高中物理_弹力汇总
高中物理弹力知识点
高中物理弹力知识点高中物理中,弹力是重要的知识点之一。
弹力是指物体在发生碰撞时所产生的力,又称反弹力或弹性力。
了解弹力的基本概念和计算方法,可以帮助我们更好地理解物体之间相互作用的过程。
一、弹力概述弹力是常见的力之一,无论是在日常生活还是在科学研究中都会遇到。
当两个物体碰撞时,会使一方受到压缩,另一方受到拉伸,这时,拉伸物体的方向会产生一个反向的力,这就是弹力。
弹力与物体质量无关,只与弹性系数相关。
弹性系数是物体恢复原形的能力,越小的物体弹性系数越小,越容易变形。
反之,弹性系数越大则越难变形。
二、弹力公式弹力公式是描述弹力作用的基本工具,能够计算出两个物体碰撞后所产生的弹力大小。
弹力公式的计算公式为:F = -kx其中,F是弹力的大小,k是弹性系数,x是弹簧的变形量。
弹力是一种向相反方向作用的力,因此在计算时需加上负号。
弹力公式的应用范围很广,如在工艺制造中可以计算出机器或轴承在受力时所产生的弹性反弹力。
三、弹力的实验弹力理论上很好理解,但通过实验可以更好地理解弹力的作用和原理。
以下是一些经典的弹力实验:1.弹簧实验将弹簧固定在一悬挂物上,然后在悬挂物下方加上一个小球,当小球达到一定高度时,开始受到弹簧拉伸的作用,此时弹簧会向下移动,并且电子表上的数字会发生变化,记录下这个位置,然后再用一个小手推动小球,使它向上反弹,又会受到弹簧压缩的力,弹簧回到原来的位置,记录下这个位置和电子表的数字。
通过这段弹簧拉伸和压缩的过程,可以计算出弹簧的弹性系数以及弹力大小。
2.重锤实验在一根弹性绳上挂上一个重锤,当重锤下降到一定高度时,弹性绳会向下弯曲,此时重锤会受到弹力的作用,产生反向运动,如果让这个过程连续进行几次,则可以通过记录一定量的数据来计算出弹力的大小和弹性系数。
四、弹力的应用弹力在日常生活和工业制造中都有很广泛的应用。
1.弹簧弹簧是典型的弹力应用,无论是手表、钟表,还是汽车、机器,弹簧都是很重要的组成部分,它们的弹簧都是根据弹力原理来制造的。
高一物理弹力知识点
高一物理弹力知识点引言:弹力是物理学中一个非常重要的概念,它广泛应用于我们生活中的许多方面。
本文将从不同角度探讨高一物理弹力的知识点,帮助大家更好地理解和应用这个概念。
一、弹性体与弹性系数弹性体是指在受到外力作用后能够恢复原状的物体。
当我们拉伸或压缩弹性体时,它会产生弹力。
弹性系数是衡量弹性体回复能力的物理量,它可以表示为弹性系数=外力/形变。
弹性系数越大,说明弹性体回复能力越强,反之则越弱。
理解弹性体与弹性系数的概念对于学习弹力非常重要。
二、胡克定律胡克定律是描述一类理想弹簧的力学特性的定律。
根据胡克定律,弹簧所受弹力与其伸长量成正比。
也就是说,弹簧的弹力等于弹簧系数乘以伸长量。
胡克定律的数学表达式为F=kx,其中F代表弹力,k 代表弹簧系数,x代表伸长量。
胡克定律为我们理解和计算弹簧的力学性质提供了基础。
三、弹簧的串联和并联在物理实验中,我们经常会遇到将弹簧串联或并联的情况。
弹簧的串联指的是多个弹簧依次连接,形成一个整体;弹簧的并联则是将多个弹簧一端连接在一起,另一端固定,形成一个整体。
对于串联的弹簧,当外力作用于该整体时,每个弹簧都会受到相同的力,总伸长量等于各个弹簧伸长量的和;对于并联的弹簧,当外力作用于该整体时,每个弹簧受到相同的伸长量,总弹力等于各个弹簧弹力的和。
串联和并联的弹簧组合在实际应用中具有广泛的应用。
四、振动与频率弹簧是振动现象中常见的力学装置。
当我们给弹簧施加一个外力,它会受到弹力的作用而发生振动。
振动的频率是指振动单位时间内的往复次数。
频率越大,振动越快;频率越小,振动越慢。
在物理实验中,我们可以通过改变弹簧的初始条件和参数来调整振动的频率。
结论:弹力作为物理学中的一个重要概念在科学研究和日常生活中都有广泛的应用。
通过学习弹性体与弹性系数、胡克定律、弹簧的串联和并联以及振动与频率等知识点,我们能够更好地理解和应用弹力。
因此,对于高中物理学习来说,弹力知识的掌握是至关重要的。
物理弹力知识点
物理弹力知识点弹力是物体在受到压缩或伸长变形后恢复原状时产生的力。
它是一种除了重力以外的基本力之一,广泛应用于工程技术和日常生活中。
以下是关于弹力的一些知识点。
1. 弹性力的定义:当物体受力使其产生形变时,形变所产生的弹性势能的变化与形变量成正比,反方向则与形变量成反比。
即弹性力的大小与形变量成正比,方向与形变方向相反。
2. 弹性力的计算公式:弹性力的大小可以通过胡克定律来计算。
胡克定律表明,弹性力与物体形变的大小成正比,与物体弹簧常数k相关。
公式为:F=-kx,F表示弹性力的大小,k表示弹簧的常数,x表示形变的大小。
3. 弹性力与形变的关系:根据胡克定律,弹性力与形变量成正比。
当形变增大时,弹性力也随之增大。
当形变减小或消失时,弹性力也会减小或消失。
4. 弹性系数的定义:弹性系数又称为弹簧常数,用符号k表示。
它是一个物体所拥有的恢复形变的能力大小的度量。
具体而言,弹簧常数越大,物体的形变回复能力越强,所产生的弹性力也越大。
5. 弹簧的形变:当一个物体受到外力作用,形变时可以存在两种情况。
一种是压缩形变,即物体受到外力压缩而变短;另一种是伸长形变,即物体受到外力拉伸而变长。
无论是压缩形变还是伸长形变,物体的弹簧常数k都能够量化描述其形变回复的能力。
6. 弹力的应用:弹力在工程技术和日常生活中有广泛的应用。
例如,弹簧被广泛应用于悬挂系统和减震系统中,用于减缓震动和保护设备;弹簧还用于测力机构中,根据形变量的大小测量物体受力情况;此外,弹力也在弹簧秤、弹簧床、弹簧门等日常生活用品中得到应用。
7. 弹力的局限性:弹力是有一定局限性的,它只能够在物体恢复到原状时产生作用。
当物体的形变超过一定程度时,弹力将不再起作用,物体将发生塑性变形或断裂。
总之,弹力是物体在受到压缩或伸长变形后恢复原状时产生的力。
它可以通过胡克定律来计算,与形变量成正比。
弹力的大小取决于物体的弹簧常数和形变量,其应用广泛,但也有一定的局限性。
高中物理弹力知识点
高中物理弹力知识点
弹力是物体受到压缩或拉伸时产生的一种力。
以下是有关高中物理中弹力的知识点:
1. 弹性体:弹力的存在于弹性体中,弹性体是指在受力作用后能够恢复原状的物体,如橡皮筋、弹簧等。
