2010年安徽省中考数学试卷及答案
2024年安徽省中考数学试题及答案
数学试题注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4、考试结束后,请将“试题卷”和“答题卷”一并交回.审核:魏敬德老师一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1. ﹣5的绝对值是( )A. 5B. ﹣5C. 15- D. 152. 据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为( )A. 70.94410⨯B. 69.4410⨯C. 79.4410⨯D. 694.410⨯3. 某几何体的三视图如图所示,则该几何体为( )A. B.C. D.4. 下列计算正确的是( )A. 356a a a +=B. 632a a a ÷=C. ()22a a -=D. a=5. 若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为( )A. 2πB. 3πC. 4πD. 6π6. 已知反比例函数()0ky k x =≠与一次函数2y x =-图象的一个交点的横坐标为3,则k 的值为()A. 3-B. 1-C. 1D. 3的7. 如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是( )A.B. -C. 2-D. 8. 已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是( )A. 102a -<< B. 112b <<C. 2241a b -<+< D. 1420a b -<+<9. 在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A. ABC AED∠=∠ B. BAF EAF ∠=∠C. BCF EDF ∠=∠ D. ABD AEC∠=∠10. 如图,在Rt ABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为( )A. B.C D.二、填空题(本大题共4小题,每小题5分,满分20分)11. 若代数式14-x 有意义,则实数x 的取值范围是_____.12.,祖冲之给出圆周率的一种分数形式的近似值为227.比较大.______227(填“>”或“<”).13. 不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是______.14. 如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=______(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为______.三、(本大题共2小题,每小题8分,满分16分)15. 解方程:223x x -=16. 如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.四、(本大题共2小题,每小题8分,满分16分)17. 乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?18. 数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):按上表规律,完成下列问题:(ⅰ)24=( )2-( )2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.五、(本大题共2小题,每小题10分,满分20分)19. 科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20. 如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.是(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.六、(本题满分12分)21. 综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1 求图1中a 值.【数据分析与运用】任务2 A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3 下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;的②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4 结合市场情况,将C ,D 两组的柑橘认定为一级,B 组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.七、(本题满分12分)22. 如图1,ABCD Y 对角线AC 与BD 交于点O ,点M ,N 分别在边AD ,BC 上,且AM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.八、(本题满分14分)23. 已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22yx x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.的数学试题注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4、考试结束后,请将“试题卷”和“答题卷”一并交回.审核:魏敬德老师一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】C【6题答案】【答案】A【7题答案】【答案】B【8题答案】【答案】C【9题答案】【答案】D【10题答案】【答案】A二、填空题(本大题共4小题,每小题5分,满分20分)【11题答案】x【答案】4【12题答案】【答案】>【13题答案】【答案】16【14题答案】【答案】 ①. 90α︒-##90α-+︒ ②. 三、(本大题共2小题,每小题8分,满分16分)【15题答案】【答案】13x =,21x =-【16题答案】【答案】(1)见详解 (2)40(3)()6,6E (答案不唯一)四、(本大题共2小题,每小题8分,满分16分)【17题答案】【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【18题答案】【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--; (2)()224k m k m -+-五、(本大题共2小题,每小题10分,满分20分)【19题答案】【答案】1.3【20题答案】【答案】(1)见详解 (2).六、(本题满分12分)【21题答案】【答案】任务1:40;任务2:6;任务3:①;任务4:乙园的柑橘品质更优,理由见解析七、(本题满分12分)【22题答案】【答案】(1)见详解 (2)(ⅰ)见详解,(ⅱ八、(本题满分14分)【23题答案】【答案】(1)4b =(2)(ⅰ)3;(ⅱ)103。
2010年安徽中考数学试题及答案(解析版)
2010年安徽省中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.22.(2010•安徽)计算(2x)3÷x的结果正确的是()A.8x2B.6x2C.8x3D.6x33.(2010•安徽)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°4.(2010•安徽)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A.2.89×107B.2。
89×106C.2。
89×105D.2。
89×1045.(2010•安徽)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是()A.B.C.D.6.(2010•安徽)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元7.(2010•安徽)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,18.(2010•安徽)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.B.2C.3D.9.(2010•安徽)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495 B.497 C.501 D.50310.(2010•安徽)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(2010•安徽)计算:×﹣=_________.12.(2010•安徽)不等式组的解集是_________.13.(2010•安徽)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC上一点,则∠D=_________度.14.(2010•安徽)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是_________.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题(共9小题,满分90分)15.(2010•安徽)先化简,再求值:(1﹣)÷,其中a=﹣1.16.(2010•安徽)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分.(参考数据:≈1。
2010安徽中考数学试题及答案
2010安徽中考数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -1答案:B2. 已知一个长方体的长、宽、高分别为10cm、8cm和6cm,其体积是多少立方厘米?A. 480B. 240C. 120D. 60答案:A3. 下列哪个选项是不等式2x - 3 > 7的解?A. x > 5B. x > 3C. x < 5D. x < 3答案:A4. 一个数的75%是150,这个数是多少?A. 200B. 300C. 400D. 500答案:B5. 一个班级有48名学生,其中2/3是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 40答案:A6. 下列哪个选项是正确的分数化简结果?A. \( \frac{2}{3} = \frac{4}{6} \)B. \( \frac{3}{4} =\frac{6}{8} \)C. \( \frac{5}{6} = \frac{10}{12} \)D. \( \frac{7}{8} = \frac{14}{16} \)答案:C7. 一个数的1/3加上它的1/4等于这个数的多少?A. \( \frac{1}{12} \)B. \( \frac{7}{12} \)C.\( \frac{1}{2} \) D. 1答案:B8. 下列哪个选项是正确的圆面积公式?A. \( A = \pi r^2 \)B. \( A = 2\pi r \)C. \( A = \pi d^2 \)D. \( A = \pi (d/2)^2 \)答案:A9. 如果一个三角形的三条边长分别为3、4、5,那么这个三角形是直角三角形吗?A. 是B. 否答案:A10. 下列哪个选项是正确的,表示一个数的立方?A. \( x^3 = x \cdot x \)B. \( x^3 = x^2 + x \)C. \( x^3 = x^2 - x \)D. \( x^3 = x^2 \cdot x \)答案:D二、填空题(本大题共5小题,每小题3分,共15分)11. 一个数的1/2加上它的1/3等于这个数的______。
安徽省2010年中考数学真题及答案解析
2010年安徽省中考试题数 学一.选择题(本大题10小题,每小题4分,满分40分)每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号.每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2010安徽,1,4分)在-1,0,1,2这四个数中,既不是正数也不是负数的是………………( )A .1-B .0C .1D .2【分析】大于0的数是正数,小于0的数是负数. 【答案】B【涉及知识点】正、负数的概念【点评】本题考查有理数的概念,考查知识点单一,属于基础题. 【推荐指数】★ 2.(2010安徽,2,4分)计算x x ÷3)2(的结果正确的是…………………………( ) A .28x B .26x C .38x D .36x【分析】先将系数相除得2,再将字母及其指数相除得2x 【答案】A【涉及知识点】单项式除法【点评】熟悉单项式除法法则即可解决,属于简单题. 【推荐指数】★3.(2010安徽,3,4分)如图,直线1l ∥2l ,∠1=550,∠2=650,则∠3为…………………………( )A .500.B .550C .600D .650【分析】可将∠3看成三角形的一个内角,利用两直线平行,同位角相等和对顶角相等可求出三角形的其他两个内角,再用三角形内角和即可求出∠3.【答案】C【涉及知识点】平行线的性质,三角形的内角和【点评】本题考查综合运用平行线的性质和三角形的内角和两个知识点,属于简单题. 【推荐指数】★★4.(2010安徽,4,4分)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是…………………………()A.2.89×107. B.2.89×106 .C.2.89×105. D.2.89×104.【分析】289万=2890000【答案】B【涉及知识点】科学记数法【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a×10n的形式(其中1≤a<10,n为整数,这种计数法称为科学记数法),其方法是(1)确定a,a是只有一位整数的数;(2)确定n;当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【推荐指数】★5.(2010安徽,5,4分)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是【分析】正方体的三视图都是正方形;球的三视图都是圆;直三棱柱的主视图是矩形,两边长分别是棱长、底面上的高,俯视图是矩形,两边长分别是棱长、底面的边长,左视图是正三角形;圆柱的主视图、俯视图都是矩形且这两个矩形全等;左视图是圆,符合题意.【答案】D【涉及知识点】视图与投影【点评】本题主要考查已知物体画三视图的能力,属于简单题.【推荐指数】★★★★6.(2010安徽,6,4分)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是………………()A.1~2月份利润的增长快于2~3月分利润的增长B.1~4月份利润的极差于1~5月分利润的极差不同C.1~5月份利润的的众数是130万元D.1~5月份利润的的中位数为120万元【分析】1~2月份利润增长10万元,2~3月份利润增长20万元;1~4月份利润的极差与1~5月份利润的极差都是30万元;1~5月份利润的的中位数为115万元【答案】C【涉及知识点】折线统计图、极差、众数、中位数【点评】折线统计图是统计图之一,极差、众数、中位数等都是统计学中的重要概念,准确理解概念的内涵是解决此类问题的“法宝”,属于中档题.【推荐指数】★★★★7.(2010安徽,7,4分)若二次函数52++=bx x y 配方后为k x y +-=2)2(则b 、k 的值分别为………………( )A .0,5B .0,1C .—4,5D .—4,1【分析】可将配方后的式子展开,比较两个解析式的系数,二次项系数都是1,一次项系数相等,常数项相等【答案】D【涉及知识点】配方法、待定系数法【点评】配方法是数学中一种重要思想方法,在二次项系数是1的情况下,一般是配上一次项系数一半的平方,本题将顶点式化简成一般式,再由待定系数法即可写出b 、k 的值,属于中档题.【推荐指数】★★★ 8.(2010安徽,8,4分)如图,⊙O 过点B 、C .圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为………………( ) A .10 B .32 C .13 D .23【分析】因为等腰直角三角形和圆都是轴对称图形,延长AO 交BC 于D ,连接OB ,则AD=BD=DC=21BC=3,所以OD=A D -OA=2,由勾股定理,得:OB=13 【答案】C【涉及知识点】垂径定理,勾股定理【点评】求圆的半径是圆中常见的计算题,基本方法是构造以半径为斜边,半弦长、弦心距为直角边的直角三角形,利用勾股定理求出,属于中档题.【推荐指数】★★★【典型错误】选D ,将AB 当成圆的半径;选B ,仍将AB 当成圆的半径,但以为:AB=33BC ;选A 的同学还是将AB 当成圆的半径了,用:101322=+。
