南京中考数学模拟试卷(含答案)

合集下载

江苏省南京市中考数学模拟试卷五套及答案.doc

江苏省南京市中考数学模拟试卷五套及答案.doc

江苏省南京市中考数学模拟试卷(1)一、选择题(本大题共6小题,每小题2分,共12分)1.下列数中,与﹣2的和为0的数是()A.2 B.﹣2 C.21D.21-2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.检查一枚用于发射卫星的运载火箭的各零部件D.考察人们保护海洋的意识3.从下列不等式中选择一个与12x+≥组成不等式组,使该不等式组的解集为1x≥,那么这个不等式可以是()A.1x>-B.2x>C.1x<-D.2x<4.如图是小刘做的一个风筝支架示意图,已知BC∥PQ,:2:5AB AP=,AQ=20cm,则CQ的长是()A.8 cm B.12 cm C.30 cm D.50 cm5.如图,在五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210° D.270°(第4题)(第5题)(第6题)6.如图,已知点A,B的坐标分别为(-4,0)和(2,0),在直线y=21-x+2上取一点C,若△ABC是直角三角形,则满足条件的点C有()A.1个B.2个C.3个D.4个二、填空题(本大题共10小题,每小题2分,共20分)7.计算:(3a3)2=.8.“十二五”期间,我国将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求,把36 000 000用科学记数法表示应是.9.分解因式:ab2-a = .10.已知a,b是一元二次方程220x x--=的两根,则a b+=.11.计算:﹣=.12.已知扇形的圆心角为45°,半径长为12 cm,则该扇形的弧长为cm.13.如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是cm3.14.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数3yx=的图像经过A,B两点,则菱形对ABCD的面积为.15.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为.16.如图,在ABC∆中,CA CB=,90C∠=︒,点D是BC的中点,将ABC∆沿着直线EF折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sin BED∠的值为.三、解答题(本大题共11小题,共88分)17.(6分)计算:(13)0+27 +| -3 |.18.(6分)2112x xxx x⎛⎫++÷-⎪⎝⎭,再从1、0、2中选一个你所喜欢的数代入求值。

2022届江苏省南京市中考数学模拟试卷附答案解析

2022届江苏省南京市中考数学模拟试卷附答案解析

2022届江苏省南京市中考数学模拟试卷一、选择题(本大题共6小题,每小题2分,共12分.)1.下列各式中,计算结果为a6的是()A.a2+a4B.(a2)4C.a2•a3D.a7÷a 2.下列实数中,无理数是()A.2B.−12C.3.14D.√33.计算2﹣1×8﹣|﹣5|的结果是()A.﹣21B.﹣1C.9D.114.下列与方程x3﹣25=0的根最接近的数是()A.1B.2C.3D.45.如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,4)B.(1,1)C.(1,2)D.(2,1)6.如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.6π−92√3B.6π﹣9√3C.12π−92√3D.9π4二、填空题(本大题共10小题,每小题2分,共20分.)7.要使分式1x−3有意义,则x的取值范围是.8.2019年3月14日在网上搜索引擎中输入“2019两会热点”,能搜索到与之相关的结果个数约为12 500 000个,将12 500 000用科学记数法表示为.9.计算:3√13−√12的结果为.10.一组数据1、2、3、4、5的方差为S12,另一组数据4、6、7、8、9的方差为S22,那么S12S22.(填“>”、“=”、“<”)11.已知a、b是一元二次方程x2+2x﹣4=0的两个根,则a+b﹣ab=.12.若圆锥的高为3,底面半径为1,则这个圆锥的侧面积为.13.如图,在▱ABCD中,AC、BD为对角线.当▱ABCD满足时,AC=BD.14.如图,在Rt△ABC中,∠C=90°,点D为AB的中点,点E、F分别是AC、AD的中点,S△AEF:S△BCD=.15.若点P(x,y)在平面直角坐标系xOy中第四象限内的一点,且满足2x﹣y=4,x+y=m,则m的取值范围是.16.如图为一个半径为3m的圆形会议室区域,其中放有四个宽为1m的长方形会议桌,这些会议桌均有两个顶点在圆形边上,另两个顶点紧靠相邻桌子的顶点,则每个会议桌的长为m.三、解答题(本大题共11小题,共88分.)17.(12分)(1)化简:(1x−y −yx2−y2)÷xx+y;(2)解不等式组:{2+3(x−3)≥5,1+2x3>x−2.18.(7分)如图,点A、F、C、D在同一条直线上,AB∥DE,AB=DE,AF=DC.(1)求证:△ABC≌△DEF;(2)若∠ABC=90°,∠A=30°,BC=3,当四边形BFEC是菱形时,求AF的长.19.(7分)某运动服装店有A、B、C、D四款运动服,“3.15”期间搞“买一送一”促销活动,求下列事件的概率:(1)小红决定购买A款运动服,再从其余三款运动服中随机选取一款,恰好选中D款;(2)随机选取两款不同的运动服,恰好选中A、D两款.20.(7分)南京某公司销售部统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x(单位:万元).销售部规定:当x<16时为“不称职”,当16≤x<20时为“基本称职”,当20≤x<25时为“称职”,当x≥25时为“优秀”.根据以上信息,解答下列问题:(1)补全折线统计图和扇形统计图;(2)求所有“称职”和“优秀”的销售员月销售额的中位数和众数;(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果取整数)?并简述其理由.21.(7分)如图是小莉在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成37°角,线段AA1表示小红身高1.5米.当她从点A跑动4米到达点B处时,风筝线与水平线构成60°角,此时风筝到达点E处,风筝的水平移动距离CF为8米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75.)22.(8分)已知二次函数y=ax2﹣4ax+3a的图象经过点(0,3).(1)求a的值;(2)将该二次函数沿y轴怎样平移后得到的函数图象与x轴只有一个公共点?(3)将该函数的图象沿x轴翻折,求翻折后所得图象的函数表达式.23.(7分)下面是一位同学的一道作图题:已知线段a、b、c(如图),求作线段x,使a:b=c:x他的作法如下:①以点O为端点画射线OM,ON.②在OM上依次截取OA=a,AB=b.③在ON上截取OC=c.④连接AC,过点B作BD∥AC,交ON于点D.(1)请根据这位同学的作图过程,在方框中用直尺和圆规画出图形(保留作图痕迹);(2)请指出在所画的图形中,哪条线段是求作线段x,并说明理由;(3)如果OA=4,AB=5,AC=3,求BD的长.24.(8分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.25.(7分)如图,点O在△ABC的边BC上,⊙O经过点A、C,且与BC相交于点D,点E是下半圆的中点,连接AE交BC于点F,已知AB=BF.(1)求证:AB是⊙O切线;(2)若CF=4,EF=√10,求AB的长度.26.(8分)某商店经销甲、乙两种商品.现有如下信息:请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品600件和乙商品400件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元.在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?27.(10分)已知,如图,在△ABC中,∠ACB=90°,∠B=60°,BC=2,∠MON=30°.(1)如图1,∠MON的边MO⊥AB,边ON过点C,求AO的长;(2)如图2,将图1中的∠MON向右平移,∠MON的两边分别与△ABC的边AC、BC 相交于点E、F,连接EF,若△OEF是直角三角形,求AO的长;(3)在(2)的条件下,∠MON与△ABC重叠部分面积是否存在最大值,若存在,求出最大值,若不存在,请说明理由.2022届江苏省南京市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.)1.下列各式中,计算结果为a6的是()A.a2+a4B.(a2)4C.a2•a3D.a7÷a 解:A.a2与a4不是同类项,不能合并,故错误;B.(a2)4=a8,故错误;C.a2•a3=a5,故错误;D.正确;故选:D.2.下列实数中,无理数是()A.2B.−12C.3.14D.√3解:A、2是整数,是有理数,选项不符合题意;B、−12是分数,是有理数,选项不符合题意;C、3.14是有限小数,是有理数,选项不符合题意;D、√3是无理数,选项符合题意.故选:D.3.计算2﹣1×8﹣|﹣5|的结果是()A.﹣21B.﹣1C.9D.11解:原式=12×8﹣5=4﹣5=﹣1.故选:B.4.下列与方程x3﹣25=0的根最接近的数是()A.1B.2C.3D.4解:移项,得x3=25,∴x=√253,∵23=8,33=27,∴2<x<3,且接近3,故选:C.5.如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,4)B.(1,1)C.(1,2)D.(2,1)解:由图知,旋转中心P的坐标为(1,2),故选:C.6.如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.6π−92√3B.6π﹣9√3C.12π−92√3D.9π4解:连接OD,如图,∵扇形纸片折叠,使点A与点O恰好重合,折痕为CD,∴AC=OC,∴OD =2OC =6, ∴CD =√62−32=3√3,∴∠CDO =30°,∠COD =60°,∴由弧AD 、线段AC 和CD 所围成的图形的面积=S 扇形AOD ﹣S △COD =60⋅π⋅62360−12•3•3√3=6π−9√32, ∴阴影部分的面积为6π−9√32. 故选:A .二、填空题(本大题共10小题,每小题2分,共20分.) 7.要使分式1x−3有意义,则x 的取值范围是 x ≠3 .解:若分式有意义,则x ﹣3≠0, ∴x ≠3,故答案为x ≠3.8.2019年3月14日在网上搜索引擎中输入“2019两会热点”,能搜索到与之相关的结果个数约为12 500 000个,将12 500 000用科学记数法表示为 1.25×107 . 解:将12 500 000用科学记数法表示为:1.25×107. 故答案为:1.25×107.9.计算:3√13−√12的结果为 −√3 .解:3√13−√12=3×√33−2√3=−√3. 故答案为:−√3.10.一组数据1、2、3、4、5的方差为S 12,另一组数据4、6、7、8、9的方差为S22,那么S12< S22.(填“>”、“=”、“<”) 解:∵第1组数据的平均数为15×(1+2+3+4+5)=3,则其方差S 12=15×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2; 第2组数据的平均数为15×(4+6+7+8+9)=6.8,则其方差S 22=15×[(4﹣6.8)2+(6﹣6.8)2+(7﹣6.8)2+(8﹣6.8)2+(9﹣6.8)2]=3.752;∴S 12<S 22, 故答案为:<.11.已知a 、b 是一元二次方程x 2+2x ﹣4=0的两个根,则a +b ﹣ab = 2 . 解:∵a ,b 是一元二次方程x 2+2x ﹣4=0的两个根, ∴由韦达定理,得a +b =﹣2,ab =﹣4, ∴a +b ﹣ab =﹣2+4=2. 故答案为:2.12.若圆锥的高为3,底面半径为1,则这个圆锥的侧面积为 √10π . 解:∵圆锥的高为3,底面半径为1, ∴圆锥的母线长l 是:√32+12=√10, ∴圆锥的侧面积是:π×1×√10=√10π. 故答案是:√10π.13.如图,在▱ABCD 中,AC 、BD 为对角线.当▱ABCD 满足 ∠ABC =90°(答案不唯一) 时,AC =BD .解:依题意知,当▱ABCD 是矩形时,AC =BD . 所以,当▱ABCD 的一内角为直角时,满足题意. 故答案是:∠ABC =90°(答案不唯一).14.如图,在Rt △ABC 中,∠C =90°,点D 为AB 的中点,点E 、F 分别是AC 、AD 的中点,S △AEF :S △BCD = 1:4 .解:∵在Rt △ABC 中,∠C =90°,点D 为AB 的中点, ∴CD =AD =DB ,△ADC 的面积=△BCD 的面积, ∵点E 、F 分别是AC 、AD 的中点, ∴EF ∥CD ,2EF =CD , ∴△AEF ∽△ADC , ∴S △AEF S △ADC=(EF CD)2=14,∴S △AEF :S △BCD =1:4; 故答案为:1:4.15.若点P (x ,y )在平面直角坐标系xOy 中第四象限内的一点,且满足2x ﹣y =4,x +y =m ,则m 的取值范围是 ﹣4<m <2 . 解:根据题意得:{2x −y =4x +y =m,解得:{x =m+43y =2m−43,根据题意得:{m+43>02m−43<0, 解得:﹣4<m <2. 故答案是:﹣4<m <2.16.如图为一个半径为3m 的圆形会议室区域,其中放有四个宽为1m 的长方形会议桌,这些会议桌均有两个顶点在圆形边上,另两个顶点紧靠相邻桌子的顶点,则每个会议桌的长为 ﹣1+√17 m .解:设圆心是O,连接OA,OB,作OC于BC垂直.设长方形的长是2xm,在直角△OAD中,∠AOD=45°,AD=xm,则OD=AD=xm,在直角△OBC中,OC=√OB2−BC2=√9−x2,∵OC﹣OD=CD=1,∴√9−x2−x=1,解得:x=−1+√172(负值舍去),则2x=﹣1+√17.故答案是:﹣1+√17.三、解答题(本大题共11小题,共88分.)17.(12分)(1)化简:(1x−y −yx2−y2)÷xx+y;(2)解不等式组:{2+3(x−3)≥5,1+2x3>x−2.解:(1)原式=[x+y(x+y)(x−y)−y(x+y)(x−y)]•x+yx=x(x+y)(x−y)•x+y x=1x−y;(2){2+3(x−3)≥5,①1+2x3>x−2.②解不等式①得:x≥4,解不等式②得:x<7,故原不等式组的解集为4≤x<7.18.(7分)如图,点A、F、C、D在同一条直线上,AB∥DE,AB=DE,AF=DC.(1)求证:△ABC≌△DEF;(2)若∠ABC=90°,∠A=30°,BC=3,当四边形BFEC是菱形时,求AF的长.证明:(1)∵AB∥DE∴∠A=∠D∵AF=DC∴AF+FC=DC+FC即AC=DF,且∠A=∠D,AB=DE∴△ABC≌△DEF(SAS)(2)∵∠ABC=90°,∠A=30°,BC=3∴AC=6,∠ACB=60°∵四边形BFEC是菱形∴BF=BC∴BF=BC=FC=3∴AF=AC﹣CF=6﹣3=319.(7分)某运动服装店有A、B、C、D四款运动服,“3.15”期间搞“买一送一”促销活动,求下列事件的概率:(1)小红决定购买A款运动服,再从其余三款运动服中随机选取一款,恰好选中D款;(2)随机选取两款不同的运动服,恰好选中A、D两款.解:(1)因为选种B、C、D三款运动服是等可能,所以选D款的概率为:P(恰好选中D款)=1 3;(2)列表如下:款式A B C DA AB AC ADB BA BC BD C CA CB CD DDADBDC此试验有12种等可能性的结果,其中恰好选中A 、D 两款有2种结果, ∴P (恰好选中A 、D 两款)=212=16. 20.(7分)南京某公司销售部统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元).销售部规定:当x <16时为“不称职”,当16≤x <20时为“基本称职”,当20≤x <25时为“称职”,当x ≥25时为“优秀”.根据以上信息,解答下列问题:(1)补全折线统计图和扇形统计图;(2)求所有“称职”和“优秀”的销售员月销售额的中位数和众数;(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果取整数)?并简述其理由. 解:(1)∵被调查的总人数为4+5+4+3+450%=40人,∴不称职的百分比为2+240×100%=10%,基本称职的百分比为2+3+3+240×100%=25%,优秀的百分比为1﹣(10%+25%+50%)=15%, 则优秀的人数为15%×40=6, ∴得26分的人数为6﹣(2+1+1)=2, 补全图形如下:(2)由折线图知称职与优秀的销售员职工人数分布如下:20万4人、21万5人、22万4人、23万3人、24万4人、25万2人、26万2人、27万1人、28万1人,则称职与优秀的销售员月销售额的中位数为22+232=22.5万、众数为21万;(3)月销售额奖励标准应定为23万元.∵称职和优秀的销售员月销售额的中位数为22.5万元,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为23万元.21.(7分)如图是小莉在一次放风筝活动中某时段的示意图,她在A 处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成37°角,线段AA 1表示小红身高1.5米.当她从点A 跑动4米到达点B 处时,风筝线与水平线构成60°角,此时风筝到达点E 处,风筝的水平移动距离CF 为8米,这一过程中风筝线的长度保持不变,求风筝原来的高度C 1D .(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75.)解:设AF =x ,则BF =AB +AF =4+x ,在Rt△BEF中,BE=BFcos∠EBF=4+xcos60°=8+2x,∵CF=8,∴AC=AF+FC=8+x,在Rt△DAC中,AD=ACcos∠DAC=8+xcos37°=10+1.25x,由题意知:AD=BE∴8+2x=10+1.25x,解得:x=8 3,∴CD=AC tan∠CAD=(8+83)×0.75=8,则C1D=CD+C1C=8+1.5=9.5,答:风筝原来的高度C1D为9.5米.22.(8分)已知二次函数y=ax2﹣4ax+3a的图象经过点(0,3).(1)求a的值;(2)将该二次函数沿y轴怎样平移后得到的函数图象与x轴只有一个公共点?(3)将该函数的图象沿x轴翻折,求翻折后所得图象的函数表达式.解:(1)∵二次函数y=ax2﹣4ax+3a的图象经过点(0,3),∴3a=3,即a=1;(2)∵a=1∴y=x2﹣4x+3即y=(x﹣2)2﹣1,∴当该沿y轴向上平移1个单位,函数图象与x轴只有一个公共点;(3)∵函数y=(x﹣2)2﹣1图象的顶点为(2,﹣1),a=1∴该函数的图象沿x轴翻折后得到的函数图象顶点为(2,1),a=﹣1∴翻折后得到的函数表达式为y=﹣(x﹣2)2+1.23.(7分)下面是一位同学的一道作图题:已知线段a、b、c(如图),求作线段x,使a:b=c:x他的作法如下:①以点O 为端点画射线OM ,ON .②在OM 上依次截取OA =a ,AB =b .③在ON 上截取OC =c .④连接AC ,过点B 作BD ∥AC ,交ON 于点D .(1)请根据这位同学的作图过程,在方框中用直尺和圆规画出图形(保留作图痕迹);(2)请指出在所画的图形中,哪条线段是求作线段x ,并说明理由;(3)如果OA =4,AB =5,AC =3,求BD 的长.解:(1)如图所示;(2)CD 是所求作的线段x ;∵AC ∥BD∴OA AB=OC CD 即a b =c x .(3)∵AC ∥BD∴△OAC ∽△OBD∴OA OB=AC BD 即49=3BD∴BD =274.24.(8分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min .小东骑自行车以300m /min 的速度直接回家,两人离家的路程y (m )与各自离开出发地的时间x (min )之间的函数图象如图所示(1)家与图书馆之间的路程为4000m,小玲步行的速度为100m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.解:(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折线O﹣A﹣B为小玲路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为2000÷20=100m/min.故答案为:4000,100(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x自变量x的范围为0≤x≤40 3(3)由图象可知,两人相遇是在小玲改变速度之前∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.25.(7分)如图,点O在△ABC的边BC上,⊙O经过点A、C,且与BC相交于点D,点E是下半圆的中点,连接AE交BC于点F,已知AB=BF.(1)求证:AB是⊙O切线;(2)若CF=4,EF=√10,求AB的长度.解:(1)连接AO、EO,∵点E是下半圆的中点,∴∠DOE=∠COE=90°,∴∠OEF+∠EFO=90°,∵∠EFO=∠BF A,∴∠OEF+∠BF A=90°,∵AB=BF,AO=EO,∴∠BF A=∠BAF,∠OEF=∠OAF,∴∠BAF+∠OAF=∠BF A+∠OEF=90°,即∠BAO=90°,∵A为⊙O上的一点,∴AB是⊙O切线;(2)设FO=x,则CO=FC﹣FO=4﹣x,∴EO=CO=4﹣x,在Rt△EFO中,EO2+FO2=EF2,∴(4﹣x)2+x2=(√10)2,解得:x1=1,x2=3(不合题意,舍去),∴AO=CO=4﹣1=3,设AB=y,则BO=BF+FO=y+1,在Rt△ABO中,AO2+AB2=BO2,∴32+y2=(y+1)2,解得:y=4,∴AB=4.26.(8分)某商店经销甲、乙两种商品.现有如下信息:请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品600件和乙商品400件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m 元.在不考虑其他因素的条件下,当m 定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?解:(1)假设甲、乙两种商品的进货单价各为x ,y 元,根据题意得:{x +y =53(x +1)+2(2y −1)=19, 解得:{x =2y =3. 答:甲、乙两种商品的进货单价各为2元、3元;(2)∵商店平均每天卖出甲商品600件和乙商品400件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.∴甲、乙两种商品的零售单价都下降m 元时,甲乙每天分别卖出:(600+m 0.1100)件,(400+m 0.1100)件, ∵销售甲、乙两种商品获取的利润是:甲乙每件的利润分别为:3﹣2=1元,5﹣3=2元, 每件降价后每件利润分别为:(1﹣m )元,(2﹣m )元;w =(1﹣m )×(600+m 0.1100)+(2﹣m )×(400+m 0.1100), =﹣2000m 2+2000m +1400,当m =−b 2a =−20002×(2000)=0.5元,故降价0.5元时,w 最大,最大值为:1900元,∴当m 定为0.5元时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是1900元.27.(10分)已知,如图,在△ABC 中,∠ACB =90°,∠B =60°,BC =2,∠MON =30°.(1)如图1,∠MON 的边MO ⊥AB ,边ON 过点C ,求AO 的长;(2)如图2,将图1中的∠MON 向右平移,∠MON 的两边分别与△ABC 的边AC 、BC 相交于点E 、F ,连接EF ,若△OEF 是直角三角形,求AO 的长;(3)在(2)的条件下,∠MON 与△ABC 重叠部分面积是否存在最大值,若存在,求出最大值,若不存在,请说明理由.解:(1)∵∠MON =30°,MO ⊥AB ,∴∠COB =60°,∵∠B =60°∴△BOC 是等边三角形∵BC =2,∴BO =2在△ABC 中,∠ACB =90°,∠B =60°,BC =2,∴AB =4.∴AO =AB ﹣BO =2(2)①∠OEF =90°设AO =x ,根据题意得OB =4﹣x ,OE =√3x 3,OF =4﹣x ,∴OE OF =√32, ∴x =125,②∠OFE =90°设AO =x ,根据题意得OB =4﹣x ,OE =√3x 3,OF =4﹣x ,∴OF OE =√32∴x =83,∴△OEF 是直角三角形时,AO 长为125或83(3)设AO =x ,根据题意得OB =4﹣x ,OE =√3x 3,设重叠部分的面积为S ,根据题意得:S =S △ABC ﹣S △AOE ﹣S △OBF ∴S =2√3−12⋅x ⋅√3x 3−√34(4−x)2 整理得:S =−512√3x 2+2√3x −2√3 ∵a =−512√3<0, ∴S 有最大值∴当x =125时,S 最大值=25√3.。

