一种吸盘式搬运机械手的设计与研究
机器人真空吸盘阵列搬运抓手设计(范文)
摘要工业机器人是现代人为了加大生产效率,提高生产力而发明的一种机器装置,他代表着几次工业革命过后的最高科技生产水平。
科技的飞快发展,工业机器人的水平也越来越高,拥有多关节、多自由度的工业机器人则愈来愈智能化,愈来愈多样化,应用到各个方方面面,搬运、医疗、救援勘探、工厂流水线。
不同国家的机器人发展水平参差不齐,差距十分大。
我们国家的机器人产业目前就很落后,美,日等国家机器人产业水平相当高,像ABB公司则代表瑞士的最高水平,其旗下的产品功能十分强大,占据了工业机器人江山的很大一部分,代表着工业机器人的高水平。
本文详细介绍了如何开展ABB IRB 120机器人集成应用设计工作,用Sol idworks 软件设计机器人末端执行器(气动吸盘阵列工具)与机器人末端法兰无缝连接的连接机构,能够实现纸箱(长120mm,宽80mm,高200mm)三维矩阵搬运功能,并基于Robotstud i o软件进行运动规划与仿真.关键词:工业机器人气动吸盘规划与仿真AbstractIndustrial robot is a kind of machine device invented by modern people to increase production efficiency and increase productivity. It represents the highest level of high-tech production after several industrial revolutions. With the rapid progress of science and technology, the level of industrial robots has also developed very fast, with multi-joint, multi-degree of freedom industrial robots more and more intelligent, more and more diversified, applied to all aspects, handling, medical treatment, rescue exploration, factory assembly line. The level of robot development in different countries is uneven and the gap is very large. China's robotics industry is lagging behind, but companies like ABB represent the highest levels in Sweden, Switzerland The product function is very powerful, occupies a large part of the industrial robot Jiangshan, represents the high level of industrial robot.this paper introduces in detail how to carry out the ABB IRB 120 robot integrated application design work, using Solidworks software to design the robot end actuator (pneumatic sucker array tool) and the robot end flange seamless connection mechanism, can realize the carton (120 mm, wide 80 mm, high 200 mm)3d matrix handling function, and based on Robotstudio software for motion planning and simulation.Key words: industrial robot pneumatic sucker planning and simulationPN 系列:同PK 系列的性质一样。
吸盘式Scara机械臂结构设计
