九年级数学综合测试卷(一)
人教版九年级数学(上下全册)综合测试卷(附带参考答案)
人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。
吉林省名校调研卷系列(省命题A)2020届九年级下学期第一次综合测试数学试题(word版,含答案)
吉林省名校调研卷系列(省命题A)2020届九年级下学期第一次综合测试数学试题一、选择题(每小题2分,共12分)1.抛物线y=-x2 + 2的对称轴为( )A. x=2B. x =0C. y= 2D. y= 02.如图所示几何体的俯视图是( )A. B. C. D.正面3.已知关于x的一元二次方程x2 +3x+m= 0,若m < 0,则该方程解的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定的图象分布在第二、四象限,则k的取值范围是( )4.若反比例函数y= 1−2kxA. k <12B. k >12C. k > 2D. k < 25.如图,在平面直角坐标系中,直线OA过点A(2,1),则cosα的值是( )(第5题) (第6题)6.如图,△A'B'C是△ABC以点O为位似中心经过位似变换得到的,若△A'B'C'的面积与△ABC 的面积比是4:9,则OB' : OB为( )A. 2: 3B. 3: 2C. 4: 5D. 4: 9二、填空题(每小题3分,共24分)7.计算:sin30°+ tan45°=8.如图,将△ABC绕点A逆时针旋转150°,得到△ADE, 这时点B、C、D恰好在同一直线上.则∠B的度数为_________(第8题) (第9题) (第10题) (第11题)9.在正方形网格中,△ABC的位置如图所示,则sinB =_________10.如图,在△ABC中,P为边AB上一点,且∠ACP=∠B,若AP=2,BP=3,则AC的长为_________11.如图,AB是⊙O的直径,点C、D在⊙O上,连接AD、BC、BD、DC,若BD = CD,∠DBC = 20°,则,∠ABC =_________12.如图,铁道路口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高_________m(杆的宽度忽略不计).(第12题) (第13题) (第14题)13.如图,在平面直角坐标系中,点A和点C分别在y轴和工轴的正半轴上,以OA、OC为边作矩形OABC,双曲线y=6x(x>0)交AB于点E,若AE: EB= 1 : 3,则矩形的面积为_______ 14.二次函数y=2x2-4x +4的图象如图所示,其对称轴与它的图象交于点P,点N是其图象上异于点P的一点,若PM⊥y轴,MN⊥x轴,则MNPM2=_______三、解答题(每小题5分,共20分)15.解方程:x2+8x= 9.16.已知y是x的反比例函数,且x=3时,y=8.(1)写出y与x之间的函数关系式;(2)当3≤x≤4时,直接写出y的取值范围。
九年级数学第一学期期末考试综合复习测试题(含答案)
九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。
2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)
人教版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤132.若△ABC ∽△A ′B ′C ′,其相似比为3:2,则△ABC 与△A ′B ′C ′的面积比为( ) A .3:2B .9:4C .2:3D .4:93.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52 C .32 D .2554.反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .无法判断5.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P 到CD 的距离是2 m ,则点P 到AB 的距离是( ) A .13mB .12m C .23m D .1 m6.如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( ) A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中的图形的高度为6 cm ,则屏幕上图形的高度为( ) A .6 cmB .12 cmC .18 cmD .24 cm8.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,S △DEF :S △ABF =4:25,则DE EC =( )A .2:3B .2:5C .3:5D .3:29.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 站测得船C 在北偏东45°的方向,从B 站测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .22kmD .(4-2)km10.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共30分)11.写出一个反比例函数y =k x(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1:1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比是________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.19.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =k x(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A (-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为________________.20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG+DF =FG .其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分) 21.计算:2cos 245°-(tan 60°-2)2-(sin 60°-1)0+(sin 30°)-2.22.如图所示是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)23.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =k x(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =kx(k ≠0)的图象上,请通过计算说明理由.24.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0)25.如图①,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过C 点的切线,垂足为D ,AB 的延长线交直线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长;(3)如图②,连接OD 交AC 于点G ,若CG GA =34,求sin E 的值.26.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,O A . ① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.B 2.B 3.D 4.C 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.1918.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD时,△QCP ∽△ADP ,此时x 4=22,∴x =4.19.y =-x +320.①③④ 点拨:∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠BHG =∠A =90°,∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确;HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AG DF ,∴△ABG 与△DEF 不相似,∴②错误;∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确;∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,∴④正确.三、21.解:原式=2×⎝ ⎛⎭⎪⎫222-(2-3)-1+⎝ ⎛⎭⎪⎫12-2=1-(2-3)-1+4=3+2.22.解:(1)圆柱 (2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570. 23.解:(1)∵四边形OABC 是平行四边形, ∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2). 将(1,2)代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2).由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.24.解:根据题意,得AB ⊥EF ,DE ⊥EF , ∴∠ABC =90°,AB ∥DE ,∴△ABF ∽△DEF ,∴AB DE =BF EF ,即AB 9=44+6,解得AB =3.6 m. 在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 25.(1)证明:连接OC ,如图①. ∵DC 切半圆O 于C ,∴OC ⊥DC , 又AD ⊥CD .∴OC ∥AD .∴∠OCA =∠DAC . ∵OC =OA ,∴∠OAC =∠OCA . ∴∠DAC =∠OAC ,即AC 平分∠DAB .(2)解:∵AB =4,∴OC =2.在Rt △OCE 中,∵OC =OB =12OE ,∴∠E =30°.∴∠COF =60°.∴在Rt △OCF 中,CF =OC ·sin60°=2×32= 3. (3)解:连接OC ,如图②.∵CO ∥AD ,∴△CGO ∽△AGD .∴CG GA =CO AD =34.不妨设CO =AO =3k ,则AD =4k .又易知△COE ∽△DAE ,∴CO AD =EO AE =34=EO3k +EO .∴EO =9k .在Rt △COE 中,sin E =CO EO =3k 9k =13.26.(1)①证明:如图①,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA ,∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5.即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .由(1)中可得PC =4,又∵BC =AD =8,∠C =90°. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点P (-1,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )3.若Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A.53B.52C.32D.2554.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤135.如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD ∶AB=1∶4,BC =8 cm ,那么△ADE 的周长等于( ) A .2 cmB .3 cmC .6 cmD .12 cm(第5题) (第7题) (第8题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m ,他在地面上的影长为2.1 m .小芳比爸爸矮0.3 m ,她的影长为( ) A .1.3 mB .1.65 mC .1.75 mD .1.8 m7.一次函数y 1=k 1x +b 和反比例函数y 2=k 2x(k 1k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <18.如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′,点A ,B ,A ′,B ′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A.⎝ ⎛⎭⎪⎫m2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-3B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,则他上升了________m.(第12题) (第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,点C ,D 在x 轴上,若四边形ABCD为矩形,则它的面积为________.18.如图,正方形ABCD 的边长为62,过点A 作AE ⊥AC ,AE =3,连接BE ,则tan E =________. 三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.如图,△ABC 三个顶点的坐标分别为A (4,6),B (2,2),C (6,4),请在第一象限内,画出一个以原点O 为位似中心,与△ABC 的相似比为12的位似图形△A 1B 1C 1,并写出△A 1B 1C 1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题)22.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx()k ≠0在第一象限内的图象交于点B ,且点B 的横坐标为1,过点A 作AC ⊥y 轴,交反比例函数y =k x(k ≠0)的图象于点C ,连接BC .求:(第22题)(1)反比例函数的解析式; (2)△ABC 的面积.23.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线并在其上取一点C ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E ,连接AD .(第23题)(1)求证△CDE ∽△CAD ;(2)若AB =2,AC =22,求AE 的长.24.如图,将矩形ABCD 沿AE 折叠得到△AFE ,且点F 恰好落在DC 上.(第24题)(1)求证△ADF ∽△FCE ;(2)若tan ∠CEF =2,求tan ∠AEB 的值.25.如图,直线y =2x +2与y 轴交于点A ,与反比例函数y =kx(x >0)的图象交于点M ,过点M 作MH ⊥x 轴于点H ,且tan ∠AHO =2. (1)求k 的值.(2)在y 轴上是否存在点B ,使以点B ,A ,H ,M 为顶点的四边形是平行四边形?如果存在,求出点B 的坐标;如果不存在,请说明理由.(3)点N (a ,1)是反比例函数y =k x(x >0)图象上的点,在x 轴上有一点P ,使得PM +PN 最小,请求出点P 的坐标.(第25题)答案一、1.D 2.C 3.D 4.B 5.C 6.C7.A 8.D9.A 点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠FAD=30°,则FD=AF·tan∠FAD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B 点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0).∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A 在反比例函数y =3x的图象上,∴可设点A 的坐标为⎝ ⎛⎭⎪⎫m ,3m .∴OE =m ,AE =3m .易知△AOE ∽△OBF ,∴AE OF =OA OB ,即3m OF =3a 6a,∴OF =32m.同理,BF =2m ,∴点B 的坐标为⎝⎛⎭⎪⎫-32m,2m .把B ⎝⎛⎭⎪⎫-32m,2m 的坐标代入y =k x,得k =-6. 二、11.3-1 12.100 13.18 14.2315.40+403316.88 点拨:由题中的三视图可以判断,该几何体是一个长方体.从主视图可以看出,该长方体的长为6, 从左视图可以看出,该长方体的宽为2. 根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2 点拨:如图,延长BA 交y 轴于点E ,则四边形AEOD ,BEOC 均为矩形.由点A 在双曲线y =1x 上,得矩形AEOD 的面积为1;由点B 在双曲线y =3x上,得矩形BEOC 的面积为3,故矩形ABCD 的面积为3-1=2.(第17题)18.23点拨:∵正方形ABCD 的边长为62,∴AC =12. 过点B 作BF ⊥AC 于点F ,则CF =BF =AF =6.设AC 与BE 交于点M ,∵BF ⊥AC ,AE ⊥AC ,∴AE ∥BF .∴△AEM ∽△FBM . ∴AM FM =AE FB =36=12.∴AM AF =13. ∴AM =13AF =13×6=2.∴tan E =AM AE =23.三、19.解:画出的△A 1B 1C 1如图所示.(第19题)△A 1B 1C 1的三个顶点的坐标分别为A 1(2,3),B 1(1,1),C 1(3,2). 20.解:(1)如图所示.(第20题) (2)2421.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE . ∴△ABF ∽△DEF . ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6.在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98.∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1,∴y =3×1+2=5. ∴点B 的坐标为(1,5).∵点B 在反比例函数y =k x (k ≠0)的图象上,∴5=k1,则k =5.∴反比例函数的解析式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2).∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x的图象上,当y =2时,2=5x ,x =52, ∴AC =52.过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3.∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°. ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE . ∴∠CAD =∠CDE . 又∵∠C =∠C , ∴△CDE ∽△CAD . (2)解:∵AB =2, ∴OA =OD =1.在Rt △OAC 中,∠OAC =90°, ∴OA 2+AC 2=OC 2, 即12+(22)2=OC 2. ∴OC =3,则CD =2. 又由△CDE ∽△CAD ,得CD CE =CACD, 即2CE =222,∴CE = 2. ∴AE =AC -CE =22-2= 2. 24.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°.∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴∠AFE =∠B =90°.∴∠AFD +∠CFE =180°-∠AFE =90°. 又∵∠AFD +∠DAF =90°, ∴∠DAF =∠CFE . ∴△ADF ∽△FCE .(2)解:在Rt △CEF 中,tan ∠CEF =CF CE=2,设CE =a ,CF =2a (a >0), 则EF =CF 2+CE 2=5a .∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴BE =EF =5a ,BC =BE +CE =(5+1)a ,∠AEB =∠AEF . ∴AD =BC =(5+1)a . ∵△ADF ∽△FCE , ∴AF FE =AD CF =(5+1)a 2a =5+12. ∴tan ∠AEF =AFFE=5+12. ∴tan ∠AEB =tan ∠AEF =5+12. 25.解:(1)由y =2x +2可知A (0,2),即OA =2.∵tan ∠AHO =2,∴OH =1. ∵MH ⊥x 轴,∴点M 的横坐标为1. ∵点M 在直线y =2x +2上, ∴点M 的纵坐标为4.∴M (1,4).∵点M 在反比例函数y =k x(x >0)的图象上,∴k =1×4=4. (2)存在.如图所示.[第25(2)题]当四边形B 1AHM 为平行四边形时,B 1A =MH =4, ∴OB 1=B 1A +AO =4+2=6,即B 1(0,6). 当四边形AB 2HM 为平行四边形时,AB 2=MH =4, ∴OB 2=AB 2-OA =4-2=2, 此时B 2(0,-2).综上,存在满足条件的点B ,且点B 的坐标为(0,6)或(0,-2). (3)∵点N (a ,1)在反比例函数y =4x(x >0)的图象上,∴a =4,即点N 的坐标为(4,1).如图,作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于点P ,连接PN ,此时PM +PN 最小.[第25(3)题]∵N 与N 1关于x 轴对称,N 点坐标为(4,1), ∴N 1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k ′x +b (k ′≠0), 由⎩⎪⎨⎪⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173. ∴直线MN 1对应的函数解析式为y =-53x +173.令y =0,得x =175,∴点P 的坐标为⎝ ⎛⎭⎪⎫175,0.人教版初中数学九年级(下)期末综合测试卷及答案(三)一、选择题(每题3分,共30分)1.下列四个几何体中,主视图为三角形的是( )2.【教材P 6练习T 2变式】反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第一、四象限3.若△ABC ∽△A ′B ′C ′,其相似比为32,则△ABC 与△A ′B ′C ′的周长比为( )A .3∶2B .9∶4C .2∶3D .4∶94.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52C .32D .2555.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P到CD 的距离是2 m ,则点P 到AB 的距离是( )A .13mB .12mC .23mD .1 m6.【教材P 22复习题T 10改编】如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A.-1<x<0 B.-1<x<1C.x<-1或0<x<1 D.-1<x<0或x>17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm,到屏幕的距离为60 cm,且幻灯片中的图形的高度为6 cm,则屏幕上图形的高度为( )A.6 cm B.12 cm C.18 cm D.24 cm8.如图,在▱ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,则DE∶EC=( )A.2∶3 B.2∶5 C.3∶5 D.3∶29.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD 的长)为( )A.4 km B.(2+2)km C.22km D.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x (0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共24分)11.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.【教材P 41练习T 1变式】在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12 m ,那么这栋建筑物的高度为________m. 15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1∶1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.【教材P 102习题T 5变式】如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为____________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.三、解答题(19题6分,20题10分,24题14分,其余每题12分,共66分) 19.计算:3tan30°+cos 245°-(sin30°-1)0.20.【教材P 110复习题T 6变式】如图所示的是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)21.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =kx(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =k x(k ≠0)的图象上,请通过计算说明理由.22.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据: sin 53°≈0.798 6, cos 53°≈0.601 8,tan 53°≈1.327 0)23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥CE ,垂足为D ,AC 平分∠DAB .(1)求证:CE 是⊙O 的切线;(2)若AD =4,cos ∠CAB =45,求AB 的长.24.【教材P 85复习题T 11拓展】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B落在CD 边上的点P 处,然后展开.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,OA .① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.y =-x +318.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD 时,△QCP∽△ADP ,此时x 4=22,∴x =4.三、19.解:原式=3×33+⎝ ⎛⎭⎪⎫222-1=12. 20.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570.21.解:(1)∵四边形OABC 是平行四边形,∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2).将点B (1,2)的坐标代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2). 由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.22.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE , ∴△ABF ∽△DEF , ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6 m.在Rt △ABC 中,∵cos ∠BAC =AB AC,∠BAC =53°, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 23.(1)证明:连接OC .∵AC 平分∠DAB ,∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴AD ∥OC , 又∵AD ⊥CE ,∴OC ⊥CE .又∵OC 是⊙O 的半径,∴CE 是⊙O 的切线.(2)解:连接BC .在Rt △ADC 中,cos ∠DAC =cos ∠CAB =45=AD AC =4AC ,∴AC =5,∵AB 为⊙O 的直径,∴∠ACB =90°. 在Rt △ABC 中,cos ∠CAB =AC AB =5AB =45,∴AB =254. 24.(1)①证明:如图①,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1∶4,且△OCP ∽△PDA , ∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5,即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .∵BC =AD =8,∠C =90°,PC =4. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,动点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷(四)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。
2023年北师大版初中数学九年级(下)期末综合测试卷及部分答案(五套)
北师大版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在△ABC 中,若⎪⎪⎪⎪⎪⎪sin A -12+⎝ ⎛⎭⎪⎫cos B -122=0,则∠C 的度数是( ) A.30° B.45° C.60° D.90° 2.抛物线y =x 2-3x +2的对称轴是直线( ) A.x =-3 B.x =3 C.x =-32 D.x =323.把抛物线y =-2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得抛物线对应的函数表达式为( )A.y =-2(x +1)2+2 B.y =-2(x +1)2-2 C.y =-2(x -1)2+2 D.y =-2(x -1)2-2 4.2cos 45°的值等于( ) A.1 B. 2 C. 3 D.25.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦, ∠ABD =58°,则∠BCD 等于( )A.116°B.32°C.58°D.64°6.如图是某水库大坝横断面示意图,其中CD ,AB 分别表示水库上、下底面的水平线,∠ABC =120°,BC 的长是50 m ,则水库大坝的高度h 是( )A.25 3 mB.25 mC.25 2 mD.5033m7.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误..的是( ) A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-52C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大8.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接C D.若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为( )A.4π3- 3B.4π3-2 3C.π- 3D.2π3- 39.如图,半圆O 与等腰直角三角形两腰CA ,CB 分别切于D ,E 两点,直径FG 在AB 上,若BG =2-1,则△ABC 的周长为( )A.4+2 2B.6C.2+2 2D.410.如图,一艘渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20 n mile ,渔船将险情报告给位于A 处的救援船后,沿北偏西80°的方向向海岛C 靠近,同时,从A 处出发的救援船沿南偏西10°方向匀速航行,20 min 后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( )A.10 3 n mile/hB.30 n mile/hC.20 3 n mile/hD.30 3 n mile/h 二、填空题(每题3分,共30分)11.二次函数y =-x 2+bx +c 的部分图象如图所示,若y >0,则x 的取值范围是____________.12.如图,在△ABC 中,∠B =30°,AC =2,cos C =35,则AB 边的长为________.13.抛物线y =2x 2+6x +c 与x 轴的一个交点为(1,0),则这个抛物线的顶点坐标是____________.14.如图,扇形AOB 的圆心角为122°,C 是AB ︵上一点,则∠ACB =________.15.如图,直径为10的⊙A 经过点C (0,6)和点O (0,0),与x 轴的正半轴交于点D ,B 是y轴右侧圆弧上一点,则cos ∠OBC =________.16.已知⊙O 的半径为1,点P 与点O 之间的距离为d ,且关于x 的方程x 2-2x +d =0没有实数根,则点P 在__________(填“圆内”“圆上”或“圆外”).17.一个小球在空中的高度h(m )与时间t(s)满足关系式:h =20t -5t 2,那么这个小球所能达到的最大高度为________m .18.如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB 上一动点,则CM+DM 的最小值是__________.(19.如图,某公园入口处有三级台阶,每级台阶高为18 cm ,深为30 cm ,为了方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起点为C ,现设计斜坡BC 的坡度i =1∶5,则AC 的长度是________cm.20.如图,在平面直角坐标系中有一正方形AOBC ,反比例函数y =k x的图象经过正方形AOBC对角线的交点,半径为(4-22)的圆内切于△ABC ,则k 的值为________.三、解答题(21题6分,22~24题每题8分,其余每题10分,共60分) 21.计算:2sin 30°-3tan 45°·sin 45°+4cos 60°.22.如图,已知二次函数y =a (x -h)2+3的图象经过O (0,0),A (2,0)两点. (1)写出该函数图象的对称轴;(2)若将线段OA 绕点O 逆时针旋转60°到OA ′,试判断点A ′是否为该函数图象的顶点.23.如图,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,OD ∥BC ,OD 与AC 交于点E . (1)若∠D =70°,求∠CAD 的度数; (2)若AC =8,DE =2,求AB 的长.24.如图,在小山的东侧A 庄,有一热气球,由于受西风的影响,以35 m/min 的速度沿着与水平方向成75°角的方向飞行,40 min 时到达C 处,此时气球上的人发现气球与山顶P 点及小山西侧的B 庄在一条直线上,同时测得B 庄的俯角为30°.又在A 庄测得山顶P的仰角为45°,求A庄与B庄的距离及山高(结果保留根号).25.如图,以△ABC的边BC上一点O为圆心的圆经过A,C两点且与BC边交于点E.点D为下半圆弧的中点,连接AD交线段EO于点F,且AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=10,求⊙O的半径r及sin B.26.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式.(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.27.在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2+bx +5经过点M (1,3)和N (3,5).(1)试判断该抛物线与x 轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A (-2,0),且与y 轴交于点B ,同时满足以A ,O ,B 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.答案一、1.D 2.D 3.C 4.B 5.B 6.A 7.D 8.A9.A 点拨:连接OD ,OE ,易证得四边形ODCE 是正方形,△OEB 是等腰直角三角形,设OE=r ,由OB =2OE =2r ,可得方程:2-1+r =2r ,解此方程,即可求得r ,则△ABC 的周长为4+2 2.10.D 点拨:∵∠CAB =10°+20°=30°,∠CBA =80°-20°=60°,∴∠C =90°.∵AB =20 n mile ,∴AC =AB ·cos 30°=10 3 n mile.∴救援船航行的速度为103÷2060=303(n mile/h).二、11.-3<x <1 12.16513.⎝ ⎛⎭⎪⎫-32,-25214.119° 点拨:在扇形AOB 所在圆的优弧AB 上取一点D ,连接DA ,DB .∵∠AOB =122°,∴∠D =61°. ∵∠ACB +∠D =180°, ∴∠ACB =119°.15.4516.圆外 17.20 18.8 cm 19.210 点拨:过点B 作BD ⊥AC 于点D ,则AD =2×30=60(cm),BD =18×3=54(cm).由斜坡BC 的坡度i =1∶5,得CD =5BD =5×54=270(cm).∴AC =CD -AD =270-60=210(cm).20.4 点拨:设正方形OACB 的边长为a ,则AB =2a .根据直角三角形内切圆半径公式得a +a -2a2=4-22,故a =4.所以对角线交点坐标为(2,2),故k =xy =4.三、21.解:原式=2×12-3×1×22+4×12=1-322+2=3-322.22.解:(1)∵二次函数y =a (x -h )2+3的图象经过O (0,0),A (2,0)两点,∴抛物线的对称轴为直线x =1. (2)点A ′是该函数图象的顶点.理由:如图,作A ′B ⊥x 轴于点B .∵线段OA 绕点O 逆时针旋转60°到OA ′,∴OA ′=OA =2,∠AOA ′=60°.又∵A ′B ⊥x 轴,∴OB =12OA ′=1,A ′B =3OB = 3.∴A ′点的坐标为(1,3).∴点A ′是函数y =a (x -1)2+3图象的顶点. 23.解:(1)∵OA =OD ,∠D =70°,∴∠OAD =∠D =70°.∴∠AOD =180°-∠OAD -∠D =40°. ∵AB 是半圆O 的直径,∴∠C =90°. ∵OD ∥BC ,∴∠AEO =∠C =90°,即OD ⊥AC . ∴AD ︵=CD ︵. ∴∠CAD =12∠AOD =20°.(2)由(1)可知OD ⊥AC ,∴AE =12AC =12×8=4.设OA =x ,则OE =OD -DE =x -2. 在Rt △OAE 中,OE 2+AE 2=OA 2,即(x -2)2+42=x 2,解得x =5. ∴AB =2OA =10. 24.解:过点A 作AD ⊥BC ,垂足为D .在Rt △ADC 中,∠ACD =75°-30°=45°,AC =35×40=1 400(m). ∴AD =AC ·sin 45°=1 400×22=7002(m). 在Rt △ABD 中,∠B =30°, ∴AB =2AD =1 400 2 m. 过点P 作PE ⊥AB ,垂足为E , 则AE =PE ,BE =PEtan 30°=3PE .∴(3+1)PE =1 400 2. 解得PE =700(6-2)m.答:A 庄与B 庄的距离是1 400 2 m ,山高是700(6-2)m. 25.(1)证明:如图,连接AO ,DO .∵D 为下半圆弧的中点,∴∠EOD =90°. ∵AB =BF ,OA =OD ,∴∠BAF =∠BFA =∠OFD ,∠OAD =∠ADO .∴∠BAF +∠OAD =∠OFD +∠ADO =90°,即∠BAO =90°. ∴OA ⊥AB . ∴AB 是⊙O 的切线.(2)解:在Rt △OFD 中,OF =CF -OC =4-r ,OD =r ,DF =10.∵OF 2+OD 2=DF 2,∴(4-r )2+r 2=(10)2. ∴r 1=3,r 2=1(舍去).∴半径r =3.∴OA =3,OF =CF -OC =4-3=1,BO =BF +FO =AB +1. 在Rt △ABO 中,AB 2+AO 2=BO 2,∴AB 2+32=(AB +1)2.∴AB =4.∴BO =5. ∴sin B =AO BO =35.26.解:(1)y =⎩⎪⎨⎪⎧120x (0<x ≤30),[120-(x -30)]x (30<x ≤m ),[120-(m -30)]x (x >m )=⎩⎪⎨⎪⎧120x (0<x ≤30),-x 2+150x (30<x ≤m ),(150-m )x (x >m ). (2)由(1)可知,当0<x ≤30或x >m 时,y 都随着x 的增大而增大.当30<x ≤m 时,y =-x 2+150x =-(x -75)2+5 625, ∵-1<0,∴当x ≤75时,y 随着x 的增大而增大.∴为了让收取的总费用随着团队中人数的增加而增加,m 的取值范围为30<m ≤75. 27.解:(1)把M ,N 两点的坐标代入抛物线对应的函数表达式,可得:⎩⎪⎨⎪⎧a +b +5=3,9a +3b +5=5,解得⎩⎪⎨⎪⎧a =1,b =-3. ∴抛物线对应的函数表达式为y =x 2-3x +5. 令y =0,可得x 2-3x +5=0.∵Δ=(-3)2-4×1×5=9-20=-11<0, ∴该抛物线与x 轴没有交点.(2)∵△AOB 是等腰直角三角形,点A (-2,0),点B 在y 轴上,∴点B 的坐标为(0,2)或(0,-2).可设平移后的抛物线对应的函数表达式为y =x 2+mx +n .①当抛物线过A (-2,0),B (0,2)时,代入可得⎩⎪⎨⎪⎧n =2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =3,n =2.∴平移后的抛物线对应的函数表达式为y =x 2+3x +2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-32,-14,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移3个单位长度,再向下平移3个单位长度,即可获得符合条件的抛物线.②当抛物线过A (-2,0),B (0,-2)时,代入可得⎩⎪⎨⎪⎧n =-2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =1,n =-2. ∴平移后的抛物线对应的函数表达式为y =x 2+x -2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-12,-94,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移2个单位长度,再向下平移5个单位长度,即可获得符合条件的抛物线.北师大版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题。
北师大版初中九年级数学上册阶段素养综合测试卷(一)课件
12. (2023浙江绍兴柯桥期中,15,★☆☆)如图,在△ABC中,∠ACB=90°,∠B=44°,D为
线段AB的中点,则∠ACD=
46 °.