南京市中考模拟考试数学试卷含答案

南京市中考模拟考试数学试卷含答案

南京市中考模拟考试数学试卷含答案中学数学二模模拟试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.四个实数0,-1,,中最小的数是A.0B.-1C.D.2.右图所示是一个圆柱形机械零件,则它的主视图是3.港珠澳大桥是连接香港,珠海和澳门的超大型跨海通道,总长55公里,数据55公里用科学计数法表示为A.米B.米C.米 A.米4.下列图形是中心对称图形但不是轴对称图形的是5.某小组6人在一次中华好诗词比赛中的成绩是85,90,85,95,80,85,则这组数据的众数是A.80B.85C.90D.956.化简+的结果是A. B. C. D.7.如图1,已知a∥b,将一块等腰直角三角板的两个顶点分别放在直线a,b 上,若∠1=23°,则∠2的度数为A.68B.112C.127D.1328.如图2,某数学兴趣小组为了测量树AB的高度,他们在与树的底端B同一水平线上的C处,测得树顶A处的仰角为α,且B,C之间的水平距离为a米,则树高AB为米 C. a •sinα米 D.a •cosα米A.a •tanα米B.α9.下列命题中,是真命题的是A.三角形的内心到三角形的三个顶点的距离相等B.连接对角线相等的四边形各边中点所得的四边形是矩形C.方程的解是x=2D.若 ,10.从A 城到B 城分别有高速铁路与高速公路相通,其中高速铁路全程400km ,高速公路全程480km ,高铁行驶的平均速度比客车在高速公路行驶的平均速度多120km/h,从A 城到B 城乘坐高铁比客车少用4小时,设客车在高速公路行驶 的平均速度为xkm/h,依题意可列方程为 A.B.C.D.11.如图3,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数刻画,斜坡可以用一次函数刻画,则下列结论错误的是A.当小球到达最高处时,它离斜坡的竖直距离是6mB.当小球落在斜坡上时,它离O 点的水平距离是7mC.小球在运行过程中,它离斜坡的最大竖直距离是6mD.该斜坡的坡度是1:212.如图4,已知四边形ABCD 是边长为4的正方形,E 是CD 上一动点,将△ADE 沿直线AE 折叠后,点D 落在点F 处,DF 的延长线交BC 于点G ,EF 的延长线交BC 于点H ,AE 与DG 交于点O ,连接OC ,则下列结论中:①AE=DG ;②EH=DE+BH ;③OC 的最小值为 ;④当点H 为BC 中点时,∠CFG=45°,其中正确的有 A.1个 B.2个 C.3个 D.4个第二部分(非选择题,共64分)二、填空题(每小题3分,共12分)请把答案填在答题卷相应的表格里 13.分解因式:14.图5是一个可以自由转动的转盘,该转盘被平均分成6个扇形,随机转动该转15.如图6,菱形ABCD 中,AB=6,∠DAB=60°,DE ⊥AB 于E ,DE 交AC 于点F ,则△CEF 的面积是16.如图7,在平面直角坐标系XOY 中,以O 为圆心,半径为 的圆O 与双曲线(x>0)交于点A ,B 两点,若△OAB 的面积为4,则三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分) 17.计算:°18.解不等式组 ( ),并把它的解集在数轴上表示出来。

2022年江苏省南京市中考数学模拟试卷附解析

2022年江苏省南京市中考数学模拟试卷附解析

2022年江苏省南京市中考数学模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下图中不可能是正方体的平面展开图的是()A.B.C.D.2.已知,一次函数b=的图象如图,下列结论正确的是()y+kxA.0b D.0k,0<k,0b<<>b C.0k,0>b B.0><k,0>3.如果点M(3a,-5)在第三象限,那么点N(5-3a,-5)在()A.第一象限B.第二象限C.第三象限D.第四象限4.将△ABC的三个顶点的横坐标都乘-l,纵坐标保持不变,则所得图形()A.与原图形关于x轴对称B.与原图形关于k轴对称C.与原图形关于原点对称D.向x轴的负方向平移了一个单位5.底面是n边形的直棱柱棱的条数共有()n+B.2n C.3n D.nA.26.某物体的三视图是如图所示的三个图形,那么该物体的形状是()A.长方体B.圆锥体C.正方体D.圆柱体7.小宇同学在一次手工制作活动中,先把一张矩形纸片按图①的方式进行折叠,使折痕的左侧部分比右侧部分短l cm;展开后按图②的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长lcm,再展开后,在纸上形成的两条折痕之问的距离是()A.0.5 cm B.1 cm C.1.5 cm D.2 cm8.刚刚喜迁新居的小华同学为估计今年六月份(30天)的家庭用电量,在六月上旬连续7天同一时刻观察电表显示的度数并记录如下:日期1号2号3号4号5号6号7号24273135424548电表显示数(度)你预计小华同学家六月份用电总量约是()A.1080度 B.124度 C.103度D.120度9.某天股票A 开盘价 19 元,上午 11:30 跌1. 5 元,下午收盘时又涨了 0. 5 元,则投票A 这天收盘价为()A.0.3 元B.l6.2 元C.16.8 元D.18 元10.已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是()A.0.6 B.0.5 C.0.4 D.0.3二、填空题11.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的机会是.12.如图所示,转动甲、乙两转盘,当转盘停止后,指针指向阴影区域的可能性甲乙(填“大于”、“小于”或“等于”).13.两圆内切,圆心距等于 3 cm,一个圆的半径为 5 cm,则另一个圆的半径是 cm.14.如图,⊙O中,AB、AC 是互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D.E,若AC=2 cm,则⊙O的半径为 cm.15.在□ABCD中,AB=2,BC=3,∠B、∠C的平分线分别交AD于点E、F,则EF的长是_______.16.把棱长为 lcm的 14个立方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面),则该几何体涂上颜色部分的面积是 cm2.17.如图,请写出能判定 CE ∥AB 的一个条件: .18.某初一2班举行“激情奥运”演讲比赛,共有甲、乙、丙三位选手,班主任让三位选手抽签决定演讲先后顺序,从先到后恰好是甲、乙、丙的概率是 . 19.已知方程组3523x y y x =-⎧⎨=+⎩,用代入法消去x ,可得方程 .(不必化简).20.从A 村到B 村有三种不同的路径,再从 B 村到C 村又有两种不同的路径.因此若从A 村经B 村去C 村,则A 村到C 村有 种可能路径.21.在一幅扇形统计图中,所有扇形的百分比之和是 .22.某校八年级有4个班,期中数学测验成绩为:(1)班50人,平均分为68分,(2)班48人,平均分为70分,(3)班50人,平均分为72分,(4)班52人,平均分为70分,那么该年级期中数学测验的平均分为 分.三、解答题23.对一批西装质量抽检情 如下表:(1)填写表格中次品的概率;(2)从这批西装中任选一套是次品的概率是多少?(3)若要销售这批西装 2000 件,为了方便购买次品西装的顾客前来调换,至少应进多少件西装?24.如图所示,拦水坝的横截面是梯形ABCD,已知坝高为4米,坝顶宽BC•为3米,背水坡AB 的坡度i=1:3,迎水坡CD 长为5米. (1)求大坝的下底宽AD 的长;(2)修建这种大坝100米,需要多少土石方?抽检件数 200 400 600 800 1000 1200 正品件数 190390576 773 9671160次品的概率EDCBA25.如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= °,BC= ;(2)判断△ABC与△DEF是否相似,并证明你的结论.26.某类产品按质量共分10 个档次,生产最低档次产品每件利润为 8 元,每提高一个档次每件利润增加 2 元. 用同样的时间,最低档产品每天可生产 60 件,每提高一个档次将少生产 3 件,求生产何种档次的产品所获利润最大?27.若函数比例函数23=-是关于x的反反比例函数.y m x--(2)m m(1)求 m 的值并写出其函数解析式;(2)求当3y=时,x 的值.28.如图所示,等腰梯形ABCD中,AD∥BC,AE∥DC,DF∥AB,求证:AE=DF.29.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例关系.当x=20时,y=1600,当x=30时,y=2000.(1)求y与x之间的函数解析式;(2)如果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?30.解方程组278ax bycx y+=⎧⎨-=⎩时,小明正确地解出32xy=⎧⎨=-⎩,小红把c看错了,解得22xy=-⎧⎨=⎩,试求a,b,c的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.D4.B5.C6.D7.B8.答案:D9.D10.C二、填空题11.112.3等于13.2 或814.15.116.3317.答案不唯一.如∠A=∠DCE18.119.6y y=-+20.2(35)3621.122.70三、解答题23.(1)见表格(2)130(3)1÷-≈(2000(1)206930件)24.解:(1) AD=18(米);(2)4200米3.25.(1)∠ABC= 135 °, BC=22 ;(2)能判断△ABC 与△DEF 相似(或△ABC ∽△DEF ) 这是因为∠ABC =∠DEF = 135 ° ,2==EFBC DEAB ,∴△ABC ∽△DEF.26.设生产第 x 种档次的产品所获利润为y 元,由己知得[603(1)][82(1)]y x x =--+-,化简得26108378y x x =-++, x 的取值范围 1≤x ≤10.∵226108378=6(9)864y x x x =-++=--+, 当 x=9 时,864y =最大值,即生产第9 档次的产品所获利润最大,为864 元.27.(1)由22031m m m -≠⎧⎨--=-⎩,得m=-1,∴3y x-=;(2)当y =x ==28.证明AE=CD ,DF=AB29.(1)y=40x+800;(2)56元30.4a =,5b =,2c =-。

2022年江苏省南京市中考数学模拟试题附解析

2022年江苏省南京市中考数学模拟试题附解析

2022年江苏省南京市中考数学模拟试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.某班学生中随机选取一名学生是女生的概率为35,则该班女生与男生的人数比是( )A .32B .35C .23D .252.已钝角三角形三边长分别为 a 、b 、c (a>b> c ),外接圆半径和内切圆半径分别为 R 、r , 则能盖住这个三角形的圆形纸片的最小半径是( ) A .R B .rC .2a D .2c 3.不等式34x x -<的解集在数轴上的正确表示是( )A .B .C .D .4.下列多项式能分解因式的是( )A .x 2-yB .x 2+1C .x 2+y+y 2D .x 2-4x+45.下列说法中,错误的是 ( )A .如果C 是线段AB 的中点,那么AC=12ABB .延长线段AB 到点C ,使AB=BC ,则B 是线段AC 的中点 C .直线AB 是点A 与点8的距离D .两点的距离就是连结两点的线段的长度二、填空题6.如图是两棵小树在同一时刻的影子,请问它们的影子是在 灯光 光线下形成的.(填“太阳”或“灯光”)7.直线l 与半径为r 的⊙O 相交,且点0到直线l 的距离为 3,则 r 的取值范围是 . 8.已知双曲线xky =经过点(-1,3),如果A (11,b a ),B (22,b a )两点在该双曲线上,且1a <2a <0,那么1b 2b .9.已知抛物线l 1:y =2x 2-4x +5,抛物线l 2与抛物线l 1关于x 轴对称,则抛物线l 2的解析式为 . y =-2x 2+4x -510.如图,在等腰梯形0ABC 中,∠AOC=60°,腰0C=4,.上底BC=2,点O 为坐标原点,点A 在x 轴的正半轴上,则点A 的坐标是 ,点B 的坐标是 ,点C 的坐标是 .11.在空格内填入适当的结论,使每小题成为一个真命题: (1)如果∠1和∠2是对顶角,那么 ; (2)如果22a b =,那么 .(3)如图,直线AB ,CD 被直线EF 所截,如果∠l=∠2,那么 .12.在实数范围内定义运算“☆”,其规则为:a ☆b=22a b -,则方程(4☆3)☆x=13的解为x= .13.判断下列各方程后面的两个数是不是都是它的解(是的打“√”,不是的打“×”) (1)2670x x --=;(-1,7) ( ) (2)23520x x +-=;(53,23-) ( ) (3)22310x x -+=;(3, 1) ( )(4)2410x x -+=;(23--,23-+) ( )14.为了预防“禽流感”的传播,检疫人员对某养殖场的家禽进行检验,任意抽取了其中的100只,此种方式属 调查,样本容量是 .15.线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D 的坐标为 .16.如图所示,在等腰三角形ABC 中,12cm AB AC ==,30ABC =∠,那么底边上的高AD = cm .17.如图,点D 是△ABC 内部一点,DE ⊥AB 于E ,DF ⊥BC 于F ,且DE=DF ,若∠ABD=26°,则∠ABC= .18.如图所示,∠AOB=85°,∠AOC=10°,0D是∠BOC的平分线,则∠BOD的度数为.19.三个连续自然数,中间的数为 n,那么,其余两个数分别是,.三、解答题20.如图,有一座塔,在地面上A点测得其顶点C的仰角为30°.向塔前进50m到B点,又测得C的仰角为60°.求塔的高度(结果可保留根号).CA B D21.小强画出一个木模的三视图如图所示,三视图与实际尺寸的比例为 1: 50.(1)请画出这个木模的立体图形; (尺寸按三视图)(2)从三视图中量出尺寸,并换算成实际尺寸,标注在立体图形上;(3)制作木模的木料密度为360 kg/m3,求这个木模的质量.22.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上一点,且OE⊥CD,垂足为F,EF=90m,求这段弯路的半径.23.如图,⊙O 的直径为 12 cm,AB、CD 为两条互相垂直的直径,连结 AD,求图中阴影部分的面积.24.填空,如图,BD平分∠ABC,∠1=∠2,则AD∥BC,证明过程如下:证明:∵BD平分∠ABC( )∴∠1=∠3( )∵∠1=∠2( )∴∠2=∠3∴AD∥BC ( )25.点M,N分别是正八边形相邻的边AB,BC上的点,且AM=BN,点0是正八边形的中心,求∠MON的度数.26.在10个试验田中对甲、乙两个早稻品种作了对比试验,两个品种在试验田的亩产量如下(单位:kg):甲802808802800795801798797798799乙810814804788785801795800769799(1)用计算器分别计算两种早稻的平均亩产量;(2)哪种早稻的产量较为稳定?(3)在高产、稳产方面,哪种早稻品种较为优良?27.如图是由若干个小立方体搭成的几何体的俯视图,小立方体中的数字表示的是在该位置上的小立方体的个数,请画出这个几何体的主视图和左视图.28.一个物体的俯视图是正方形,你认为这个物体可能是什么形状?你能写出两种或两种以上不同的物体吗?29.甲、乙两组学生去距学校 4.5 km 的敬老院打扫卫生,甲组学生步行出发 0.5 h 后,乙组学生骑,白行车开始出发,两组学生同时到达敬老院,如果步行速度是骑自行车速度的13,求步行与骑自行车的速度.30.分解因式:(1)2222236(9)m n m n-+;(2)2221a ab b++-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.C4.D5.C二、填空题6.灯光7.r 8.3<9.10.(6,0),(4,,(2,11.(1)∠1=∠2;(2)a=b或a+b=0;(3)AB∥CD6± 13.(1)√(2)×(3)× (4)×14.抽样,l0015.(1,2)16.617.52°18.37.5°19.n-1,n+1三、解答题 20.解:如图,依题意,有∠A =30°,∠CBD =60°,AB =50m .因为∠CBD =∠A +∠ACB ,所以∠ACB =∠CBD -∠A =60°-30°=30°=∠A . 因此BC =AB =50m .在Rt △CDB 中,CD =CB sin60°=3252350=⨯(m), 所以塔高为325m .21.(1)长方体上面放着一个正方体;(2)略;(3)提示:先求出组合体的体积,再将体积与密度相乘即得质量.22.545m .23.221694AOD S cm ππ=⨯⨯=扇形,20166182A D S cm ∆=⨯⨯=,∴2(918)S cm π=-阴影略25.45°26.(1)800x =甲kg ,796.5x =乙kg ;(2)甲的产量较为稳定;(3)甲种早稻较为优良27.略28.正方体,正四棱柱等29.步行速度为 6 km/h ,骑白行车速度为 18 km/h30.(1)22(3)(3)m n m n --+;(2)(1)(1)a b a b +++-。

2024年江苏省南京市中考数学模拟试卷(一)

2024年江苏省南京市中考数学模拟试卷(一)

2024年江苏省南京市中考数学模拟试卷(一)一、单选题1.若式子12x -在实数范围内有意义,则x 的取值范围是( ) A .2x ≥ B .2x > C .2x = D .2x ≠ 2.实数4的算术平方根是( )A .16B .2±C .2D 3.计算()223a a ⋅的结果是( )A .7aB .8aC .10aD .12a4.如图,在数轴上,点A ,B 分别表示实数a ,b .下列算式中,结果一定是负数的是( )A .a b +B .a b -C .⋅a bD .a b ÷5.若关于x 的方程ax 2+bx +c =0的解是x 1=3,x 2=−5,则关于y 的方程a (y +1)2+b (y +1)+c =0的解是( )A .14y =,24y =-B .12y =,26y =-C .14y =,26y =-D .12y =,24y =-6.如图,已知菱形ABCD 与菱形AEFG 全等,菱形AEFG 可以看作是菱形ABCD 经过怎样的图形变化得到?下列结论:①经过1次平移和1次旋转;②经过1次平移和1次翻折;③经过1次旋转,且平面内可以作为旋转中心的点共有3个.其中所有正确结论的序号是( )A .①②B .①③C .②③D .①②③二、填空题7.8的立方根为.8x 的取值范围是.9.方程240x -=的解是.10.若2a b =+,则代数式222a ab b -+的值为.11.如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若4MN =,则AC 的长为.12.如图,A 、B 、C 、D 为一个外角为40︒的正多边形的顶点.若O 为正多边形的中心,则OAD ∠=.13.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=o ,则该圆锥的母线长l 为cm .14.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45︒,测得该建筑底部C 处的俯角为17︒.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为m .(参考数据:sin170.29︒≈,cos170.96︒≈,tan170.31︒≈)15.已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为.16.函数y =x +1的图象与x 轴、y 轴分别交于A 、B 两点,点C 在x 轴上.若△ABC 为等腰三角形,则满足条件的点C 共有个.三、解答题17.计算(10142π-⎛⎫-+- ⎪⎝⎭. 18.解方程组3827x y x y +=⎧⎨-=⎩19.如图,在ABC V 中,,AB AC AD =为ABC V 的角平分线.以点A 圆心,AD 长为半径画弧,与,AB AC 分别交于点,E F ,连接,DE DF .(1)求证:ADE ADF V V ≌;(2)若80BAC ∠=︒,求BDE ∠的度数.20.如图,菱形ABCD 的对角线AC BD 、相交于点,O E 为AD 的中点,4AC =,2OE =.求OD 的长及tan EDO ∠的值.21.为了解本校八年级学生的暑期课外阅读情况,某数学兴趣小组抽取了50名学生进行问卷调查.(1)下面的抽取方法中,应该选择( )A .从八年级随机抽取一个班的50名学生B.从八年级女生中随机抽取50名学生C.从八年级所有学生中随机抽取50名学生(2)对调查数据进行整理,得到下列两幅尚不完整的统计图表:暑期课外阅读情况统计表a__________,补全条形统计图;统计表中的(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到2本及以上的学生人数;(4)根据上述调查情况,写一条你的看法.22.如图,有4张分别印有Q版西游图案的卡片:A唐僧、B孙悟空、C猪八戒、D沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件发生的概率:(1)第一次取出的卡片图案为“B孙悟空”的概率为______;(2)求两次取出的2张卡片中至少有1张图案为“A 唐僧”的概率.23.渔湾是国家“AAAA ”级风景区,图1是景区游览的部分示意图.如图2,小卓从九孔桥A 处出发,沿着坡角为48︒的山坡向上走了92m 到达B 处的三龙潭瀑布,再沿坡角为37︒的山坡向上走了30m 到达C 处的二龙潭瀑布.求小卓从A 处的九孔桥到C 处的二龙潭瀑布上升的高度DC 为多少米?(结果精确到0.1m )(参考数据:sin480.74cos480.67sin370.60cos370.80︒≈︒≈︒≈︒≈,,,)24.如图,在ABC V 中,AB AC =,以AB 为直径的O e 交边AC 于点D ,连接BD ,过点C 作CE AB ∥.(1)请用无刻度的直尺和圆规作图:过点B 作O e 的切线,交CE 于点F ;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:BD BF =.25.目前,我市对市区居民用气户的燃气收费,以户为基础、年为计算周期设定了如下表的三个气量阶梯:(1)一户家庭人口为3人,年用气量为3200m ,则该年此户需缴纳燃气费用为__________元;(2)一户家庭人口不超过4人,年用气量为3m (1200)x x >,该年此户需缴纳燃气费用为y 元,求y 与x 的函数表达式;(3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到31m )26.在平面直角坐标系中,一个二次函数的图像的顶点坐标是(2,1),与y 轴的交点坐标是(0,5).(1)求该二次函数的表达式;(2)在同一平面直角坐标系中,若该二次函数的图像与一次函数y x n =+(n 为常数)的图像有2个公共点,求n 的取值范围.27.【问题情境 建构函数】(1)如图1,在矩形ABCD 中,4,AB M =是CD 的中点,AE BM ⊥,垂足为E .设,BC x AE y ==,试用含x 的代数式表示y .【由数想形 新知初探】(2)在上述表达式中,y 与x 成函数关系,其图像如图2所示.若x 取任意实数,此时的函数图像是否具有对称性?若有,请说明理由,并在图2上补全函数图像.【数形结合 深度探究】(3)在“x 取任意实数”的条件下,对上述函数继续探究,得出以下结论:①函数值y 随x 的增大而增大;②函数值y 的取值范围是y -<③存在一条直线与该函数图像有四个交点;④在图像上存在四点A B C D 、、、,使得四边形ABCD 是平行四边形.其中正确的是__________.(写出所有正确结论的序号)【抽象回归 拓展总结】(4)若将(1)中的“4AB =”改成“2AB k =”,此时y 关于x 的函数表达式是__________;一般地,当0,k x ≠取任意实数时,类比一次函数、反比例函数、二次函数的研究过程,探究此类函数的相关性质(直接写出3条即可).。

江苏省南京市金陵中学2024届九年级下学期中考模拟数学试卷(含答案)

江苏省南京市金陵中学2024届九年级下学期中考模拟数学试卷(含答案)

