苏科版七年级数学平行线相交线综合练习
七年级下册数学相交线与平行线单元测试卷
《相交线与平行线》单元测试卷一.选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
答案选项填涂在答题卡上)1.在同一平面内,如果两条直线不重合,则它们( ).(A)平行 (B)相交 (C)相交、垂直 (D)平行或相交2.如图,AB∥CD,若∠2是∠1的4倍,则∠2的度数是( ).(A)144°(B)135°(C)126°(D)108°3.在下列四个图中,∠1与∠2是同位角的图是( ).图① 图② 图③ 图④(A)①、② (B)①、③ (C)②、③ (D)③、④4.如果两条平行线被第三条直线所截,则其中一组同位角的角平分线( ).(A)垂直(B)相交(C)平行(D)不能确定5.如图,已知∠1=∠2=∠3=55°,则∠4的度数是( ).(A)110°(B)115°(C)120°(D)125°6.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是( ).(A)1 (B)2 (C)3 (D)47.下列说法中,正确的是( ).(A)不相交的两条直线是平行线.(B)过一点有且只有一条直线与已知直线平行.(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.8.∠1和∠2是两条直线l1,l2被第三条直线l3所截的同旁内角,如果l1∥l2,则必有( ).(A)∠1=∠2(B)∠1+∠2=90°(C)o90221121=∠+∠(D)∠1是钝角,∠2是锐角9.如下图,AB∥DE,则∠BCD=( ).(A)∠2-∠1(B)∠1+∠2(C)180°+∠1-∠2(D)180°+∠2-2∠110.如图,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有( ).(A)3个 (B)2个 (C)1个 (D)0个二、填空题(本大题共5小题,每小题3分,共15分,把答案填在答题卡中)11.如图,AB与CD相交于O点,若∠AOC=47°,则∠BOD的余角=______.(第11题) (第12题) 12.如图,已知直线AB、CD相交于O,OE⊥AB,∠1=25°,则∠2=______°,∠3=______°,∠4=______°.13.如图直线l1∥l2,AB⊥CD,∠1=34°,则∠2的度数是______.(第13题) (第15题)14.王强从A处沿北偏东60°的方向到达B处,又从B处沿南偏西25°的方向到达C处,则王强两次行进路线的夹角为______度.15.如图,AB∥CD,BC∥ED,则∠B+∠D=______.三、解答题(在答题卡上作答,写出必要的步骤。
平行线与相交线综合练习二.
平行线与相交线综合练习专题一平行线中基本图形的应用1.(2014•北仑区模拟)如图,已知两条线段AB∥CD,点E不在AB、CD所在的直线上.∠ABE=α,∠CDE=β,∠BED=γ.当E点在不同位置时,α、β、γ之间的数量关系也会有所不同.请你再画出两种不同的情况,并写出α、β、γ之间的数量关系.2.如图所示,已知CD∥EF,∠1+∠2=∠ABC,试判断AB与GF的位置关系,并说明理由.3.如图,已知平面内有两条直线AB、CD,且AB∥CD,P为一动点.(1)当点P移动到AB、CD之间时,如图(1),这时∠P与∠A、∠C有怎样的关系?证明你的结论;(2)当点P移动到AB的外侧时,如图(2),是否仍有(1)的结论?如果不是,请写出你的猜想(不要求证明);(3)当点P移动到如图(3)的位置时,∠P与∠A、∠C又有怎样的关系?证明你的结论;(4)若已知中的“AB∥CD”改为“AB、CD相交于O”,如图(4),则∠BAP、∠PCD、∠P、∠O之间有什么关系?证明你的结论.4..(2005春•武昌区期末)如图1,已知AB∥CD,(1)请说明∠B+∠G+∠D=∠E+∠F;(2)若将图1变形成图2,上面的关系式是否仍成立,写出你的结论并说明理由.5.如图(1),已知AB∥CD.(1)请说明∠B+∠G+∠D=∠E+∠F;(2)若将图(1)变形成图(2),上面的关系式是否仍成立.写出你的结论并说明理由.6.(2013春•武昌区期末)已知直线AB∥CD,E为直线AB,CD外的一点,连接AE,EC.(1)E在直线AB的上方(如图1),求证:∠AEC+∠EAB=∠ECD;(2)∠EAB和∠ECD的角平分线交于点F(如图2),求证:∠AEC=2∠AFC;(3)若E在直线AB,CD之间,在(2)条件下,且∠AFC比∠AEC的倍多20°,则∠AEC 的度数为.(不用写出解答过程)7.(2013秋•道外区期末)如图(1),直线AB、CD被直线EF所截,EG平分∠AEF,FG 平分∠CFE,且∠GEF+∠GFE=90°(1)求证:AB∥CD;(2)过点G作直线m∥AB(如图(2)).点P为直线m上一点,当∠EPF=80°时,求∠AEP+∠CFP 的度数.8.21.(2013春•城东区校级月考)已知,如图,AB∥CD,∠ABE=3∠ABF,∠CDE=3∠CDF,试求∠E与∠F的比.9.(2009春•盐城校级期中)已知AB∥CD如图,∠A=40°,∠C=78°,BP是∠ABG的平分线,DP是∠CDG的平分线,求∠P的度数;(2)如果∠A=α,∠P=β,其它条件不变,求∠C的度数。
初中数学专项练习《相交线与平行线》100道计算题包含答案(专项练习)(综合题)
初中数学专项练习《相交线与平行线》100道计算题包含答案(专项练习)一、解答题(共100题)1、如图,在▱ABCD中,E,F分别为边AD,BC的中点,对角线AC分别交BE,DF于点G,H.求证:AG=CH.2、完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,求证:∠EGF=90°.3、如图,已知直线AB、CD被直线EF所截,如果∠BMN=∠DNF,∠1=∠2,判断MQ与NP关系,并说明理由.4、已知,AC⊥AB,EF⊥BC,AD⊥BC,∠1=∠2,请问AC⊥DG吗?请写出推理过程.5、如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,说明AB∥CD6、将一副直角三角尺如图放置,已知AE∥BC,求∠AFD的度数.7、如图,已知,点在的右侧,的平分线相交于点.探索与之间的等量关系,并说明理由。
8、已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.9、如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.请说明理由10、某校要在一块三角形空地上种植花草,如图所示,AC=13米、AB=14米、BC=15米,若线段CD是一条引水渠,且点D在边AB上.已知水渠的造价每米150元.问:点D与点C距离多远时,水渠的造价最低?最低造价是多少元?11、如图,点E,C,F,B在同一条直线上,EC=BF,AC∥DF,∠A=∠D.求证:AB=DE.12、如图,∠C=∠1,∠2与∠D互余,BE⊥DF,垂足为G.求证:AB∥CD.13、如图,已知∠1=∠2,DE⊥BC,AB⊥BC,求证:∠A=∠3.证明:∵DE⊥BC,AB⊥BC(已知)∴∠DEC=∠ABC=90°________∴DE∥AB________∴∠2=________,________∠1=________,________又∵∠1=∠2________∴∠A=∠3________14、如图,在△ABC中,AC⊥BC,CD⊥AB于点D,试说明:∠ACD=∠B.(提示:三角形内角和为180 )15、如图,在△ABC中,∠ABC=36°,∠C=64°,AD平分∠BAC,交BC于D,BE⊥AC,交AD、AC于H、E,且DF∥BE.求∠FDC和∠AHB的度数.16、如图,AB∥CD,直线EF分别交AB,CD于点E,F,∠BEF的平分线与∠DFE 的平分线相交于点P,试说明△EPF为直角三角形.17、小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.(1)如图①,M为边AC上一点,则BD、MF的位置关系是;如图②,M为边AC反向延长线上一点,则BD、MF的位置关系是;如图③,M为边AC延长线上一点,则BD、MF的位置关系是;(2)请就图①、图②、或图③中的一种情况,给出证明.我选图来证明.18、如图,直线AD与AE相交于点A,直线BC分别交AD、AE于点B、C,直线DE分别交AD、AE于点D、E,分别写出图中的两对同位角、两对内错角、两对同旁内角.19、已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:ABC≌CDE.20、如图,已知∠1=∠2,∠5=140°,求∠3的度数。
苏科版七年级数学相交线与平行线培优提高专题(含答案)
求∠ 3 的度数。
解:∵ a∥ b, ∴ ∠3=∠ 4(两直线平行,内错角相等)
l
3
a
∵ ∠1+∠ 3=∠ 2+∠ 4= 180° ( 平角的定义 ) ∴ ∠1=∠ 2 (等式性质 )
4
2
b
则 3x+70 = 5x+22 解得 x=24
即∠ 1= 142°
1
∴ ∠3= 180°- ∠ 1= 38° 评注:建立角度之间的关系,即建立方程(组)
图(1) ,是几何计算常用的方法。
例 2.已知:如图 (2) , AB ∥EF∥CD ,EG 平分∠ BEF ,∠ B+∠ BED+ ∠ D =192 °, ∠ B- ∠ D=24 °,求∠ GEF 的度数。 A
解:∵ AB ∥EF ∥ CD
∴∠ B=∠ BEF ,∠ DEF= ∠ D (两直线平行,内错角相等)
过 A 作两直线 m1 与 n1。在 n1 上取两点 B, C,在 m1 上取两点 D ,G。过 B 作 m2∥ m1,过 C 作 m3 ∥m 1,过 D 作 n2∥ n1,过 G 作 n3∥ n1,这时 m2、 m3、n2、n3 交得 E、 F、
A
D
G m1
H、 I 四点,如图所示。由于彼此平行的直线不相交,所以, 图中每条直线都恰与另 3 条直线相交。
求证 EF 与 GH 必相交。
分析:欲证 EF 与 GH 相交,直接证很困难,可考虑用反证 法。 证明:假设 EF 与 GH 不相交。
∵ EF、 GH 是两条不同的直线
EG A
F
O C
2
D H
B
∴ EF∥ GH
∵ EF AB
∴ GH AB
初中数学相交线与平行线专题训练50题含答案
初中数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,如果104AOD ∠=︒,那么MOC ∠等于( )A .38°B .37°C .36°D .52° 2.如图,在直线l 外一点P 与直线上各点的连线中,P A =5,PO =4,PB =4.3,OC =3,则点P 到直线l 的距离为( )A .3B .4C .4.3D .5 3.如图网格中,每个小方格都是边长为1的小正方形,点A 、B 是方格纸中的两个格点(网格线的交点称格点),在这个7×7的方格纸中,找出格点C ,使△ABC 的面积为3,则满足条件的格点C 的个数是( )A .2 个B .4个C .5个D .6个 4.如图,直线a ,b 穿过正五边形ABCDE ,且//a b ,则αβ∠-∠=( )A .95°B .84°C .72°D .60° 5.如图,某沿湖公路有三次拐弯,如果第一次的拐角120A ∠=︒,第二次的拐角155B ∠=︒,第三次的拐角为C ∠,这时的道路恰好和第一次拐弯之前的道路平行,则C ∠的度数是( )A .130︒B .140︒C .145︒D .150︒ 6.如图,下列条件:①①C =①CAF ,①①C =①EDB ,①①BAC +①C =180°,①①GDE +①B =180°,①①CDG =①B .其中能判断AB //CD 的是( )A .①①①①B .①①①C .①①①D .①①① 7.如图,与①α构成同旁内角的角有( )A .1个B .2个C .5个D .4个 8.如图,下列说法中错误的是( )A .①1与①A 是同旁内角B .①3与①A 是同位角C .①2与①3是同位角D .①3与①B 是内错角9.如图,为判断一段纸带的两边a ,b 是否平行,小明在纸带两边a ,b 上分别取点A ,B ,并连接AB .下列条件中,能得到a b ∥的是( )A .12∠=∠B .13∠=∠C .14180∠+∠=︒D .13180∠+∠=︒ 10.如图,//DE BC BE ,平分ABC ∠,若170=︒∠,则AEB ∠的度数为( )A .20︒B .35︒C .55︒D .70︒ 11.用“垂线段最短”来解释的现象是( )A .B .C .D .12.如图,直线AB ,CD 相交于点O ,OE 平分①AOC ,若①BOD =70°,则①DOE 的度数是( )A .70°B .35°C .120°D .145° 13.下列说法错误的是( )A .同旁内角相等,两直线平行B .旋转不改变图形的形状和大小C .对角线相等的平行四边形是矩形D .菱形的对角线互相垂直14.(1)如果直线a b ,b c ,那么a c ;(2)相等的角是对顶角;(3)两条直线被第三条直线所截,同位角相等;(4)在同一平面内如果直线a b ⊥,c b ,那么a c ; (5)两条直线平行,同旁内角相等;(6)两条直线相交,所成的四个角中,一定有一个是锐角.其中真命题有( )A .1个B .2个C .3个D .4个 15.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;①若a>b ,则-2a>-2b ;①如果三条直线a 、b 、c 满足:a①b ,b①c ,那么直线a 与直线c 必定平行;①对顶角相等,其中真命题有( )个.A .1B .2C .3D .416.在统一平面内有三条直线a 、b 、c ,下列说法:①若//a b ,//b c ,则//a c ;①若a b ⊥,b c ⊥,则a c ⊥,其中正确的是( )A .只有①B .只有①C .①①都正确D .①①都不正确 17.如图,在Rt ABC ∆中,90C ∠=︒,3AC =,6BC =,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于两点,过这两点作直线与AB 相交于点D ,则AD 的长是( )A .3B .1.5CD .18.如图,直线AB 与直线CD 相交于点O.若①AOD =50°,则①BOC 的度数是( )A .40°B .50°C .90°D .130° 19.将一块直角三角板ABC 按如图方式放置,其中①ABC =30°,A 、B 两点分别落在直线m 、n 上,①1=20°,添加下列哪一个条件可使直线m①n( )A .①2=20°B .①2=30°C .①2=45°D .①2=50° 20.如图,在正方形ABCD 中,BPC △是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连结BD ,DP ,BD 与CF 相交于点H .