2010年安徽中考数学试题及答案(解析版)
2010年安徽省中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.22.(2010•安徽)计算(2x)3÷x的结果正确的是()A.8x2B.6x2C.8x3D.6x33.(2010•安徽)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°4.(2010•安徽)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A.2.89×107B.2.89×106C.2.89×105D.2.89×1045.(2010•安徽)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是()A.B.C.D.6.(2010•安徽)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元7.(2010•安徽)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,18.(2010•安徽)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O 的半径为()A.B.2C.3D.9.(2010•安徽)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495 B.497 C.501 D.50310.(2010•安徽)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s 和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(2010•安徽)计算:×﹣=_________.12.(2010•安徽)不等式组的解集是_________.13.(2010•安徽)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC上一点,则∠D=_________度.14.(2010•安徽)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是_________.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题(共9小题,满分90分)15.(2010•安徽)先化简,再求值:(1﹣)÷,其中a=﹣1.16.(2010•安徽)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB 与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分.(参考数据:≈1.7)17.(2010•安徽)点P(1,a)在反比例函数y=的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式.18.(2010•安徽)在小正方形组成的15×15的网络中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.19.(2010•安徽)在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2(1)问4、5两月平均每月降价的百分率是多少?(参考数据:≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.20.(2010•安徽)如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.门票价格一览表指定日普通票2 00元平日优惠票100元……某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.22.(2010•安徽)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:20鲜鱼销售单价(元/kg)单位捕捞成本(元5﹣/kg)捕捞量(kg)950﹣10x(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?23.(2010•安徽)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b >c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.2010年安徽省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.2考点:有理数。
1999年——2013年安徽省中考数学试题及答案
1999年-2013年安徽省中考真题及答案目录1999年安徽省初中中专招生考试数学试题 (1)2000年安徽省中考数学试题 (7)2002年初中升学统一考试 (17)2003年安徽省中考试题数学试题 (23)2004安徽数学试题及答案 (29)2005年安徽省中考数学试卷(课程改革实验区) (34)2006年安徽省中考数学试题 (44)2007年初中毕业学业考试 (54)2008年安徽省中考数学试卷 (61)2009年安徽省初中毕业学业考试 (70)2010年安徽省中考数学试题及答案 (78)2011年安徽省初中毕业学业考试 (85)2012年安徽省初中毕业学业考试数学试题解析 (93)2013年中考数学试卷 (106)1999年安徽省初中中专招生考试数学试题一、填空题(本题满分20分,共10小题,每小题2分.)2.一个角和它的余角相等,那么这个角的度数是____.3.分解因式:x2-4=____.4.点P(-2,3)关于y轴对称的点的坐标是____.6.已知数据9,3,5,7,那么这组数据的中位数是____.7.某商场里出售一种彩电,每台标价为3300元,现以九折出售,每台售价比进价多150元,那么这种彩电每台的进价是____元.8.如图,在长方体中,与面AA′D′D平行的面是____.9.一个多边形的边长依次为1,2,3,4,5,6,与它相似的另一个多边形的最大边长为8,那么另一个多边形的周长是____.10.如图,在⊙O内,AB是内接正六边形的一边,AC是内接正十边形的一边,BC是内接正n边形的一边,那么n=____.二、选择题(本题满分30分)11.用四舍五入法,按保留三个有效数字的要求,求得0.02026的近似值是[ ] A. 0.020 B.0.0203. C.0.021 D.0.020212.计算(-2x3)2÷2x的结果是[ ]A.-4x4B.-4x5C.2x4D.2x513.下面各题中两个式子的值相等的是[ ]A.-23或(-2)3. B.32与23. C.(-2)2与-22 D.|-2|与-|-2|14.一个多边形的对角线的条数与它的边数相等,这个多边形的边数是[ ]A.7 B.6 C.5 D.4[ ]A.x<3 B.x≤4. C.x<3或x≥4 D.3<x≤416.四边形ABCD的对角线AC、BD相交于点O,能判定它是正方形的题设是[ ] A.AB=BC=CD=DA. B.AO=BO=CO=DO,AC⊥BD.C.AO=CO,BO=DO,AC⊥BD. D.AB=BC,CD=DA17.关于x的二次方程ax2+2x+1=0有两个不相等的实数根,那么a的取值范围是[ ] A.a≠0,且a<1 B.a>1. C.a=1 D.a<118.下列函数关系中,成反比例函数的是[ ]A.矩形的面积S一定时,长a与宽b的函数关系.B.矩形的长a一定时,面积S与宽b的函数关系C.正方形的面积S与边长a的函数关系.D.正方形的周长L与边长a的函数关系19.以方程2x2+x-5=0的两根之和与两根之积为根的一元二次方程是[ ]A.4x2+8x-5=0 B.4x2-8x-5=0. C.4x2+12x+5=0 D.4x2+12x-5=020.如图,△ABC中,∠BAC=90°,AD⊥BC于D,△ABC,△ABD,△ACD的外接圆半径分别为R,R1,R2,那么有[ ]A. R=R1+R2.B. R= .C. R2=R1R2.D. R2=R12+R22.三、(本题满分12分,共两小题,每小题6分.)四、(本题满分12分,共两小题,每小题6分.)23.已知RtΔABC中,∠C=900,a=,b=,求∠A的正弦、余弦、正切的值.24.如图,等腰梯形ABCD中,AB=CD,AD∥BC,E、F分别为AD、BC的中点.证明:EF⊥BC.五、(本题满分16分,共两小题,每小题8分.)26.已知在n个数据中,x1出现f1次,x2出现f2次,…,六、(本题满分10分,只有1题.)27.某人用一架不等臂天平称一铁块G 的质量,当把铁块放在天平的左盘中时,称得它的质量为0.4千克;当把铁块放在天平的右盘中时,称得它的质量为0.9千克,求这一铁块的实际质量.七、(本题满分10分,只有1题.)28.已知函数y 1=x ,y 2=(x+1)2-7.(1)求它们图象的交点;(2)结合图象,确定当x 为何值时,有y 1>y 2;y 1<y 2?八、(本题满分10分,只有1题.)29.在ΔABC 中,已知BC=a,CA=b,AB=c,s=2c b a ++,内切圆I 和BC 、CA 、AB 分别相切于点D 、E 、F.求证:(1)AF=s-a;(2) S ΔABC =s(s-a)tan 2A .参考答案一、填空题2. 453.(x+2)(x-2)4.(2,3)5.x≥26.67.28208.面BB'c'c9.2810.15二、选择题11.B 12.D 13.A 14.C 15.D 16.B 17.A 18.A 19.C 20.D三、24.证明:连BE、CE,在△ABE和△DCE中,∵AB=DC,AE=DE,∠BAE=∠CDE,∴△ABE≌△DCE. (3分)∴BE=EC. (4分)∵BF=CF,∴EF⊥BC. (6分)4x2-13x+10=0, (4分)所以,原方程的根是x=2. (8分)=f1x1+f2x2+…+f k x k-(f1+f2+…+f k)²=0. (8分)六、27.解:设不等臂天平的左、右臂的长分别为l1、l2,铁块的实际质量为m千克,由题意得①³②得m2l1l2=0.36l1l2, (7分)即m2=0.36,∴m=0.6. (9分)答:铁块的实际质量为0.6千克.(10分)七、28.解:(1)解方程组所以直线y1=x与抛物线y2=(x+1)2-7的交点是(2,2)和(-3,-3). (4分)(2)观察函数)y1=x与y2=(x+1)2-7的图象(如图),由图象可知:当-3<x<2时,有y1>y2, (8分)当x>2或x<-3时,有y1<y2.八、29.证明:(1)设AE=AF=x,BF=BD=y,CD=CE=z,解得x=s-a,所以AF=s-a. (4分)(2)设内切圆I的半径为r,连IA、IB、IC、ID、IE、IF,则2000年安徽省中考数学试题一、填空(本题满分30分,每小题3分)1、-2的绝对值是_______。
历年安徽省中考数学试卷及解析答案(收藏版)
2006年安徽省中考数学试题考生注意:本卷共八大题,计 23 小题,满分 150 分,时间 120 分钟.一、选择题(本题共 10 小题,每小题 4 分,满分 40 分)每一个小题都给出代号为 A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号.每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)均不得分. 1。
计算 2 一的结果是( )A 。
1B -1C .一 7D 。
52 。
近几年安徽省教育事业加快发展,据 2005 年末统计的数据显示,仅普通初中在校生就约有334 万人,334 人用科学记数法表示为( ) A 。
3 . 34 106 B . 33 。
4 10 5 C 、334 104 D 、 0 . 334 107 3 .计算(-21ab)的结果正确的是( ) A. 2441b a B 。
3816b a C.—3681b a D.-3581b a4 .把过期的药品随意丢弃,会造成对土壤和水体的污染,危害人们的健康.如何处理过期药品,有关机构随机对若干家庭进行调查,调查结果如图.其中对过期药品处理不正确的家庭达到( )A 。
79 %B 。
80 %C 。
18 %D 。
82 %5 。
如图,直线a //b ,点B 在直线b 上,且AB ⊥BC ,∠1 二 55º ,则∠2 的度数为( )A . 35ºB . 45 ºC 。
55 ºD . 125º6。
方程01221=---x x 的根是( ) A .-3 B .0 C 。
2 D.37 。
如图, △ ABC 中,∠B = 90 º ,∠C 二 30º , AB = 1 ,将 △ ABC 绕顶点 A 旋转 1800 ,点 C 落在 C ′处,则 CC ′的长为( ) A 。
4 B.4 C 。
2 D 。
2010年安徽省中考数学试卷答案与分析
2011年安徽中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1、(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A、﹣1B、0C、1D、2考点:有理数。