数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.2.答选择题必须用2B 铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷...相应位置....上)1.南京2023全年GDP 达1.75万亿元,数据1.75万亿用科学记数法表示为A .1.75×1011B .1.75×1012C .1.75×108D .1.75×10132.9的值等于A .±3B .3C .±3D .33.下列计算中,结果正确的是A .a 2+a 4=a 6B .a 2·a 4=a 8C .(a 3)2=a 9D .a 6÷a 2=a 44.数轴上表示a 、b 两数的点分别在原点左、右两侧,下列事件是随机事件的是A .a +b >0B .a -b >0C .a ·b >0D .a ÷b <05.如图,EF 是△ABC 的中位线,BD 平分∠ABC 交EF 于点E ,若AE =3,DF =1,则边BC 的长为A.7B.8C.9D.106.一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中,若知道九个小矩形中n 个小矩形的周长,就一定能算出这个大矩形的面积,则n 的最小值是A .3B .4C .5D .6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上)7.若代数式5x -2有意义,则实数x 的取值范围是▲________.8.分解因式:2x 2-8=▲________.9.计算12×6-18的结果是▲________.10.命题“对顶角相等”的条件是▲________.(第6题)ABDECF(第5题)11.设x1,x2是关于x的方程x2+4x+m=0的两个根,且x1+x2-x1x2=2,则m=▲________.12.若圆锥的母线长为6,底面半径为2,则其侧面展开图的圆心角为▲________°.13.已知一次函数y=kx+b的图像经过点(1,3)和(-1,2),则k2-b2=▲________.14.如图,在△ABC中,∠ACB=58°,△ABC的内切圆⊙O与AB,AC分别相切于点D,E,连接DE,BO的延长线交DE于点F,则∠BFD=▲________.15.在平面直角坐标系中,点O为原点,点A在第二象限,且OA=5.若反比例函数y=kx的图像经过点A,则k的取值范围是▲________.16.正方形ABCD边长为10,点E在CD上,DE=4,将△ADE沿AE折叠得△AFE,连接BF并延长交CD于点G,则EG=▲________.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(2-x-1x+1)÷x2+6x+9x2-1.18.(8x+32≥x+1,3+4(x-1)>-9,并把解集在数轴上表示出来.01-4-3-2-1234A BCDEF∙O第14题AB CDEFG(第16题)19.(8分)如图,一块矩形铁皮的长是宽的两倍,四个角各截去一个正方形,制成高是5cm ,容积是500cm 3的无盖长方体容器,求这块铁皮的长和宽.20.(8分)如图,在菱形ABCD 中,E 、F 分别是BC 、DC 的中点.(1)求证:∠AEF =∠AFE ;(2)若△AEF 的面积为6,则菱形ABCD 的面积为▲.21.(8分)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9;乙:5,9,7,10,9.(1)填写下表:平均数众数中位数方差甲8①80.4乙②9③3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差▲.(填“变大”、“变小”或“不变”)ABC DEF(第20题)(第19题)22.(8分)一只不透明的袋子中装有4个小球,分别标有编号1,2,3,4,这些小球除编号外都相同.(1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为▲________;(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到的小球编号与第1次摸到的小球编号相差1的概率是多少?23.(8分)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s (千米)与行驶时间t (小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图像解答下列问题:(1)工厂离目的地的路程是▲________千米;(2)求s 关于t 的函数表达式;(3)当货车显示加油提醒后,问行驶时间t 在怎样的范围内货车应进站加油?(第23题)Os (千米)t (小时)488056024.(8分)某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A 为起点,沿途修建AB 、CD 两段长度相等的观光索道,最终到达山顶D 处,中途设计了一段与AF 平行的观光平台BC 为50m .索道AB 与AF 的夹角为15°,CD 与水平线夹角为45°,A 、B 两处的水平距离AE 为576m ,DF ⊥AF ,垂足为点F .(图中所有点都在同一平面内,点A 、E 、F在同一水平线上)C EA45°15°B FD图②(1)求索道AB 的长(结果精确到1m );(2)求水平距离AF 的长(结果精确到1m ).(参考数据:sin15°≈0.25,cos15°≈0.96,tan15°≈0.26,2≈1.41)25.(8分)如图,四边形ABCD 中,AD ∥BC ,∠ABC =90°,过A 、B 、D 三点的圆交BC 于点F ,交AC于点E .(1)求证:四边形ABFD 为矩形;(2)若AB =5,BC =10,DE =3,求AD 的长.ADEB F C(第25题)26.(8分)已知二次函数y =x 2+mx +n ,其中m ,n 为实数.(1)若该函数的对称轴是直线x =2,则m =▲________;(2)若该函数的图像经过点(m ,9n ),请判断该函数的图像与x 轴的交点个数;(3)该函数的图像经过点(x 1,0),(x 2,0),(1,a ),(5,b ).若x 2-x 1=1时,求a +b 的取值范围.27.(9分)动手操作(1)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为▲________.(2)已知射线OA ⊥OB ,点M 在OA 上运动,点N 在OB 上运动,满足OM +ON =8.点Q 为线段MN的中点,则点Q 运动路径的长为▲________;解决问题(3)小明在初中数学一册教材中看到这样一段文字和一幅图:“下列是一个寻宝者得到的一幅藏宝图,荒凉的海岛上没有藏匿宝藏的任何标志,只有A 、B 两块天然巨石,寻宝者从其它资料上查到A 、B 两块巨石在平面直角坐标系中的坐标为A (2,1),B (8,2),藏宝地的坐标为(6,6)”.你能在图2的地图中画出藏宝地吗?(请在图2中用尺规作图确定宝藏地,简要说明确定的方法.)图1图2数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.x ≠28.2(x +2)(x -2)9.3210.两个角是对顶角11.-612.12013.-614.2915.-252≤k <016.127三、解答题(本大题共11小题,共88分)17.(7分)解:原式=(2x +2x +1-x -1x +1)·(x +1)(x -1)(x +3)2·········································2分=x +3x +1·(x +1)(x -1)(x +3)2············································································4分=x -1x +3·····································································································7分18.(8分)解:解不等式①,得x ≤1.………………………………………….2分解不等式②,得x >-2.·································································4分∴原不等式组的解集为-2<x ≤1.·······················································6分作图·····························································································8分19.(8分)解:设铁皮宽度为x cm ,根据题意可得:5(x -10)(2x -10)=500…………………………………………….4分解得:x 1=15,x 2=0(舍去)……………………………………7分答:长30cm ,宽15cm………………………………………………8分20.(8分)(1)证明:∵四边形ABCD 是菱形,∴AB =AD =BC =CD ,∠B =∠D .·································································2分∵E 、F 分别是BC 、DC 的中点,∴BE =12BC ,DF =12CD .∴BE =DF .································································································3分∴△ABE ≌△ADF .······················································································4分∴AE =AF .即∠AEF =∠AFE .·····································································6分(2)16.······································································································8分21.(8分)解:(1)①8;②8;③9.··························································3分(2)因为甲和乙射击成绩的平均数相同,说明他们的水平相当;而甲射击成绩的方差低于乙,所以甲的发挥更加稳定,所以选择甲参加比赛···6分(3)变小.·······················································································8分题号123456答案B D D A B A124-3-2-13-422.(8分)解:(1)14……………………………………2分(2)画树状图如下:…………………………………….6分一共有在16个等可能的结果,其中第2次摸到的小球编号与第1次摸到的小球编号相差1出现了6次,∴P (第2次摸到的小球编号与第1次摸到的小球编号相差1)=38……………………8分23.(8分)解:(1)880………………………………………………2分(2)S =-80t +880……………………………………5分(b 给1分,k 给2分)(3)254<t <152……………………………………………8分(对一边给1分;<或≤均可)24.(8分)解:(1)在Rt △ABE 中,∠AEB =90°,∠A =15°,AE =576m ,∴AB =AEcos A =576cos15°≈600m 即AB 的长约为600m ;………………………………………….3分(2)延长BC 交DF 于G ,∵BC ∥AE ,∴∠CBE =90°,∵DF ⊥AF ,∴∠AFD =90°,∴四边形BEFG 为矩形,……………………………………….5分∴EF =BG ,∠CGD =∠BGF =90°,∵CD =AB =600m ,∠DCG =45°,∴CG =CD •cos ∠DCG =600×cos45°=600×22=3002,……………………….7分∴AF =AE +EF =AE +BG =AE +BC +CG =576+50+3002≈1049(m ),…………….8分即AF 的长为1049m .25.(8分)(1)证明:∵AD ∥BC ,∠ABC =90°∴∠BAD =180°-∠ABC =90°∵四边形ABFD 是圆内接四边形∴∠ADF =180°-∠ABC =90°……………………….3分∴∠ABC=∠BAD=∠ADF =90°∴四边形ABFD 为矩形……………………….4分(2)方法一:解:连接BD,BE∵圆内接四边形ABED∴∠BED =180-∠BAC =90°∴∠BED =∠ABD ,∠BAC =∠BDE ∴△ABC ∽△DEB ∴AB DE =ACBD∴BD =35……………………………7分∴在Rt △ABD 中,AD =BD 2-AB 2=25…………………………8分方法二:连接BD 交AC 于点G ∵在Rt △ABC 中,AB =5,BC =10∴AC =AB 2+BC 2=55∵在同圆中∴∠BAE=∠EDB,∠ABD=∠AED ∴△ABG ∽△DEG ∴AB DE =AG DG =53∵AD ∥BC ∴AC BD =AG DG =53∴BD =35………………………………….7分∴在Rt △ABD 中,AD =BD 2-AB 2=25…………………………………8分方法三:(过程简写)过点D 作DH ⊥AC 于点H 易得△ADH ∽△CBA,可得DH AD =51由△ABD ∽△HED,得BD DE =DHAD=51,得BD=35得AD =25A B DF EC(第25题)GH26.(8分)解:(1)m =-4……………………………….2分(2)解:当y =0时x 2+mx +n=0∴b 2-4ac =m 2-4n∵函数的图像经过点(m ,9n ),将x =m 、y =9n 代入y =x 2+mx +n 得m 2+m 2+n =9n m 2-4n=0即b 2-4ac =0∴x 2+mx +n=0有两个相等的实数根则函数y =x 2+mx +n 的图像与x 轴有一个交点……………………………………5分(3)解:函数的图像经过点(x 1,0),(x 2,0)∴x 1,x 2是x 2+mx +n=0的根∴x 1+x 2=-m ,x 1x 2=n ∵x 2-x 1=1∴(x 1+x 2)2-(x 2-x 1)2=4x 1x 2m 2-1=4n将(1,a ),(5,b )代入y =x 2+mx +n 得a =1+m +n ,b =25+5m +na +b=6m +2n +26=6m +212-m +26=215)6(212++m ∴a +b ≥215……………………………………………………………..8分方法二:根据函数图像水平平移不改变对应点的纵坐标特征由x 2-x 1=1可得函数图像与x 轴两交点距离为1,将函数水平移到以y 轴为对称轴,易得新图像解析式为:y =x 2-41,点(1,a ),(5,b )平移后为(1+2m ,a ),(5+2m,b )代入y =x 2-41得a +b=(1+2m )2+(5+2m )2-21=215)6(212++m 则a +b ≥21527.(9分)答案:(1)(-2,-2)…………………………2分(2)42;………………………………5分(3)如图2,建立平面直角坐标系,作出点A′(2,1)、B′(8,2)、C′(6,6),连接A′B′,B′C′,A′C′,…………………6分在图3中连接AB ,在AB 的上方作∠MAB =∠C′A′B′,∠NBA =∠C′B′A′,AM 与BN 的交点C 即为藏宝地.………9分其它作法参照给分.图2A′B′C′O xy。

【最新】江苏省南京市中考数学模拟试卷(含答案解析)

【最新】江苏省南京市中考数学模拟试卷(含答案解析)

江苏省南京市中考数学模拟试卷(含答案)(时间120分钟满分:150分)一、选择题(本大题共6小题,每小题3分,共18分)1.据报道,根据江苏作家张嘉佳小说改编的电影《摆渡人》累计票房达32800万元,用科学记数法表示32800万元是()A.328×106元 B.32.8×107元C.3.28×108元 D.0.328×109元2.下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.计算3﹣2的结果是()A.﹣6 B. C. D.﹣4.使式子有意义的x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x≥15.一块长方形菜园,长是宽的3倍,如果长减少3米,宽增加4米,这个长方形就变成一个正方形.设这个长方形菜园的长为x米,宽为y米,根据题意,得()A.B.C.D.6.下列关于正方形的叙述,正确的是()A.正方形有且只有一个内切圆B.正方形有无数个外接圆C.对角线相等且垂直的四边形是正方形D.用一根绳子围成一个平面图形,正方形的面积最大二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.的相反数是,的倒数是.8.若△ABC∽△DEF,请写出1个正确的结论:.9.把4x2﹣16因式分解的结果是.10.已知x1、x2是一元二次方程x2+x﹣5=0的两个根,则x12+x22﹣x1x2= .11.已知点A(3,y1)、B(m,y2)是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是.12.如图,∠3=40°,直线b平移后得到直线a,则∠1+∠2= °.13.如图,顺次连接菱形ABCD的各边中点E、F、G、H.若AC=a,BD=b,则四边形EFGH的面积是.14.如图,△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在OA上.将△COD绕点O顺时针旋转一周,在旋转过程中,当旋转角是°时,CD∥AB.15.平面直角坐标系中,原点O关于直线y=﹣x+4对称点O1的坐标是.16.定点O、P的距离是5,以点O为圆心,一定的长为半径画圆⊙O,过点P作⊙O的两条切线,切点分别是B、C,则线段BC的最大值是.三、解答题(本大题共102分)17.(10分)(1)+20180+(﹣)﹣1(2)解不等式组:,并将解集在数轴上表示出来.18.(6分)先化简,再求值:(1﹣)÷,其中a=﹣4.19.(8分)如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF,求证:四边形ABCD是平行四边形.20.(8分)不透明口袋中装有1个红球和2个白球,这些球除颜色外无其他差别.从口袋中随机摸出1个球,放回搅匀,再从口袋中随机摸出1个球,用画树枝状图或列表的方法,有两次摸到的球都是白球的概率.21.(8分)我市组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定,现随机抽取部分学生书法作品的评定结果进行统计,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?22.(8分)图,一居民楼底部B与山脚P位于同一水平线上,小李在P处测得居民楼顶A的仰角为60°,然后他从P处沿坡角为45°的山坡向上走到C处,这时,PC=30m,点C与点A恰好在同一水平线上,点A、B、P、C在同一平面内.(1)求居民楼AB的高度;(2)求C、A之间的距离.(结果保留根号)23.(10分)如图,一次函数y=kx+b分别交y轴、x轴于C、D两点,与反比例函数y=(x>0)的图象交于A(m,8),B(4,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣<0的x的取值范围;(3)求△AOB的面积.24.(10分)如图,AB为⊙O的直径,AB的长是4,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若cos∠DAC=,求弧BC的长.25.(10分)某商场将原来每件进价80元的某种商品按每件100元出售,一天可出售100件,后来经过市场调查,发现这种商品单价每降低2元,其销量可增加20件.(1)求商场经营该商品原来一天可获利多少元?(2)若商场经营该商品一天要获得利润2160元,则每件商品应降价多少元?26.(10分)如图,抛物线y=x2+bx+c与x轴分别交于A(1,0),B (5,0)两点.(1)求抛物线的解析式;(2)过点C(﹣3,0)在x轴下方作x轴的垂线,再以点A为圆心、5为半径长画弧,交先前所作垂线于D,连接AD(如图),将Rt△ACD 沿x轴向右平移m个单位,当点D落在抛物线上时,求m的值;(3)在(2)的条件下,当点D第一次落在抛物线上记为点E,点P 是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.27.(14分)如图①,直线y=﹣x+8与x轴交于点A,与直线y= x交于点B,点P为AB边的中点,作PC⊥OB与点C,PD⊥OA于点D.(1)填空:点A坐标为,点B的坐标为,∠CPD度数为;(2)如图②,若点M为线段OB上的一动点,将直线PM绕点P按逆时针方向旋转,旋转角与∠AOB相等,旋转后的直线与x轴交于点N,试求MB•AN的值;(3)在(2)的条件下,当MB<2时(如图③),试证明:MN=DN﹣MC;(4)在(3)的条件下,设MB=t,MN=s,直接写出s与t的函数表达式.答案一、选择题(本大题共6小题,每小题3分,共18分.)1.据报道,根据江苏作家张嘉佳小说改编的电影《摆渡人》累计票房达32800万元,用科学记数法表示32800万元是()A.328×106元 B.32.8×107元C.3.28×108元 D.0.328×109元【解答】解:将32800万用科学记数法表示为:3.28×108,故选:C.2.下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.3.计算3﹣2的结果是()A.﹣6 B.C.D.﹣【解答】解:3﹣2=,故选:C.4.使式子有意义的x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x≥1【解答】解:根据题意,得2x﹣2≥0,解得,x≥1.故选:D.5.一块长方形菜园,长是宽的3倍,如果长减少3米,宽增加4米,这个长方形就变成一个正方形.设这个长方形菜园的长为x米,宽为y米,根据题意,得()A.B.C.D.【解答】解:设这个长方形菜园的长为x米,宽为y米,根据题意,得.故选:B.6.下列关于正方形的叙述,正确的是()A.正方形有且只有一个内切圆B.正方形有无数个外接圆C.对角线相等且垂直的四边形是正方形D.用一根绳子围成一个平面图形,正方形的面积最大【解答】解:A、正确.正方形有且只有一个内切圆;B、错误.正方形有且只有一个外接圆;C、错误.对角线相等且垂直的四边形不一定是正方形;D、错误.用一根绳子围成一个平面图形,圆形的面积最大;故选:A.二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.的相反数是﹣,的倒数是.【解答】解:的相反数是﹣,倒数是.故答案为﹣,.8.若△ABC∽△DEF,请写出1个正确的结论:答案不唯一,如:∠A=∠D,∠B=∠E,∠C=∠F, ==等.【解答】解:答案不唯一,如:∠A=∠D,∠B=∠E,∠C=∠F, = =等;故答案为:答案不唯一,如:∠A=∠D,∠B=∠E,∠C=∠F, ==等.9.把4x2﹣16因式分解的结果是4(x+2)(x﹣2).【解答】解:原式=4(x2﹣4)=4(x+2)(x﹣2)故答案为:4(x+2)(x﹣2)10.已知x1、x2是一元二次方程x2+x﹣5=0的两个根,则x12+x22﹣x1x2= 16 .【解答】解:根据题意得x1+x2=﹣1,x1x2=﹣5,所以x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=(﹣1)2﹣3×(﹣5)=16.故答案为16.11.已知点A(3,y1)、B(m,y2)是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是2(答案不唯一).【解答】解:∵y=的图象位于一三象限,点A在第一象限,∴y1>0,y随x的增大而减小.∵当m<0时,点B位于第三象限,∴y2<0.故假设不成立.当m>0时,点B位于第一象限,∴y2>0.又∵y1<y2,∴m<3.∴0<m<3.所以m的值可为2.故答案为:2.12.如图,∠3=40°,直线b平移后得到直线a,则∠1+∠2= 220 °.【解答】解:如图,∵直线b平移后得到直线a,∴a∥b,∴∠1+∠4=180°,即∠4=180°﹣∠1,∵∠5=∠3=40°,∴∠2=∠4+∠5=180°﹣∠1+40°,∴∠1+∠2=220°.故答案为220.13.如图,顺次连接菱形ABCD的各边中点E、F、G、H.若AC=a,BD=b,则四边形EFGH的面积是ab .【解答】解:∵点E、F分别是菱形AB、BC边上的中点,∴EF是△ABC的中位线,∴EF=AC,且EF∥AC.同理,HG=AC,且HG∥AC,∴EF=HG,且EF∥HG.∴四边形EFGH是平行四边形.∴EH∥FG,EH=FG=BD.又∵四边形ABCD是菱形,∴AC⊥BD,∴EF⊥EH,∴四边形EFGH的面积=EF•EH=a•b=ab.故答案是: ab.14.如图,△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在OA上.将△COD绕点O顺时针旋转一周,在旋转过程中,当旋转角是100或280 °时,CD∥AB.【解答】解:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°﹣60°=30°,∴∠DOE=∠CEO﹣∠D=40°﹣30°=10°,∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°;②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°﹣60°=30°,∴∠DOE=∠CEO﹣∠D=40°﹣30°=10°,∴旋转角为270°+10°=280°,综上所述,当旋转角为100°或280°时,边CD恰好与边AB平行.故答案为:100或280.15.平面直角坐标系中,原点O关于直线y=﹣x+4对称点O1的坐标是(,).【解答】解:如图,∵原点O关于直线y=﹣x+4对称点O1,∴OO1⊥AB,设O1O与直线y=﹣x+4的交点为D,作O1E⊥x轴于E,由直线y=﹣x+4可知A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,∵S△AOB=OA•OB=AB•OD,∴OD==,∴OO1=,∵∠ADO=∠O1EO=90°,∠AOD=∠EOO1,∴△AOD∽△O1OE,∴=,即=,∴OE=,∴O1E==,∴点O1的坐标是(,),故答案为(,).16.定点O、P的距离是5,以点O为圆心,一定的长为半径画圆⊙O,过点P作⊙O的两条切线,切点分别是B、C,则线段BC的最大值是5 .【解答】解:∵PC、PB是⊙O的切线,∴∠PCO=∠PBO=90°,∴点C、B在以OP为直径的圆上,∵BC是这个圆的弦,∴当BC=OP=5时,BC的值最大(直径是圆中最长的弦).故答案为5.三、解答题(本大题共102分)17.(10分)(1)+20180+(﹣)﹣1(2)解不等式组:,并将解集在数轴上表示出来.【解答】解:(1)+20180+(﹣)﹣1=1+(﹣3)=﹣2;(2)由不等式①,得x<3由不等式②,得x<2故原不等式组的解集是x<2,在数轴表示如下图所示,.18.(6分)先化简,再求值:(1﹣)÷,其中a=﹣4.【解答】解:原式=×=.当a=﹣4时,原式==﹣.19.(8分)如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF,求证:四边形ABCD是平行四边形.【解答】证明:∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,∵AD∥BC,∴∠ADE=∠CBF,在Rt△AED和Rt△CFB中,∵,∴Rt△AED≌Rt△CFB(AAS),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.20.(8分)不透明口袋中装有1个红球和2个白球,这些球除颜色外无其他差别.从口袋中随机摸出1个球,放回搅匀,再从口袋中随机摸出1个球,用画树枝状图或列表的方法,有两次摸到的球都是白球的概率.【解答】解:如图所示:,共有9种等可能的结果数,“两次摸到的球都是白球”的结果数为4,所以两次摸到“两次摸到的球都是白球”的概率=.21.(8分)我市组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定,现随机抽取部分学生书法作品的评定结果进行统计,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?【解答】解:(1)这次抽取的样本容量为24÷20%=120;(2)C等级人数为120×30%=36(份),D等级人数为120﹣(24+48+36)=12(份),补全条形图如下:(3)750×=450(份),答:估计参赛作品达到B级以上(即A级和B级)有450份.22.(8分)图,一居民楼底部B与山脚P位于同一水平线上,小李在P处测得居民楼顶A的仰角为60°,然后他从P处沿坡角为45°的山坡向上走到C处,这时,PC=30m,点C与点A恰好在同一水平线上,点A、B、P、C在同一平面内.(1)求居民楼AB的高度;(2)求C、A之间的距离.(结果保留根号)【解答】解:(1)如图,过点C作CE⊥BP于点E,在Rt△CPE中,∵PC=30m,∠CPE=45°,∴sin45°=,∴CE=PC•sin45°=30×=15m,∵点C与点A在同一水平线上,∴AB=CE=15m,答:居民楼AB的高度为15m;(2)在Rt△ABP中,∵∠APB=60°,∴tan60°=,∴BP==5m,∵PE=CE=15m,∴AC=BE=15+5(m),答:C、A之间的距离为(15+5)m.23.(10分)如图,一次函数y=kx+b分别交y轴、x轴于C、D两点,与反比例函数y=(x>0)的图象交于A(m,8),B(4,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣<0的x的取值范围;(3)求△AOB的面积.【解答】解:(1)∵反比例函数y=(x>0)的图象经过A(m,8),B(4,n)两点,∴8m=8,4n=8,解得m=1,n=2,∴A(1,8),B(4,2),代入一次函数y=kx+b,可得,解得,∴一次函数的解析式为y=﹣2x+10;(2)由图可得,kx+b﹣<0的x的取值范围是0<x<1或x>4;(3)在y=﹣2x+10中,令y=0,则x=5,即D(5,0),∴OD=5,∴△AOB的面积=△AOD的面积﹣△BOD的面积=×5×8﹣×5×2=15.24.(10分)如图,AB为⊙O的直径,AB的长是4,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若cos∠DAC=,求弧BC的长.【解答】(1)证明:连接OC,∵DC是⊙O的切线,∴OC⊥DC,∵AD⊥CD,∴AD∥OC,∴∠DAC=∠OCA,∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OAC,即AC平分∠DAB;(2)∵∠DAC=∠OAC,cos∠DAC=,∴∠CAB=30°,∴∠BOC=60°∵AB=4,∴OA=2,∴弧BC的长为: =π.25.(10分)某商场将原来每件进价80元的某种商品按每件100元出售,一天可出售100件,后来经过市场调查,发现这种商品单价每降低2元,其销量可增加20件.(1)求商场经营该商品原来一天可获利多少元?(2)若商场经营该商品一天要获得利润2160元,则每件商品应降价多少元?【解答】解:(1)商场经营该商品原来一天可获利(100﹣80)×100=2000元;(2)设每件商品应降价x元.(20﹣x)(100+10x)=2160,(x﹣2)(x﹣8)=0,解得x1=2,x2=8.答:每件商品应降价2元或8元.26.(10分)如图,抛物线y=x2+bx+c与x轴分别交于A(1,0),B (5,0)两点.(1)求抛物线的解析式;(2)过点C(﹣3,0)在x轴下方作x轴的垂线,再以点A为圆心、5为半径长画弧,交先前所作垂线于D,连接AD(如图),将Rt△ACD 沿x轴向右平移m个单位,当点D落在抛物线上时,求m的值;(3)在(2)的条件下,当点D第一次落在抛物线上记为点E,点P 是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【解答】解:(1)抛物线的解析式为y=(x﹣1)(x﹣5),即y=x2﹣6x+5;(2)∵AD=5,AC=1+3=4,∴CD==3,∴D(﹣3,﹣3),过点D作x轴的平行线交抛物线于点E、F,如图,当y=﹣3时,x2﹣6x+5=﹣3,解得x1=2,x2=4,则E(2,﹣3),F(4,﹣3),∴ED=2﹣(﹣3)=5,FD=4﹣(3)=7,∴m的值为5或7;(3)抛物线的对称轴为直线x=3,则P点的横坐标为3,E(2,﹣3),B(5,0),若四边形EBQP为平行四边形,点E向右平移3个单位,向上平移3个单位得到B点,则点P向右平移3个单位,向上平移3个单位得到Q点,所以点Q的横坐标为6,当x=6时,y=x2﹣6x+5=5,此时Q(6,5);若四边形EBP′Q′为平行四边形,点B向左平移3个单位,向下平移3个单位得到E点,则点P′向左平移3个单位,向下平移3个单位得到Q′点,所以点Q的横坐标为0,当x=0时,y=x2﹣6x+5=5,此时Q′(0,5);若四边形EP″BQ″为平行四边形,点P″向左平移1个单位可得到E 点,则点B向左平移1个单位可得到Q″点,所以点Q的横坐标为4,当x=4时,y=x2﹣6x+5=﹣3,此时Q′(4,﹣3),综上所述,Q点的坐标为(4,﹣3)或(0,5)或(6,5).27.(14分)如图①,直线y=﹣x+8与x轴交于点A,与直线y= x交于点B,点P为AB边的中点,作PC⊥OB与点C,PD⊥OA于点D.(1)填空:点A坐标为(8,0),点B的坐标为(4,4),∠CPD度数为120°;(2)如图②,若点M为线段OB上的一动点,将直线PM绕点P按逆时针方向旋转,旋转角与∠AOB相等,旋转后的直线与x轴交于点N,试求MB•AN的值;(3)在(2)的条件下,当MB<2时(如图③),试证明:MN=DN﹣MC;(4)在(3)的条件下,设MB=t,MN=s,直接写出s与t的函数表达式.【解答】解:(1)如图①中,对于直线y=﹣x+8,令y=0,解得x=8,可得A(8,0),由,解得,∴B(4,4),∴tan∠BOA==,∴∠BOA=60°,∵PC⊥OB与点C,PD⊥OA于点D,∴∠PCO=∠PDO=90°,∴∠CPD=120°,故答案为(8,0),(4,4),120°.(2)如图②中,∵OA=OB=8,∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=8,∠OBA=∠OAB=60°,∴PA=PB=4,∵∠APM=∠APN+∠MPN=∠PMB+∠PBM,∵∠MPN=∠PBM=60°,∴∠APN=∠PMB,∴△PAN∽△MBP,∴=,∴MB•AN=4×4=16.(3)如图③中,在DO上截取DK=MC,连接OP.∵OB=OA,PB=PA,∴∠POB=∠POA,∵PC⊥OB与点C,PD⊥OA于点D,∴PC=PD,∵∠PCM=∠PDK=90°,MC=DK,∴△PCM≌△PDK,∴PM=PK,∠CPM=∠DPK,∴∠MPK=∠CPD=120°,∵∠MPN=60°,∴∠MPN=∠KPN=60°,∵PN=PN,∴△PNM≌△PNK,∴MN=KN=DN﹣DK=DN﹣CM.(4)如图③中,由(2)可知:AN=,易知BC=AD=2,∵MN=DN﹣CM,∴MN=(AN﹣AD)﹣(BC﹣BM),∴S=﹣2﹣(2﹣t)=+t﹣4(0<t<2).。