目录摘要 (I)ABSTRCT (II)1 绪论 (1)1.1课题背景 (1)1.2机器人的定义及特点 (1)1.2.1 机器人的定义 (2)1.2.2 机器人的特点 (3)1.3机器人的构成及分类 (4)1.3.1 机器人的构成 (4)1.3.2 机器人的分类 (5)1.4机器人的应用与发展 (7)1.4.1 机器人的应用 (7)1.4.2 机器人的发展 (9)1.5本文的研究内容 (11)2 SCARA机器人的研究意义和原理设计 (13)2.1SCARA机器人的研究意义 (13)2.2SCARA机器人的特点 (14)2.3SCARA机器人传动方案的确定 (15)3 吸盘式SCARA机械臂驱动设计 (18)3.1机器人驱动方案的对比分析及选择 (18)3.2各自由度步进电机的选择 (19)3.2.1 第一自由度步进电机的选择 (20)3.2.2 第二自由度步进电机的选择 (21)3.2.3 第三自由度步进电机的选择 (22)3.2.4 第四自由度步进电机的选择 (23)4 吸盘式SCARA机械臂集成模块化机构设计 (25)4.1同步齿形带传动设计 (25)4.1.1 求出设计功率Pd (25)4.1 2 选择带的节距 (25)4.1 3 确定带轮直径和带节线长 (25)4.2丝杠螺母设计 (29)4.2.1 丝杠耐磨性计算 (29)4.2.2 丝杠稳定性计算 (30)4.2.3 丝杠刚度计算 (30)4.2.4 丝杠和螺母螺纹牙强度计算 (31)4.2.5 螺纹副自锁条件校核 (32)4.3各输出轴的设计 (32)4.3.1 机身输出轴设计 (32)4.3.2 大臂输出轴设计 (32)4.4壳体设计 (34)结论 (38)致谢 (39)参考文献 (40)吸盘式Scara机械臂结构设计摘要在装配机器人中,平面关节型装配机器人(即SCARA型)是应用最广泛的一种装配机器人。
本文设计的SCARA机器人既可以用于实际生产,又可以用于教学实验和科学研究。
机械手电磁吸盘的设计
机械手电磁吸盘的设计机械手电磁吸盘的设计一、工作原理电磁吸盘是安装在手腕的前端,通过电磁吸力把工件吸住。
其工作原理如图1所示,当线圈1通入电流后,在铁芯2内外激起磁场,由线圈出来的磁力经过铁芯、空气隙和被磁化的衔铁3而形成闭合回路。
根据线圈中电流I的方向,可用右手螺旋法则来确定线圈的磁力线的方向,凡磁力线出来的那个磁极为N 极,而磁力线进入的那个磁极为S极,同时衔铁3被磁化,其极性与铁芯线圈产生的磁场极性相反,根据异极性相吸的特性,衔铁受到电磁力F的作用,被吸向铁芯。
有的电磁铁中衔铁是固定的,由靠近它的铁磁物质(即工件)被磁化形成对应的异性磁极,因而受到电磁吸力的作用被吸住。
若切断电流时,铁芯内外的磁场随即消失,衔铁将被释放或放下工件。
图1 电磁铁工作原理图2 电磁铁形式电磁铁主要由铁芯、绕在铁芯上的线圈及原来不显磁性的铁磁物质制成的衔铁所组成,其结构型式如图2所示。
图(a)为螺管式的电磁铁,在交流和直流电路上均有应用,这种电磁铁的气隙全部在激磁线圈中间,吸力较大。
如带有电磁铁的挤压气吸式吸盘即属于此类型。
图(b)为盘式电磁铁,其整个磁路结构像一个圆盘,磁通经过一个几乎密合的气隙,能产生很大的吸力,它的结构简单,动作快,控制功率小,在自动控制中得到广泛的应用。
图3为盘式电磁吸盘的结构图,铁芯l和磁盘3之间用黄铜焊料焊接并构成隔磁环2,既焊为一体又将铁芯和磁盘分隔,这样使铁芯1成为内磁极,磁盘3成为外磁极。
其磁路由壳体6的外圈,经磁盘3、工件和铁芯1,再到壳体内圈形成闭合回路,以此吸附工件。
铁芯、磁盘和壳体均采用8~10号低碳钢制成,可减少剩磁,并在断电时不吸或少吸铁屑。
盖5为隔磁材料用黄铜或铝板制成,用以压住线圈11防止工作过程中线圈的活动。
挡板7、8用以调整铁芯与壳体的轴向间隙,即磁路气隙δ,在保证铁芯正常转动情况下,δ毫气隙越小越好,气隙越大电磁吸力会显著地减小,因此,一般取3.0=~1.0米。
毕业设计-真空吸盘式气动机械手电气控制原理图03
臂部回转 臂部延伸 放松工件 臂部收缩 臂部回转 卸荷
UnRegistered
自动方式初始状态 状态转移开始 原点位置条 件
臂部下降
吸持工件
臂部上升
臂部回转 臂部延伸
吸持输入
放松输入
臂部上升输 入
臂部下降输 入
臂部伸出输 入
臂部收缩输 入
臂部正转输 入
臂部反转输 入
上升 下降 伸出 收缩 正转 反转
机械手手动方式梯形图
放松工件
臂部收缩
机械手控制系统图
臂部回转
机械手自动方式状态图
标记 处数 分区 更改文件号 签名 年 月 日
机械手电气控
设计 制图
标准化
阶段标记 重量 比例
制原理图