给出下列结论:①~BDE DPE ,①35FP PH =,①2DP PH PB =⋅,①tan 2DBE ∠=序号是( )A .①①B .①①①C .①①①D .①①二、填空题21.如图,直线AB 、CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=︒,则AOC ∠的度数为______.22.如图,直线,则的度数为=______.23.如图所示,A ,B 之间有一座山,一条笔直的铁路要通过A ,B 两地,在A 地测得铁路的走向是北偏东68°20',如果A ,B 两地同时开工,那么在B 地按____方向施工才能使铁路在山中准确接通.24.如图,直线AB ,CD 相交于点O ,若①AOC =20°,则①BOD 的大小为___________(度).25.下列三个日常现象:其中,可以用“两点之间线段最短”来解释的是 _____ (填序号).26.如图,直线AB 与直线CD 交于点O ,OE 平分AOC ∠,已知①100AOD =︒,那么EOB ∠=__度.27.如图,直线AB 与CD 相交于点O ,OE AB ⊥于O ,140∠=︒,则2∠=______.28.如图,已知平行线AB ,CD 被直线AE 所截,AE 交CD 于点F ,连接CE ,若20E ∠=︒,CF EF =,则A ∠的度数为______.29.如图,直线a①直线b ,且被直线c 所截,若①1=(3x+70)度,①2=(2x+10)度,则x 的值为________.30.如图,六边形ABCDEF 是正六边形,若l 1①l 2,则①1﹣①2=_____.31.如图,直线a ①b ,在Rt①ABC 中,点C 在直线a 上,若①1=56°,①2=29°,则①A 的度数为______度.32.如图,梯形ABCD 中,AB CD ∥,对角线AC 、BD 相交于点O ,如果ABD △的面积是BCD △面积的2倍,那么DOC △与BOC 的面积之比是______.33.如图,在Rt①ABC 中,AC =6,BC =8,点P 是AC 边的中点,点D 和E 分别是边BC 和AB 上的任意一点,则PD+DE 的最小值为_____.34.如图,AC BC ⊥,90CDA ∠=︒,4,3,5AC BC AB ===,点C 到AB 的距离是______.与ACD ∠相等的角是_________.35.如图,直线a ,b ,c 两两相交于A ,B ,C 三点,则图中有________对对顶角;有________对同位角;有________对内错角;有________对同旁内角.36.如图,在长方形ABCD 中,点E 、F 分别在AD 、BC 边上,沿直线EF 折叠后,C 、D 两点分别落在平面内的C '和D 处,若①1=70°,则①2=______.37.如图,将一张长方形纸片ABCD 沿EF 折叠后,点A ,B 分别落在点A ',B '的位置.若155∠=︒,则2∠的度数是__________.38.如图,在①ABC 中,①ABC 与①ACB 的平分线交于点D ,EF 经过点D ,分别交AB ,AC 于点E ,F ,BE =DE ,DF =5,点D 到BC 的距离为4,则①DFC 的面积为_____39.如图,已知AB①CD ,垂足为点O ,直线EF 经过O 点,若①1=55°,则①COE 的度数为______度.40.如图,在ABCD 中,105ABC ∠=︒,对角线,AC BD 交于点,30,4O DAC AC ∠=︒=,点P 从点B 出发,沿着边BC CD 、运动到点D 停止,在点P运动过程中,若OPC 是直角三角形,则CP 的长是___________.三、解答题41.如图,点B ,F ,C ,E 在同一条直线上,BF EC =,AB DE =,DE AB ∥.求证:A D ∠=∠.42.如图,已知AM ①CN ,且①1=①2,那么AB ①CD 吗?为什么? 解:因为AM ①CN ( 已知 )所以①EAM =①ECN又因为①1=①2所以①EAM +①1=①ECN +①2即① =①所以 .43.如图,在ABC 中,ABC ∠的平分线交AC 于点D ,过点D 作DE BC ∥交AB 于点E ,若80A ∠=︒,40C ∠=︒,求BDE ∠的度数.44.按要求画图:已知点P 、Q 分别在AOB ∠的边OA ,OB 上(如图所示):(1)①画线段PQ ;①过点P 作OB 的垂线PE ,垂足为E ;①过点Q 作OA 的平行线MN (M 在上,N 在下).(2)在(1)的情况下,若40MQB ∠=︒,求OPE ∠.(不使用三角形的内角和为180°) 45.如图,在ΔABC 中,CD 是高,点E 、F 、G 分别在BC 、AB 、AC 上且EF①AB ,DG①BC ,试判断①1与①2的大小关系,并说明理由.46.(1)如图1,在①ABC 中,BD 是①ABC 的角平分线,点D 在AC 上,DE①BC ,交AB 于点E ,①A =50°,①ADB =110°,求①BDE 各内角的度数;(2)完成下列推理过程.已知:如图2,AD ①BC ,EF ①BC ,①1=①2,求证:DG ①AB .推理过程:因为AD ①BC ,EF ①BC (已知),所以①EFB =①ADB =90°(________).所以EF①AD (同位角相等,两直线平行).所以①1=①BAD (________).因为①1=①2(已知),所以________=________(等量代换).所以DG①AB (内错角相等,两直线平行).47.如图,点A 为直线外一点,点B 是直线l 上一定点,点P 是直线l 上一动点,连接AB ,AP ,若要使2PA PB 1+的值最小,确定点P 的位置,并说明理由.48.如图,在三角形ABC 中,点D ,F 在边BC 上,点E 在边AB 上,点G 在边AC 上,EF 与GD 的延长线交于点H ,1B ∠=∠,23180∠+∠=︒.(1)判断EH 与AD 的位置关系,并说明理由(2)若58DGC ∠=°,且410H ∠=∠+︒,求H ∠的度数.49.已知:直线AB 与直线PQ 交于点E ,直线CD 与直线PQ 交于点F ,∠PEB +∠QFD =180°.(1)如图1,求证:AB ∥CD ;(2)如图2,点G 为直线PQ 上一点,过点G 作射线GH ∥AB ,在∠EFD 内过点F 作射线FM,∠FGH内过点G作射线GN,∠MFD=∠NGH,求证:FM∥GN;(3)如图3,在(2)的条件下,点R为射线FM上一点,点S为射线GN上一点,分别连接RG、RS、RE,射线RT平分∠ERS,∠SGR=∠SRG,TK∥RG,若∠KTR+∠ERF=108°,∠ERT=2∠TRF,∠BER=40°,求∠NGH的度数.50.如图,四边形ABCD与四边形CEFH均为正方形,点B、C、E在同一直线上,连接BD,DF,BF.(1)观察图形,直接写出与线段CH平行的线段.(2)图中与线段CH垂直的线段共有_______条.(3)点B到点F的最短距离为线段____的长,点B到线段EF的的最短距离为线段____的长.(4)若正方形ABCD的边长为a, 正方形CEFH的边长为2,则线段HD=___,线段BE=___,此时请你求出三角形DBF的面积,你有什么发现?参考答案:1.A【分析】先根据已知条件求出①AOC 的度数,再根据OM 平分①AOC ,即可得到①MOC 的值【详解】解:①104AOD ∠=︒①①AOC =180°−104°=76°①OM 平分①AOC ①①MOC=12AOC ∠ 1762=⨯︒ =38°故选:A【点睛】本题主要考查了领补角及角平分线的定义,熟练掌握定义是解题的关键 2.B【分析】点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.【详解】解:由于OP ①直线l ,根据题意知:点P 到直线l 的距离等于PO 的长,即点P 到直线l 的距离PO =4,故选:B .【点睛】本题考查了对点到直线的距离的应用,注意:点到直线的距离是指该点到直线的垂线段的长.3.D【分析】利用格点的性质和三角形的面积公式即可得.【详解】由格点的性质和三角形的面积公式得,总共有6个满足条件的格点C ,如图所示:(格点C 均在平行于AB 的直线上)其中,由点12345,,,,C C C C C 与点,A B 分别构成的5个三角形的面积显然是36ABC 的面积为3663AC C BDC ABDC S S S --直角梯形1114633(36)1222=⨯⨯-⨯⨯-⨯+⨯ 991222=--故选:D .【点睛】本题考查了平行线的实际应用,理解题意,结合格点的性质是解题关键. 4.C【分析】延长EA 与直线b 交于点F ,由平行线的性质得①AFG =∠β,再由多边形的内角和定理求出108EAB ∠=︒,进一步得出72GAF ∠=︒,最后由三角形的外角关系可得结论.【详解】解:延长EA 与直线b 交于点F ,如图,①//a b①AFG β∠=∠①五边形ABCDE 是正五边形, ①(52)1801085EAB -⨯︒∠==︒ ①180********GAF EAB ∠=︒-∠=︒-︒=︒又=72AFG GAF αβ∠∠+∠=∠+︒①72αβ∠-∠=︒故选:C【点睛】本题考查的是多边形内角与外角,正五边形的性质,三角形外角的性质,利用数形结合求解是解答此题的关键.【分析】过点B作BH①AM,则BH①CD,利用平行线的性质求解即可.【详解】解:如图,过点B作BH①AM,①AM①CD,①BH①CD,①①ABH=①A=120°,①HBC+①C=180°,①①HBC=①ABC-①ABH=35°,①①C=180°-①HBC=145°,故选:C.【点睛】本题考查平行线的判定与性质,添加平行线是解答的关键.6.A【分析】根据平行线的判定定理逐一排除得出即可.【详解】解:①①C=①CAF,①AB//CD;故①符合题意;∠=∠C EDB//∴AC BD故①不符合题意;①①BAC+①C=180°,①AB//CD;故①符合题意;①①GDE+①B=180°,①GDE+①EDB=180°,①①EDB=①B,①AB//CD;故①符合题意;①①CDG=①B,①AB//CD,故①符合题意;符合题意的有:①①①①故选:A .【点睛】本题考查了平行线的判定,掌握平行线的判定是解题的关键.7.C【详解】试题分析:根据题意可知与①α构成同旁内角的角有如图5个.考点:三线八角点评:本题难度较低,主要考查学生对三线八角的掌握.分析这类题型是,主要抓住已知角两边与第三边相交的构成三线基础,为解题关键.8.B【分析】根据同位角、内错角、同旁内角的定义,可得答案.【详解】A. ①1与①A 是同旁内角,故A 正确;B. ①3与①A 不是同位角,故B 错误;C. ①2与①3是同位角,故C 正确;D. ①3与①B 是内错角,故D 正确;故选B.【点睛】此题考查同位角、内错角、同旁内角,解题关键在于掌握其性质9.D【分析】根据平行线的判定定理进行判断即可.【详解】解:A 、12∠=∠,1∠和2∠邻补角,不能证明a b ∥;B 、13∠=∠,1∠和3∠是同旁内角,同旁内角相等不能证明a b ∥;C 、14180∠+∠=︒,1∠和4∠属于内错角,内错角互补不能证明a b ∥;D 、①13180∠+∠=︒,①a b ∥(同旁内角互补两直线平行);故选:D .【点睛】本题考查了平行线的判定定理,熟知:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;是解本题的关键.10.B【分析】先根据平行线的性质求得①ABC=70°,①CBE=①AEB,再运用角平分线即可求得①AEB的度数.【详解】解:①//DE BC,①170ABC∠=∠=︒,CBE AEB∠=∠,①BE平分①ABC,①1352CBE AEB ABC∠=∠=∠=︒.故选:B.【点睛】本题考查了平行线的性质和角平分线,灵活应用相关性质定理是解答本题的关键.11.A【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】解:A.体育课上,老师测量某个同学的跳远成绩,利用了垂线段最短,故A符合题意;B.木板上弹墨线,利用了两点确定一条直线,故B不符合题意;C.用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故C不符合题意;D.把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故D不符合题意.故选:A.【点睛】本题主要考查了线段的性质,熟记性质并能灵活过应用是解题关键.12.D【分析】根据对顶角相等求出①AOC,根据角平分线的定义计算,得到答案.【详解】解:①①BOD=70°,①①AOC=①BOD=70°,①OE平分①AOC,①①COE=12①AOC=12×70°=35°,①DOE=①COD-①COE=145°故选:D.【点睛】本题考查的是对顶角、角平分线的定义、平角定义,掌握对顶角相等、角平分线的定义是解题的关键.13.A【分析】依次分析各选项即可得出说法错误的选项.【详解】解:因为同旁内角互补,两直线平行,因此A选项错误;根据旋转的性质,旋转不改变图形的形状和大小,因此B选项内容正确;根据矩形的判定,C选项内容正确;根据菱形的性质,D选项内容正确.故选:A.【点睛】本题综合考查了平行线的判定、旋转的性质、矩形的判定、菱形的性质等内容,解决本题的关键是理解并能灵活运用相关概念,本题考查的是概念基础题,因此侧重考查学生对教材基础知识的理解与掌握等.14.A【分析】分别利用平行线的性质,以及对顶角的定义等分析得出答案.【详解】解:(1)如果直线a b,b c,那么a c,正确,是真命题,(2)相等的角是对顶角,错误,不是真命题;(3)两条直线被第三条直线所截,同位角不一定相等,错误,不是真命题;(4)在同一平面内如果直线a①b,c b,那么a c,错误,不是真命题;(5)两条直线平行,同旁内角互补,错误,不是真命题;(6)两条直线相交,所成的四个角中,一定有一个是锐角,错误,不是真命题;故选:A.【点睛】此题主要考查了命题与定理,正确把握平行线的性质是解题关键.15.C【详解】试题分析:根据基本的数学概念依次分析各小题即可作出判断.解:①在同一平面内,过一点有且只有一条直线与已知直线垂直,①如果三条直线a、b、c 满足:a①b,b①c,那么直线a与直线c必定平行,①对顶角相等,均正确;①若,则,错误;故选C.考点:真假命题点评:本题属于基础应用题,只需学生熟练掌握基本的数学概念,即可完成.16.A【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行可得①正确;根据应为同一平面内,垂直于同一条直线的两直线平行可得①错误.【详解】解:①若a①b,b①c,则a①c,说法正确;①若a①b,b①c,则a①c,说法错误,应为同一平面内,若a①b,b①c,则a①c;故选:A.【点睛】此题主要考查了平行公理和垂线,关键是注意同一平面内,垂直于同一条直线的两直线平行.17.C【分析】利用勾股定理求出AB,证明BD=AD即可解决问题.【详解】解:在Rt①ABC中,AC=3,BC=6,①AB=由作图可知,直线DE垂直平分线段BC,①①BED=①C=90°,①DE①AC,①BE=EC,DE①AC,①BD=AD,故选:C.