2022年江苏省南京市中考数学模拟测试试卷附解析

2022年江苏省南京市中考数学模拟测试试卷附解析

2022年江苏省南京市中考数学模拟测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.有甲、乙两把不同的锁,各配有 2 把钥匙,共4把钥匙,那么从这4把钥匙中任意取2把钥匙,能同时打开甲、乙两把锁的概率是( )A .12B .23C .34 D .562.如图,在△ABC 中,∠ACB = 90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC = 3cm ,BC = 2cm ,则AE+DE 的值为( )A .2cmB .3cmC .4cmD .5cm 3. 已知关于x 的方程220x kx k +-=的一个根是2-,则k 的值是( ) A . 13±B .13-±C . 15±D . 15-± 4.已知10x m =,10y n =,则2x 310y +等于( ) A .23m n + B .22m n + C .6mn D .23m n 5.如图,一块三边形绿化园地,三角都做有半径为R 的圆形喷水池,则这三个喷水池占去的绿化园地(阴影部分)的面积为( )A .212R πB .2R πC .22R πD .不能确定6.某商店销售一批服装,每件售价 150 元,可获利 25%,求这种服装的成本价. 设这种服装的成本价为x 元,则得到方程( )A .15025%x =⨯B .25%150x ⋅=C .15025%x x -=D .15025%x -=7.两个偶数的平方差一定是( )A .2B .4C .8D . 4 的倍数 8.如图,直线AB 、CD 相交于点0,EO ⊥AB 于点0,则图中∠1与∠2的关系是( )A .相等B .互余C .互补D .没有关系9.如图,左端所示物体的俯视图是( )A .B .C .D .二、填空题10.如图,已知AB 是⊙O 的直径,弦CD AB ⊥,22AC =,1BC =,那么sin ABD ∠的值是 .11.小明晚上去运动场玩,运动场门口有一盏路灯,小明笔直向运动场门口走去,小明的影子将变得越来越 (填“长”或“短”),当小明刚好走到路灯的正下方时,他驹影子将 . 12.如图中的=x _________.13.如图,AB 、CD 是⊙O 的直径,已知∠AOC :∠BOC =1:2,则∠ADC= ,∠BDC= ,∠ADB= .14.如图所示,把一张长方形纸片ABCD 沿EF 折叠后,ED 与BC 的交点为G ,点D ,C 分别落在D ′,C ′位置,若∠EFG=55°,则∠l= , ∠2= .15.如图所示,□ABCD 中,AB=8 cm ,64ABCD S =cm 2,OE ⊥AB 于E ,则OE= cm .16.已知221y x x =--,则y x= . 17.商店买进一批总价为1530元的衣服,第一天以每件20元的价格销售l6件,以后以每件22.5元的价格出售,至少要再卖件才能获利.18.如图所示,已知AB∥CD,∠1=48°,∠D=∠C,则∠B= .19.如图所示,点B在AE上,且∠CAB=∠DAB,要使△ABC≌△ABD,可补充的一个条件是(写一个即可):.20.如图所示,四边形ABCD为正方形,它被虚线分成了9个小正方形,则△DBE与△DEC 的面积之比为.21.如图所示,△ABC中,∠B=∠C,FD⊥BC于D,DE⊥AB于E,∠AFD=155°,则∠EDF= .22.在统计分析数据时,常用的统计图有.三、解答题23.如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.24.如图,△ABC是正三角形,曲线CDEF……叫做“正三角形的渐开线”,其中⌒CD.⌒DE.⌒EF……的圆心依次按A、B、C循环,并依次相连结. 如果 AB=1,求曲线CDEF的长.25.如图,△ABC 中,∠A =∠ B,若 CE平分外角∠ACD,则CE∥AB.试说明理由.26.根据下列条件列方程,并求出方程的解:(1)某数的13比它本身小 6,求这个数;(2)一个数的 2倍与 3 的和等于这个数与 7的差.27.探索:2(1)(1)1x x x-+=-,23(1)(1)1x x x x-++=-,324-+++=-,x x x x x(1)(1)14325-++++=-,(1)(1)1x x x x x x(1)试求65432++++++的值;2222221(2)判断20092008200720062+++++++的值的个位数是几?222222128.一种空调2月份售价是a元,5月份售价上浮10%,10月份又比5月份下调10%.(1)用代数式分别表示5月份和10月份的售价;(2)几月份去购买这种空调比较便宜?为什么?29.有理数 a、b、c 在数轴上的对应点如图所示,化简||||||--+--.a b a c b c2c30.已知 a、 b 521024--+,求a和b 的值.a a b【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.D4.D5.A6.C7.D8.B9.C二、填空题10.311. 短,最短12.213.30°60°,90°14.70°,ll0°15.416.21 17. 5418.132°19.AC=AD 或∠C=∠D 等20.1:221.65°22.条形统计图,折线统计图,扇形统计图三、解答题23.(1)略 (2) B ′(-6,2),C ′(-4,-2) (3)M ′(-2x .-2y). 24.⌒CD 的长120211803ππ⨯=,⌒DE 的长120421803ππ⨯=,⌒EF 的长12032180ππ⨯= 曲线 CDEF 的长为4π25.说明∠ACD=∠A+∠B ,再由∠A=∠B ,CE 平分∠ACD 可得∠B=∠ECD26.列方程略 (1)9 (2)-1027.(1)6543265427++++++=-++++++=-;2222221(21)(2222221)21(2)因为200920082007200622010++++++=-,又2,22,32,42…的个位数字按2+22222121照2,4,8,6的顺序进行循环,2010÷4= 502……2,故20102的个位数字与22的个位数相同,即为4,所以20092008200720062++++++的值的个位数字是 3.2+22222128.(1)1.1a,0.99a;(2)10月29.2c30.a= 5 ,b= -4。

2022年江苏省南京市中考数学模拟考试试题附解析

2022年江苏省南京市中考数学模拟考试试题附解析

2022年江苏省南京市中考数学模拟考试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知二次函数y =x 2-x +a (a >0),当自变量x 取m 时,其相应的函数值小于0,那么下列结论中正确的是( )A .m -1的函数值小于0B .m -1的函数值大于0C . m -1的函数值等于0D .m -1的函数值与0的大小关系不确定2.如图,ABCD 是平行四边形,则图中与DEF △相似的三角形共有( )A .1个B .2个C .3个D .4个 3.二次函数22(1)4y x =-+-的最大值是( ) A .2- B .4C .1-D .-4 4.22x py =中,下列说法正确的是 ( )A .x 是变量,y 是常量B .x ,p ,y 全是变量C .x 、y 是变量,2p 是常量D .2、p 是常数 5. 已知多项式22x bx c ++分解因式为2(3)(1)x x -+,则b ,c 的值为( )A .3b =,1c =-B .6b =-,2c =-C .6b =-,4c =-D .4b =-,6c =- 6.AD 是△ABC 中BC 边上的中线,若AB =4,AC =6,则AD 的取值范围是( ) A .AD >1B .AD <5C .1<AD <5 D .2<AD <10 7..如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有乙D .只有丙 8.若 x ,y 是正整数,且5222x y ⋅=,则x ,y 的值有( ) A .4 对 B .3 对 C .2 对 D .1 对 二、填空题9.计算:2sin303cos60tan 45o o O -+的结果是 .10.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小 (填 “相同”、“不一定相同”、“不相同”之一).11.如图,点A ,B ,D 在⊙O 上,25A =∠,OD 的延长线交直线BC 于点C ,且40OCB =∠,直线BC 与⊙O 的位置关系为_________.12.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是 .13.自由下落物体的高度h (米)与下落的时间t (秒)的关系为24.9h t =.现有一铁球从离地面19.6米高的建筑物的顶部作自由下落,到达地面需要的时间是 秒. 解答题 14.有下列函数:A.22y x =-,B .2y x =-,C.213y x =-,D.25y x = (1)当x ≠0时,函数图象上的点在x 轴上方的有 .(2)图象开口向下的有 ..(3)对称轴是 y 轴的有 .(4)当 =0 时,函数图象有最高点的是 .15.如图,有四个立方体,每个立方体的表面都分别按相同次序涂黑、白、红、黄、蓝、绿六色,将四个立方体叠放在一起,只能看到它们的部分颜色,则这个几何体最左边的一个面的颜色是 色.解答题16.在一个袋中,装有十个除数字外其它完全相同的小球,球面上分别写有1,2,3,4,5这5个数字. 小芳从袋中任意摸出一个小球,球面数字的平方根是无理数的概率是 .17.下图是把一个长为3 cm 、宽为1 cm 的长方形绕某点旋转90°后所得,则阴影部分的面积为 .18.三个连续奇数,若中间一个是n ,则其余两个分别是 , 这三个数的和是 .19.已知 x= 2007,则22231()(2)122x x x --+-+= .20.用计算器求3.2+0.8时,按键顺序是: . 三、解答题21.一口袋中装有四根长度分别为1cm ,3cm ,4cm 和5cm 的细木棒,小明手中有一根长度为3cm 的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,回答下列问题:(1)求这三根细木棒能构成三角形的概率;(2)求这三根细木棒能构成直角三角形的概率;(3)求这三根细木棒能构成等腰三角形的概率.22.如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?23.为了改善人民的生活环境,某市建设了污水管网,某圆柱形污水管的截面如图所示,若管内污水的水面宽为0.8米,污水的最大深度为0.2米,求此污水管截面的直径。

2024年江苏省南京市鼓楼区中考数学一模试卷(含解析)

2024年江苏省南京市鼓楼区中考数学一模试卷(含解析)

2024年江苏省南京市鼓楼区中考数学一模试卷一、选择题:本题共6小题,每小题2分,共12分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.能与−2相加得0的数是( )A. 2B. −2C. 12D. −122.下列正确的是( )A. 4+9=2+3B. 4×9=2×3C. 94=32D. 4.9=0.73.整数372310…0用科学记数法表示为3.7231×1011,则原数中0的个数为( )A. 5B. 6C. 7D. 84.下列图形是三棱柱展开图的( )A. B.C. D.5.若m≠n,则下列化简一定正确的是( )A. m+3n+3=mnB. m−3n−3=mnC. m3n3=mnD. 3m3n=mn6.如图为某射击场35名成员射击成绩的条形统计图(成绩均为整数),其中部分已破损.若他们射击成绩的中位数是5环,则下列数据中无法确定的是( )A. 3环以下(含3环)的人数B. 4环以下(含4环)的人数C. 5环以下(含5环)的人数D. 6环以下(含6环)的人数二、填空题:本题共10小题,每小题2分,共20分。

7.若x+2y=5,则3x+6y−1的值是______.8.若分式xx−2在实数范围内有意义,则x的取值范围是______.9.计算3+12的结果是______.10.若圆锥的母线长为2,底面圆的半径为1,则它的侧面积是______.11.若a n+a n⋯+a na个a n=a4(a为大于1的整数),则n的值是______.12.一组数据x,2,3的平均数是3,这组数据的方差是______.13.如图,四边形ABCD是矩形,根据尺规作图痕迹,计算∠1的大小为______.14.如图,正八边形ABCDEFGH的半径为4,则它的面积是______.15.关于x的方程(x−n)2+2(x−n)+2=m(m>1)的两根之和是______.16.如图,已知点A(1,0)、B(5,0),点C在y轴上运动.将AC绕A顺时针旋转60°得到AD,则BD的最小值为______.三、解答题:本题共11小题,共88分。

最新江苏省南京市中考数学模拟考试试卷附解析

最新江苏省南京市中考数学模拟考试试卷附解析

江苏省南京市中考数学模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图①表示正六棱柱形状的高大建筑物,图②中的阴影部分表示 该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在( )A .P 区域B .Q 区域C .区域D .区域2.如图,已知 PA 为⊙O 的切线,A 为切点,PBC 为过圆心0 的割线,DB ⊥PC 于点B ,DB=3 ㎝,PB=4cm ,则⊙O 的直径为( )A .10 cmB .12 cmC .16 cmD .20 cm3.如图所示,CD 是一个平面镜,光线从A 点射出经CD 上的E 点反射后照射到B 点,设入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C ,D .若AC=3,BD=6,CD=12,则tan α的值为( )A .34B .43C .54D .53 4.二次函数y=x 2-2x +1与坐标轴轴的交点个数是( ) A . 0 B . 1C . 2D . 3 5.如图,在⊙O 内弦 AB 的弦心距 OD=12OA ,OA 是半径,且OA=2cm ,则图中阴影部分的面积为( )A .2(3)3π cm 2B .4(3)3π- cm 2 C .3(π cm 2 D .(23)π cm 26.二次根式1a -中字母a 的取值范围是( )A .1a <B .1a >C .1a ≤D .1a ≥7.下列语句中正确的是 ( )A .四边形的外角和为720°B .四边形的外角和大于内角和C .四边形的外角和小于内角和D .四边形的内角和等于外角和,都为360°8.如图,D ,E ,F 分别是等边△ABC 各边上的点,且AD=BE=CF ,△DEF 的形状是()A .等边三角形B .腰和底边不相等的等腰三角形C .直角三角形D .不等边三角形9.如图,下列条件不能判定直线a b ∥的是( )A .12∠=∠B .13∠=∠C .14180∠+∠=D .24180∠+∠=10.将△ABC 的三个顶点的纵坐标乘以-1,横坐标不变,则所得图形与原图形的关系是 ( )A .关于x 轴对称B .关于y 轴对称C .原图形向x 轴负方向平移1个单位D .原图形向y 轴负方向平移1个单位11.不等式组2130x x≤⎧⎨+>⎩的解在数轴上可表示为( )A .B .C .D .12.计算220(2)2(2)----+-得( )A .9B .112C .1D .12 13.解方程中,移项的依据是( )A .加法交换律B .乘法分配律C .等式性质1D .等式性质 2二、填空题14.如图,在这三张扑克牌中任意抽取一张,抽到“黑红桃7”的概率是 .15.已知矩形的面积为 24㎝2,那么矩形的长y(㎝)与宽 x(cm)之间的函数解析式为 ,比例系数是 .16.如图,在直角梯形ABCD 中,AB//CD ,AD ⊥CD ,AB=1cm ,AD=2cm ,CD=4cm , 则BC= .17. 若 2 是关于x 的方程220a x -=的根,则 a= .18.若x +x 1=3,则x 2+21x =___________. 19.若n mx x ++2是一个完全平方式,则n m 、的关系是 .20.地球上的海洋面积约为3.6×108 km 2 ,则这个数为 km 2.三、解答题21.当x =2-10 时,求x 2-4x -6的值.22.如图,在四边形ABCD 中,AD ∥BC ,BE ⊥AC ,DF ⊥AC ,E ,F 分别为垂足,且∠CDF=∠ABE ,试说明四边形BEDF 是平行四边形.23.填空:已知:如图,AD ⊥BC 于D ,EF ⊥BC 于F ,交AB 于G ,交CA 延长线于E ,∠1=∠2. 求证:AD 平分∠BAC ,(填写分析和证明中的空白).分析:要证明AD 平分∠BAC ,只要证明 = ,而已知∠1=∠2,所以应联想这两个角分别和∠1、∠2的关系,由已知BC 的两条垂线可推出 ∥ ,这时再观察这两对角的关系已不难得到结论.A B CD E G 12证明:∵AD ⊥BC ,EF ⊥BC (已知)∴ ∥ ( )∴ _= __(两直线平行,内错角相等),_= _(两直线平行,同位角相等)∵ (已知)∴ ,即AD 平分∠BAC ( )24.某城市在1990年为了尽快改善职工住房条件,积极鼓励个人购买和积累住房基金,决定住公房的职工按基本工资的高低交纳住房公积金,办法如下表:(1)时,y 与x 之间的关系式;(2)若小军的妈妈每月基本工资为200元,问她每月交纳公积金为多少元?(3)若小明的妈妈每月交纳公积金为4元,问她每月基本工资为多少元?25.从甲、乙、丙三个厂家生产的同一种产品中,各抽出8件产品,对其使用寿命进行跟踪调查,结果如下(单位:年):甲:3,4,5,6,8,8,8,10;乙:4,6,6,6,8,9,12,13;丙:3,3,4,7,9,10,11,12.三家在广告中都称该种产品的使用寿命是8年,请根据调查结果判断厂家在广告中分别运用了平均数、众数、中位数的的哪一种集中趋势的特征数.26.代数式24a+加上一个单项式后,可构成一个完全平方式,请写出这个单项式(要求写出 5个).27.在y kx b=+中,当 x=2 时,y=8;当 x=-1时,y=-7,求k,b 的值.28.已知数轴上的点A、B、C,它们所表示的数分别是+4,—6,x.(1)求线段AB的长;(2)求线段AB的中点D所示的数;(3)若AC=5,求x的值;(4)求线段OD(O为原点)的长;29.已知方程11852()6196x++=,求代数式8830()19x-+的值.30.试说明不论 x、y取何值时,代数式322333222332 (3561)(222)(4731) x x y xy y x y xy x y x y y x xy+-++------+---的值是一个常数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.A4.C5.B6.D7.D8.A9.C10.A11.AC13.C二、填空题14.31 15. 24y x=,24 16.13 17.2±18.719.042=-n m 20.360000000三、解答题21.22.方法不唯一,如:先证四边形ABCD 为□,再证 //DF BE23.∠BAD=∠CAD ,EF ∥AD ,EF ∥AD ,在同一平面内,垂直于同一条直线 两直线平行,∠1=∠BAD ,∠2=∠CAD ,∠1=∠2,∠BAD=∠CAD ,角平分线的定义.24.(1)y=0.05x-5(100<x ≤200);(2)5元;(3)180元25.甲使用了众数,乙使用了平均数,丙使用了中位数26.如4a ,4a -,4116a ,2a -5k , b=-228.(1)10;(2)-1;(3)9或-1;(4)1 29.-230.4。