答案 46 解析 在△ABC中,∠ACB=90°,∠B=44°,∴∠A=46°. ∵Rt△ABC中,D为线段AB的中点,∴CD=AD, ∴∠ACD=∠A=46°.故答案是46.
有下列四个推断: ①对于任意四边形ABCD,四边形MNPQ都是平行四边形; ②若四边形ABCD是平行四边形,则MP与NQ交于点O; ③若四边形ABCD是矩形,则四边形MNPQ也是矩形; ④若四边形MNPQ是正方形,则四边形ABCD也一定是正方形.所有正确推断的序
号是 A.①②
B.①③
C.②③
D.③④
合,∴NQ与AC交于点O,∴MP与 NQ交于点O,∴②正确;③若四边形ABCD是矩 形,则AC=BD,∴MN=MQ,∴四边形MNPQ是菱形,但不一定是矩形,∴③不正确; ④∵四边形MNPQ是正方形,∴MQ=MN,∠QMN=90°,∴AC=BD,AC⊥BD,即四边 形ABCD的对角线互相垂直且相等,不能说明四边形ABCD是正方形,∴④不正 确.
B. 有两个相等的实数根
C. 没有实数根
D. 无法确定
解析 A 由数轴得m>0,n<0,m+n<0,∴mn<0,∴Δ=(-mn)2-4·(m+n)>0,∴方程有两
个不相等的实数根.
故选A.
10. (2023北京交大附中期中,8,★★★)如图,四边形ABCD的对角线AC,BD交于点 O,点M,N,P,Q分别为边AB,BC,CD,DA的中点.
8. (2020浙江衢州中考,7,★★☆)某厂家2020年1~5月份的口罩产量统计如图所 示,设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程
北师大版初中数学九年级上册第一章综合测试试卷-含答案01
第一章单元综合测试一、单选题1.已知四边形ABCD 是平行四边形,AC ,BD 相交于点O ,下列结论错误的是( ) A .OA OC =,OB OD =B .当AB CD =时,四边形ABCD 是菱形C .当90ABC ∠=︒时,四边形ABCD 是矩形D .当AC BD =且AC BD ⊥时,四边形ABCD 是正方形2.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,8AC =,6BD =,点E 是CD 上一点,连接OE ,若OE CE =,则OE 的长是( )A .2B .52C .3D .4 3.如图,面积为S 的菱形ABCD 中,点O 为对角线的交点,点E 是线段BC 单位中点,过点E 作EF BD ⊥于F ,EG AC ⊥与G ,则四边形EFOG 的面积为( )A .14SB .18SC .112S D .116S 4.如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 的中点.若菱形ABCD 的周长为32,则OE 的长为( )A .3B .4C .5D .65.如图,正方形ABCD 的面积为1,M 是AB 的中点,则图中阴影部分的面积是( )A .310B .13C .25D .496.如图,正方形ABCD 的边长8AB =,E 为平面内一动点,且4AE =,F 为CD 上一点,2CF =,连接EF ,ED ,则2EF ED +的最小值为( )A .B .C .12D .10二、填空题7.如图,在菱形ABCD 中,50B ∠=︒,点E 在CD 上,若AE AC =,则BAE ∠=________.8.如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC ,ED 分别交于点M ,N .已知4AB =,6BC =,则MN 的长为________.9.如图,在矩形ABCD 中,9AB =,AD =,点P 是边BC 上的动点(点P 不与点B ,点C 重合),过点P 作直线PQ BD ∥,交CD 边于Q 点,再把PQC △沿着动直线PQ 对折,点C 的对应点是R 点,则CQP ∠=________.10.如图,正方形ABCD 中,点E 为对角线AC 上一点,且AE AB =,则BEA ∠的度数是________度.三、作图题11.在正方形ABCD 中,E 是CD 边上的点,过点E 作EF BD ⊥于F .(1)尺规作图:在图中求作点E ,使得EF EC =;(保留作图痕迹,不写作法) (2)在(1)的条件下,连接FC ,求BCF ∠的度数.四、综合题12.如图,ABCD 的对角线AC ,BD 相交于点O ,过点O 作EF AC ⊥,分别交AB ,DC 于点E 、F ,连接AF 、CE .(1)若32OE =,求EF 的长;(2)判断四边形AECF 的形状,并说明理由.13.如图,在ABC △中,AB AC =,点D 、E 分别是线段BC 、AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:A BDE F E △≌△;(2)求证:四边形ADCF 为矩形.14.如图,四边形ABCD 的对角线AC ,BD 交于点O ,过点D 作DE BC ⊥于E ,延长CB 到点F ,使BF CE =,连接AF ,OF .(1)求证:四边形AFED 是矩形;(2)若7AD =,2BE =,45ABF ∠=︒,试求OF 的长.15.如图,点E 是正方形ABCD 外一点,点F 是线段AE 上一点,且EBF △是等腰直角三角形,其中90EBF ∠=︒,连接CE 、CF(1)求证:ABF CBE △≌△;(2)判断CE 与EF 的位置关系,并说明理由.16.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:HEA CGF ∠∠=;(2)当AH DG =时,求证:菱形EFGH 为正方形.第一章单元综合测试答案解析一、 1.【答案】B【解析】∵四边形ABCD 是平行四边形,OA OC =∴,OB OD =,故A 正确,∵四边形ABCD 是平行四边形,AB CD =,不能推出四边形ABCD 是菱形,故B 错误,∵四边形ABCD 是平行四边形,90ABC ∠=︒, ∴四边形ABCD 是矩形,故C 正确,∵四边形ABCD 是平行四边形,AC BD =,AC BD ⊥, ∵四边形ABCD 是正方形.故D 正确.故答案为:B . 2.【答案】B【解析】∵四边形ABCD 是菱形,8AC =,6BD =,142CO AC ==∴,132OD BD ==,AC BD ⊥,5DC =∴,90EOC DOE ∠+∠=︒,90DCO ODC ∠+∠=︒,OE CE =∵,EOC ECO ∠=∠∴,DOE ODC ∠=∠∴,DE OE =∴,1522OE CD ==∴故答案为:B . 3.【答案】B【解析】∵四边形ABCD 是菱形,OA OC =∴,OB OD =,AC BD ⊥,12S AC BD =⨯, EF BD ⊥∵于F ,EG AC ⊥于G ,∴四边形EFOG 是矩形,EF OC ∥,EG OB ∥,∵点E 是线段BC 的中点,EF ∴、EG 都是OBC △的中位线,1124EF OC AC ==∴,1124EG OB BD ==,∴矩形EFOG 的面积11111=44828EF EG AC BD AC BD S ⎛⎫=⨯=⨯=⨯⨯ ⎪⎝⎭;答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
九年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)
九年级数学上册第一学期期末综合测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.2cos45°的值等于()A.1 B.2 C.3D.22.下列函数中,一定是反比例函数的是()A.y=-2x-1B.y=kx-1C.y=4x D.y=1x-13.已知二次函数y=-3(x-2)2-3,下列说法正确的是()A.图象的对称轴为直线x=-2B.图象的顶点坐标为(2,3)C.函数的最大值是-3D.函数的最小值是-34.如图,在△ABC中,点D是AB边上一点,下列条件中,能使△ABC与△BDC 相似的是()A.∠B=∠ACD B.∠ACB=∠ADCC.AC2=AD·AB D.BC2=BD·AB(第4题)5.若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1 C.x1<x3<x2D.x2<x1<x3 6.如图,△ABC∽△ADE,且BC=2DE,则S四边形BEDC:S△ABC的值为() A.1:4B.3:4C.2:3D.1:2(第6题)(第7题)7.如图,在△ABC中,∠C=45°,tan B=3,AD⊥BC于点D,AC=2 6.若E,F分别为AC,BC的中点,则EF的长为()A.233B.2C.3D.238.已知二次函数y=ax2+bx-2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a-b-2,则t的取值范围是()A.-2<t<0B.-3<t<0C.-4<t<-2D.-4<t<0 9.如图,在x轴的正半轴上依次截取OP1=P1P2=P2P3=…=P n-1P n=1,过点P1,P2,P3,…,P n分别作x轴的垂线,与反比例函数y=2x(x>0)的图象交于点Q1,Q2,Q3,…,Q n,连接Q1Q2,Q2Q3,…,Q n-1Q n,过点Q2,Q3,…,Q n分别向P1Q1,P2Q2,…,P n-1Q n-1作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于()(第9题)A.2n+1B.2n C.n-1n D.n+22n10.如图,正方形ABCD的边长为2cm,点O为正方形的中心,点P从点A出发沿A-O-D运动,同时点Q从点B出发沿BC运动,连接BP,PQ,在移动的过程中始终保持PQ⊥BC.已知点P的运动速度为2cm/s,设点P的运动时间为t(s),△BPQ的面积为S(cm2),下列图象能正确反映出S与t的函数关系的是()(第10题)二、填空题(本大题共4小题,每小题5分,满分20分)11.如果α是锐角,sin α=cos 30°,那么α=________°.12.已知3a =4b ,则3a +2b a -b=________.13.已知点C 是线段AB 的黄金分割点,且AB =5+1,则AC 的长是________.14.如图,抛物线y =-x 2+2x +c 交x 轴于A (-1,0),B 两点,交y 轴于点C ,D 为抛物线的顶点.(第14题)(1)点D 的坐标为________;(2)若点C 关于抛物线对称轴的对称点为点E ,M 是抛物线对称轴上一点,且△DMB和△BCE 相似,则点M 的坐标为________.三、(本大题共2小题,每小题8分,满分16分)15.计算:27+-122-3tan 60°+(π-2)0.16.已知:如图,△ABD ∽△ACE .求证:(1)∠DAE =∠BAC ;(2)△DAE ∽△BAC .(第16题)四、(本大题共2小题,每小题8分,满分16分)17.如图,在12×12的正方形网格中,△CAB的顶点坐标分别为点C(1,1),A(2,3),B(4,2).(1)以点C(1,1)为位似中心,按21在位似中心的同侧将△CAB放大为△CA′B′,放大后点A,B的对应点分别为A′,B′,画出△CA′B′,并写出点A′,B′的坐标;(2)在(1)中,若P(a,b)为线段AB上任意一点,请直接写出变化后点P的对应点P′的坐标.(第17题)18.《九章算术》中有一道这样的题,原文如下:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”大意为:今有一座长方形小城(如图),东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门,走出东门15里处有棵大树,问:走出南门多少步恰好能望见这棵树?(注:1里=300步)(第18题)五、(本大题共2小题,每小题10分,满分20分)19.已知二次函数y=ax2+bx+c与x的一些对应值如下表:x…-101234…y=ax2+bx+c…3-13…(1)根据表格中的数据,该二次函数的表达式为__________;(2)填写表格中空白处的对应值,并利用五点作图法在下面的网格图中画出该二次函数y=ax2+bx+c的图象(不必重新列表);(3)根据图象回答:①当1≤x≤4时,y的取值范围是________________;②当x取什么值时,y>0?(第19题)(m≠0,x>0)的图象20.如图,一次函数y=kx+2(k≠0)的图象与反比例函数y=mx交于点A(2,n),与y轴交于点B,与x轴交于点C(-4,0).(1)直接写出k,m的值;(2)若P(a,0)为x轴上的一动点,当△APB的面积为72时,求a的值.(第20题)六、(本题满分12分)21.“山地自行车速降赛”是一种新兴的极限运动,这项运动的赛道需全部是下坡骑行路段.如图是某一下坡赛道,由AB,BC,CD三段组成,在同一平面内,其中AB段的俯角是30°,长为2m,BC段与AB段,CD段都垂直,长为1m,CD段长为3m,求此下坡赛道的垂直高度.(结果保留根号)(第21题)七、(本题满分12分)22.某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数表达式y=a(x-h)2+k.二次函数y=a(x-h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A,B,C的横坐标分别为4,10,12,点A,B的纵坐标分别为-16,20.(1)该二次函数的表达式y=a(x-h)2+k为__________;(2)分别求出前9个月公司累计获得的利润以及10月一个月内所获得的利润;(3)在1~12月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?(第22题)八、(本题满分14分)23.【项目化学习】背景:小明是学校的一名升旗手,他在考虑如何能让国旗在国歌结束时,刚好升至旗杆顶端?要解决此问题就要知道学校旗杆的高度,为此他与同学们进行了专题项目研究.主题:测量学校旗杆的高度.分析探究:旗杆的高度不能直接测量,需要借助一些工具,比如小镜子、标杆、皮尺、小木棒、自制的直角三角形硬纸板……确定方案后,画出测量示意图,并进行实地测量,得到具体数据,从而计算出旗杆的高度.成果展示:下面是部分测量方案及测量数据.方案一方案二工具皮尺标杆,皮尺测量方案选一名同学直立于旗杆影子的顶端处,测量该同学的身高和影长及同一时刻旗杆的影长.选一名同学作为观测者,在观测者与旗杆之间的地面上直立一根高度适当的标杆,使旗杆的顶端、标杆的顶端与观测者的眼睛恰好在一条直线上,这时测出观测者的脚到旗杆底端的距离,以及观测者的脚到标杆底端的距离,然后测出标杆的高.测量示意图测量数据线段AB表示旗杆,这名同学的身高CD=1.8m,这名同学的影长DE=1.44m,同一时刻旗杆的影长BD=10.32m.线段AB表示旗杆,标杆EF=2.6m,观测者的眼睛到地面的距离CD=1.7m,观测者的脚到旗杆底端的距离DB=16.8m,观测者的脚到标杆底端的距离DF=1.35m.……请你继续完善上述成果展示.任务一:写出“方案一”中求旗杆高度时所利用的知识:____________________________;(写出一个即可)任务二:根据“方案二”的测量数据,求学校旗杆AB的高度;任务三:写出一条你在活动中的收获、反思或困惑.答案一、1.B 2.C3.C4.D5.B6.B7.B8.D 9.C10.D 点拨:如图①,当点P 在OA 上时,0≤t ≤1,延长QP 交AD 于点E ,则PE ⊥AD ,由题意得BQ =t cm ,AP =2t cm ,易得AE =PE =t cm ,QE =AB =2cm ,∴PQ =(2-t )cm ,∴S =12BQ ·PQ =12t (2-t )=-12t 2+t ;(第10题)如图②,当点P 在OD 上时,1<t ≤2,由题意得PQ =BQ =t cm ,∴S =12t 2.二、11.6012.-1713.2或5-114.(1)(1,4)(2)(1,-2)三、15.解:原式=33+4-33+1=5.16.证明:(1)∵△ABD ∽△ACE ,∴∠BAD =∠CAE ,∴∠BAD +∠BAE =∠CAE +∠BAE ,∴∠DAE =∠BAC .(2)∵△ABD ∽△ACE ,∴AD AE =AB AC ,∴AD AB =AE AC,而∠DAE =∠BAC ,∴△DAE ∽△BAC .四、17.解:(1)如图,△CA ′B ′即为所求.其中A ′(3,5),B ′(7,3).(第17题)(2)P ′(2a -1,2b -1).18.解:如图,由题意,得AB =15里,AC =4.5里,CD =3.5里.(第18题)∵DE ⊥CD ,AC ⊥CD ,∴AC ∥DE ,∴△ACB ∽△DEC ,∴DE AC =DC AB ,即DE 4.5=3.515,解得DE =1.05里=315步.答:走出南门315步恰好能望见这棵树.五、19.解:(1)y =x 2-4x +3(2)x …-101234…y =ax 2+bx +c…83-13…函数图象如图所示.(第19题)(3)①-1≤y ≤3②当x <1或x >3时,y >0.20.解:(1)k 的值为12,m 的值为6.(2)易知B (0,2).∵P (a ,0)为x 轴上的一动点,∴PC =|a +4|,∴S △CBP =12PC ·OB =12×|a +4|×2=|a +4|,S △CAP =12PC ·y A =12×|a +4|×3=32|a +4|.∵S △CP A =S △ABP +S △CBP ,∴32|a +4|=72+|a +4|,解得a =3或-11.六、21.解:如图,延长AB 与直线l 2交于点E ,过点D 作DF ⊥BE 于点F ,过点A 作AG ⊥l 2于点G ,易得DF =BC =1m ,BF =CD =3m ,∠FED =30°.在Rt △DEF 中,tan 30°=DF EF,∴EF =3m ,∴AE =AB +BF +EF =2+3+3=(5+3)m.在Rt △AGE 中,AG =12AE =5+32m.答:此下坡赛道的垂直高度为5+32m.(第21题)七、22.解:(1)y =(x -4)2-16(2)当x =9时,y =(9-4)2-16=9,答:前9个月公司累计获得的利润为9万元;当x =10时,y =20.20-9=11(万元).答:10月一个月内所获得的利润为11万元.(3)设在1~12月中,第n 个月该公司一个月内所获得的利润为s 万元,则有s =(n -4)2-16-[(n -1-4)2-16]=2n -9.∵2>0,∴s 随n 的增大而增大.又∵n 的最大值为12,∴当n =12时,s 取最大值,为15.答:12月该公司一个月内所获得的利润最多,最多利润是15万元.八、23.解:任务一:相似三角形的判定与性质(答案不唯一)任务二:如图,过点C 作CG ⊥AB 于点G ,交EF 于点H ,则易得四边形CDBG 与四边形CDFH 是矩形,(第23题)∴CH =DF =1.35m ,CG =BD =16.8m ,CD =HF =GB =1.7m ,∴EH =EF -HF =2.6-1.7=0.9(m).由题意得EF ∥AB ,∴△CEH ∽△CAG ,∴CH CG =EH AG ,∴1.3516.8=0.9AG,∴AG =11.2m.∴AB =AG +BG =11.2+1.7=12.9(m).答:学校旗杆AB 的高度为12.9m.任务三:在利用阳光下的影子测量时,如果没有太阳光,会影响测量;测量数据不准确,在测量过程中为了避免误差太大,可以多次测量,取平均值作为最后的测量结果;在项目研究中感受到了数学与生活的联系等.(答案不唯一,表述合理即可)。
北师大版初中数学九上第五章综合测试1试题试卷含答案
第五章单元测试一、选择题(共10小题)1.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为( ) A .汽车开的很快B .盲区减小C .盲区增大D .无法确定2.如图是由几个小正方体组成的一个几何体,这个几何体从正面看到的平面图形是( )A .B .C .D .3.小明在太阳光下观察矩形窗框的影子,不可能是( ) A .平行四边形B .长方形C .线段D .梯形4.一个长方形的正投影不可能是( ) A .正方形B .矩形C .线段D .点5.下面几个几何体,从正面看到的形状是圆的是( )A .B .C .D .6.下列说法错误的是( )A .高矮不同的两个人在同一盏路灯下同一时刻的影子有可能一样长B .对角线互相垂直的四边形是菱形C .方程2x x =的根是10x =,21x =D .对角线相等的平行四边形是矩形 7.下列哪种影子不是中心投影( ) A .皮影戏中的影子B .晚上在房间内墙上的手影C .舞厅中霓红灯形成的影子D .太阳光下林荫道上的树影8.电影院呈阶梯或下坡形状的主要原因是( ) A .为了美观B .盲区不变C .增大盲区D .减小盲区9.几个相同的正方体叠合在一起,该组合体的主视图和俯视图如图所示,那么组合体中正方体的个数至少有几个?至多有几个?()A.5,6B.6,7C.7,8D.8,10的网格纸(网格中的每个小正方形的边长为1个单位长度)中分别画出了如图所示的10.小丽在两张610物体的左视图和俯视图,这个物体的体积等于()A.24B.30C.48D.60二、填空题(共8小题)11.从正面、左面、上面看一个几何体,三个面看到的图形大小、形状完全相同的是________(写出一个这样的几何体即可).12.按《航空障碍灯(MH/T6012﹣1999)》的要求,为保障飞机夜间飞行的安全,在高度为45米至105米的建筑上必须安装中光强航空障碍灯(AviationObstructionlight).中光强航空障碍灯是以规律性的固定模式闪光.在下图中你可以看到某一种中光强航空障碍灯的闪光模式,灯的亮暗呈规律性交替变化,那么在一个连续的10秒内,该航空障碍灯处于亮的状态的时间总和最长可达________秒.13.如图是从不同的方向看一个物体得到的平面图形,该物体的形状是________.14.如图,电线杆的顶上有一盏高为6 m的路灯,电线杆底部为A,身高1.5 m的男孩站在与点A相距6 mm.的点B处,若男孩以6 m为半径绕电线杆走一圈,则他在路灯下的影子,BC扫过的面积为________215.用小立方体搭成一个立体图形,从上面看到的形状是,从正面看到的形状是,搭这个立体图形需要________块小立方体.16.如图,甲楼AB高18米,乙楼CD坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是20米,那么甲楼的影子落在乙楼上的高DE=________米.(结果保留根号)17.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有________.18.水平放置的长方体的底面是长和宽分别是4和6的长方形,它的左视图的面积是12,则这个长方体的体积等于________.三、解答题(共7小题)19.画出如图图形的三视图.20.由5个相同的小立方块搭成的几何体如图所示,请画出从三个方向看所得到的形状图.21.如图,水平放置的长方体的底面是边长为2 cm 和4 cm 的矩形,它的左视图的面积为26 cm ,则长方体的体积是多少?22.如图所示,太阳光线AB 和A B ''是平行的,甲、乙两人垂直站在地面上,在阳光照射下的影子一样长,那么甲、乙一样高吗?说明理由.23.如图,小欣站在灯光下,投在地面上的身影 2.4 m AB =,蹲下来,则身影 1.05 m AC =,已知小欣的身高 1.6 m AD =,蹲下时的高度等于站立高度的一半,求灯离地面的高度PH .24.在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离,如图,在一个路口,一辆长为10 m 的大巴车遇红灯后停在距交通信号灯20 m 的停止线处,小张驾驶一辆小轿车跟随大巴车行驶.设小张距大巴车尾 m x ,若大巴车车顶高于小张的水平视线0.8 m ,红灯下沿高于小张的水平视线3.2 m ,若小张能看到整个红灯,求出x 的最小值.25.一个几何体由大小相同的小立方体搭成,从三个方向看到的几何体的形状图如图所示. (1)求A ,B ,C ,D 这4个方格位置上的小立方体的个数; (2)这个几何体是由多少块小立方体组成的?第五章综合测试答案解析一、 1.【答案】C【解析】根据题意我们很明显的可以看出“沉”下去的建筑物实际上是到了自己的盲区的范围内. 故选:C . 2.【答案】C【解析】从正面看第一层是两个小正方形,第二层在左边位置一个小正方形,故C 符合题意, 故选:C . 3.【答案】D【解析】矩形木框在地面上形成的投影应是平行四边形或一条线段, 即相对的边平行或重合, 故D 不可能,即不会是梯形. 故选:D . 4.【答案】D【解析】在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形. 故长方形的正投影不可能是点, 故选:D . 5.【答案】B【解析】从正面看到的形状是圆的是球, 故选:B . 6.【答案】B【解析】A 、高矮不同的两个人在同一盏路灯下同一时刻的影子有可能一样长,正确,不符合题意; B 、对角线互相垂直的平行四边形是菱形,故错误,符合题意; C 、方程2x x =的根是10x =,21x =,正确,不符合题意; D 、对角线相等的平行四边形是矩形,正确,不符合题意; 故选:B . 7.【答案】D【解析】∵皮影戏中的影子,晚上在房间内墙上的手影,舞厅中霓红灯形成的影子,它们的光源都是灯光,故它们都是中心投影,故选项A 、B 、C 不符合题意,太阳光下林荫道上的树影的光源是太阳光,这是平行投影,故选项D 符合题意, 故选:D . 8.【答案】D【解析】电影院呈阶梯或下坡形状的主要原因是减小盲区,故选:D.9.【答案】D【解析】由所给视图可得此几何体有3列,3行,2层,分别找到第二层的最多个数和最少个数,加上第一层的正方体的个数即为所求答案.第一层有1236++=个正方体,第二层最少有2个正方体,所以这个几何体最少有8个正方体组成;第一层有1236++=个正方体,第二层最多有4个正方体,所以这个几何体最多有10个正方体组成.故选:D.10.【答案】D【解析】如图,补全几何体左角,根据左视图与俯视图标记几何体的尺寸.这个物体的体积:1824412644602⨯⨯-⨯⨯⨯==﹣,故选:D.二、11.【答案】球【解析】球从正面看是圆形、从左面看是圆形、从上面看圆,符合题意,故答案为:球12.【答案】7【解析】根据题意,当该航空障碍灯处于亮的状态的时间总和最长时,灯的亮暗呈规律性交替变化为:亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,在这10秒中,航空障碍灯处于亮的状态的时间总和为7秒,故答案为7.13.【答案】圆锥【解析】∵主视图和左视图都是三角形,∴此几何体为锥体,∵俯视图是一个圆及圆心,∴此几何体为圆锥,故答案为:圆锥.14.【答案】28 π【解析】如图所示,AE BD ∵∥,CBD CAE △∽△∴,CB BD CA AE =∴,即 1.566CB CB =+, 解得2CB =,8AC =∴,∴男孩以6 m 为半径绕电线杆走一圈,他在路灯下的影子BC 扫过的面积为222π8π628π m ⨯⨯=-. 故答案为:28 π.15.【答案】6或7或8 【解析】最下面一层有4块, 上面一层最少有2块,最多有4块,故搭这个立体图形需要6或7或8块小立方体. 故答案为:6或7或8.16.【答案】(18-【解析】设冬天太阳最低时,甲楼最高处A 点的影子落在乙楼的E 处,那么图中ED 的长度就是甲楼的影子在乙楼上的高度,设FE AB ⊥于点F ,那么在AEF △中,90AFE ∠=︒,20EF =米.∵物高与影长的比是AF EF ∴则AF =故18DE FB ==-.故答案为(18- 17.【答案】6【解析】由俯视图易得最底层有4个小正方体,第二层最多有2个小正方体,那么搭成这个几何体的小正方体最多为426+=个. 故答案为:6 18.【答案】48【解析】它的左视图的面积为12,长为6,因此宽为2,即长方体的高为2,因此体积为:46248⨯⨯=. 故答案为:48. 三、19.【答案】解:如图所示:20.解:如图所示:21.【答案】解:根据题意,得:()36424cm ⨯=, 因此,长方体的体积是324 cm . 22.【答案】解:一样高.理由如下:如图,分别过点A ,A '作AC BB ⊥',交直线BB '于点C ,ACBB ''⊥',交BB '点C ', 则90ACB A C B ∠=∠'''=︒,BC B C =''. 又AB A B ''∵∥,ABC A B C ∠=∠'''∴,在ABC △和A B C '''△中,ACB A C B ∠=∠'''∵,BC B C ='',ABC A B C ∠=∠''',()ABC A B C ASA '''∴△≌△,AC A C =''∴,即甲、乙两人一样高.23.【答案】解:因为AD PH ∥,ADB HPB △∽△∴;AMC HPC △∽△(M 是AD 的中点), ::AB HB AD PH =∴,::AC AM HC PH =,即()2.4:2.4 1.6:AH PH +=,()1.05:0.8 1.05:HA PH =+, 解得:7.2 m PH =. 即路灯的高度为7.2米.24.【答案】解:如图,由题可得CD AB ∥,OCD OAB △∽△∴,OD CDOB AB=∴, 即0.82010 3.2x x =++, 解得10x =,∴x 的最小值为10.25.【答案】解:(1)由三视图可得:从正面看有3列,每列小正方数形数目分别为1,2,2,从左面看有2列,每列小正方形数目分别为2,2.从上面看有3列,每列小正方形数目分别为1,2,2. 所以A 小立方体的个数是2,B 小立方体的个数是2,C 小立方体的个数是2,D 小立方体的个数是2,(2)这个几何体是由1236++=块小立方体组成的。