分析:正数是大于0的数,负数是小于0的数,既不是正数也不是负数的是0.解答:解:A、﹣1<0,是负数,故A错误;B、既不是正数也不是负数的是0,正确;C、1>0,是正数,故C错误;D、2>0,是正数,故D错误.故选B.点评:理解正数和负数的概念是解答此题的关键.2、(2010•安徽)计算(2x)3÷x的结果正确的是()A、8x2B、6x2C、8x3D、6x3考点:整式的除法;幂的乘方与积的乘方;同底数幂的除法。
分析:根据积的乘方等于各因式乘方的积和单项式的除法法则解答.解答:解:(2x)3÷x=8x3÷x=8x2.故选A.点评:本题主要考查积的乘方的性质,单项式的除法,熟练掌握运算性质是解题的关键.3、(2010•安徽)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A、50°B、55°C、60°D、65°考点:平行线的性质;对顶角、邻补角;三角形内角和定理。
专题:计算题。
分析:先根据平行线的性质及对顶角相等求出∠3所在三角形其余两角的度数,再根据三角形内角和定理即可求出∠3的度数.解答:解:如图所示:∵l1∥l2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.故选C.点评:本题重点考查了平行线的性质、对顶角相等及三角形内角和定理,是一道较为简单的题目.4、(2010•安徽)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A、2.89×107B、2.89×106C、2.89×105D、2.89×104考点:科学记数法—表示较大的数。
2010年安徽省中考数学试卷(解析版)
2010年安徽省中考数学试卷(教师版)一、选择题(共10小题,每小题4分,满分40分)1.(4分)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.2【微点】有理数.【思路】正数是大于0的数,负数是小于0的数,既不是正数也不是负数的是0.【解析】解:A、﹣1<0,是负数,故A错误;B、既不是正数也不是负数的是0,正确;C、1>0,是正数,故C错误;D、2>0,是正数,故D错误.故选:B.【点拨】理解正数和负数的概念是解答此题的关键.2.(4分)计算(2x)3÷x的结果正确的是()A.8x2B.6x2C.8x3D.6x3【微点】幂的乘方与积的乘方;同底数幂的除法;整式的除法.【思路】根据积的乘方等于各因式乘方的积和单项式的除法法则解答.【解析】解:(2x)3÷x=8x3÷x=8x2.故选:A.【点拨】本题主要考查积的乘方的性质,单项式的除法,熟练掌握运算性质是解题的关键.3.(4分)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°【微点】对顶角、邻补角;平行线的性质;三角形内角和定理.【思路】先根据平行线的性质及对顶角相等求出∠3所在三角形其余两角的度数,再根据三角形内角和定理即可求出∠3的度数.【解析】解:如图所示:∵l1∥l2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.故选:C.【点拨】本题重点考查了平行线的性质、对顶角相等及三角形内角和定理,是一道较为简单的题目.4.(4分)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A.2.89×107B.2.89×106C.2.89×105D.2.89×104【微点】科学记数法—表示较大的数.【思路】应先把289万整理为用个表示的数,科学记数法的一般形式为:a×10n,在本题中a为2.89,10的指数为整数数位减1.【解析】解:289万=2 890 000=2.89×106.故选B.【点拨】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n 为比整数位数少1的数.5.(4分)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是()A.B.C.D.【微点】简单几何体的三视图.【思路】如图,图中有正方体、球体、直三棱柱以及圆柱体,根据三视图易得出答案.【解析】解:正方体和球体的主视图、左视图以及俯视图都是相同的,排除A、B;直三棱柱的正视图是一个矩形,左视图是一个三角形,俯视图也是一个矩形,但与正视图的矩形不相同,排除C;圆柱的正视图以及俯视图是相同的,都是矩形,因为直径相同,左视图是个圆,故选:D.【点拨】本题只要了解清楚各个几何体的三视图即可得解,难度一般.6.(4分)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元【微点】折线统计图;中位数;众数;极差.【思路】解决本题需要从统计图获取信息,再对选项一一分析,选择正确结果.【解析】解:A、1~2月份利润的增长为10万元,2~3月份利润的增长为20万元,慢于2~3月,故选项错误;B、1~4月份利润的极差为130﹣100=30万元,1~5月份利润的极差为130﹣100=30万元,极差相同,故选项错误;C、1~5月份利润,数据130出现2次,次数最多,所以众数是130万元,故选项正确;D、1~5月份利润,数据按从小到大排列为100,110,115,130,130,中位数为115万元,故选项错误.故选:C.【点拨】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况.7.(4分)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,1【微点】二次函数的三种形式.【思路】可将y=(x﹣2)2+k的右边运用完全平方公式展开,再与y=x2+bx+5比较,即可得出b、k的值.【解析】解:∵y=(x﹣2)2+k=x2﹣4x+4+k=x2﹣4x+(4+k),又∵y=x2+bx+5,∴x2﹣4x+(4+k)=x2+bx+5,∴b=﹣4,k=1.故选:D.【点拨】本题实际上考查了两个多项式相等的条件:它们同类项的系数对应相等.8.(4分)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.B.2C.3D.【微点】勾股定理;垂径定理.【思路】根据等腰三角形三线合一的性质知:若过A作BC的垂线,设垂足为D,则AD 必垂直平分BC;由垂径定理可知,AD必过圆心O;根据等腰直角三角形的性质,易求出BD、AD的长,进而可求出OD的值;连接OB根据勾股定理即可求出⊙O的半径.【解析】解:过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD﹣OA=2;Rt△OBD中,根据勾股定理,得:OB.故选:D.【点拨】此题主要考查了等腰直角三角形的性质,以及垂径定理、勾股定理的应用.9.(4分)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495 B.497 C.501 D.503【微点】规律型:数字的变化类.【思路】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘2的8,将8写在第4位上,将第4位数字8乘2得16,将16的个位数字6写在第5位上,将第5位数字6乘2得12,将12的个位数字2写在第6位上,再将第6位数字2乘2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和.【解析】解:当第1位数字是3时,按如上操作得到一个多位数36 2486 2486 2486 2486 ….仔细观察36 2486 2486 2486 2486 …中的规律,这个多位数前100位中前两个为36,接着出现2486 2486 2486…,所以36 2486 2486 2486 2486 …的前100位是36 2486 2486 2486…2486 2486 1486 24(因为98÷4=24余2,所以,这个多位数开头两个36中间有24个2486,最后两个24),因此,这个多位数前100位的所有数字之和=(3+6)+(2+4+8+6)×24+(2+4)=9+480+6=495.故选:A.【点拨】本题,一个“数字游戏”而已,主要考查考生的阅读能力和观察能力,其解题的关键是:读懂题目,理解题意.这是安徽省2010年中考数学第9题,在本卷中的10道选择题中属于难度偏大.而产生“难”的原因就是没有“读懂”题目.10.(4分)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A.B.C.D.【微点】函数的图象.【思路】甲在乙前面,而乙的速度大于甲,则此过程为乙先追上甲后再超过甲,全程时间以乙跑的时间计算,算出相遇时间判断图象.【解析】解:此过程可看作追及过程,由相遇到越来越远,按照等量关系“甲在相遇前跑的路程+100=乙在相遇前跑的路程”列出等式v乙t=v甲t+100,根据甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,则乙要追上甲,所需时间为t=50,全程乙跑完后计时结束t总200,则计时结束后甲乙的距离△s=(v乙﹣v甲)×(t总﹣t)=300m由上述分析可看出,C选项函数图象符合故选:C.【点拨】本题考查的是函数图象与实际结合的问题,需注意相遇的时间、全程时间以及最后甲乙的距离这几个点.二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算:2.【微点】二次根式的混合运算.【思路】先做乘法,再化简,最后合并.【解析】解:原式=32.故答案为:2.【点拨】二次根式的混合运算,仿照实数的运算顺序进行,先乘除,再加减.12.(5分)不等式组的解集是2<x≤4.【微点】解一元一次不等式组.【思路】本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集.【解析】解:由①得x>2,由②得x≤4,∴不等式组的解集为2<x≤4.故填空答案:2<x≤4.【点拨】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(5分)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是上一点,则∠D=40度.【微点】圆周角定理.【思路】欲求∠D的度数,需先求出同弧所对的∠A的度数;Rt△ABC中,已知∠ACB 的度数,即可求得∠A,由此得解.【解析】解:∵AC是⊙O的直径,∴∠ABC=90°;∴∠A=180°﹣90°﹣50°=40°,∴∠D=∠A=40°.【点拨】此题主要考查圆周角定理的应用.14.(5分)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是②③④.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.【微点】等腰三角形的判定与性质.【思路】可根据等腰三角形三线合一的性质来判断①②是否正确;③④要通过作等腰三角形来判断其结论是否成立.【解析】解:应添加的条件是②③④;证明:②当∠BAD=∠CAD时,∵AD是∠BAC的平分线,且AD是BC边上的高;则△ABD≌△ACD,∴△BAC是等腰三角形;③延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;∵AB+BD=CD+AC,∴DE=DF,又AD⊥BC;∴△AEF是等腰三角形;∴∠E=∠F;∵AB=BE,∴∠ABC=2∠E;同理,得∠ACB=2∠F;∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;④△ABC中,AD⊥BC,根据勾股定理,得:AB2﹣BD2=AC2﹣CD2,即(AB+BD)(AB﹣BD)=(AC+CD)(AC﹣CD);∵AB﹣BD=AC﹣CD①,∴AB+BD=AC+CD②;∴①+②得:,2AB=2AC;∴AB=AC,∴△ABC是等腰三角形故答案为:②③④.【点拨】此题主要考查的是等腰三角形的判定和性质;本题的难点是结论③的证明,能够正确的构建出等腰三角形是解答③题的关键.三、解答题(共9小题,满分90分)15.(8分)先化简,再求值:(1),其中a=﹣1.【微点】分式的化简求值.【思路】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解析】解:原式•,当a=﹣1时,原式.【点拨】考查分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.16.(8分)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸(参的B处,AB与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分.考数据: 1.7)【微点】解直角三角形的应用﹣方向角问题.【思路】解决此题的关键是求出AB的长,可过B作河对岸的垂线,在构建的直角三角形中,根据河岸的宽度即AB与河岸的夹角,通过解直角三角形求出AB的长,进而根据时间=路程÷速度得出结果.【解析】解:如图,过点B作BC垂直于河岸,垂足为C.在Rt△ACB中,有:AB600.∴t2 3.4(分).即船从A处到B处约需3.4分.【点拨】应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.17.(8分)点P(1,a)在反比例函数y的图象上,它关于y轴的对称点在一次函数y =2x+4的图象上,求此反比例函数的解析式.【微点】一次函数图象上点的坐标特征;待定系数法求反比例函数解析式;关于x轴、y 轴对称的点的坐标.【思路】先求出点P(1,a)关于y轴的对称点,代入y=2x+4,求出a的值,再把P点坐标代入y即可求出k的值.【解析】解:点P(1,a)关于y轴的对称点是(﹣1,a),∵点(﹣1,a)在一次函数y=2x+4的图象上,∴a=2×(﹣1)+4=2,∵点P(1,2)在反比例函数y的图象上,∴k=2,∴反比例函数的解析式为y.【点拨】此题结合对称,考查了用待定系数法求函数解析式,将坐标代入解析式即可求出k的值.18.(8分)在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.【微点】作图﹣平移变换;作图﹣旋转变换.【思路】(1)D不变,以D为旋转中心,顺时针旋转90°得到关键点A,C,B的对应点即可;(2)最简单的是以C′D′的为对称轴得到的图形,应看先向右平移几个单位,向下平移几个单位.【解析】解:(1)旋转后得到的图形A1B1C1D1如图所示;(2)将四边形ABCD先向右平移4个单位,再向下平移6个单位,四边形A2B2C2D2如图所示.答案不唯一.【点拨】本题考查旋转和平移作图,掌握画图的方法和图形的特点是解题关键.19.(10分)在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2(1)问4、5两月平均每月降价的百分率是多少?(参考数据:0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.【微点】一元二次方程的应用.【思路】(1)设4、5两月平均每月降价的百分率是x,那么4月份的房价为14000(1﹣x),5月份的房价为14000(1﹣x)2,然后根据5月份的12600元/m2即可列出方程解决问题;(2)根据(1)的结果可以计算出7月份商品房成交均价,然后和10000元/m2进行比较即可作出判断.