最新江苏省南京市中考数学模拟试卷附解析

最新江苏省南京市中考数学模拟试卷附解析

江苏省南京市中考数学模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.某电视台举行歌手大奖赛,每场比赛都有编号为 1~10 号共 10 道综合素质测试题供选手随机抽取作答. 在某场比赛中,前两位选手分别抽走了2 号、7号题,第3位选手抽中8 号题的概率是()A.110B.19C.18D.172.若 3x=4y,则x:y等于()A.3 : 4 B.4 : 3 C.11:34D.11:433.下列语句是命题的有()①若a2=a,则a>0;②延长线段AB到C,使B是AC的中点;③一条直线的垂线只有一条;④如果两个角的两边互相平行,那么这两个角相等.A.1个B.2个C.3个D.4个4.下列命题是真命题的是()A.三角形、四边形不是多边形B.内角和等于外角和的多边形不存在C.若多边形的边数增加,则它的外角和也增加D.若多边形边数减少,则其内角和也减少5.化简:255的结果正确是()A.1105B.2510C.2D.10 6.下列函数解析式中,是一次函数的有()①2yx=;②22y x=--;③22xy=+;④122y x=-.A.1个B.2个C.3个D.4个7.用科学记数法表示0.000 0907,并保留两个有效数字,得()A.49.110-⨯B.59.110-⨯C.59.010-⨯D.59.0710-⨯8..如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙9.任何一个三角形的三个内角中至少有()A .一个角大于60°B .两个锐角C .一个钝角D .一个直角二、填空题10.若等腰三角形的顶角为 120°,腰长2cm ,则周长为 cm . 11.若函数y=(m+1)231m m x ++是反比例函数,则m 的值为 .-212.数3和12的比例中项是 _.13.若抛物线22y x x m =-+ 与x 轴有两个交点,那么m 的取值范围是 .14.已知反比例函数1m y x-=的图象具有下列特征:在各个象限内,y 的值随着x 的增大而增大,则 m 的取值范围是 .15.菱形的周长是8 cm ,高是1cm ,则菱形各角的度数为 , , , .16.将方程2580x x --=化为2()x m n +=的形式应为 .17.7公斤桃子的价钱等于1公斤苹果与 2公斤梨的价钱和;7公斤苹果的价钱等于10公 斤梨与1公斤桃子的价钱和,则购买12公斤苹果所需的钱可以购买梨 公斤.18.如图所示,数学课中,老师让两个同学在黑板上做游戏,老师发给两个同学每人一个一模一样的圆形纸片,让他们想办法在黑板上的甲,乙两个长方形外部画一个圆 ( 即圆形纸上覆盖整个长方形),请问谁获胜的可能性要大?理由: .19.经过已知直线上的一点,画这条直线的平行线,能画 条;经过已知直线外一点,画已知直线的平行线,有且只有 条. 解答题20.如图,把△ABC 沿虚线剪一刀,若∠A=40°,则∠l+∠2= .21.判断线段相等的定理(写出2个) ; .三、解答题22.先确定图中路灯灯泡的位置,再根据小浩的影子画出表示小浩身高的线段.23.如图,海中有一个岛 P,已知该岛四周 10 海里内有暗礁.今有货船在A 点由西向东航行,开始望见此岛在北偏东 60°方向,行20 海里到达B后,见此岛在北偏东 30°方向,如货船不改变航向继续前进,问此船有无触礁的危险?24.根据下列条件,说明过点 A.B、C能否画圆,并说明理由.(1)AB=8cm,AC=5cm,BC=3cm;(2)AB=6cm,AC=6cm,BC=6cm;(3)AB=6cm,AC=8cm,BC=10 cm25.试写出一个实际生活中的反比例函数.26.如图所示,在△ABC中,EH是中位线,延长BC至D,使CD=12BC,求证:HC与DE互相平分.27.某礼堂共有30排座位,第1排共有20个座位,后面每一排比前一排多2个座位,则(1)第5排、第10排分别有几个座位?(2)若某一排有54个座位,则应是第几排?(3)写出每排的座位数m与这排的排数n之间的关系式,并指出这个问题中的常量和变量.28.如图①、②、③,图中点E,D分别是正△ABC、正方形ABCM、正五边形 ABCMN中以C点为顶点的相邻两边上的点,且BE=CD,DB交AE 于P点.(1)求图①中,∠APD的度数;(2)图②中,∠APD的度数为,图③中,∠APD的度数为;(3)根据前面的探索,你能否将其推广到一般的正n边形中?若能,写出推广问题和结论;若不能,请说明理由.29.如图,在直线a,b,c,d 构成的角中,已知∠1 =∠3,∠2=110°,求∠4 的度数.30.计算:(1)105-++;(2)162-÷.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.D5.D6.C7.B8.C9.B二、填空题10.4 .12. 6± 13.m<114.m<115.30°,l50°,30°,l50°16.2557()24x -=17.1818.乙;从大小看,甲大于乙,所以覆盖的机会小19.0,120.220°21.全等三角形的对应边相等;在一个三角形中,等角对等边三、解答题 22.如上图所示.P 为路灯灯泡,AB 即为小浩的身高.23.作 PC ⊥AB 于点C,tan 60o AC PC =⋅,tan30o BC PC =⋅, 由0(tan 60tan 30)o AC BC PC -=-,从而2010310233PC ==,∴此船无触礁的危险.24.(1)不能,因为 A.B、C三点在同一直线上;(2)、(3)能,不在同一直线上的三点确定一个圆.25.化肥厂生产化肥的总任务一定时,每天生产化肥 y(吨)和生产天数 x(天)之间成反比例关系26.连结EC,HD,证明EH,CD平行且相等,可得四边形ECDH是平行四边形,得HC,DE 互相平分27.(1)28个,38个;(2)18排;(3)m=20+2(n-1)(1≤n≤30且n为正整数);常量为20,2,1;变量为m,n28.(1)∠APD=60° (2)90°,108° (3)若点E,D分别是正n边形ABC……M中以 C为顶点的相邻的两邻边上的点,且BE=CD,DB交AE于P点,则∠APD=0 (2)180 nn-⨯29.110°30.(1)15;(2)12。

2024年江苏省南京市联合体中考数学模拟试卷(二)(含答案)

2024年江苏省南京市联合体中考数学模拟试卷(二)(含答案)

2024年江苏省南京市联合体中考数学模拟试卷(二)一、选择题:本题共6小题,每小题2分,共12分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.9的平方根是( )A. ±3B. 3C. ± 3D. 32.下列运算正确的是A. x 5+x 5=x 10B. x 5÷x 5=xC. x 5·x 5=x 10D. (x 5)5=x 103.m = 15的取值范围是( )A. 1<m <2B. 2<m <3C. 3<m <4D. 4<m <54.如图,菱形ABCD 的边长是2,E 是AB 的中点,且DE ⊥AB ,则菱形ABCD 的面积为( )A. 3B. 2 3C. 32D. 4 35.实数a ,b 满足a <0,a 2>b 2,下列结论:①a <b ,②b >0,③1a <1b ,④|a|>|b|.其中所有正确结论的序号是( )A. ①④B. ①③C. ②③D. ②④6.如图,在Rt △ABC 中,∠ABC =90°,BD 为⊙O 的切线,D 为切点,DA =DE ,则△ABD 和△CDE 的面积之比为( )A. 13B. 12C. 22D. 2−1二、填空题:本题共10小题,每小题2分,共20分。

7.−2的倒数是______;−2的相反数是______.8.若式子 x +1在实数范围内有意义,则x 的取值范围是______.9.计算5× 12 3的结果是______.10.方程1x−2=3x 的根是______.11.正方形ABCD内接于⊙O,E是AD的中点,连接BE、CE,则∠ABE=______°.12.如图,将△ABC绕点B顺时针旋转到△DBE的位置.连接AD,若∠ADB=60°,则∠1=______°.13.已知二次函数y=ax2+bx+c的部分图象如图所示,则关于x的方程ax2+bx+c=0的两个根的和为______.14.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元.15.如图,正十边形的两条对角线AB,CD交于点P,则∠APD=______°.16.如图,在矩形ABCD中,AB=6,BC=8,E是边BC上的动点,连接AE,过点E作EF⊥AE,与CD边交于点F,连接AF,则AF的最小值为______.三、计算题:本大题共1小题,共6分。

南京市初三中考数学一模模拟试题【含答案】

南京市初三中考数学一模模拟试题【含答案】

南京市初三中考数学一模模拟试题【含答案】一、选择题(每小题3分,共30分)1.(3分)下列各数中,比﹣1大的数是()A.B.﹣2 C.﹣3 D.02.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b25.(3分)如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD 交于点E,连接BE,则BE的值为()A.B.2C.3D.46.(3分)在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是()A.84分B.87.6分C.88分D.88.5分7.(3分)如图,平行四边形ABCD的对角线AC平分∠BAD,若AC=12,BD=16,则对边之间的距离为()A.B.C.D.8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.(3分)如图①,在矩形ABCD中,AB>AD,对角线AC、BD相交于点O,动点P由点A 出发,沿AB→BC→CD向点D运动,设点P的运动路径为x,△AOP的面积为y,图②是y 关于x的函数关系图象,则AB边的长为()A.3 B.4 C.5 D.6二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.14.(3分)如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(75分)16.(8分)先化简,再求值:,其中x=4|cos30°|+317.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B 级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?18.(9分)如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.(1)求证:BD是⊙O的切线.(2)若AB=,E是半圆上一动点,连接AE,AD,DE.填空:①当的长度是时,四边形ABDE是菱形;②当的长度是时,△ADE是直角三角形.19.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.20.(9分)如图①,②分别是某款篮球架的实物图和示意图,已知支架AB的长为2.3m,支架AB与地面的夹角∠BAC=70°,BE的长为1.5m,篮板部支架BD与水平支架BE的夹角为46°,BC、DE垂直于地面,求篮板顶端D到地面的距离.(结果保留一位小数,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?22.(10分)(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA=1,PB=,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为;在△PAP′中,易证∠PAP′=90°,且∠PP′A的度数为,综上可得∠BPC的度数为;(2)类比迁移如图2,点P是等腰Rt△ABC内的一点,∠ACB=90°,PA=2,PB=,PC=1,求∠APC 的度数;(3)拓展应用如图3,在四边形ABCD中,BC=3,CD=5,AB=AC=AD.∠BAC=2∠ADC,请直接写出BD的长.23.(11分)如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE ⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、﹣<﹣1,故本选项不符合题意;B、﹣2<﹣1,故本选项不符合题意;C、﹣3<﹣1,故本选项不符合题意;D、0>﹣1,故本选项,符合题意;故选:D.2.【解答】解:44亿=4.4×109.故选:B.3.【解答】解:该几何体的主视图为:故选:C.4.【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.5.【解答】解:由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,∵AB=2DE,作EH⊥BC交BC的延长线于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=CE=1,EH=CH=,在Rt△BEH中,BE==2,故选:B.6.【解答】解:张敏的成绩是:=87.6(分),故选:B.7.【解答】解:设AC,BD交点为O,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,又∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BCA=∠BAC,∴AB=BC,∴平行四边形ABCD是菱形;∵四边形ABCD是菱形,且AC=12、BD=16,∴AO=6、BO=8,且∠AOB=90°,∴AB==10,∴对边之间的距离==,故选:C.8.【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.9.【解答】解:连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3,∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°,∵点E为AD的中点,∴AE=DE,∴GE=DE,在Rt△DEF和Rt△GEF中,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5,在Rt△OBF中,OF=1,BF=5,∴OB==2,∵GH∥OB,∴△FGH∽△FBO,∴==,即==,∴GH=,FH=,∴OH=OF﹣HF=1﹣=,∴G点坐标为(,).故选:B.10.【解答】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB>BC,所以AB=4.故选:B.二、填空题(每小题3分,共15分)11.【解答】解:原式=2﹣4+4=2,故答案为:2.12.【解答】解:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4,∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,﹣2≤x≤3,y随x的增大而增大,∴a﹣4=﹣3,∴a=1,故答案为1.13.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为8,所以两次抽取的卡片上数字之和为偶数的概率为=,故答案为:.14.【解答】解:连接BG,CG∵BG=BC=CG,∴△BCG是等边三角形.∴∠CBG=∠BCG=660°,∵在正方形ABCD中,AB=4,∴BC=4,∠BCD=90°,∴∠DCG=30°,∴图中阴影部分的面积=S扇形CDG﹣S弓形CG=﹣(﹣×4×2)=4﹣,故答案为:4﹣.15.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.三、解答题(75分)16.【解答】解:原式=÷=•=,当x=4|cos30°|+3=4×+3=2+3时,原式==.17.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.18.【解答】(1)证明:如图1,连接OD,∵在Rt△ABC中,∠BAC=90°,∠C=30°,∴AB=BC,∵D是BC的中点,∴BD=BC,∴AB=BD,∴∠BAD=∠BDA,∵OA=OD,∴∠OAD=∠ODA,∴∠ODB=∠BAO=90°,即OD⊥BC,∴BD是⊙O的切线.(2)①当DE⊥AC时,四边形ABDE是菱形;如图2,设DE交AC于点M,连接OE,则DE=2DM,∵∠C=30°,∴CD=2DM,∴DE=CD=AB=BC,∵∠BAC=90°,∴DE∥AB,∴四边形ABDE是平行四边形,∵AB=BD,∴四边形ABDE是菱形;∵AD=BD=AB=CD=BC=,∴△ABD是等边三角形,OD=CD•tan30°=1,∴∠ADB=60°,∵∠CDE=90°﹣∠C=60°,∴∠ADE=180°﹣∠ADB﹣∠CDE=60°,∴∠AOE=2∠ADE=120°,∴的长度为:=π;故答案为:;②若∠ADE=90°,则点E与点F重合,此时的长度为:=π;若∠DAE=90°,则DE是直径,则∠AOE=2∠ADO=60°,此时的长度为:=π;∵AD不是直径,∴∠AED≠90°;综上可得:当的长度是π或π时,△ADE是直角三角形.故答案为:π或π.19.【解答】解:(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.20.【解答】解:延长AC、DE交于点F,则四边形BCFE为矩形,∴BC=EF,在Rt△ABC中,sin∠BAC=,∴BC=AB•sin∠BAC=2.3×0.94=2.162,∴EF=2.162,在Rt△DBE中,tan∠DBE=,∴DE=BE•tan∠DBE=1.5×1.04=1.56,∴DF=DE+EF=2.162+1.56≈3.7(m)答:篮板顶端D到地面的距离约为3.7m.21.【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450;(3)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∵点D的坐标为(18,360),∴试销售期间第18天的日销售量最大,最大日销售量是360件.22.【解答】解:(1)把△BPC绕点C顺时针旋转60°得△AP'C,连接PP′(如图1).由旋转的性质知△CP′P是等边三角形;∴P′A=PB=、∠CP′P=60°、P′P=PC=2,在△AP′P中,∵AP2+P′A2=12+()2=4=PP′2;∴△AP′P是直角三角形;∴∠P′AP=90°.∵PA=PC,∴∠AP′P=30°;∴∠BPC=∠CP′A=∠CP′P+∠AP′P=60°+30°=90°.故答案为:2;30°;90°;(2)如图2,把△BPC绕点C顺时针旋转90°得△AP'C,连接PP′.由旋转的性质知△CP′P是等腰直角三角形;∴P′C=PC=1,∠CPP′=45°、P′P=,PB=AP'=,在△AP′P中,∵AP'2+P′P2=()2+()2=2=AP2;∴△AP′P是直角三角形;∴∠AP′P=90°.∴∠APP'=45°∴∠APC=∠APP'+∠CPP'=45°+45°=90°(3)如图3,∵AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=2AB,∴DG=2BC=6,过A作AE⊥BC于E,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG===,∴BD=CG=.23.【解答】解:(1)在y=﹣x﹣3中,当y=0时,x=﹣6,即点A的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:,解得:,∴抛物线的解析式为:y=x2+x﹣3;(2)设点D的坐标为:(m,m2+m﹣3),则点F的坐标为:(m,﹣m﹣3),∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,∴S△ADC=S△ADF+S△DFC=DF•AE+•DF•OE=DF•OA=×(﹣m2﹣m)×6=﹣m2﹣m=﹣(m+3)2+,∵a=﹣<0,∴抛物线开口向下,∴当m=﹣3时,S△ADC存在最大值,又∵当m=﹣3时,m2+m﹣3=﹣,∴存在点D(﹣3,﹣),使得△ADC的面积最大,最大值为;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),直线AD′的解析式为y=x+9,由,解得或,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)中学数学一模模拟试卷一.选择题(满分24分,每小题3分)1.下列说法正确的是()A.0是无理数B.π是有理数C.4是有理数D.是分数2.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A.0.26×103B.2.6×103C.0.26×104D.2.6×1043.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b24.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.5.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180°B.∠2=∠3 C.∠4=∠5 D.∠4=∠66.解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)7.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线B.一条高C.一条角平分线D.不确定8.如图,平面内一个⊙O半径为4,圆上有两个动点A、B,以AB为边在圆内作一个正方形ABCD,则OD的最小值是()A.2 B.C.2﹣2 D.4﹣4二.填空题(满分30分,每小题3分)9.若a,b都是实数,b=+﹣2,则a b的值为.10.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是.11.因式分解:9a3b﹣ab=.12.已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.13.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.14.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是.15.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.16.反比例函数y=﹣图象上三点的坐标分别为A(﹣1,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是(用“>”连接)17.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA 的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)18.如图1,在等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC 于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为.三.解答题19.(8分)(1)计算:2cos60°﹣(﹣π)0+﹣()﹣2(2)解不等式组:,并求不等式组的整数解.20.(8分)先化简,再求值:()•(x2﹣1),其中x是方程x2﹣4x+3=0的一个根.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.23.(10分)五月初,某地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共4000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用450元购买甲种物品的件数恰好与用400元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格分别是多少元?(2)经调查,灾区对乙种物品件数需求量是甲种物品件数的3倍,若该爱心组织按照此求的比例购买这4000件物品,而筹集资金多少元?24.(10分)如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF (1)求证:四边形AEDF为菱形;(2)试探究:当AB:BC=,菱形AEDF为正方形?请说明理由.25.(10分)已知:如图,△ABC内接于⊙O,AD为⊙O的弦,∠1=∠2,DE⊥AB于E,DF ⊥AC于F.求证:BE=CF.26.(10分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.27.(12分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC 上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.28.(12分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE 上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N 是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.参考答案一.选择题1.解:A、0是有理数,所以A选项错误;B、π不是有理数,是无理数,所以B选项错误;C、4是有理数中的正整数,所以C选项正确;D、是一个无理数,所以选项D错误.故选:C.2.解:2.6万用科学记数法表示为:2.6×104,故选:D.3.解:A、4x3•2x2=8x5,故原题计算正确;B、a4和a3不是同类项,不能合并,故原题计算错误;C、(﹣x2)5=﹣x10,故原题计算正确;D、(a﹣b)2=a2﹣2ab+b2,故原题计算正确;故选:B.4.解:由主视图定义知,该几何体的主视图为:故选:A.5.解:A.由∠1+∠3=180°,∠1+∠2=180°,可得∠2=∠3,故能判断直线a∥b;B.由∠2=∠3,能直接判断直线a∥b;C.由∠4=∠5,不能直接判断直线a∥b;D.由∠4=∠6,能直接判断直线a∥b;故选:C.6.解:去分母得:1﹣x=﹣1﹣2(x﹣2),故选:D.7.解:利用作法可判断OC平分∠AOB,所以OP为△AOB的角平分线.故选:C.8.解:如图,连接OA,OB,将△OAB绕点A逆时针旋转90°得到△PAD,则OA=PD=4,∠OAP=90°,∴OP==4,∵四边形ABCD为正方形,∴AB=AD,∠DAB=99°,∴∠DBP=∠BAO,∴△DBP≌△ABO(SAS),∴PD=OA=4,∵OD+PD≥OP,∴OD≥OP﹣PD=4﹣4.故选:D.二.填空题(共10小题,满分30分,每小题3分)9.解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故a b=()﹣2=4.故答案为:4.10.解:∵AB2=32+42=25、AC2=22+42=20、BC2=12+22=5,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,则cos∠B AC==,故答案为:.11.解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故答案为:ab(3a+1)(3a﹣1)12.解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.13.解:向左转的次数45÷5=9(次),则左转的角度是360°÷9=40°.故答案是:40°.14.解:由一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,根据图象可知:x的不等式ax+b<0的解集是x<2,故答案为:x<2.15.解:底面半径是2,则底面周长=4π,圆锥的侧面积=×4π×4=8π.16.解:反比例函数y=﹣图象在二、四象限,点A在第二象限,y1>0,点B、C都在第四象限,在第四象限,y随x的增大而增大,且纵坐标为负数,所以y2<y3<0,因此,y2<y3<0<y1,即:y1>0>y3>y2.故答案为:y1>y3>y2.17.解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O ﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.18.解:由题可得,∠APD=60°,∠ABC=∠C=60°,∴∠BAP=∠CPD,∴△ABP∽△PCD,∴,设AB=a,则,∴y=,当x=时,y取得最大值2,即P为BC中点时,CD的最大值为2,∴此时∠APB=∠PDC=90°,∠CPD=30°,∴PC=BP=4,∴等边三角形的边长为8,∴根据等边三角形的性质,可得S=×82=16.故答案为:16.三.解答题(共10小题,满分96分)19.解:(1)原式=2×﹣1﹣2﹣9=1﹣1﹣2﹣9=﹣11;(2)解不等式①得:x≥﹣2,解不等式②得:x<5,∴不等式组的解集为:﹣2≤x<5,∴不等式组的整数解为﹣2,﹣1,0,1,2,3,4.20.解:()•(x 2﹣1) ==2x +2+x ﹣1=3x +1, 由x 2﹣4x +3=0得x 1=1,x 2=3,当x =1时,原分式中的分母等于0,使得原分式无意义,当x =3时,原式=3×3+1=10.21.解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).;(4)在试卷评讲课中,“独立思考”的初三学生约有:6000×=1800(人).22.解:(1)∵垃圾要按A ,B ,C 、D 类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A 类:厨余垃圾的概率为:;(2)记这四类垃圾分别为A 、B 、C 、D ,画树状图如下:由树状图知,乙投放的垃圾共有16种等可能结果,其中乙投放的两袋垃圾不同类的有12种结果,所以乙投放的两袋垃圾不同类的概率为=.23.解:(1)设甲种救灾物品每件的价格x元/件,则乙种救灾物品每件的价格为(x﹣10)元/件,可得:,解得:x=90,经检验x=90是原方程的解,答:甲单价 90 元/件、乙 80 元/件.(2)设甲种物品件数y件,可得:y+3y=4000,解得:y=1000,所以筹集资金=90×1000+80×3000=330000 元,答:筹集资金330000 元.24.(1)证明:∵AF∥ED,AE∥DF,∴四边形AEDF为平行四边形,∵四边形ABCD为矩形,∴AB=CD,∠B=∠C=90°,∵点E是边BC的中点,∴BE=CE,在△ABE和△DCE中,∴△ABE≌△DCE,∴EA=ED,∴四边形AEDF为菱形;(2)解:当AB:BC=1:2,菱形AEDF为正方形.理由如下:∵AB:BC=1:2,而点E是边BC的中点,∴AB=EA,∴△ABE为等腰直角三角形,∴∠AEB=45°,∵△ABE≌△DCE,∴∠DEC=45°,∴∠AED=90°,∵四边形AEDF为菱形,∴菱形AEDF为正方形.故答案为1:2.25.证明:连接DB、DF,∵∠A的平分线AD交圆于D,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∠DFB=∠DFC=90°,∠BAD=∠CAD,∴DB=DC,∴在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD(HL),∴BE=CF.26.解:(1)选择方案二,根据题意知点B的坐标为(10,0),由题意知,抛物线的顶点坐标为(5,5),且经过点O(0,0),B(10,0),设抛物线解析式为y=a(x﹣5)2+5,把点(0,0)代入得:0=a(0﹣5)2+5,即a=﹣,∴抛物线解析式为y=﹣(x﹣5)2+5,故答案为:方案二,(10,0);(2)由题意知,当x=5﹣3=2时,﹣(x﹣5)2+5=,所以水面上涨的高度为米.27.解:(1)设:∠ACB=∠EDC=∠α=∠CAD,∵cosα=,∴sinα=,过点A作AH⊥BC交于点H,AH=AC•sinα=6=DF,BH=2,如图1,设:FC=4a,∴cos∠ACB=,则EF=3a,EC=5a,∵∠EDC=∠α=∠CAD,∠ACD=∠ACD,∴△ADC∽△DCE,∴AC•CE=CD2=DF2+FC2=36+16a2=10•5a,解得:a=2或(舍去a=2),AD=HF=10﹣2﹣4a=;(2)过点C作CH⊥AD交AD的延长线于点H,CD2=CH2+DH2=(AC sinα)2+(AC cosα﹣x)2,即:CD2=36+(8﹣x)2,由(1)得:AC•CE=CD2,即:y=x2﹣x+10(0<x<16且x≠10)…①,(3)①当DF=DC时,∵∠ECF=∠FDC=α,∠DFC=∠DFC,∴△DFC∽△CFE,∵DF=DC,∴FC=EC=y,∴x+y=10,即:10=x2﹣x+10+x,解得:x=6;②当FC=DC,则∠DFC=∠FDC=α,则:EF=EC=y,DE=AE=10﹣y,在等腰△ADE中,cos∠DAE=cosα===,即:5x+8y=80,将上式代入①式并解得:x=;③当FC=FD,则∠FCD=∠FDC=α,而∠ECF=α≠∠FCD,不成立,故:该情况不存在;故:AD的长为6和.28.解:(1)∵点A在线段OE上,E(8,0),OA=2 ∴A(2,0)∵OA:AD=1:3∴AD=3OA=6∵四边形ABCD是矩形∴AD⊥AB∴D(2,﹣6)∵抛物线y=ax2+bx经过点D、E∴解得:∴抛物线的解析式为y=x2﹣4x(2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N'∵y=x2﹣4x=(x﹣4)2﹣8∴抛物线对称轴为直线x=4∵点C、D在抛物线上,且CD∥x轴,D(2,﹣6)∴y C=y D=﹣6,即点C、D关于直线x=4对称∴x C=4+(4﹣x D)=4+4﹣2=6,即C(6,﹣6)∴AB=CD=4,B(6,0)∵AM平分∠BAD,∠BAD=∠ABM=90°∴∠BAM=45°∴BM=AB=4∴M(6,﹣4)∵点M、M'关于x轴对称,点F在x轴上∴M'(6,4),FM=FM'∵N为CD中点∴N(4,﹣6)∵点N、N'关于y轴对称,点G在y轴上∴N'(﹣4,﹣6),GN=GN'=MN+NG+GF+FM=MN+N'G+GF+FM'∴C四边形MNGF∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小=MN+M'N'==2+10=12∴C四边形MNGF∴四边形MNGF周长最小值为12.(3)存在点P,使△ODP中OD边上的高为.过点P作PE∥y轴交直线OD于点E∵D(2,﹣6)∴OD=,直线OD解析式为y=﹣3x设点P坐标为(t, t2﹣4t)(0<t<8),则点E(t,﹣3t)①如图2,当0<t<2时,点P在点D左侧∴PE=y E﹣y P=﹣3t﹣(t2﹣4t)=﹣t2+t∴S△ODP =S△OPE+S△DPE=PE•x P+PE•(x D﹣x P)=PE(x P+x D﹣x P)=PE•x D=PE=﹣t2+t∵△ODP中OD边上的高h=,∴S△ODP=OD•h∴﹣t2+t=×2×方程无解②如图3,当2<t<8时,点P在点D右侧∴PE=y P﹣y E=t2﹣4t﹣(﹣3t)=t2﹣t∴S△ODP =S△OPE﹣S△DPE=PE•x P﹣PE•(x P﹣x D)=PE(x P﹣x P+x D)=PE•x D=PE=t2﹣t∴t2﹣t=×2×解得:t1=﹣4(舍去),t2=6∴P(6,﹣6)综上所述,点P坐标为(6,﹣6)满足使△ODP中OD边上的高为.(4)设抛物线向右平移m个单位长度后与矩形ABCD有交点K、L∵KL平分矩形ABCD的面积∴K在线段AB上,L在线段CD上,如图4∴K(m,0),L(2+m,0)连接AC,交KL于点H∵S△ACD =S四边形ADLK=S矩形ABCD∴S△AHK =S△CHL∵AK∥LC∴△AHK∽△CHL∴∴AH=CH,即点H为AC中点∴H(4,﹣3)也是KL中点∴∴m=3∴抛物线平移的距离为3个单位长度.重点高中提前招生模拟考试数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、填空题(每小题5分,共60分)1.现在爸爸的年龄是儿子的7倍,5年后爸爸的年龄将是儿子的4倍,则儿子现在的年龄是岁.2.若与互为相反数,则a2+b2=.3.若不等式组无解,则m的取值范围是.4.如图,函数y=ax2﹣bx+c的图象过点(﹣1,0),则的值为.5.在半径为1的⊙O中,弦AB、AC分别是、,则∠BAC的度数为.6.在Rt△ABC中,∠A=90°,tan B=3tan C,则sin B=.7.如图,矩形ABCD中,E是BC上一点,且BE:EC=1:4,AE⊥DE,则AB:BC=.8.如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,若S△AOD:S△ACD=1:3,则S△AOD:S△BOC=;若S△AOD=1,则梯形ABCD的面积为.9.如图,E为边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC,PR⊥BE,则PQ+PR的值为.10.(2+1)(22+1)(24+1)(28+1)…(22048+1)+1的末位数字为.11.一行数从左到右一共2000个,任意相邻三个数的和都是96,第一个数是25,第9个数是2x,第2000个数是x+5,那么x的值是.12.如图所示,点A是半圆上的一个三等分点,B是劣弧的中点,点P是直径MN上的一个动点,⊙O的半径为1,则AP+PB的最小值.二、解答题(2小题,共40分)解答应写出文字说明、推理过程或演算步骤13.有一个底面周长为4πcm的圆柱体,斜着截去一段后,剩下的几何体如图所示,求该剩下几何体的体积(结果保留π)14.计算:+++…+.参考答案一、填空题(每小题5分,共60分)1.【解答】解:设儿子现在的年龄是x岁,则爸爸的年龄是7x岁,由题意得:4(x+5)=7x+5,解得:x=5,.故答案为:5.2.【解答】解:根据题意得:,解得:.则a2+b2=16+1=17.故答案是:17.3.【解答】解:∵不等式组无解,∴m+1≤2m﹣1,∴m≥2.故答案为m≥2.4.【解答】解:∵函数y=ax2﹣bx+c的图象过点(﹣1,0),即x=﹣1时,y=0,∴a+b+c=0,∴b+c=﹣a,c+a=﹣b,a+b=﹣c,∴原式=++=﹣1﹣1﹣1=﹣3.故答案为﹣3.5.【解答】解:作OM⊥AB,ON⊥AC;由垂径定理,可得AM=,AN=,∵弦AB、AC分别是、,∴AM=,AN=;∵半径为1∴OA=1;∵=∴∠OAM=45°;同理,∵=,∴∠OAN=30°;∴∠BAC=∠OAM+∠OAN或∠OAM﹣∠OAN∴∠BAC=75°或15°.6.【解答】解:∵Rt△ABC中,∠A=90°,∴∠B+∠C=90°,∴tan C=,∵tan B=3tan C,∴tan B=3,解得tan B=,∴∠B=60,∴sin B=sin60°=.故答案为:.7.【解答】解:∵∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AEB+∠CED=90°,∴∠BAE=∠CED,∴△ABE∽△ECD,∴=,设BE=x,∵BE:EC=1:4,∴EC=4x,∴AB•CD=x•4x,∴AB=CD=2x,∴AB:BC=2x:5x=2:5.故答案为2:5.8.【解答】解:(1)∵△AOD和△DOC中AO和CO边上的高相等,S△AOD:S△ACD=1:3,∴,∵AD∥BC,∴△ADO∽△CBO,∴,∴S△AOD:S△BOC=1:4,(2)∵S△AOD:S△ACD=1:3,∴AO:OC=1:2,∴S△AOD:S△BOC=1:4;若S△AOD=1,则S△ACD=3,S△BOC=4,∵AD∥BC,∴S△ABC=S△BDC,∵S△AOB=S△ABC﹣S△BOC,S△DOC=S△BDC﹣S△BOC,∴S△AOB=S△DOC=2,∴梯形ABCD的面积=1+4+2+2=9.故答案为:1:4;9.9.【解答】解:根据题意,连接BP,过E作EF⊥BC于F,∵S△BPC+S△BPE=S△BEC∴=BC•EF,∵BE=BC=1,∴PQ+PR=EF,∵四边形ABCD是正方形,∴∠DBC=45°,∵在Rt△BEF中,∠EBF=45°,BE=1,sin45°=,∴=,∴EF=,即PQ+PR=.∴PQ+PR的值为.故答案为:.10.【解答】解:(2+1)(22+1)(24+1)(28+1)…(22048+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(22048+1)+1,=(22﹣1)(22+1)(24+1)(28+1)…(22048+1)+1,=(24﹣1)(24+1)(28+1)…(22048+1)+1,=(28﹣1)(28+1)…(22048+1)+1,=(216﹣1)(216+1)…(22048+1)+1,…=(22048﹣1)(22048+1)+1,=24096﹣1+1=24096,因为24096的末位数字是6,所以原式末位数字是6.故答案为:6.11.【解答】解:∵第1个数是25,任意相邻三个数的和都是96,∴第4个数与第1个数相同,是25,同理,第7个数与第4个数相同,是25,即第1、4、7…个数字相同,同理可得,第2、5、8…个数字相同,第3、6、9…个数相同,所以第9个数与第3个数相同,是2x,∵2000÷3=666…2,∴第2000个数与第2个数相同,∵相邻三个数的和是96,∴25+x+5+2x=96,解得x=22.故答案为:22.12.【解答】解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,OA,OB,P A,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,P A=P A′,∵点B是弧AN的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴P A+PB=P A′+PB=A′B=.故答案为:.二、解答题(2小题,共40分)解答应写出文字说明、推理过程或演算步骤13.【解答】解:两个几何体的体积和为:π×()2×(6+4)=40πcm3.一个几何体的体积为×40πcm3=20πcm3,即剩下几何体的体积20πcm3.14.【解答】解:∵=(﹣),∴原式=(﹣)+(﹣)+(﹣)+…+(﹣)=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.。