【点睛】本题考查作图−基本作图,勾股定理,平行线等分线段定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.B【分析】根据对顶角相等,可得答案.【详解】解;①①BOC与①AOD是对顶角,①①BOC=①AOD=50°,故选B.【点睛】本题考查了对顶角与邻补角,对顶角相等是解题关键.19.D【分析】根据平行线的性质即可得到①2=①ABC+①1,即可得出结论.【详解】①直线EF①GH ,①①2=①ABC+①1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.20.C【分析】根据等边三角形的性质和正方形的性质,得到30PCD ∠=︒,于是得到75CPD CDP ∠=∠=︒,证得15EDP PBD ∠=∠=︒,于是得到BDE DPE ∆∆,故①正确;由于FDP PBD ∠=∠,60DFP BPC ∠=∠=︒,推出DFP BPH ∆∆,得到PF DF DF PH PB CD ===①错误;由于30PDH PCD ∠=∠=︒,DPH DPC ∠=∠,推出DPH CPD ∆∆,得到PD PH CD PD=,PB CD =,等量代换得到2PD PH PB =⋅,故①正确;过P 作PM CD ⊥,PN BC ⊥,求得30PCD ∠=︒,根据三角函数的定义得到CM PN ==2PM =,由平行线的性质得到EDP DPM ∠=∠,等量代换得到DBE DPM ∠=∠,于是求得tan 2DBE ∠=①正确.【详解】解:①BPC ∆是等边三角形,BP PC BC ∴==,60PBC PCB BPC ∠=∠=∠=︒,在正方形ABCD 中,①AB BC CD ==,A ADC BCD 90∠=∠=∠=︒30ABE DCF ∴∠=∠=︒,75CPD CDP ∴∠=∠=︒,15PDE ∴∠=︒,①604515PBD PBC HBC ∠=∠-∠=︒-=︒︒,EBD EDP ∴∠=∠,①DEP DEB ∠=∠,BDE DPE ∴∆∆;故①正确;①=PC CD ,=30PCD ∠︒=75PDC ∴∠︒15FDP ∴∠=︒①45DBA ∠=︒60PBD BPC ∴∠=∠=︒①DFP BPH ∆∆PF DF DF PH PB CD ∴===①错误; ①30PDH PCD ∠=∠=︒,DPH DPC ∠=∠,①DPHCPD ∆∆, ∴PD PH CD PD=, 2PD PH CD ∴=•,①PB CD =,2PD PH PB =∴⋅,故①正确;如图,过P 作PM CD ⊥,PN BC ⊥,设正方形ABCD 的边长是4,BPC △为正三角形,60PBC PCB ︒∴∠=∠=,4PB PC BC CD ====,30PCD ∴∠=︒sin 604CM PN PB ︒∴==⋅==,sin302PM PC =︒⋅=, ①//DE PM ,EDP DPM ∴∠=∠,DBE DPM ∴∠=∠,tan tan 2DM DBE DPM PM ∴∠=∠===①正确;故选:C.【点睛】本题考查的正方形的性质,相似三角形的判定和性质,平行线的性质,三角函数定义,等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PM及PN的长.21.40︒∠的度数,根据对顶角相等可得解.【分析】由余角的定义可得BOD⊥【详解】解:EO AB90∴∠=BOE︒∴∠=∠-∠=-=905040BOD BOE EOD︒︒︒∴∠=∠=AOC BOD︒40故答案为:40︒【点睛】本题考查了对顶角,熟练掌握对顶角的性质是解题的关键.22.120°.【详解】试题分析:①①①1=50°①①=70°+①1=120°.考点: 1.平等线的性质;2.对顶角.23.南偏西68°20'【分析】根据平行线的性质:两条直线平行,内错角相等进行解答.【详解】如图所示:由于是相向开工.故角度相等,方向相反.而①1与①2为内错角,所以对B来说是南偏西68°20′.故答案是:68°20′.【点睛】考查了平行线的性质和方向角,注意此类题的结论:角度不变,方向相反.24.20【分析】直接利用“对顶角相等”即可解答.【详解】解:①①AOC 和①BOD 是对顶角①①BOD=①AOC=20°.故答案为20.【点睛】本题考查了对顶角的定义和性质,正确识别对顶角是解答本题的关键. 25.①.【分析】利用线段的性质进行解答即可.【详解】解:图①利用垂线段最短;图①利用两点之间线段最短;图①利用两点确定一条直线;故答案为:①.【点睛】本题主要考查了线段的性质,熟悉相关性质是解题的关键.26.140【分析】根据角平分线的定义和对顶角的性质解答即可.【详解】解:①100AOD ∠=︒,①18010080AOC ∠=︒-︒=︒,①OE 平分AOC ∠, ①1402COE AOC ∠=∠=︒, ①100BOC AOD ∠=∠=︒,①10040140EOB BOC COE ∠=∠+∠=︒+︒=︒.故答案为:140.【点睛】本题主要考查了角平分线的定义和对顶角的性质,熟练掌握相关的定义和性质是解答本题的关键.27.50°【分析】先根据垂直的定义、角的和差求出BOD ∠的度数,再根据对顶角相等即可得.【详解】OE AB ⊥90BOE1904050BOE BOD ∠∠=∴=∠-︒-︒=︒由对顶角相等得:520BOD ∠=∠=︒故答案为:50︒.【点睛】本题考查了垂直的定义、对顶角相等等知识点,熟记对顶角的性质是解题关键. 28.40°【分析】根据等腰三角形性质,得到20C E ∠=∠=︒,再根据三角形外交定理求得40DFE C E ∠=∠+∠=︒,最后根据平行线的性质求出①A 的度数.【详解】:CF EF =,20E ∠=︒,20C E ∴∠=∠=︒,40DFE C E ∴∠=∠+∠=︒.//AB CD ,40A DFE ∴∠=∠=︒.故答案为40°.【点睛】本题主要考查了平行线的性质、等腰三角形和三角形外角等有关知识,属于常考基础题型.29.20【分析】因为两直线平行,所以①2与①1的补角互为内错角,通过两直线平行内错角相等,建立一个关于x 的方程,解方程即可.【详解】①直线a①直线①21801∠=︒-∠即210180(370)x x +=-+解得20x故答案为20【点睛】本题主要考查平行线的性质,掌握平行线的性质并利用方程的思想列出方程是解题的关键.30.60°【分析】首先根据多边形内角和180°•(n -2)可以计算出①F AB =120°,再过A 作l ①l 1,进而得到l ①l 2,再根据平行线的性质可得①4=①2,①1+①3=180°,进而可以得出结果.【详解】解:如图,过A 作l ①l 1,则①4=①2,①六边形ABCDEF是正六边形,①①F AB=120°,即①4+①3=120°,①①2+①3=120°,即①3=120°﹣①2,①l1①l2,①l①l2,①①1+①3=180°,①①1+120°﹣①2=180°,①①1﹣①2=180°﹣120°=60°,故答案为60°.【点睛】此题主要考查了正多边形和平行线的性质,关键是掌握两直线平行、内错角相等,同旁内角互补.31.27【分析】如图,①3=①1,由①3=①2+①A计算求解即可.【详解】解:如图①a①b,①1=56°①①3=①1=56°①①3=①2+①A,①2=29°①①A=①3﹣①2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.32.1:2【分析】先根据∥DC BA 得到BN DM =,根据=2ABD BCD S S 得到1=2DO BO ,再根据12DOC S DO CH =,12BOC S BO CH =可得到1==2DOCBOC S DO BO S . 【详解】解:过点D 作DM AB ⊥,垂足为M ,过点B 作BN DC ⊥,交DC 的延长线于点N ,过点C 作CH DB ⊥与点H ,①∥DC BA ,①BN DM =,①=2ABD BCD SS , ①11=222AC DM DC BN ⨯⨯⨯, ①2AB DC =,①∥DC BA ,①==CDO OBA DCO OAB ∠∠∠∠,, ①DCO AOB ∽,①1==2DC DO AB BO , ①12DOC SDO CH =,12BOC S BO CH =, ①1==2DOCBOC SDO BO S , 故答案为:1:2.【点睛】本题考查了平行线间的距离,相似三角形的判定与性质,梯形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.33.365【分析】作点P 关于BC 的对称点F ,过F 作FE①AB 于E 交BC 于D ,则此时,PD+DE 的值最小,且PD+DE 的最小值=EF ,求得AF =9,根据勾股定理得到AB =10,根据相似三角形的性质得到EF =365,于是得到结论. 【详解】解:作点P 关于BC 的对称点F ,过F作FE①AB 于E 交BC 于D ,则此时,PD+DE 的值最小,且PD+DE 的最小值=EF ,①CF =CP ,①点P 是AC 边的中点,①AP =PC =3,①AF =9,①在Rt △ABC 中,AC =6,BC =8,①AB =10,①①AEF =①ACB =90°,①①A+①B =①A+①F ,①①B =①F ,①①ABC①①AFE , ①AF AB =EF BC , ①910=8EF , ①EF =365, ①PD+DE 的最小值为365, 答案为:365.【点睛】本题考查了轴对称-最短路线问题,勾股定理,相似三角形的判定和性质,正确的作出图形是解题的关键.34. 125B ∠ 【分析】根据等面积法求得线段CD 的长度,即可求得点C 到AB 的距离,再根据三角形内角和定理即可求得与ACD ∠相等的角.【详解】解:①90CDA ∠=︒,①CD AB ⊥.点C 到AB 的距离为线段CD 的长度. 由题意可得:1122ABC SAC BC AB CD =⨯=⨯ ①125AC BC CD AB ⨯==, ①AC BC ⊥,①90ACB ∠=︒,①90180DCB B CDB DCB B ∠+∠+∠=∠+∠+︒=︒,①90ACD DCB DCB B ∠+∠=︒=∠+∠,①ACD B ∠=∠. 故答案为:125,B ∠. 【点睛】此题考查了点到直线的距离,三角形内角和的性质,以及等面积法求三角形的高,解题的关键是掌握相关基础知识.35.6;12;6;6【详解】每两条直线的交点处有两对对顶角,共有对顶角有6对.①两条直线被第三条直线所截,可得到4对同位角,2对内错角,2对同旁内角, ①三条直线两两相交于三点,可分解成三个“三线八角”的基本图形,则同位角共有12对,内错角有6对,同旁内角有6对.36.125︒【分析】根据矩形的性质可得AD ①BC ,再利用平行线的性质可得①BFC ′=70°,从而利用平角定义求出①CFC ′=110°,然后根据折叠的性质可求出①CFE 的度数,最后利用平行线的性质,即可解答.【详解】解:①由题意可知:AD ①BC ,①①1=①BFC ′=70°,①①CFC ′=180°-①BFC ′=110°,由折叠得:①CFE =①C ′FE =12①CFC ′=55°,①AD ①BC ,①①2=180°-①CFE =125°,故答案为:125°【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.37.70°【分析】首先根据折叠可得①1=①EF B'=55°,再求出①B'FC的度数,然后根据平行线的性质可得①2=①B'FC=70°.【详解】解:根据折叠可得①1=①EF B',①①1=55°,①①EF B'=55°,①①B'FC=180°-55°-55°=70°,①AD//BC,①①2=①B'FC=70°,故答案为:70°.【点睛】本题主要考查了平行线的性质以及折叠的性质,关键是掌握两直线平行,同位角相等.38.10【分析】过点D作DG①BC于G,DH①AC于H,根据等腰三角形的性质得到①EBD=①EDB,根据角平分线的定义得到①EBD=①DBC,进而得到①DBC=①EDB,证明EF BC,求出DF=FC,根据角平分线的性质求出DH,根据三角形的面积公式计算,即可求出结果.【详解】解:如图,过点D作DG①BC于G,DH①AC于H,①BE=DE,①①EBD=①EDB,①BD平分①ABC,①①EBD=①DBC,①①DBC=①EDB,①EF BC,①①FDC=①DCB,①CD平分①ACB,①①FCD=①DCB,①①FDC=①FCD,①FC=DF=5,①CD平分①ACB,DG①BC,DH①AC,①DH=DG=4,①①DFC的面积=12FC·DH=12×5×4=10.故答案为:10.【点睛】本题考查的是角平分线的性质、平行线的性质、三角形的面积计算,掌握角的平分线上的点到角的两边的距离相等是解题的关键.39.125【分析】根据邻补角的和是180°,结合已知条件可求①COE的度数.【详解】①①1=55°,①①COE=180°-55°=125°.故答案为125.【点睛】此题考查了垂线以及邻补角定义,关键熟悉邻补角的和是180°这一要点.40【分析】在平行四边形ABCD中,①ABC=105°,①DAC=①ACB=30°,故①BAC=①ACD=45°,OA=OC=2,P点一共有三种情况,①当①OP1C=90°时,①当①OP2C=90°时,①当①P3OC=90°时,根据三角函数的值即可求得CP的长度.【详解】解:如图所示,P点可以有以下三种情况,在平行四边形ABCD中,①ABC=105°,①DAC=①ACB=30°,故①BAC=①ACD=45°,OA=OC=2,①当①OP 1C=90°时,①ACB=30°,OC=2,①1P C=OC cos30=2⋅︒①当①OP 2C=90°时,①ACD=45°,OC=2,①2P C=OC cos45=2⋅︒①当①P 3OC=90°时,①ACB=30°,OC=2,①3OC P C==2cos30︒【点睛】本题主要考查了平行四边形的动点问题、平行线的性质、三角形内角和为180°、三角函数,解题的关键在于进行分类讨论,并用三角函数求出最后的答案.41.见解析【分析】先根据平行线的性质证得E B ∠=∠,再根据线段和求得EF BC =,然后SAS 证明EDF BAC △△≌,即可由全等三角形的性质得出结论.【详解】证明:①DE AB ∥,①E B ∠=∠①BF EC =,①BF CF EC CF +=+①EF BC =在EDF 与BAC 中,ED BA E B EF BC =⎧⎪∠=∠⎨⎪=⎩①()SAS EDF BAC ≌①A D ∠=∠【点睛】本题考查三角形全等的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.42.两直线平行,同位角相等;已知;等式性质;BAE ;DCE ;AB ①CD .【分析】利用两直线平行,同位角相等即可得到一对同位角相等,利用等式的性质得到另一对同位角相等,最后利用同位角相等,两直线平行即可得证.【详解】解:因为AM //CN (已知),所以①EAM =①ECN (两直线平行,同位角相等),又因为①1=①2(已知),所以①EAM +①1=①ECN +①2(等式性质),即①BAE =①DCE ,所以AB //CD .