【解析】解:(1)设4、5两月平均每月降价的百分率是x,则4月份的成交价是14000﹣14000x=14000(1﹣x),5月份的成交价是14000(1﹣x)﹣14000(1﹣x)x=14000(1﹣x)(1﹣x)=14000(1﹣x)2∴14000(1﹣x)2=12600,∴(1﹣x)2=0.9,∴x1≈0.05=5%,x2≈1.95(不合题意,舍去).答:4、5两月平均每月降价的百分率是5%;(2)不会跌破10000元/m2.如果按此降价的百分率继续回落,估计7月份该市的商品房成交均价为:12600(1﹣x)2=12600×0.952=11371.5>10000.由此可知7月份该市的商品房成交均价不会跌破10000元/m2.【点拨】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.20.(10分)如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.【微点】全等三角形的判定;菱形的判定.【思路】(1)根据∠1=∠2,AD∥FE,可得∠1=∠FEB,则BF=EF;又BF=BC,所以EF=BC.根据有一组邻边相等的平行四边形是菱形得证;(2)根据已知条件易得四边形ABEF、CDEF都是平行四边形,所以对边相等.运用SSS 判定:△ACF≌△BDE.【解析】证明:(1)∵AD∥FE,∴FE∥BC∴∠FEB=∠2.∵∠1=∠2,∴∠FEB=∠1.∴BF=EF.∵BF=BC,∴BC=EF.∴四边形BCEF是平行四边形.∵BF=BC,∴四边形BCEF是菱形.(2)∵EF=BC,AB=BC=CD,AD∥EF,∴四边形ABEF、CDEF均为平行四边形.∴AF=BE,FC=ED.又∵AC=BD,∴△ACF≌△BDE.【点拨】此题考查了菱形的判定方法及三角形全等的判定等知识点.菱形的判别方法是:①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.21.(12分)上海世博会门票价格如表所示:门票价格一览表指定日普通票200元平日优惠票100元……某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.【微点】列表法与树状图法.【思路】(1)根据每种至少买一张和1300元全部用来购买指定日普通票和平日优惠票,来列举出所有情况;(2)看恰好选到11张门票的情况占总情况数的多少即可.【解析】解:列表得:购票方案指定日普通票平日优惠票一 1 11二 2 9三 3 7四 4 5五 5 3六 6 1(2)由(1)得共有6种情况,恰好选到11张门票的情况有1种,所以概率是.【点拨】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A).22.(12分)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:鲜鱼销售单价(元/kg)20单位捕捞成本(元/kg)5捕捞量(kg)950﹣10x(1)在此期间该养殖场每天的捕捞量与前一天末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?【微点】二次函数的应用.【思路】(1)由图表中的数据可知该养殖场每天的捕捞量比前一天减少10kg;(2)根据收入=捕捞量×单价﹣捕捞成本,列出函数表达式;(3)将实际转化为求函数最值问题,从而求得最大值.【解析】解:(1)根据捕捞量与天数x的关系:950﹣10x可知:该养殖场每天的捕捞量与前一天减少10kg;(2)由题意,得y=20×(950﹣10x)﹣(5)×(950﹣10x)=﹣2x2+40x+14250;(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,又∵1≤x≤20且x为整数,∴当1≤x≤10时,y随x的增大而增大;当10≤x≤20时,y随x的增大而减小;当x=10时即在第10天,y取得最大值,最大值为14450.【点拨】此题考查二次函数的性质及其应用,要运用图表中的信息,将实际问题转化为求函数最值问题,从而来解决实际问题,比较简单.23.(14分)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.【微点】三角形三边关系;相似三角形的性质.【思路】(1)已知了两个三角形的相似比为k,则对应边a=ka1,将所给的条件等量代换即可得到所求的结论;(2)此题是开放题,可先选取△ABC的三边长,然后以c的长作为a1的值,再根据相似比得到△A1B1C1的另外两边的长,只要符合两个三角形的三边及相似比都是整数即可;(3)首先根据已知条件求出a、b与c的关系,然后根据三角形三边关系定理来判断题目所给出的情况是否成立.【解析】(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴k,a=ka1;又∵c=a1,∴a=kc;(2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2;此时2,∴△ABC∽△A1B1C1且c=a1;(3)解:不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1;又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c;∴b=2c;∴b+c=2c+c<4c,4c=a,b+c<a,而应该是b+c>a;故不存在这样的△ABC和△A1B1C1,使得k=2.【点拨】此题主要考查的是相似三角形的性质及三角形三边关系定理的应用.。
2009年安徽中考数学试题及答案
2009年安徽省初中毕业学业考试数 学 试 题注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟 一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内。
每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1.(2009·安徽)2(3)-的值是……………………………………………………………………【 】 A .9 B.-9 C .6 D .-6 2.(2009·安徽)如图,直线l 1∥l 2,则α为……………………………【 】 A .150° B .140° C .130° D .120°3.(2009·安徽)下列运算正确的是………………………………………【 】 A .234a a a = B .(﹣a )4=a 4 C .235a a a +=D .235()a a =4.(2009·安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是……………【 】A .8 B.7 C .6 D .5 5.(2009·安徽)一个长方体的三视图如图所示,若其俯视图为正方形, 则这个长方体的高和底面边长分别为…………………………【 】 A .3, B .2, C .3,2 D .2,36.(2009·安徽)某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演 出专场的主持人,则选出的恰为一男一女的概率是…………【 】 A .45 B .35 C .25 D .157.(2009·安徽)某市2008年国内生产总值(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是………【 】 A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+8.b】130°70°αl 1 l 2第2题图第5题图主视图 左视图俯视图第8题图A B C D9.(2009·安徽)如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD=BD则AB 的长为【 】 A .2 B .3 C .4 D .510.(2009·安徽)△ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是…………………………【 】A .120°B .125°C .135°D .150°二、填空题(本大题共4小题,每小题5分,满分20分)11.(2009的扇形圆心角的度数为 .12.(2009·安徽)因式分解:2221a b b ---=.13.(2009·安徽)长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60则梯子的顶端沿墙面升高了 m .14.(2009·安徽)已知二次函数的图象经过原点及点(12-,14-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为 .三.(本大题共2小题,每小题8分,满分16分)15.(2009·安徽)计算:|2-|o 2o 12sin30((tan 45)-+-+ 【解】16.(2009·安徽)如图,MP 切⊙O 于点M ,直线PO 交⊙O 于点A 、B ,弦AC ∥MP ,求证:MO ∥BC .【证】第9题图第11题图第13题图P第16题图四、(本大题共2小题,每小题8分,满分16分)17.(2009·安徽)观察下列等式:111122⨯=-,222233⨯=-,333344⨯=-,…… (1)猜想并写出第n 个等式;【猜想】(2)证明你写出的等式的正确性. 【证】18.(2009·安徽)如图,在对Rt △OAB 依次进行位似、轴对称和平移变换后得到△O ′A ′B ′. (1)在坐标纸上画出这几次变换相应的图形;(2)设P (x ,y )为△OAB 边上任一点,依次写出这几次变换后点P 对应点的坐标.五、(本大题共2小题,每小题10分,满分20分)19.(2009·安徽)学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加d cm,如图所示.已知每个菱形图案的边长,其一个内角为60°.(1)若d =26,则该纹饰要231个菱形图案,求纹饰的长度L ;(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?第19题图20.(2009·安徽)如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰.能拼成一个.....矩形(非正方形).(1)画出拼成的矩形的简图;【解】(2)求xy的值.【解】六、(本题满分12分)21.(2009·安徽)某校九年级学生共900人,为了解这个年级学生的体能,从中随机抽取部分学生进行1min的跳绳测试,并指定甲、乙、丙、丁四名同学对这次测试结果的数据作出整理,下图是这四名同学提供的部分信息:甲:将全体测试数据分成6组绘成直方图(如图);乙:跳绳次数不少于106次的同学占96%;丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12;丁:第②、③、④组的频数之比为4:17:15.根据这四名同学提供的材料,请解答如下问题:(1)这次跳绳测试共抽取多少名学生?各组有多少人?(2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少?(3)以每组的组中值(每组的中点对应的数据)作为这组跳绳次数的代表,估计这批学生1min跳绳次数的平均值.【解】七、(本题满分12分)22.(2009·安徽)如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相似三角形,并证明其中的一对;【证】(2)连结FG,如果α=45°,AB=AF=3,求FG的长.yx第20题图第21题图A BMF GDEC第22题图第23题图(1)第23题图(2)【解】八、(本题满分14分)23.(2009·安徽)已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.【解】(2)写出批发该种水果的资金金额w(元)与批发量m(kg么范围内,以同样的资金可以批发到较多数量的该种水果.【解】(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.【解】)数学试题参考答案及评分标准一.选择题(本题共10小题,每小题4分,满分40分)二.填空题(本大题共4小题,每小题5分,满分20分)11.72° 12.(1)(1)a b a b ++-- 13. 14.2y x x =+,21133y x =-+三.(本大题共2小题,每小题8分,满分16分)15.解:原式=2131+-+………………………………………………………6分=1…………………………………………………………………8分16.证:∵AB 是⊙O 的直径,∴∠ACB =90°∵MP 为⊙O 的切线,∴∠PMO =90° ∵MP ∥AC ,∴∠P =∠CAB∴∠MOP =∠B …………………………………………………………6分 故MO ∥BC .……………………………………………………………8分四、(本大题共2小题,每小题8分,满分16分)17.(1)猜想:11⨯=-++n nn n n n ……………………………………………3分 (2)证:右边=12+-+n n n n =12+n n =左边,即11⨯=-++n nn n n n ……8分 18.解:(1)……………………4分(2)设坐标纸中方格边长为单位1,则P (x ,y )2O 以为位似中心放大为原来的倍(2x ,2y )y 经轴翻折(-2x ,2y )4向右平移个单位(24x -+,2y )5向上平移个单位(24x -+,25y +)…………8分说明:如果以其它点为位似中心进行变换,或两次平移合并,或未设单位长,或(2)中直接写出各项变换对应点的坐标,只要正确就相应赋分.五、(本大题共2小题,每小题10分,满分20分)19.解:(1)菱形图案水平方向对角线长为230cos 310o ⨯⨯=30cm按题意,6010)1231(2630=-⨯+=L cm ……………………………5分 (2)当=d 20cm 时,设需x 个菱形图案,则有:6010)1(2030=-⨯+x …………………………………………………8分解得300=x即需300个这样的菱形图案.…………………………………………10分20.解:(1) …………………………5分说明:其它正确拼法可相应赋分.(2)解法一:由拼图前后的面积相等得:2)(])[(y x y y y x +=++………………8分因为y ≠0,整理得:01)(2=-+yxy x解得:215-=y x (负值不合题意,舍去)……………………………………10分 解法二:由拼成的矩形可知:yxy y x y x =+++)(…………………………………8分以下同解法一.……………………………………………………………………10分六、(本题满分12分) 21.解:(1)第①组频率为:196%0.04-=∴第②组频率为:0.120.040.08-=这次跳绳测试共抽取学生人数为:120.08150÷=人 ∵②、③、④组的频数之比为4:17:15可算得第①~⑥组的人数分别为6、12、51、45、24、12.