式桥:拱式桥是一种常见的桥梁类型,其结构形式包括石拱桥、钢拱桥、
混凝土拱桥等。

拱式桥主要用于跨越较大的河流、峡谷等。

3.悬索桥:悬索桥是一种大跨度桥梁类型,其结构形式包括单塔悬索桥、双
塔悬索桥等。

悬索桥主要用于跨越深谷、大河等。

4.斜拉桥:斜拉桥是一种大跨度桥梁类型,其结构形式包括单塔斜拉桥、双
塔斜拉桥等。

斜拉桥主要用于跨越较大的河流、海峡等。

5.钢架桥:钢架桥是一种常见的桥梁类型,其结构形式包括门式钢架桥、斜
腿钢架桥等。

钢架桥主要用于跨越较小的河流、沟谷等。

大跨度桥梁的发展趋势

大跨度桥梁的发展趋势

大跨度桥梁建设的现状与发展趋势杨玉章高级工程师中铁十九局集团公司《桥梁建筑艺术与造型》桥梁建筑对于具有卓越才能和自信心的工程师来说是一项既吸引人又富有挑战性的艰巨任务。

桥梁建筑的重要意义不仅仅是满足于交通,还在于桥梁一旦胜利建成,它将会使人们感到无限的快乐和极大的满足。

桥梁建筑能使人产生一种激情,在建桥人的一生中总是那样的清新绮丽,那样的朝气蓬勃,那样富有激励性。

——(德)弗里茨·莱昂哈特——《桥梁造型》桥梁能够满足人们到达彼岸的心理希望,同时也是印象深刻的标志性建筑,并且常常成为审美的对象和文化遗产。

”——(日本)伊藤学——我国大跨度桥梁建设现状⏹悬索桥异军突起势如破竹⏹斜拉桥后来居上独占鳌头⏹连续刚构竞相超越标新立异⏹钢砼拱桥多姿多彩群星璀璨第一篇悬索桥悬索桥的型式与结构组成⏹悬索桥(吊桥)是特大跨度桥梁的主要型式之一。

⏹常见单跨和三跨(简支或连续)两种结构形式。

⏹悬索桥由主缆、塔架、加劲梁和锚碇四部分组成。

⏹主缆制造:AS法(空中送丝法);PPWS法(预制束股法)⏹塔架型式:一般采用门式框架;材料用钢或混凝土。

⏹加劲梁:主要有钢桁架梁和扁平钢箱梁。

⏹锚碇型式:有重力式锚碇和隧道锚碇。

(采用重力式锚碇居多;自锚则不用锚碇,直接锚固在边跨端的主梁上。

)古代悬索桥与现代悬索桥※中国是古代悬索桥的发源地主要在长江流域,采用皮索、藤索结构。

※现代悬索桥从1883年美国建成布鲁克林桥主跨486m开始,至今已有一百多年历史。

20世纪30年代,美国相继建成数座超千米的特大桥。

20世纪末日本及欧洲也相继兴起悬索桥修建高潮。

乔治华盛顿桥,主跨1067m,1934年,美国。

旧金山大桥,主跨1280m,1936年,美国。

恒比尔大桥,主跨1410m,1981年,英国。

大贝尔特桥,主跨1624m,1997年,丹麦。

The Golden Gate Bridge震惊世界的悬索桥风毁事故⏹1940年11月7日⏹美国华盛顿州⏹塔科马海峡桥(The Tacoma Narrows Bridge)⏹主跨853m,全长1524m,排名旧金山及华盛顿大桥之后位居世界第三⏹建成四个月后⏹在八级大风(风速19m/s)作用下⏹经过剧烈扭曲震荡后,吊索崩断,桥面结构解体损毁,半跨坠落水中······⏹悬索桥的天敌:台风及飓风英国特色的悬索桥⏹1964年英国塞文桥(The Severn Bridge),主跨988m,结合抗风试验研究成果,首选流线型扁平钢箱梁加劲,采用斜吊索,钢筋混凝土桥塔。