2. 胡克定律:胡克定律描述了弹簧伸长或压缩时弹力与位移之间的关系。
根据胡克定律,弹簧的弹力与弹簧的伸长或压缩位移成正比。
公式为:F = kx,其中F是弹力,k 是弹簧的劲度系数,x是伸长或压缩的位移。
3. 弹性势能:当物体受到弹力拉伸或压缩时,会存储弹性势能。
弹性势能是由于物体发生形变而存储的能量,公式为:E = (1/2)kx²,其中E是弹性势能,k是弹簧的劲度系数,x是伸长或压缩的位移。
4. 弹性碰撞:当两个物体发生碰撞时,如果它们之间存在弹力,这种碰撞就称为弹性碰撞。
在弹性碰撞中,总动量守恒并且总动能守恒。
5. 非弹性碰撞:当两个物体发生碰撞时,如果它们之间没有弹力,这种碰撞就称为非弹性碰撞。
在非弹性碰撞中,总动量守恒,但总动能不守恒。
6. 能量耗散:在非弹性碰撞中,部分动能会转化为热能、声能等其他形式的能量,从而耗散掉一部分能量。
7. 相对运动:当两个物体相对运动时,它们之间可能存在摩擦力或其他形式的阻力,这些阻力也是一种弹力。
根据牛顿第三定律,两个物体之间的相互作用力相等且方向相反。
这些是高中物理中与弹力相关的主要知识点,希望对你有所帮助!。
高一物理弹力整理版
状态时测量,以免增大误差.
4.描点画线时,所描的点不一定都落在一条曲线上, 但应注意一定要使各点均匀分布在曲线的两侧. 5.记录数据时要注意弹力及弹簧伸长量的对应关系 及单位.
【误差分析】
1.弹簧拉力大小的不稳定会造成误差.因此,使弹簧
的悬挂端固定,另一端通过悬挂钩码来充当对弹簧
的拉力,待稳定后再读数可以提高实验的准确度. 2.尽量精确地测量弹簧的长度,也是减小实验误差 的基本方法. 3.描点、作图不准确.
课堂练习
【学以致用2】 一本书静止在水平桌面上,下列说法正确的是: A.书的重力就是书对桌面的压力; B.书对桌面的压力和桌面对书的支持力是一对平衡力; C.桌面受到的压力是由于书向上形变产生的 D.压力的性质属于重力;
答案:BC
4、弹力的大小
a.弹力的大小取决物体于形变的程度。形变 越大,弹力越大;形变消失,弹力也随着消失。 b.对于弹簧、橡皮筋这一类物体其产生弹力的 大小与弹簧的伸长(压缩)、橡皮筋的伸长的 长度成正比
把相互接触的两物体隔离开来,看看隔离开后 的受力物体的运动状态有没有影响,有影响则 两物体之间有弹力,反之则没有
三.几种常见的弹力 1.压力和支持力
放在水平桌面上的物体,在重力作用下与桌面互相 接触,使物体和桌面同时发生了微小的形变,如图:
桌面对物体 的支持力 物体对桌面 的压力
可见,压力和支持力都是弹力。 压力和支持力的方向:垂直于接触面指向被 压或被支持的物体。
发生形变的物体有的能恢复原状,有 的不能恢复原状。能恢复原状的形变 叫弹性形变;不能恢复原状的叫塑性 形变。 所有弹性形变都有一个限度,超过这 个限度,物体就不能恢复原状。这个 限度叫弹性限度。
2、弹力 : (1)定义:
高一弹力知识点总结
高一弹力知识点总结弹力是物质在受到外力作用后产生的形变,并在外力消失后恢复原状的性质。
在高一物理学习中,我们接触到了许多关于弹力的知识点。
下面,我将对高一弹力知识点进行总结。
一、弹性力学的基本概念弹性力学是研究物体受力后产生形变并恢复原状的性质的学科。
其中,弹簧是最常见的弹性体。
弹簧的伸长或缩短与外力成正比,遵循胡克定律。
该定律表明,当物体受到弹性力时,其形变是与外力成正比的,即F=kx,其中F是受力,k是弹簧常数,x是形变。
二、简谐振动与弹簧振子弹簧振子是简谐振动的一种。
简谐振动是指物体在恢复力作用下沿着一条直线做往复运动的现象。
弹簧振子的周期和频率与振子的质量和弹簧的劲度系数有关。
周期T是振子做一次完整振动所需要的时间。
频率f是单位时间内振子完成的振动次数。
它们的关系是T=1/f。
三、弹簧串联和并联在弹簧系统中,当弹簧串联时,其总的劲度系数可以通过以下公式计算:1/k=1/k1+1/k2,其中k1和k2是两个弹簧的劲度系数。
当弹簧并联时,其总的劲度系数可以通过以下公式计算:k=k1+k2。
弹簧串联和并联的特性决定了整个弹簧系统的劲度系数和振动频率。
四、弹簧的能量弹簧在受到外力时,会发生形变并蓄积弹性势能。
弹性势能是指物体由于形变而能够做功的能量。
当弹簧恢复原状时,该能量会转化为动能。
弹簧的弹性势能可以通过以下公式计算:Ep=1/2kx²,其中Ep是弹性势能,k是劲度系数,x是形变。
五、拉力与弹力拉力是一种拉伸物体的力,而弹力是一种使物体恢复原状的力。
当物体被拉伸时,会产生拉力,而拉力的大小和拉伸的长度成正比。
当拉力消失时,物体会因为恢复力的作用而恢复原状。
六、弹簧振子的应用弹簧振子在实际生活中有着广泛的应用。
它被运用在钟表中,用于控制钟表的时针和秒针的摆动。
此外,弹簧振子还被应用于光学仪器、计时器、电子设备等领域。
通过对弹簧振子性质的研究,我们可以更好地理解和应用这些实际问题。
七、弹力的改变弹力受到外力的影响,会发生较大的改变。
高一物理弹力
高一物理弹力一、弹力的概念1. 定义- 发生弹性形变的物体,由于要恢复原状,对与它接触的物体产生力的作用,这种力叫做弹力。
例如,被拉伸的弹簧想要恢复到原来的长度,就会对拉它的物体施加一个力,这个力就是弹力。
- 弹力产生的条件有两个:一是物体间相互接触;二是物体发生弹性形变。
这两个条件缺一不可。
两个物体仅仅相互接触但没有发生弹性形变是不会产生弹力的,像放在水平桌面上静止的物体和桌面虽然接触,但如果没有桌面的微小形变或者物体的微小形变,就不会有弹力产生。
2. 常见的弹力- 压力和支持力:当一个物体放在另一个物体表面上时,物体对支持面有压力,支持面对物体有支持力,它们都是弹力。
压力的方向垂直于支持面指向被压的物体,支持力的方向垂直于支持面指向被支持的物体。
例如,放在水平桌面上的木块,木块对桌面的压力垂直向下指向桌面,桌面对木块的支持力垂直向上指向木块。
- 拉力:当用绳子拉物体时,绳子对物体的拉力也是弹力。
拉力的方向沿着绳子收缩的方向。
用绳子拉着小车前进,绳子对小车的拉力方向就是沿着绳子指向拉小车的方向。
二、弹力的大小1. 胡克定律(弹簧弹力)- 内容:在弹性限度内,弹簧弹力F的大小跟弹簧伸长(或缩短)的长度x成正比。