故答案为:两直线平行,同位角相等;已知;等式性质;BAE ;DCE ;AB //CD .【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.43.30°##30度【分析】由三角形内角和可得60ABC ∠=︒,然后根据角平分线的定义可得1302ABD CBD ABC ∠=∠=∠=︒,进而根据平行线的性质可求解. 【详解】解:①80A ∠=︒,40C ∠=︒,①60ABC ∠=︒,①ABC ∠的角平分线交AC 于点D , ①1302ABD CBD ABC ∠=∠=∠=︒, ①DE BC ∥,①30EDB CBD ∠=∠=︒,故BDE ∠的度数为30°. 【点睛】本题主要考查角平分线的定义、三角形内角和及平行线的性质,熟练掌握三角形内角和是解题的关键.44.(1)①见解析;①见解析;①见解析(2)50°【分析】(1)①连接PQ即可;①利用直角三角板画垂线即可;①利用直尺和直角三角板画OA的平行线MN即可;∥,根据平行线的性质求出①APF=①AOE=①MQB=40°,(2)过点P作PF OB①FPE=①PEO=90°,然后根据平角定义即可求解.(1)解:①连接PQ,如图,线段PQ即为所求.①如图,直线段PE即为所求.①如图,直线MN即为所求.(2)∥解:①MN OA①①AOE=①MQB,又①MQB=40°,①①AOE=40°,∥,如图,过点P作PF OB①①APF=①AOE=40°,①FPE=①PEO,又PE①OB,①①PEO=①FPE=90°,①①OPE=180°-①APF-①FPE=180°-40°-90°=50°.【点睛】本题考查了基本作图,平行线的性质等,添加辅助线PF是解第2问的关键.45.见解析【分析】由DG①BC,根据“两直线平行,内错角相等”得到①1=①DCE,由CD是高,EF①AB,得到①CDB=①EFB=90°,根据平行线的判定得到CD①EF,由平行线的性质:两直线平行,同位角相等,得到①DCE=①2,即可得到①1=①2.【详解】解:相等,理由如下:①CD 是高,①CD ①AB ,①①CDB=90°① EF①AB, ①①EFB=90°①①CDB=①EFB ,①EF①CD①①2= ①DCB① DG①BC ①①1= ①DCB①①1=①2【点睛】本题考查了平行线的判定与性质以及垂直的定义,熟练掌握相关的定理和定义是解题的关键.46.(1)①ABD =20︒,BDE ∠=20º,BED ∠=140º;(2)垂直的定义;两直线平行,同位角相等;BAD ∠,2∠【分析】(1)由①BDC-①A 求出①ABD 的度数,由BD 为角平分线得到①DBC 的度数,再由DE 与BC 平行,利用两直线平行内错角相等求出①BDE 的度数,利用三角形的内角和定理即可求出①BED 的度数;(2)由AD 垂直于BC ,EF 垂直于BC ,利用垂直的定义得到一对直角相等,利用同位角相等两直线平行得到EF 与AD 平行,利用两直线平行同位角相等得到一对角相等,再由已知一对角相等,利用等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【详解】(1)因为50A ∠=︒,70BDC ∠=︒,所以20ABD BDC A ∠=∠-∠=︒,因为BD 是ABC ∆的角平分线,所以20DBC ABD ∠=∠=︒.因为//DE BC ,所以20BDE DBC ∠=∠=︒(两直线平行,内错角相等),所以180140BED EBD EDB ∠=︒-∠-∠=︒(三角形内角和定理);(2)因为AD ①BC ,EF ①BC (已知),所以①EFB =①ADB =90°(垂直的定义).所以EF①AD (同位角相等,两直线平行).所以①1=①BAD (两直线平行,同位角相等).因为①1=①2(已知),所以BAD ∠=2∠(等量代换).。
七年级数学-相交线与平行线专项习题(含答案解析)
1. 已知多项式(x -2a )与(x 2+x -1)的乘积中不含x 2项,则常数a(含答案解析)的值是 .2. 观察如图图形,并阅读相关文字:那么5条直线相交,最多交点的个数是()A .10B .14C .21D .153. 已知x -x 1=3,则x 4+x 14= .4. 已知(a 2+b 2+3)(a 2+b 2-3)=7,ab =3,则(a +b )2= .5.6. 如图,点O为直线AB上一点,将直角三角板OCD的直角顶点放在点O处.已知∠AOC的度数比∠BOD的度数的3倍多10度.(1)求∠BOD的度数;(2)若OE,OF分别平分∠BOD,∠BOC,求∠EOF的度数.=x 3+(1-2a )x 2-(1+2a )x +2a 1.解:(x -2a )•(x 2+x -1)=x 3+x 2-x -2ax 2-2ax +2a ,∵多项式(x -2a )与(x 2+x -1)的乘积中不含x 2项,∴1-2a =0,解得:a =0.5,故答案为:0.5.2. 解:两条直线相交,最多交点数为1个;三条直线相交,最多交点数为1+2=3(个);四条直线相交,最多交点数为1+2+3=6(个);五条直线相交,最多交点数为1+2+3+4=10(个).故选:A .3. 解:1194. 解:∵(a 2+b 2+3)(a 2+b 2-3)=7,ab =3,即(a 2+b 2)2-32=7,∴(a 2+b 2)2=7+9=16,∴a 2+b 2=4,∴(a +b )2=a 2+b 2+2ab=4+2×3=4+6=10.故答案为:10.5.6. 解:(1)设∠BOD =x °,∵∠AOC 的度数比∠BOD 的度数的3倍多10度,且∠COD =90°, ∴x +(3x +10)+90=180,解得:x =20,∴∠BOD =20°;(2)∵OE 、OF 分别平分∠BOD 、∠BOC ,。
七年级数学上册综合算式专项练习题平行线与相交线性质
七年级数学上册综合算式专项练习题平行线与相交线性质七年级数学上册综合算式专项练习题:平行线与相交线性质一、平行线与相交线的基本知识在数学中,平行线与相交线是非常基础且重要的概念。
在研究平行线与相交线的性质时,我们需要了解以下基本知识:1. 定义:平行线是指在同一个平面内永不相交的两条线,记作AB ∥ CD。
相交线是指在同一个平面内相交于一点的两条线,记作EF。
2. 平行线的性质:a) 平行线具有相同的斜率。
b) 平行线上的任意两条线之间的夹角等于180°。
c) 平行线上的任意两个相交线之间的对应角是等角。
3. 相交线的性质:a) 相交线的两对内错角互补,即互为补角。
b) 相交线的对顶角相等。
二、解题方法接下来,我们将通过综合算式专项练习题来复习平行线与相交线的性质,并学习如何运用这些性质解题。
1. 练习题一:已知平行线AB∥CD,EF为相交线,角A=60°,求角B、角C和角D的度数。
解题思路:由平行线的性质可知,角A和角D为对应角,角B和角C为内错角。
又由于角A=60°,根据平行线的性质,角D也为60°。
因此,角B 和角C加起来的度数等于180°-60°-60°=60°。
所以,角B和角C的度数均为30°。
2. 练习题二:在平行线AB∥CD上,P为E和F之间的一点,角APB=120°,求角FPD的度数。
解题思路:由平行线的性质可知,角APB和角FPD为对应角。
又由于角APB=120°,根据平行线的性质,角FPD的度数也为120°。
3. 练习题三:在平行线AB∥CD上,E、F分别是AB和CD上的两点,连结EF 交AB和CD于M、N,已知角ENM=45°,求角FMN的度数。
解题思路:由平行线的性质可知,角ENM为角FNM的对应角。
又由于角ENM=45°,根据平行线的性质,角FNM的度数也为45°。
人教版苏科版初中数学—相交线与平行线(经典例题)
班级小组姓名成绩(满分120)一、两条直线的位置关系(一)相交线与平行线(共4小题,每题3分,题组合计12分)例1.当光线从空气中射入水中时,光线的传播方向发生了改变,这就是折射现象(如图所示),图中1∠与2∠是对顶角吗?例1.变式1.如图是一把剪刀,其中1=40∠︒,则2∠=,其理由是.例1.变式2.下列说法正确的是()A.相等的角是对顶角B.对顶角相等C.两条直线相交所成的角是对顶角D.有公共顶点且又相等的角是对顶角例1.变式3.如图,直线AB ,CD 相交于点O ,=80EOC ∠︒,OA 平分EOC ∠,求BOD ∠的度数.(二)互为余角和互为补角的概念及应用(共4小题,每题3分,题组合计12分)例2.如果,1∠与2∠互为余角,则1+2=∠∠;若1=58∠︒,则2=∠.例2.变式1.判断题.(1)一个角的余角一定是锐角.()(2)一个角的补角一定是钝角.()(3)若1+2+3=90∠∠∠︒,那么1∠,2∠,3∠互为余角.()例2.变式2.一个角的余角度数是这个角的补角的13,这个角的余角度数是.例2.变式3.已知α∠是锐角,α∠与β∠互补,α∠与γ∠互余,则βγ∠-∠的值等于()A.45°B.60°C.90°D.180°(三)垂线定义及性质(共4小题,每题3分,题组合计12分)例3.下列说法正确的有()①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③过一点有且只有一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个 B.2个C.3个D.4个例3.变式1.如图所示,CD AB ⊥,则点D 是,ADC CDB ∠=∠=.例3.变式2.如图,OD BC ⊥,垂足为D ,3BD cm =,4OD cm =,5OB cm =,那么点B 到OD 的距离是,点O 到BC 的距离是,O ,B 两点之间的距离是.例3.变式3.如图,在ABC ∆中,AC BC ⊥,CD AB ⊥,则AB ,AC ,CD 之间的大小关系是(用“<”号连接起来).二、探索直线平行的条件(一)同位角、内错角、同旁内角的概念(共4小题,每题3分,题组合计12分)例4.如图,∠1和∠2是同位角的是()例4.变式1.如图,能与∠1构成同位角的角有个.例4.变式2.如图所示,∠1与∠2是内错角的是()例4.变式3.如图,直线AB,CD被直线EF所截,则∠3的同旁内角是() A.∠1 B.∠2 C.∠4 D.∠5(二)判定两直线平行的方法(共4小题,每题3分,题组合计12分)例5.如图,∠1=55°,当∠C为多少度时,能使直线AB∥CD?例5.变式1.如图,∠1=120°,∠2=60°,问直线a与b的位置关系如何?例5.变式2.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠3=180°,其中能判断a∥b的是()例5.变式3.如图所示,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4B.∠A+∠ADC=180°C.∠1=∠2D.∠A=∠5(三)平行线的判定定理的综合应用(共4小题,每题3分,题组合计12分)例6.如图,已知直线AB,CD被直线EF所截,如果BMN DNF∠=∠,那么MQ∥NP,∠=∠,12试写出推理.例6.变式1.如图,AB BC ⊥于点B ,BC CD ⊥于点C ,∠1=∠2,那么EB ∥CF 吗?为什么?例6.变式2.如图,已知∠1与∠3互余,∠2与∠3的余角互补,问直线1l ,2l 平行吗?为什么?例6.变式3.如图,B C ∠=∠,B ,A ,D 三点在同一直线上,DAC B C ∠=∠+∠,AE 是DAC ∠的平分线,试说明AE ∥BC .三、平行线的性质(一)平行线的性质(共4小题,每题3分,题组合计12分)例7.下列说法中正确的是()①两直线平行,同旁内角互补;②同位角相等,两直线平行;③内错角相等,两直线平行;④两直线被第三条直线所截,同位角、内错角相等.A.①②③ B.②③C.④ D.②和④例7.变式1.下列图形中,由AB ∥CD ,能得到∠1=∠2的是()例7.变式2.如图,梯子的各条横杆互相平行,若∠1=80°,则∠2的度数是()A.80°B.100°C.110°D.120°例7.变式3.如图,直线a∥b,直线c分别与a,b相交于点A,B.已知∠1=35°,则∠2的度数为()A.165°B.155°C.145°D.135°(二)平行线的性质的应用(共4小题,每题3分,题组合计12分)例8.如图,已知直线a∥b,∠1=40°,则∠2=.例8.变式1.如图,已知∠1=∠2=∠3=62°,则∠4=.例8.变式2.如图,BC AE∠=48°,则B⊥,垂足为C,过C作CD∥AB.若ECD∠=.例8.变式3.如图,∠1=∠2,C D∠=∠,那么A F∠=∠,为什么?(三)平行线的判定与平行线的性质的综合运用(共4小题,每题3分,题组合计12分)例9.如图,已知180BAE AED ∠+∠=︒,AM 平分BAE ∠,EN 平分AEC ∠,试说明M ∠=N ∠.例9.变式1.如图所示,AB ∥CD ∥EF ,BC ∥DE ,70B ∠=︒,则E ∠的度数为多少?例9.变式2.如图,AB ∥CD ,EM 平分角GEB ∠,EN 平分MEH ∠,4AEG MEB ∠=∠,设MEB x ∠=,求EPC ∠的度数.例9.变式3.如图,AB ∥CD ,探究B ∠,D ∠,P ∠之间的关系.四、用尺规作角(共4小题,每题3分,题组合计12分)例10.用直尺和圆规画CMD ∠等于已知角AOB ∠.例10.变式1.已知α∠,β∠,求作一个角,使它等于2α∠+β∠.(保留作图痕迹,不写作法)例10.变式2.如图,已知∠1,∠2,求作一个角,使它等于2∠1-∠2.例10.变式3.已知线段a ,α∠,β∠.求作:分别过点A ,点B 作ABC ∆,使ABC ∠=α∠,ACB ∠=β∠,BC =a .。
相交线和平行线测试题及答案(七年级)(最新整理)
A.有公共顶点并且相等的两个角
B.两条直线相交,有公共顶点的两个角
C.顶点相对的两个角
D.两条直线相交,有公共顶点没有公共边的两个角
6. 下列命题正确的是 ( )
A.内错角相等
B.相等的角是对顶角
C.三条直线相交 ,必产生同位角、内错角、同旁内角
D.同位角相等,两直线平行
7. 两平行直线被第三条直线所截,同旁内角的平分线 (
平移的距离为
cm 。
第 1 页 共 10 页
22. 如图所示,在四边形 ABCD 中,AD∥BC,BC>AD,∠B 与∠C 互余,将 AB,CD
分别平移到图中 EF 和 EG 的位置,则△EFG 为
三角形,若 AD=2cm,BC=8cm,
则 FG =
。
23. 如图 9,如果∠1=40°,∠2=100°,那么∠3 的同位角等于
错角等于
,∠3 的同旁内角等于
.
,∠3 的内
A
E
D
29. 如图,已知∠1+∠2+180°,∠DEF=∠A,试判断∠ACB 与∠DEB 的大小关系,并对 结论进行说明.
A
D
2
F
1
B
E
C
30. 如图,∠1=∠2,∠D=∠A,那么∠B=∠C 吗?为什么?
B
F
G
C
24. 如图 10,在△ABC 中,已知∠C=90°,AC=60 cm,AB=100 cm,a、b、c…是
2.6 已知一个角的余角的补角比这个角的补角的一半大 90°,求这个角的度数 等于多少?