………6分 (2)第⑤、⑥两组的频率之和为0.160.080.24=+=由于样本是随机抽取的,估计全年级有9000.24216⨯=人达到跳绳优秀………9分(3)10061101212051130451402415012150x ⨯+⨯+⨯+⨯+⨯+⨯=≈127次…………12分七、(本题满分12分) 22.(1)证:△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM (写出两对即可)……2分以下证明△AMF ∽△BGM .∵∠AFM =∠DME +∠E =∠A +∠E =∠BMG ,∠A =∠B∴△AMF ∽△BGM .………………………………………………………………6分③④① ②(2)解:当α=45°时,可得AC ⊥BC 且AC =BC∵M 为AB 的中点,∴AM =BM=7分又∵AMF ∽△BGM ,∴AF BMAM BG=∴2833AM BM BGAF ===………………………………………………9分又4AC BC ===,∴84433CG=-=,431CF =-=∴53FG =……………………………………………12分八、(本题满分14分) 23.(1)解:图①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;……3分图②表示批发量高于60kg 的该种水果,可按4元/kg 批发. ………………………………………………………………3分(2)解:由题意得: 2060 6054m m w m m ⎧=⎨⎩≤≤())>(,函数图象如图所示.………………………………………………………………7分由图可知资金金额满足240<w ≤300时,以同样的资金可 批发到较多数量的该种水果.……………………………8分(3)解法一:设当日零售价为x 元,由图可得日最高销量32040w m =- 当m >60时,x <6.5 由题意,销售利润为2(4)(32040)40[(6)4]y x m x =--=--+………………………………12分当x =6时,160y =最大值,此时m =80即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分 解法二:设日最高销售量为x kg (x >60)则由图②日零售价p 满足:32040x p =-,于是32040xp -= 销售利润23201(4)(80)1604040x y x x -=-=--+………………………12分 当x =80时,160y =最大值,此时p =6即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分)。
2024年安徽省中考数学真题卷及答案解析
2024年安徽省初中学业水平考试数学试题注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4、考试结束后,请将“试题卷”和“答题卷”一并交回.审核:魏敬德老师一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1. ﹣5的绝对值是( )A. 5B. ﹣5C. 15- D. 152. 据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为( )A. 70.94410⨯B. 69.4410⨯C. 79.4410⨯D. 694.410⨯3. 某几何体的三视图如图所示,则该几何体为( )A B.C. D.4. 下列计算正确的是( )A. 356a a a +=B. 632a a a ÷=.C. ()22a a -=D. a=5. 若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为( )A. 2πB. 3πC. 4πD. 6π 6. 已知反比例函数()0k y k x =≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为( )A. 3-B. 1-C. 1D. 37. 如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是( )AB. -C. 2-D. 8. 已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是( )A. 102a -<< B. 112b <<C. 2241a b -<+< D. 1420a b -<+<9. 在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A. ABC AED∠=∠ B. BAF EAF ∠=∠C. BCF EDF ∠=∠ D. ABD AEC∠=∠10. 如图,在Rt ABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为().A. B.C D.二、填空题(本大题共4小题,每小题5分,满分20分)11. 若代数式14-x 有意义,则实数x 的取值范围是_____.12.,祖冲之给出圆周率的一种分数形式的近似值为227______227(填“>”或“<”).13. 不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是______.14. 如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=______(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为______.三、(本大题共2小题,每小题8分,满分16分).的15. 解方程:223x x -=16. 如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.四、(本大题共2小题,每小题8分,满分16分)17. 乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?18. 数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-表示结果LL 一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=( )2-( )2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.五、(本大题共2小题,每小题10分,满分20分)19. 科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20. 如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 长.六、(本题满分12分)21. 综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,的班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1 求图1中a 的值.【数据分析与运用】任务2 A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3 下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4 结合市场情况,将C ,D 两组的柑橘认定为一级,B 组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.七、(本题满分12分)22. 如图1,ABCD Y 的对角线AC 与BD 交于点O ,点M ,N 分别在边AD ,BC 上,且AM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.八、(本题满分14分)23. 已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22yx x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22yx x =-+上,点()11,B x t y h ++在抛物线2y x bx=-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.数学试题注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4、考试结束后,请将“试题卷”和“答题卷”一并交回.审核:魏敬德老师一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1. ﹣5的绝对值是( )A. 5B. ﹣5C. 15-D. 15【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2. 据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为( )A. 70.94410⨯B. 69.4410⨯C. 79.4410⨯D. 694.410⨯【答案】B【解析】【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10n a ⨯(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410==⨯,故选:B .3. 某几何体的三视图如图所示,则该几何体为( )A. B.C. D.【答案】D【解析】【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项.故选:D .4. 下列计算正确的是( )A. 356a a a += B. 632a a a ÷=C. ()22a a -= D. a =【答案】C【解析】【分析】题目主要考查合并同类项、同底数幂的除法、积的乘方运算、二次根式的化简,根据这些运算法则依次判断即可【详解】解:A 、3a 与5a 不是同类项,不能合并,选项错误,不符合题意;B 、633a a a ÷=,选项错误,不符合题意;C 、()22a a -=,选项正确,符合题意;D a =,当0a ≥a =,当0a <a =-,选项错误,不符合题意;故选:C5. 若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为( )A. 2πB. 3πC. 4πD. 6π 【答案】C【解析】【分析】此题考查了弧长公式,根据弧长公式计算即可.【详解】解:由题意可得, AB 的长为12064180ππ⨯=,故选:C .6. 已知反比例函数()0k y k x =≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为( )A. 3- B. 1- C. 1 D. 3【答案】A【解析】【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可【详解】解:∵反比例函数()0k y k x =≠与一次函数2y x =-的图象的一个交点的横坐标为3,∴231y =-=-,∴13k -=,∴3k =-,故选:A7. 如图,在Rt ABC △中,2AC BC ==,点D 在AB 延长线上,且CD AB =,则BD 的长是( )A. -B. -C. 2-D.的【答案】B【解析】【分析】本题考查了等腰直角三角形的判定和性质,对顶角的性质,勾股定理,过点D 作DE CB ⊥的延长线于点E ,则90BED ∠=︒,由90ACB ∠=︒,2AC BC ==,可得AB =45A ABC ∠=∠=︒,进而得到CD =,45DBE ∠=︒,即得BDE △为等腰直角三角形,得到DE BE =,设DE BE x ==,由勾股定理得()(2222x x ++=,求出x 即可求解,正确作出辅助线是解题的关键.【详解】解:过点D 作DE CB ⊥的延长线于点E ,则90BED ∠=︒,∵90ACB ∠=︒,2AC BC ==,∴AB ==,45A ABC ∠=∠=︒,∴CD =,45DBE ∠=︒,∴BDE △为等腰直角三角形,∴DE BE =,设DE BE x ==,则2CE x =+,在Rt CDE △中,222CE DE CD +=,∴()(2222x x ++=,解得11x =-,21x =-(舍去),∴1DE BE ==-,∴BD ==,故选:B .8. 已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是( )A. 102a -<<B. 112b <<C. 2241a b -<+< D. 1420a b -<+<【答案】C【解析】【分析】题目主要考查不等式的性质,根据等量代换及不等式的性质依次判断即可得出结果,熟练掌握不等式的性质是解题关键【详解】解:∵10a b -+=,∴1a b =-,∵011a b <++<,∴0111b b <-++<,∴102b <<,选项B 错误,不符合题意;∵10a b -+=,∴1b a =+,∵011a b <++<,∴0111a a <+++<,∴112a -<<-,选项A 错误,不符合题意;∵112a -<<-,102b <<,∴221a -<<-,042b <<,∴2241a b -<+<,选项C 正确,符合题意;∵112a -<<-,102b <<,∴442a -<<-,021b <<,∴4421a b -<+<-,选项D 错误,不符合题意;故选:C9. 在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A. ABC AED∠=∠ B. BAF EAF ∠=∠C. BCF EDF ∠=∠ D. ABD AEC∠=∠【解析】【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD =又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =, AFB AFE∠=∠又∵点F 为CD 的中点,∴CF DF =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,∴BF EF =, CFB DFE ∠=∠,∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意;故选:D .10. 如图,在Rt ABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为( )A. B.C. D.【答案】A【解析】【分析】本题主要考查了函数图象的识别,相似三角形的判定以及性质,勾股定了的应用,过点E 作EH AC ⊥与点H ,由勾股定理求出AC ,根据等面积法求出BD ,先证明ABC ADB ∽,由相似三角形的性质可得出AB AC AD AB=,即可求出AD ,再证明AED BFD ∽,由相似三角形的性质可得出2AED BFD S AD S BD ⎛⎫= ⎪⎝⎭,即可得出4AED BFD S S = ,根据()ABC AED BDC BDF DEBF S S S S S =--- 四边形,代入可得出一次函数的解析式,最后根据自变量的大小求出对应的函数值.【详解】解:过点E 作EH AC ⊥与点H ,如下图:∵90ABC ∠=︒,4AB =,2BC =,∴AC ==,∵BD 是边AC 上的高.