- 表达式:F = kx,其中k为弹簧的劲度系数,单位是牛/米(N/m),它反映了弹簧的软硬程度,k越大,弹簧越“硬”,在相同的伸长量下产生的弹力越大;x是弹簧的形变量,即弹簧伸长(或缩短)后的长度与原长度的差值。
- 例如,有一根弹簧,劲度系数k = 50N/m,如果弹簧被拉长了0.2m,根据胡克定律F = kx,弹簧产生的弹力F=50×0.2 = 10N。
2. 其他物体弹力大小的计算(非弹簧)- 对于非弹簧物体的弹力大小,一般根据物体的受力情况和运动状态,利用牛顿第二定律等知识来求解。
例如,一个质量为m的物体静止在斜面上,斜面的倾角为θ,物体受到重力G、斜面的支持力F_N和摩擦力F_f。
高一物理知识点弹力
高一物理知识点弹力弹力是物体由于受到外力的作用而发生形变时产生的反作用力。
在高一物理学习中,弹力是一个重要的知识点。
接下来,我将详细介绍弹性力的定义、特征、计算公式及其应用。
一、弹力的定义和特征弹力是指物体由于形变而产生的恢复力。
当外力作用于物体时,物体会发生形状或大小的改变,具体体现为拉伸、扭转或压缩等。
当外力消失时,物体会产生恢复力,试图将其恢复到原来的形状或大小,这种力就是弹力。
弹力具有以下特征:1. 方向与形变方向相反:弹力的方向与物体的形变方向相反。
例如,当我们拉伸弹簧时,弹簧会产生向内的弹力,试图将其恢复到原来的形状。
2. 大小与形变程度相关:弹力的大小与物体形变的程度成正比。
形变越大,弹力越大。
3. 遵循胡克定律:弹性力遵循胡克定律,即弹力与形变之间的关系是线性的。
胡克定律描述了形变与弹力之间的比例关系,可以用公式 F = kx 来表示,其中 F 是弹力的大小,k 是弹簧的劲度系数,x 是形变量。
二、计算弹力的公式和单位弹力的计算公式为 F = kx,其中 F 是弹力的大小,k 是弹簧的劲度系数,x 是形变量。
劲度系数 k 可以用以下公式计算:k = (F2 - F1) / (x2 - x1)其中 F1 和 F2 是对应的形变量 x1 和 x2 下的弹力大小。
弹力的单位是牛顿(N),劲度系数的单位是牛顿/米(N/m),形变的单位是米(m)。
三、弹力的应用1. 弹簧秤:弹簧秤是利用弹簧的弹性来测量物体的重量的一种工具。
当物体悬挂在弹簧上方时,弹簧会因重力而发生形变,产生一个与物体重量相等的弹力。
通过测量弹力的大小,可以间接测量物体的重量。
2. 弹簧:弹簧常被用于各种机械装置中,如悬挂系统、减震器等。
利用弹簧的弹性特性,可以实现吸震和缓冲的效果。
3. 弹簧能:弹簧具有储存和释放能量的功能。
当物体形变时,弹簧会储存弹性势能,当外力消失时,弹簧会释放出储存的能量,将物体恢复到原来的形态。
4. 弹簧振动:在物理学中,弹簧是一个常见的振动系统。
上学期高一物理期末复习要点:弹力
上学期高一物理期末复习要点:弹力高中物理是高中文科(自然迷信)基础科目之一,小编预备了上学期高一物理期末温习要点,希望你喜欢。
1.弹力
(1)弹力是物体由于发作弹性形变而发生的力。
压力、支持力、拉力等的实质都是弹力。
(2)弹力的大小、方向和发生的条件:
①弹力的大小:与物体的资料、形变水平等要素有关。
②弹力的方向:跟形变的方向相反,与物体恢复形变的方向分歧。
③弹力发生的条件:物体直接触,发作弹性形变。
2.弹簧测力计
(1)测力计:测量力的大小的工具叫做测力计。
(2)弹簧测力计的原理:弹簧所受拉力越大弹簧的伸长就越长;在弹性限制内,弹簧的伸长与所遭到的拉力成正比。
(3)弹簧测力计的运用:①测量前,先观察弹簧测力计的指针能否指在零刻度线的位置,假设不是,那么需校零;所测的力不能大于弹簧测力计的测量限制,以免损坏测力计。
②观察弹簧测力计的分度值和测量范围,估量被测力的大小,被测力不能超越测力计的量程。
③测量时,拉力的方向应沿着弹簧的轴线方向,且与被测力的方向在同不时线。
④读数时,视野应与指针对应的刻度线垂直。
上学期高一物理期末温习要点就为大家引见到这里,希望对
你有所协助。
高中物理弹力知识点总结
高中物理弹力知识点总结高中物理弹力知识点(1)发生缘由:由于发作弹性形变的物体有恢复形变的趋向而发生的。
(2)发生条件:①直接接触;②有弹性形变。
(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是惹起形变的物体,施力物体是发作形变的物体.在点面接触的状况下,垂直于面;在两个曲面接触(相当于点接触)的状况下,垂直于过接触点的公切面。
①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等。
②轻杆既可发生压力,又可发生拉力,且方向不一定沿杆。
(4)弹力的大小:普通状况下应依据物体的运动形状,应用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解。
★ 胡克定律:在弹性限制内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx,k为弹簧的劲度系数,它只与弹簧自身要素有关,单位是N/m。
高中物理学习方法听得懂高中生要积极自动地去听讲,把教员所说的每一句话都用心来听,熟记高中物理概念定义,这是〝知其然〞,教员解说的进程就是〝知其所以然〞,听懂,才会运用。
记结实尤其是基本的概念。
定义、定律、结论等,不要把这些看成可记可不记的知识,轻视了,高中生对物理效果的了解、运用就会受阻,在物了解题进程中就会因概念不清而丢分,掌握三基本:基本概念清、基本规律熟、基本方法会,这些都是要记住的范围。
只要这样,高中生学习物理才会随心所欲,各种难题才会迎刃而解。
会运用会运用才是提高效果的基本,就是对概念、公式等要掌握灵敏,活学活用,不是融会贯串,不同的题型采用不同的解题方法,公式的运用也是做到灵敏多变,以到达正确解题的目的。
比如关于牛顿三大运动定律、什么是动量、为什么动量会守恒这些动力学的基本概念的了解,仅仅停留在字面上学起来就是单调的,甚至是难于了解的,而这些知识又影响着整个力学的学习进程,所以,在高中物理学习进程中,试着把这些概念化的内容融于各种题型中,将其内化成高中生的基本知识,另辟思绪,学起来就容易得多了,学习效益会翻倍。
弹力高中物理知识点
弹力弹力知识点包括弹力知识点梳理、物体间弹力的产生及有无的判断方法、几种常见弹力的方向等部分,有关弹力的详情如下:弹力知识点梳理1.形变与弹性形变(1)形变:物体在力的作用下__形状或体积__发生改变,叫作形变。