四、证明题
27 已知:如图,DA⊥AB,DE 平分∠ADC,CE 平分∠BCD,且∠1+∠2=90°.试猜想 BC
七年级数学《相交线与平行线》测试卷及答案
123(第三题)A B C D E (第10题)ABCD 1234(第2题)12345678(第4题)ab cA B CD(第7题)七年级数学《相交线与平行线》测试卷及答案班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120° C 、180° D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
苏科版数学中考复习专题练习— 相交线、平行线、三角形(含答案)
相交线、平行线、三角形一、学习目标1.了解垂线、垂线段的概念,点到直线的距离,理解余角、补角、对顶角、线段的垂直平分线与角的平分线的概念判定及其性质,灵活运用平行线判定与性质;2.理解三角形及其内角、外角、中线、高线、角平分线、内心、外心、重心等概念及性质,理解三角形三边关系,、内角和定理、外角性质.灵活运用三等形的中位线性质;3.灵活运用全等三角形及其判定和性质、等腰三角形等边三角形及其判定和性质、直角三角形及其判定和性质勾股定理及其逆定理,掌握数学思想方法,提高几何直观、推理、运算能力.二、典型例题题型一、平行线有关的计算与推理例题1.已知:如图,AB ∥EF ,∠ABC =75°,∠CDF =135°,则∠BCD =_____________度. 【题小结】灵活运用平行线判定与性质借题发挥:如图摆放的一副学生用直角三角板,∠F =30°,∠C =45°,AB 与DE 相交于点G ,当EF ∥BC 时,∠EGB 的度数是( ) A .135° B .120° C .115° D .105°(例题1)(借题发挥)题型二、垂直平分线与角的平分线 1.垂直平分线例题2.如图,在△ABC 中,DE 是AC 的垂直平分线.若AE =3,△ABD 的周长为13,则△ABC 的周长为 .【题小结】合理利用垂直平分线的性质判定借题发挥:如图,线段AB 、BC 的垂直平分线l 1、l 2相交于点O .若∠1=39°,则∠AOC =____°.(例题2)(借题发挥)D F75° B EAC135°A B Cl 2 1O l 1EA B D CGA DBCFEDCE FB A2.角的平分线例题3.如图:在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD =DF ,证明:(1)CF =EB .(2)AB =AF +2EB .【题小结】合理利用角平分线的性质判定借题发挥:如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D ,下列四个结论: ①EF =BE +CF ;②∠BOC =90°+12∠A ;③点O 到△ABC 各边的距离相等; ④设OD =m ,AE +AF =n ,则S △AEF =mn . 其中正确的结论是 .(填序号)题型三、全等三角形的性质与判定例题4.如图,在△ABC 和△ADC 中,AB =AD ,BC =DC ,∠B =130°,则∠D = °.【题小结】找出全等所需要的边角要素借题发挥:如图,已知AB ∥CD ,AB =CD ,BE =CF .求证:(1)△ABF ≌△DCE ;(2)AF ∥DEDC F A B E DE A B CF O DBAC。
七年级数学下册-相交线与平行线测试题及答案
七年级数学下册-相交线与平行线测试题及答案.doc相交线与平行线测试题一、填空题1.60º2.70º3.75º4.100º5.∠BOE = 76º。
∠AOG = 52º6.30º7.110º8.109.60π10.3cm11.∠3的同位角 = 140º。
∠3的内错角 = 40º。
∠3的同旁内角 = 140º12.4二、选择题1.D.42.D.在平面内过一点有且只有一条直线垂直于已知直线.3.B.⑵、⑶、⑷4.C.90°5.对顶角相等的语句为“对顶角互相相等”。
___(a)所示,五边形ABCDE是___十年前承包的一块土地示意图。
经过多年开垦荒地,现已变成图(b)所示的形状,但承包土地与开垦荒地的分界小路(即图(b)中折线CDE)还保留着。
___想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多。
请你用有关知识,按___的要求设计出修路方案。
(不计分界小路与直路的占地面积)1) 设计方案如下:首先,连接AE和BD,将五边形ABCDE分成三个部分。
然后,连接DE并延长到直路的位置,再连接CE和BC。
如图(c)所示,直路的位置为EF,其中EF与DE平行,且EF与BC垂直。
此时,EF将五边形分为左右两部分,且左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多。
2) 设计理由如下:首先,连接AE和BD是为了将五边形ABCDE分成三个部分,方便后续的计算。
连接DE并延长到直路的位置是为了确定直路的位置,使得EF与DE平行,方便计算面积。
连接CE和BC是为了确定EF与BC垂直,使得右边的土地面积与开垦的荒地面积一样多。
因此,这个修路方案符合___的要求。
解:(1) 根据已知条件,∠1=118°,∠2=∠3,a∥b,因此可以得出∠3=180°-∠1=62°。
(完整版)初一平行线与相交线经典试题
第一章:平行线与相交线考点1:余角、补角、对顶角一、考点讲解:1.余角:如果两个角的和是直角,那么称这两个角互为余角.2.补角:如果两个角的和是平角,那.么称这两个角互为补角.3.对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4.互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余.反过来,若∠1,∠2互余.则∠1+∠2=90○.②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2= ∠3.5.互为补角的有关性质:①若∠A +∠B=180○则∠A、∠B互补,反过来,若∠A、∠B 互补,则∠A+∠B=180○.②同角或等角的补角相等.如果∠A +∠C=18 0○,∠A+∠B=18 0°,则∠B=∠C.6.对顶角的性质:对顶角相等.二、经典考题剖析:【考题1-1】(2004、厦门,2分)已知:∠A= 30○,则∠A的补角是________度.解:150○点拨:此题考查了互为补角的性质.【考题1-2】(2004、青海,3分)如图l-2-1,直线AB,CD相交于点O,OE⊥AB 于点O,OF平分∠AOE,∠1=15○30’,则下列结论中不正确的是()A.∠2 =45○B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75○30′解:D 点拨:此题考查了互为余角,互为补角和对顶角之间的综合运用知识.三、针对性训练:(30 分钟) (答案:220 ) 1._______的余角相等,_______的补角相等.2.∠1和∠2互余,∠2和∠3互补,∠1=63○,∠3=__3.下列说法中正确的是()A.两个互补的角中必有一个是钝角B.一个角的补角一定比这个角大C.互补的两个角中至少有一个角大于或等于直角D.相等的角一定互余4.轮船航行到C处测得小岛A的方向为北偏东32○,那么从A处观测到C处的方向为()A.南偏西32○B.东偏南32○C.南偏西58○D.东偏南58○5.若∠l=2∠2,且∠1+∠2=90○则∠1=___,∠2=___.6.一个角的余角比它的补角的九分之二多1°,求这个角的度数.7.∠1和∠2互余,∠2和∠3互补,∠3=153○,∠l=_8.如图l-2-2,AB⊥CD,AC⊥BC,图中与∠CAB互余的角有()A.0个B.l个C.2个D.3个9.如果一个角的补角是150○,那么这个角的余角是____________10.已知∠A和∠B互余,∠A与∠C互补,∠B与∠C的和等于周角的13,求∠A+∠B+∠C的度数.11.如图如图1―2―3,已知∠AOC与∠B都是直角,∠BOC=59○.(1)求∠AOD的度数;(2)求∠AOB和∠DOC的度数;(3)∠A OB与∠DOC有何大小关系;(4)若不知道∠BOC的具体度数,其他条件不变,这种关系仍然成立吗?考点2:同位角、内错角、同旁内角的认识及平行线的性质一、考点讲解:1.同一平面内两条直线的位置关系是:相交或平行.2.“三线八角”的识另:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.3.平行线的性质:(1)两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.(2)过直线外一点有且只有一条直线和已知直线平行.(3)两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.二、经典考题剖析:【考题2-1】(2004贵阳,3分)如图1―2―4,直线a ∥b,则∠A CB=________解:78○点拨:过点C作CD平行于a,因为a∥b,所以CD∥b.则∠A C D=2 8○,∠DCB=5 0○.所以∠ACB=78○.【考题2-2】(2004、开福,6分)如图1―2―5,AB∥CD,直线EF分别交A B、CD于点E、F,EG平分∠B EF,交CD于点G,∠1=5 0○求∠2的度数.解:65○点拨:由AB∥CD,得∠BEF=180○-∠1=130○,∠BEG=∠2.又因为EG平分∠BEF,所以∠2=∠BEG=12∠BEF=65°(根据平行线的性质)三、针对性训练:( 40分钟) (答案:220 ) 1.如图1-2-6,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.l个B.2个C.3个D.4个2.下列说法中正确的个数是()(1)在同一平面内不相交的两条直线必平行;(2)在同一平面内不平行的两条直线必相交;(3)两条直线被第三条直线所截,所得的同位角相等;(4)两条平行线被第三条直线所截,一对内错角的平分线互相平行。
苏州苏州大学实验学校七年级数学下册第五章《相交线与平行线》阶段练习(答案解析)
苏州苏州大学实验学校七年级数学下册第五章《相交线与平行线》阶段练习(答案解析)一、选择题1.下列说法不正确的是( )A .同一平面上的两条直线不平行就相交B .同位角相等,两直线平行C .过直线外一点只有一条直线与已知直线平行D .同位角互补,两直线平行D 解析:D【分析】根据平行线的概念对选项A 进行判断;根据平行线的性质对选项B 进行判断; 根据平行线的公理和判定定理对选项C 和D 进行判断.【详解】A. 同一平面上的两条直线不平行就相交,所以选项A 正确;B. 同位角相等,两直线平行,这是平行线的判定定理,所以B 选项正确;C.过直线外一点有且只有一条直线与已知直线平行,所以选项C 正确;D. 同旁内角互补,两直线平行,所以选项D 错误.故选D.【点睛】本题是一道关于平行线的题目,掌握平行线的性质和定理是解决此题的关键.2.如图,把一长方形纸片ABCD 沿EG 折叠后,AEG A EG '∠=∠,点A 、B 分别落在A '、B ′的位置,EA '与BC 相交于点F ,已知1125∠=︒,则2∠的度数是( )A .55°B .60°C .70°D .75°C解析:C【分析】 先根据平行线的性质可得55AEG ∠=︒,再根据平角的定义可得70∠︒=DEF ,然后根据平行线的性质即可得.【详解】由题意得://AD BC ,1125∠=︒,180155AEG ∴∠=︒-∠=︒,AEG A EG '∠=∠,55A EG '∴∠=︒,18070DEF AEG A EG '∴∠=︒-∠-∠=︒,又//AD BC ,270DEF ∴∠=∠=︒,故选:C .【点睛】本题考查了平角的定义、平行线的性质,熟练掌握平行线的性质是解题关键.3.如图,25AOB ︒∠=,90AOC ︒∠=,点B ,O ,D 在同一直线上,则COD ∠的度数为( )A .65B .25C .115D .155C解析:C【分析】 先求出∠BOC ,再由邻补角关系求出∠COD 的度数.【详解】∵∠AOB=25°,∠AOC=90°,∴∠BOC=90°-25°=65°,∴∠COD=180°-65°=115°.故选:C .【点睛】本题考查了余角、邻补角的定义和角的计算;弄清各个角之间的关系是解题的关键. 4.下列命题中,属于真命题的是( )A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b C解析:C【分析】根据对顶角、补角、绝对值的定义与性质逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、一个角的补角不一定大于这个角,如这个角为130︒,其补角为50︒,小于这个角,此项是假命题;C 、由绝对值的非负性得:绝对值最小的数是0,此项是真命题;D 、如果a b =,那么a b =或=-a b ,此项是假命题;故选:C .【点睛】本题考查了对顶角、补角、绝对值、真命题与假命题,熟练掌握各定义与性质是解题关键.5.如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm =,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm A解析:A【分析】 由平移性质可得:BC=EF ,CF=3,cm 可得EC=EF-CF .【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm =,CF=3,cm所以EC=5-3=2(cm)故选:A【点睛】考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.6.如图,下列条件中,不能判断直线a ∥b 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180°B解析:B【分析】 根据平行线的判定定理逐项判断即可.【详解】A 、当∠1=∠3时,a ∥b ,内错角相等,两直线平行,故正确;B 、∠2与∠3不是同位角,也不是内错角,无法判断,故错误;C 、当∠4=∠5时,a ∥b ,同位角相等,两直线平行,故正确;D 、当∠2+∠4=180°时,a ∥b ,同旁内角互补,两直线平行,故正确.故选:B .【点睛】本题考查了平行线的判定,熟记判定定理是解题的关键.7.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.5C解析:C【分析】 根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.8.如图,直线12l l //,被直线3l 、4l 所截,并且34l l ⊥,144∠=,则2∠等于( )A .56°B .36°C .44°D .46°D解析:D【分析】 依据l 1∥l 2,即可得到∠1=∠3=44°,再根据l 3⊥l 4,可得∠2=90°-44°=46°.【详解】解:如图,∵l1∥l2,∴∠1=∠3=44°,又∵l3⊥l4,∴∠2=90°-44°=46°,故选:D.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°B解析:B【解析】试题分析:由AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选B.考点:平行线的性质10.下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0A解析:A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A 、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B 、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C 、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 故选A .【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.二、填空题11.如图,直线AB ,CD 相交于点O ,AO 平分COE ∠,且50EOD ∠=︒,则DOB ∠的度数是________.【分析】根据求出利用AO 平分求得即可得到∠DOB=【详解】∵∴∵AO 平分∴∴∠DOB=故答案为:【点睛】此题考查求一个角的补角角平分线的性质对顶角相等正确理解补角定义求出是解题的关键解析:65︒【分析】根据180COE EOD ∠+∠=︒,50EOD ∠=︒,求出130COE ∠=︒,利用AO 平分COE ∠,求得65AOC ∠=︒,即可得到∠DOB=65AOC ∠=︒.【详解】∵180COE EOD ∠+∠=︒,50EOD ∠=︒,∴130COE ∠=︒,∵AO 平分COE ∠,∴65AOC ∠=︒,∴∠DOB=65AOC ∠=︒,故答案为:65︒.【点睛】此题考查求一个角的补角,角平分线的性质,对顶角相等,正确理解补角定义求出130COE ∠=︒是解题的关键.12.下列说法:①对顶角相等;②两点间线段是两点间距离;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤若AC BC =,则点C 是线段AB 的中点;⑥同角的余角相等正确的有_________.(填序号)①④⑥【分析】利用对顶角的性质判断①利用两点距离定义判定②利用平行公理判定③利用垂线公里判定④利用线段中点定义判定⑤利用余角的性质判定⑥【详解】①对顶角相等正确;②由两点间线段的长度是两点间距离所以解析:①④⑥【分析】利用对顶角的性质判断①,利用两点距离定义判定②,利用平行公理判定③,利用垂线公里判定④,利用线段中点定义判定⑤,利用余角的性质判定⑥.【详解】①对顶角相等正确;②由两点间线段的长度是两点间距离,所以两点间线段是两点间距离不正确; ③由过直线外一点有且只有一条直线与已知直线平行,所以过一点有且只有一条直线与已知直线平行不正确;④过一点有且只有一条直线与已知直线垂直正确;⑤由线段中点的性质,若AC BC =,点C 在AB 上,则点C 是线段AB 的中点,所以若AC BC =,则点C 是线段AB 的中点不正确;⑥同角的余角相等正确;正确的有①④⑥.