(人教版)初中数学九年级上册 第二十三章综合测试试卷01及答案
第二十三章综合测试一、选择题(每小题4分,共28分)1.如图所示,在等腰直角三角形ABC 中,90B Ð=°,48C Ð=°,如果将ABC △绕顶点A 逆时针方向旋转60°后得到AB C ¢¢△,那么BAC ¢Ð等于( )A .60°B .102°C .120°D .132°2.如图所示,ABC △和BCD △都为等腰直角三角形,若ABC △经旋转后能与BCD △重合,下列说法正确的是( )A .旋转中心为点C ,旋转角为45°B .旋转中心为点B ,旋转角为45°C .旋转中心为点C ,旋转角为90°D .旋转中心为点B ,旋转角为90°3.正方形ABCD 在平面直角坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针旋转90°后,B 点的对应点的坐标为( )A .()2,2-B .()4,1C .()3,1D .()4,04.如图所示,把ABC △绕点C 顺时针旋转30°得到A B C ¢¢△,其中A B ¢¢与AC 交于点D ,若90A DC ¢Ð=°,则A Ð为( )A .90°B .60°C .30°D .无法确定5.已知点()11,1P a -和()22,1P b -关于原点对称,则b a 的值为( )A .0B .1C .1-D .1±6.将如图所示的图案绕正六边形的中心旋转n °时与原图案完全重合,那么n 的最小值是()A .60B .90C .120D .1807.下列说法正确的是( )A .中心对称的两个图形一定是全等形B .中心对称图形是旋转90°后能与自身重合的图形C .两个形状、大小完全相同的图形一定中心对称D .中心对称图形一定是轴对称图形二、填空题(每空5分,共20分)8.若ABC △绕点A 旋转能与ADE △重合,其中AB 与AD 重合,AC 与AE 重合.若120EAD Ð=°,则CAB Ð=________;若35CAE Ð=°,则BAD Ð=________.9.在平面直角坐标系中,已知点0P 的坐标为()1,0,将点0P 绕原点O 逆时针旋转60°得点1P ,延长1OP 到点2P ,使212OP OP =,再将点2P 绕原点O 逆时针旋转60°得点3P ,则点3P 的坐标是________.10.如图所示,用两块完全相同的矩形拼成“L ”形,则ACF Ð的大小是________,ACF △的形状是________.11.已知点()221,25P a a a --+在y 轴上,则点P 关于原点O 对称的点的坐标为________.三、解答题(共52分)12.(12分)如图所示,画出四边形ABCD 绕点A 逆时针旋转90°后的图形.13.(12分)如图所示,ABC △绕点A 旋转得到ADE △,恰好使点C 旋转后落在直线BC 上的点E 处,已知105ACB Ð=°,10CAD Ð=°,求DFE Ð和B Ð的度数.14.(14分)用四块如左图所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在右图①②③中各画出一种拼法(要求三种拼法各不相同),且其中至少有一种既是轴对称图形又是中心对称图形.15.(14分)在如图所示的网格中按要求画出图形,并回答问题:(1)先画出ABC △向下平移5格后的111A B C △,再画出ABC △以点O 为旋转中心顺时针旋转90°后的222A B C △;(2)在与同学交流时,你打算如何描述(1)中所画的222A B C △的位置?第二十三章综合测试答案解析一、1.【答案】B【解析】因为90B Ð=°,48C Ð=°,所以42BAC Ð=°.又CAC ¢Ð是旋转角,所以60CAC ¢Ð=°.所以4260102BAC BAC CAC ¢¢Ð=Ð+Ð=°+°=°.2.【答案】D【解析】因为点B 始终没有改变位置,所以点B 为旋转中心,旋转角为90ABC Ð=°.3.【答案】D【解析】作出旋转后的图形,结合旋转的性质可得点B 的对应点的坐标为()4,0.4.【答案】B【解析】由题意知,旋转角为30ACA ¢Ð=°,所以903060A ¢Ð=°-°=°.由旋转性质得60A A ¢Ð=Ð=°.5.【答案】B【解析】由题意得120a -+=,110b -+=,解得1a =-,0b =.所以()011b a =-=.6.【答案】C【解析】观察图形的组成特点可以发现图形外围的图案至少旋转120°后可以与原来的图案重合,内部的图案在旋转120°后也和原来的图案重合,故选C .7.【答案】A二、8.【答案】120° 35°【解析】由能互相重合的边得到对应边,从而确定对应角是解题关键.题中AB 与AD 重合,AC 与AE 重合,EAD Ð与CAB Ð是对应角,CAE Ð与BAD Ð是旋转角.9.【答案】(-【解析】画图确定点3P 的位置,过该点作x 轴、y 轴的垂线段,得到直角三角形,可求出点3P 的坐标.解答此题结合图形比较简便.10.【答案】90° 等腰直角三角形【解析】矩形FGCE 可以看作是由矩形ABCD 绕点C 顺时针旋转90°得到的,则90ACF Ð=°,AC FC =,所以ACF △是等腰直角三角形.11.【答案】()0,8-或()0,4-【解析】因为点()221,25P a a a --+在y 轴上,所以210a -=,所以1a =或1a =-.当1a =时,2254a a -+=,当1a =-时,2258a a -+=,所以点P 的坐标为()0,8-或()0,4-,所以点P 关于原点O 对称的点的坐标为()0,8-或()0,4-.三、12.【答案】如图所示.13.【答案】因为105ACB Ð=°,所以18010575ACF Ð=°-°=°.又因为10CAD Ð=°,所以180751095AFC Ð=°-°-°=°.所以95DFE AFC Ð=Ð=°.又ABC ADE △≌△,所以AC AE =,105AED ACB Ð=Ð=°,B D Ð=Ð,所以75AEC ACE Ð=Ð=°.所以1057530DEF AED AEC Ð=Ð-Ð=°-°=°.所以180180953055D DFE DEF Ð=°-Ð-Ð=°-°-°=°.所以55B D Ð=Ð=°.14.【答案】答案不唯一,如图所示,三种拼法仅供参考.15.【答案】(1)如图所示.(2)建立如图所示的平面直角坐标系,222A B C △各顶点的坐标分别为()25,2A ,()21,4B ,()23,1C .。
九年级数学上一二章综合测试卷
一、选择题:
1、若一元二次方程(m-2)x2+3(m2+15)x+m2-4=0的常数项是0,则m为()
A、2B、±2C、-2D、-10
2、下列关于 的一元二次方程中,有两个不相等的实数根的方程是( )
A. B. C. D.
3、用配方法解下列方程时,配方错误的是()
A、三边中线的交点B、三条角平分线的交点
C、三边上高的交点D、三边垂直平分线的交点
13、△ABC中,∠A∶∠B∶∠C=1∶2∶3,若BC=2,则AB等于()
A.1 B. 2 C.4 D.
14、△ABC的周长为12cm,面积为6cm2、则其内角平分线的交点O到AB的距离为
A、1cm B、2cm C、3cm D、4cm
(7)(8)(9)
10、△ABC的∠B、∠C的平分线相交于T,且∠BTC=130°,则∠A=。
三、解答题
1、解下列方程:(每小题3分,共12分)
①4x2–32x+4=0(配方法)②2 (公式法)
③ (分解因式法)④ (分解因式法)
2、已知 、 、 均为实数且 ,求方程 的根;
3、菱形ABCD的边长是5,两条对角线交于O点,且AO、BO的长分别是关于 的方程 的根,求 的值。
8、如图8所示,P是等边三角形ABC内一点,将△ABP绕点B顺时针方向旋转60°,得到△CBP′,若PB=3,则PP′=。
9、如图9所示,某小区规划在一个长为40 m、宽为26 m的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若使每一块草坪的面积为144 m2,求甬路的宽度.若设甬路的宽度为xm,则x满足的方程为.
九年级数学下册 各单元综合测试题含答案共12套
人教版九年级数学下册第二十六章综合测试卷01一、选择题(每小题4分,共32分)1.已知反比例函数的图象经过点()2,1P -,则这个函数的图象位于()A .第一、第三象限B .第二、第三象限C .第二、第四象限D .第三、第四象限2.下列说法正确的是()A .在2xy =中,y 与x 成正比例B .在2xy =-中,y 与1x成反比例C .在11y x =+中,y 与1x +成反比例D .在213y x=中,y 与x 成反比例3.已知反比例函数()0ky k x=<的图象上有两点()1,A x y ,()22,B x y ,且12x x <,则12y y -的值是()A .正数B .负数C .非负数D .不确定4.(2013·四川攀枝花中考)二次函数()20y ax bx c a =++≠的图象如图所示,则函数ay x=与y bx c =+在同一直角坐标系内的大致图象是()A B C D5.面积为2的ABC △,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()A B C D6.若点()3,4是反比例函数72m y x-=图象上的一点,则此函数图象必过点()A .()6,2-B .()2,6-C .()4,3D .()3,4-7.已知反比例函数ky x=与关于x 的一次函数y kx b =+的图象的一个交点坐标为()2,1-,则点(),k b 关于y 轴的对称点是()A .()2,3-B .()2,3-C .()2,3D .()2,3--8.在同一平面直角坐标系中,函数1y x=-与函数y x =的图象的交点个数是()A .0B .1C .2D .3二、填空题(每小题4分,共32分)9.已知反比例函数()232m y m x -=-的图象过点()4,P n ,则n 的值为________.10.已知反比例函数的图象经过点(),2m 和()2,3-,则m 的值为________.11.已知反比例函数32ay x-=的图象在第二、第四象限,则a 的取值范围是________.12.已知一次函数23y x =--的图象与反比例函数ky x=的图象相交于第四象限内的一个点(),3P a a -,则这个反比例函数的解析式为________.13.反比例函数()10y x x=-<的图象应在第________象限.14.老师给了一个y 关于x 的函数解析式,甲、乙、丙、丁四位同学各指出这个函数的一条性质:甲:函数的图象不过第三象限;乙:函数的图象过第一象限;丙:当1x >时,y 随x 的增大而减小;丁:当2x <时,0y >.已知这四位同学的叙述都正确,请你写出满足上述所有性质的一个函数解析式:________________.15.如图所示,在反比例函数()20y x x=>的图象上有点1P ,2P ,3P ,4P ,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1S ,2S ,3S ,则123S S S ++=________.16.如图所示,直线y mx =与双曲线ky x=交于A ,B 两点,过点A 作AM x ⊥轴于点M ,连接BM ,若2ABM S =△,则k 的值为________.三、解答题(共36分)17.(9分)为了绿化环境,某单位进行植树造林活动,计划每天植树0.5公顷,6天植完.(1)写出植树时间t (单位:天)与植树速度v (单位:公顷/天)之间的函数解析式.(2)天气预报报近几天有雨,该单位决定3天之内植完,那么每天至少要植树多少公顷?18.(9分)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO .在一次矿难事件的调查中发现:从零时起,井内空气中CO 的浓度达到4 mg/L ,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L ,发生爆炸;爆炸后,空气中的CO 浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO 浓度y 与时间x 的函数解析式,并写出相应的自变量的取值范围.(2)当空气中的CO 浓度达到34 mg/L 时,井下3km 的矿工接到自动报警信号,这时他们至少要以多少千米每小时的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO 浓度降到4 mg/L 及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?19.(9分)如图所示,已知一次函数()0y kx b k =+≠的图象与x 轴、y 轴分别交于A ,B 两点,且与反比例函数()0my m x=≠的图象在第一象限内交于点C ,CD 垂直于x 轴,垂足为D ,若1OA OB OD ===.(1)求点A ,B ,D 的坐标;(2)求一次函数与反比例函数的解析式.20.(9分)(2013·浙江衢州中考)如图所示,函数为14y x =-+的图象与函数()220k y x x=>的图象交于(),1A a ,()1,B b 两点.(1)求函数2y 的解析式;(2)观察图象,比较当0x >时,1y 与2y 的大小.第二十六章综合测试答案解析一、1.【答案】C【解析】设函数解析式为()0ky k x=≠.因为其图象过点()2,1P -,所以()2120k =⨯=--<,所以其图象位于第二、第四象限.2.【答案】C 3.【答案】D【解析】可分以下三种情况讨论:①若120x x <<,由反比例函数()0ky k x =<的性质可得12y y <,所以120y y -<,即12y y -的值是负数.②若120x x <<,由反比例函数()0ky k x =<的性质可得12y y >,所以120y y ->,即12y y -的值是正数.③若120x x <<,由反比例函数()0ky k x=<的性质可得12y y <,所以120y y -<,即12y y -的值是负数.所以12y y -的值不确定.4.【答案】B【解析】因为二次函数()20y axbx c a =++≠的图象开口向下,所以0a <.因为对称轴经过x 轴的负半轴,所以a ,b 同号,所以0b <.因为图象经过y 轴的正半轴,所以0c >.因为函数ay x=,0a <,所以图象分别在第二、第四象限.因为y bx c =+,0b <,0c >,所以图象经过第一、第二、第四象限.5.【答案】C【解析】因为y 与x 的函数解析式为()40y x x=->,所以其图象为双曲线在第一象限内的一支.6.【答案】C【解析】双曲线上任意点的横、纵坐标的积相等.7.【答案】C【解析】因为两函数的图象相交于点()2,1-,所以点()2,1-既在反比例函数的图象上,又在一次函数的图象上.把点()2,1-的坐标代入反比例函数k y x=中,得2k =-.把点()2,1-的坐标和2k =-代入一次函数y kx b =+中,得3b =,即点(),k b 为()2,3-,点()2,3-关于y 轴的对称点为()23,.8.【答案】A 二、9.【答案】1-【解析】由题意得23120m m ⎧-=-⎨-≠⎩,,解得2m =-,所以4y x -=.把4x =代入4y x -=,得1y =-,即1n =-.10.【答案】3-【解析】设反比例函数的解析式为()0ky k x=≠.由题意得()223k m ==⨯-,所以3m =-.11.【答案】32a >【解析】因为反比例函数32a y x -=的图象在第二、第四象限,所以320a -<.所以32a >.12.【答案】27y x=-【解析】将点P 的坐标(),3a a -代入一次函数的解析式得,323a a -=--,所以3a =.所以点P 的坐标为()3,9-.将点P 的坐标()3,9-代入反比例函数解析式得93k =-.所以27k =-.所以反比例函数的解析式为27y x=-.13.【答案】二【解析】反比例函数1y x=-的图象在第二、第四象限,因为0x <,所以其图象应在第二象限.14.【答案】()10y x x =>或112y x =-+(答案不唯一)【解析】此函数可以是一次函数,也可以是反比例函数.若是一次函数y kx b =+,只需0k <,图象与x 轴交于()2,0点即可;若是反比例函数k y x=,需0k >,且0x >.另外,还可以写其他函数解析式,只要满足题意即可.15.【答案】32【解析】由题意得()11,2P ,()22,1P ,323,3P ⎛⎫ ⎪⎝⎭,414,2P ⎛⎫ ⎪⎝⎭,1S为正方形,故1111S =⨯=.对于2S 来说,它的长为1,宽为点2P 的纵坐标减去点3P 的纵坐标,2211133S ⎛⎫=⨯-= ⎪⎝⎭.同理,32111326S ⎛⎫=⨯-= ⎪⎝⎭.故1231131362S S S ++=++=.16.【答案】2【解析】设(),A x y ,则(),B x y --,则OM x =,AM y =,B点到x 轴的距离为||y y AM -==,所以11222ABM AOM BOM S S S xy xy =+=+=△△△,即2xy =.所以2k =.17.【答案】(1)由题意知0.56tv =⨯,所以3t v=.即t 与v 之间的函数解析式为()30t v v=>.(2)当3t =时,有33v =,所以313v ==,即每天至少要植树1公顷.18.【答案】(1)因为爆炸前CO 浓度呈直线型增加,所以可设y 与x 的函数解析式为()110y k x b k =+≠.由图象可知1y k x b =+过点()0,4和点()7,46,所以14746b k b =⎧⎨+=⎩,,解得164.k b =⎧⎨=⎩,所以64y x =+,此时自变量x 的取值范围是07x ≤≤.因为爆炸后浓度成反比例下降,所以可设y 与x 的函数解析式为()220k y k x=≠.由图象知kiy x =过点()7,46,所以2467k =.所以2322k =.所以322y x=,此时自变量x 的取值范围是7x >.(2)当34y =时,由64y x =+,得6434x +=,5x =.所以撤离的最长时间为752-=(h ).所以撤离的最小速度为32 1.5÷=(km/h ).(3)当4y =时,由322y x=得,80.5x =,80.5773.5-=(h ).所以矿工至少在爆炸后73.5h 才能下井.19.【答案】(1)因为1OA OB OD ===,所以A ,B ,D 三点的坐标为()1,0A -,()0,1B ,()1,0D .(2)因为点A ,B 在一次函数y kx b =+的图象上,所以01k b b -+=⎧⎨=⎩,,解得11.k b =⎧⎨=⎩,所以一次函数的解析式为1y x =+.因为点C 在一次函数1y x =+的图象上,CD x ⊥轴,且1OD =,所以点C 的横坐标为1,纵坐标为112+=,即点C 的坐标为()1,2.又因为点C 在反比例函数my x=的图象上,所以2m =,所以反比例函数的解析式为2y x=.20.【答案】(1)把点A 的坐标代入14y x =-+,得41a -+=,解得3a =,所以()3,1A .把点A 的坐标代入22=k y x的,得23k =.所以函数2y 的解析式为23y x=.(2)由图象可知,当01x <<或3x >时,12y y <;当1x =或3x =时,12y y =;当13x <<时,12y y >.人教版九年级数学下册第二十七章综合测试卷01一、选择题(每小题3分,共42分)1.要做甲、乙两个形状相同的三角形框架,已有三角形框架甲,它的三边长分别是50cm ,60cm ,80cm ,三角形框架乙的一边长为20cm ,那么符合条件的三角形共有()A .1种B .2种C .3种D .4种2.如图所示,在ABC △中,DE BC ∥,DF AB ∥,则下列等式错误的是()A .AE ADAB AC=B .CD DFAC AB=C .BE CDAE AD=D .BF BECF AE=3.在太阳光下,同一时刻物高与影长成比例,如果高为1.5m 的测杆的影长为2.5m ,那么,影长为30m 的旗杆高为()A .20cmB .18cmC .16cmD .15cm4.如果一个三角形的一条高将这个三角形分成两个相似的三角形,那么这个三角形必是()A .等腰三角形B .任意三角形C .直角三角形D .直角三角形或等腰三角形5.如图所示,已知点M 是ABCD 上AB 边的中点,CM 交BD 于点E ,则图中阴影部分面积与ABCD 面积之比为()A .13B .14C .25D .5126.如图所示,ABC △与DEF △位似,且A 是OD 的中点,则等BCEF=()A .12B .13C .14D .237.如图所示,斜拉桥是利用一组钢索把桥面重力传递到耸立在两侧的高塔上的桥梁,它不需建造桥墩,图中1A B 1,22A B ,…,55A B .是斜拉桥上5条互相平行的钢索,并且1B ,2B ,3B ,4B ,5B .被均匀地固定在桥上,如果最长钢索180A B =1m ,最短钢索5520A B =m ,那么钢索33A B ,22A B 的长分别为()A .50m ,65mB .50m ,35mC .50m ,57.5mD .40m ,42.5m8.如图所示,若DAC ABC △∽△,则需满足()A .AC ABCD BC=B .CD BCDA AC=C .2CD AD DB = D .2AC BC CD= 9.如图所示,ABC △是等边三角形,它被一平行于BC 的矩形所截,AB 被截成三等份,则图中阴影部分的面积是ABC △面积的()A .19B .29C .13D .4910.如图所示,在ABC △中,3AB AD =,DE BC ∥,EF AB ∥,若9AB =,2DE =,则线段FC 的长度是()A .6B .5C .4D .311.在ABCD 中,10AB =,6AD =,E 是AD 的中点,在AB 上取一点F ,使CBF CDE △∽△,如图所示,则AF 的长是()A .5B .8.2C .6.4D .1.812.如图所示,在正方形ABCD 的外侧作等边ADE △,BE ,CE 分别交AD 于G ,H ,设CDH △,GHE △的面积分别为1S ,2S ,则()A .1232S S =B .1223S S =C .122S =D 122S =13.如图所示,把PQR △沿着PQ 的方向平移到P Q R '''△的位置,它们重叠部分的面积是PQR △面积的一半,若PQ =,则此三角形移动的距离PP '是()A .12B .2C .1D 114.(2012·贵州毕节中考)如图所示,在平面直角坐标系中,以原点O 为位似中心,将ABO △扩大到原来的2倍,得到A BO '△.若点A 的坐标是()12,,则点A '的坐标是()A .()24,B .()12-,-C .()24--,D .()2,1--二、填空题(每空3分,共18分)15.如图所示,两个三角形的关系是________(填“相似”或“不相似”),理由是________.16.在ABC △中,5AB =,2AC =,AD 平分BAC ∠交BC 于D ,DE AC ∥交AB 于E ,则BDE △与ABC△的周长之比是_____________.17.已知ABC △与DEF △相似且面积比为4:25,则ABC △与DEF △的相似比为________.18.如图所示,锐角三角形ABC 的边AB ,AC 上的高线CE ,BF 相交于点D ,请写出图中的两对相似三角形________.