大跨度桥梁的设计要点及优化措施探讨

大跨度桥梁的设计要点及优化措施探讨

大跨度桥梁的设计要点及优化措施探讨摘要:我国公路交通体系迅速发展,不断完善,为提高经济发挥了非常重要的作用。

而桥梁作为公路体系的重要组成部分,其在我国交通系统中的占比较大,受限于我国复杂的地质环境,各类大跨度桥梁建设规模也在逐年增加。

因此,必须掌握公路桥梁中大跨度桥梁设计重点,结合建设区域实际情况提出更为科学、有效的设计方案,保证公路桥梁中大跨度桥梁总体建设水平。

论文阐述了大跨度公路桥梁的设计要点,提出了改善大跨度公路桥梁设计水平的优化措施。

关键词:大跨度桥梁;设计要点;优化措施引言随着我国社会经济发展速度不断提高,虽然桥梁设计水平有了相应提高,能够进一步缓解大跨度桥梁设计和运行中的问题。

同时我国当前桥梁建设施工数量也在不断增加,所以,想要进一步确保大跨度桥梁建设的健康发展,就需要保证桥梁建设工作具备安全性和稳定性以及持久性的特点。

另外,对于桥梁设计工作人员来说,需要进一步完善桥梁设计的工作,将内部设计结构全面优化和完善,最终保障大跨度桥梁能够安全稳定的运行。

一、大跨度桥梁特点概述随着我国城市基础建设日益完善,桥梁作为城市重要地标及交通纽带,起到关联城市、疏导交通、美化城市的重要作用。

我国南方城市很多都将桥梁作为城市建设的重要代表之一,如长江大桥、杨浦大桥等,这些都属于大跨度桥梁。

大跨度桥梁主要是指桥梁长度、宽度较大,并且在承载能力、稳定性等方面都较为突出,这也导致了大跨度桥梁在设计中的复杂性、系统性。

大跨度桥梁具有结构规模大、结构组织规划困难、承载能力强等特点。

如图1所示,具体表现在以下四个方面:(1)项目结构规模较大。

桥梁主体结构多为大跨度结构形式,从长度、宽度等层面都突显了桥梁主体的大气、宏观。

(2)在结构组织及规划方面也较为复杂:从大跨度桥梁主体结构可以发现,很多桥梁都需要对该桥体过渡节点进行设计,并根据桥梁实际长度、宽度等进行元素融入。

(3)施工难度高。

跨度越大,工程规模越大,施工难度越大,每个细节都要处理到位。

大跨度桥梁设计要点及优化措施

大跨度桥梁设计要点及优化措施

大跨度桥梁设计要点及优化措施摘要:随着我国经济的发展,全国各个地区的道路建设也在不断完善和推进,大跨度桥梁的建设工程也越来越多。

大跨度桥梁工程设计复杂,对设计水平要求很严格,如果不了解其设计要点,很难真正做到科学合理。

想要提高大跨度桥梁的设计质量,需要设计人员在充分掌握设计要点的同时,做好相应的优化措施。

因此,本文将重点分析大跨度桥梁的设计要点,并给出相应的设计优化措施,以供参考。

关键词:大跨度桥梁;设计要点;优化措施引言大跨度桥梁是我国城乡建设中重要的道路及地标性工程,不论是在道路实用还是城市美观建设方面都有着非常重要的意义和价值。

但由于我国对大跨度桥梁设计以及相关优化措施的研究很少,很多设计方案还有着较大的优化空间。

只有不断深入对大跨度桥梁设计要点的分析和优化,我国的大跨度桥梁建设才能获得更上一层楼的发展。

通过对大跨度桥梁设计要点的局部设计、整体设计、上下结构设计的分析和优化,我国后面的大跨度桥梁设计工作展开能有更加丰富的资料参考和指导。

一、大跨度桥梁设计优化的重要性桥梁的结构设计应综合各个方面的考量,再经过力学分析、验算等最后敲定,设计方案的质量受设计人员的主观影响较大,即便是同一个地址的大跨度桥梁设计,不同的设计人员做出来的方案设计也会存在很大差别。

传统的桥梁结构设计分为假设、分析、校核、重新设计几个阶段,对工程设计进行优化主要是为了综合考虑桥梁施工地区的实际情况,将其设计相关的所有计量全部用数学手段重新计算,在界定范围内得到最优解,再以最优解的结果为准来优化和调整设计方案。

通过这种方式,桥梁工程结构的设计质量能够能到有效提升。

对桥梁设计进行优化,能够有效提高设计质量,优化桥梁结构,缩短设计周期。

传统的桥梁设计主要通过人为的计算来确定方案,如果方案无法满足桥梁设计要求,则需要进行人工的重新计算、调整、校核等,其设计周期长,效率低,并且人工计算的结果很容易出现偏差,校核后的优化结果也未必是最优解。

城市桥梁抗震设计规范(CJJ 166-2011)宣贯讲义(同济 李建中)

城市桥梁抗震设计规范(CJJ 166-2011)宣贯讲义(同济 李建中)
延性抗震设计
抗剪强度不足:横向箍筋配置不足; (剪切破坏)
能力保护设计
1 桥梁地震桥梁震害与抗震设计
基础破坏
土破坏: 断裂通过 基础移位、沉降 避让 沙土液化 防液化措施
桩身破坏: 能力保护设计
2 89规范局限性与新规范编写要点
2.1 89规范局限性
采用的设防水准均为50年基准期10%超越概率,重要结构物的设防 等级用重要性系数来体现。 单一水准设防,采用基于强度一阶段设计;弹性地震力采 用综合影响系数折减考虑结构进入塑性性能
的连接构件
1.0
5
3 柱式桥墩或薄壁墩与基础之间的连接构件
1.0
注:对于C、D类桥,其基础设计力的修正系数取为R=1,或采用能力保护方法计 算基础设计力;在计算 桥墩的剪力设计值时,修正系数R=1或采用能力保护方法计算剪力设计值。
2 89规范局限性与新规范编写要点
2.2新规范编写要点
适用于抗震设防烈度为6度、7度、8度和9度地区的城市桥梁抗 震设计。抗震设防烈度大于9度地区的桥梁和有特殊要求的大 跨径或特殊桥梁,其抗震设计应作专门研究,按有关专门规定 执行。


_
F_e Fu
Fu Fe
Fu= CzFe
y
u
位移
力 Fe
_ Fu
=
Fu CzFe
y
u
位移
y
u
Fu= CzFe 位移
2 89规范局限性与新规范编写要点
采用综合影响系数考虑结构进入塑性(延性),但塑性铰保证延性 的细节构造不明确,综合影响系数取值模糊并且明显不合理。
对于墩柱抗剪、基础抗震计算和验算没有规定,实际应用时存在错 误。没有引入能力保护设计思想;

大跨度钢管混凝土拱桥受力性能分析

大跨度钢管混凝土拱桥受力性能分析

参考内容
基本内容
随着经济的发展和科技的进步,我国基础设施建设规模不断扩大,尤其是大 跨度桥梁的建设取得了长足的发展。大跨度钢管混凝土拱桥作为现代桥梁工程的 重要类型,具有结构轻盈、跨越能力大、美观环保等优点,因此在公路、铁路和 城市交通领域得到广泛应用。
然而,大跨度钢管混凝土拱桥施工过程复杂,涉及众多关键技术,如何确保 桥梁施工过程中的稳定性、安全性和精度控制成为亟待解决的问题。本次演示旨 在探讨大跨度钢管混凝土拱桥施工控制方面的研究,以期为类似桥梁工程建设提 供理论支持和实践指导。
参考内容二
一、引言
随着现代工程技术的不断发展,大跨度桥梁的设计和施工越来越受到人们的。 大跨度桥梁不仅在视觉上提供了宏大的景观效果,而且在功能上满足了跨越大型 河流、峡谷或其他复杂地形的需求。在众多大跨度桥梁中,大跨度钢管混凝土拱 桥因其独特的结构特性,如高强度、耐久性好、造价低等,而在桥梁工程中具有 广泛的应用。
在实验研究方面,学者们通过制作缩尺模型、全桥模型等进行了各种加载实 验,以探究拱桥的受力性能。这些实验表明,大跨度钢管混凝土拱桥具有良好的 承载能力和变形性能,同时拱脚处容易出现裂缝。尽管实验研究在某些方面取得 了成果,但仍存在实验条件与实际环境有所差异等问题。
本次演示主要研究大跨度钢管混凝土拱桥的受力性能,借助完善的理论和实 验设施,旨在探寻拱桥结构中应力、应变和强度等指标的变化规律。首先,运用 有限元软件建立大跨度钢管混凝土拱桥的数值模型,进行静力分析和模态分析, 以获取拱桥在自重作用下的应力分布和振动特性。
文献综述
大跨度钢管混凝土拱桥的非线性地震反应研究已经取得了不少进展。国内外 学者通过理论分析、实验研究及数值模拟等方法,对拱桥的地震响应进行了深入 探讨。已有的研究主要集中在以下几个方面:

大跨度桥梁设计要点及优化措施

大跨度桥梁设计要点及优化措施

大跨度桥梁设计要点及优化措施摘要:社会的发展和国民经济的不断进步,社会各个行业都发生了巨大的变化,道路建设作为我国发展的重要组成因素,近些年来,较之过去也得到了很大改善,道路的建设的速度也是前所未有,大跨度桥梁作为道路施工建设的关键部分,在道路施工建设中也较为常见,一般而言大跨度桥梁的施工建设所涉及的内容十分发繁杂,尤其是对设计施工水平有着非常高的要求,如果在施工过程中难以有效把握大跨度桥梁的施工特点,就难以有效的进行科学合理的施工,从而影响大跨度桥梁的质量,严重者甚至会给社会带来难以预估的损失,为此想要强化大跨度桥梁的建设质量,就必须在对其施工建设过程中,掌握大跨度桥梁的特点,做到必要的施工优化措施,文章就大跨度桥梁设计要点进行必要的探讨分析,并在此基础上提出了可行性的的优化措施。

关键词:大跨度桥梁;设计要点;优化措施大跨度桥梁在道路建设施工中占据了非常重要的地位,尤其是在我国城乡道路建设中尤为常见,大跨度桥梁的建设,一方面能够提升道路的实用性,节约必要的道路施工建设成本,另一方面由于大跨度桥梁自身的外在性,大大提升了城市的建筑美感,对提升城市文化形象具有重要的促进作用,相对于其他国家而言,我国在大跨度桥梁建设与设计方面相应的研究方案还非常有效,这就使得大跨度桥梁在我国还有着非常大的优化空间,为此只有不断的对大跨度桥梁的设计要点以及施工方案进行必要的优化,就能有效的推进我国大跨度桥梁的向更高层次发展[1]。

一、大跨度桥梁施工优化必要性分析在桥梁施工建设过程中,充分综合考虑各方面设计施工因素尤为必要,尤其是大跨度桥梁在施工设计方面更是如此,这是以为大跨度桥梁在设计施工方面所包含的内容非常的复杂,在对其施工设计之前,需要进行多角度全方位的综合考量,如大跨度桥梁的力学分析,验算、施工设施设备等等,加上桥梁设计方案很大程度上依赖于设计工作人员的主观因素,即使在同一个地方,同一座大跨度桥梁的设计,不同社会人员所制定的大跨度桥梁设计施工方案都会出现很大的差别。

2022年一级建造师《市政公用工程管理与实务》考点精讲:桥梁的主要类型

2022年一级建造师《市政公用工程管理与实务》考点精讲:桥梁的主要类型

2022一级建造师《市政实务》考点精讲:桥梁的主要类型1K412000城市桥梁工程【考点8】桥梁的主要类型【考查分值】5分【考点频率】5年3次,2018案例、2019单选、案例【考点难度】★★★桥梁的主要类型一、按受力特点分1.梁式桥(钢、木、钢筋混凝土、预应力钢筋混凝土等)来建造。

2.拱式桥通常用抗压能力强的圬工材料(砖、石、混凝土)和钢筋混凝土等来建造。

3.刚架桥间。

同样的跨径在相同荷载作用下,刚架桥的正弯矩比梁式桥要小,刚架桥的建筑高度可以降低;但刚架桥施工比较困难,用普通钢筋混凝土修建,梁柱刚结处易产生裂缝。

4.悬索桥地修建大跨度桥。

由于这种桥的结构自重轻,刚度差,在车辆动荷载和风荷载作用下有较大的变形和振动。

5.组合体系桥组合体系桥由几个不同体系的结构组合而成,最常见的为连续刚构,梁、拱组合等。

斜拉桥也是组合体系桥的一种。

二、其他分类方式桥梁分类多孔跨径总长L(m)单孔跨径L(m)>150特大桥L>1000L大桥1000≥L≥100150≥L≥40中桥100>L>3040>L≥20≥5小桥30≥L≥820>L0注:单孔跨径系指标准跨径。