故答案为:①④⑥.【点睛】本题考查对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质等问题,掌握对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质是解题关键.13.在同一平面内,A ∠与B 的两边分别平行,若50A ∠=︒,则B 的度数为__________︒.50或130【分析】由∠A 与∠B 的两边分别平行可得∠A=∠B 或∠A+∠B=180°继而求得答案【详解】解:∵∠A 与∠B 的两边分别平行∴∠A=∠B 或∠A+∠B=180°∵∠A=50°∴∠B=50°或∠解析:50或130【分析】由∠A 与∠B 的两边分别平行,可得∠A=∠B 或∠A+∠B=180°,继而求得答案.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A=∠B 或∠A+∠B=180°,∵∠A=50°,∴∠B=50°,或∠B=180°-∠A=180°-50°=130°.故答案为:50或130.此题考查了平行线的性质.此题难度适中,注意由∠A与∠B的两边分别平行,可得∠A与∠B相等或互补.14.命题“相等的角是对顶角”是______(填“真命题”或“假命题”).假命题【分析】对顶角相等但相等的角不一定是对顶角从而可得出答案【详解】解:对顶角相等但相等的角不一定是对顶角从而可得命题相等的角是对顶角是假命题故答案为:假命题【点睛】此题考查了命题与定理的知识属于解析:假命题【分析】对顶角相等,但相等的角不一定是对顶角,从而可得出答案.【详解】解:对顶角相等,但相等的角不一定是对顶角,从而可得命题“相等的角是对顶角”是假命题.故答案为:假命题.【点睛】此题考查了命题与定理的知识,属于基础题,在判断的时候要仔细思考.15.用反证法证明“一个三角形中最大的内角不小于60”时,第一步我们要先假设:______.答案不唯一例如一个三角形中最大的内角小于【分析】根据反证法的步骤从命题的反面出发假设出结论【详解】解:∵用反证法证明在一个三角形中最大的内角不小于60°∴第一步应假设结论不成立即假设最大的内角小于6解析:答案不唯一,例如一个三角形中最大的内角小于60【分析】根据反证法的步骤,从命题的反面出发假设出结论.【详解】解:∵用反证法证明在一个三角形中,最大的内角不小于60°,∴第一步应假设结论不成立,即假设最大的内角小于60°.故答案为:最大的内角小于60°.【点睛】本题考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.16.用反证法证明“三角形中至少有一个内角不大于60°,应先假设这个三角形中____________________.三角形的三个内角都大于60°【分析】根据反证法的步骤先假设结论不成立即否定命题即可【详解】根据反证法的步骤第一步应假设结论的反面成立即三角形的三个内角都大于60°故答案为:三角形的三个内角都大于60解析:三角形的三个内角都大于60°根据反证法的步骤,先假设结论不成立,即否定命题即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即三角形的三个内角都大于60°.故答案为:三角形的三个内角都大于60°.【点睛】本题考查了反证法的知识,掌握反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立是解题的关键.17.如图,将直角三角形ABC沿斜边AC的方向平移到三角形DEF的位置,DE交BC于点G,BG=4,EF=12,△BEG的面积为4,下列结论:①DE⊥BC;②△ABC平移的距离是4;③AD=CF;④四边形GCFE的面积为20,其中正确的结论有________(只填写序号).①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即解析:①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即可得出结果.【详解】解:∵直角三角形ABC沿斜边AC的方向平移到三角形DEF的位置,∴AB∥DE,∴∠ABC=∠DGC=90°,∴DE⊥BC,故①正确;△ABC平移距离应该是BE的长度,BE>4,故②错误;由平移前后的图形是全等可知:AC=DF,∴AC-DC=DF-DC,∴AD=CF,故③正确;∵△BEG的面积是4,BG=4,∴EG=4×2÷4=2,∵由平移知:BC=EF=12,∴CG=12-4=8,四边形GCFE的面积:(12+8)×2÷2=20,故④正确;故答案为:①③④【点睛】本题主要考查的是平移的性质,正确的掌握平移的性质是解题的关键.18.地铁某换乘站设有编号为A,B,C,D,E的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下:则疏散乘客最快的一个安全出口的编号是.个安全出口疏散1000名乘客所需的时间分析对比能求出结果【详解】同时开放AE两个安全出口疏散1000名乘客所需的时间为200s同时开放DE两个安全出口疏散1000名乘客解析:D【分析】利用同时开放其中的两个安全出口,疏散1000名乘客所需的时间分析对比,能求出结果.【详解】同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放D、E两个安全出口,疏散1000名乘客所需的时间为140s,得到D疏散乘客比A快;同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,得到A疏散乘客比E快;同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,得到A疏散乘客比C快;同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,同时开放C、D两个安全出口,疏散1000名乘客所需的时间为160s,得到D疏散乘客比B快.综上,疏散乘客最快的一个安全出口的编号是D.故答案为:D.【点睛】本题考查推理能力,进行简单的合情推理为解题关键.19.如图,AB∥CD,∠1=64°,FG平分∠EFD,则∠EGF=__________________°.【分析】根据两直线平行同位角相等求出∠EFD再根据角平分线的定义求出∠GFD然后根据两直线平行内错角相等解答【详解】解:∵AB∥CD∠1=64°∴∠EFD=∠1=64°∵FG平分∠EFD∴∠GFD=解析:【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,内错角相等解答.【详解】解:∵AB∥CD,∠1=64°,∴∠EFD=∠1=64°,∵FG平分∠EFD,∴∠GFD=12∠EFD=12×64°=32°,∵AB∥CD,∴∠EGF=∠GFD=32°.故答案为:32.考点:平行线的性质.20.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.12【解析】分析:由图形可知内部小三角形直角边是大三角形直角边平移得到的故内部五个小直角三角形的周长为大直角三角形的周长详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的故内部五个小解析:12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为12.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.三、解答题21.如图,已知在每个小正方形的网格图形中,ABC的顶点都在格点上,,,A B C为格点.(1)先将ABC先向左平移2个单位,再向上平移3个单位,请在图中画出平移后DEF,(点A,B,C所对应的顶点分别是D,E,F)(2)求出DEF的面积;(3)连结AD,BE,直接说出AD与BE的关系(不需要理由).解析:(1)见解析;(2)8;(3)AD=BE且AD∥BE【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点D、E、F,再依次连接即可;(2)根据三角形的面积公式计算;(3)根据平移的性质回答.【详解】解:(1)如图,△DEF即为所作;(2)S△DEF=1442⨯⨯=8;(3)如图,由平移可知:AD=BE且AD∥BE.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.22.如图,点P是AOB∠的边OB上的一点.(1)过点P画OB的垂线,交OA于点E;(2)过点P画OA的垂线,垂足为H;(3)过点P画OA的平行线PC;(4)若每个小正方形的边长是1,则点P到OA的距离是___________;PE PH OE的大小关系是_____________________(用“<”连接).(5)线段,,<<解析:(1)见解析;(2)见解析;(3)见解析;(4)1;(5)PH PE OE【分析】(1)(2)根据题意画垂线;(3)根据题意画平行线;(4)根据点到直线距离的定义计算;(5)根据直角三角形的直角边小于斜边可以证得.【详解】∠的边OB上的一点.如图,点P是AOB(1)过点P画OB的垂线,交OA于点E;(2)过点P画OA的垂线,垂足为H;(3)过点P画OA的平行线PC;(4)由题意PH即点P到OA的距离,且PH=1,∴答案为1;(5)∵在RT△PHE中,PH是直角边,PE是斜边,∴PH<PE,同理在RT△POE中,PE是直角边,OE是斜边,∴PE<OE,∴线段PE,PH,OE的大小关系是PH PE OE<<.故答案为PH<PE<OE.【点睛】本题考查垂线和平行线的画法、垂线的应用及直角三角形的性质,熟练掌握“垂线段最短”的定理是解题关键.23.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)∠AOC的对顶角为______,∠AOC的邻补角为______;(2)若∠EOC=70°,求∠BOD的度数;(3)若∠EOC:∠EOD=2:3,求∠BOD的度数.解析:(1)∠BOD,∠BOC或∠AOD;(2)∠BOD=35°;(3)∠BOD=36°.【分析】(1)根据对顶角、邻补角的意义,结合图形即可得出答案;(2)根据角平分线的意义和对顶角的性质,即可得出答案;(3)根据平角、按比例分配,角平分线的意义、对顶角性质可得答案.【详解】(1)根据对顶角、邻补角的意义得:∠AOC的对顶角为∠BOD,∠AOC的邻补角为∠BOC或∠AOD,故答案为:∠BOD,∠BOC或∠AOD(2)∵OA平分∠EOC.∠EOC=70°,∴∠AOE=∠AOC12=∠EOC=35°,∵∠AOC=∠BOD,∴∠BOD=35°,(3)∵∠EOC:∠EOD=2:3,∠EOC+∠EOD=180°,∴∠EOC=180°×25=72°,∠EOD=180°×35=108°,∵OA平分∠EOC,∴∠AOE=∠AOC12=∠EOC=36°,又∵∠AOC=∠BOD,∴∠BOD=36°.【点睛】本题考查对顶角、邻补角、角平分线、平角的意义和性质,通过图形具体理解这些角的意义是正确计算的前提.24.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)∠ABN的度数是_____,∠CBD的度数是_______;(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是多少?解析:(1)116°;58°;(2)不变,∠APB=2∠ADB,理由见解析;(3)29°【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出∠ABN;由角平分线的定义可以证明∠CBD=12∠ABN,即可求出结果;(2)证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;(3)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.【详解】(1)∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;故答案为:116°;58°;(2)不变,∠APB=2∠ADB,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB=2∠ADB;(3)∵AM//BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.25.图形的世界丰富且充满变化,用数学的眼光观察它们,奇妙无比.(1)如图,EF//CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小丽添加的条件:∠B+∠BDG=180°.请你帮小丽将下面的证明过程补充完整.证明:∵EF//CD(已知)∴∠BEF=()∵∠B+∠BDG=180°(已知)∴BC//()∴∠CDG=()∴∠BEF=∠CDG(等量代换)(2)拓展:如图,请你从三个选项①DG//BC,②DG平分∠ADC,③∠B=∠BCD中任选出两个作为条件,另一个作为结论,组成一个真命题,并加以证明.①条件:,结论:(填序号).②证明:.解析:(1)∠BCD;两直线平行,同位角相等;DG;同旁内角互补,两直线平行;∠BCD;两直线平行,内错角相等;(2)①DG∥BC,∠B=∠BCD,DG平分∠ADC,②证明见解析【分析】(1)根据平行线的判定定理和性质定理解答;(2)根据真命题的概念写出命题的条件和结论,根据平行线的判定定理和性质定理、角平分线的定义解答.【详解】(1)证明:∵EF∥CD(已知),∴∠BEF=∠BCD(两直线平行,同位角相等),∵∠B+∠BDG=180°(已知),∴BC∥DG(同旁内角互补,两直线平行),∴∠CDG=∠BCD(两直线平行,内错角相等),∴∠BEF=∠CDG(等量代换);(2)①条件:DG∥BC,∠B=∠BCD,结论:DG平分∠ADC,②证明:∵DG∥BC,∴∠ADG=∠B,∠CDG=∠BCD,∵∠B=∠BCD,∴∠ADG=∠CDG,即DG平分∠ADC.故答案为:(1)∠BCD;两直线平行,同位角相等;DG;同旁内角互补,两直线平行;∠BCD;两直线平行,内错角相等;【点睛】本题考查了命题的真假判断、平行线的判定和性质,掌握平行线的判定定理和性质定理是解题的关键.26.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,∠A=30°,求∠B的度数.解析:(1)CD与EF平行.理由见解析;(2)∠B=35°【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF∥CD;(2)由EF∥CD,根据平行线的性质得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根据内错角相等,两直线平行得到DG∥BC,所以∠ACB=∠3=115°,根据三角形的内角和即可得到结论.【详解】(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°,∵∠A=30°,∴∠B=35°.【点评】本题考查了平行线的判定与性质,注意:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.27.已知,//BC OA ,108B A ∠=∠=°,试解答下列问题:(1)如图①,则O ∠=__________,则OB 与AC 的位置关系为__________(2)如图②,若点E 、F 在线段BC 上,且始终保持FOC AOC ∠=∠,BOE FOE ∠=∠.则EOC ∠的度数等于__________;(3)在第(2)题的条件下,若平行移动AC 到图③所示①在AC 移动的过程中,OCB ∠与OFB ∠的数量关系是否发生改变,若不改变,求出它们之间的数量关系;若改变,请说明理由.②当OCA OEB ∠=∠时,求OCA ∠的度数.解析:(1)72°,平行;(2)36°;(3)①∠OCB=12∠OFB ;②∠OCA=54°. 【分析】(1)根据平行线的性质得出∠B+∠O=180°,求出∠O=72°,求出∠O+∠A=180°,根据平行线的判定得出即可; (2)根据角平分线定义求出1362EOC BOA ︒∠=∠=,即可得出答案; (3)①不变,求出∠OFB=2∠OCB ,即可得出答案; ②设∠BOE=∠EOF=α,∠FOC=∠COA=β,求出∠OCA=∠BOC=2α+β,α=β=18°,即可得出答案.【详解】解:(1)∵BC ∥OA ,∴∠B+∠O=180°,∵∠B=108°,∴∠O=72°,∵∠A=108°,∴∠O+∠A=180°,∴OB ∥AC ,故答案为:72°,平行;(2)∵∠FOC=∠AOC , BOE FOE ∠=∠,∠BOA=72°, ∴11136222EOC EOF FOC BOF FOA BOA ︒∠=∠+∠=∠+∠=∠=, 故答案为:36°;(3)①不变,∵BC∥OA,∴∠OCB=∠AOC,又∵∠FOC=∠AOC,∴∠FOC=∠OCB,又∵BC∥OA,∴∠OFB=∠FOA=2∠FOC,∴∠OFB=2∠OCB,即∠OCB:∠OFB=1:2.即∠OCB=12∠OFB;②由(1)知:OB∥AC,∴∠OCA=∠BOC,由(2)可以设:∠BOE=∠EOF=α,∠FOC=∠COA=β,∴∠OCA=∠BOC=2α+β由(1)知:BC∥OA,∴∠OEB=∠EOA=α+β+β=α+2β∵∠OEB=∠OCA∴2α+β=α+2β∴α=β∵∠AOB=72°,∴α=β=18°∴∠OCA=2α+β=36°+18°=54°.【点睛】本题考查了平行线的性质,与角平分线有关的证明.能灵活运用平行线的性质和判定进行推理是解此题的关键.28.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-5, 1),B(4,0),C(2,5),将△ABC向右平移2个单位长度,再向下平移1个单位长度得到△EFG.(1)画出平移后的图形,并写出△EFG 的三个顶点坐标.(2)求△EFG 的面积.解析:(1)画图见解析;()3,0E -,()6,1F -,()4,4G ;(2)21.5【分析】(1)分别作出A ,B ,C 的对应点E ,F ,G 即可解决问题.(2)利用分割法求三角形面积即可.【详解】解:(1)如图,△EFG 即为所求,E (-3,0),F (6,-1),G (4,4).(2)S △EFG =5×9-12×1×9-12×5×2-12×4×7=21.5. 【点睛】 本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。