(用相似符号连接)19.ABO △的顶点坐标分别为()3,3A -,()3,3B ,()0,0O ,试将ABO △放大为EFO △,使EFO △与ABO △的相似比为2:1,则E 点的坐标为,F 点的坐标为________.20.如图所示,ABC △与A B C '''△是位似图形,点O 是位似中心,若2OA AA '=,8ABC S =△,则A B C S '''=△________.三、解答题(共60分)21.(10分)如图所示,90ACB CDA ∠=∠=︒,4AC =,8AB =,当AD 为何值时,以A ,B ,C 为顶点的三角形与以A ,C ,D 为顶点的三角形相似.22.(10分)如图所示,学校的围墙外有一旗杆AB ,甲在操场上C 处直立3m 高的竹竿CD ,乙从C 处退到E 处恰好看到竹竿顶端D 与旗杆顶端B 重合,量得3CE =m ,乙的眼睛到地面的距离 1.5FE =m ;丙在1C 处也直立3m 高的竹竿11C D ,乙从E 处退后6m 到1E 处,恰好看到两根竹竿和旗杆重合,且竹竿顶端D ,与旗杆顶端B 也重合,量得114C E =m.求旗杆AB 的高.23.(12分)(2012·山东潍坊中考)如图所示,ABC △的两个顶点B ,C 在圆上,顶点A 在圆外,AB ,AC 分别交圆于E ,D 两点,连接EC ,BD .(1)求证:ABD ACE △∽△;(2)若BEC △与BDC △的面积相等,试判定ABC △的形状.24.如图所示,已知ABC △是边长为6cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t (单位:s ),解答下列问题:(1)当2t =s 时,判断BPQ △的形状,并说明理由;(2)设BPQ △的面积为S (单位:2cm ),求S 与t 的函数解析式;(3)作QR BA ∥交AC 于点R ,连接PR ,当t 为何值时,APR PRQ △∽△?25.(14分)如图所示,在正方形ABCD 中,E 是BC 上的一点,连接AE ,作BF AE ⊥,垂足为H ,交CD 于F ,作CG AE ∥,交BF 于G 求证:(1)CG BH =;(2)2FC BF GF = ;(3)22FC GF AB GB=.第二十七章综合测试答案解析一、1.【答案】C【解析】由于甲和乙的对应边不确定,故有三种对应关系,即50cm 和20cm 是对应边,60cm 与20cm 是对应边,80cm 和20cm 是对应边,故选C .2.【答案】D【解析】DE BC ∥,AE AD AB AC ∴=,BE CD AE AD =,∴A ,C 正确;D F AB ∥,CDF CAB ∴△∽△,CD DFAC AB∴=,BF AD CF DC =.又AD AE DC BE =,BF AECF BE∴=,∴B 正确,D 错调,故选D .3.【答案】B【解析】设旗杆高为m x ,由题意得1.52.530x=,18x ∴=.4.【答案】D【解析】如图所示,若ADB ADC △∽△,则B C ∠=∠,AB AC ∴=,即ABC △为等腰三角形;若ADB CDA △∽△,则B CAD ∠=∠.90B BAD ∠+∠=︒ ,90CAD BAD ∠∴∠+=︒,即90BAC ∠=︒,ABC∴△为直角三角形,故该三角形为直角三角形或等腰三角形.5.【答案】A【解析】设BM E S x =△,DC AB ∥,CDE MBE ∴ △△,DE DCEB MB∴=.又因为M 是AB 的中点,AB DC =,21DE DC EB MB ∴==.2CDE MBE S DC S MB ⎛⎫∴= ⎪⎝⎭△△,即=4CDE S x△,4CDE S x ∴=△.MDE △与MBE △的高相同,2MED MEB S DES EB∴==△△,2MED x ∴=△,同理2BEC x ∴=△.23S DMB x x x ∴=+=△,又因为D M 是ABD △的中线,224DAM DMB S S x x x∴==+=△△,44312ABC D C D E BM E D AMS S S S S x x x x x ∴=++=+++= △△△阴+.41123ABCDS x S x ∴== 阴,故选A .6.【答案】A【解析】ABC △与DEF △位似,A BD E ∴∥,BC EF ∥,OA OBOD OE∴=,OBC OEF △∽△,BC OB OA EF OE OD ∴==.又因为A 是OD 的中点,12BC OA EF OD ∴==.7.【答案】A【解析】设12233445B B B B B B B B x ====.5511A B A B ∥,5511OA B OA B ∴ △△.555111A B OB A B OB ∴=,即5520=804OB OB x+,543OB x ∴=.同理333111A B OB A B OB =,222111A B OB A B OB =,334348043x x xA B x x ++∴=+,2243348043x xA B x x +∴=+.3350A B ∴=m ,2265A B =m .故选A .8.【答案】D【解析】C ∠ 是公共角,要使DAC ABC △∽△,∴只需AC CDCB AC=,即2AC CB CD = ,故选D .9.【答案】C 【解析】设AEFS x =△.由题意得AE EH HB ==,EF HG ∥,AEF AHG ∴△∽△,214AEF AHG S AE S AH ⎛⎫∴== ⎪⎝⎭△△,44AHG AEF S S x ∴==△△,43AH G AEF EH G F S S S x x x ∴=-=-=△△四边形.EF BC ∥,AEF ABC ∴△∽△,219AEF ABC S AE S AB ⎛⎫∴== ⎪⎝⎭△△.99ABC AEF S S x ∴==△△,31=93EHGF ABC S x S x ∴=四边形△.10.【答案】C【解析】DE BC ∥,EF AB ∥,四边形B F E D 为平行四边形,2BF DE ∴==.FC CE BF AE =,CE BDAE AD=,FC BD BF AD ∴=.又3AB AD =,9AB =,3AD ∴=,6BD =.6=23FC ∴,4FC ∴=.11.【答案】B 【解析】E 是AD 的中点,132DE AD =∴=.在ABCD 中,10CD AB ==,6BC AD ==.CBF CDE △∽△.CB BF CD DE ∴=,即6103BF=,1.8BF ∴=,10 1.88.2AF AB BF =-=-=.12.【答案】A【解析】设正方形的边长为x ,作EM AD ⊥于M.22EM AE x ∴==.9060150BAE BAG GAE ∠=∠+∠=︒+︒=︒,AB AE =,()1180150152AEG ∴∠=︒-︒=︒,601575EGH GAE AEG ∠=∠+∠=︒+︒=︒,同理75EHG ∠=︒,EG EH ∴=,EMH EMG ∴△≌△,∵EM CD ∥,22EMH S S ∴=△.EG EH = ,EMH CDH △∽△,2EMH CDH S ED S CD ⎛⎫∴= ⎪⎝⎭△△,即2132EMH x S S x ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭△,134EMH S S =△,211332242EMH S S S S ∴==⨯=△,即1232S S =,故选A .13.【答案】D【解析】由题意知R P RP ''∥,MP Q RPQ ' △△,2MP Q RPQS QP S QP ''⎛⎫∴= ⎪⎝⎭△△,即212=.1QP ∴'=,1PP '∴=-.14.【答案】C【解析】ABO △与A B O ''△位似,原点O 为位似中心,位似比为1:2,且不在同一象限,则点A '的横、纵坐标分别为点A 的横、纵坐标的2-倍.二、15.【答案】相似三边对应成比例,两三角形相似【解析】4652697.53===,三边对应成比例,两三角形相似.16.【答案】5:7【解析】AD 平分BAC ∠,BAD CAD ∠=∠∴.又DE AC ∥,EDA DAC ∠=∠∴,E D A E A D ∠=∠,D E A E =.DE AC ∥,BDE BCA ∴△∽△,DE BE AC BA ∴=,即525DE DE -=,107DE ∴=,105727DE AC ∴==.BDE ∴△与ABC △的周长之比为5:7.17.【答案】2:5【解析】相似三角形面积的比等于相似比的平方,面积比为4:25.相似比为2:5.18.【答案】BDE CDF △∽△,ABF ACE△∽△【解析】BF AC ⊥ ,CE AB ⊥,BFC AFB AEC BEC ∠=∠=∠=∠∴.BED CFD ∠=∠ ,BDE CDF ∠=∠,BDE CDF ∴△∽△.A A ∠=∠ ,AFB AEC ∠=∠,ABF ACE ∴△∽△.19.【答案】()6,6-或()6,6-()6,6或()6,6--【解析】把A ,B 两点的横坐标和纵坐标分别乘2或2-,即得到点E ,F 的横坐标和纵坐标.20.【答案】18【解析】2OA AA '= ,:2:3OA OA '∴=,:4:9ABC A B C S S '''=△△.8ABC S ∴=△,18A B C S '''∴=△.三、21.【答案】90ACB CDA ∠=∠=︒ ,当AB AC AC AD =时,ABC ACD △△,即844AD =,2A D ∴=.当AB ACCA CD=时,ABC CAD △△,即844CD=,2CD ∴=,AD ∴=.∴当2AD =或A D =时,以A ,B ,C 为顶点的三角形与以A ,C ,D 为顶点的三角形相似.22.【答案】如图所示,设直线1F F 与AB ,CD ,11C D 分别交于点G ,M ,N ,令BG x =,GM y =.MD GB ∥,DM MFBG GF ∴=.又 1.5DM DC EF =-=,3MF CE ==,1.533x y=+.又1ND GB ∥,111D N NF BG GF ∴=.又1 1.5D N DM ==,136GF GM MF FF y =++=++1, 1.5463x y ∴=++,解方程组 1.5331.5463x y xy ⎧=⎪+⎪⎨⎪=⎪++⎩,得915x y =⎧⎨=⎩.∴旗杆AB 的高为9 1.510.5+=(m ).23.【答案】(1)证明:∵弧ED 所对的圆周角相等,EBD ECD ∠=∠∴.又A A ∠=∠,ABD ACE ∴△∽△.(2)解法1:BEC BCD S S = △△,BCE ABC BEC S S S =-△△△,ABD BAC BCD S S S =-△△△,ACE ABD S S ∴=△△.又由(1)知ABD ACE △△,∴对应边之比等于1,AB AC ∴=,即ABC △为等腰三角形.解法2:连接ED .BEC △与BCD △的面积相等,有公共底边BC ,∴高相等,即E ,D 两点到BC 的距离相等,ED BC ∴∥.BCE CED ∠=∠∴.又CED CBD ∠=∠,BCE CBD ∠=∠∴.由(1)知ABD ACE △∽△,ABD ACE ∠=∠∴,ABD CBD ACE BCE ∠+∠=∠+∠,ABC ACB ∴∠=∠,AB AC ∴=,即ABC △为等腰三角形.24.【答案】(1)BPQ △是等边三角形.理由:当2t =s 时,212AP =⨯=,224BQ =⨯=.624BP AB AP =∴=--=.BQ BP ∴=.又60B ∠=︒,BPQ ∴△是等边三角形.(2)过Q 作QE AB ⊥,垂足为E .由2QB t =,得2 60Q E tsin =,AP t =,故6PB t =-.()11622BPQ S BP QE t ∴=⨯=-△.(3)QR BA ∥,60QRC A ∠=∠=∴︒,60RQC B ∠=∠=︒.又60C ∠=︒,QRC ∴△是等边三角形,62QR RC QC t ∴===-.又BE t =,662EP AB AP BE t t t ∴=--=--=-.EP QR ∥,EP QR =,故四边形EPRQ 是平行四边形.PR EQ ∴=.而APR PRQ △△,PR QRAP PR ∴=,即t ,65t ∴=.∴当65t =s 时,APR PRQ △△.25.【答案】(1)BF AE ⊥ ,CG AE ∥,CG BF ∴⊥.∵在正方形ABCD 中,90ABH CBG ∠+∠=︒,且90CBG BCG ∠+∠=︒,90BAH ABH ∠+∠=︒,BAH CBG ∠=∠∴,ABH BCG ∠=∠,AB BC =,ABH BCG ∴△≌△,CG BH ∴=.(2)BFC CFG ∠=∠ ,90BCF CGF ∠=∠=︒,CFG BFC ∴△∽△,FC GFBF FC∴=,即2FC BF GF = .(3)∵在Rt BCF △中,CG BF ⊥,CBG FBC ∠=∠∴,90BGC BCF ∠=∠=︒,CBG FBC ∴△∽△.BC BG BF BC ∴=,2 BC BG BF ∴= .AB BC = ,2AB BG BF ∴= ,22FC FG BF FG AB BG BF BG ∴== ,即22FC GF AB GB=.人教版九年级数学下册第二十八章综合测试卷01一、选择题(每小题3分,共36分)1.如图所示,在正方形网格中,tan α等于()A .1B .2C .12D .52.如图所示,已知在Rt ABC △中,90C ∠=︒,4AC =,1tan 2A =,则BC 的长是()A .2B .8C .25D .453.已知α为锐角,()1cos 902α︒-=,则α∠的度数为()A .30︒B .45︒C .60︒D .90︒4.如图所示,在Rt ABO △中,斜边1AB =.若OC BA ∥,36AOC ∠=︒,则()A .点B 到AO 的距离为sin 54︒B .点B 到AO 的距离为tan 36︒C .点A 到OC 的距离为sin 36sin 54︒︒D .点A 到OC 的距离为cos 36sin 54︒︒5.将()05-,()33-,()2cos30--︒这三个实数按从小到大的顺序排列,正确的顺序是()A .()()()3235cos 30----︒<<B .()()()32cos 3053--︒--<<C .()()()3253cos 30----︒<<D .()()()32cos 3035--︒--<<6.一直角三角形的两条边长分别为3,4,则较小锐角的正切值为()A .34B .43C .34或73D .以上答案都不对7.若A ∠是锐角,且2sin 5A =,则A ∠的取值范围是()A .030A ︒︒<∠<B .3045A ︒︒<∠<C .4560A ︒︒<∠<D .6090A ︒︒<∠<8.河堤横断面如图所示,堤高 5 m BC =,迎水坡AB 的坡比为BC 与水平宽度AC 之比),则AC 的长为()A .B .10mC .15mD .9.在等腰ABC △中,一腰上的高为1,腰与底边的夹角为15°,则ABC △的面积为()A .1B C .12D .1410.若菱形的边长为1cm ,其中一内角为60°,则它的面积为()A 2B 2C .22 cmD .211.如图所示,在ABC △中,AD BC ⊥于D ,CE AB ⊥于E ,且2BE AE =,已知AD =,tan BCE ∠,那么CE 等于()A .B .2-C .D .12.下图是以ABC △的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD AB ⊥交AB 于D .已知3cos5ACD ∠=,4BC =,AC 则的长为()A .1B .203C .3D .163二、填空题(每小题3分,共24分)13.计算2sin 60tan 30sin 45︒÷︒+︒=________.14.如图所示,在Rt ABC △中,90C ∠=︒,3AC =,4BC =,则sin A =________.15.如图所示,P 为α∠的边OA 上一点,且P 点的坐标为()3,4,则sin cos αα+=________.16.图是某超市自动扶梯的示意图,大厅两层之间的距离 6.5 m h =,自动扶梯的倾斜角为30°,若自动扶梯运行速度为0.5 m/s v =,则顾客乘自动扶梯上一层楼的时间为________s .17.在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200 m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图所示),那么,由此可知B ,C 两地相距________m .18.数学实践探究课中,老师布置给同学们一个测量学校旗杆的高度的作业.如图所示,小民所在的学习小组在距离旗杆底部10m 的地方,用测角仪(测角仪的高度忽略不计)测得旗杆顶端的仰角为60°,则旗杆的高度是________m .19.如图所示,在顶角为30°的等腰三角形ABC △中,AB AC =,若过点C 作CD AB ⊥于点D ,则15BCD ∠=︒,根据图形计算tan 15︒=________.20.如图所示,小明想测量电线杆AB 的高度,发现电线杆的影子恰好落在土坡的坡面CD 和地面BC 上,量得 4 m CD =,10 m BC =,CD 与地面成30°角,且此时测得1m 长的杆的影子长为2m ,则电线杆的高度约为________m .(结果保留到0.1 m 1.41≈ 1.73≈)三、解答题(共60分)21.(10分)(1)计算:()1120122|3tan 303π-⎛⎫--++︒ ⎪⎝⎭.(2)先化简,再求代数式的值:222111a a a a a +⎛⎫+÷ ⎪+-+⎝⎭,其中()20121tan 60a =-+︒.22.(8分)如图所示,水渠边有一棵大木瓜树,树干DO (不计粗细)上有两个木瓜A ,B (不计大小),树干垂直于地面,量得=2 m AB ,在水渠的对面与O 处于同一水平面的C 处测得木瓜A 的仰角为45°、木瓜B 的仰角为30°.求C 处到树干DO 的距离CO .(结果精确到1m ) 1.73≈ 1.41≈)23.(9分)一副直角三角板如图所示放置,点C 在FD 的延长线上,AB CF ∥,90F ACB ∠=∠=︒,45E ∠=︒,60A ∠=︒,10AC =,试求CD 的长.24.(12分)如图所示,梯形ABCD 是拦水坝的横截面(图中i =DE 与水平宽度CE 的比),60B ∠=︒, 6 m AB =, 4 m AD =,求拦水坝的横截面ABCD 的面积.(结果精确到20.1 m ,1.414≈)25.(10分)如图所示,一居民楼底部B 与山脚P 位于同一水平线上,小李在P 处测得居民楼顶A 的仰角为60°,然后他从P 处沿坡角为45°的山坡向上走到C 处,这时,30 m PC =,点C 与点A 恰好在同一水平线上,点A ,B ,P ,C 在同一平面内.(1)求居民楼AB 的高度;(2)求C ,A 之间的距离.(精确到0.1m 1.41≈ 1.73≈ 2.45≈)26.(11分)如图,某海域有两个海拔均为200米的海岛A 和海岛B ,一勘测飞机在距离海平面垂直高度为1100m 的空中飞行,飞行到点C 处时测得正前方一海岛顶端A 的俯角是60°,然后沿平行于AB 的方向水平飞行41.9910 m ⨯到达点D 处,在D 处测得正前方另一海岛顶端B 的俯角是45°,求两海岛间的距离AB .第二十八章综合测试答案解析一、1.【答案】B 【解析】2tan ==21ααα=的对边的邻边.2.【答案】A 【解析】∵1tan 2BC A AC ==,所以122BC AC ==.3.【答案】A【解析】∵()1cos 902α︒-=,∴9060α︒-=︒,∴30α∠=︒.4.【答案】C【解析】B 到AO 的距离是指BO 的长.∵AB OC ∥,∴36BAO AOC ∠=∠=︒.在Rt BOA △中,∵90BOA ∠=︒,1AB =,∴.sin 36BOAB︒=,∴sin 36=sin 36BO AB =︒︒,故选项A 、B 均错误.过A 作AD OC ⊥于D ,则AD 的长是点A 到OC 的距离,∵36BAO ∠=︒,90AOB ∠=︒,∴54ABO ∠=︒.∵sin 36AD AO ︒=,∴·sin 36AD AO =︒.∵sin 54AOAB=,∴·sin 54AO AB -︒,∴·sin54·sin 36sin54sin36AD AB =︒︒=︒⋅︒,故选项C 正确,D 错误.5.【答案】A【解析】∵(01=,(3=-()224cos3023--⎛-︒=-= ⎝⎭,∴413-<,即((()32cos30--︒<<.6.【答案】C【解析】当4为斜边时,较小锐角的正切值为3;当4为直角边时,较小锐角的正切值为34.7.【答案】A 【解析】∵1sin302︒=,2sin 5A =,∴sinA sin 30︒<,∴30A ︒∠<.8.【答案】A【解析】∵tanBC A AC ==5AC =,∴AC =.9.【答案】A【解析】如图,过B 作BD AC ⊥,在Rt ABD △中,21530BAD ∠=⨯︒=︒,∴2AB =,∴12112ABC S =⨯⨯=△.10.【答案】A【解析】如图所示,作AE BC ⊥于点E .∵sin AE B AB=,∴()sin 1sin 60cm 2AE AB B ==⨯︒= ,∴()2=1cm 22ABCD S BC AE =⨯= 菱形.11.【答案】D【解析】∵tan BCE =∠,∴=30BCE ︒∠,∴=60B ︒∠.∵sin AD B AB =,∴6sin AD AB B ===.又2BE AE =,∴226433BE AB ==⨯=.∵tan BE BCE CE =∠,∴4tan tan30BE CE BCE ===︒∠.12.【答案】D【解析】∵AB 为直径,∴90ACB ∠=︒,∴90ACD BCD ∠+∠=︒.∵CD AB ⊥,∴90BCD B ∠+∠=︒,∴B ACD ∠=∠.∵3cos 5ACD ∠=,∴3cos =5B ,∴4tan 3B =.∵4BC =,4tan 43AC AC B BC ===,∴163AC =.二、13.【答案】2【解析】2231sin 60tan 30sin 45223222⎛︒÷︒+︒==+= ⎝⎭.14.【答案】45【解析】5AB ===,4sin 5BC A AB ==.15.【答案】75【解析】如图所示,过点P 作PB 垂直x 轴于点B .∵P 点的坐标为()3,4,∴3OB =,4PB =,∴5OP =.∴437sin cos =555PB OB OP OP αα+=+=+.16.【答案】26【解析】 6.5131sin 302h AB ===︒,∴13260.5AB t v ===(s ).17.【答案】200【解析】由题意得30CAB ∠=︒,120ABC ∠=︒,∴30ACB ∠=︒,∴CAB ACB ∠=∠,∴200 m AB BC ==.18.【答案】【解析】由题意得旗杆的高度是10tan 6010⨯︒==m ).19.【答案】2【解析】设CD x =,∵30A ∠=︒,∴2AC x =,∴2AB x =.∵tan CD A AD =,∴tan tan 30CD xAD A ===︒,∴(22DB AB AD x x =-==,∴(2tan 152x DBCD x-︒===-20.【答案】8.7【解析】如图D-6所示,延长AD ,BC ,交于点F ,作DE CF ⊥于点E .∵30DCE ∠=︒, 4 m CD =,∴ 2 m DE =,CE ===m ).∵1m 长的杆的影子的长为2m ,∴12DE EF =,∴2 4 m EF DE ==,∴(10414 m BF BC CE EF =++=+=+.∴12AB BF =,即(111478.722AB BF ==+=≈(m ).三、21.【答案】(1)解:原式=132303-+-⨯==.(2)解:原式()()()2121=11a a a a a a-++++-()()313=111a a a a a a +=+-- ,把()20121tan601a =-+︒===.22.【答案】解:设OC x =,在Rt AOC △中,∵45ACO ∠=︒,∴OA OC x ==.在Rt BOC △中,∵30BCO ∠=︒,∴·tan 303OB OC x =︒=.∵23AB OA OB x x =-=-=,解得35x =+≈.因此,C 处到树于DO 的距离CO 约为5m .23.【答案】解:如图,过点B 作BM FD ⊥于点M .在ACB △中,90ACB ∠=︒,60A ∠=︒,10AC =,∴30ABC ∠=︒,tan 60BC AC =︒=.∵AB CF ∥,∴30BCM ABC ∠=∠=︒.∴1sin302BM BC =︒== ,1cos30152CM BC === .在EFD △中,90F ∠=︒,45E ∠=︒,∴45EDF ∠=︒,∴MD BM ==15CD CM MD =-=-24.【答案】解:过点A 作AF BC ⊥,垂足为F .在Rt ABF △中,60B ∠=︒, 6 m AB =,∴sin 6sin60AF AB B ==︒=(m ),cos 6cos603BF AB B ==︒=(m ).∵AD BC ∥,AE BC ⊥,DE BC ⊥,∴四边形AFED 是矩形.∴DE AF ==, 4 m FE AD ==.在Rt CDE △中,ED i EC ==∴9EC ==(m ).∴34916BC BF FE EC =++=++=(m ).∴()()()211=4+1652.0m 22ABCD S AD BD DE +=⨯⨯≈ 梯形因此,拦水坝的横截面ABCD 的面积约为252.0 m .25.【答案】(1)解:过点P 作PD AC ⊥,垂足为D ,则45CPD PCD ∠=∠=︒,30APD ∠=︒.在Rt PCD △中,sin45CD PD PC ==︒=.易得四边形ABPD 为矩形,∴21.2AB PD ==≈(m ).(2)解:在Rt APD △中,tan AD APD PD ∠==∴AD =.∴33.4AC AD DC =+=≈(m ).26.【答案】解:如图,过点A 作AE CD ⊥于点E ,过点B 作BF CD ⊥,交CD 的延长线于点F ,连接AB .∵AB CD ∥,∴90AEF EFB ABF ∠=∠=∠=︒,∴四边形ABFE 为矩形,∴AB EF =,AE BF =.由题意可知:1100200900AE BF ==-=(m ),41.9910 m=19900 m CD =⨯.∴在Rt AEC △中,60C ∠=︒,900 m AE =,∴tan 60AE CE ===︒m ).在Rt BFD △中,45BDF ∠=︒,900 m BF =.∴900===900tan 451BF DF ︒(m )∴(1990090020800AB EF CD DF CE ==+-=+-=-m ).因此,两海岛之间的距离AB 是(20800-m .人教版九年级数学下册第二十九章综合测试卷01一、选择题(每小题3分,共36分)1.投影不可能为一条线段的是()A.线段B.正方形C.正五边形D.球2.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的3.两个不同长度的物体,在同一时刻同一地点的太阳光下,得到的投影的长度关系是()A.相等B.长的较长C.短的较长D.不能确定4.在太阳光的投影下,正方形所形成的影子可能是()A.正方形B.平行四边形或一条线段C.矩形D.菱形5.(2012·湖南益阳中考)下列命题是假命题的是()A.中心投影下,物高与影长成比例B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径6.(2012·湖北随州中考)如图所示,下列四个立体图形中,主视图与左视图相同的有()A.1个B.2个C.3个D.4个7.如图是由一些完全相同的小立方块搭成的立体图形的三视图,那么搭成这个立体图形所用的小立方块的块数是()A.5B.6C.7D.88.(2012·湖北黄冈中考)如图所示,水平放置的圆柱体的三视图是()A B C D9.用两张完全相同的矩形纸片分别卷成两个形状不同的柱面(圆柱的侧面),设较高圆柱的侧面积和底面半径分别是1S ,和1r ,较矮圆柱的侧面积和底面半径分别是2S 和2r ,那么()A .12S S =,12r r =B .12S S =,12>r r C .12S S =,12<r r D .12S S ≠,12r r ≠10.长方体的主视图与左视图如图所示(单位:cm ),则其俯视图的面积是()A .122cmB .82cmC .62cmD .42cm 11.(2012·黑龙江鸡西中考)小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图所示),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的展开图可能是()A B C D12.李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A .37B .33C .24D .21二、填空题(每空3分,共24分)13.如图所示是由若干个大小相同的小正方体堆砌而成的立体图形,那么其三视图中面积最小的是________。