(2)弹性形变:有些物体在形变后能够__恢复原状__,这种形变叫作弹性形变。
2.弹力(1)概念:发生__形变__的物体,由于要恢复__原状__,对与它__接触的__物体产生力的作用,这种力叫作弹力。
(2)弹性限度:当形变超过一定限度时,撤去作用力后,物体__不能完全恢复原来的形状__,这个限度叫弹性限度。
物体间弹力的产生及有无的判断方法1.产生弹力必备的两个条件:(1)两物体间相互接触;(2)发生弹性形变。
2.判断弹力有无的常见方法:(1)直接判定:对于发生明显形变的物体(如弹簧、橡皮条等),可根据弹力产生的条件由形变直接判断。
(2)对于形变不明显的情况,通常用以下方法来判定:a.假设法:假设将与研究对象接触的物体撤去,判断研究对象的运动状态是否发生改变,若运动状态不变,则此处不存在弹力;若运动状态改变,则此处一定存在弹力。
b.替换法:可以将硬的、形变不明显的施力物体用软的、易产生明显形变的物体来替换,看能不能维持原来的力学状态。
如将侧壁、斜面用海绵来替换,将硬杆用轻弹簧(橡皮条)或细绳来替换。
c.状态法:因为物体的受力必须与物体的运动状态相吻合,所以可以依据物体的运动状态由相应的规律(如二力平衡知识等)来判断物体间的弹力。
接触的物体间不一定存在弹力,但两物体间若有弹力,则它们一定接触。
几种常见弹力的方向弹力的方向总与引起物体形变的外力方向相反,与施力物体恢复原状的方向相同。
类型方向图示接触方式面与面垂直于公共接触面指向被支持物体点与面过点垂直于面指向被支持物体点与点垂直于公共切面指向受力物体且力的作用线一定过球(圆)心轻绳沿绳收缩方向轻杆可沿杆伸长方向收缩方向可不沿杆轻弹簧沿弹簧形变的反方向特别提醒(1)压力、支持力的方向都垂直于接触面,确定它们方向的关键是找准它们的接触面或接触点的切面。
物理弹力知识详解
物理弹力知识详解在我们的日常生活中,弹力无处不在。
从我们脚下的弹簧床垫,到运动场上的篮球,再到车辆的减震系统,都离不开弹力的作用。
那么,什么是弹力?它是如何产生的?又有哪些特点和规律呢?接下来,让我们一起深入探索物理中的弹力知识。
一、弹力的定义弹力,简单来说,是指物体发生弹性形变时产生的力。
当物体受到外力作用而发生形状或体积的改变时,如果这种改变在一定限度内,当外力消失后,物体能够恢复原状,此时物体对使它发生形变的物体产生的力就是弹力。
例如,我们用力拉弹簧,弹簧被拉长,当我们松开手时,弹簧会恢复原来的长度,并对我们的手产生一个拉力,这个拉力就是弹力。
二、弹力产生的条件要产生弹力,必须同时满足两个条件:一是物体间相互接触;二是物体发生弹性形变。
相互接触是产生弹力的前提,如果两个物体没有接触,它们之间就不可能产生弹力。
而弹性形变则是产生弹力的关键。
如果物体发生的是塑性形变(即外力撤销后不能恢复原状的形变),也不会产生弹力。
例如,把一块橡皮泥压在桌面上,橡皮泥发生了形变,但由于是塑性形变,它不会对桌面产生弹力。
三、弹力的方向弹力的方向总是与物体发生形变的方向相反,且总是垂直于接触面。
对于常见的几种情况,如压力和支持力,压力的方向垂直于接触面指向被压的物体,支持力的方向垂直于接触面指向被支持的物体。
例如,放在水平桌面上的物体,受到桌面的支持力竖直向上;而物体对桌面的压力竖直向下。
对于绳子的拉力,方向总是沿着绳子收缩的方向。
比如,用绳子吊起一个物体,绳子对物体的拉力沿着绳子向上。
对于弹簧的弹力,方向总是指向恢复原状的方向。
拉伸弹簧时,弹力方向指向弹簧收缩的方向;压缩弹簧时,弹力方向指向弹簧伸长的方向。
四、弹力的大小弹力的大小与物体的形变程度有关。
在弹性限度内,形变越大,弹力越大。
胡克定律是描述弹簧弹力大小的重要定律,其表达式为:F = kx。
其中,F 表示弹力的大小,k 是弹簧的劲度系数,它取决于弹簧的材料、匝数、粗细等因素,x 是弹簧的形变量(伸长量或压缩量)。
高中物理弹力知识点
高中物理弹力知识点
弹力是指物体在受到外力作用后产生的反作用力。
以下是高中物理中与弹力相关的知
识点:
1. 弹簧定律:弹簧的伸长或压缩与所加力成正比,并与变形量的方向相反。
即弹力与
伸长或压缩的长度成正比。
2. 弹簧系数:弹簧系数(弹性系数)是弹簧质地决定的,表示单位长度的变形所需的
力大小。
它的倒数叫做弹性系数或弹性模量。
3. 弹性变形和塑性变形:物体的弹性变形是在外力作用下,物体发生的伸长或压缩,
当外力撤去后能恢复原来的形状。
而塑性变形则是在外力作用下,物体发生的永久性
变形。
4. 弹性能量:物体在弹性变形过程中所具有的能量,称为弹性能。
弹性能与弹簧系数
和变形量的平方成正比。
5. 弹簧势能和弹簧定数:弹簧势能是指弹簧由于被拉伸或压缩而具有的能量。
弹簧定
数是根据弹簧的弹性系数和长度计算得出。
6. 弹簧振子:由于弹簧的弹性特点,可以构成一种简谐振动的系统,称为弹簧振子。
弹簧振子的周期与振幅有关,但与质量无关。
7. 碰撞和弹力:在碰撞过程中,物体之间会产生弹力作用。
弹力的大小与物体的质量、碰撞的速度以及碰撞的角度有关。
8. 系数恢复力:当两个物体发生弹性碰撞时,恢复力与两个物体的质量、碰撞的速度
和碰撞的角度有关。
以上是高中物理弹力的主要知识点,希望能对你有所帮助。
高级高中物理弹簧弹力问题归类总结归纳