∴1122AB BC AC BD ⋅=⋅,∴BD =∵BAC CAB ∠=∠,90ABC ADB ∠=∠=︒,∴ABC ADB ∽△△,∴AB ACAD AB =,解得:AD =,∴DC AC AD =-==,∵90BDF BDE BDE EDA ∠+∠=∠+∠=︒,90CBD DBA DBA A ∠+∠=∠+∠=︒,∴DBC A ∠=∠,BDF EDA ∠=∠,∴AED BFD ∽,∴224AED BFD S AD S BD ⎛⎫⎪⎛⎫=== ⎪⎝⎭ ,∴4AED BFD S S = ,∴()ABC AED BDC BDF DEBF S S S S S =--- 四边形1111sin 2224BFDAB BC AE AD A DC DB S =⋅-⋅∠-⋅+1311422425255x =⨯⨯-⨯⋅⨯⨯16355x=-∵04x <<,∴当0x =时,165DEBF S =四边形 ,当4x =时,45DEBF S =四边形.故选:A .二、填空题(本大题共4小题,每小题5分,满分20分)11. 若代数式14-x 有意义,则实数x 的取值范围是_____.【答案】4x ≠【解析】【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12. ,祖冲之给出圆周率的一种分数形式的近似值为227______227(填“>”或“<”).【答案】>【解析】【分析】本题考查的是实数的大小比较,先比较两个正数的平方,从而可得答案.【详解】解:∵222484749⎛⎫= ⎪⎝⎭,24901049==,而4844904949<,∴22227⎛⎫< ⎪⎝⎭,227>;故答案为:>13. 不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是______.【答案】16【解析】【分析】本题考查了用树状图或列表法求概率,画出树状图即可求解,掌握树状图或列表法是解题的关键.【详解】解:画树状图如下:由树状图可得,共有12种等结果,其中恰为2个红球的结果有2种,∴恰为2个红球的概率为21126=,故答案为:16.14. 如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=______(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为______.【答案】①. 90α︒- ②. 【解析】【分析】①连接CC ',根据正方形的性质每个内角为直角以及折叠带来的折痕与对称点连线段垂直的性质,再结合平行线的性质即可求解;②记H G 与NC '交于点K , 可证:AEH BFE DHG CGF △≌△≌△≌△,则4AE CG DH ===,8DG BE ==,由勾股定理可求HG =,由折叠的性质得到:90NC B NCB '∠=∠=︒,89∠=∠,90D GD H '∠=∠=︒,NC NC '=,8GD GD '==,则NG NK =,4KC GC '==,由NC GD ''∥,得HC K HD G ''△∽,继而可证明HK KG =,由等腰三角形的性质得到PK PG =,故34PH HG ==【详解】解:①连接CC ',由题意得4C NM '∠=∠,MN CC '⊥,∵MN EF ⊥,∴CC FE '∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=︒,∴343290∠+∠=∠+∠=︒,190BEF ∠+∠=︒,∴24∠∠=,190α∠=︒-,∴490α∠=︒-<∴90C NM α'∠=︒-,故答案为:90α︒-;②记H G 与NC '交于点K ,如图:∵四边形ABCD 是正方形,四边形EFGH 是正方形,∴90A B C D ∠=∠=∠=∠=︒,HE FE =,90HEF ∠=︒,∴567690∠+∠=∠+∠=︒,∴57∠=∠,∴AEH BFE △≌△,同理可证:AEH BFE DHG CGF △≌△≌△≌△,∴4AE CG DH ===,8DG BE ==,在Rt HDG △中,由勾股定理得HG ==,由题意得:90NC B NCB '∠=∠=︒,89∠=∠,90D GD H '∠=∠=︒,NC NC '=,8GD GD '==,∴NC GD ''∥,∴9NKG ∠=∠,∴8NKG ∠=∠,∴NG NK =,∴NC NG NC NK '-=-,即4KC GC '==,∵NC GD ''∥,∴HC K HD G ''△∽,∴12HK C K HG D G '==',∴12HK HG =,∴HK KG =,由题意得MN HG ⊥,而NG NK =,∴PK PG =,∴34PH HG ==故答案为:.【点睛】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.三、(本大题共2小题,每小题8分,满分16分)15. 解方程:223x x -=【答案】13x =,21x =-【解析】【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16. 如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.【答案】(1)见详解 (2)40(3)()6,6E (答案不唯一)【解析】【分析】本题主要考查了画旋转图形,平行四边形的判定以及性质,等腰三角形的判定以及性质等知识,结合网格解题是解题的关键.(1)将点A ,B ,C 分别绕点D 旋转180︒得到对应点,即可得出111A B C △.(2)连接1BB ,1CC ,证明四边形11BC B C 是平行四边形,利用平行四边形的性质以及网格求出面积即可.(3)根据网格信息可得出5AB =,5AC ==,即可得出ABC 是等腰三角形,根据三线合一的性质即可求出点E 的坐标.【小问1详解】解:111A B C △如下图所示:【小问2详解】连接1BB ,1CC ,∵点B 与1B ,点C 与1C 分别关于点D 成中心对称,∴1DB DB =,1DC DC =,∴四边形11BC B C 平行四边形,∴1111122104402BC B C S CC B ==⨯⨯⨯= .【小问3详解】∵根据网格信息可得出5AB =,5AC ==,∴ABC 是等腰三角形,∴AE 也是线段BC的垂直平分线,是∵B ,C 的坐标分别为,()2,8,()10,4∴点21084,22E ++⎛⎫ ⎪⎝⎭,即()6,6E .(答案不唯一)四、(本大题共2小题,每小题8分,满分16分)17. 乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【解析】【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩,答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18. 数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-表示结果LL 一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=( )2-( )2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4倍数.的而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--; (2)()224k m k m-+-【解析】【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【小问1详解】(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;【小问2详解】解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.五、(本大题共2小题,每小题10分,满分20分)19. 科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).【答案】43【解析】【分析】本题考查了解直角三角形,勾股定理,三角函数,过点EF AD ⊥于F ,则90AFE ∠=︒,DF CE =,由题意可得,36.9BEC α∠=∠=︒,CBE β∠=∠,1.2m =EF ,解Rt BCE 求出CE 、BE ,可求出sin β,再由勾股定理可得AE ,进而得到sin γ,即可求解,正确作出辅助线是解题的关键.【详解】解:过点EF AD ⊥于F ,则90AFE ∠=︒,DF CE =,由题意可得,36.9BEC α∠=∠=︒,CBE β∠=∠, 1.2m =EF ,在Rt BCE 中, 1.2 1.6m tan 0.75BC CE α=≈=, 1.22m sin 0.6BC BE α=≈=,∴ 1.64sin 25CE BE β===, 1.6m DF =,∴ 2.5 1.60.9m AF AD DF =-=-=,∴在Rt AFE, 1.5m AE ===,∴0.93sin 1.55AF AE γ===,∴4sin 453sin 35βγ==.20. 如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解(2)【解析】【分析】本题主要考查了等腰三角形的性质,圆周角定理,勾股定理等知识,掌握这些性质以及定理是解题的关键.(1)由等边对等角得出FAE AEF ∠=∠,由同弧所对的圆周角相等得出FAE BCE ∠=∠,由对顶角相等得出AEF CEB ∠=∠,等量代换得出CEB BCE ∠=∠,由角角平分线的定义可得出ACE DCE ∠=∠,由直径所对的圆周角等于90︒可得出90ACB ∠=︒,即可得出90CEB DCE BCE ACE ACB ∠+∠=∠+∠=∠=︒,即90CDE ∠=︒.(2)由(1)知,CEB BCE ∠=∠,根据等边对等角得出BE BC =,根据等腰三角形三线合一的性质可得出MA ,AE 的值,进一步求出OA ,BE ,在利用勾股定理即可求出AC .【小问1详解】证明:∵FA FE =,∴FAE AEF ∠=∠,又FAE ∠与BCE ∠都是 BF 所对的圆周角,∴FAE BCE ∠=∠,∵AEF CEB ∠=∠,∴CEB BCE ∠=∠,∵CE 平分ACD ∠,∴ACE DCE ∠=∠,∵AB 是直径,∴90ACB ∠=︒,∴90CEB DCE BCE ACE ACB ∠+∠=∠+∠=∠=︒,故90CDE ∠=︒,即CD AB ⊥.【小问2详解】由(1)知,CEB BCE ∠=∠,∴BE BC =,又FA FE =,FM AB ⊥,∴2MA ME MO OE ==+=,4AE =,∴圆的半径3OA OB AE OE ==-=,∴2BE BC OB OE ==-=,在ABC 中.26AB OA ==,2BC =∴AC ===即AC 的长为六、(本题满分12分)21 综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1 求图1中a 的值.【数据分析与运用】任务2 A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3 下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4 结合市场情况,将C ,D 两组的柑橘认定为一级,B 组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘.品质更优,并说明理由.根据所给信息,请完成以上所有任务.【答案】任务1:40;任务2:6;任务3:①;任务4:乙园的柑橘品质更优,理由见解析【解析】【分析】题目主要考查统计表及频数分布直方图,平均数、中位数及众数的求法,根据图标获取相关信息是解题关键.任务1:直接根据总数减去各部分的数据即可;任务2:根据加权平均数的计算方法求解即可;任务3:根据中位数、众数及极差的计算方法求解即可;任务4:分别计算甲和乙的一级率,比较即可.【详解】解:任务1:2001570502540a=----=;任务2:1545057065071586200⨯+⨯+⨯+⨯+⨯=,乙园样本数据的平均数为6;任务3:①∵1570100,157050101+++,∴甲园样本数据的中位数在C组,∵1550100,155070101+++,∴乙园样本数据的中位数在C组,故①正确;②由样本数据频数直方图得,甲园样本数据的众数均在B组,乙园样本数据的众数均在C 组,故②错误;③无法判断两园样本数据的最大数与最小数的差是否相等,故③错误;故答案为:①;任务4:甲园样本数据的一级率为:5040100%45% 200+⨯=,乙园样本数据的一级率为:7050100%60% 200+⨯=,∵乙园样本数据的一级率高于甲园样本数据的一级率,∴乙园的柑橘品质更优.七、(本题满分12分)22. 如图1,ABCDY的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且AM CN=.点E,F分别是BD与AN,CM的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.【答案】(1)见详解(2)(ⅰ)见详解,(ⅱ【解析】【分析】(1)利用平行四边形的性质得出AM CN ∥,再证明AMCN 是平行四边形,再根据平行四边形的性质可得出OAE OCF ∠=∠,再利用ASA 证明AOE COF △≌△,利用全等三角形的性质可得出OE OF =.(2)(ⅰ)由平行线截直线成比例可得出OH OE OA OB=,结合已知条件等量代换OH OF OA OD =,进一步证明HOF AOD ∽ ,由相似三角形的性质可得出OHF OAD ∠=∠,即可得出HF AD ∥.(ⅱ)由菱形的性质得出AC BD ⊥,进一步得出30EHO FHO ∠=∠=︒,OH =,由平行线截直线成比例可得出13AH AM HC BC ==,进一步得出2OA OH =,同理可求出5OB OE =,再根据25AC OA OH BD OB OE==即可得出答案.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,OA OC =,∴AM CN ∥,又∵AM CN =,∴四边形AMCN 是平行四边形,∴∥AN CM ,∵OAE OCF ∠=∠.在AOE △与COF 中,OAE OCFOA OCAOE COF∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA AOE COF ≌.∴OE OF =.【小问2详解】(ⅰ)∵HE AB∥∴OHOEOA OB =,又OB OD =.OE OF =,∴OHOFOA OD =,∵HOF AOD ∠=∠,∴HOF AOD ∽ ,∴OHF OAD ∠=∠,∴HF AD∥(ⅱ)∵ABCD 是菱形,∴AC BD ⊥,又OE OF =,60EHF ∠=︒,∴30EHO FHO ∠=∠=︒,∴OH =,∵AM BC ∥.2MD AM =,∴13AHAMHC BC ==,即3HC AH =,∴()3OA AH OA OH +=-,∴2OA OH =,∵BN AD ∥,2MD AM =,AM CN =,∴23BEBN ED AD ==,即32BE ED =,。
2010年安徽省中考数学试卷