河南省林州市第七中学2025届九年级数学第一学期期末综合测试模拟试题含解析
河南省林州市第七中学2025届九年级数学第一学期期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)1.下列四个物体的俯视图与右边给出视图一致的是( )A .B .C .D .2.下列命题正确的是( )A .1x -有意义的x 取值范围是1x >.B .一组数据的方差越大,这组数据波动性越大.C .若7255'a ∠=︒,则a ∠的补角为10745'.D .布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为383.如图,在平行四边形ABCD 中,E 为CB 延长线上一点,且:2:5BE CE =,连接DE 交AB 于F ,则△ADF 与△BEF 的周长之比为( )A .9:4B .4:9C .3:2D .2:3 4.若点()1,3P 在反比例函数1k y x +=的图象上,则关于x 的二次方程220x x k +-=的根的情况是( ). A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定 5.对于双曲线y=1m x - ,当x>0时,y 随x 的增大而减小,则m 的取值范围为( ) A .m>0 B .m>1 C .m<0 D .m<16.下列关系式中,是反比例函数的是( )A .21y x =-B .3y x =C .2y xD .5x y = 7.若2|3|0a b -+-=,则a b 的值为( )A .9B .3C .3D .238.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( )A .1B .0,1C .1,2D .1,2,39.图所示,已知二次函数()20y ax bx c a =++≠的图象正好经过坐标原点,对称轴为直线32x =-.给出以下四个结论:①0abc =;②0a b c -+>;③a b <;④240ac b -<.正确的有( )A .1个B .2个C .3个D .4个10.已知点()()()()1,,1,,2,0A m B m C m n n -->在同一个函数的图象上,这个函数可能是( )A .y x =B .2y x =-C .2y x =D .2y x =﹣二、填空题(每小题3分,共24分)11.在ABC 中,60C ∠=°,如图①,点M 从ABC 的顶点A 出发,沿A C B →→的路线以每秒1个单位长度的速度匀速运动到点B ,在运动过程中,线段BM 的长度y 随时间x 变化的关系图象如图②所示,则AB 的长为__________.12.如图,在四边形ABCD 中,AB =BD ,∠BDA =45°,BC =2,若BD ⊥CD 于点D ,则对角线AC 的最大值为___.13.若()11,A x y ,()22,B x y ,()33,C x y 是反比例函数3y x=图象上的点,且1230x x x <<<,则1y 、2y 、3y 的大小关系是__________. 14.已知向量e 为单位向量,如果向量n 与向量e 方向相反,且长度为3,那么向量n =________.(用单位向量e 表示)15.已知二次函数y =x 2﹣bx (b 为常数),当2≤x≤5时,函数y 有最小值﹣1,则b 的值为_____.16.若关于x 的一元二次方程(m ﹣1)x 2+x +m 2﹣1=0有一个根为0,则m 的值为_____.17.张华在网上经营一家礼品店,春节期间准备推出四套礼品进行促销,其中礼品甲45元/套,礼品乙50元/套,礼品丙70元/套,礼品丁80元/套,如果顾客一次购买礼品的总价达到100元,顾客就少付x 元,每笔订单顾客网上支付成功后,张华会得到支付款的80%.①当x =5时,顾客一次购买礼品甲和礼品丁各1套,需要支付_________元;②在促销活动中,为保证张华每笔订单得到的金额均不低于促销前总价的六折,则x 的最大值为________.18.如图,在四边形ABCD 中,AD ∥BC ∥EF ,EF 分别与AB ,AC ,CD 相交于点E ,M ,F ,若EM :BC =2:5,则FC :CD 的值是_____.三、解答题(共66分)19.(10分)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.20.(6分)已知关于x 的一元二次方程()2m 1x 2x 10-+-=有两个不相等的实数根,求m 的取值范围. 21.(6分)先化简,再从11x -≤≤中取一个恰当的整数x 代入求值.22321222-+⎛⎫+-÷ ⎪++⎝⎭x x x x x x 22.(8分)解方程:5x (x+1)=2(x+1)23.(8分)如图,点A B C ,,在O 上,//BE AC ,交O 于点E ,点D 为射线BC 上一动点, AC 平分BAD ∠,连接AC .(1)求证://AD CE ;(2)连接EA ,若3BC =,则当CD =_______时,四边形EBCA 是矩形.24.(8分)(1)如图①,点A ,B ,C 在O 上,点D 在O 外,比较A ∠与BDC ∠的大小,并说明理由;(2)如图②,点A ,B ,C 在O 上,点D 在O 内,比较A ∠与BDC ∠的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点()1,0M ,()4,0N ,点P 在y 轴上,试求当MPN ∠度数最大时点P 的坐标.25.(10分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (3,2)、B (3,5)、C (1,2).⑴在平面直角坐标系中画出△ABC 关于原点对称的△A 1B 1C 1;⑵把△ABC 绕点A 顺时针旋转一定的角度,得图中的△AB 2C 2,点C 2在AB 上.请写出:①旋转角为 度;②点B 2的坐标为 .26.(10分)如图,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于C 点,OA =2,OC =6,连接AC 和BC . (1)求抛物线的解析式;(2)点D 在抛物线的对称轴上,当△ACD 的周长最小时,求点D 的坐标;(3)点E 是第四象限内抛物线上的动点,连接CE 和BE .求△BCE 面积的最大值及此时点E 的坐标;参考答案一、选择题(每小题3分,共30分)1、C【详解】解:几何体的俯视图为,故选C【点睛】本题考查由三视图判断几何体,难度不大.2、B【分析】分别分析各选项的题设是否能推出结论,即可得到答案.【详解】解:A. 1x -有意义的x 取值范围是1x ≥,故选项A 命题错误;B. 一组数据的方差越大,这组数据波动性越大,故选项B 命题正确;C. 若7255'a ∠=︒,则a ∠的补角为1075',故选项C 命题错误;D. 布袋中有除颜色以外完全相同的3个黄球和5个白球,从布袋中随机摸出一个球是白球的概率为58,故选项D 命题错误;故答案为B.【点睛】本题考查了命题真假的判断,掌握分析各选项的题设能否退出结论的知识点是解答本题的关键.3、C【分析】由题意可证△ADF ∽△BEF 可得△ADF 与△BEF 的周长之比=AD BE,由:2:5BE CE =可得::=2:3BE BC BE AD =,即可求出△ADF 与△BEF 的周长之比.【详解】∵四边形ABCD 是平行四边形,∴//AD BC ,AD=BC ,∵:2:5BE CE =∴:=2:3BE BC 即:=2:3BE AD∵//AD BC ,∴△ADF ∽△BEF∴△ADF 与△BEF 的周长之比=32AD BE =. 故选:C .【点睛】本题考查了相似三角形的性质和判定,平行四边形的性质,利用相似三角形周长的比等于相似比求解是解本题的关键. 4、A【分析】将点P 的坐标代入反比例函数的表达式中求出k 的值,进而得出一元二次方程,根据根的判别式进行判断即可.【详解】∵点()1,3P 在反比例函数1k y x+=的图象上, ∴13k +=,即2k =,∴关于x 的二次方程为2220x x +-=,∵2448120b ac ∆=-=+=>,∴方程有两个不相等的实数根,故选A .【点睛】本题考查利用待定系数法求解反比例函数的表达式,根的判别式,熟练掌握根的判别式是解题的关键.5、D【分析】根据反比例函数的单调性结合反比例函数的性质,即可得出反比例函数系数的正负,由此即可得出关于m 的一元一次不等式,解不等式即可得出结论.【详解】∵双曲线y=1m x-,当x >2时,y 随x 的增大而减小, ∴1-m >2,解得:m <1.故选:D .【点睛】本题考查了反比例函数的性质,解题的关键是找出1-m >2.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质,找出反比例函数系数k 的正负是关键.6、B【解析】根据反比例函数、一次函数、二次函数的定义可得答案.【详解】解:y=2x-1是一次函数,故A 错误;3y x =是反比例函数,故B 正确; y=x 2是二次函数,故C 错误;5x y =是一次函数,故D 错误; 故选:B .【点睛】此题考查反比例函数、一次函数、二次函数的定义,解题关键在于理解和掌握反比例函数、一次函数、二次函数的意义.7、B【分析】根据算术平方根、绝对值的非负性分别解得a b 、的值,再计算a b 即可.【详解】2|0a b -+-=2a b ∴=,23a b ∴=故选:B .【点睛】本题考查二次根式、绝对值的非负性、幂的运算等知识,是重要考点,难度较易,掌握相关知识是解题关键. 8、A【详解】由题意得,根的判别式为△=(-4)2-4×3k , 由方程有实数根,得(-4)2-4×3k≥0,解得k≤43, 由于一元二次方程的二次项系数不为零,所以k≠0, 所以k 的取值范围为k≤43且k≠0, 即k 的非负整数值为1,故选A .9、C【分析】由抛物线开口方向得到a <0以及函数经过原点即可判断①;根据x=-1时的函数值可以判断②;由抛物线的对称轴方程得到为b=3a ,用求差法即可判断③;根据抛物线与x 轴交点个数得到△=b 2-4ac >0,则可对④进行判断.【详解】∵抛物线开口向下,∴a <0,∵抛物线经过原点,∴c=0,则abc=0,所以①正确;当x=-1时,函数值是a-b+c >0,则②正确;∵抛物线的对称轴为直线x=-322b a -=- <0, ∴b=3a ,又∵a <0,∴a-b=-2a >0∴a >b ,则③错误;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,即4ac-b 2<0,所以④正确.故选:C【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.10、D【解析】由点()()1,,1,A m B m -的坐标特点,可知函数图象关于y 轴对称,于是排除A B 、选项;再根据()()1,,2,B m C m n -的特点和二次函数的性质,可知抛物线的开口向下,即0a <,故D 选项正确.【详解】()()1,,1,A m B m -∴点A 与点B 关于y 轴对称;由于y x y =,=2x -的图象关于原点对称,因此选项,A B 错误; 0n >, m n m ∴﹣<;由()()1,,2,B m C m n -可知,在对称轴的右侧,y 随x 的增大而减小,对于二次函数只有0a <时,在对称轴的右侧,y 随x 的增大而减小,D ∴选项正确故选D .【点睛】考查正比例函数、反比例函数、二次函数的图象和性质,可以采用排除法,直接法得出答案.二、填空题(每小题3分,共24分)11、61【分析】由图象,推得AD=7,DC+BC=6,经过解直角三角形求得BC 、DC 及BD .再由勾股定理求AB .【详解】过点B 作BD ⊥AC 于点D由图象可知,BM 最小时,点M 到达D 点.则AD=7点M 从点D 到B 路程为13-7=6在△DBC 中,∠C=60°∴CD=2,BC=4则3∴2222=(23)7=61BD AD ++故答案为:61【点睛】本题是动点问题的函数图象探究题,考查了解直角三角形的相关知识,数形结合时解题关键.12、51+【分析】以BC 为直角边,B 为直角顶点作等腰直角三角形CBE (点E 在BC 下方),先证明ABC DBE ≅,从而 AC DE =,求DE 的最大值即可,以BC 为直径作圆,当DE 经过BC 中点O 时,DE 有最大值.【详解】以BC 为直角边,B 为直角顶点作等腰直角三角形CBE (点E 在BC 下方),即CB=BE ,连接DE ,∵90ABD CBE ∠=∠=︒,∴ABD CBD CBE CBD ∠+∠=∠+∠,∴ABC DBE ∠=∠,在ABC 和DBE 中AB BD ABC DBE CB BE =⎧⎪∠=∠⎨⎪=⎩,∴ABC DBE ≅(SAS ) ,∴ AC DE =,若求AC 的最大值,则求出DE 的最大值即可,∵2BC =是定值,BD ⊥CD ,即90ADC ∠=︒,∴点D 在以BC 为直径的圆上运动,如上图所示,当点D 在BC 上方,DE 经过BC 中点O 时,DE 有最大值,∴ 112OD OB BC === 在Rt BOE 中,90CBE ∠=︒,1OB =, 2BE CB ==,∴OE =∴ 1DE OE OD =+=,∴对角线AC 1.1.【点睛】本题主要考查了等腰直角三角形的性质、全等三角形的性质、圆的知识,正确的作出辅助线构造全等三角形是解题的关键,学会用转化的思想思考问题.13、213y y y << 【分析】根据“反比例函数3y x=”可知k=3,可知该函数图像过第一、三象限,在第一象限,y 随x 的增大而减小且y>0,在第三象限,y 随x 的增大而减小且y<0,据此进行排序即可.【详解】由题意可知该函数图像过第一、三象限,在第一象限,y 随x 的增大而减小且y>0,在第三象限,y 随x 的增大而减小且y<0,因为1230x x x <<<所以3210,0y y y ><<所以213y y y <<故答案填213y y y <<.【点睛】本题考查的是反比例函数的性质,能够熟练掌握反比例函数的性质是解题的关键.14、3-e【解析】因为向量e 为单位向量,向量n 与向量e 方向相反,且长度为3,所以n =3e -,故答案为: 3e -.15、52【分析】根据二次函数y =x 2﹣bx (b 为常数),当2≤x ≤5时,函数y 有最小值﹣1,利用二次函数的性质和分类讨论的方法可以求得b 的值.【详解】∵二次函数y =x 2﹣bx =(x 2b -)224b -,当2≤x ≤5时,函数y 有最小值﹣1,∴当52b<时,x =5时取得最小值,52﹣5b =﹣1,得:b 265=(舍去), 当22b ≤≤5时,x 2b =时取得最小值,24b -=-1,得:b 1=2(舍去),b 2=﹣2(舍去), 当2b<2时,x =2时取得最小值,22﹣2b =﹣1,得:b 52=, 由上可得:b 的值是52. 故答案为:52. 【点睛】 本题考查了二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.16、﹣1.【分析】根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m 2-1=0,由此可以求得m 的值.【详解】解:把x =0代入(m ﹣1)x 2+x +m 2﹣1=0得m 2﹣1=0,解得m=±1, 而m ﹣1≠0,所以m =﹣1.故答案为﹣1.【点睛】本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.17、1 25【分析】① 当x=5时,顾客一次购买礼品甲和礼品丁各1套,需要支付45+80-5=1元.②设顾客每笔订单的总价为M 元,当0<M <100时,张军每笔订单得到的金额不低于促销前总价的六折,当M ≥100时,0.8(M-x )≥0.6M ,对M ≥100恒成立,由此能求出x 的最大值.【详解】解:(1)当x=5时,顾客一次购买礼品甲和礼品丁各1套,需要支付:45+80-5=1元.故答案为:1.(2)设顾客一次购买干果的总价为M 元,当0<M <100时,张军每笔订单得到的金额不低于促销前总价的六折,当M ≥100时,0.8(M-x )≥0.6M ,解得,0.8x ≤0.2M.∵M ≥100恒成立,∴0.8x ≤200解得:x ≤25.故答案为25.【点睛】本题考查代数值的求法,考查函数性质在生产、生活中的实际应用等基础知识,考查运算求解能力和应用意识,是中档题.18、【解析】首先得出△AEM∽△ABC,△CFM∽△CDA,进而利用相似三角形的性质求出即可.【详解】∵AD∥BC∥EF,∴△AEM∽△ABC,△CFM∽△CDA,∵EM:BC=2:5,∴,设AM=2x,则AC=5x,故MC=3x,∴,故答案为:.【点睛】此题主要考查了相似三角形的判定与性质,得出是解题关键.三、解答题(共66分)19、(1)50(2)条形统计图见解析,57.6°(3)292天【分析】(1)根据扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,即可得出被抽取的总天数.(2)利用轻微污染天数是50-32-8-3-1-1=5天;表示优的圆心角度数是850360°=57.6°,即可得出答案.(3)利用样本中优和良的天数所占比例得出一年(365天)达到优和良的总天数即可【详解】(1)∵扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,∴被抽取的总天数为:32÷64%=50(天).(2)轻微污染天数是50﹣32﹣8﹣3﹣1﹣1=5天.因此补全条形统计图如图所示:;扇形统计图中表示优的圆心角度数是850⨯360°=57.6°. (3)∵样本中优和良的天数分别为:8,32, ∴一年(365天)达到优和良的总天数为:8+3250×365=292(天). 因此,估计该市一年达到优和良的总天数为292天.20、m >﹣1且m≠1.【分析】由关于x 的一元二次方程2210mx x +-=有两个不相等的实数根,由一元二次方程的定义和根的判别式的意义可得m≠1且△>1,即4﹣4m•(﹣1)>1,两个不等式的公共解即为m 的取值范围.【详解】∵关于x 的一元二次方程2210mx x +-=有两个不相等的实数根,∴m≠1且△>1,即4﹣4m•(﹣1)>1,解得m >﹣1,∴m 的取值范围为m >﹣1且m≠1,∴当m >﹣1且m≠1时,关于x 的一元二次方程mx 2+2x ﹣1=1有两个不相等的实数根.21、(1)1x x x +-,0 【分析】根据分式的混合运算法则进行计算化简,再代入符合条件的x 值进行计算.【详解】解:原式=223224(1)2(2)x x x x x x x ++---÷++ =221(1)2(2)x x x x x --÷++ =2(1)(1)(2)2(1)x x x x x x +-+⋅+- =(1)1x x x +- 又∵11x -≤≤且0x ≠,2x ≠-,1x ≠∴整数1x =-.∴原式=1(11)011--+=--. 【点睛】考核知识点:分式的化简求值.掌握分式的基本运算法则是关键.22、x =﹣1或x =0.1【分析】先移项,再利用因式分解法求解可得.【详解】解:∵5x(x+1)﹣2(x+1)=0,∴(x+1)(5x ﹣2)=0,则x+1=0或5x ﹣2=0,解得x =﹣1或x =0.1.【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.23、(1)见详解;(2)1【分析】(1)先证E DAC ∠=∠,再证E ACE ∠=∠,可得ACE DAC ∠=∠,即可得出结论;(2)根据矩形的性质可得∠BCA=90°,再证△ABC ≌△ADC ,即可解决问题.【详解】(1)证明:∵AC 平分BAD ∠∴BAC DAC ∠=∠∵E BAC ∠=∠∴E DAC ∠=∠∵//BE AC∴E ACE ∠=∠∴ACE DAC ∠=∠∴//AD EC(2) 当CD =1时,四边形EBCA 是矩形.当四边形EBCA 是矩形,∴∠BCA=90°, 又∵AC 平分BAD ∠,∴∠BAC=∠DAC∴△ABC ≌△ADC ,∴BC=DC又∵3BC =∴DC=1故答案为1.【点睛】本题考查矩形判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24、(1)B BAC DC >∠∠;理由详见解析;(2)BDC BAC ∠>∠;理由详见解析;(3)()10,2P , ()30,2P -【分析】(1)根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,构建圆周角,然后利用三角形外角性质比较即可;(2)根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,构建圆周角,然后利用三角形外角性质比较即可;(3)根据圆周角定理,结合(1)(2)的结论首先确定圆心的位置,然后即可得出点P 的坐标.【详解】(1)CD 交O 于点E ,连接BE ,如图所示:BDE ∆中BEC BDC ∠>∠又BAC BEC ∠=∠∴B BAC DC >∠∠(2)延长CD 交O 于点F ,连接BF ,如图所示:BDF ∆中BDC BFC ∠>∠又BFC BAC ∠=∠∴BDC BAC ∠>∠(3)由(1)(2)结论可知,当OP=2.5时,∠MPN 最大,如图所示:∴OM=2.5,MH=1.5 ∴()()2222 2.5 1.52OH OM MH =-=-=∴()10,2P ,()20,2P -【点睛】 本题考查了圆周角定理、三角形的外角性质的综合应用,熟练掌握,即可解题.25、⑴详见解析;⑵ ①90 ;②(6,2)【分析】(1)分别得到点A 、B 、C 关于x 轴的对称点,连接点A 1,B 1,C 1,即可解答;(2)①根据点A ,B ,C 的坐标分别求出AC ,BC ,AC 的长度,根据勾股定理逆定理得到∠CAB=90°,即可得到旋转角;②根据旋转的性质可知AB=AB 2=3,所以CB 2=AC+AB 2=5,所以B 2的坐标为(6,2).【详解】解:(1)A (3,2)、B (3,5)、C (1,2)关于x 轴的对称点分别为A 1(3,-2),B 1(3,-5),C 1(1,-2),如图所示,(2)①∵A (3,2)、B (3,5)、C (1,2),∴AB=3,AC=2,()()22315213-+-=∴213BC=,∵AB2+AC2=13,∴AB2+AC2=BC2,∴∠CAB=90°,∵AC与AC2的夹角为∠CAC2,∴旋转角为90°;②∵AB=AB2=3,∴CB2=AC+AB2=5,∴B2的坐标为(6,2).【点睛】本题考查了轴对称及旋转的性质,解答本题的关键是掌握两种几何变换的特点,根据题意找到各点的对应点.26、(1)y=x2﹣x﹣6;(2)点D的坐标为(12,﹣5);(3)△BCE的面积有最大值278,点E坐标为(32,﹣214).【分析】(1)先求出点A,C的坐标,再将其代入y=x2+bx+c即可;(2)先确定BC交对称轴于点D,由两点之间线段最短可知,此时AD+CD有最小值,而AC的长度是定值,故此时△ACD的周长取最小值,求出直线BC的解析式,再求出其与对称轴的交点即可;(3)如图2,连接OE,设点E(a,a2﹣a﹣6),由式子S△BCE=S△OCE+S△OBE﹣S△OBC即可求出△BCE的面积S与a 的函数关系式,由二次函数的图象及性质可求出△BCE的面积最大值,并可写出此时点E坐标.【详解】解:(1)∵OA=2,OC=6,∴A(﹣2,0),C(0,﹣6),将A(﹣2,0),C(0,﹣6)代入y=x2+bx+c,得4206b cc-+=⎧⎨=-⎩,解得,b=﹣1,c=﹣6,∴抛物线的解析式为:y=x2﹣x﹣6;(2)在y=x2﹣x﹣6中,对称轴为直线x=12,∵点A与点B关于对称轴x=12对称,∴如图1,可设BC交对称轴于点D,由两点之间线段最短可知,此时AD+CD有最小值,而AC的长度是定值,故此时△ACD的周长取最小值,在y=x2﹣x﹣6中,当y=0时,x1=﹣2,x2=3,∴点B的坐标为(3,0),设直线BC的解析式为y=kx﹣6,将点B(3,0)代入,得,k=2,∴直线BC的解析式为y=2x﹣6,当x=12时,y=﹣5,∴点D的坐标为(12,﹣5);(3)如图2,连接OE,设点E(a,a2﹣a﹣6),S△BCE=S△OCE+S△OBE﹣S△OBC=12×6a+12×3(﹣a2+a+6)﹣12×3×6=﹣32a2+92a=﹣32(a﹣32)2+278,根据二次函数的图象及性质可知,当a=32时,△BCE的面积有最大值278,当a=32时,22332166224a a⎛⎫=--=-⎪⎝⎭﹣﹣∴此时点E坐标为(32,﹣214).【点睛】本题考查的是二次函数的综合,难度适中,第三问解题关键是找出面积与a的关系式,再利用二次函数的图像与性质求最值.。