审核
真空吸盘式机械手毕业设计
真空吸盘式机械手毕业设计1 基本介绍真空吸盘式机械手是一种多用途机械手,它具有高灵活性、高效能和低噪音特性,多用于物料搬运、自动装配、测量和检测、搬运、放料等不同领域中。
它通过以气泵为驱动源的一组真空吸盘,产生真空吸附力,采用机械手臂,实现物体的抓取、放置和定位,从而实现自动操作。
2 基本原理真空吸盘式机械手的工作原理是通过真空系统,在被吸抓的物体表面形成一个负压区,来实现物体的抓取。
真空系统产生的真空力,有别于三角手抓使用的夹持力或气缸产生的推力,可以穿越薄膜和有节距离的阻隔层,在非正面或反面轮廓面上可以小位移大抓取力的形式来实现抓取。
其工作原理如下:1. 压缩空气由汽缸进入吸盘,使之形成负压环境;2. 真空吸盘和被吸抓物体表面接触,产生负压力,使物体被吸附;3. 吸盘上的弹性塞固定物体,提高抓取稳定性;4. 机械臂将吸盘移动,达到抓取目的地位。
3 核心结构真空吸盘机械手完成抓取功能的核心元件是真空吸盘、机械臂等,它们之间相互协同,协调控制抓取动作,从而实现抓取工作任务。
1. 真空吸盘:真空吸盘由真空吸盘主体、真空系统、弹性塞、传动机构组成,其中,真空吸盘主体可根据被抓取物体的形状和表面状态来选择不同的规格,真空系统可根据实际需要来安装真空泵,弹性塞可增大抓取力度,传动机构根据吸盘旋转的需要来设计。
2. 机械臂:机器手臂是由主轴、运动轴、活动部件及驱动部件组成,它负责将吸盘移动到抓取位置处,完成任务。
4 优缺点真空吸盘机械手抓取力大,可以根据物体表面曲线来调节解决吸盘面积,用非正面形象的抓取物体,不依赖物体的表面刚度。
它的定位准确、运行稳定、噪音小,也能实现大幅度的位移运动,可广泛应用于各行各业。
但真空吸盘式机械手占用空间大,由于特殊负压条件,它噪音较大,且容易受到外界烟尘等物质影响,抓取精度有限,需要特殊夹具才能实现取、放工作。
真空吸盘式气动机械手的设计
真空吸盘式气动机械手的设计引言真空吸盘式气动机械手是一种常用于工业自动化领域的装配设备,它通过利用气压差来实现抓取、移动和放置工件的功能。
本文将介绍真空吸盘式气动机械手的设计原理、结构组成、工作流程以及相关的注意事项。
设计原理真空吸盘式气动机械手的设计原理基于气体压力差的作用。
通过管道连接气源,将空气抽出形成真空,使吸盘吸附在工件表面。
当气源关闭或者气源阀门打开,气压平衡,吸盘将释放工件。
气动执行器控制气压的变化,从而实现吸盘的吸附和释放。
结构组成真空吸盘式气动机械手一般由气动执行器、真空发生器、吸盘、管道和控制系统等组成。
气动执行器控制气压的变化,真空发生器产生真空,吸盘用于吸附工件,管道连接各个部件,控制系统控制机械手的运动路径和动作。
功能实现真空吸盘式气动机械手的功能主要包括抓取、移动和放置工件。
当机械手需要抓取工件时,气动执行器放空气使吸盘吸附在工件表面,然后机械手移动到目标位置,气动执行器充气使吸盘释放工件。
注意事项在设计真空吸盘式气动机械手时,需要注意以下事项: - 吸盘的选择:根据工件的大小、材质和表面特性选择合适的吸盘。
- 气源控制:合理设计气源系统,确保气压稳定可靠。
- 控制系统:编写健壮的控制程序,确保机械手的准确和稳定性。
- 安全性:保证机械手运行过程中不会发生意外伤害,如避免误操作等。
结论真空吸盘式气动机械手是一种广泛应用于工业生产中的自动化装配设备,通过气压差实现工件的抓取和放置。
设计合理的机械手可以提高生产效率和产品质量,减少人力成本。
因此,在设计机械手时需要充分考虑各方面的因素,确保机械手的稳定性和可靠性。
以上是关于真空吸盘式气动机械手设计的内容。
如有需要,可根据具体情况进行进一步的完善和扩展。
毕业设计(论文)开题报告-吸盘式板材搬运工业机器人设计
毕业设计方案题目学院机械工程学院专业机械工程及自动化班级学生学号20090404048指导教师二〇一一年月日学院机械工程学院专业机械工程及自动化学生学号设计题目一、选题背景与意义1.国内外研究现状采用机械手完成玻璃的装卸、搬运与放置。
工业机械手是一种模仿人体上肢部分功能,按照预定要求输送工件或握持工具进行操作的自动化技术设备,它可以代替手的繁重劳动,改善劳动条件,提高劳动生产率和自动化水平。
着广阔的发展前途。
目前国内机械于主要用于机床加工、铸锻、热处理等方面,数量、品种、性能方面都不能满足工业生产发展的需要。
所以,在国内主要是逐步扩大应用范围,以减轻劳动强度,改善作业条件,在应用专用机械手的同时,相应的发展通用机械手,有条件的还要研制示教式机械手、计算机控制机械手和组合机械手等。