2010年安徽省中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.22.(4分)计算(2x)3÷x的结果正确的是()A.8x2B.6x2C.8x3D.6x33.(4分)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°4.(4分)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A.2.89×107 B.2.89×106 C.2.89×105 D.2.89×1045.(4分)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是()A.B.C.D.6.(4分)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元7.(4分)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,18.(4分)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A. B.2C.3D.9.(4分)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495 B.497 C.501 D.50310.(4分)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算:×﹣=.12.(5分)不等式组的解集是.13.(5分)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是上一点,则∠D=度.14.(5分)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题(共9小题,满分90分)15.(8分)先化简,再求值:(1﹣)÷,其中a=﹣1.16.(8分)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分.(参考数据:≈1.7)17.(8分)点P(1,a)在反比例函数y=的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式.18.(8分)在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.19.(10分)在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2(1)问4、5两月平均每月降价的百分率是多少?(参考数据:≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.20.(10分)如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.21.(12分)上海世博会门票价格如表所示:门票价格一览表指定日普通票200元平日优惠票100元……某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.22.(12分)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:鲜鱼销售单价(元/kg)20单位捕捞成本(元/kg)5﹣捕捞量(kg)950﹣10x(1)在此期间该养殖场每天的捕捞量与前一天末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?23.(14分)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.2010年安徽省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.2【解答】解:A、﹣1<0,是负数,故A错误;B、既不是正数也不是负数的是0,正确;C、1>0,是正数,故C错误;D、2>0,是正数,故D错误.故选B.2.(4分)(2010•安徽)计算(2x)3÷x的结果正确的是()A.8x2B.6x2C.8x3D.6x3【解答】解:(2x)3÷x=8x3÷x=8x2.故选A.3.(4分)(2014•河池)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°【解答】解:如图所示:∵l1∥l2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.故选C.4.(4分)(2010•安徽)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A.2.89×107 B.2.89×106 C.2.89×105 D.2.89×104【解答】解:289万=2 890 000=2.89×106.故选B.5.(4分)(2010•安徽)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是()A.B.C.D.【解答】解:正方体和球体的主视图、左视图以及俯视图都是相同的,排除A、B;直三棱柱的正视图是一个矩形,左视图是一个三角形,俯视图也是一个矩形,但与正视图的矩形不相同,排除C;圆柱的正视图以及俯视图是相同的,都是矩形,因为直径相同,左视图是个圆,故选:D.6.(4分)(2010•安徽)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元【解答】解:A、1~2月份利润的增长为10万元,2~3月份利润的增长为20万元,慢于2~3月,故选项错误;B、1~4月份利润的极差为130﹣100=30万元,1~5月份利润的极差为130﹣100=30万元,极差相同,故选项错误;C、1~5月份利润,数据130出现2次,次数最多,所以众数是130万元,故选项正确;D、1~5月份利润,数据按从小到大排列为100,110,115,130,130,中位数为115万元,故选项错误.故选C.7.(4分)(2010•安徽)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,1【解答】解:∵y=(x﹣2)2+k=x2﹣4x+4+k=x2﹣4x+(4+k),又∵y=x2+bx+5,∴x2﹣4x+(4+k)=x2+bx+5,∴b=﹣4,k=1.故选D.8.(4分)(2010•安徽)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A. B.2C.3D.【解答】解:过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD﹣OA=2;Rt△OBD中,根据勾股定理,得:OB==.故选D.9.(4分)(2010•安徽)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495 B.497 C.501 D.503【解答】解:当第1位数字是3时,按如上操作得到一个多位数36 2486 2486 2486 2486 ....仔细观察36 2486 2486 2486 2486 ...中的规律,这个多位数前100位中前两个为36,接着出现2486 2486 2486...,所以36 2486 2486 2486 2486 ...的前100位是36 2486 2486 2486 (2486)2486 1486 24(因为98÷4=24余2,所以,这个多位数开头两个36中间有24个2486,最后两个24),因此,这个多位数前100位的所有数字之和=(3+6)+(2+4+8+6)×24+(2+4)=9+480+6=495.故选A.10.(4分)(2010•安徽)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A.B.C.D.【解答】解:此过程可看作追及过程,由相遇到越来越远,按照等量关系“甲在相遇前跑的路程+100=乙在相遇前跑的路程”列出等式v乙t=v甲t+100,根据甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,则乙要追上甲,所需时间为t=50,全程乙跑完后计时结束t总==200,则计时结束后甲乙的距离△s=(v乙﹣v甲)×(t总﹣t)=300m由上述分析可看出,C选项函数图象符合故选:C.二、填空题(共4小题,每小题5分,满分20分)11.(5分)(2010•安徽)计算:×﹣=2.【解答】解:原式=﹣=3﹣=2.故答案为:2.12.(5分)(2010•安徽)不等式组的解集是2<x≤4.【解答】解:由①得x>2,由②得x≤4,∴不等式组的解集为2<x≤4.故填空答案:2<x≤4.13.(5分)(2010•安徽)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D 是上一点,则∠D=40度.【解答】解:∵AC是⊙O的直径,∴∠ABC=90°;∴∠A=180°﹣90°﹣50°=40°,∴∠D=∠A=40°.14.(5分)(2010•安徽)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是②③④.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.【解答】解:应添加的条件是②③④;证明:②当∠BAD=∠CAD时,∵AD是∠BAC的平分线,且AD是BC边上的高;则△ABD≌△ACD,∴△BAC是等腰三角形;③延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;∵AB+BD=CD+AC,∴DE=DF,又AD⊥BC;∴△AEF是等腰三角形;∴∠E=∠F;∵AB=BE,∴∠ABC=2∠E;同理,得∠ACB=2∠F;∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;④△ABC中,AD⊥BC,根据勾股定理,得:AB2﹣BD2=AC2﹣CD2,即(AB+BD)(AB﹣BD)=(AC+CD)(AC﹣CD);∵AB﹣BD=AC﹣CD①,∴AB+BD=AC+CD②;∴①+②得:,2AB=2AC;∴AB=AC,∴△ABC是等腰三角形故答案为:②③④.三、解答题(共9小题,满分90分)15.(8分)(2010•安徽)先化简,再求值:(1﹣)÷,其中a=﹣1.【解答】解:原式=•=,当a=﹣1时,原式==.16.(8分)(2010•安徽)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分.(参考数据:≈1.7)【解答】解:如图,过点B作BC垂直于河岸,垂足为C.在Rt△ACB中,有:AB===600.∴t==2≈3.4(分).即船从A处到B处约需3.4分.17.(8分)(2010•安徽)点P(1,a)在反比例函数y=的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式.【解答】解:点P(1,a)关于y轴的对称点是(﹣1,a),∵点(﹣1,a)在一次函数y=2x+4的图象上,∴a=2×(﹣1)+4=2,∵点P(1,2)在反比例函数y=的图象上,∴k=2,∴反比例函数的解析式为y=.18.(8分)(2010•安徽)在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.【解答】解:(1)旋转后得到的图形A1B1C1D1如图所示;(2)将四边形ABCD先向右平移4个单位,再向下平移6个单位,四边形A2B2C2D2如图所示.答案不唯一.19.(10分)(2010•安徽)在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2(1)问4、5两月平均每月降价的百分率是多少?(参考数据:≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.【解答】解:(1)设4、5两月平均每月降价的百分率是x,则4月份的成交价是14000﹣14000x=14000(1﹣x),5月份的成交价是14000(1﹣x)﹣14000(1﹣x)x=14000(1﹣x)(1﹣x)=14000(1﹣x)2∴14000(1﹣x)2=12600,∴(1﹣x)2=0.9,∴x1≈0.05=5%,x2≈1.95(不合题意,舍去).答:4、5两月平均每月降价的百分率是5%;(2)不会跌破10000元/m2.如果按此降价的百分率继续回落,估计7月份该市的商品房成交均价为:12600(1﹣x)2=12600×0.952=11371.5>10000.由此可知7月份该市的商品房成交均价不会跌破10000元/m2.20.(10分)(2010•安徽)如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.【解答】证明:(1)∵AD∥FE,∴FE∥BC∴∠FEB=∠2.∵∠1=∠2,∴∠FEB=∠1.∴BF=EF.∵BF=BC,∴BC=EF.∴四边形BCEF是平行四边形.∵BF=BC,∴四边形BCEF是菱形.(2)∵EF=BC,AB=BC=CD,AD∥EF,∴四边形ABEF、CDEF均为平行四边形.∴AF=BE,FC=ED.又∵AC=BD,∴△ACF≌△BDE.21.(12分)(2010•安徽)上海世博会门票价格如表所示:门票价格一览表指定日普通票200元平日优惠票100元……某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.【解答】解:列表得:购票方案指定日普通票平日优惠票一 1 11二 2 9三 3 7四 4 5五 5 3六 6 1(2)由(1)得共有6种情况,恰好选到11张门票的情况有1种,所以概率是.22.(12分)(2010•安徽)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:鲜鱼销售单价(元/kg)20单位捕捞成本(元/kg)5﹣捕捞量(kg)950﹣10x(1)在此期间该养殖场每天的捕捞量与前一天末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?【解答】解:(1)根据捕捞量与天数x的关系:950﹣10x可知:该养殖场每天的捕捞量与前一天减少10kg;(2)由题意,得y=20×(950﹣10x)﹣(5﹣)×(950﹣10x)=﹣2x2+40x+14250;(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,又∵1≤x≤20且x为整数,∴当1≤x≤10时,y随x的增大而增大;当10≤x≤20时,y随x的增大而减小;当x=10时即在第10天,y取得最大值,最大值为14450.23.(14分)(2010•安徽)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC 的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.【解答】(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴=k,a=ka1;又∵c=a1,∴a=kc;(2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2;此时=2,∴△ABC∽△A1B1C1且c=a1;(3)解:不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1;又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c;∴b=2c;∴b+c=2c+c<4c,4c=a,b+c<a,而应该是b+c>a;故不存在这样的△ABC和△A1B1C1,使得k=2.参与本试卷答题和审题的老师有:zhxl;MMCH;星期八;CJX;lanchong;csiya;py168;HLing;蓝月梦;张超。