苏科版七年级数学平行线相交线综合练习
苏科版七年级数学平行线相交线综合练习1.如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=( )2. 如图,直线a∥b,∠1=60°,∠2=40°,则∠3=___.3. 如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=( )4. 如图,已知a∥b,直角三角板的直角顶角在直线b上,若∠1=60°,则下列结论错误的是( )A.∠2=60°B. ∠3=60°C. ∠4=120°D. ∠5=40°5. 如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于( )6. 如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()7. 如图,两直线AB、CD相交于点O,OE平分∠BOD,如果∠AOC:∠AOD=7:11,(1)求∠COE;(2}若OF⊥OE,求∠COF.8. 如图所示,已知∠B=∠CDF,∠E+∠ECD=180°.试说明AB∥EF.9. 如图,AB∥CD,∠AMP=150°,∠PND=60°,试说明MP⊥PN.10. 如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数。
11. 如图,已知直线l1∥l2,直线l3交l1于点C,交l2于点D,P是线段CD上的一个动点.当点P 在线段CD上运动时,请你探究∠1、∠2、∠3之间的关系.12. 如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?解:a∥c.理由:∵∠1=∠2()∴a∥b.()又∵∠3+∠4=180°(已知),∴b∥c()∴a∥c.()13. 如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数。
最新七年级下册相交线与平行线数学综合测试卷及答案解析
一、选择题1.如图,已知//AB CD ,M 为平行线之间一点连接AM ,CM ,N 为AB 上方一点,连接AN ,CN ,E 为NA 延长线上一点.若AM ,CM 分别平分BAE ∠,DCN ∠,则M ∠与N ∠的数量关系为( ).A .90M N ∠-∠=︒B .2180M N ∠-∠=︒C .180M N ∠+∠=︒D .2180M N ∠+∠=︒ 2.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③ 3.①如图1,AB ∥CD,则∠A +∠E +∠C=180°;②如图2,AB ∥CD,则∠E =∠A +∠C;③如图3,AB ∥CD,则∠A +∠E -∠1=180° ; ④如图4,AB ∥CD,则∠A=∠C +∠P .以上结论正确的个数是( )A .、1个B .2个C .3个D .4个4.如图,//,AD BC D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H ,点F 是边AB 上一点,使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ︒∠=,则BEG ∠的度数是( )A .30︒B .40︒C .50︒D .60︒5.一副直角三角板如图放置,其中∠F =∠ACB =90°,∠D =45°,∠B =60°,AB //DC ,则∠CAE 的度数为( )A .25°B .20°C .15°D .10°6.如图,从①12∠=∠,②C D ∠=∠,③//DF AC 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )A .0B .1C .2D .37.如图,AB ∥EF ∥CD ,EG ∥DB ,则图中与∠1相等的角(∠1除外)共有( )A .6个B .5个C .4个D .3个8.如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒9.如图,//AB CD ,点E 为AB 上方一点,,FB CG 分别为,EFG ECD ∠∠的角平分线,若2210E G ∠+∠=︒,则EFG 的度数为( )A .140︒B .150︒C .130︒D .160︒ 10.如图,已知//a b ,下列正确的是( )A .若12∠=∠,则//c dB .若12∠=∠,则e//fC .若34∠=∠,则//c dD .若34∠=∠,则e//f二、填空题11.如图1,为巡视夜间水面情况,在笔直的河岸两侧(//PQ MN )各安置一探照灯A ,BC (A 在B 的左侧),灯A 发出的射线AC 从AM 开始以a 度/秒的速度顺时针旋转至AN 后立即回转,灯B 发出的射线BD 从BP 开始以1度/秒的速度顺时针旋转至BQ 后立即回转,两灯同时转动,经过55秒,射线AC 第一次经过点B ,此时55ABD ∠=︒,则a =________,两灯继续转动,射线AC 与射线BD 交于点E (如图2),在射线...BD ..到达..BQ ..之前..,当120AEB ∠=︒,MAC ∠的度数为________.12.如图,直线MN ∥PQ ,点A 在直线MN 与PQ 之间,点B 在直线MN 上,连结AB .∠ABM 的平分线BC 交PQ 于点C ,连结AC ,过点A 作AD ⊥PQ 交PQ 于点D ,作AF ⊥AB 交PQ 于点F ,AE 平分∠DAF 交PQ 于点E ,若∠CAE=45°,∠ACB=52∠DAE ,则∠ACD 的度数是_____.13.如图,已知AB ∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC 与∠AEC 之间的数量关系是_____________________________14.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.15.如图,AB ∥EF ,设∠C =90°,那么x ,y ,z 的关系式为______.16.如图,已知∠A =(60﹣x )°,∠ADC =(120+x )°,∠CDB =∠CBD ,BE 平分∠CBF ,若∠DBE =59°,则∠DFB =___.17.如图,已知//AB CD ,13EAF EAB ∠=∠,13ECF ECD ∠=∠,86AFC ∠=︒,则AEC ∠的度数是__________.18.如图,已知40ABC ∠=︒,点D 为ABC ∠内部的一点,以D 为顶点,作EDF ∠,使得//DE BC ,//DF AB ,则EDF ∠的度数为___________.19.已知:如图,CD 平分ACB ∠,12180∠+∠=︒,3A ∠=∠,440∠=︒,则CED ∠=___.20.如图,AB ∥CD ,EM 是∠AMF 的平分线,NF 是∠CNE 的平分线,EN ,MF 交于点O .若∠E +60°=2∠F ,则∠AMF 的大小是___.三、解答题21.已知,//AE BD ,A D ∠=∠.(1)如图1,求证://AB CD ;(2)如图2,作BAE ∠的平分线交CD 于点F ,点G 为AB 上一点,连接FG ,若CFG ∠的平分线交线段AG 于点H ,连接AC ,若ACE BAC BGM ∠=∠+∠,过点H 作HM FH ⊥交FG 的延长线于点M ,且3518E AFH ∠-∠=︒,求EAF GMH ∠+∠的度数.22.已知AB //CD .(1)如图1,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D ;(2)如图,连接AD ,BC ,BF 平分∠ABC ,DF 平分∠ADC ,且BF ,DF 所在的直线交于点F .①如图2,当点B 在点A 的左侧时,若∠ABC =50°,∠ADC =60°,求∠BFD 的度数. ②如图3,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BFD 的度数.(用含有α,β的式子表示)23.已知直线//AB CD ,点P 为直线AB 、CD 所确定的平面内的一点.(1)如图1,直接写出APC ∠、A ∠、C ∠之间的数量关系 ;(2)如图2,写出APC ∠、A ∠、C ∠之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作//EF PC ,作PEG PEF ∠∠=,点G 在直线CD 上,作BEG ∠的平分线EH 交PC 于点H ,若30APC ∠=,140PAB ∠=,求PEH ∠的度数.24.已知//AB CD ,点E 在AB 与CD 之间.(1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.25.问题情境:(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答.问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//PF AD ),请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过点M 作//MO AB ,过点N 作//NP AB ,则//////MO AB CD NP ,根据平行线的性质可得12AMC ∠=∠+∠,223CNE ∠=∠-∠,318021∠=︒-∠,即可得出结论.【详解】解:过点M 作//MO AB ,过点N 作//NP AB ,//AB CD ,//////MO AB CD NP ∴,1AMO ∴∠=∠,OMC MCD ∠=∠, AM ,CM 分别平分BAE ∠,DCN ∠,21BAE ∴∠=∠,22NCD ∠=∠,2MCD ∠=∠,12AMC ∴∠=∠+∠,//CD NP ,22PNC NCD ∴∠=∠=∠,223CNE ∴∠=∠-∠,//NP AB ,318021NAB ∴∠=∠=︒-∠,22(18021)2(12)1802180CNE AMC ∴∠=∠-︒-∠=∠+∠-︒=∠-︒,2180AMC CNE ∴∠-∠=︒,故选:B .【点睛】本题考查了平行线的性质,邻补角的定义,解题的关键是熟练掌握平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等. 2.C解析:C【详解】解:①∵∠B+∠BCD=180°,∴AB ∥CD ;②∵∠1=∠2,∴AD ∥BC ;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行.3.C解析:C【详解】①如图1,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;②如图2,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A=∠AEF,∠C=∠CEF,所以∠A+∠C=∠AEC+∠AEF=∠AEC,则②正确;③如图3,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠1=∠CEF,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P作PF∥AB,因为AB∥CD,所以AB∥PF∥CD,所以∠A=∠APF,∠C=∠CPF,所以∠A=∠CPF+∠APC=∠C+∠APC,则④正确;故选C.4.B解析:B【分析】AD∥BC,∠D=∠ABC,则AB∥CD,则∠AEF=180°-∠AED-∠BEG=180°-2β,在△AEF中,100°+2α+180°-2β=180°,故β-α=40°,即可求解.【详解】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH 的角平分线为EG ,设∠GEH=∠GEF=β,AD ∥BC ,∴∠ABC+∠BAD=180°,而∠D=∠ABC ,∴∠D+∠BAD=180°,∴AB ∥CD ,∠DEH=100°,则∠CEH=∠FAE=80°,∠AEF=180°-∠FEG-∠BEG=180°-2β,在△AEF 中,在△AEF 中,80°+2α+180-2β=180°故β-α=40°,而∠BEG=∠FEG-∠FEB=β-α=40°,故选:B .【点睛】此题考查平行线的性质,解题关键是落脚于△AEF 内角和为180°,即100°+2α+180°-2β=180°,题目难度较大.5.C解析:C【分析】利用平行线的性质和给出的已知数据即可求出CAE ∠的度数.【详解】解:90F ∠=︒,45D ∠=︒,45DEF ∴∠=︒,90ACB ∠=︒,60B ∠=︒,30BAC ∴∠=︒,//AB DC ,45BAE DEF ∴∠=∠=︒,453015CAE BAE BAC ∴∠=∠-∠=︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质,解题的关键是熟记平行线的性质. 6.D解析:D【分析】分别任选其中两个条件作为已知,然后结合平行线的判定与性质,证明剩余一个条件是否成立即可.【详解】解:如图所示:(1)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4;当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F,即①②可证得③;(2)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D,即①③可证得②;(3)当③∠A=∠F,故DF∥AC,则∠4=∠C,当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2,即②③可证得①.故正确的有3个.故选:D.【点睛】本题主要考查了平行线的判定和性质,正确掌握并熟练运用平行线的判定与性质是解题关键.7.B解析:B【分析】根据平行线的性质解答.【详解】解:∵AB∥EF∥CD,∠=∠=∠=∠∴1BDC ABD BHF∵EG∥DB,∠=∠=∠,∴ABD AGE HEG故选:B.【点睛】此题考查平行线的性质:两直线平行,内错角相等,熟记性质定理是正确解题的关键.8.C解析:C【分析】首先证明a∥b,推出∠4=∠5,求出∠5即可.【详解】解:∵∠1=∠2,∴a∥b,∴∠4=∠5,∵∠5=180°﹣∠3=55°,∴∠4=55°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.A解析:A【分析】过G作GM//AB,根据平行线的性质可得∠2=∠5,∠6=∠4,进而可得∠FGC=∠2+∠4,再利用平行线的性质进行等量代换可得3∠1=210°,求出∠1的度数,然后可得答案.【详解】解:过G作GM//AB,∴∠2=∠5,∵AB//CD,∴MG//CD,∴∠6=∠4,∴∠FGC=∠5+∠6=∠2+∠4,∵FG、CG分别为∠EFG,∠ECD的角平分线,∴∠1=∠2=12∠EFG,∠3=∠4=12∠ECD,∵∠E+2∠G=210°,∴∠E+∠1+∠2+∠ECD=210°,∵AB//CD,∴∠ENB=∠ECD,∴∠E+∠1+∠2+∠ENB=210°,∵∠1=∠E+∠ENB,∴∠1+∠1+∠2=210°,∴3∠1=210°,∴∠1=70°,∴∠EFG=2×70°=140°.故选:A.【点睛】此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等.10.D解析:D【分析】根据平行线的性质和平行线的判定逐个分析即可求解.【详解】∠,解:如图,记,e b相交所成的锐角为5,因为//a b,∠+∠=︒,所以35180∠=∠,若34∠+∠=︒,所以54180所以e//f,而1=2∠∠不能推出图中的直线平行,故选D.【点睛】本题主要考查平行线的性质和判定,解决本题的关键是要熟练掌握平行线的性质和判定.二、填空题11.或.【分析】(1)由平行线的性质,得到角之间的关系,然后列出方程,解方程即可;(2)由题意,根据旋转的性质,平行线的性质,可对运动过程分成两种情况进行分析:①射线AC 没到达AN 时,;②解析:120︒或60︒.【分析】(1)由平行线的性质,得到角之间的关系,然后列出方程,解方程即可;(2)由题意,根据旋转的性质,平行线的性质,可对运动过程分成两种情况进行分析:①射线AC 没到达AN 时,120AEB ∠=︒;②射线AC 到达AN 后,返回旋转的过程中,120AEB ∠=︒;分别求出答案即可.【详解】解:(1)如图,射线AC 第一次经过点B ,∵//PQ MN ,∴M AB ABP ABD DBP ∠=∠=∠+∠,∴55MAB DBP ∠=︒+∠,∴5555551a =︒+⨯︒,解得:2a =;故答案为:2.(2)①设射线AC 的转动时间为t 秒,则如图,作EF //MN //PQ ,由旋转的性质,则1802∠=︒-︒,PBE tEAN t∠=︒,∵EF//MN//PQ,∴1802AEF EAN t∠=∠=︒,∠=∠=︒-︒,FEB PBE t∵120∠=∠+∠=︒,AEB AEF FEB∴1802120︒-︒+︒=︒,t t∴60t=(秒),∴260120∠=⨯=︒;MAC②设射线AC的转动时间为t秒,则如图,作EF//MN//PQ,此时AC为达到AN之后返回途中的图像;与①同理,∴3602∠=︒-︒,180MAC t∠=︒-︒,QBE t∵120∠=∠+∠=︒,AEB AEF FEB∴3602180120︒-︒+︒-︒=︒,t tt=(秒);解得:120∴360212060MAC∠=︒-⨯=︒;∠的度数为:120︒或60︒;综合上述,MAC故答案为:120︒或60︒.【点睛】本题考查了旋转的性质,平行线的性质,解题的关键是熟练掌握所学的知识,正确的分析题意,作出辅助线,运用分类讨论的思想进行解题.12.27°.【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD解析:27°.