同时要提高速度,减少冲击,正确定位,以便更好的发挥机械手的作用。
考虑与计算机连用,逐步成为整个机械制造系统中的一个基本单元。
国外机械手在机械制造行业中应用较多,发展也很快。
目前主要用于机床、横锻压力机的上下料,以及点焊、喷漆等作业,它可按照事先指定的作业程序来完成规定的操作。
国外机械手的发展趋势是大力研制具有某种智能的机械手。
使它具有一定的传感能力,能反馈外界条件的变化,作相应的变更。
如位置发生稍许偏差时,即能更正并自行检测,重点是研究视觉功能和触觉功能。
目前已经取得一定成绩。
目前世界高端工业机械手均有高精化,高速化,多轴化,轻量化的发展趋势。
定位精度可以满足微米及亚微米级要求,运行速度可以达到3M/S,量新产品达到6轴,负载2KG的产品系统总重已突破100KG。
更重要的是将机械手、柔性制造系统和柔性制造单元相结合,从而根本改变目前机械制造系统的人工操作状态。
同时,随着机械手的小型化和微型化,其应用领域将会突破传统的机械领域,而向着电子信息、生物技术、生命科学及航空航天等高端行业发展。
2.目的及意义单靠人力将这些不连续的生产工序衔接起来,不仅费时而且效率不高。
一种吸盘式搬运机械手的设计与研究分析
此前我们指出了系统的Vukobratovic还能进行能量分析,但它的力量是有限的,搬运随时间的整个系统的变化,并没有太多涉及这个问题。但是在他的研究中,Vukobratovic得出一个有用的结论,即平滑的姿态,人型系统所消耗的功率就越少。随着社会的开展,需求的增加,和实际问题的待解决,国外相继研究出各种机器人,并且已经很好地应用于各个领域,得到了很好地开展。
我国机器人市场竞争越来越剧烈,中国制造业面临着与国际接轨、参与国际分工的巨大挑战,加快机器人技术的研究开发与生产是我们抓住这个机遇的时机。目前,国际制造业中心正向中国转移,用信息化带开工业化、用高新技术改造传统产业已成为中国制造工业开展的必由之路。我国要大力开展制造业,必须科技创新,与时俱进,开创美好的未来,未来机器人的开展是不可估量的,具有非常好的广阔前景。
这次研究的吸盘式搬运机械手主要由类似人的手和臂组成,它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身平安,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。
1.3 关节机械手的总体结构
关节机械手的组成及各局部关系概述如下图:
1.3机械手的组成和相互关系
它主要由机械系统〔执行系统,牵引系统〕,探测系统和智能控制系统组成。
1.执行系统:共用局部的执行系统部门,机械零件最全面的定义,以必要的各种运动,包括手,手腕,来获得身体。
A.末端执行用于执行,并且配置的零件直接用于执行动作。
B.手腕,手和臂的连接,具有安排作为任务或工作的端部的方向的改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科毕业设计一种吸盘式搬运机械手的设计与研究商 丘工学院2016-JX-SJ 080202-115 学 院机械工程学院 专 业机械设计制造及其自动化 学 号4112020407 学生姓名周成 指导教师张保恒 高威 提交日期 2016 年 05 月 23 日诚信承诺书本人郑重承诺和声明:我承诺在毕业论文撰写过程中遵守学校有关规定,恪守学术规范,此毕业设计中均系本人在指导教师指导下独立完成,没有剽窃、抄袭他人的学术观点、思想和成果,没有篡改研究数据,凡涉及其他作者的观点和材料,均作了注释,如有违规行为发生,我愿承担一切责任,接受学校的处理,并承担相应的法律责任。
毕业设计作者签名:年月日摘要根据工厂的实际环境和自动化设备的布局,设计了六个自由度的关节型吸盘式搬运机械手,它基本能够到达空间的任意位置,实现物品的准确转移。
通过查阅相关资料,结合各方面的因素,确定了机械手的总体设计方案,通过相关的技术参数的查阅,确定了手臂、吸盘等参数的标准化。
在此基础上通过采样、分析、计算、校验,确定了各部件的结构尺寸,以及电机、减速器规格的选择。
通过solidworks软件,根据相关尺寸的大小,绘制出机械手的三维实体模型,并且绘制出相应的工程图。
对吸盘机械手进行运动学分析及手臂的位移、速度、加速度等运动仿真,模拟出机械手的运动轨迹,绘制出机械手的运动参数曲线图,并能够实现物品迅速准确转移到目的地的动作。