九年级数学(上)第一二章综合测试卷
九年级数学(上)第一二章综合测试卷一、选择题:(每小题3分,共30分) 1、下列方程属于一元二次方程的是( )A 、22(2)x x x -=B 、20ax bx c ++=C 、15x x+= D 、012=+x2、如图,D 在AB 上,E 在AC 上,且∠B =∠C ,那么补充下列一个条件后,仍无法判定△ABE ≌△ACD 的是( ) A 、AD =AE B 、∠AEB =∠ADC C 、BE =CD D 、AB =AC 3、方程x(x+2)=3(x+2)的解是( )A 、3和-2B 、3C 、-2D 、无解4、如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD , 则∠A 的度数为( )A 、30°B 、36°C 、45°D 、70°5、设12,x x 是方程22630x x -+=的两根,则2212x x +的值是( ) A 、15 B 、12 C 、6 D 、36、用配方法解方程2237x x +=时,方程可变形为 ( ) A 、2737()24x -=B 、2743()24x -=C 、271()416x -=D 、2725()416x -= 7、三角形的三个内角中,锐角的个数不少于( ) A 、1 个 B 、2 个 C 、3个 D 、不确定8、若关于x 的一元二次方程0962=+-x kx 有两个不相等的实数根,则k 的取值范围( )A 、k <1B 、k ≠0C 、k <1且k ≠0D 、k >19、关于x 的一元二次方程013)1(22=-++-m x x m 的一根为0,则m 的值是( )A 、1±B 、2±C 、-1D 、-210、如图,△ABC 中,BC=10,DH 为AB 的中垂线,EF 垂直平分AC ,则△ADE 的周长是( )A 、6B 、8C 、10D 、12 二、填空题:(每题3分,共24分)11、命题“全等三角形的面积相等”的逆命题是 。
2023年人教版(五四制)初中数学九年级(下)期末综合测试卷及部分答案(3套)
人教版(五四制)初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(共10题,共30分)1.(3分)关于x的方程kx2−6x+9=0有实数根,k的取值范围是( )A.k<1且k≠0B.k<1C.k≤1且k≠0D.k≤12.(3分)如图,△ABC是一张纸片,∠C=90∘,AC=6,BC=8,现将其折叠,使点B与点A重合,折痕为DE,则DE的长为( )A.1.75B.3C.3.75D.43.(3分)如果x,y之间满足的关系是xy=−6,那么y是x的( )A.正比例函数B.反比例函数C.一次函数D.二次函数4.(3分)在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是( )A.随着抛掷次数的增加,正面朝上的频率越来越小B.当抛掷的次数很多时,正面朝上的次数一定占总抛掷次数的12C.不同次数的试验,正面朝上的频率可能会不相同D.连续抛掷11次硬币都是正面朝上,则第12次抛掷出现正面朝上的概率小于12 5.(3分)甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m,设甲队每天修路x m.依题意,下面所列方程正确的是( )A.120x =100x−10B.120x=100x+10C.120x−10=100xD.120x+10=100x6.(3分)如图,菱形ABCD的边长为13,对角线AC=24,点E,F分别是边CD,BC的中点,连接EF并延长与AB的延长线相交于点G,则EG=( )A.13B.10C.12D.57.(3分)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F,若FB=FE=2,FC=1,则AC的长是( )A.5√22B.3√52C.4√53D.5√238.(3分)如图,已知AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=α,则下列结论中不正确的是( )A.∠BOE=12(180∘−α)B.OF平分∠BODC.∠POE=∠BOF D.∠POB=2∠DOF9.(3分)如图,在△ABC中,BD,BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:① ∠DBE=∠F;② 2∠BEF=∠BAF+∠C;③ ∠F=12(∠BAC−∠C);④ ∠BGH=∠ABE+∠C,其中正确的是( )A.①②④B.①③④C.①②③D.①②③④10.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90∘,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180∘;③DE平分∠ADC;④∠F为定值,其中结论正确的有( )A.1个B.2个C.3个D.4个二、填空题(共7题,共28分)11.(4分)18和30的最小公倍数是.12.(4分)近似数7.30×104精确到位.13.(4分)小明爸爸把10000元按一年期定期储蓄存入银行,年利率为1.95%,到期后可得本利和为元.14.(4分)如图,在直角坐标系中,⊙A的圆心的坐标为(−2,0),半径为2,点P为x+6上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的直线y=−34最小值是.15.(4分)如图,△ABC的两条高线BD,CE相交于点F,已知∠ABC=60∘,AB=a,CF=EF,则△ABC的面积为(用含a的代数式表示).16.(4分)三个连续奇数,中间一个为a,则它们的积为.17.(4分)将正方形ABCD的各边按如图延长,从射线AB开始,分别在各射线上标记点A1,A2,A3,⋯,按此规律,点A2019在射线上.三、解答题(共8题,共62分)18.(6分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1) 求甲、乙两种节能灯各进多少只?(2) 全部售完100只节能灯后,该商场获利多少元?19.(6分)解答下列问题.(1) 计算:4sin60∘−√12+(√3−1)0;).(2) 化简(x+1)÷(1+1x20.(7分)计算:(1) 37∘49ʹ+44∘28ʹ.(结果用度、分、秒表示)(2) 108∘18ʹ−56.5∘.(结果用度表示)21.(7分)我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机抽出10名男生,分别测量出他们的身高(单位:cm),收集并整理如下统计表:男生序号①②③④⑤⑥⑦⑧⑨⑩根据以上信息,身高x(cm)163171173159161174164166169164解答如下问题:(1) 计算这组数据的三个统计量:平均数、中位数、众数;(2) 请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普通身高”是哪几位男生?并说明理由.22.(8分)如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.(1) 求证△PBE∽△QAB;(2) 你认为△PBE和△BAE相似吗?如果相似给出证明,若不相似请说明理由.23.(8分)果子成熟从树上落到地面,它落下的高度与经过的时间有如下的关系:时间t/秒0.50.60.70.80.91⋯高度ℎ/米 4.9×0.25 4.9×0.36 4.9×0.49 4.9×0.64 4.9×0.81 4.9×1⋯(1) 上表反映了哪两个变量之间的关系?其中自变量是什么?因变量是什么?(2) 请你按照表中呈现的规律,列出果子落下的高度ℎ(米)与时间t(秒)之间的关系式.(3) 如果果子经过2秒落到地上,请计算这果子开始落下时离底面的高度是多少米?24.(10分)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(−3,0),B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.(1) 求抛物线的解析式和顶点C的坐标;(2) 连接AD,CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3) 若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P,C,Q为顶点的三角形与△ACH相似时,求点P的坐标.25.(10分)已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120∘,点E是射线CD上的一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120∘后,得到△ABEʹ,连接EEʹ.(1) 如图1,∠AEEʹ=∘;(2) 如图2,如果将直线AE绕点A顺时针旋转30∘后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;(3) 如图3,在(2)的条件下,如果CE=2,AE=2√7,求ME的长.答案一、选择题(共10题,共30分)1. 【答案】D2. 【答案】C3. 【答案】B4. 【答案】C5. 【答案】A6. 【答案】B7. 【答案】B8. 【答案】D9. 【答案】D10. 【答案】C二、填空题(共7题,共28分) 11. 【答案】 9012. 【答案】百13. 【答案】 1019514. 【答案】 4√215. 【答案】√3a 2516. 【答案】 a 3−a17. 【答案】 AB三、解答题(共8题,共62分)18. 【答案】(1) 设商场购进甲种节能灯 x 只,购进乙种节能灯 y 只,根据题意,得{30x +35y =3300,x +y =100.解这个方程组,得{x =40,y =60.答:甲、乙两种节能灯分别购进 40,60 只.(2) 商场获利=40×(40−30)+60×(50−35)=1300(元).答:商场获利1300元.19. 【答案】(1) 原式=4×√32−2√3+1=2√3−2√3+1=1.(2) 原式=(x+1)÷(xx+1x)=(x+1)÷x+1x=(x+1)⋅xx+1=x.20. 【答案】(1) 82∘17ʹ.(2) 51.8∘21. 【答案】(1) 平均数为:163+171+173+159+161+174+164+166+169+16410=166.4(cm);10名同学身高从小到大排列如下:159,161,163,164,164,166,169,171,173,174,中位数:166+1642=165(cm);众数:164(cm).(2) 选平均数作为标准:身高x满足166.4×(1−2%)≤x≤166.4×(1+2%),即163.072≤x≤169.728时为普通身高,此时⑦⑧⑨⑩男生的身高具有“普通身高”.选中位数作为标准:身高x满足165×(1−2%)≤x≤165×(1+2%),即161.7≤x≤168.3时为普通身高,此时①⑦⑧⑩男生的身高具有“普通身高”.选众数作为标准:身高x满足164×(1−2%)≤x≤164×(1+2%),即160.72≤x≤167.28时为普通身高,此时①⑤⑦⑧⑩男生的身高具有“普通身高”.22. 【答案】(1) ∵∠PBE+∠ABQ=90∘,∠PBE+∠PEB=90∘,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB=90∘,∴△PBE∽△QAB.(2) 相似,理由如下:∵△PBE∽△QAB,∴BEAB =PEBQ,又∵BQ=PB,∴BEAB =PEPB,即BEEP=ABPB,又∵∠ABE=∠BPE=90∘,∴△PBE∽△BAE.23. 【答案】(1) 上表反映了果子成熟从树上落到地面时落下的高度ℎ与经过的时间t的关系;其中时间t是自变量,高度ℎ是因变量.(2) 观察可知,下落t秒时,高度为4.9t2,即ℎ=4.9t2.(3) 当t=2时,ℎ=4.9×22=19.6(m).故果子开始落下时离底面的高度是19.6米.24. 【答案】(1) 把点A,B,D的坐标代入二次函数表达式得:{a+b+c=0,9a−3b+c=0,c=3,解得:{a=−1,b=−2,c=3,则抛物线的表达式为:y=−x2−2x+3 ⋯⋯①,函数的对称轴为:x=−b2a=−1,则点C的坐标为(−1,4);(2) 过点C作CE∥AD交抛物线于点E,交y轴于点H,则△ADE与△ACD面积相等,直线AD过点D,则其表达式为:y=mx+3,将点A的坐标代入上式得:0=−3m+3,解得:m=1,则直线AD的表达式为:y=x+3,CE∥AD,则直线CE表达式的k值为1,设直线CE的表达式为:y=x+n,将点C的坐标代入上式得:4=−1+n,解得:n=5,则直线CE的表达式为:y=x+5 ⋯⋯②,则点H的坐标为(0,5),联立①②并解得:x=−1或−2(x=1为点C的横坐标),即点E的坐标为(−2,3);在y轴取一点Hʹ,使DH=DHʹ=2,过点 Hʹ 作直线 EʹEʺ∥AD ,则 △ADEʹ,△ADEʺ 与 △ACD 面积相等,同理可得直线 EʹEʺ 的表达式为:y =x +1 ⋯⋯③, 联立 ①③ 并解得:x =−3±√172, 则点 Eʺ,Eʹ 的坐标分别为 (−3+√172,−1+√172),(−3−√172,−1−√172), 点 E 的坐标为:(−2,3) 或 (−3+√172,−1+√172),(−3−√172,−1−√172);(3) 设:点 P 的坐标为 (m,n ),n =−m 2−2m +3,把点 C ,D 的坐标代入一次函数表达式:y =kx +b 得:{4=−k +b,b =3, 解得:{k =−1,b =3,即直线 CD 的表达式为:y =−x +3 ⋯⋯④,直线 AD 的表达式为:y =x +3,直线 CD 和直线 AD 表达式中的 k 值的乘积为 −1, 故 AD ⊥CD ,而直线 PQ ⊥CD ,故直线 PQ 表达式中的 k 值与直线 AD 表达式中的 k 值相同, 同理可得直线 PQ 表达式为:y =x +(n −m ) ⋯⋯⑤, 联立 ④⑤ 并解得:x =3+m−n2, 即点 Q 的坐标为 (3+m−n 2,3−m+n2),则:PQ 2=(m −3+m−n2)2+(n −3−m+n2)=(m+n−3)22=12(m +1)2⋅m 2.同理可得:PC 2=(m +1)2[1+(m +1)2], AH =2,CH =4,则 AC =2√5, 当 △ACH ∽△CPQ 时, PCPQ =ACAH =√52,即:4PC 2=5PQ 2,整理得:3m 2+16m +16=0,解得:m =−4 或 −43, 点 P 的坐标为 (−4,−5) 或 (−43,359);当 △ACH ∽△PCQ 时,同理可得:点 P 的坐标为 (−23,359) 或 (2,−5),故:点 P 的坐标为:(−4,−5) 或 (−43,359) 或 (−23,359) 或 (2,−5).25. 【答案】(2) 当点E在线段CD上时,DE+BF=2ME;∵∠EʹAE=120∘,AE=AEʹ,∴∠AEEʹ=∠AEʹE=30∘.∵∠EAF=30∘,∴AN=EN,∠EʹAF=90∘,∴AN=12NEʹ,EN=12NEʹ.即NEʹ=2EN.∵EM∥AD∥BC,∴△EMN∽△EʹFN,∴MEFEʹ=ENEʹN=12.∵DE=BEʹ,∴DE+BF=BEʹ+BF=FEʹ=2ME.即DE+BF=2ME.当点E在CD的延长线上,0∘<∠EAD<30∘时,BF−DE=2ME;∵△ADE旋转到△ABEʹ,∴ED=BEʹ.EʹF=BF−BEʹ=BF−ED同上可证:△MEN∽△FEʹN,AN=EN=12NEʹ∴EʹFME =EʹNEN=2.即BF−DE=2ME.30∘<∠EAD≤90∘时,DE+BF=2ME;∵EM∥BC,∴△EMN∽△EʹFN,∴EʹFEM =EʹNEN=2.同上可证:AN=EN=12NEʹ,∴EʹF=2EM.∵ED=BEʹ,∴DE+BF=BEʹ+BF=EʹF=2EM.90∘<∠EAD<120∘时,DE−BF=2ME.∵ED=BEʹ,DE−BF=BEʹ−BF=EʹF,EM∥BC,∴△EMN∽△EʹFN,EʹF EM =EʹNEN,AN=EN=12NEʹ,∴EʹF=2EM,DE−BF=2ME.(3) 作AG⊥BC于点G,作DH⊥BC于点H.由AD∥BC,AD=AB=CD,∠BAD=120∘,得∠ABC=∠DCB=60∘,易知四边形AGHD是矩形和两个全等的直角三角形△ABG、△DCH.则GH=AD,BG=CH.∵∠ABEʹ=∠ADC=120∘,∴点Eʹ、B、C在一条直线上.设AD=AB=CD=x,则GH=x,BG=CH=12x,.作EQ⊥BC于Q.在Rt△EQC中,CE=2,∠C=60∘,∴CQ=1,EQ=√3.∴EʹQ=BC−CQ+BEʹ=2x−1+x−2=3x−3.作AP⊥EEʹ于点P.∵△ADE绕点A顺时针旋转120∘后,得到△ABEʹ.∴△AEEʹ是等腰三角形,∠AEʹE=30∘,AEʹ=AE=2√7.∴在Rt△APEʹ中,EʹP=√21.∴EEʹ=2EʹP=2√21.∴在Rt△EQEʹ中,EʹQ=√EʹE2−EQ2=9.∴3x−3=9.∴x=4.∴DE=BEʹ=2,BC=8,BG=2.∴EʹG=4在Rt△EʹAF中,AG⊥BC,∴Rt△AGEʹ∽Rt△FAEʹ.∴AEʹEʹG =EʹFAEʹ∴EʹF=7.∴BF=EʹF−EʹB=5.由(2)知:DE+BF=2ME.∴ME=72人教版(五四制)初中数学九年级(下)期末综合测试卷(二)一、单项选择题:本大题总共8小题,每小题3分,共24分。
(北师大版)初中数学九年级上册 第二章综合测试试卷01及答案
第二章综合测试一、单选题1.如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x 米,则根据题意,列方程为()A .2352035202600x x x ´--+=.B .3520352020600x x x ´--´=C .(352)(20)600x x --=D .(35)(202)600x x --=2.把一元二次方程()()2331x x x +=-化成一般形式,正确的是( )A .22790x x --=B .22590x x --=C .24790x x ++=D .226100x x --=3.若关于x 的一元二次方程()21220k x x -+-=有两个不相等的实数根,则k 的取值范围是( )A .12k >且1k ¹B .12k >C .12k ≥且1k ¹D .12k <4.用配方法解方程2250x x --=,下列配方正确的是( )A .2(2)9x -=B .2(2)5x -=C .2(1)4x -=-D .2(1)6x -=5.已知二次函数2y ax bx c =++自变量x 与函数值y 之间满足下列数量关系:则()a b c ++值为( )x245y0.380.386A .24B .36C .6D .46.已知一元二次方程230x x --=的较小根为1x ,则下面对1x 的估计正确的是( )A .121x --<<B .132x --<<C .123x <<D .110x -<<7.关于x 的方程2(21)10kx k x k -+++=(k 为常数),下列说法:①当1k =时,该方程的实数根为2x =;②1x =是该方程的实数根;③该方程有两个不相等的实数根.其中正确的是( )A .①②B .②③C .②D .③8.等腰三角形的一边长是3,另两边的长是关于的方程240x x k -+=的两个根,则k 的值为( )A .3B .4C .3或4D .7二、填空题9.若1x ,2x 是方程2420200x x --=的两个实数根,则代数式211222x x x -+的值等于________.10.如果一个矩形的一边长是某个正方形边长的2倍,另一边长比该正方形边长少1厘米,且矩形的面积比该正方形的面积大8平方厘米,那么该正方形的边长是________厘米.三、计算题11.用指定的方法解方程:(1)22530x x -+=(用公式法解方程)(2)2356x x -=(用配方法解方程)12.解方程:(1)24x x =(因式分解法)(2)22430x x --=(公式法)13.解方程:(1)()224x +=(自选方法)(2)2210x x --=(配方法)(3)²14x x -=(公式法)(4)²122x x -=+(因式分解法)四、综合题14.已知关于x 的一元二次方程2240x x m ++-=有两个实数根.(1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求出此时方程的根.15.已知关于x 的一元二次方程220x x k +-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个不相等的实数根是a ,b ,求111a ab -++的值.16.已知1x ,2x 是一元二次方程2220x x k -++=的两个实数根.(1)求k 的取值范围;(2)是否存在实数k ,使得等式12112k x x +=-成立?如果存在,请求出k 的值,如果不存在,请说明理由.17.某网店销售某款童装,每件售价60元,每星期可卖300件,为尽快减少库存,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件。
九年级数学上册各单元综合测试题含答案共13套
人教版九年级数学上册第二十一章综合测试卷01一、选择题(30分)1.一元二次方程22(32)10x x x --++=的一般形式是()A .2550x x -+=B .2550x x +-=C .2550x x ++=D .250x +=2.一元二次方程260x +-=的根是()A .12x x ==B .10x =,2x =-C .1x 2x =-D .1x =2x =3.用配方法解一元二次方程245x x -=时,此方程可变形为()A .2(2)1x +=B .2(2)1x -=C .229x +=()D .229x -=()4.一元二次方程220x x -=的两根分别为1x 和2x 则12x x 为()A .2-B .1C .2D .05.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .不能确定6.若2x =-是关于x 的一元二次方程22502x ax a -+=的一个根,则a 的值为()A .1或4B .1-或4-C .1-或4D .1或4-7.已知等腰三角形的腰和底的长分别是一元二次方程2680x x -+=的根,则该三角形的周长为()A .8B .10C .8或10D .128.若α,β是一元二次方程定2260x x +-=的两根,则22αβ+=()A .8-B .32C .16D .409.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的方程为()A .1(1)282x x +=B .1(1)282x x -=C .(1)28x x +=D .(1)28x x -=10.已知关于的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是()A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于x 的方程20x bx a ++=的根二、填空题(24分)11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.若将方程定267x x +=化为2()16x m +=,则m =__________.13.一个三角形的两边长分别为3和6,第三边长是方程210210x x -+=的根,则三角形的周长为__________.14.已知一元二次方程21)10x x -++-=的两根为1x ,2x ,则1211x x +=__________.15.已知关于x 的方程224220x x p p --++=的一个根为p ,则p =__________.16.关于x 的一元二次方程2(5)220m x x -++=有实根,则m 的最大整数解是__________.17.若关于x 的一元二次方程号2124102x mx m --+=有两个相等的实数根,则2 2 2)1)((m m m ---的值为__________.18.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方程2260a x m +++=()的解是__________.三、解答题(8+6+6+6+6+7+7=46分)19.解方程.(1)3(2)2(2)x x x -=-(2)2220x x --=(用配方法)(3)()()11238x x x +-++=()(4)22630x x --=20.已知关于x 的一元二次方程()22(22)20x m x m m --+-=.(1)求证:方程有两个不相等的实数根,(2)如果方程的两实数根为1x ,2x ,且221210x x +=求m 的值.21.已知关于x 的一元二次方程2640x x m -++=有两个实数根1x ,2x .(1)求m 的取值范围.(2)若1x ,2x 满足1232x x =+,求m 的值.22.在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系。
北师版九年级数学上册第一章综合测试卷含答案