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 . 【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-= 1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m得弹簧上的弹力为:,xx F x Tma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a = 【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0 说明:区别于不可伸长的轻质绳中张力瞬间可以突图 图 3-7-1 图 3-7-3变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( )A.0B.大小为23g ,方向竖直向下C.大小为23g ,方向垂直于木板向下 D. 大小为23g , 方向水平向右 【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos Nmg F θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos N F g a g m θ=== 【答案】 C. 四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移 弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,图图图图系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--= 解得:()sin A B AF m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程. 【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内). (1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少【解析】 由题意可知,弹簧开始的压缩量0mg x k=,物体B 刚要离开地面时弹簧的伸长量也是0mg x k=.(1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得:022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖图 3-7-8直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则:002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mg F =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg kF +=,解得: 032mg F =.]【答案】022gx 32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
高中物理弹力知识点
《高中物理弹力知识点解析》在高中物理的学习中,弹力是一个重要的知识点。
它不仅在力学部分占据着关键地位,而且与其他物理概念相互关联,对于理解物体的运动和相互作用起着至关重要的作用。
一、引言物理学是一门探索自然规律的科学,而力学则是物理学的基础。
在力学中,弹力作为一种常见的力,广泛存在于我们的日常生活中。
从弹簧的伸缩到蹦床的反弹,从支持力到拉力,弹力无处不在。
理解弹力的概念、性质和规律,对于我们认识世界和解决实际问题具有重要意义。
二、弹力的定义弹力是指物体由于发生弹性形变而产生的力。
当物体受到外力作用时,其形状或体积会发生改变。
如果外力消失后,物体能够恢复到原来的形状或体积,这种形变就称为弹性形变。
在弹性形变范围内,物体对使它发生形变的物体产生的力就是弹力。
例如,当我们用手压弹簧时,弹簧会被压缩,发生弹性形变。
此时,弹簧就会对我们的手产生一个向上的弹力。
当我们松开手后,弹簧在弹力的作用下会恢复到原来的形状。
三、弹力的产生条件1. 直接接触两个物体必须直接接触,才能产生弹力。
如果两个物体没有接触,即使它们之间存在相互作用,也不会产生弹力。
例如,空中飞行的飞机与地面上的建筑物之间没有直接接触,所以它们之间不存在弹力。
2. 发生弹性形变只有当物体发生弹性形变时,才会产生弹力。
如果物体发生的是塑性形变,即外力消失后物体不能恢复到原来的形状,那么就不会产生弹力。
例如,橡皮泥在被捏变形后,不能恢复到原来的形状,所以橡皮泥在被捏的过程中不会产生弹力。
四、弹力的方向1. 压力和支持力压力和支持力都是弹力的表现形式。
压力的方向垂直于接触面指向被压物体,支持力的方向垂直于接触面指向被支持物体。
例如,放在水平桌面上的书,书对桌面的压力方向垂直于桌面指向桌面,桌面对书的支持力方向垂直于桌面指向书。
2. 弹簧的弹力弹簧的弹力方向总是与弹簧的形变方向相反。
当弹簧被拉伸时,弹力方向指向弹簧收缩的方向;当弹簧被压缩时,弹力方向指向弹簧伸长的方向。
物理认识弹力知识点总结
物理认识弹力知识点总结一、弹力的定义弹力是指物体在受到外力作用后,产生形变并且恢复形变的力。
通常情况下,我们将物体受到的弹力记为F,这个力是向外的。
当物体受到外力作用时,会发生形变,这时就会产生弹力,当外力消失时,物体会恢复原来的形状,这种恢复的力就是弹力。
在弹性形变的过程中,弹力是一种复杂的相互作用,它与物体的性质、形状、大小等因素相关。
二、弹力的性质1. 方向:弹力的方向总是恢复形变的方向,即当物体受到挤压时,弹力的方向是向外;当物体受到拉伸时,弹力的方向是向内。
2. 大小:弹力的大小与物体的弹性系数、形变的大小、形状等因素有关。
通常情况下,弹力的大小与形变成正比,即F=kx,其中k是弹性系数,x是形变的大小。
3. 单向性:弹力是一种单向性力,即只有在形变方向上才会产生弹力。
4. 瞬时性:弹力是一种瞬时性力,只有在物体发生形变时才会产生。
5. 功与能:弹力是一种保守力,它能够做功,也能够储存能量。
三、弹力的分类弹力可以根据物体的形变方式和力的作用方式进行分类,通常主要有以下几种类型:1. 弹簧弹力:指由于弹簧受到拉伸或压缩而产生的弹力。
弹簧弹力是一种最为常见和基础的弹力,它广泛应用于科学实验、工程设计等领域。
2. 体积弹力:指由于气体或液体受到压缩或拉伸而产生的弹力。
体积弹力也是一种常见的弹力现象,它在气体力学、流体力学等领域有重要应用。
3. 力学弹力:指由于物体间作用力而产生的弹力。
这种弹力一般发生在物体表面之间的接触力,比如皮球的弹跳、橡胶的弹性形变等都属于力学弹力。
4. 磁力弹力:指由于磁场作用下物体发生形变而产生的弹力。
这种弹力在磁性材料之间的相互作用中发挥着重要作用。
四、弹力的计算方法弹力的计算通常依赖于弹性系数、形变大小等参数,可以通过物体的形变关系来求解。
1. 弹簧弹力的计算:通常采用胡克定律来计算弹簧弹力,即F=kx,其中k是弹簧的弹性系数,x是形变的大小。