江苏省南京市中考数学模拟试卷5套及答案.doc

江苏省南京市中考数学模拟试卷5套及答案.doc

江苏省南京市中考数学模拟试卷(1)一、选择题(本大题共6小题,每小题2分,共12分) 1.下列计算结果为负数的是( ) A .-1+2 B .|-1| C .(-2)2 D .-2-12.计算a 5·(-1a )2的结果是( )A .-a 3B .a 3C .a 7D .a 103.若a <22<b ,其中a 、b 为两个连续的整数,则ab 的值为( ) A .2B .5C .6D .124.如图是一几何体的三视图,这个几何体可能是( ) A .三棱柱 B .三棱锥 C .圆柱 D .圆锥 5.如图,已知a ∥b ,∠1=115°,则∠2的度数是( )A .45°B .55°C .65°D .85°6.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图像的交点坐标与其相应的二元一次方程组的解之间的关系.请通过此经验推断:在同一平面直角坐标系中,函数y =5x 2-3x +4与y =4x 2-x +3的图像交点个数有( ) A .0个B .1个C .2个D .无数个二、填空题(本大题共10小题,每小题2分,共计20分) 7.若式子x -2在实数范围内有意义,则x 的取值范围是 . 8.若a -b =3, a +b =-2,则a 2-b 2= .9.据统计,2016年春节“黄金周”(2月7日至13日)期间,南京共接待游客4 880 000人. 将4 880 000用科学记数法表示为 .10.若△ABC ∽△A'B'C',相似比为1:3,则△ABC 与△A'B'C'的面积比为 .11.已知圆锥的底面半径为1cm ,母线长为3cm ,则其侧面积为 cm 2(结果保留π). 12.已知关于x 的方程x 2+mx -3=0的一个根是1,则它的另一个根是 .13.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.请你根据表中数据选一人参加比赛,最合适的人选是 .14.在同一平面直角坐标系中,正比例函数y =k 1x 的图像与反比例函数y =k 2x 的图像一个交点的坐标是(-2,3),则它们另一个交点的坐标是 .15.如图,在正十边形A 1A 2A 3A 4A 5A 6A 7A 8A 9A 10中,连接A 1A 4、A 1A 7,则∠A 4A 1A 7= °.16.如图①,在等边△ABC 中,CD ⊥AB ,垂足为D ,⊙O 的圆心与点D 重合,⊙O 与线段CD 交于点E ,且CE =4cm .将⊙O 沿DC 方向向上平移1cm 后,如图②,⊙O 恰与△ABC 的边AC 、BC 相切,则等边△ABC 的边长为 cm .三、解答题(本大题共有11小题,共计88分)17.(6分)先化简,再求值:(1a -1b )÷a 2-b 2ab ,其中a =2+1,b =2-1.18.(6分)解不等式组⎩⎪⎨⎪⎧ x +92≥4,2x -3<0,并写出不等式组的整数解.主视图左视图俯视图(第4题)a b12(第5题)A 5A 6A 7 A 8A 910A 1A 2A 3 A 4(第15题)19.(7分)如图,在四边形ABCD 中,AB ∥CD ,点E 、F 在对角线AC 上,且∠ABF =∠CDE ,AE =CF . (1)求证:△ABF ≌△CDE ;(2)当四边形ABCD 满足什么条件时,四边形BFDE 是菱形?为什么?20.(8分)“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A 、D 、C 、E 在同一条直线上,CD =30cm ,DF =20cm ,AF =25cm ,FD ⊥AE 于点D ,座杆CE =15cm ,且∠EAB =75°.(1)求AD 的长;(2)求点E 到AB 的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)21.(7分)甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看.(1)甲同学观看《最强大脑》的概率是 ; (2)求甲、乙两名同学观看同一节目的概率.22.(8分)“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2016年10月1日加入SDR (特别提款权),以后出国看世界更加方便.为了解某区6 000名初中生对“人民币加入SDR ”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:(1)本次问卷调查抽取的学生共有 人,其中“不了解”的学生有 人; (2)在扇形统计图中,学生对“人民币加入SDR ”基本了解的区域的圆心角为 °; (3)根据抽样的结果,估计该区6 000名初中生对“人民币加入SDR ”了解的有多 少人(了解是指“非常了解”、“比较了解”和“基本了解”)?图①(第20题)某区抽取学生对“人民币加入SDR ”知晓情况频数分布表某区抽取学生对“人民币加入SDR ”知晓情况扇形统计图非常了解 26%比较了解 基本了解不了解23.(8分)某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?24.(9分)货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发x h后,货车、轿车分别到达离甲地y1km和y2 km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.(1)求点D的坐标,并解释点D的实际意义;(2)求线段DE所在直线的函数表达式;(3)当货车出发h时,两车相距200km.25.(8分)数学活动课上,小君在平面直角坐标系中对二次函数图像的平移进行了研究.图①是二次函数y=(x-a)2+a3(a为常数)当a=-1、0、1、2时的图像.当a取不同值时,其图像构成一个“抛物线簇”.小君发现这些二次函数图像的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为;(2)如图②,当a=0时,二次函数图像上有一点P(2,4).将此二次函数图像沿着(1)中发现的直线平移,记二次函数图像的顶点O与点P的对应点分别为O1、P1.若点P1到x轴的距离为5,求平移后二次函数图像所对应的函数表达式.(第25题)26.(10分)如图,直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED 交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.27.(11分)问题提出平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.初步思考(1)如图①,在等边△ABC的内部和外部各作一个△ABC的巧妙点.(尺规作图,不写作法,保留作图痕迹)(2)如图②,在△ABC中,AB=AC,∠BAC=36°,点D、E是△ABC的两个巧妙点,其中AD=AB,AE=AC,BD=BC=CE,连接DE,分别交AB、AC于点M、N.2(3的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC的度数;若不可能,请说明理由.江苏省南京市中考数学模拟试卷(1)答案7.x ≥2 8.-6 9.4.88×10 10.1: 9 11.3π 12.-3 13.丁 14.(2,-3) 15.54° 16.1433 三、解答题(本大题共11小题,共计88分) 17.(本题6分)解:原式=(b -a ab )·ab (a +b )(a -b )2分=-1a +b . ··············································································································· 4分当a =2+1,b =2-1时,原式=- 1 (2+1)+(2-1)=- 1 22=- 24. ·············································· 6分18.解:解不等式①,得x ≥-1. 2分解不等式②,得x <32. ······························································································· 4分 所以不等式组的解集是-1≤x <32. ·········································································· 5分 不等式组的整数解为-1、0、1. ·············································································· 6分19解:(1)∵AB ∥CD ,∴∠BAC =∠DCA . ∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE . 又∵∠ABF =∠CDE ,∴△ABF ≌△CDE . ······························································································· 3分 (2)当四边形ABCD 满足AB =AD 时,四边形BEDF 是菱形. ····························· 4分连接BD 交AC 于点O ,由(1)△ABF ≌△CDE 得AB =CD ,BF =DE ,∠AFB =∠CED , ∴BF ∥DE .∵AB ∥CD ,AB =CD ,∴四边形ABCD 是平行四边形. 又∵AB =AD ,∴□ABCD 是菱形. ∴BD ⊥AC . ∵BF =DE ,BF ∥DE ,∴四边形BEDF 是平行四边形,∴□BEDF 是菱形. ······························································································ 7分20.解:(1)在Rt △ADF 中,由勾股定理得,AD =AF 2-FD 2=252-202=15(cm ). ······················································· 3分(2)AE =AD +CD +EC =15+30+15=60(cm ). ··················································· 4分过点E 作EH ⊥AB 于H ,在Rt △AEH 中,sin ∠EAH =EHAE , ······································································· 6分 ∴EH =AE ·sin ∠EAH =AB ·sin75°≈ 60×0.97=58.2(cm ).答:点E 到AB 的距离为58.2 cm . ··································································· 8分21.解:(1)13 .2分(2)分别用A ,B ,C 表示《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目,用表格列出所有可能出现的结果:一共有9种可能的结果,它们是等可能的,其中符合要求的有3种. P (甲、乙两名同学观看同一节目)= 39 = 13 .答:甲、乙两名同学观看同一节目的概率为 13. ············································ 7分22.(本题8分)解:(1)100,20. 2分(2)72. ······················································································································· 4分 (3)6 000×80%=4 800人.答:估计该校6 000名初中生中对“人民币加入SDR ”了解的有4 800人. ······ 8分 23.(本题8分)解法一:设这种台灯的售价上涨x 元,( 600-10x ) ( 40+x -30)=10 000, ·································································· 4分 解得x 1 =10,x 2=40, ······················································································· 6分 ∴当x =10时,40+x =50,当x =40时,40+x =80; ································ 7分解法二:设这种台灯的售价为x 元,[600-10(x -40)] (x -30)=10 000, ·································································· 4分 解得x 1 =50,x 2=80, ······················································································· 7分答:当这种台灯的售价定为50或80元时,每个月的利润恰为10 000元. ··············· 8分 24.(本题9分)解:(1)求出点坐标D ( 4,300 ). ··················································································· 2分 点D 是指货车出发4h 后,与轿车在距离A 地300 km 处相遇. ··················· 3分 (2)求出点坐标E ( 6.4,0 ). ···················································································· 4分 设DE 所在直线的函数表达式为y =kx +b ,将点D ( 4,300 ),E ( 6.4,0)代入y =kx +b 得:⎩⎪⎨⎪⎧4k +b =300,6.4k +b =0, 解得 ⎩⎪⎨⎪⎧b =800,k =-125,∴DE 所在直线的函数表达式为y =-125x +800. ········································ 7分 (3) 2或5. ················································································································· 9分25.(本题8分) 解:(1)y = 13 x . 2分(2)点O 1的坐标为 ( 3,1) 或 (-27,-9) ···························································· 4分平移后的二次函数的表达式为y =(x -3)2 +1或y =(x +27)2 -9. ·············· 8分26.(本题10分)证明:(1)连接FO ,∵ OF =OC , ∴ ∠OFC =∠OCF . ∵CF 平分∠ACE , ∴∠FCG =∠FCE . ∴∠OFC =∠FCG . ∵ CE 是⊙O 的直径, ∴∠EDG =90°, 又∵FG ∥ED ,∴∠FGC =180°-∠EDG =90°, ∴∠GFC +∠FCG =90° ∴∠GFC +∠OFC =90°, 即∠GFO =90°,∴OF ⊥GF , ················································································································· 4分 又∵OF 是⊙O 半径,∴FG 与⊙O 相切. ····································································································· 5分 (2)延长FO ,与ED 交于点H ,由(1)可知∠HFG =∠FGD =∠GDH =90°, ∴四边形FGDH 是矩形.∴FH ⊥ED , ∴HE =HD .又∵四边形FGDH 是矩形,FG =HD , ∴HE =FG =4.∴ED =8. ······················································································································ 7分 ∵在R t △OHE 中,∠OHE =90°, ∴OH =OE 2-HE 2=52-42=3.∴FH =FO +OH =5+3=8. ······················································································ 9分 S 四边形FGDH =12(FG +ED )·FH =12×(4+8)×8=48. ················································ 10分27.(本题11分解:(1)画对1个巧妙点给一分. ································································ 2分 (2)∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =72°,∵AD =AB ,AB =AC ,BD =BC , ∴△ADB ≌△ABC . 同理:△ACE ≌△ABC .∴∠BAD =∠BAC =∠CAE =36°,∠ADB =∠ABD =∠ABC =72°, ∴∠DAE =∠BAD +∠BAC +∠CAE =108°, ∵AD =AB =AC =AE ,∴∠ADE =∠AED =36°=∠BAD ,∴∠BDM =∠BDA -∠MDA =36°,∠BMD =∠ADM +∠DAM =72°=∠ABD ,∴DB =DM . ······································································································ 5分 ∵∠DBM =∠ABD ,∠AED =∠BAD ,∴△DAM ∽△DEA ,∴DM DA =DADE ,DA 2 =D M ·DE ,∵DM =DB ,∴DA 2 =D B ·DE . ······································································ 7分(3)第一种如图①或图②(只需画一个即可),∠BAC =60°.第二种如图③,∠BAC =36°; 第三种如图④,∠BAC =108°; 第四种如图⑤,∠BAC =120°.以上共四种:60°、36°、108°、120°. ···················································· 11分(第27题)图⑤图④图③(第27题)图①(第26题)BACPBACPCBPBACPCOA CDE(第6题)(第16题)江苏省南京市中考数学模拟试卷(2)一、选择题(本大题共6小题,每小题2分,共12分)1.在实数227,0,-2, 2π中,无理数的个数有( )A .0个B .1个C .2个D .3个2.下列各式计算正确的是( )A .a 6÷a 3 =a 2B .(a 3)2=a 5C .4=±2D .3-8 =-23.某兴趣小组为了了解所在地区的老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样较合理的是( )A .在公园调查了1000名老年人的健康状况B .在医院调查了1000名老年人的健康状况C .调查了100名小区内老年邻居的健康状况D .利用派出所户籍网随机调查了该地区10%的老年人的健康状况4.右图是由3个相同的正方体组成的一个立体图形,它的三视图是( )A .B .C .D .5. 某种衬衫的价格经过连续两次的降价后,由每件150元降到96元,则平均每次降价的百分率是( )A .10%B .15%C .20%D .30%6.如图,AB 是半圆O 直径,半径OC ⊥AB ,连接AC ,∠CAB 的平分线AD 交OC 于点E ,交BC ︵于点D ,连接CD 、OD ,以下三个结论:①AC ∥OD ;②AC =2CD ;③线段CD 是CE 与CO 的比例中项.其中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③二、填空题(本大题共10小题,每小题2分,共20分)7.PM2.5是指大气中直径小于或等于2.5 um (0.0000025m )的颗粒物,含有大量有毒、有害物质,也称可吸入肺颗粒物,将0.0000025用科学记数法表示为 . 8.不等式组26,2 1.x x -<⎧⎨-+>⎩的解集是 .9.小明第一次抛一枚质地均匀的硬币时反面向上,第二次抛此枚硬币时也是反面向上,则他第三次抛这枚硬币时,正面向上的概率是 .10. 函数y =3-x 中,自变量x 的取值范围是 .11.我市某一周的最高气温统计如下表: 则这组数据的中位数是 .12.如图,在四边形ABCD 中,AD ∥BC ,△AOD △BOC AD =2,则BC 的长是 .13.如图,MN 是⊙O 的直径,矩形ABCD 的顶点A 、D 在MN 上,顶点B 、C 在⊙O 上,若⊙O 的半径为5,AB =4,则BC 边的长为 .14.将面积为32π的半圆面围成一个圆锥的侧面,则这个圆锥的底面半径为 .15.如图,点P 在函数y =3x (x >0)的图像上运动,O 为坐标原点,点A 为PO 的中点,以点P 为圆心,PA 为半径作⊙P ,则当⊙P 与坐标轴相切时,点P 的坐标为 .16.矩形ABCD 中,AB =10,BC =4,Q 为AB 边的中点,P 为CD 边上的动点,且△AQP 是腰长为5的 等腰三角形,则CP 的长为 .三、解答题 (本大题共11小题,共88分) 17.(8分)计算:(1)()212cos 4523π-⎛⎫︒+-- ⎪⎝⎭; (2)(1x +1-1x 2-1)÷x -2x 2-2 x +1 .18.(6分)已知关于x 的一元二次方程x 2-ax +2=0的两实数根x 1 、x 2满足x 1x 2=x 1+x 2-2. (1)求a 的值; (2)求出该一元二次方程的两实数根.A BCDO(第12题)MN(第13题)第20题图噪声声级/dB8420B19.(7分)为了增强环境保护意识,在“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,随机抽查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),并将抽查得到根据表中提供的信息解答下列问题:(1)频数分布表中的a = ,b = ,c = ; (2)补充完整频数分布直方图;(3)如果全市共有400个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?20.(8分)(1)甲、乙两人用如图所示的①、②两个转盘做游戏,规则是:转动两个转盘各1次,若两个转盘停止转动后,指针所在区域的两个数字之积为奇数,则甲获胜, 否则乙胜.试求出甲获胜的概率.(2)若利用除颜色外其余都相同的红、黄、白色乒乓球各一个设计一个摸球试验,试写 出一个与(1)中甲获胜概率相同的事件.(友情提醒:要说明试验的方案,不需说明理由)21.(8分)如图,D 是线段AB 的中点,C 是线段AB 的垂直平分线上的一点,DE ⊥AC于点E ,DF ⊥BC 于点F .(1)求证:DE =DF ;(2)当CD 与AB 满足怎样的数量关系时,四边形CEDF 为正方形?请说明理由.22.(8分)某玩具经销商用1.6万元购进了一批玩具,上市后一周全部售完.该经销商又用3.4万元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该经销商两次共购进这种玩具多少套?(2)若第一批玩具销售完后总利润率为25%,购进的第二批玩具仍以第一批的相同售价出售,则第二批玩具全部售完后,这二批玩具经销商共可获利多少元?(第24题)P北23.(7分)如图,大海中某岛C的周围25km范围内有暗礁.一艘海轮沿正东方向航行,在A处望见C在北偏东60°处,前进20km后到达点B,测得C在北偏东45°处.如果该海轮继续沿正东方向航行,有无触礁危险?请说明理由.(参考数据: 2 ≈1.41, 3 ≈1.73)24.(8分)如图①,在矩形ABCD中,动点P从A点出发沿折线AD–DC–CB运动,当点P运动到点B时停止.已知动点P在AD、BC上的运动速度为1cm/s,在DC上的运动速度为2 cm/s.△PAB的面积y(cm2)与动点P的运动时间t(s)的函数关系图像如图②.(1)a=,b=;(2)用文字说明点N坐标的实际意义;(3)当t为何值时,y的值为2 cm2.25.(8分)如图,在△ABC中,AB=AC.以AC为直径的⊙O交AB于点D,交BC于点E.过E点作⊙O的切线,交AB 于点F.(1)求证:EF⊥AB;(2)若BD=2,BE=3,求AC的长.(第25题)26.(8分)给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)以下四边形中,是勾股四边形的为.(填写序号即可)①矩形;②有一个角为直角的任意凸四边形;③有一个角为60°的菱形.(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,∠DCB=30°,连接AD,DC,CE.①求证:△BCE是等边三角形;②求证:四边形ABCD是勾股四边形.27.(12分)如图,已知二次函数y=ax2+b x-5(a,b是常数,a>0)的图象与x轴交于点A(-1,0)和点B,与y轴交于点C.动直线y=t(t为常数)与抛物线交于不同的两点P、Q.(1)若a<5,试证明抛物线的对称轴一定在y轴的右侧.(2)若点B的坐标为(5,0).①求a 、b的值及t的取值范围.②求当t为何值时,∠PCQ=90 °.A BD CE(第26题)(第27题)备用图45° AC60° D 江苏省南京市中考数学模拟试卷(2)答案一、选择题(每小题2二、填空题(本大题共10小题,每小题2分,共20分) 7.2.5×10-6 8.x >3 9.12 10.x ≤3 11.27℃ 12.6 13.6 14.4 15.(3,1) 或(1,3) 16. 2、7或8 三、解答题(本大题共11小题,共88分.) 17.(8分)解:(1)原式=2×22+1-9 ……………………3分 =2-8 ……………………4分(2) 原式=(1x +1-1x 2-1)÷x -2 (x -1)2……………………1分=x -2(x +1)(x -1)×(x -1)2x -2 ……………………3分 =x -1x +1 ……………………4分 18.(6分)解:(1)∵x 1+x 2=a ,x 1x 2=2,……………………1分 又x 1x 2=x 1+x 2-2, ∴a -2=2,a =4 ……………………2分 (2)x 2-4x +2=0.(x -2)2=2 ……………………4分x -2= 2 或x -2=-2 ……………………5分 x 1=2+2, x 2=2- 2 ……………………6分19.(7分)解:(1)a =8,b =12,c =0.3.(答对一个给1分)……………………3分(2)略 (画对一个直方图给1分)…………………………………………………5分 (3)样本中噪声声级小于75dB 的测量点的频率是0.3 ………………………6分由0.3×400=120∴在这一时刻噪声声级小于75dB 的测量点约有120个. ……………7分20.(8分) (1)转动两个转盘各1次,所有可能出现的结果有(1,5)、(1,6)、(1,7)、 (2,5)、(2,6)、(2,7)、(3,5)、(3,6)、(3,7),共有9种可能. …………3分 它们出现的可能性相同,所有结果中,满足“积为奇数”的结果有4种, ……4分 所以转动两个转盘各1次,转出的两个数字之积为奇数的概率为49. …………5分(2)实验如:在一个不透明的袋子中放入除颜色外其余都相同的红、黄、白色乒乓球各1个,从袋子中取出一个球,记下颜色后放入袋中,再从袋子中取出一个球,记下颜色.事件:两次取出的球中有且只有一个球是红色球. ……………………8分21.(8分)(1)证明: ∵D 是线段AB∵CD 垂直平分AB ,∴CA =CB ,∵DE ⊥AC ,DF ⊥BC ,∴∠AED =∠BFD =90°, ∴△AED ≌△BFD ,…………3分∴DE =DF . …………4分(2)当AB =2CD 时,四边形CEDF 为正方形.…………5分 理由:∵AD =BD ,AB =2CD , ∴AD =BD =CD . ∴∠ACD =45°,∠DCB =45°, …………6分 ∴∠ACB =∠ACD +∠BCD =90°, ∴四边形DECF 是矩形.…………7分又∵DE =DF ,∴四边形CEDF 是正方形. …………8分22.(8分)解:(1)设第一次购进了x 套,则第二次购进了2x 套. ………1分依题意,列方程得:16000x +10=340002x ……………………………3分 解得:x =100, ……………………………4分 经检验x =100是原方程的根,2x =200答:该经销商两次共购进这种玩具300套. ……………………5分(2)由(1)得第一批每套玩具的进价为16000100=160元,又因为总利润率为25%, ∴售价为160(1+25%)=200元, ……………………6分 第二批玩具的进价为170元,售价也为200元.……………………7分 40×100+30×200=10000元. ……………………8分 答:这二批玩具经销商共可获利10000元. 23.(7分)解:没有触礁危险.理由:过点C 作CD ⊥AB ,交AB 的延长线于点D . …1分 由题意可知: ∠ACD =60°,∠BCD =45°, 设CD =x . 在Rt △ACD 中,∵ tan ∠ACD =ADCD ,∴AD = 3 x . …2分 在Rt △BCD 中,∵ tan ∠BCD =BDCD ,∴BD =x ……3分 ∵AD -BD =AB ,∴ 3 x -x =20. …………5分∴x =203 -1≈27.4(km ). ……6分∵27.4>25,∴该海轮继续沿正东方向航行,没有触礁危险. …7分24.(8分)(1)a =4,b =6;………………………2分(2)P 运动了4s 时到达点C ,此时△PAB 的面积为8cm 2, ……4分 (3)由题意AB =DC =2×2=4 cm ,要y 的值为2 cm 2,必须点P 在AD 或BC 上,且PA =1cm 或PB =1cm .当PA =1cm 时,点P 的运动时间t =1s ;当PB =1cm 时,点P 的运动时间为t =2+2+1=5s , 即当t 为1s 或5 s 时,y 的值为2 cm 2. ………8分 25.(8分)(1)证明:连结OE .∵AB =AC ,∴∠B =∠ACB .又∵OE =OC ,∴∠OEC =∠ACB ,∴∠OEC =∠ABC .………1分。