梁式桥、板式桥以两桥墩中线之间桥中心线长度或桥墩中线与桥台台背前缘线之间桥中心线长度为标准跨径;拱式桥以净跨径为标准跨径。

②梁式桥、板式桥的多孔跨径总长为多孔标准跨径的总长;拱式桥为两岸桥台起拱线间的距离;其他形式的桥梁为桥面系的行车道长度。

梁(如通过管路、电缆等)。

土结合梁桥和木桥等。

式桥。

【考点拓展】上承式桥中承式桥下承式桥【名词解释】弯矩弯矩是受力构件截面上的内力矩的一种,即垂直于横截面的内力系的合力偶矩。

构件上某个截面的弯矩,其大小为该截面截取的构件部分上所有外力对该截面形心矩的代数和。

对于土木工程结构中的一根梁(指水平向的构件),当构件区段下侧受拉时,我们称此区段所受弯矩为正弯矩;当构件区段上侧受拉时,我们称此区段所受弯矩为负弯矩。

【考点经典题】【2019】人行桥是按()进行分类的。

特大跨度桥梁抗风研究的新进展

特大跨度桥梁抗风研究的新进展

特大跨度桥梁抗风研究的新进展随着科技的不断发展,特大跨度桥梁的设计与建设已成为工程界的热点话题。

然而,风荷载作为桥梁设计中的重要因素,对特大跨度桥梁的安全性与耐久性具有重大影响。

因此,开展特大跨度桥梁抗风研究具有重要的现实意义。

本文将介绍近年来特大跨度桥梁抗风研究的新进展,以期为相关领域的研究提供参考。

在过去的几十年里,特大跨度桥梁抗风研究得到了广泛。

通过对桥梁抗风性能的深入探讨,研究者们不断发展新的理论、技术和方法,以提高桥梁的抗风能力。

如今,特大跨度桥梁抗风研究已经取得了显著的成果,为世界各地的桥梁设计提供了有力支持。

近年来,特大跨度桥梁抗风研究在理论模型、数值模拟和实验研究等方面取得了重要进展。

例如,基于CFD(计算流体动力学)技术的数值模拟方法在特大跨度桥梁抗风性能分析中得到了广泛应用。

通过模拟不同风速、风向和地形条件下的桥梁响应,研究者们可以更准确地评估桥梁的抗风性能并优化其设计方案。

在特大跨度桥梁抗风研究中,一些关键技术发挥了重要作用。

例如,通过采用高精度模型模拟桥梁的风致振动效应,可以获得更准确的响应数据。

利用多目标优化算法进行抗风优化设计,可以显著提高桥梁的抗风性能。

然而,这些技术也存在一定的局限性。

例如,CFD模拟结果的准确性和可靠性仍需进一步验证,而多目标优化算法的效率和应用范围也需要进一步拓展。

一些成功的案例为特大跨度桥梁抗风研究的可靠性提供了有力证明。

例如,中国的苏通大桥采用先进的抗风设计和施工工艺,成功地抵抗了多次强风事件,确保了桥梁的安全运行。

法国的诺曼底大桥也采用了创新性的抗风措施,成功地减少了桥面风荷载和风致振动,为特大跨度桥梁的抗风设计提供了有益的参考。

特大跨度桥梁抗风研究在理论模型、数值模拟和实验研究等方面取得了重要进展。

然而,这些研究仍存在一定的局限性,需要进一步加以完善。

未来,随着计算技术和实验设备的不断发展,特大跨度桥梁抗风研究将会有更多新的突破。

例如,利用高性能计算平台进行大规模数值模拟计算,可以进一步提高计算效率和准确性;采用先进的传感器和测试技术,可以更准确地获取桥梁在风荷载作用下的响应数据;开展更加系统和深入的实验研究,可以更全面地了解桥梁抗风性能的影响因素和变化规律。

城市桥梁知识点总结

城市桥梁知识点总结

城市桥梁知识点总结一、城市桥梁的概念及意义城市桥梁是指位于城市区域内的桥梁设施,它不仅是城市基础设施的重要组成部分,更是人们生活、生产和交通的重要便利条件。

城市桥梁的意义主要可以从以下几个方面来概括:1. 交通通道:桥梁作为城市之间、城市内部交通的重要通道,为人们的出行提供了便利条件,促进了城市的经济发展和社会交往。

2. 地理连接:城市桥梁连接了城市之间、城市内部的地理障碍,使得城市空间得以延伸,扩大了城市的发展范围,提高了土地的利用率。

3. 经济作用:城市桥梁的建设和维护不仅为当地的建筑、交通、物流等产业提供了就业机会,还为城市的经济增长和产业发展提供了便捷条件。

4. 社会效益:城市桥梁的存在,便利了城市居民的日常生活,改善了城市的居住环境,为城市的社会安全和文化发展提供了保障。

二、城市桥梁的分类按照结构形式和用途,城市桥梁可以分为多种类型。

下面将按照结构形式和用途对城市桥梁进行分类。

1. 结构形式分类:(1) 梁桥:梁桥是由多跨连续梁组成的桥梁,弯矩和剪力主要由横隔板承担,在城市道路上广泛使用。

(2) 拱桥:拱桥是由多个拱构成的桥梁,起到抵抗外力的作用,构造简单,且美观,适用于跨越较小河道或城市中的装饰性桥梁。

(3) 悬索桥:悬索桥是利用拉索来承担桥梁自重和荷载的一种桥梁形式,适用于大跨度的桥梁。

(4) 钢桁梁桥:钢桁架桥又称为钢桁梁桥,桁架桥,主要构件在一端支承时构件,适用于跨越较大水域的桥梁。

(5) 钢箱梁桥:钢箱梁桥是由钢材材料制成的空心箱形截面构件和桥墩连接而成,用于大跨度桥梁的建设。

2. 用途分类:(1) 公路桥:公路桥是用于城市道路交通的桥梁,主要为汽车通行提供便利。

(2) 铁路桥:铁路桥是用于城市铁路的桥梁,主要为火车和铁路列车提供行驶通道。

(3) 步行桥:步行桥是专门为行人通行而设计的桥梁,通常跨越道路、河流、公园等地方,为市民提供便利的行走条件。

(4) 跨河大桥:跨河大桥是一种大跨度桥梁,主要用于跨越江河、湖泊等水域,连接城市之间。

大跨桥梁及城市桥梁习题集

大跨桥梁及城市桥梁习题集

大跨桥梁及城市桥梁习题集第一章概述(1)什么是缆索承重桥梁,典型的缆索承重桥型有哪些?参考P1跨越的主要承力结构是由抗弯刚度很小的几乎只能受拉的构件组成,具有抗弯刚度的梁被等间距或不等间距的受拉构件竖向或斜向悬吊,在桥梁结构活载作用下,成为具有多点弹性支承的结构。

在这类结构中,受拉构件被称为缆索,支承受拉构件的结构被称为桥塔,这类桥梁统称为缆索承重桥梁。

主要形式为悬索桥及斜拉桥。

(2)什么是自锚式结构、地锚式以及部分自锚式结构?参考P1在缆索承重桥梁中,主要承力构件的拉力可传递到地面的锚固体中或直接传递到纵桥向布置的梁中,前者为地锚式,后者为自锚式。