【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-12∠FAD=45°-12(90°-∠AFD)=12∠AFD,因为MN∥PQ,所以∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,所以∠ACD=12∠AFD=12(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,所以∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-25∠BCA=45°-18°=27°.故∠ACD的度数是:27°.【点睛】本题利用平行线、垂直、角平分线综合考查了角度的求解.13.4∠AFC=3∠AEC【详解】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=18解析:4∠AFC=3∠AEC【详解】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°-(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC═3(x°+y°),即可得出答案.【详解】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°),∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),∴∠AFC=34∠AEC,即:4∠AFC=3∠AEC,故正确答案为:4∠AFC=3∠AEC.【点睛】本题考查了平行线性质和三角形内角和定理的应用,注意:两直线平行,同旁内角互补.14.80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.解析:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.15.y=90°-x+z.【分析】作CG∥AB,DH∥EF,由AB∥EF,可得AB∥CG∥HD∥EF,根据平行线性质可得∠x=∠1,∠CDH=∠2,∠HDE=∠z,由∠C=90°,可得∠1+∠2=90解析:y=90°-x+z.【分析】作CG∥AB,DH∥EF,由AB∥EF,可得AB∥CG∥HD∥EF,根据平行线性质可得∠x=∠1,∠CDH=∠2,∠HDE=∠z,由∠C=90°,可得∠1+∠2=90°,由∠y=∠z+∠2,可证∠y=∠z+90°-∠x即可.【详解】解:作CG∥AB,DH∥EF,∵AB∥EF,∴AB ∥CG ∥HD ∥EF ,∴∠x =∠1,∠CDH =∠2,∠HDE =∠z∵∠BCD =90°∴∠1+∠2=90°,∠y =∠CDH +∠HDE =∠z +∠2,∵∠2=90°-∠1=90°-∠x ,∴∠y =∠z +90°-∠x .即y =90°-x +z .【点睛】本题考查平行线的性质,掌握平行线的性质,利用辅助线画出准确图形是解题关键. 16.【分析】根据题意可得,设,分别表示出,进而根据平行线的性质可得∠DFB .【详解】∠A =(60﹣x )°,∠ADC =(120+x )°,,,,,,BE 平分∠CBF ,,设,∠DB解析:62︒【分析】根据题意可得//AB CD ,设EBF EBC α∠=∠=,分别表示出,ABD DBF ∠∠,进而根据平行线的性质可得∠DFB .【详解】∠A =(60﹣x )°,∠ADC =(120+x )°,180A ADC ∴∠+∠=︒,//AB CD ∴,CDB ABD∴∠=∠,∠=∠,CDB CBD∴∠=∠,ABD CBDBE平分∠CBF,∴∠=∠,EBF EBC∠=∠=,设EBF EBCα∠DBE=59°,∴59DBFα∠=︒-,∴∠=∠=︒+,ABD DBCα59∴∠=∠+∠=︒++︒-=︒,ABF ABD DBFαα5959118AB CD,//180********∴∠=︒-∠=︒-︒=︒.DFB ABF故答案为:62︒.【点睛】AB CD是解题的关键.本题考查了平行线的判定与性质,角平分线的定义,证明//17.【分析】连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°−(2x+2y),求出∠AEC=2解析:129︒【分析】连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°−(2x+2y),求出∠AEC=2(x+y),∠AFC═2(x+y),即可得出答案.【详解】解:连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+3x+∠ACE+3y=180°,∴∠CAE+∠ACE=180°−(3x+3y),∠FAC+∠FCA=180°−(2x+2y)∴∠AEC=180°−(∠CAE+∠ACE)=180°−[180°−(3x+3y)]=3x+3y=3(x+y),∠AFC=180°−(∠FAC+∠FCA)=180°−[180°−(2x+2y)]=2x+2y=2(x+y),∠AFC=129°.∴∠AEC=32故答案为:129°.【点睛】本题考查了平行线的性质和三角形内角和定理的应用,根据题意作出辅助线,构造出三角形,利用三角形内角和定理求解是解答此题的关键.18.或【分析】由题意可分两种情况分别画出图形,然后根据平行线的性质进行求解即可.【详解】解:由题意得:①如图,∵,,∴,∵,∴;②如图,∵,,∴,∵,∴,∴;综上所述解析:40︒或140︒【分析】由题意可分两种情况分别画出图形,然后根据平行线的性质进行求解即可.【详解】解:由题意得:①如图,∵//DF AB ,40ABC ∠=︒,∴40DFC ABC ∠=∠=︒,∵//DE BC ,∴40DFC EDF ∠=∠=︒;②如图,∵//DF AB ,40ABC ∠=︒,∴40DFC ABC ∠=∠=︒,∵//DE BC ,∴180DFC EDF ∠+∠=︒,∴140EDF ∠=︒;综上所述:EDF ∠的度数为40︒或140︒;故答案为40︒或140︒.【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键,注意分类讨论. 19.100°【分析】先由同位角相等,证得,进而证得,再由平行线的性质得出与的数量关系,然后由已知条件求得,最后用减去,即可求得答案.【详解】解:,平分,故答案为:.【点睛解析:100°【分析】先由同位角相等,证得//EF AB ,进而证得//AC DE ,再由平行线的性质得出CED ∠与ACB ∠的数量关系,然后由已知条件求得ACB ∠,最后用180︒减去ACB ∠,即可求得答案.【详解】解:12180∠+∠=︒,1180BDC ∠+∠=︒2BDC ∴∠=∠//EF AB ∴3BDE ∴∠=∠3A ∠=∠A BDE ∴∠=∠//AC DE ∴180ACB CED ∴∠+∠=︒ CD 平分ACB ∠,440∠=︒2424080ACB ∴∠=∠=⨯︒=︒180********CED ACB ∴∠=︒-∠=︒-︒=︒故答案为:100︒.【点睛】本题考查了平行线的判定与性质,解题的关键是熟练掌握相关判定定理与性质定理. 20.【分析】作,则,,而,所以,同理可得,变形得到,利用等式的性质得,加上已给条件,于是得到,易得的度数.【详解】解:作,如图,,,,,是的平分线,,,,同理可得,,,解析:40︒【分析】作//EH AB ,则1AME ∠=∠,2CNE ∠=∠,而12AME AMF ∠=∠,所以12MEN AMF CNE ∠=∠+∠,同理可得12F AMF CNE ∠=∠+∠,变形得到22F AMF CNE ∠=∠+∠,利用等式的性质得322F E AMF ∠-∠=∠,加上已给条件602MEN F ∠+︒=∠,于是得到3602AMF ∠=︒,易得AMF ∠的度数. 【详解】解:作//EH AB ,如图,//AB CD ,//EH CD ,1AME ∴∠=∠,2CNE ∠=∠,EM 是AMF ∠的平分线,12AME AMF ∴∠=∠, 12MEN ∠=∠+∠,12MEN AMF CNE ∴∠=∠+∠, 同理可得,12F AMF CNE ∠=∠+∠, 22F AMF CNE ∴∠=∠+∠,322F MEN AMF ∴∠-∠=∠, 602MEN F ∠+︒=∠,即260F MEN ∠-∠=︒,∴3602AMF ∠=︒, 40AMF ∴∠=︒,故答案为:40︒.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,合理作辅助线和把一般结论推广是解决问题的关键.三、解答题21.(1)见解析;(2)72︒【分析】(1)根据平行线的性质得出180A B ∠+∠=︒,再根据等量代换可得180B D ∠+∠=︒,最后根据平行线的判定即可得证;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB ,根据平行线的性质及等量代换可得出ECQ BGM DFG ∠=∠=∠,再根据平角的含义得出ECF CFG ∠=∠,然后根据平行线的性质及角平分线的定义可推出,BHF CFH CFA FAB ∠=∠∠=∠;设,FAB CFH αβ∠=∠=,根据角的和差可得出2AEC AFH ∠=∠,结合已知条件35180AEC AFH ∠-∠=︒可求得18AFH ∠=︒,最后根据垂线的含义及平行线的性质,即可得出答案.【详解】(1)证明://AE BD180A B ∴∠+∠=︒A D ∠=∠180B D ∴∠+∠=︒//AB CD ∴;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB//AB CDQCA CAB ∴∠=∠,BGM DFG ∠=∠,CFH BHF ∠=∠,CFA FAG ∠=ACE BAC BGM ∠=∠+∠ECQ QCA BAC BGM ∴∠+∠=∠+∠ECQ BGM DFG ∴∠=∠=∠180,180ECQ ECD DFG CFG ∠+=︒∠+=︒ECF CFG ∴∠=∠//AB CD//AB EP ∴,PEA EAB PEC ECF ∴∠=∠∠=∠AEC PEC PEA ∠=∠-∠AEC ECF EAB ∴∠=∠-∠ECF AEC EAB ∴∠=∠+∠AF 平分BAE ∠12EAF FAB EAB ∴∠=∠=∠ FH 平分CFG ∠12CFH HFG CFG ∴∠=∠=∠ //CD AB,BHF CFH CFA FAB ∴∠=∠∠=∠设,FAB CFH αβ∠=∠=AFH CFH CFA CFH FAB ∠=∠-∠=∠-∠AFH βα∴∠=-,BHF CFH β∠=∠=222ECF AFH AEC EAB AFH AEC β∴∠+∠=∠+∠+∠=∠+22ECF AFH E BHF ∴∠+∠=∠+∠2AEC AFH ∴∠=∠35180AEC AFH ∠-∠=︒18AFH ∴∠=︒FH HM ⊥90FHM ∴∠=︒90GHM β∴∠=︒-180CFM NMF ∠+∠=︒90HMB HMN β∴∠=∠=︒-EAF FAB ∠=∠18EAF CFA CFH AFH β∴∠=∠=∠-∠=-︒189072EAF GMH ββ∴∠+∠=-︒+︒-=︒72EAF GMH ∴∠+∠=︒.【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.22.(1)见解析;(2)55°;(3)1118022αβ︒-+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数.【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠, 1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒, 55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒;②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.即180BFD FBA FDC ∠=︒-∠+∠, BF 平分ABC ∠,DF 平分ADC ∠, 1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=, 1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+. 答:BFD ∠的度数为1118022αβ︒-+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 23.(1)∠A +∠C +∠APC =360°;(2)见解析;(3)55°【分析】(1)首先过点P 作PQ ∥AB ,则易得AB ∥PQ ∥CD ,然后由两直线平行,同旁内角互补,即可证得∠A +∠C +∠APC =360°;(2)作PQ ∥AB ,易得AB ∥PQ ∥CD ,根据两直线平行,内错角相等,即可证得∠APC =∠A +∠C ;(3)由(2)知,∠APC =∠PAB -∠PCD ,先证∠BEF =∠PQB =110°、∠PEG =12∠FEG ,∠GEH =12∠BEG ,根据∠PEH =∠PEG -∠GEH 可得答案.【详解】解:(1)∠A +∠C +∠APC =360°如图1所示,过点P 作PQ ∥AB ,∴∠A +∠APQ =180°,∵AB ∥CD ,∴PQ ∥CD ,∴∠C +∠CPQ =180°,∴∠A +∠APQ +∠C +∠CPQ =360°,即∠A +∠C +∠APC =360°;(2)∠APC =∠A +∠C ,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=12∠FEG,∵EH平分∠BEG,∴∠GEH=12∠BEG,∴∠PEH=∠PEG-∠GEH=1 2∠FEG-12∠BEG=12∠BEF=55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG +∠DEG =360°-(∠ABE +∠CDE ),即∠BED =360°-(∠ABE +∠CDE ),因为BF 平分∠ABE ,所以∠ABE =2∠ABF ,因为DF 平分∠CDE ,所以∠CDE =2∠CDF ,∠BED =360°-2(∠ABF +∠CDF ),由(1)得:因为AB ∥CD ,所以∠BFD =∠ABF +∠CDF ,所以∠BED =360°-2∠BFD .【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质. 25.(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°; (2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180BCP ,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.【详解】解:(1)过P 作//PE AB ,//AB CD ,////PE AB CD ∴,=180APE PAB ,180CPE PCD ∠+∠=︒,128PAB ∠=︒,119PCD ∠=︒52APE ∴∠=︒,61CPE ∠=︒,5261113APC ∴∠=︒+︒=︒;(2)180CPD αβ∠=∠+︒-∠,理由如下:如图3,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠又ADP α∠=∠=180CPD DPF CPF ;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠; 理由:如图4,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠,180CPD CPF DPF αβ∴∠=∠-∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠. 理由:如图5,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠180CPD DPF CPF αβ∴∠=∠-∠=∠+∠-︒.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版七年级数学平行线相交线综合练习
1.如图,直线a∥b,c,d是截线且交于点A,若∠1=60∘,∠2=100∘,则∠A=( )
2. 如图,直线a∥b,∠1=60∘,∠2=40∘,则∠3=___.
3. 如图,AB∥DE,FG⊥BC于F,∠CDE=40∘,则∠FGB=( )
4. 如图,已知a∥b,直角三角板的直角顶角在直线b上,若∠1=60∘,则下列结论错误的是( )
A.∠2=60∘
B. ∠3=60∘
C. ∠4=120∘
D. ∠5=40∘
5. 如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32∘,则∠GHC等于( )
6. 如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()
7. 如图,两直线AB、CD相交于点O,OE平分∠BOD,如果∠AOC:∠AOD=7:11,
(1)求∠COE;
(2}若OF⊥OE,求∠COF.
8. 如图所示,已知∠B=∠CDF,∠E+∠ECD=180°.试说明AB∥EF.
9. 如图,AB∥CD,∠AMP=150°,∠PND=60°,试说明MP⊥PN.
10. 如图所示,∠1=72∘,∠2=72∘,∠3=60∘,求∠4的度数。
11. 如图,已知直线l1∥l2,直线l3交l1于点C,交l2于点D,P是线段CD上的一个动点.当点P 在线段CD上运动时,请你探究∠1、∠2、∠3之间的关系.
12. 如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180∘,则a与c平行吗?为什么?解:a∥c.
理由:∵∠1=∠2()
∴a∥b.()
又∵∠3+∠4=180∘(已知),
∴b∥c()
∴a∥c.()
13. 如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55∘,求∠2的度数。
14. 图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由。
15. 如图,AB∥CD,直线EF分别交AB、CD于点E. F,EG平分∠BEF.若∠1=72∘,则∠2的度数为多少?
16. 如图,已知AB∥CD,EF∥GC,你能否推出∠1=∠C?试说明理由.。