江苏省南京中考数学模拟试卷附答案

江苏省南京中考数学模拟试卷附答案

南京市中考模拟试卷(二)九年级数学一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.计算(−3) − (−9)的结果等于( ▲ )A .12B .−12C .6D .−62.下列计算中正确的是( ▲ )A .632b b b ÷=B .339b b b ⋅=C .()339a a =D .224a a a += 3.关于x 的一元二次方程24500x ax −−=,下列结论一定正确的是( ▲ ) A .该方程没有实数根B .该方程有两个不相等的实数根C .该方程有两个相等的实数根D .无法确定4.如图是沈阳市地区简图的一部分,图中“故宫”、“鼓楼”所在的区域分别是( ▲ )A .D7E6,B .D6E7,C .E7D6,D .E6D7, 5.若,且,为相邻的整数,则的值为(▲ ) A .2 B .3C .4D .5 6.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整), 则下列结论中错误..的是( ▲ ) A .该班总人数为50人B .骑车人数占总人数的20%C .步行人数为30人D .乘车人数是骑车人数的2.5倍.二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上) 7.计算:16−−=____▲______.8.比较大小:-_____▲___-9.|x -2|+9有最小值为____▲_____.10.ABC 中,90B ∠=︒,AC =1tan 2C =,则BC 边的长为___▲____. 11.甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲乙两人工效率相同,结果提前4天完成任务,则甲计划完成此项工作的天数是____▲____.12.3213{2312a b a b +=+=求3100()()a b a b ++−=_____▲______. 13.红星中学食堂有存煤100吨,每天用去2吨,x 天后还剩下煤y 吨,则y(吨)随x(天)变化的函数解析式为__▲____.14.已知分式2x b x a−+,当2x =时,分式的值为零;当2x =−时,分式没有意义,则分式有意义时+a b 的值为__▲____.15.如图,在△ABC 中,AD 是中线,已知AB =5,AC =3,则中线AD 的取值范围是_______▲______.16.已知二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),当x≥2时,y 随x的增大而减小,且-4≤x≤1时,y 的最大值为7,则a 的值为__▲____.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.解方程:;.18.计算:(1)()2020061118224π−−⎛⎫−−−+−⨯ ⎪⎝⎭19.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根.(1)求a 的取值范围;(2)当a 为符合条件的最大整数,求此时方程的解.20.正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.在图中正方形网格(每个小正方形边长为1)中有一格点△ABC 和一线段DE(1)以DE 为一边做格点△DEF 与△ABC相似;(2)直接写出△DEF 的面积.21.周助是个动漫迷,妈妈用周助喜欢的动漫设计了下面的游戏:用如图被平均分成4份的转盘,转动转盘,转盘静止后,指针指向一个动漫名.若所指的动漫名不在文化部动漫黑名单内,则周助每天可以看一集动漫;否则,周助三天才可以看一集动漫.(注:B 系列在文化部动漫黑名单内)()1求出周助每天可以看一集动漫的概率;()2周助觉得这个游戏不公平,要将游戏规则改为:转动两次转盘,若两次指针均指向黑名单动漫,则自己每天可以看一集动漫,否则,三天看一集动漫.请你用列表法或画树状图法求出周助每天都可以看一集动漫的概率.22.如图,直线l ⊥x 轴于点P ,且与反比例函数y 1= 1k x (x >0)及y 2= 2k x(x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,求k 1-k 2的值.23.如图,在ABC ∆中,90C ∠=︒,以BC 为直径的⊙O 交AB 于D ,点E 在线段AC 上,且ED EA =.(1)求证:ED 是⊙O 的切线.(2)若60ED B =∠=︒,求⊙O 的半径.24.已知4x t y t S xy ==−=,,.(1)求S 的最大值或最小值,以及相应t 的值.(2)当05t <≤时,求S 的范围.25.如图,在一次数学课外实践活动中,要求测教学楼的高度AB 、小刚在D 处用高1.5m 的测角仪CD ,测得教学楼顶端A 的仰角为30°,然后向教学楼前进40m 到达E ,又测得教学楼顶端A 的仰角为60°.求这幢教学楼的高度AB .(结果带根号)26.已知四边形ABCD 是菱形,60,ABC EAF ∠=∠o 的两边分别与射线CB DC 、相交于点E F 、,且60.EAF ∠=︒()1如图1,当点E 是线段CB 的中点时,求证:AE EF =;()2如图2,当点E 是线段CB 上任意一点时(点E 不与B C 、重合),求证:BE CF =;27.在平面直角坐标系xOy 中,⊙O 的半径为r (r >0).给出如下定义:若平面上一点P 到圆心O 的距离d ,满足r ,则称点P 为⊙O 的“随心点”.(1)当⊙O 的半径r =2时,A (3,0),B (0,4),C (﹣,2),D (,﹣)中,⊙O 的“随心点”是 ▲ ;(2)若点E (4,3)是⊙O 的“随心点”,求⊙O 的半径r 的取值范围;(3)当⊙O 的半径r =2时,直线y =x +b (b ≠0)与x 轴交于点M ,与y 轴交于点N ,若线段MN 上存在⊙O 的“随心点”,直接写出b 的取值范围.。

最新江苏省南京市中考数学模拟考试试题附解析

最新江苏省南京市中考数学模拟考试试题附解析

江苏省南京市中考数学模拟考试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下面两个三角形一定相似的是( )A .两个等腰三角形B .两个直角三角形C .两个钝角三角形D .两个等边三角形2.如图,在两半径不同的圆心角中,∠AOB=∠A ′O ′B ′=60°,则( )A .AB=A ′B ′ B .AB<A ′B ′C .AB 的度数=A ′B ′的度数D .AB 的长度=A ′B ′的长度3.已知2x =是 关于x 的方程23202x a -=的一个根,则22a -的值是( )A .3B .4C .5D .6 4.某蓄水池的横断面示意图如图所示,分深水区和浅水区.如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是 ( )A .B .C .D . 5.已知点P (1,2)与点Q (x ,y )在同一条平行于x 轴的直线上,且Q 点到y 轴的距离等于2,那么点Q 的坐标是( )A .(2,2)B .(-2,2)C .(-2,2)和(2,2)D .(-2,-2)和(2,-2)1.确定平面上一个点的位置,一般需要的数据个数为( )A .无法确定B .l 个C .2个D .3个 6.如果点(3,-4)在反比例函数k y x =的图象上,那么下列各点中,在此图象上的是( )A .(3,4)B . (-2,-6)C .(-2,6)D .(-3,-4) 7.如图,PD ⊥AB ,PE ⊥AC ,垂足分别为D ,E ,且AP 平分∠BAC ,则△APD 与△APE 全等的理由是( )A .AASB .ASAC .SSSD .AAS8.如图,在△ABC 中,已知∠ACB=90°,∠CAD 的角平分线交BC 的延长线于点E ,若∠B=50°,则∠AEB 的度数为( )A .70°B .20°C .45°D .50° 9.不解方程判断方程21230111x x x -+=+--的解是( ) A .OB .1C .2D .13 10.6-(+4)-(-7)+(-3)写成省略加号的和式是( )A .6-4+7+3B .6+4-7-3C .6-4+7-3D .6-4-7-3 二、填空题11.如图是一束平行的阳光从教室的窗户射入的平面示意图,光线与地面所成角30°,在教室地面的影长3,若窗户的下檐到教室地面的距离 BC= lm ,则窗户的上檐到地面的距离 AC 为 m .12.已知⊙O 的直径为6,P 是直线l 上的一点,PO=3,则直线l 与⊙O 的位置关系是 .13.将两块完全相同的等腰直角三角形摆放成如图的样子,假设图形中的所有点、线都在同一平面内,写出图中所有相似三角形: (不含全等).14.已知:如图,(42)E -,,(11)F --,,以O 为位似中心,按比例尺1:2把EFO △缩小,则点E 的对应点E '的坐标为 .15.请选择一组你喜欢的c b a 、、的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:①开口向下,②当2<x 时,y 随x 的增大而增大;当2>x 时,y 随x 的增大而减小.这样的二次函数的解析式可以是 .y=-x 2+4x-4(答案不唯一)16.若反比例函数1y x=-的图象上有两点A (1,y 1),B (2,y 2),则y 1______ y 2(填“>”或“=”或“<”).17.点(5,9)与点(x ,y )于原点对称,则x y += . 18.如图所示,AE ∥BC ,∠B=50°,AE 平分∠DAC ,则∠DAC= ,∠C= .19.约分23326xx x--,得 .20.若1232n=,则n=_____.三、解答题21.某1电影院有 1000 个座位,门票每张 3元,可达客满,根据市场统计,若每张门票提高x元,将有 200x 张门票.不能售出.(1)求提价后每场电影的票房收入 y(元)与票价提高量 x(元)之间的函数关系式及自变量x的取值范围;(2)为增加收入,电影院应做怎样的决策(提价还是降价?若提价,提价多少为宜?)22.如图所示,△ABC为等边三角形,D,F分别为CB,BA上的一点,且CD=BF,以AD 为边作等边△ADE.求证:四边形CDEF为平行四边形.23.将图中的点(-3,1)、(-1,3)、(-1,5)、 (1,5)、(1,3)、(3,1)、,(3,-3)、(-3,-3)作如下变化:(1)纵坐标不变,横坐标减2;①② (2)横坐标不变,纵坐标乘以-l .画出变化后的图案,并说明变化后的图案与原图案的关系.24.解下列不等式组:(1)2012x x x +>⎧⎪⎨-≥⎪⎩ ;(2)36423312184x x x x +≥+⎧⎪+-⎨->-⎪⎩25.如图,直线1l 、2l 相交于点B ,点A 是直线1l 上的点,在直线2l 上寻找一点C ,使△ABC 是等腰三角形,请画出所有等腰三角形.26.已知y=x 2+px +q ,当x=1时,y 的值为2;当x=-2时,y 的值为2.求x=-3时y 的值.27.已知 n 为正整数,试判断233n n +-能否被24 整除.28.如图①表示某地区2003年12个月中每月的平均气温,图②表示该地区某家庭这年12个月中每月的用电量.根据统计图,请你说出该家庭用电量与气温之间的关系(只要求写出一条信息即可):29.“5·12”汶川大地震后,灾区急需大量帐篷.某服装厂原有4条成衣生产线和5条童装生产线,工厂决定转产,计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?30.如图所示,D、E分别在等边三角形ABC的边AC、AB的延长线上,且CD=AE,试说明DB=DE.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.B4.A5.C C6.C7.D8.B9.A10.C二、填空题312.相切或相交13.△ABE ∽△DAE ∽△DCA14.(21)-,或(21)-,15.16.< 17.-1418.100°,50°19.12x 20.-5三、解答题21.(1)y=(3+x)(1000-200x),化简得22004003000y x x =-++,x 的取值范围是 0≤x ≤5.(2)22004003000y x x =-++2200(-2)3000x x =-+2200(1)3200x =--+∴当 x=1 时,票房收入最大.即提价 1 元为宜. 22.证明△BFC ≌△CDA .再证DE=CF ,由∠ADB=∠DAC+∠ACD 得∠EDB=∠FCB 证得DE 与FC 平行且相等23.画图略24.(1)-2<x ≤1;(2)x<325.26.6.27.能被 24 整28.不唯一,如:气温高或低的月份用电量最大29.(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x 、y 顶,则⎩⎨⎧=+=+178321052y x y x ,解得x=41,y=32. 答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,还不能如期完成任务. 可以从加班生产、改进技术等方面进一步挖掘生产潜力,或者动员其它厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.30.延长AE 至F ,使EF=AB ,连接DF ,先证明△ADF 为等边三角形,再证明△ABD ≌△FED。

【最新】江苏省南京市中考数学模拟试卷(及答案解析)

【最新】江苏省南京市中考数学模拟试卷(及答案解析)