在有些情况下,受拉构件采用部分地锚,部分自锚,这类机构被称为部分地锚式结构。

(3)简述主缆材料的演变过程?参考P2早期热带区域的原始人,利用森林中的藤、竹、树茎做成悬式桥以跨越小溪、峡谷等。

公元前50年,我国四川出现了跨度近100m的铁索桥,18世纪,英国人建成了铁链悬索桥,19世纪,法国人用冷拔铁丝建成了首座永久性桥梁。

由于细钢丝有效防腐困难,19世纪有一段时间用双眼铰接杆作为悬索桥的主缆。

19世纪末至今,钢缆绳、钢绞线和钢丝等现代钢材被应用于主缆。

(4)简述现代悬索桥发展历史?世界范围看,有四次高峰(细节参考第六题)1、20世纪30年代,美国2、20世纪60年代欧美3、20世纪70年代,日本4、20世纪90年代至今,中国(5)世界上首座采用空中编缆法的悬索桥是哪座?其后哪两种桥使得这种方法成熟?参考布鲁克林大桥(BC1883,486m),威廉姆斯堡桥(BC1903,488m)及曼哈顿桥(BC1909,448m)(6)悬索桥在形成过程中产生几大流派?各有何特点?绘图示意之1、美式悬索桥,(1)采用空中编缆法法)架设成缆; 2)桥塔采用钢结构, 使用铆钉连接或螺栓连接; 3)吊索采用竖直 4 股骑挂式钢丝绳; 4) 索夹分左右两半, 在其上下采用水平高强螺栓连接; 5) 鞍座采用大型铸钢件、辊轴滑移支承;6)加劲梁采用非连续体系的钢桁梁,桥面采用钢筋混凝土板。