2. 体积弹力的计算:对于气体或液体的体积弹力,一般可以通过气体状态方程或流体力学的相关定律来计算,比如压强、容积、温度等参数的关系。
高中物理弹力知识点总结
高中物理 | 必考知识总结:弹力弹力产生原因:发生形变的物体想要恢复原状而对迫使它发生形变的物体产生的力。
1、定义:直接接触的物体间由于发生弹性形变(即是相互挤压)而产生的力。
2、产生条件:直接接触,有弹性形变。
3、方向:弹力的方向与施力物体的形变方向相反(与形变恢复方向相同),作用在迫使物体发生形变的物体上。
弹力是法向力,力垂直于两物体的接触面。
具体说来:(弹力方向的判断方法)(1)弹簧两端的弹力方向,与弹簧中心轴线重合,指向弹簧恢复原状的方向。
其弹力可为拉力,可为压力;对弹簧秤只为拉力。
(2)轻绳对物体的弹力方向,沿绳指向绳收缩的方向,即只为拉力。
(3)点与面接触时弹力的方向,过接触点垂直于接触面(或接触面的切线方向)而指向受力物体。
(4)面与面接触时弹力的方向,垂直于接触面而指向受力物体。
(5)球与面接触时弹力的方向,在接触点与球心的连线上而指向受力物体。
(6)球与球相接触的弹力方向,沿半径方向,垂直于过接触点的公切面而指向受力物体。
(7)轻杆的弹力方向可能沿杆也可能不沿杆,杆可提供拉力也可提供压力,这一点跟绳是不同的。
(8)根据物体的运动情况。
利用平行条件或动力学规律判断。
说明:①压力、支持力的方向总是垂直于接触面(若是曲面则垂直过接触点的切面)指向被压或被支持的物体。
②绳的拉力方向总是沿绳指向绳收缩的方向。
③杆既可产生拉力,也可产生压力,而且能产生不同方向的力。
这是杆的受力特点。
杆一端受的弹力方向不一定沿杆的方向。
4、弹力的大小:①弹簧、橡皮条类:它们的形变可视为弹性形变。
(在弹性限度内)弹力的大小跟形变关系符合胡克定律遵从胡克定律力F=kX。
上式中k叫弹簧劲度系数,单位:N/m,跟弹簧的材料、粗细,直径及原长都有关系;X是弹簧的形变量(拉伸或压缩量)切不可认为是弹簧的原长。
②一根张紧的轻绳上的张力大小处处相等。
③非弹簧类的弹力是形变量越大,弹力越大,一般应根据物体所处的运动状态,利用平衡条件或动力学规律(牛顿定律)来计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有关弹簧的题目在高考中几乎年年出现,由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高.在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能、冲量和动量等多个物理概念和规律,所以弹簧试题也就成为高考中的重、难、热点, 一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的. 【答案】12F F a m-=1F 二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度Fa M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:x x F x T ma M F L M L=== 【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a = 【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g . 【答案】0图 3-7-2图 3-7-1 图 3-7-3 高中物理中的弹簧问题归类剖析说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( ) A.0B.,方向竖直向下C.,方向垂直于木板向下D., 方向水平向右【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为cos N F g a m θ=== 【答案】 C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =. 则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量. 【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k + 故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 【答案】221221()m m m g k + 21121211()()m m m g k k ++图 3-7-4图 3-7-5图3-7-6五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin AB m m g d kθ+= 【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,往往能达到事半功倍的效果.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程. 【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?【解析】 由题意可知,弹簧开始的压缩量0mgx k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=.(1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.图 3-7-7 图3-7-8即:201222F x mg x mv ⋅=⋅+得: v =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg k F +=,解得: 032mgF =.【答案】32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论.