关键词:吸盘式关节型机械手;机器臂结构分析;结构设计;三维设计;运动学仿真ASTRACTAccording to the layout of the actual plant environment and automation equipment, the design of the six degrees of freedom articulated suction cup type manipulator, which can basically arrive at arbitrary location in space, to realize the accurate transfer. Through access to relevant information, combined with various aspects of factors, to determine the overall design scheme of the manipulator, through access to relevant technical parameters to determine the arm, standardization of disk parameters. On this basis, through sampling, analysis, calculation and validation, to determine the structure size of each component, and the motor, deceleration device specification.By SolidWorks software, according to the size related to the size of the draw the three-dimensional entity model of the manipulator, and draw the corresponding engineering drawings. The manipulator sucker for kinematics analysis and arm of the displacement, velocity and acceleration of motion simulation. Simulation of the trajectory of the manipulator draw manipulator motion of parametric curves, and can realize the goods quickly and accurately transferred to the destination of the action.Key words:Articulated manipulator;Robot arm structure analysis;Structure design;Three-dimensional design;Kinematics simulation目录1 绪论 01.1 引言 01.2 关节机械手研究概况 (1)1.2.1 国外研究现状 (1)1.2.2 国内研究现状 (1)1.3 关节机械手的总体结构 (2)1.4 主要内容 (3)1.5 本章小结 (4)2 总体方案设计 (5)2.1 机械手工程概述 (5)2.2 工业机械手总体设计方案论述 (5)2.3 机械手机械传动原理 (6)2.4 机械手总体方案设计 (7)2.5 本章小结 (8)3 机械手大臂部结构设计 (9)3.1 大臂部结构设计的基本要求 (9)3.2 大臂部结构设计 (9)3.3 大臂电机及减速器选型 (9)3.4 减速器参数的计算 (10)3.5承载能力的计算 (14)3.5.1 柔轮齿面的接触强度的计算 (14)3.5.2 柔轮疲劳强度的计算 (15)3.6 本章小结 (19)4 小臂结构设计 (20)4.1 腕部设计 (20)4.1.1 手腕偏转驱动计算 (20)4.1.2 手腕俯仰驱动计算 (31)4.1.3 电动机的选择 (31)4.2 小臂部结构设计 (33)4.3 小臂电机及减速器选型 (33)4.3.1 传动结构形式的选择 (34)4.3.2 几何参数的计算 (34)4.4 凸轮波发生器及其薄壁轴承的计算 (35)4.4.1 柔轮齿面的接触强度的计算 (36)4.4.2 柔轮疲劳强度的计算 (36)4.5 轴结构尺寸设计 (38)4.6 轴的受力分析及计算 (38)4.7 