大跨度桥梁结构形式与特点分析

大跨度桥梁结构形式与特点分析

大跨度桥梁结构形式与特点分析大跨度桥梁是现代城市化进程中不可或缺的重要交通基础设施。

随着城市化进程的快速推进,大跨度桥梁的需求也日益增加。

因此,对大跨度桥梁结构形式与特点的分析成为了建筑工程行业中一项重要的课题。

本文将对大跨度桥梁的结构形式与特点进行全面深入的探讨,旨在为相关从业人员提供参考与借鉴。

首先,大跨度桥梁的结构形式多种多样。

具体而言,可以分为悬索桥、斜拉桥、钢箱梁桥和拱桥等几种常见形式。

每种形式都有其独特的结构特点和适用范围。

悬索桥是一种采用大直径钢缆来支撑桥面荷载的桥梁结构。

其主要特点是悬挂在主塔上的大跨距钢缆,以及由钢缆支撑的桥面梁。

悬索桥具有结构简单、稳定可靠的优点,适用于大跨度的桥梁建设。

著名的悬索桥如赛珍珠大桥和金门大桥等。

斜拉桥是一种采用斜拉索来支撑桥面的桥梁结构。

其主要特点是通过斜拉索将桥面梁的重力荷载传导到主塔上。

斜拉桥具有结构轻巧、自重小的优点,适用于大跨度、大高度的桥梁建设。

杭州湾大桥和临江大桥等都是典型的斜拉桥。

钢箱梁桥是一种采用钢结构制成的箱型梁来作为桥面的桥梁结构。

其主要特点是梁体采用钢材,具有良好的抗弯和抗剪能力。

钢箱梁桥广泛应用于中小跨度的桥梁建设。

例如,上海南浦大桥就是典型的钢箱梁桥。

拱桥是一种采用拱形结构来支撑桥面的桥梁结构。

其主要特点是通过拱形结构使桥面承受的荷载传递到桥墩上。

拱桥具有结构稳定、造型美观的优点。

西雅图伊万斯湖大桥和罗马石桥是著名的拱桥。

其次,大跨度桥梁的特点需要重点关注。

首先,大跨度桥梁相对于小跨度桥梁来说,荷载更大、施工难度更高,对设计和施工的要求也更高。

其次,大跨度桥梁的自重较大,需要采取合适的结构形式和材料选择来保证其稳定性。

此外,大跨度桥梁还要考虑风荷载、地震作用等外部力的影响。

针对以上特点,建筑工程行业从业人员在大跨度桥梁的设计和建设中需要注意几个方面。

首先,要合理选择桥梁形式,根据具体情况选择最适合的结构形式。

其次,要充分考虑荷载和外部力的影响,进行细致的设计计算。

桥梁基本类型

桥梁基本类型

桥梁基本类型
桥梁是一种重要的交通设施,根据不同的分类方法可以有多种基本类型。

以下是一些常见的桥梁基本类型:
根据桥身构造分类:梁式桥、拱式桥、悬索桥、刚架桥、斜拉桥、组合体系桥等。

(1)梁式桥:主要承重结构为梁,可以跨越较大的跨度,适用于各种条件下的桥梁。

(2)拱式桥:主要承重结构为拱,具有较高的承载能力和稳定性,适用于较大的承载力和跨度。

(3)悬索桥:主要承重结构为悬索,可以跨越较大的跨度,适用于大跨度桥梁。

(4)刚架桥:主要承重结构为梁和柱的组合,具有较高的承载能力和稳定性,适用于较大的承载力和跨度。

(5)斜拉桥:主要承重结构为斜拉索,可以跨越较大的跨度,适用于大跨度桥梁。

(6)组合体系桥:由两种或多种结构组合而成的桥梁,可以充分发挥各种结构的优点,适用于不同的承载力和跨度。

根据用途分类:公路桥、铁路桥、人行桥、运水桥、农用桥等。

(1)公路桥:主要用于公路交通,可以承受车辆的重量和冲击,适用于公路交通。

(2)铁路桥:主要用于铁路交通,可以承受火车的重量和冲击,适用于铁路交通。

(3)人行桥:主要用于行人通行,适用于人行道和人行横道。

(4)运水桥:主要用于运水或输水,适用于水路运输和水处理设施。

(5)农用桥:主要用于农业用途,适用于农田水利和农业设施。

根据跨越类型分类:跨河桥、跨谷桥、跨线桥等。

(1)跨河桥:用于跨越河流或水域,适用于水上交通和水处理设施。

(2)跨谷桥:用于跨越山谷或峡谷,适用于山区交通和旅游。

(3)跨线桥:用于跨越铁路、公路或管线等线型设施,适用于交叉口和城市交通。

桥梁跨径划分标准

桥梁跨径划分标准

桥梁跨径划分标准一、引言桥梁作为人类交通工程的重要组成部分,承载着道路、铁路等交通工具的行驶,对于交通的便利性和安全性起着至关重要的作用。

而桥梁的跨度大小对于桥梁结构的设计和施工都有着重要影响。

本文将围绕桥梁跨径划分标准展开探讨,以期提供一定的指导和参考。

二、小跨桥梁小跨桥梁一般指的是跨度在10米以下的桥梁,其主要特点是结构简单、施工便捷、造价低廉。

小跨桥梁通常采用简单梁、钢筋混凝土板梁等结构形式,比较常见的有步行桥、人行天桥等。

小跨桥梁主要承载行人、自行车等非机动车辆以及部分小型车辆,对于交通流量较小的地区是一种较好的选择。

三、中跨桥梁中跨桥梁一般指的是跨度在10-50米之间的桥梁,其结构形式和施工难度相对较大,但相对于大跨桥梁来说,仍然是较为常见的类型。

中跨桥梁通常采用钢结构、混凝土预应力梁等形式,具有较好的承载能力和稳定性。

中跨桥梁主要用于城市道路、铁路等交通干线,承载着较大的交通流量,对于道路交通的畅通至关重要。

四、大跨桥梁大跨桥梁一般指的是跨度大于50米的桥梁,其结构形式和施工难度非常大,需要充分考虑各种荷载情况和结构稳定性。

大跨桥梁通常采用悬索桥、斜拉桥等特殊结构形式,具有极高的技术难度和工程复杂性。

大跨桥梁主要用于大型交通干线、河流等特殊地理环境,承载着大量的交通流量,对于保障交通安全和经济发展至关重要。

五、特殊跨桥梁除了按照跨度大小划分,桥梁还可以根据特殊需求进行划分。

例如,铁路桥梁需要考虑列车行驶的速度和荷载情况,需要具备较高的结构强度和稳定性;公路桥梁需要考虑车辆的行驶速度和车流量,需要具备良好的交通通行能力;同时,还有一些特殊用途的桥梁,如水上飞机起降桥、海底隧道等,需要根据具体需求进行设计和施工。

六、总结桥梁跨度的划分标准是根据桥梁的结构形式、承载能力和施工难度等因素进行评估和划分的。

不同跨度的桥梁在设计和施工上有着不同的要求和挑战,需要充分考虑各种因素,以确保桥梁的安全性和稳定性。

大跨度桥梁的发展趋势

大跨度桥梁的发展趋势

大跨度桥梁的发展趋势综观大跨径桥梁的发展趋势,可以看到世界桥梁建设必将迎来更大规模的建设高潮。

就中国来说,国道主干线同江至三亚就有5个跨海工程、杭州湾跨海工程、珠江口伶仃洋跨海工程,以及琼州海峡工程。

其中难度最大的有渤海湾跨海工程,海峡宽57公里,建成后将成为世界上最长的桥梁;琼州海峡跨海工程,海峡宽20公里,水深40米,海床以下130米深未见基岩,常年受到台风、海浪频繁袭击。

此外,还有舟山大陆连岛工程、青岛至黄岛、以及长江、珠江、黄河等众多的桥梁工程。

在世界上,正在建设的著名大桥有土耳其伊兹米特海湾大桥(悬索桥,主跨1668米)、希腊里海安蒂雷翁桥(多跨斜拉桥,主跨286+3×560+286米);已获批准修建的意大利与西西里岛之间墨西拿海峡大桥,主跨3300米悬索桥,其使用寿命均按200年标准设计,主塔高376米,桥面宽60米,主缆直径米,估计造价45亿美元。

在西班牙与摩洛哥之间,跨直布罗陀海峡也提出了一个修建大跨度悬索桥的方案,其中包含2个5000米的连续中跨及2个2000米的边跨,基础深度约300米。

另一个方案是修建三跨3100米+8400米+4700米的巨型斜拉桥,其基础深度约300米,较高的一个塔高达1250米,较低的一个塔高达850米。

这个方案需要高级复合材料才能修建,而不是当今桥梁用的钢和混凝土。

大跨度桥梁向更长、更大、更柔的方向发展:研究大跨度桥梁在气动、地震和行车动力作用下其结构的安全和稳定性,拟将截面做成适应气动要求的各种流线型加劲梁,以增大特大跨度桥梁的刚度;采用以斜缆为主的空间网状承重体系;采用悬索加斜拉的混合体系;采用轻型而刚度大的复合材料做加劲梁,采用自重轻、强度高的碳纤维材料做主缆。

新材料的开发和应用:新材料应具有高强、高弹模、轻质的特点,研究超高强硅粉和聚合物混凝土、高强双相钢丝纤维增强混凝土、纤维塑料等一系列材料取代目前桥梁用的钢和混凝土。

在设计阶段采用高度发展的计算机:计算机作为辅助手段,进行有效的快速优化和仿真分析,运用智能化制造系统在工厂生产部件,利用GPS和遥控技术控制桥梁施工。

桥梁建造技术:现浇与预制的结合

桥梁建造技术:现浇与预制的结合

桥梁建造技术:现浇与预制的结合桥梁建造技术是桥梁工程中的关键环节,直接影响到桥梁的施工质量、施工周期和施工成本。

随着桥梁工程的发展,现浇与预制技术的结合成为一种重要的建造方式,既能发挥现浇技术的灵活性和适应性,又能利用预制技术的高效性和质量稳定性。

现浇施工是指在施工现场直接浇筑混凝土,构建桥梁结构。

这种方法适用于各种复杂的桥梁结构,特别是那些形状复杂、尺寸较大的构件。

现浇施工的优点是可以根据现场情况进行灵活调整,确保施工质量,但施工周期较长,受天气和环境影响较大。

预制施工是指在工厂预制桥梁构件,然后在施工现场进行拼装。

这种方法可以提高施工效率,减少现场施工时间,保证构件质量的均匀性和稳定性。

预制施工的优点是施工速度快,质量控制好,但需要精确的预制和拼装技术。

在现代桥梁建造中,现浇与预制技术的结合越来越普遍。

通过在工厂预制部分构件,然后在现场进行拼装和现浇,既可以提高施工效率,又可以确保施工质量。

例如,在大跨度桥梁的建设中,工程师常常采用预制桥梁板和梁,然后在现场进行拼装和现浇连接。

这种方法不仅提高了施工速度,还减少了对交通和环境的影响,确保了施工质量和安全。

现浇与预制技术的结合不仅在大跨度桥梁中得到应用,在城市桥梁和高架桥的建设中也非常常见。

城市桥梁和高架桥的建设通常需要在有限的空间内进行,且施工期间需要尽量减少对交通的影响。

通过现浇与预制技术的结合,可以在工厂中预制主要的桥梁构件,如桥面板、梁、墩等,然后在现场进行快速拼装和连接,减少现场浇筑的工作量,缩短施工周期,降低对交通的干扰。