【例8】如图3-7-9所示,A B 、两木块叠放在竖直轻弹簧上,已知木块A B 、的质量分别为0.42kg 和0.40kg ,弹簧的劲度系数100/k N m =,若在A 上作用一个竖直向上的力F ,使A 由静止开始以20.5/m s 的加速度竖直向上做匀加速运动(210/g m s =)求: (1) 使木块A 竖直做匀加速运动的过程中,力F 的最大值;(2)若木块由静止开始做匀加速运动,直到A B 、分离的过程中,弹簧的弹性势能减少了0.248J ,求这一过程中F 对木块做的功.【解析】 此题难点在于能否确定两物体分离的临界点.当0F =(即不加竖直向上F 力)时,设木块A B 、叠放在弹簧上处于平衡时弹簧的压缩量为x ,有:()A B kx m m g =+,即()A B m m gx k+= ①对木块A 施加力F ,A 、B 受力如图3-7-10所示,对木块A 有: A A F N m g m a +-=②对木块B 有: 'B B kx N m g m a --= ③可知,当0N ≠时,木块A B 、加速度相同,由②式知欲使木块A 匀加速运动,随N 减小F 增大,当0N =时, F 取得了最大值m F ,即: () 4.41m A F m a g N =+=又当0N =时,A B 、开始分离,由③式知,弹簧压缩量'()B kx m a g =+,则()'Bm a g x k +=④ 木块A 、B 的共同速度:22(')v a x x =- ⑤ 由题知,此过程弹性势能减少了0.248P P W E J ==设F 力所做的功为F W ,对这一过程应用功能原理,得:21()()(')2F A B A B P W m m v m m g x x E =+++--联立①④⑤⑥式,且0.248P E J =,得:29.6410F W J -=⨯图3-7-10 图3-7-9【答案】(1) 4.41m F N = 29.6410F W J -=⨯【例9】如图3-7-11所示,一质量为M 的塑料球形容器,在A 处与水平面接触.它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m 的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度.在振动过程中球形容器对桌面的最小压力为0,求小球振动的最大加速度和容器对桌面的最大压力. 【解析】 因为弹簧正好在原长时小球恰好速度最大,所以有:=qE mg ① 小球在最高点时容器对桌面的压力最小,有:=kx Mg ②此时小球受力如图3-7-12所示,所受合力为qE kx mg F -+= ③ 由以上三式得小球的加速度mMg a =.显然,在最低点容器对桌面的压力最大,由振动的对称性可知小球在最低点和最高点有相同的加速度, 解以上式子得:Mg kx =所以容器对桌面的压力为:Mg kx Mg F N 2=+=.【答案】Mgm2Mg八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储存一定的弹性势能,因此弹簧的弹性势能可以与机械能守恒规律综合应用,我们用公式212P E kx =计算弹簧势能,弹簧在相等形变量时所具有的弹性势能相等一般是考试热点.弹簧弹力做功等于弹性势能的减少量.弹簧的弹力做功是变力做功,一般可以用以下四种方法求解:(1)因该变力为线性变化,可以先求平均力,再用功的定义进行计算; (2)利用F x -图线所包围的面积大小求解;(3)用微元法计算每一小段位移做功,再累加求和; (4)根据动能定理、能量转化和守恒定律求解.由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.特别是涉及两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消或替代求解.【例10】如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块A 和B 大小可忽略,它们分别带有A Q +和B Q +的电荷量,质量分别为A m 和B m .两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B 连接,另一端连接轻质小钩.整个装置处于场强为E 、方向水平向左的匀强电场中,A 、B 开始时静止,已知弹簧的劲度系数为k ,不计一切摩擦及A 、B 间的库仑力, A 、B 所带电荷量保持不变,B 不会碰到滑轮. (1)若在小钩上挂质量为M 的物块C 并由静止释放,可使物块A 对挡板P 的压力恰为零,但不会离开P ,求物块C 下降的最大距离h .(2)若C 的质量为2M ,则当A 刚离开挡板P 时, B 的速度多大?【解析】 通过物理过程的分析可知,当物块A 刚离开挡板P 时,弹力恰好与A 所受电场力平衡,弹簧伸长量一定,前后两次改变物块C 质量,在第(2)问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解.设开始时弹簧压缩量为1x ,由平衡条件1B kx Q E =,可得1B Q Ex k= ①设当A 刚离开挡板时弹簧的伸长量为2x ,由2A kx Q E =,可得: 2A Q Ex k= ②故C 下降的最大距离为: 12h x x =+ ③图 3-7-13 图3-7-11图 3-7-12由①②③三式可得: ()A B Eh Q Q k=+ ④ (2)由能量守恒定律可知,物块C 下落过程中,C 重力势能的减少量等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和. 当C 的质量为M 时,有:B MgH Q Eh E =+∆弹 ⑤当C 的质量为2M 时,设A 刚离开挡板时B 的速度为v ,则有:212(2)2B B MgH Q Eh E M m v =+∆++弹 ⑥由④⑤⑥三式可得A 刚离开P 时B 的速度为:v =⑦【答案】(1)()A B Eh Q Q k=+(2)v 【例11】如图3-7-14所示,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,物体A B 、都处于静止状态.一不可伸长的轻绳一端绕过轻滑轮连接物体A ,另一端连接一轻挂钩.开始时各段绳都处于伸直状态,物体A 上方的一段绳沿竖直方向.现给挂钩挂一质量为2m 的物体C 并从静止释放,已知它恰好能使物体B 离开地面但不继续上升.