北师版九年级数学上册第一章综合测试卷一、选择题(共10小题,每小题3分,共30分)1.[2023揭阳期末]菱形、矩形、正方形都具有的性质是() A.对角线互相垂直B.对角线相等C.四条边相等,四个角相等D.两组对边分别平行且相等2.[2024邢台襄都区模拟]如图,在四边形ABCD中,给出部分数据,若添加一个数据后,四边形ABCD是矩形,则添加的数据是() A.CD=4 B.CD=2 C.OD=2 D.OD=43.[2023成都温江区期末]如图,F是正方形ABCD对角线BD上一点,连接AF,CF,并延长CF交AD于点E.若∠AFC=130°,则∠DEC的度数为()A.65°B.70°C.75°D.80°4.[2022安徽]两个矩形的位置如图所示,若∠1=α,则∠2=() A.α-90°B.α-45°C.180°-αD.270°-α5.[2023东莞期中]若顺次连接某四边形四边中点所得的四边形是矩形,则原四边形一定是()A.菱形B.矩形C.对角线互相垂直的四边形D.对角线相等的四边形6. 三个边长为8 cm的正方形按如图所示的方式重叠在一起,点O是其中一个正方形的中心,则重叠部分(阴影)的面积为()A.16 cm2B.24 cm2C.28 cm2 D.32 cm27.在∠MON的两边上分别截取OA,OB,使OA=OB;分别以点A,B为圆心,OA长为半径作弧,两弧交于点C;连接AC,BC,AB,OC.若AB=2 cm,四边形OACB的面积为4 cm2.则OC的长为()A.2 cm B.3 cm C.4 cm D.5 cm8. 如图,在矩形OABC中,点B的坐标是(5,12),则AC的长是()A.5 B.7 C.12 D.139.如图,在菱形ABCD中,对角线AC,BD相交于点O,点M,N 分别是边AD,CD的中点,连接MN,OM,若MN=3,S菱形ABCD=24,则OM的长为()A.3 B.3.5 C.2 D.2.510.如图,在正方形ABCD中,点E,F分别在边BC,CD上,AE=AF,AC与EF相交于点G.下列结论:①AC垂直平分EF;②当∠EAF=45°时,∠AEB=∠AEF;③当∠DAF=15°时,△AEF为等边三角形;④当CE=(2-2)BC时,BE+DF=EF.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(共5小题,每小题3分,共15分)11.在△ABC中,∠ABC=90°,∠A=28°,D是AC的中点,则∠CBD =________°.12.一个平行四边形的一边长是3,两条对角线的长分别是4和25,则此平行四边形的面积为________.13.如图,点P是矩形ABCD的对角线AC的延长线上一点,PD=1 2AC,∠P=52°,则∠PDC=________.14. 如图,在菱形ABCD中,AB=10 cm,∠A=60°,点E,F同时从A,C两点出发,分别沿AB,CB方向向点B匀速移动,点E 的速度为2 cm/s,点F的速度为4 cm/s,当一点到达B点时,另一点随之停止移动,经过t s后△DEF恰为等边三角形,则此时t 的值为________.15.[2024东莞模拟]如图,正方形ABCD的边长为1,点E是边BC 上一动点(不与点B,C重合),过点E作EF⊥AE交正方形外角的平分线CF于点F,交CD于点G,连接AF.有下列结论:①AE=EF;②CF=2BE;③∠DAF=∠CEF.其中正确的是________.(把正确结论的序号都填上)三、解答题(共7小题,第16~21题每题10分,第22题15分,共75分)16.[2023扬州邗江区期末]如图,已知∠ABC=∠ADC=90°,M,N 分别是AC,BD的中点,连接BM,DM.求证:(1)BM=DM;(2)MN⊥BD.17.[2023广州海珠区期中]如图,在矩形ABCD中,O为BD的中点,过点O作EF⊥BD分别交BC,AD于点E,F.求证:四边形BEDF 是菱形.18.[2024宝鸡陈仓区期中]在四边形ABCD中,AD∥BC,CD⊥BC,BC=2AD,F是BC的中点.(1)如图①,求证:四边形AFCD是矩形;(2)如图②,过点C作CE⊥AB于点E,连接DE,EF.求证:DE=DC.19.如图,在矩形ABCD中,点E在对角线AC上,点F在边CD上(点F与点C,D不重合),BE⊥EF,∠ABE+∠CEF=45°. (1)求∠1+∠2的度数;(2)求证:四边形ABCD是正方形.20. 在正方形ABCD中,点G是边DC上的一点,点F是直线BC上一动点,FE⊥AG于H,交直线AD于点E.(1)当点F运动到与点B重合时(如图①),线段EF与AG的数量关系是________.(2)当点F运动到如图②所示的位置时,(1)中的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.21.如图,在矩形ABCD中,AB=6,BC=8,E,F是对角线AC上的两个动点,分别从A,C同时出发相向而行,速度均为每秒1个单位长度,运动时间为t秒,其中0≤t≤10.(1)若G,H分别是AD,BC的中点,则四边形EGFH一定是怎样的四边形(E,F相遇时除外)?答:________.(直接填空,不用说理)(2)在(1)的条件下,若四边形EGFH为矩形,求t的值.(3)在(1)的条件下,若G向D点运动,H向B点运动,且与点E,F以相同的速度同时出发,若四边形EGFH为菱形,求t的值.22. 如图,四边形ABCD是正方形,点P在射线AC上,点E在射线BC上,且PB=PE,连接PD,点O为线段AC的中点.【感知】如图①,当点P在线段AO上(点P不与点A,O重合)时,①易证:△ABP≌△ADP(不需要证明).进而得到PE与PD的数量关系是__________;②过点P作PM⊥CD于点M,PN⊥BC于点N,易证:Rt△PNE≌Rt△PMD(不需要证明).进而得到PE与PD的位置关系是__________;【探究】如图②,当点P在线段OC上(点P不与点O,C重合)时,试写出PE与PD的数量关系和位置关系,并说明理由;【应用】如图③,当点P在AC的延长线上时,直接写出当AB=3,CP=2时线段DE的长.答案一、1.D 2.D 3.B 4.C 5.C 6.D7.C8.D9.D 【点拨】∵点M,N分别是边AD,CD的中点,∴MN是△ACD的中位线.∴AC=2MN=2×3=6.∵四边形ABCD是菱形,S菱形ABCD=24,∴OA=OC=12AC=3,OB=OD,AC⊥BD,12AC·BD=24.即12×6×BD=24,∴BD=8.∴OD=12BD=4.∴在Rt△OCD中,由勾股定理得CD=OC2+OD2=32+42=5.∵点M是AD的中点,OA=OC,∴OM是△ACD的中位线,∴OM=12CD=2.5.10.D 【点拨】∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠D=∠BAD=∠BCD=90°,∠BAC=∠DAC=45°.又∵AE=AF,∴Rt△ABE≌Rt△ADF.∴BE =DF ,∠BAE =∠DAF . ∴∠EAC =∠F AC . ∴AC 垂直平分EF ,故①正确; ∵∠EAF =45°, ∴易得∠EAC =∠F AC =∠BAE =∠DAF =22.5°. ∴∠BEA =90°-∠BAE =90°-22.5°=67.5°. ∵BC =CD ,BE =DF ,∴CE =CF . ∴∠CEF =45°. ∴∠AEF =180°-∠CEF -∠BEA =180°-45°-67.5°=67.5°=∠AEB ,故②正确; ∵∠DAF =15°, ∴∠EAF =∠BAD -∠BAE -∠DAF =90°-15°-15°=60°. ∵AE =AF , ∴△AEF 为等边三角形,故③正确; ∵CE =(2-2)BC , ∴BE =DF =BC -CE =BC -(2-2)BC =(2-1)BC . ∴BE +DF =2(2-1)BC . ∴EF =EC 2+FC 2=2EC =2(2-2)BC =2(2-1)BC =BE +DF ,故④正确; ∴正确的结论有4个. 二、11.62 12.45 13.12° 14.5315.①② 【点拨】如图,在AB 上取点H ,使AH =EC ,连接EH .∵四边形ABCD 是正方形,EF ⊥AE ,∴∠BCD =∠B =∠AEF =90°,AB =BC .∴∠HAE +∠AEB =90°,∠CEF +∠AEB =90°,∴∠HAE =∠CEF .∵AH =CE ,AB =BC ,∴BH =BE .∴△BHE 为等腰直角三角形.∴易得∠AHE =135°.∵CF 是正方形外角的平分线,∴易得∠ECF =135°.∴∠AHE =∠ECF .在△AHE 和△ECF 中,⎩⎪⎨⎪⎧∠HAE =∠CEF ,AH =EC ,∠AHE =∠ECF ,∴△AHE ≌△ECF (ASA).∴AE =EF ,EH =CF ,∠AEH =∠EFC .故①正确;∵BE =BH ,∠B =90°,∴EH =BH 2+BE 2=2BE .∴CF=2BE.故②正确;∵∠AHE=135°,∴∠HAE+∠AEH=45°.∵AE=EF,∠AEF=90°,∴∠EAF=45°.∴∠HAE+∠DAF=45°.∴∠AEH=∠DAF.∵∠AEH=∠EFC,∴∠DAF=∠EFC.而∠FEC不一定等于∠EFC,∴∠DAF不一定等于∠FEC,故③错误.故答案为①②.三、16.【证明】(1)∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=12AC,DM=12AC.∴BM=DM.(2)∵点N是BD的中点,BM=DM,∴MN⊥BD.17.【证明】如图,∵四边形ABCD 是矩形,∴AD ∥BC .∴∠1=∠2.∵O 为BD 的中点,∴BO =DO .∵∠BOE =∠DOF ,∴△OBE ≌△ODF (ASA).∴BE =DF .∴四边形BEDF 是平行四边形.又∵EF ⊥BD ,∴四边形BEDF 是菱形.18.【证明】(1)∵F 是BC 的中点,∴BF =CF =12BC .∵BC =2AD ,∴AD =12BC .∴AD =CF =BF .∵AD ∥BC ,∴四边形AFCD 是平行四边形.又∵CD⊥BC,∴∠DCF=90°.∴四边形AFCD是矩形.(2)如图,连接DF交CE于G,由(1)知AD=BF.∵AD∥BC,∴四边形ABFD是平行四边形.∴AB∥DF.∵CE⊥AB,∴∠BEC=90°,CE⊥DF. 又∵F是BC的中点,∴EF=12BC=CF.∴GE=GC.∴DF是线段CE的垂直平分线.∴DE=DC.19.(1)【解】∵四边形ABCD为矩形,∴∠ABC=90°.∴∠ABE+∠1=90°.∵BE⊥EF,∴∠CEF+∠2=90°.∵∠ABE+∠CEF=45°,∴∠1+∠2=90°+90°-45°=135°.(2)【证明】∵∠1+∠2+∠ACB=180°,∴∠ACB=180°-(∠1+∠2)=180°-135°=45°.∵∠ABC=90°,∴∠BAC+∠ACB=90°.∴∠BAC=90°-∠ACB=90°-45°=45°.∴∠ACB=∠BAC.∴AB=BC.∴四边形ABCD是正方形.20.【解】(1)EF=AG【点拨】∵四边形ABCD是正方形,∴∠BAE=∠ADG=90°,AB=AD.∴∠ABE+∠AEB=90°.∵EF⊥AG,∴∠AHE=90°.∴∠AEB+∠DAG=90°.∴∠ABE=∠DAG.∴△ABE≌△DAG(ASA).∴EF=BE=AG.(2)成立.证明:如图,过点F作FM⊥AE,垂足为M,则∠EMF=90°.∵四边形ABCD是正方形,∴∠ADG=90°,AD=CD.∴易得MF=CD=AD.∵EF⊥AH,∴∠AHE=90°,∴∠HAE+∠E=90°.又∵∠E+∠EFM=90°,∴∠HAE=∠EFM.∴△ADG≌△FME(ASA).∴EF=AG.21.【解】(1)四边形EGFH是平行四边形(2)如图①,②,连接GH.由题意易得AG=BH,AG∥BH,∠B=90°,∴四边形ABHG是矩形.∴GH=AB=6.①如图①,当四边形EGFH是矩形时,EF=GH=6.∵在Rt△ABC中,AB=6,BC=8,∴AC=10.∵AE=CF=t,∴EF=10-2t=6.∴t=2.②如图②,当四边形EGFH是矩形时,∵EF=GH=6,AE=CF=t,∴EF=t+t-10=2t-10=6.∴t=8.综上,当四边形EGFH为矩形时,t的值为2或8. (3)如图③,M和N分别是AD和BC的中点,连接AH,CG,GH,AC与GH交于O.∵四边形ABCD为矩形,∴OA=OC,AD=BC=8.∴AM=4.∵四边形EGFH为菱形,∴GH⊥EF,OG=OH.∴AG=AH.∴四边形AGCH为菱形.∴AG=CG.设AG =CG =x ,则DG =8-x ,∴在Rt △CDG 中,由勾股定理可得CD 2+DG 2=CG 2,即62+(8-x )2=x 2,解得x =254. ∴MG =254-4=94,即t =94,∴当t 的值为94时,四边形EGFH 为菱形.22.【解】【感知】①PE =PD 【点拨】∵四边形ABCD 是正方形,∴AB =AD ,∠BAP =∠DAP =45°.在△ABP 和△ADP 中,⎩⎪⎨⎪⎧AB =AD ,∠BAP =∠DAP ,AP =AP ,∴△ABP ≌△ADP (SAS).∴PB =PD .∵PB =PE ,∴PE =PD .②PE ⊥PD 【点拨】由题意得∠PNE =∠PMD =∠PMC =90°.∵四边形ABCD 是正方形,∴CP 平分∠MCN ,∠NCM =90°.∴四边形PMCN 是矩形,PN =PM .∴∠MPN =90°.在Rt △PNE 和Rt △PMD 中,⎩⎪⎨⎪⎧PE =PD ,PN =PM , ∴Rt △PNE ≌Rt △PMD (HL).∴∠EPN =∠DPM .∵∠MPN =∠MPE +∠EPN =90°,∴∠MPE +∠DPM =90°,即∠DPE =90°.∴PE ⊥PD .【探究】PE 与PD 的数量关系和位置关系为PE =PD , PE ⊥PD ,理由如下:设PE 交CD 于F .∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°,∠ACB =∠ACD =45°. 在△CBP 和△CDP 中,⎩⎪⎨⎪⎧BC =CD ,∠PCB =∠PCD ,PC =PC ,∴△CBP ≌△CDP (SAS).∴PD =PB ,∠PBC =∠PDF .又∵PB =PE ,∴PD =PE ,∠PBE =∠PEB .∴∠PDF =∠PEB .∵∠PFD =∠CFE ,∴180°-∠PFD-∠PDC=180°-∠CFE-∠PEB,即∠DPF=∠ECF.∵∠ECF=∠BCD=90°,∴∠DPF=90°.∴PD⊥PE.【应用】线段DE的长为34. 【点拨】设PD交BE于H.由题意易证△CBP≌△CDP.∴PB=PD,∠PBC=∠PDC.∴易得∠PDC=∠PEB,PE=PD.∵∠PHE=∠CHD,∴180°-∠CHD-∠PDC=180°-∠PHE-∠PEB,即∠DPE=∠DCE.又∵易知∠DCE=90°,∴∠DPE=90°.∴△DPE是等腰直角三角形.过点P作PQ⊥BE于Q,∵PB=PE,∴BQ=EQ.∵∠PCQ=∠ACB=45°,∴△CQP是等腰直角三角形.∴CQ=PQ=22CP=1.∴EQ=BQ=BC+CQ=AB+CQ=3+1=4. ∴PE=EQ2+PQ2=42+12=17.∴DE=PD2+PE2=2PE=2×17=34.。
九年级上册数学北师大版单元测试卷(1-6章)
九年级上册数学北师大版单元测试卷(1-6章)第一章综合能力检测卷时间:90分钟满分:120分一、选择题(本大题共10小题,每题3分,共30分)1.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形2.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF 的面积为25,DE=2,则AE的长为() A.5 B.√23 C.7 D.√29第2题图第3题图第4题图3.矩形ABCD在平面直角坐标系中的位置如图所示,其各顶点的坐标分别为A(0,0),B(2,0),C(2,1),D(0,1),固定点B 并将此矩形按顺时针方向旋转,若旋转后点C的对应点的坐标为(3,0),则旋转后点D的对应点的坐标为()A.(3,2)B.(2,3)C.(3,3)D.(2,2)4.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,BD=6,则AB的长是()A.2B.3C.4D.65.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.平行四边形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E,F,连接PB,PD.若AE=2,PF=8,则图中阴影部分的面积为() A.10 B.12 C.16 D.18第6题图第7题图7.如图,在给定的一张平行四边形ABCD纸片上作一个菱形,甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN,分别交AD,AC,BC于点M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠BAD,∠ABC的平分线AE,BF,分别交BC,AD于点E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误B.甲、乙均正确C.乙正确,甲错误D.甲、乙均错误8.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O ,连接BO ,若∠DAC=28°,则∠OBC 的度数为( )A.28°B.52°C.62°D.72°第8题图 第9题图 第10题图 9.如图,点E 在正方形ABCD 的对角线AC 上,且EC=2AE ,Rt △FEG 的两直角边EF ,EG 分别交BC ,DC 于点M ,N.若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( ) A.23a2B.14a2C.59a 2D.49a 210.如图,在正方形ABCD 中,点P 是AB 上一动点(点P 不与A ,B 重合),对角线AC ,BD 相交于点O ,过点P 分别作AC ,BD 的垂线,分别交AC ,BD 于点E ,F ,交AD ,BC 于点M ,N.给出下列结论:①△APE ≌△AME ;②PM+PN=BD ;③PE 2+PF 2=PO 2.其中正确的有( )A.0个B.1个C.2个D.3个二、填空题(本大题共6小题,每题3分,共18分)11.已知菱形的周长为20 cm ,两邻角的比为2∶1,则较短的对角线长为 cm .12.如图,在正方形ABCD 中,AC 为对角线,点E 在AB 边上,EF ⊥AC 于点F ,连接EC ,若AF=3,△EFC 的周长为12,则EC 的长为 .第12题图 第13题图 第14题图13.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角的度数为 .14.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE=5,F 为DE 的中点.若△CEF 的周长为18,则OF 的长为 .15.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE=13AB.将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q.对于下列结论:①EF=2BE ;②PF=2PE ;③FQ=4EQ ;④△PBF 是等边三角形.其中正确结论的序号是 .第15题图第16题图16.如图,菱形ABCD的面积为120 cm2,正方形AECF的面积为50 cm2,则菱形的边长为cm.三、解答题(本大题共6小题,共72分)17.(10分)如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形的边长为4,AE=√2,求菱形BEDF的面积.18.(10分)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论.19.(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE∶∠BCE=2∶3.求证:四边形ABCD是正方形.20.(12分)如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A'处.然后将矩形展平,沿EF折叠,使顶点A落在DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2所示.(1)求证:EG=CH;(2)已知AF=√2,求AD和AB的长.21.(14分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D为AB的中点时,四边形BECD是什么特殊四边形?请说明你的理由;(3)若D为AB的中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.22.(14分)某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为;②BC,CD,CF之间的数量关系为.(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2√2,CD=1BC,请求出GE的长.4图1 图2 图3数学·九年级上册·BS第二章综合能力检测卷时间:90分钟满分:120分一、选择题(本大题共10小题,每题3分,共30分)1.下列方程一定是关于x的一元二次方程的是()=0 B.ax2+bx+c=0A.x2+1x2C.(x-1)(x+2)=1D.3x2-2xy-5y2=02.把一元二次方程2x=x2-3化为一般形式,若二次项系数为1,则一次项系数及常数项分别为()A.2,3B.-2,3C.2,-3D.-2,-33.根据关于x的一元二次方程x2+px+q=0,可列表如下:x0 0.5 1 1.1 1.2 1.3x2+px+q-15 -8.75 -2 -0.59 0.84 2.29则方程x2+px+q=0的一个根的范围是() A.1.2<x<1.3 B.1.1<x<1.2C.0.5<x<1D.0<x<0.54.若2x+1与2x-1互为倒数,则实数x为()A.±12B.±1 C.±√22D.±√25.下列方程中,没有实数根的是()A.x2-2x-5=0B.x2-2x=-5C.x2-2x=0D.x2-2x-3=06.下面是某同学在一次试验中解答的填空题,其中答对的是()A.若x2=4,则x=2B.方程x(2x-1)=2x-1的解为x=1C.若关于x的方程x2+2x+k=0有一根为2,则k=8D.若分式x 2-3x+2x-1的值为0,则x=27.某市某楼盘准备以每平方米12 000元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格进行连续两次下调后,决定以每平方米9 720元的均价开盘销售,则平均每次下调的百分率是()A.8%B.9%C.10%D.11%8.某三角形的两边的长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长为()A.9B.11C.13D.11或139.有两个一元二次方程,M:ax2+bx+c=0;N:cx2+bx+a=0,其中a+c≠0.下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么15是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=110.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a-b+c=0,那么我们称这个方程为“美好”方程.若一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是() A.方程有两个相等的实数根 B.方程有一根等于0C.方程两根之和等于0D.方程两根之积等于0二、填空题(本大题共6小题,每题3分,共18分)11.已知x=a 是方程x 2-3x-5=0的根,则代数式4-2a 2+6a 的值为 . 12.已知实数m ,n 满足m-n 2=1,则代数式2m 2-2n 2+4m-1的最小值是 .13.如果关于x 的一元二次方程(k-2)x 2+2kx+k+3=0有两个不相等的实数根,那么k 的取值范围是 . 14.准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,如图所示,四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为 米.15.将4个数a ,b ,c ,d 排成2行2列,两边各加一条竖直线记成|a c b d |,定义|a c b d |=ad-bc.若|x +11−x x -1x +1|=6,则x= .16.对于实数p ,q ,我们用符号min {p ,q }表示p ,q 两数中较小的数,如min {1,2}=1,min {-√2,-√3}=-√3.若min {(x-1)2,x 2}=1,则x= .三、解答题(本大题共6小题,共72分)17.(10分)解下列方程: (1)2x 2+3x-4=0;(2)(x+1)(x-1)+2(x+3)=20.18.(11分)已知关于x 的一元二次方程x 2-2x-k-2=0有两个不相等的实数根. (1)求k 的取值范围;(2)给k 取一个负整数值,解这个方程.19.(11分)水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天可售出150千克,通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出30千克,为保证每天至少售出360千克,张阿姨决定降价销售.(1)若将这种水果每千克的售价降低x元,则每天的销售量是千克(用含x的代数式表示);(2)销售这种水果要想每天盈利450元,张阿姨需将每千克的售价降低多少元?)=0的20.(12分)在等腰三角形ABC中,三边长分别为a,b,c,其中ɑ=4,若b,c是关于x的方程x2-(2k+1)x+4(k-12两个实数根,求△ABC的周长.21.(14分)某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元,也不得低于7元,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)之间的函数关系式;(2)若该经营部希望日均获利1 350元,请你根据以上信息,就该桶装水的销售单价或销售量提出一个用一元二次方程解决的问题,并写出解答过程.22.(14分)如图,在△ABC 中,∠B=90°,AB=5 cm ,BC=7 cm ,点P 从点A 开始沿AB 边向点B 以1 cm/s 的速度匀速移动,点Q 从点B 开始沿BC 边向点C 以2 cm/s 的速度匀速移动. (1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,△PBQ 的面积等于4 cm 2?(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于2√10 cm ? (3)在(1)中,△PBQ 的面积能否等于7 cm 2?