例如,在某城市高架桥的建设过程中,工程师采用了预制桥面板和预制梁的施工方法。

在工厂中,预制好了桥面板和梁,并进行了质量检测和养护。

然后,将这些预制构件运送到施工现场,通过起重设备进行拼装和连接。

桥墩部分采用了现浇施工,以确保结构的稳定性和抗震性能。

通过这种现浇与预制相结合的施工方法,不仅提高了施工效率,还保证了桥梁的质量和安全。

城镇桥梁抗震设计规范讲座

城镇桥梁抗震设计规范讲座
内 计城
容 规镇
讨 范桥 论梁 稿抗 主震 要设
1
桥梁是生命线系统工程中的重要组成部分,在抗震救灾中,公路交通运输网更是 抢救人民生命财产和尽快恢复生产、重建家园、减轻次生灾害的重要环节。
1998年3月1日《中华人民共和国防震减灾法》颁布实施,对我国的防震减灾工作 提出了更为明确的要求和相应的具体规定。
表 3.3.3 桥梁抗震设计方法选用
地震烈度



6度
B
C
C
7 度、8 度和 9 度地区
A
A
B
8
3.4 桥梁抗震体系 3.4.1 桥梁结构抗震体系应满足以下要求:
1 有可靠和稳定传递地震作用到地基的途径; 2 有效的位移约束,能可靠地控制结构地震位移, 避免发生落梁破坏; 3 有明确、可靠的地震能量耗散部位; 4 应避免因部分结构构件的破坏而导致整个结构 丧失抗震能力或对重力荷载的承载能力。 3.4.2 采用 A 类抗震设计方法的桥梁,可采用的抗震体 系有以下二种类型: 1 类型Ⅰ:地震作用下,桥梁的弹塑性变形、耗能部位 位于桥墩,如图 3.4.2 所示;上部结构、上下部结构连接 构件(支座)以及桥梁基础,不受损伤,在弹性范围。 2 类型Ⅱ:地震作用下,桥梁的耗能部位位于桥梁上、 下部连接构件(支座、耗能装置);上部结构、桥墩和 基础不受损伤、在弹性范围。
3
城市桥梁抗震设计规范(讨论稿)
3.1.2 本规范采用两级抗震设防,在E1和E2地震作用下,根据本规范第 3.1.1条的重要性分类,各类桥梁抗震设防目标见表3.1.2。
桥梁 类别 甲

丙 丁
表3.1.2 城市桥梁抗震设防目标
E1地震作用
E2地震作用
震后使用要求

大跨度钢筋混凝土拱桥施工工法

大跨度钢筋混凝土拱桥施工工法

大跨度钢筋混凝土拱桥施工工法简介在现代城市化进程中,高速公路、城市快速路等道路建设的不断发展,对于桥梁建设提出了更高的要求。

大跨度钢筋混凝土拱桥是目前最常见的桥梁类型之一,具有结构简单、受力合理、施工方便、使用寿命长等特点。

本文将介绍大跨度钢筋混凝土拱桥施工工法。

施工前准备在施工之前,必须进行严格的前期准备工作。

材料准备大跨度钢筋混凝土拱桥的建造需要准备大量的材料,如预应力钢束、混凝土、钢筋等。

为保证施工材料的质量,需要对材料进行质量检验,确保合格后再进行存放,以防止出现材料质量问题导致施工问题。

土建准备土建准备包括桥基的基础平整、模板拆除、模板平衡、拱坑标志、基坑支撑等,这些工作都需要严格按照施工图进行操作,并在施工过程中保持工程监理对施工质量的监督和检查。

施工人员准备施工人员的准备可以说是工程顺利进行的核心,应该按照岗位分工和作业内容,制定专业的施工人员操作流程,并对施工人员进行培训,确保人员能熟练掌握所需的技术操作。

工法介绍大跨度钢筋混凝土拱桥施工工法的主要流程包括拱顶结构施工、拱腿施工、拱角钢筋施工、拱坑喷涂、支承结构加固等。

拱顶结构施工拱顶结构施工是大跨度钢筋混凝土拱桥施工的第一步,也是施工的最关键环节之一。

在施工时,首先需要在拱型临时支撑范围内设置合理的支承和反力设施,并根据拱的轴线方向将预制钢筋网或预制钢筋骨架配置好,拱顶下部基础施工时,应根据拱体轴线标高要求,将钢筋、垫层及预制钢筋网嵌入砼块中以保证其固定,接着再进行现浇砼浇筑、振捣、平整等操作,直至拱顶上部完整、合格。

拱腿施工拱腿施工是大跨度钢筋混凝土拱桥施工的第二步。

在拱腿施工中,需要先进行拱腿临时支撑架的设置,并根据图纸要求,进行拱腿的钢筋加工、焊接、成型及定位,再按照工程设计要求进行砼的浇筑,浇筑后,用振动棒对砼进行振整、养护,待砼强度达到要求后,拆除临时拱腿支撑架。