江苏省南京市中考数学模拟试卷(含答案)(时间120分钟满分:150分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相.....应的选项标号涂黑........)1.4的平方根是()A.8 B.2 C.±2 D.±2.下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x63.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()A.B.C.D.4.某中学合唱团的18名成员的年龄情况如下表:年龄(单位:14 15 16 17 18岁)人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,15.5 C.15,16 D.16,155.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元 B.100元 C.80元 D.60元6.如图,直径为10的⊙A经过点C和点O,点B是y轴右侧⊙A优弧上一点,∠OBC=30°,则点C的坐标为()A.(0,5) B.(0,5) C.(0,) D.(0,)第6题第7题第8题7.如图,用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是()A.5 B.6 C.7 D.88.如图,港口A在观测站O的正东方向,OA=6km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.3km B.3km C.4 km D.(3﹣3)km 二、填空题(本大题共10小题,每小题3分,共30分.)9.5月扬州市商品房平均每平方价格为10500元,10500元用科学记数法表示为▲元.10.分解因式:4a2-16=▲ .11.在函数中,自变量x的取值范围是▲ .12.说明命题“若x>-3,则x2>9”是假命题的一个反例,可以取x= ▲ .13.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为▲ .14.在半径为5cm的圆中,两条平行弦的长度分别为6cm和8cm,则这两条弦之间的距离为▲ .15.如图是一个废弃的扇形统计图,小华利用它的阴影部分来制作一个圆锥,则这个圆锥的底面半径是▲ .第15题第16题第18题16.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是▲ .17.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是▲ .18.如图,在平面直角坐标系中,点A(a,b)为第一象限内一点,且a <b .连结OA ,并以点A 为旋转中心把OA 逆时针转90°后得线段BA .若点A 、B 恰好都在同一反比例函数的图象上,则的值等于 ▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)计算:(2),并求出它的所有整数解的和.20.(本题满分8分)先化简再求值:,其中.21、(本题满分8分)梅岭中学初三年级要举行一场毕业联欢会,主持人同时转动下图中的两个转盘(每个转盘分别被四等分和三等分),由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如2002160sin 2123-⎪⎭⎫ ⎝⎛--++)(π果判断错误,他就要为大家表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于是他选择了偶数.小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)22.(本题满分8分)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩m(单位:分)分成四类:A类(12≤m≤15),B 类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全条形统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?23、(本题满分10分)列.方程解...:....应用题几个小伙伴打算去音乐厅看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话中的信息,请你求出这些小伙伴的人数.24、(本题满分10分)如图,在□ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP .25.(6分)如图,以AB 为直径作⊙O ,过点A 作⊙O 的切线AC ,连结BC ,交⊙O 于点D ,点E 是BC 边的中点,连结AE . (1)求证:∠AEB=2∠C ;(2)若AB=6,cosB=,求DE 的长.25、(本题满分10分)如图,山坡AB 的坡度i=1:,AB=10米,AE=15米.在高楼的顶端竖立一块倒计时牌CD ,在点B 处测量计时牌的顶端45°,在点A 处测量计时牌的底端D 的仰角是60°,求这块倒计时牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.414,≈1.732)323如图,⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D,与边BC相交于点F,OA与CD相交于点E,连接FE并延长交AC边于点G.(1)求证:DF∥AO;(2)当AC=6,AB=10时① 求⊙O的半径②求CG的长.27、(本题满分12分)如图,在平面直角坐标系中,给出如下定义:已知点A(2,3),点B(6,3),连接AB.如果线段AB上有一个点与点P的距离不大于1,那么称点P是线段AB的“环绕点”.(1)已知点C(3,1.5),D(4,3.5),E(1,3),则是线段AB的“环绕点”的点是;(2)已知点P(m,n)在反比例函数y=的图象上,且点P是线段AB的“环绕点”,求出点P的横坐标m的取值范围;(3)已知⊙M上有一点P是线段AB的“环绕点”,且点M(4,1),求⊙M的半径r的取值范围.如图,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P为抛物线在第二象限内一点,过点P作x轴的垂线,垂足为点M,与直线AB交于点C,过点P作x轴的平行线交抛物线于点Q,过点Q作x轴的垂线,垂足为点N,若点P在点Q左边,设点P的横坐标为m.①当矩形PQNM的周长最大时,求△ACM的面积;②在①的条件下,当矩形PMNQ的周长最大时,G是直线AC上一点,F是抛物线上一点,是否存在点G,使得以点P、C、G、F为顶点的四边形是平行四边形?若存在,请求出G点的坐标;若不存在,请说明理由.答 案一、选择题题号 1 2 3 4 5 6 7 8 答案 CDDBCACD二、填空题9. 1.05×104 10. 4(a+2)(a-2) 11. x ≤1且x ≠﹣2 12. -2\_-1等 13.2314.1cm 或7cm 15. 3.6 16. ﹣3<x <1 17.215- 18.三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.①33-②31<≤-x 和为2 20.11+a 222 3 4 621.解:小明的选择不合理; 列表得∴共出现12中等可能的结果, 其中出现奇数的次数是7次,概率为,出现偶数的次数为5次,概率为,∵,即出现奇数的概率较大,∴小明的选择不合理.22.解:(1)由题意可得, 抽取的学生数为:10÷20%=50,扇形统计图中A 类所对的圆心角是:360°×20%=72°, 故答案为:50,72;(2)C 类学生数为:50﹣10﹣22﹣3=15, C 类占抽取样本的百分比为:15÷50×100%=30%, D 类占抽取样本的百分比为:3÷50×100%=6%, 补全的统计图如右图所示, (3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C 类的有90名.3 5 6 7 9 5 7 8 9 11 8 10 11 12 1423.解:设票价为每张x元,根据题意,得+2=.解得 x=60.经检验x=60是原方程的根且符合题意,小伙伴的人数为+2=8人答:小伙伴的人数为8人.24.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.25.(6分)如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连结BC,交⊙O于点D,点E是BC边的中点,连结AE.(1)求证:∠AEB=2∠C;(2)若AB=6,cosB=,求DE的长.【解答】(1)证明:∵AC是⊙O的切线,∴∠BAC=90°.∵点E是BC边的中点,∴AE=EC.∴∠C=∠EAC,∵∠AEB=∠C+∠EAC,∴∠AEB=2∠C.(2)连结AD.∵AB为直径作⊙O,∴∠ABD=90°.∵AB=6,,∴BD=.在Rt△ABC中,AB=6,,∴BC=10.∵点E是BC边的中点,∴BE=5.∴.26.(1)证明:连接OD.∵AB与⊙O相切于点D,又AC与⊙O相切于点C,∴AC=AD,OC⊥CA.∴CF是⊙O的直径,∵OC=OD,∴OA⊥CD,∵CF是直径,∴∠CDF=90°,∴DF⊥CD,∴DF∥AO.(2)过点作EM⊥OC于M,∵AC=6,AB=10,∴BC==8,∴AD=AC=6,∴BD=AB﹣AD=4,∵AB是切线,∴OD⊥AB,∴∠ODB=90°,∵CF是直径,∴∠CDF=90°,∵∠BDF+∠ODF=90°,∠CDO+∠ODF=90°,∴∠BDF=∠CDO,∵OC=OD,∴∠ODC=∠OCD,∴∠BDF=∠BCD,∴△BDF∽△BCD,可得BD2=BF•BC,∴BF=2,∴CF=BC﹣BF=6.OC=CF=3,∴OA==3,∵OC2=OE•OA,∴OE=,∵EM∥AC,∴===,∴OM=,EM=,FM=OF+OM=,∴===,∴CG=EM=2.27.解:(1)由“环绕点”的定义可知:点P到直线AB的距离d应满足:d≤1,∵A、B两点的纵坐标都是3,∴AB∥x轴,∴点C到直线AB的距离为|1.5﹣3|=1.5>1,点D到直线AB的距离为|3.5﹣3|=0.5<1,点E到直线AB的距离为|3﹣3|=0<1,∴点D和E是线段AB的环绕点;故答案为:点D和E;(2)当点P在线段AB的上方,点P到线段AB的距离为1时,m=2;当点P在线段AB的下方,点P到线段AB的距离为1时,m=4;所以点P的横坐标m的取值范围为:2≤m≤4;(3)当点P在线段AB的下方时,且到线段AB的最小距离是1时,r=1;当点P在线段AB的上方时,且到点A的距离是1时,如图,过M作MC⊥AB,则CM=2,AC=2,连接MA并延长交⊙M于P,∴MP=2+1,即r=2+1.∴⊙M的半径r的取值范围是1≤r≤2+1.28.(1)∵直线y=x+3与x轴交于点A,与y轴交于点B,∴A(﹣3,0),B(0,3).∵抛物线y=﹣x2+bx+c经过A、B两点,∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵点P的横坐标为m,∴P(m,﹣m2﹣2m+3),PM=﹣m2﹣2m+3.∵抛物线y=﹣x2﹣2x+3的对称轴为x=﹣=﹣=﹣1,∴PQ=2(﹣1﹣m)=﹣2m﹣2.∴矩形PQMN的周长=2(PM+PQ)=2(﹣m2﹣2m+3﹣2m﹣2)=﹣2m2﹣8m+2=﹣2(m+2)2+10,当m=﹣2时,矩形PQMN的周长最大,此时点C的坐标为(﹣2,1),∴S△ACM=×1×1=;②∵C(﹣2,1),∴P(﹣2,3),∴PC=3﹣1=2.∵点P、C、G、F为顶点的四边形是平行四边形,GF∥y轴,∴GF∥PC,且GF=PC.设G(x,x+3),则F(x,﹣x2﹣2x+3),当点F在点G的上方时,﹣x2﹣2x+3﹣(x+3)=2,解得x=﹣1或x=﹣2(舍去),当x=﹣1时,﹣x2﹣2x+3=4,即F1(﹣1,4);当点F在点G的下方时,x+3﹣(﹣x2﹣2x+3)=2,解得x=或x=,当x=时,﹣x2﹣2x+3=;当x=时,﹣x2﹣2x+3=,故F2(,),F3(,).综上所示,点F的坐标为F1(﹣1,4),F2(,),F3(,).G1(﹣1,2),G2(,2173+),G3(,2173-).当GF为对角线时G4(﹣3,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一模数学 共6页 第1页南京中考数学模拟试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.2的相反数是A .-2B .2C .-12D .122.下列运算正确的是A .2a +3b =5abB .(-a 2)3=a 6C .(a +b )2=a 2+b 2D .2a 2·3b 2=6a 2b 2 3.下列哪个几何体,它的主视图、左视图、俯视图都相同的是A .B .C .D .4.如图,AB ∥CD ,直线EF 与AB 、CD 分别交于点E 、F ,FG 平分∠EFD ,交AB 于点G ,若∠1=72°,则∠2的度数为A .36°B .30°C .34°D .33°5.已知二次函数y =x 2-5x +m 的图像与x 轴有两个交点,若其中一个交点的坐标为 (1,0),则另一个交点的坐标为 A .(-1,0) B .(4,0)C .(5,0)D .(-6,0)6.如图,点A 在反比例函数y =4x (x >0)的图像上,点B 在反比例函数y =kx(x >0)的图ABC D GF E1 2(第4题)(第6题)一模数学 共6页 第2页像上,AB ∥x 轴,BC ⊥x 轴,垂足为C ,连接AC ,若△ABC 的面积是6,则k 的值为 A . 10 B .12 C .14 D .16二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.一组数据1,6,3,4,5的极差是 ▲ .8.若式子1x -2在实数范围内有意义,则x 的取值范围是 ▲ .9.国家统计局的相关数据显示,2017年我国国民生产总值约为830 000亿元,用科学记数法表示830 000是 ▲ . 10.分解因式x 3-4x 的结果是 ▲ .11.若关于x 的一元二次方程x 2-2x +a -1=0有实数根,则a 的取值范围为 ▲ . 12.如图,在□ABCD 中,DB =DC ,AE ⊥BD ,垂足为E ,若∠EAB =46°,则∠C = ▲ °.13.某圆锥的底面圆的半径为3 cm ,它的侧面展开图是半圆,则此圆锥的侧面积是 ▲cm 2.(结果保留π)14.如图,在⊙O 中,AE 是直径,半径OD ⊥弦AB ,垂足为C ,连接CE .若OC =3,△ACE的面积为12,则CD = ▲ .15.某商场销售一种商品,第一个月将此商品的进价提高20%作为销售价,共获利1 200元,第二个月商场搞促销活动,将此商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利300元.设此商品的进价是x 元,则可列方程 ▲ .16.如图,在△ABC 中,∠C =90°,AB =6,AD =2,∠A =60°,点E 在边AC 上,将△ADE沿DE 翻折,使点A 落在点A ′处,当A ′E ⊥AC 时,A ′B 2= ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)(第12题)(第16题)D (第14题)一模数学 共6页 第3页17.(9分)(1)计算 8-2sin45°+(2-π)0-⎝⎛⎭⎫13-1; (2)解方程 x 2-2x -1=0.18.(7分)先化简,再求值:⎝⎛⎭⎫1x -2+1÷x 2-2x +1x -2,其中x =3+1. 19.(8分)如图,在□ABCD 中,AC 、BD 相交于点O ,点E 、F 在BD 上,且BE =DF .连接AE 、CF .(1)求证△AOE ≌△COF ;(2)若AC ⊥EF ,连接AF 、CE ,判断四边形AECF 的形状,并说明理由.20.(8分)某校组织九年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:请根据所给信息,解答下列问题:(1)a = ▲ ,b = ▲ ; (2)请补全频数分布直方图;(3)已知该年级有400名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?21.(7分)甲、乙两名同学参加1 000米比赛,由于参赛选手较多,将选手随机分A 、B 、C 三组进行比赛.九年级抽取部分学生成绩的频率分布表A B C DOEF(第19题) 九年级抽取部分学生成绩的频数分布直方图一模数学 共6页 第4页(1)甲同学恰好在A 组的概率是 ▲ ; (2)求甲、乙两人至少有一人在B 组的概率.22.(6分)如图,将△ABC 沿BC 方向平移到△DEF ,DE 交AC 于点G .若BC =2,△GEC的面积是△ABC 的面积的一半,求△ABC 平移的距离.23.(8分)一辆货车从甲地出发以50 km/h 的速度匀速驶往乙地,行驶1 h 后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.轿车行驶0.8 h 后两车相遇.图中折线ABC 表示两车之间的距离y (km )与货车行驶时间x (h )的函数关系.(1)甲乙两地之间的距离是 ▲ km ,轿车的速度是 ▲ km/h ; (2)求线段BC 所表示的函数表达式;(3)在图中画出货车与轿车相遇后的y (km )与x (h )的函数图像.24.(8分)如图,甲楼AB 高20m ,乙楼CD 高10m ,两栋楼之间的水平距离BD =20m ,为了测量某电视塔EF 的高度,小明在甲楼楼顶A 处观测电视塔塔顶E ,测得仰角为37°,CEA37°45°(第23题)A B CDEG(第22题)一模数学 共6页 第5页小丽在乙楼楼顶C 处观测电视塔塔顶E ,测得仰角为45°,求电视塔的高度EF .(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,2≈1.4,结果保留整数)25.(8分)如图,在四边形ABCD 中,AB =AD ,∠C =90°,以AB 为直径的⊙O 交AD 于点E ,CD =ED ,连接BD 交⊙O 于点F . (1)求证:BC 与⊙O 相切;(2)若BD =10,AB =13,求AE 的长.26.(9分)甲、乙两公司同时销售一款进价为40元/千克的产品.图①中折线ABC 表示甲公司销售价y 1(元/千克)与销售量x (千克)之间的函数关系,图②中抛物线表示乙公司销售这款产品获得的利润y 2(元)与销售量x (千克)之间的函数关系.(1)分别求出图①中线段AB 、图②中抛物线所表示的函数表达式;(2)当该产品销售量为多少千克时,甲、乙两公司获得的利润的差最大?最大值为多少? 27.(10分) 【操作体验】C(第25题)②①一模数学 共6页 第6页如图①,已知线段AB 和直线l ,用直尺和圆规在l 上作出所有的点P ,使得∠APB =30°.如图②,小明的作图方法如下:第一步:分别以点A 、B 为圆心,AB 长为半径作弧,两弧在AB 上方交于点O ; 第二步:连接OA 、OB ;第三步:以O 为圆心,OA 长为半径作⊙O ,交l 于P 1,P 2. 所以图中P 1,P 2即为所求的点.(1)在图②中,连接P 1A ,P 1 B ,说明∠A P 1B =30°;【方法迁移】(2)如图③,用直尺和圆规在矩形ABCD 内作出所有的点P ,使得∠BPC =45°.(不写作法,保留作图痕迹)【深入探究】(3)已知矩形ABCD ,BC =2,AB =m ,P 为AD 边上的点,若满足∠BPC =45°的点P恰有两个,则m 的取值范围为 ▲ .(4)已知矩形ABCD ,AB =3,BC =2,P 为矩形ABCD 内一点,且∠BPC =135°,若点P 绕点A 逆时针旋转90°到点Q ,则PQ 的最小值为 ▲ .AB CD③① ②A B l一模数学 共6页 第7页南京中考数学模拟试卷 参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.5 8.x ≠2 9.8.3×105 10.x (x +2)(x ―2) 11.a ≤212.68 13.18π 14. 2 15. 150015%x ―120020%x=80 16.20―8 3三、解答题(本大题共11小题,共88分) 17.(本题9分)(1)解:原式=22―2+1―3 ………4分= 2-2 ………5分(2)解: x 2-2x =1x 2-2x +1=2 (x -1)2=2 x -1=± 2x 1=1+2,x 2=1― 2 ………4分18.(本题7分)解:原式=1+x ―2x ―2•x ―2(x ―1)2=x ―1x ―2•x ―2(x ―1)2=1x ―1………5分 当x =3+1时原式=13=33………7分19.(本题8分)(1)证明:∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC . 又BE =DF ,∴OB -BE =OD -DF . ∴OE =OF .又∠AOE =∠C OF ,∴△AOE ≌△COF ………4分(2)解:四边形AECF 是菱形. ………5分理由如下:∵OA =OC ,OE =OF .∴四边形AECF 是平行四边形. ………7分 又AC ⊥EF ,∴四边形AECF 是菱形. ………8分一模数学 共6页 第8页20.(本题8分)(1)18,0.18. (2)图略.(3)120. ………8分 21.(本题7分)(1)13.………2分(2)解:所有可能出现的结果有:(A ,A ),(A ,B ),(A ,C ),(B ,A ),(B ,B ),(B ,C ),(C ,A ),(C ,B ),(C ,C )共有9种,它们出现的可能性相同,所有的结果中,满足“至少有一人抽到B 项目”(记为事件A )的结果有5种,所以P (A )=59.………7分22.(本题6分)证明:由平移得:∠B =∠DEF ,又∵点B 、E 、C 、F 在同一条直线上 ∴AB ∥DE ,∴△CGE ∽△CAB .∴ S △CGE S △CAB =(EC BC)2=EC 2BC 2=12 .∵BC =2,∴EC 24=12.∴EC =2.∴BE =BC ―EC =2―2.即平移的距离为2―2. ………6分23.(本题8分)(1)150,75.………2分(2)解:根据题意,C 点坐标为(1.8,0),当x =1时,y =150-50=100,∴B 点坐标为(1,100)设线段BC 所表示的y 与x 之间的函数表达式为y =kx +b .因为y =kx +b 的图像过点(1,100)与(1.8,0),所以⎩⎨⎧1.8k +b =0,k +b =100.解方程组得⎩⎨⎧k =-125,b =225.线段BC 所表示的y 与x 之间的函数表达式为y =-125x +………6分 (3)图中线段CD 即为所求.………8分24.(本题8分) 解:如图,分别过点A ,C 作AM ⊥EF ,CN ⊥EF 垂足分别为M 、N .∴MF =AB =20,NF =CD =10.设EF =x m ,则EN =(x ―10) m ,EM =(x ―20) m . 在Rt △ECN 中,∠ECN =45°,∵tan45°=ENCN ,∴CN =EN tan45°=x ―10tan45°. C DEA BF37°45° (第24题)M N一模数学 共6页 第9页在Rt △AEM 中,∠EAM =37°,∵ tan37°=EMAM,∴AM =EMtan37°=x ―20 tan37°.又 AM ―CN =BD , ∴x ―20 tan37°―x ―10tan45°=20. ∴x ≈110.答:电视塔的高度为110米. ………8分 25.(本题8分)(1)证明:连接BE .∵ AB 是直径, ∴∠AEB =90°.在Rt △BCD 和Rt △BED 中 ⎩⎪⎨⎪⎧BC =BC EC =DC ∴Rt △BCD ≌Rt △BED . ∴∠ADB =∠BDC . 又 AD =AB ,∴∠ADB =∠ABD . ∴∠BDC =∠ABD . ∴AB ∥CD .∴∠ABC +∠C =180°. ∴∠ABC =180°-∠C =180°―90°=90°. 即BC ⊥AB . 又B 在⊙O 上,∴BD 与⊙O 相切.………4分(2)解:连接AF .∵AB 是直径, ∴∠AFB =90°,即AF ⊥BD . ∵AD =AB ,BC =10, ∴BF =5.在Rt △ABF 和Rt △BDC 中 ⎩⎪⎨⎪⎧∠ABF =∠BDC ∠AFB =∠BCD =90° ∴Rt △ABF ∽Rt △BDC . ∴AB BD =BF DC . ∴1310=5DC. ∴DC =5013 .∴ED =5013.C(第25题)(第25题)一模数学 共6页 第10页∴AE =AD ―ED =13―5013=11913.………8分26.(本题9分)解:(1)设y 1与x 之间的函数表达式为y 1=kx +b .根据题意,当x =0时,y 1=120;当x =80时,y 1=72.所以⎩⎨⎧120=b 72=80k +b ,解得⎩⎨⎧k =-0.6b =120所以,y 1与x 之间的函数表达式为y 1=-0.6x +120. 设y 2与x 之间的函数表达式为y 2=a (x ―75)2+2250, 当x =0时,y 2=0,解得a =―0.4.所以,y 2与x 之间的函数表达式为y 2=―0.4(x ―75)2+2250. ………4分 (2)解:设甲、乙两公司的销售总利润的差为w (元).当0<x ≤80时,w =(y 1-40)x ―y 2= (-0.6x +120―40)x -[(-0.4(x ―75)2+2250] =-0.2x 2+20x =-0.2(x -50)2+500. ∵-0.2<0,0<x ≤80∴当x =50时, w 有最大值,最大值为500. 当80<x ≤84时,w =(72―40)x ―[―0.4(x ―75)2+2250]=0.4x 2―28x , ∵当80<x ≤84时,w 随x 的增大而增大, ∴当x =84时, 有最大值,最大值为470.4.综上所述,当销售量为50千克时,甲乙两公司获得的利润的差最大,最大是500元.………9分 27.(本题10分)(1)解:由作法可知:OA =OB =AB ,∴△OAB 是等边三角形, ∴∠AOB =60°. ∴∠A P 1B =30°.………2分(2)如图, ⌒EF 上所有的点即为所求的点(不含点E 、F ).………6分(3)2≤m <2+1.………8分(4)34―2.………10分。

相关文档
最新文档