若将物体C 换成另一质量为12()m m +的物体D ,仍从上述初始位置由静止释放,则这次物体B 刚离地时物体D 的速度大小是多少?已知重力加速度为g【解析】 开始时物体A B 、静止,设弹簧压缩量为1x ,则有:11kx m g = 悬挂物体C 并释放后,物体C 向下、物体A 向上运动,设物体B 刚要离地时弹簧伸长量为2x ,有22kx m g =B 不再上升表明此时物体A 、C 的速度均为零,物体C 己下降到其最低点,与初状态相比,由机械能守恒得弹簧弹性势能的增加量为:212112()()E m g x x m g x x ∆=+-+物体C 换成物体D 后,物体B 离地时弹簧势能的增量与前一次相同,由能量关系得:22211211211211()()()()22m m v m v m m g x x m g x x E ++=++-+-∆联立上式解得题中所求速度为:v =【答案】v =说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转化守恒的结合往往在一些题目中需要综合使用. 九、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.【例12】如图3-7-15所示,质量为m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b 、对质点的作用力均为F ,则弹簧c 对质点作用力的大小可能为 ( ) A 、0 B 、F mg + C 、F mg - D 、mg F -【解析】 由于两弹簧间的夹角均为0120,弹簧a b 、对质点作用力的合力仍为F ,弹簧a b 、对质点有可能是拉力,也有可能是推力,因F 与mg 的大小关系不确定,故上述四个选项均有可能.正确答案:ABCD图3-7-14图3-7-15【答案】 ABCD 十、弹簧振子弹簧振子的位移、速度、加速度、动能和弹性势能之间存在着特殊关系,弹簧振子类问题通常就是考查这些关系,各物理量的周期性变化也是考查的重点. 【例13】如图3-7-16所示,一轻弹簧与一物体组成弹簧振子,物体在同一竖直线上的A B 、间做简谐运动, O 点为平衡位置;C 为AO 的中点,已知OC h =,弹簧振子周期为T ,某时刻弹簧振子恰好经过C 点并向上运动,则从此时刻开始计时,下列说法中正确的是 ( )A 、4Tt =时刻,振子回到C 点 B 、2Tt ∆=时间内,振子运动的路程为4hC 、38Tt =时刻,振子的振动位移为0D 、38Tt =时刻,振子的振动速度方向向下【解析】 振子在点A C 、间的平均速度小于在点C O 、间的平均速度,时间大于8T,选项A C 、错误;经2T振子运动O 点以下与点C 对称的位置,总路程为4h ,选项B 正确;经38Tt =振子在点O B 、间向下运动,选项D 正确. 【答案】 B D十一、弹簧串、并联组合弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例14】 如图3-7-17所示,两个劲度系数分别为12k k 、的轻弹簧竖直悬挂,下端用光滑细绳连接,并有一光滑的轻滑轮放在细线上;滑轮下端挂一重为G 的物体后滑轮下降,求滑轮静止后重物下降的距离.【解析】 两弹簧从形式上看似乎是并联,但因每根弹簧的弹力相等,故两弹簧实为串联;两弹簧的弹力均2G,可得两弹簧的伸长量分别为112G x k =,222G x k =,两弹簧伸长量之和12x x x =+,故重物下降的高度为:1212()24G k k x h k k +== 【答案】1212()4G k k k k +十二、通电的弹簧【例15】如图3-7-18所示装置中,将金属弹簧的上端固定,下端恰好浸入水银,水银与电源负极相连,弹簧上端通过开关S 与电源正极相连.当接通开关S 后,弹簧的运动情况如何?【解析】 通电弹簧相邻两匝线圈相互平行且电流同向,两匝线圈相互吸引,从而使弹簧收缩;弹簧收缩后下端离开水银,切断了电流吸引力消失,弹簧又向下恢复原长,与水银面接触而接通电路,然后又在吸引力作用下收缩.如此反复,弹簧就不断地上下振动.图3-7-17图3-7-18图3-7-16十三、物体沿弹簧螺旋运动【例16】如图3-7-19所示,长度为L 的光滑钢丝绕成高度为H 的弹簧,将弹簧竖直放置.一中间有孔的小球穿过钢丝并从弹簧的最高点A 由静止释放,求经多长时间小球沿弹簧滑到最低点B .【解析】 小球沿光滑弹簧下滑时机械能守恒,可以假想在不改变弹簧上各处倾角的条件下将弹簧拉成一条倾斜直线,如图3-7-20所示,小球沿此直线下滑的时间与题中要求的时间相等.小球沿直线下滑的加速度为sin a g θ= 由几何知识可得:sin HL θ=;由位移公式可知:212L at =,联立上式解得:t =【答案】 十四、生产和生活中的弹簧弹簧在生产和生活中有着广泛的应用,近几年高考中也出现了不少有关弹簧应用方面的试题.【例17】如图3-7-21所示表示某同学在科技活动中自制的电子秤原理,利用电压表示数来指示物体质量,托盘与电阻可忽略的弹簧相连,托盘与弹簧的质量均不计,滑动变阻器的滑动头与弹簧上端连接;当托盘中没放物体且S 闭合时,电压表示数为零.设变阻器的总电阻为R 、总长度为L ,电源电动势为E 、内阻为r ,限流电阻阻值为0R ,弹簧劲度系数为k ,不计一切摩擦和其他阻力.(1)推导出电压表示数x U 与所称物体质量m 的关系式. (2)由(1)结果可知,电压表示数与待测物体质量不成正比、不便于进行刻度.为使电压表示数与待测物体质量成正比,请利用原有器材进行改进并完成电路原理图,推导出电压表示数x U 与待测物体质量m 的关系式. 【解析】(1)设变阻器上端至滑动头的长度为x ,据题意得:mg kx =,x xR R L =,0x x x R U E R R r =++ 解得:0()x mgREU mgR kL R r =++(2)改进后的电路如图3-7-22所示,则有:mg kx =, x xR R L=,解得: 0()x mgREU kL R R r =++【答案】(1)0()x mgREU mgR kL R r =++(2)0()x mgREU kL R R r =++图3-7-20图3-7-21图3-7-19图 3-7-22。