拱角钢筋施工拱角钢筋施工是大跨度钢筋混凝土拱桥施工的第三步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢塔柱的施工是一节段一节段地施工的,在工地连接,这种连接 要求轴线要准确,上、下段连接方向一致,没有错开。
早期美国悬索桥是采用上下接触面通过刨光顶紧,然后用铆钉拼 接。焊接技术发展后,一般是在工地用高强螺栓或高强螺杆来连接。
下图所示的博斯普鲁斯二桥的接缝示意是一种最新颖的连接方法。 这种接缝的构思是,对轴向压力来说,要求外板和纵(竖)助的端部接 触面经过加工刨平来达到100%的紧贴而能直接传递;对弯矩来说, 用φ60mm的高强螺杆作为拉杆来抵抗挠曲拉应力,用M24mm高强螺 栓来抵抗剪切。这种接缝的全部连接均布置在塔柱内部,因而外表光 洁美观,并可简化外部脚手架。
2014年版
西南交通大学土木学院 沈锐利
随着栓接及焊接技术的发展,钢塔柱均采用带加劲肋条的大钢板 来组成大格室的截面,它们总体是十字形或T形断面,每个塔柱的格 室较大且数量少,围成格室的四周钢板上均带有加劲肋条。
4月25日桥南侧主塔 4月25日桥塔柱截面
2014年版
塞文桥的塔柱截面
西南交通大学土木学院 沈锐利
护人员检查维修用的必要通道(电梯或升降机)、楼梯、栏杆、照 明等设施的设置。 四、 其他功能
桥塔设计时应考虑避雷设施以及航空限高标志灯的设置,桥 下有通航要求的桥梁还应设置桥塔轮廓(边界)警示灯。
2014年版
西南交通大学土木学院 沈锐利
3.4.2 主要类型与选择
从顺桥向看,主要有单柱形、A形和倒Y形,多数斜拉桥索塔的轴 线垂直于地面,少数设计为桥塔轴线是倾斜的。
横梁一般采用箱式预应力结构,两侧腹板与塔柱壁对应,以便 于预应力钢束布置在腹板内和底板两侧,并锚固在塔柱外侧。横梁 与塔柱结合处壁厚需适当加厚,以满足刚度变化的需要。下横梁在 对应支座位置处设置横隔板或加劲肋。
2014年版
西南交通大学土木学院 沈锐利
某桥的塔柱横梁及预应力配筋
塔柱与塔墩的连接 混凝土塔柱与塔墩、承台混凝土作固接。为了加强塔柱底部,
门形桥塔根据受力及景观要求设置两至三道横梁。 混合式桥塔一般为桥面以上设置成门形,在桥面以下设置成桁 架式。该类型桥塔施工速度快、精度高,可回收性好,但运营期间 养护工作量大,造价较高。
2014年版
西南交通大学土木学院 沈锐利
早期钢桥塔采用铆接结构,将钢板与角钢连接成多格室的塔柱, 每个基本格室的尺寸较小,施工时很不方便且不安全。
第7讲 西南交大土木工程学院桥梁系 沈锐利
3.4 桥塔
3.4.1 桥塔功能
桥塔是缆索桥的主要承重结构,同时又是体现景观的标志性构件。 一、 桥塔的结构受力功能
桥塔应具有足够的抗压、抗弯、抗扭能力,应满足压屈稳定性、 结构刚度等要求,还应具有足够的延性,能承受恒载、风载、温度、 船撞、地震、施工荷载及其他荷载组成的不同荷载组合的作用。 二、 桥塔的景观功能
悬索桥在众多桥型结构中,其三条线,即竖直的塔、曲线的缆索、 水平的加劲梁及桥面系,空间透视感好,突出了悬索桥轻盈、高耸、 简洁的完美形象。从美学角度讲,桥塔不宜太纤细而显得柔弱,结构 要简洁而有一定的力度感。
2014年版
西南交通大学土木学院 沈锐利
三、 检查维修功能 为使桥塔能承担正常的运营和景观功能,桥塔应具备可供养
型钢骨架设计 型钢骨架设计
2014年版
型钢骨 架制作 现场
西南交通大学土木学院 沈锐利
3.4.4 钢桥塔 截面组成
钢桥塔的形式一般有桁架式、门形以及混合式(桁架和门形的 组合),塔柱有竖直形、倾斜形和折线形。
桁架式桥塔在两根塔柱之间用斜向杆件连接,也可同时设置水 平向的横梁,斜向杆件和横梁可由型钢组合成组合断面,也可采用 箱形断面,箱形断面一般由钢板及其加劲以及横隔板等焊接或栓接 而成。
塔柱与墩的连接
塔柱与塔墩之间一般通过塔底的一块厚钢板将来自塔柱的内力 分布传递到塔墩的混凝土顶面。通过伸入混凝土的锚柱将底节塔与 墩连接起来。一般锚杆是用高强螺杆,在基顶节还专门设有锚固构 架。也有直接将底节塔埋入混凝土中的,在埋入段的外板上焊有剪 切板,外板和剪切板上均焊有带头锚杆。剪切板和带头锚杆承受由 塔柱传下的垂直力,对弯矩和剪力则在Φ50mm 的锚固螺杆中施加 预应力后与混凝土构成的整体来承受。
2014年版
西南交通大学土木学院 沈锐利
塔柱截面和水平接缝构造的示意
日本的做法是在钢结构工厂内用焊接方法制造各小节段,然后在 工厂内将若干个小节段焊接成大节段。施工时将大节段运到桥塔现场, 利用大型浮吊将各个大节段作整体吊装架设。各个大节段之间用高强 螺栓进行拼装。
2014年版
西南交通大学土木学院 沈锐利
常将塔柱底部做成有一定高度的实体截面。
2014年版
西南交通大学土木学院 沈锐利
桥塔配筋 为满足桥塔强度、
刚度的要求,在塔柱 中要配置普通钢筋, 包括纵筋和箍筋,在 横梁中要配置预应力 钢筋。
2014年版
西南交通大学土木学院 沈锐利
空间索面缆
仿生贝壳曲面 的双肢独塔
2014年版
西南交通大学土木学院 沈锐利
从横桥向看,桥面以上的部分主要有单柱形、双柱形、门形、H形、 梯形﹑A形、倒V形与倒Y形等各种形式。桥面以下部分的变化也很多, 桥面上下两部分结合看,则有更多的形式,如钻石形、花瓶形等。
2014年版
西南交通大学土木学院 沈锐利
3.4.3 混凝土桥塔 塔柱截面
混凝土桥塔价格低,刚度大,连续浇筑施工方便,易养护,不 需要大型吊装设备。混凝土桥塔一般采用门形框架形式,塔柱有以 一个斜率向外形成梯形,也有在桥面以上塔柱为梯形,桥面以下采 用竖直设置,也可以采用向内倾斜形成钻石形桥塔。横梁外观有直 线形、圆弧形、折线形等,也有将横梁延伸至塔柱外侧作为装饰。 该类型的桥塔目前在国内外应用最为广泛,但其可回收性较差。
2014年版
西南交通大学土木学院 沈锐利
混凝土桥塔的塔柱一般做成单室或双室空心截面,截面形式常 从矩形出发,四边加以变化,四角加以修饰。
2014年版
Байду номын сангаас
西南交通大学土木学院 沈锐利
横梁、柱墩连接、配筋
横梁 通常在塔顶和加劲梁底分别设置横梁,其间是否设置横梁及设
置的位置应根据塔柱受力及景观要求确定,一般采用黄金分割原理 确定。加劲梁梁底至承台间一般不增设横梁。
相关文档
最新文档