轴承的寿命校核 (39)4.8 本章小结 (41)5 机身设计 (42)5.1 步进电机选择 (42)5.1.1 计算输出轴的转矩 (42)5.1.2 确定各轴传动比 (44)5.1.3 传动装置的运动和动力参数 (44)5.2 齿轮设计与计算 (47)5.2.1 高速级齿轮设计与计算 (47)5.2.2 低速级齿轮设计与计算 (51)5.3 轴的设计与计算 (54)5.3.1 输入轴的设计与计算 (54)5.3.2 中间轴的设计与计算 (57)5.3.3 输出轴的设计与计算 (60)5.4 轴承的校核 (62)5.4.1 输入轴上轴承寿命计算 (62)5.4.2 中间轴上轴承寿命计算 (63)5.4.3 输出轴上轴承寿命计算 (64)5.5 键的选择和校核 (66)5.5.1 键的选择 (66)5.5.2 键的校核 (66)5.6 机身结构的设计 (67)5.6.1 机身箱体材料的选择 (67)5.6.2 机身的结构设计及制造工艺 (67)5.7 本章小结 (67)6 基于solidworks的吸盘式机械手的三维设计与装配仿真 (68)6.1基于solidworks三维建模的介绍 (68)6.1.1 主要零件的三维实体模型的创建及装配 (68)6.2 基于solidworks运动学仿真部分的操作步骤及仿真结果 (71)6.3 本章小结 (74)总结与展望 (76)致谢 (77)参考文献 (78)1 绪论1.1 引言机器人,典型的机电一体化产品,多关节型机器人机械手是研究的一个热点领域。
在机械、电子、信息理论、人工智能、生物学和计算机等领域中,得到了极大的应用和推广,它具有速度快,效率高,应用范围广等多特点,而且具有广阔的市场和发展空间。
1959年,世界上第一台工业机器人的诞生,机器人开辟了新的发展时代。
多关节机器人科学技术的飞速发展,研究和应用的发展。
世界著名的机器人专家,加藤一郎教授,在早稻田大学说:“一个机器人最大的特点,你有需要它的功能”无论是自动化道路脚下程度有多高,这都是复杂的动态系统。
伟大的发明家托马斯·爱迪生曾说过这样一句话:“机器人,对环境是有益的。
”它有很好的适应性,它具有非常较高的环境要求。
可以打开无限广阔的前景,有必要扩大机器人的应用领域。
以下主要是设计机械手的原因和目的:代替了人类劳动,解放了人的双手,提高了生产率,而且它们是开发的一种系统,以便它可以在许多结构性和非结构性相配合,更重要的是,使用这些功能,像人性化的服务,需要内在的人性化、系统化。
在这方面的研究,可以扩大研究机器人的方向和研究机器人的市场,机器人,如智能机器人,可以起到人工智能和服务人类的重要作用。
关节机器人,世界上没有统一的分类,定义是不一样的。
对于近期标准化的联合国国际组织已经通过美国协会的定义为关节机械手的机械人:多关节机器人,搬运为主料,转移为目的,为了各种工作完成,通过改变动作程序,还需要再编程的多功能操作装置。
外国定义与我们的关节型机器人有不同的参考定义。
多关节型机器人,独立的主体可以放在任何地方,动作的自由度,程序可以灵活地改变,高度自动化机器人。
它可用于汽车喷漆、涂料、和货物搬运、码垛等方面。
关节型机器人的臂与主体,相对于人,可以携带重物,可以有一个较快的移动速度,有非常高的定位精度,它是自动的,可以执行各种操作,它可以是一个外部信号执行单元。
多关节型机器人是在计算机控制下的可编程自动化的机器。
能够提高产品的质量和劳动生产率,在生产过程,多关节机器人是自动化的,在通过改进,改善工作条件下,它是降低了劳动强度的有效手段。
机器人诞生和发展,虽然只有30多年的历史,但是在一个国家经济领域中,机器人已经应用于民用工程中,显示了强大的生命力,未来的发展不可估量,需要我们进一步努力,开创美好的未来。
1.2 关节机械手研究概况1.2.1 国外研究现状人类和动物的运动原理的第一个系统研究使迈布里奇发明了照相机跟单,即设定的触发相机,并在1877年他成功地验证了他的假定。
后来,使用这种方法的相机是用来研究人体运动Demeny。
从1930年到1950年,苏联也伯恩斯坦也深入研究,从人类和动物动力机制的角度看,并提出的理论非常形象化的描述人类和动物的运动机制。
真正研究机构运动的大多是全面研究,系统于1960年推出至今,比较完整的理论体系的形成,并在一些国家,如日本,美国和苏联已成功开发,可以是静态或动态的多臂枢轴原型得到发展。
在20世纪60年代和70年代,武装多搬运运动控制理论产生三种类型的控制方法这是非常重要的,这限制了国家控制,控制参考模型和控制算法。