说明理由.数学·九年级上册·BS第三章 综合能力检测卷时间:60分钟满分:100分一、选择题(本大题共8小题,每题3分,共24分)1.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A.16B.13C.12D.232.小红、小明在玩“剪刀、石头、布”游戏,小红给自己一个规定:一直不出“石头”.小红、小明获胜的概率分别是P 1,P 2,则下列结论正确的是 ( )A.P 1=P 2B.P 1>P 2C.P 1<P 2D.P 1≤P 23.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一个球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1 000次,其中有200次摸到白球,因此小亮估计口袋中的红球有( )A.60个B.50个C.40个 D .30个4.掷一枚质地均匀的正方体骰子,向上一面的点数大于2且小于5的概率为P1,抛两枚质地均匀的硬币,正面均朝上的概率为P2,则下列正确的是()A.P1 <P2B.P1 >P2C.P1 =P2D.不能确定5.如图,用①,②,③表示三张背面完全相同的纸牌,正面分别写有3个不同的条件,小明将这三张纸片背面朝上洗匀后,先随机抽出一张(不放回),再随机抽出一张.抽得的条件能判断四边形ABCD为平行四边形的概率是()A.12 B.13C.23D.346.由两个可以自由转动的转盘,每个转盘被等分成如图所示的几个扇形.游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,那么下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为167.甲、乙两人玩猜数字游戏,游戏规则:有四个数字0,1,2,3,先由甲任意选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n.若m,n满足|m-n|≤1,则称甲、乙两人“心有灵犀”.则甲、乙两人“心有灵犀”的概率为()A.14 B.38C.12D.588.我们把十位上的数字比个位、百位上的数字都要小的三位数定义为“凹数”.如“859”就是一个“凹数”.如果十位上的数字为2,那么从1,3,4,5中任选两个数字,能与2组成“凹数”的概率是()A.14B.310C.12D.34二、填空题(本大题共6小题,每题3分,共18分)9.一次测验中有2道题是选择题,每题均有4个选项且只有1个选项是正确的,若从这2道题中每题都随机选择其中一个选项作为答案,则这2道选择题答案全对的概率为.10.某班学生分组做抛掷同一型号的一枚图钉的试验,大量重复试验的结果统计如下表:(钉尖朝上频率精确到0.001)累计试验次数100 200 300 400 500钉尖朝上的次数55 109 161 211 265钉尖朝上的频率0.550 0.545 0.537 0.528 0.530根据表格中的信息,估计掷一枚这样的图钉落地后钉尖朝上的概率为.(结果精确到0.01)11.某鱼塘里养了200条鲤鱼、若干条草鱼和150条罗非鱼,该鱼塘主人通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5附近.若该鱼塘主人随机在鱼塘捕捞一条鱼,则估计捞到鲤鱼的概率为.12.在如图所示的电路中,随机闭合开关S1,S2,S3中的两个,能让灯泡L1发光的概率是.13.从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数y=kx+b的系数k,b,则一次函数y=kx+b的图象不经过第四象限的概率是.14.如图,创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影部分铺黑色石子,其余部分铺白色石子.小鹏在规定地点随机向图案内投掷小球,每个小球都能落在图案内,经过多次试验,发现落在一、三、五环(阴影)内的概率分别是0.04,0.2,0.36.如果最大圆的半径是1 m,那么铺黑色石子区域的总面积为m2.(π≈3.14,结果精确到0.01)三、解答题(本大题共6小题,共58分)15.(8分)某购物广场设计了一种促销活动:在一个不透明的盒子里放有4个相同的小球,球上分别标有“0元” “10元” “20元”和“30元”.顾客每消费满200元,就可以在盒子里摸出两个球,可根据两个球所标金额的和返还同样金额的购物券.某顾客恰好消费了200元,请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.16.(9分)如图1是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图2是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,游戏规则:将这枚骰子掷出后,看骰子底面上的数字是几,图2中点A处的一枚棋子开始沿着顺时针方向连续跳动几个顶点,第二次跳动从第一次跳动的终点处开始,按第一次的方法跳动.图1图2(1)随机掷一次骰子,则棋子跳动到点C处的概率是;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.17.(9分)从一副52张(没有大小王)的扑克牌中,每次抽出1张,然后放回洗匀再抽,在试验中得到下列表中部分数据:试验次数4080120160200240280320360400出现方块的次数1118404963688091100出现方块的频率0.2750.2250.2500.2500.2450.2630.2430.2530.250(1)将数据表补充完整;(2)从表中可以估计出现方块的概率是.(3)从这副扑克牌中取出两组牌,分别是方块1,2,3和红桃1,2,3,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,若摸出的两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢.你认为这个游戏对双方是公平的吗?若不是,有利于谁?请你用概率知识(列表或画树状图)分析说明.18.(10分)2017年9月,我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A《三国演义》、B《红楼梦》、C《西游记》、D《水浒传》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了如图所示的两幅不完整的统计图:(1)本次一共调查了名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用画树状图或列表的方法求恰好选中A《三国演义》和B《红楼梦》的概率.19.(10分)在不透明的袋子中有四张标着数字1,2,3,4的卡片(除数字外,其他均相同),小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:第一次1234第二次1(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)①(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)回答下列问题:(1)根据小明画出的树状图分析,他的游戏规则是随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为小明和小华谁获胜的可能性大?为什么?20.(12分)某校九年级共有6个班,需从中选出两个班参加一项重大活动,九(1)班是先进班集体必须参加,再从另外5个班中选出一个班.九(4)班同学建议用如下方法选班:从装有编号为1,2,3的三个白球的A袋中摸出一个球,再从装有编号也为1,2,3的三个红球的B袋中摸出一个球(两袋中球的大小、形状与质地完全一样),摸出的两个球编号之和是几就由几班参加.(1)请用列表或画树状图的方法,求选到九(4)班的概率;(2)这一建议公平吗?请说明理由.数学·九年级上册·BS第四章综合能力检测卷时间:90分钟满分:120分一、选择题(本大题共10小题,每题3分,共30分)1.已知x y =52,则x -yy的值为 ( )A.32B.2C.-32D.-22.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ,直线DF 分别交l 1,l 2,l 3于点D ,E ,F ,AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DEEF 的值为( )A.12B.2C.25D .35第2题图 第3题图 第4题图3.如图,为估算某河的宽度(河两岸平行),在河对岸选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上,若测得BE=20 m ,CE=10 m ,CD=20 m ,则河的宽度AB 等于 ( ) A.60 m B.40 m C.30 m D.20 m4.如图,以点O 为位似中心,将△ABC 放大得到△DEF.若AD=OA ,则△ABC 与△DEF 的面积之比为 ( ) A.1∶2 B.1∶4 C.1∶5 D .1∶65.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,连接AC ,则下列结论错误的是 ( )A .EA BE =EG EF B .EG GH =AG GD C .AB AE =BCCFD .FH EH =CFAD6.△ABC 如图所示,则下列四个选项中的三角形与△ABC 相似的是(网格均由边长为1的小正方形组成)( )A B C D7.如图,在△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是 ( )A B C D8.如果五边形ABCDE∽五边形PQGMN,且周长之比为3∶2,那么五边形ABCDE和五边形PQGMN的面积之比是() A.2∶3 B.3∶2 C.6∶4 D.9∶4第8题图第9题图第10题图CD,连接AE,AF,EF.给出下列结9.如图所示,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14论:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正确的个数为()A.1B.2C.3D.410.如图所示,在△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1B.2C.12√2-6D.6√2-6二、填空题(本大题共8小题,每题4分,共32分)11.若一个三角形的三边之比为3∶5∶7,与它相似的三角形的最长边的长为21,则最短边的长为.12.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心,若AB=2,则DE=.第12题图第13题图第14题图13.如图,已知有两堵墙AB,CD,AB墙高2米,两墙之间的距离BC为 8米,小明将一架木梯放在距B点3米的E 处靠向墙AB时,木梯有很多露出墙外.将木梯绕点E旋转90°靠向墙CD时,木梯刚好达到墙的顶端,则墙CD 的高为米.14.如图,已知点C是线段AB的黄金分割点,且BC>AC.若S1表示以BC为边的正方形BCED的面积,S2表示长为AG、宽为AC的矩形ACFG的面积,其中AG=AB.则S1与S2的大小关系为.15.在△ABC中,∠B=25°,AD是BC边上的高,且AD2=BD·DC,则∠BCA的度数为.16.如图,已知AB∥EF∥CD,若AB=6 cm,CD=9 cm,则EF=.第16题图第17题图第18题图17.如图,在矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=.18.如图,正三角形ABC的边长为2,以BC边上的高AB1为边作正三角形AB1C1,△ABC与△AB1C1公共部分的面积记为S1,再以正三角形AB1C1边B1C1上的高AB2为边作正三角形AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2……以此类推,则S n=.(用含n的式子表示,n为正整数)三、解答题(本大题共5小题,共58分)19.(10分)如图,在四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,连接CE,DE,AC与DE相交于点F.(1)求证:△ADF∽△CEF;的值.(2)若AD=4,AB=6,求ACAF20.(10分)如图,在6×6的正方形网格中,每个小正方形的边长都为1.(顶点都在网格线交点处的三角形叫做格点三角形)(1)在图1中,请判断△ABC与△DEF是否相似,并说明理由;(2)在图2中,以O为位似中心,再画一个格点三角形,使它与△ABC的相似比为2∶1;(3)在图3中,请画出所有与△ABC相似,且有一条公共边和一个公共角的格点三角形.图1图2图321.(12分)如图,在△ABC中,BA=BC=20 cm,AC=30 cm,点P从点A出发,沿着AB边以4 cm/s的速度向点B运动;同时点Q从点C出发,沿CA边以3 cm/s的速度向点A运动,当点P到达点B时停止运动,Q点随之停止运动.设运动的时间为x s.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,请说明理由.22.(12分)雯雯和笑笑想利用皮尺和所学的几何知识测量学校操场上旗杆的高度,他们的测量方案如下:当雯雯站在旗杆正前方地面上的点D处时,笑笑在地面上找到一点G,使得点G、雯雯的头顶C及旗杆的顶部A三点在同一直线上,并测得DG=2.8 m;然后雯雯向前移动1.5 m到达点F处,笑笑同样在地面上找到一点H,使得点H、雯雯的头顶E及旗杆的顶部A三点在同一直线上,并测得GH=1.7 m.已知图中的所有点均在同一平面内,且点B,D,F,G,H均在同一直线上,AB⊥BH,CD⊥BH,EF⊥BH,雯雯的身高CD=EF=1.6 m.请你根据以上测量数据,求该校旗杆的高度AB.23.(14分)如图1所示,在等边三角形ABC中,线段AD为其内角平分线,过点D的直线B1C1⊥AC于点C1,交AB的延长线于点B1.(1)请你探究:ACAB =CDDB,AC1AB1=DC1DB1是否都成立?(2)请你继续探究:若△ABC为任意三角形,线段AD为其内角平分线,ACAB =CDDB一定成立吗?并证明你的判断.(3)如图2所示,在Rt△ABC中,∠ACB=90°,AC=8,AB=403,E为AB上一点且AE=5,CE交内角平分线AD于点F.试求DFFA的值.图1图2数学·九年级上册·BS第五章综合能力检测卷时间:60分钟满分:100分一、选择题(本大题共10小题,每题3分,共30分)1.下列几何体中,主视图是矩形的是()2.一个立体图形的三视图如图所示,则该立体图形是()A.圆锥B.圆柱C.长方体D.球3.下列图中是太阳光下形成的影子的是()4.如图,位似图形由三角板与其在灯光照射下的中心投影组成,已知灯到三角板的距离与灯到墙的距离的比为2∶5,且三角板的一边长为8 cm,则投影三角形的对应边长为()A.20 cmB.10 cmC.8 cmD.3.2cm5.如图是一根空心方管,在研究物体的三种视图时,小明画出的该空心方管的主视图与俯视图分别是()A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)第5题图第6题图6.如图1为五角大楼的示意图,图2是它的俯视图,小红站在地面上观察这个大楼,若想看到大楼的两个侧面,则小红应站的区域是()A.A区域B.B区域C.C区域D.三区域都可以7.如图是某几何体的三种视图,则该几何体可以是()8.如图是由6个大小相同的小立方块组成的几何体,将小立方块①移走以后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图改变C.俯视图改变,左视图改变D.主视图改变,左视图不变第8题图第9题图第10题图9.如图,该直三棱柱的底面是一个直角三角形,且AD=2 cm,DE=4 cm,EF=3 cm,则下列说法正确的是()A.直三棱柱的体积为12 cm3B.直三棱柱的表面积为24 cm2C.直三棱柱的主视图的面积为11 cm2D.直三棱柱的左视图的面积为8 cm210.已知某几何体的三种视图如图所示,其中左视图是一个等边三角形,则该几何体的体积等于() (参考公式:棱锥的体积V=1Sh,其中S为棱锥的底面积,h为底面对应的高)3A.12√3B.16√3C.20√3D.32√3二、填空题(本大题共6小题,每题3分,共18分)11.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会.(填“逐渐变大”“逐渐变小”)第11题图第12题图第13题图12.一张桌子上摆放了若干个碟子,从三个方向看,三种视图如图所示,则这张桌子上共有碟子个.13.如图,在A时测得某树的影长为4米,在B时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为米.14.如图是一个由若干个相同的小立方块搭成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是.15.如图是一个正六棱柱的主视图和左视图,则图中的a的值为.16.圆桌面(桌面中间有一个直径为0.4 m的圆洞)正上方的灯泡(看作一个点)发出的光线照射到平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2 m,桌面离地面1 m,若灯泡离地面3 m,则地面圆环形阴影的面积是m2.三、解答题(本大题共 5小题,共52分)17.(8分)如图所示为一直三棱柱的主视图和左视图.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学综合测试卷一、选择题(每题3分,共30分)1、在平面直角坐标系中,抛物线21y x =+与x 轴的交点的个数是( ) A .3B .2C .1D .02、如图,在△ABC 中,已知∠C =90°,BC =5,AC =12, 则它的内切圆周长是( )A .5πB .4πC .2π D.π3、如果点O 为△ABC 的外心,∠BOC=70°,那么∠BAC 等于( )A .35°B .110°C .145°D . 35°或145°4、如图3,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为60=,8PA =,那么点P O 与间的距离是( )A .16B CD .5、从一副未曾启封的扑克牌中取出1张红桃,2张黑桃的牌共3张,洗匀后,从这3张牌中任取1张牌恰好是黑桃的概率是( ) A .12B .13C .23D .16、若一圆锥形烟囱帽的侧面积是2000лcm 2,母线长为50cm ,则这个烟囱帽的底面直径为( ).A 、80cmB 、1OOcrnC 、 40crnD 、60crn 7、比较sin 70,cos 70,tan 70的大小关系是( )A.tan 70cos70sin 70<<B.cos70sin 70tan 70<<C.cos70tan 70sin 70<<D.sin 70cos70tan 70<<8、抛物线y =-x 2-1的图象大致是( )9、已知ABC ∆的三边长分别为2,6,2,C B A '''∆的两边长分别是1和3,如果ABC ∆∽C B A '''∆相似,那么C B A '''∆的第三边长应该是( )A .2B .22 C .26 D .3310、9.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确P图3OABCDEF的是 ( )(A)①②③④. (B)④①③②. (C)④②③①. (D)④③②①. 二、填空题(每小题3分,共30分)11、为了了解某中学学生对2008年6月1日起国家实施的“限塑令”是否知道,从该校全体学生2000名中,随机抽查了120名学生,结果显示有3名学生“不知道”.由此,估计该校全体学生中对“限塑令”约有 名学生“不知道”.12、抛物线y =x 2+x -4与顶点坐标为13、一个函数具有性质:①它的图像经过点(-5,1);②它的图像在二、四象限内;③在每个象限内,函数值y 随自变量x 的增大而增大,则此函数的解析式可以为 .14、如图5,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果23BE BC =,那么BFFD= . 15、如图,一条公路的转弯处是一段圆弧(图中的AB 弧), 点O 是这段弧的圆心,AB =120m ,C 是AB 弧是一点,OC ⊥AB于D ,CD =20m ,则该弯路的半径为 .16、如图,已知AC 、BC 分别切⊙O 于A 、B ,∠C =76°,则∠D = (度). 17、若2a 9,5,b == 则的概率是8=+b a .18、圆锥的底面直径是80cm ,母线长90cm ,则它的侧面展开图的圆心角的度数为 .18.在ABC △中,5AB AC ==,3cos 5B =.如果圆O的半径为B C ,,那么线段AO 的长等于 .19、如图,在ΔABC 中,P 为AB 上一点,在下列四个条件中:①∠APC=∠B ;②∠APC=∠ACB ;③AC 2=AP •AB ;④AB •CP=AP •CB ,能满足ΔAPC 与ΔACB.20、墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身长相等都为1.5m ,小明向墙壁走1m 到B处发现影子刚好落在A点,则灯泡与地面的距离CD =______。
E图5BDCBAOD_ 19题 _C _BC BA20cm30cm三、解答题(共60分)21、计算2cos30°+tan60°-2tan45°·tan60°(6分) 22.(8分)如图,在反比例函数的图象上有不重合的两点A 、B ,且A 点的坐标是(4,2),B 点的横坐标为2,BB 1和AA 1都垂直于x 轴,垂足分别为B 1和A 1,(1)求B 点纵坐标; (2)求S △OBA 23、(8分)如图,已知矩形ABCD 的对角线AC,BD 相交于O,OF ⊥AC 于O,交AB 于E,交CB 的延长线于F,求证:OB 是OE 与OF 的比例中项.24.8分)如图,某体育馆入口处原有三阶台阶,每级台阶高为20cm,深为30cm.为了迎接残奥会,方便残疾人士,拟将台阶改为无障碍斜坡,设台阶的起点为A ,斜坡的起始点为C ,现将斜坡的坡角∠BCA 设计为12°,求AC 的长度。
(结果精确到1 cm ,其中sin12°=0.2079,cos12°=0.9781, tan12°=0.2126,)25、在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当很大时,摸到白球的频率将会接近.(精确到0.1)(3分)(2)假如你摸一次,你摸到白球的概率()P 白球 .(3分) (3)试估算盒子里黑、白两种颜色的球各有多少只?(4分)26(1)以x 作为点的横坐标,p 作为纵坐标,把表中的数据,在图中的直角坐标系中描出相应的点,观察连结各点所得的图形,判断p 与x 的函数关系式;A CF EB D O(2)如果这种运动服的买入件为每件40元,试求销售利润y (元)与卖出价格x (元/件)的函数关系式(销售利润=销售收入-买入支出);(3)在(227、(10分)如图①,AB 是⊙O 的直径,AC 是弦,直线EF 和⊙O 相切于点C ,AD ⊥EF ,垂足为D .(1)求证:∠DAC =∠BAC ;(2)若把直线EF 向上平行移动,如图②,EF 交⊙O 于G 、C 两点,若题中的其它条件不变,这时与∠DAC 相等的角是哪一个?为什么?答案:一、 11、50 12、11724(-,-) 13、5y x =- 14、23 15、100 16、52°17、1218、160°19、①,②,③ 20、7.5三、21、022、11111111118,24,1(24)262BB A ABB A A OAA OBB OAA OAB OBB OAB ky k B xS S S S S S S S ∆∆∆∆∆∆===∴==+=+∴==⨯+⨯= 梯梯设反比例函数为,由题意易得点坐标为(2,4),B A图②图①E F F E23、,,,90,,ABCD OA OB OAB OBAOF AO AB FC F FEB AEO EAO FEB AEO F BAO OBE FOB BOF ∴=∴∠=∠⊥⊥∴∠+∠=∠+∠=︒∠=∠∴∠∠==∠∠=∠ 为矩形∴ △OBE ∽△OFB,∴2,OB OFOB OE OF OE OB OB OE OF =∴=⋅即是、的比例中项24、答案.解:过点B 作BD ⊥AC 于D 由题意可得:BD =60cm, AD=60cm 在Rt △BDC 中:tan12︒=BD ÷CD∴CD =BD ÷tan120=60÷0.2126≈282.2(cm ) ∴AC =CD -AD =282.2-60=222.2≈222(cm ) 答:AC 的长度约为222 cm25、答案(1)0.6(2)0.6(3)40×0.6=24,40-24=1626、、解:(1)p 与x 成一次函数关系。
设函数关系式为p=kx+b ,则5005049051k b k b=+⎧⎨=+⎩解得:k=-10,b=1000 , ∴ p=-10x+1000经检验可知:当x=52,p=480,当x=53,p=470时也适合这一关系式 ∴所求的函数关系为p=-10x+1000(2)依题意得:y=px -40p=(-10x+1000)x -40(-10x+1000)∴ y=-10x 2+1400x -40000(3)由y=-10x 2+1400x -40000 可知,当1400702(10)x =-=⨯-时,y 有最大值∴ 卖出价格为70元时,能花得最大利润。
27、(1)连结OC ,∵EF 切⊙O 于点C ,∴OC ⊥EF ,∴∠1+∠4 =90°∵AD ⊥EF , ∴在Rt △ACD 中,∠3+∠4=90°又 ∵OA =OC , ∴∠1=∠2, ∴∠2 =∠3 即∠DAC =∠BAC(2)∠BAG =∠DAC ,理由如下:连结BC ,∵AB 为⊙O 的直径,∴∠BCA =90°,∠B +∠BAC =90° 在Rt △AGD 中,∠AGD +∠GAD =90°,E F F E 图①图②又∵∠B=∠AGD. ∴∠BAC=∠GAD,即∠BAG+∠GAC=∠GAC+∠DAC,∴∠BAG=∠DAC。