历年中考)安徽省中考数学试题 含答案
历年中考)安徽省中考数学试题含答案2016年安徽省初中毕业学业考试数学试题卷注意事项:1.本试卷满分为150分,考试时间为120分钟。
2.本试卷包括“试题卷”和“答题卷”两部分。
“试题卷”共4页,“答题卷”共6页。
3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
4.考试结束后,请将“试题卷”和“答题卷”一并交回。
一、选择题(本大题共10小题,每小题4分,满分40分)1.求-2的绝对值。
A。
-2 B。
2 C。
±2 D。
22.计算a^5 ÷ a^2(a ≠ 0)的结果是A。
a^3 B。
a^5 C。
a D。
a^83.2016年3月份我省农产品实现出口额8362万美元。
其中8362万用科学记数法表示。
A。
8.362×10^0 B。
83.62×10^0 C。
0.8362×10^1 D。
8.362×10^74.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是:图略)5.方程2x+1÷(x-1) = 3的解是A。
-8/5 B。
-4 C。
-1/2 D。
4/56.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长了9.5%。
若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式是A。
b = a(1+8.9%+9.5%) B。
b = a(1+8.9%×9.5%) C。
b =a(1+8.9%)(1+9.5%) D。
b = a(1+8.9%)(1+9.5%)^27.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图。
已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中用水量在6吨以下的共有A。
18户 B。
20户 C。
22户 D。
24户图略)8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为图略)9.一段笔直的公路AC长为20千米,途中有一处休息点B,AB长为15千米。
2010-2019年安徽省中考数学试卷及答案(共10套)
2010-2019年安徽省中考数学试卷及答案(共10套)目录1、2010年安徽省中考数学试卷及答案2、2011年安徽省中考数学试卷及答案3、2012年安徽省中考数学试卷及答案4、2013年安徽省中考数学试卷及答案5、2014年安徽省中考数学试卷及答案6、2015年安徽省中考数学试卷及答案7、2016年安徽省中考数学试卷及答案8、2017年安徽省中考数学试卷及答案9、2018年安徽省中考数学试卷及答案10、2019年安徽省中考数学试卷及答案2010年安徽省初中毕业学业考试数学(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.在-1,0,1,2这四个数中,既不是正数也不是负数的是A.-1B.0C.1D.22.计算(2x)3÷x的结果正确的是A.8x2B.6x2C.8x3D.6x33.如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为A.50°B.55°C.60°D.65°4. 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是A.2.89×107B.2.89×106C.28.9×105D.2.89×1045.如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是6.某企业1~5月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差与1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元7.若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为A.0,5B.0,1C.-4,5D.-4,18.如图,☉O 过点B 、C,圆心O 在等腰直角三角形ABC 的内部,∠BAC=90°,OA=1,BC=6,则☉O 的半径为A.√10B.2√3C.√13D.3√29.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……后面的每一位数字都是由前一位数字进行如上操作得到的.当第一位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是A.495B.497C.501D.50310.甲、乙两人准备在一段长为1 200 m 的笔直公路上进行跑步,甲、乙跑步的速度分别为4 m/s 和6 m/s,起跑前乙在起点,甲在乙前面100 m 处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y(m)与时间t(s)的函数图象是A B C D二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:√3×√6-√2= .12.不等式组{-x +4<2,3x -4≤8的解集是 . 13.如图,△ABC 内接于☉O,AC 是☉O 的直径,∠ACB=50°,点D 是BAC⏜上一点,则∠D= .14.如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是 .(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB-BD=AC-CD.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(1-1a -1)÷a 2-4a+4a -a ,其中a=-1.16.若河岸的两边平行,河宽为900米,一只船由河岸的A 处沿直线方向开往对岸的B 处,AB 与河岸的夹角是60°,船的速度为5米/秒,求船从A 处到B 处约需几分钟?(参考数据:√3≈1.7)17.点P(1,a)在反比例函数y=k的图象上,它关于y轴的对称点在一次函数y=2x+4x的图象上,求此反比例函数的解析式.18.在小正方形组成的15×15的网格图中,四边形ABCD和四边形A'B'C'D'的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1;(2)若四边形ABCD平移后,与四边形A'B'C'D'成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.19.在国家政策的宏观调控下,某市的商品房成交均价由今年3月份的14 000元/m2下降到5月份的12 600元/m2.(1)问4、5两月平均每月降价的百分率是多少?(参考数据:√0.9≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10 000元/m2?请说明理由.20.如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.21.上海世博会门票的价格如下表所示:门票价格一览表指定日普通票200元平日优惠票100元…………某旅行社准备了1 300元,全部用来购买指定日普通票和平日优惠票,且每种票至少买一张.(1)有多少种购票方案?列举所有可能的结果;(2)如果从上述方案中任意选一种方案购票,求恰好选到11张门票的概率.22.春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九年级(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20,且x为整数)的捕捞与销售的相关信息如下:鲜鱼销售价格(元/kg)20单位捕捞成本(元/kg) 5-x 5捕捞量(kg) 950-10x(1)在此期间该养殖场每天的捕捞量与前一天的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式;(当天收入=日销售额-日捕捞成本) (3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?23.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.2010年安徽省初中毕业学业考试答案1.B 0既不是正数也不是负数,故选B.2.A 本题应先根据积的乘方的法则计算出(2x)3的值,再根据单项式除以单项式法则得出结果为:(2x)3÷x=8x3÷x=8x3-1=8x2.3.C4.B 289万=2 890 000=2.89×106,故选B.5.D 正方体的三个视图都是正方形;球体的三个视图都是圆;选项C直三棱柱的主视图是长方形,左视图是三角形,俯视图虽也是长方形,但由于视角不同,两长方形的形状也不同;选项D圆柱的主视图是长方形,左视图为圆,俯视图为形状大小与主视图相同的长方形,所以只有圆柱符合本题条件,故选D.6.C 由折线统计图可知:1月份到2月份利润增长10万元,2月份到3月份利润增长20万元,故A错;1到4月份利润最高的是3月份为130万元,最低的是1月份为100万元,极差为30万元,1到5月份的最高利润也是130万元,最低利润仍是100万元,极差为30万元,极差相同,故B错;本题的中位数是指把5个月的利润按大小顺序排列,最中间的那个数应为115万元,所以D也错;众数是指在所有数据中出现次数最多的数,130万出现两次,最多,故C正确.7.D y=(x-2)2 +k=x2-4x+4+k,与y=x2+bx+5比较可得:一次项系数b=-4,常数项4+k=5,解得k=1.故选D.8.C 如图,过点A作AM⊥BC于M,连接OB.在Rt△ABC中,∵AB=AC,AM⊥BC于BC=3,∠ABM=45°,∴在Rt△ABM中,BM=AM=3.∵AM垂直平分弦M,BC=6,∴BM=CM=12BC,∴AM经过圆心O.∵AO=1,AM=3,∴OM=2.在Rt△BOM中,OM=2,BM=3,根据勾股定理可知BO=√13.9.A10.C 乙的速度比甲的速度快,甲在乙的前面100 m处,乙追上甲需要50 s,可把A、B排除,乙追上甲时走了300 m,距离终点还有900 m,则乙到终点还需的时间为900÷6=150 s,所以乙跑完全程共需200 s,故选C.11.2√2√3×√6-√2=√18-√2=3√2-√2=2√2.12.2<x≤4 解不等式-x+4<2,得-x<2-4,-x<-2,x>2;解不等式3x-4≤8,得3x≤8+4,3x≤12,x≤4.所以原不等式组的解集为2<x≤4.13.40° ∵△ABC 是☉O 的内接三角形,AC 是☉O 的直径,∴∠ABC=90°.在△ABC 中,∠ACB=50°,∠ABC=90°,∴∠BAC=180°-∠ACB-∠ABC=180°-50°-90°=40°,∴∠D=∠BAC=40°.14.②③④ 由①中∠BAD=∠ACD,∠ADB=∠ADC,不能证明△ABD 和△CAD 全等,从而不能得出△ABC 为等腰三角形,故①错误;②中∠BAD=∠CAD,又∠ADB=∠ADC,AD 为公共边,可推出△ADB ≌△ADC,∴AB=AC,∴△ABC 为等腰三角形;③如图(1),分别在DB 、DC 的延长线上截取BE=AB,CF=AC,连接AE 、AF.∵AB+BD=AC+CD,∴DE=DF.又∵AD ⊥BC,∴△AEF 为等腰三角形,∴∠E=∠F.又∵BE=AB,CF=AC,∴∠EAB=∠E=∠F=∠CAF.∵∠ABC=∠E+∠EAB,∠ACB=∠F+∠CAF,∴∠ABC=∠ACB,∴△ABC 为等腰三角形.④如图(2),在BC 上分别截取BF=AB,CE=AC,连接AE 、AF.∵AB-BD=AC-CD,∴DF=DE.又∵AD ⊥BC,∴△AEF 是等腰三角形,∴∠EAD=∠FAD,∠AEF=∠AFE.又∵BF=AB,CE=AC,∴∠BAF=∠AFD=∠AED=∠CAE,∴∠BAD=∠BAF-∠FAD,∠CAD=∠CAE-∠EAD,∴∠BAD=∠CAD.又∵AD ⊥BC,∴△ABC 是等腰三角形.图(1) 图(2) 15.原式=a -2a -1·a(a -1)(a -2)2(3分) =aa -2.(5分)当a=-1时,原式=aa -2=-1-1-2=13.(8分)16.如图,过点B 作BC 垂直河岸,垂足为C,则在Rt △ACB 中,AB=BCsin ∠BAC =900sin60°=600√3(米).(5分)因而时间t=600√35=120√3(秒), 120√3秒≈3.4分钟,即船从A 处到B 处约需3.4分钟.(8分) 17.点P(1,a)关于y 轴的对称点是(-1,a).(2分) ∵点(-1,a)在一次函数y=2x+4的图象上, ∴a=2×(-1)+4=2.(4分)∴点P为(1,2).∵点P(1,2)在反比例函数y=kx的图象上, ∴k=2.∴反比例函数的解析式为y=2x.(8分)18.(1)旋转后得到的图形A1B1C1D1如图所示.(4分)(2)将四边形ABCD先向右平移4个单位,再向下平移6个单位,四边形A2B2C2D2如图所示.(8分)(注:本题是开放型题,答案不唯一,只要正确即可给分,如将四边形ABCD先向右平移8个单位,再向下平移2个单位得到四边形A2B2C2D2)19.(1)设4、5两月平均每月降价的百分率为x,根据题意,得14 000·(1-x)2=12 600.(3分)化简,得(1-x)2=0.9.解得x1≈0.05,x2≈1.95(不合题意,舍去).因此,4、5两月平均每月降价的百分率约为5%.(6分)(2)如果按此降价的百分率继续回落,估计7月份的商品房成交均价为12600(1-x)2=12 600×0.9=11 340>10 000.由此可知,7月份该市的商品房成交均价不会跌破10 000元/m2.(10分)(注:第(2)小题也可通过估算加以判断,只要正确即可给分)20.(1)证明:∵AD∥FE,∴∠FEB=∠2.∵∠1=∠2,∴∠FEB=∠1.∴BF=EF.(2分)∵BF=BC,∴BC=EF.∴四边形BCEF是平行四边形.∵BF=BC,∴平行四边形BCEF是菱形.(5分)(2)证明:∵EF=BC,AB=BC=CD,AD∥FE,∴四边形ABEF、四边形CDEF均为平行四边形,∴AF=BE,FC=ED.(8分)又∵AC=2BC=BD,∴△ACF≌△BDE.(10分) 21.(1)有6种购票方案:购票方案指定日普通票张数平日优惠票张数1 1 112 2 93 3 74 4 55 5 36 6 1(6分) (2)由(1)知,共有6种购票方案,且选到每种方案的可能性相等,而恰好选到11张门票的方案只有1种,因此恰好选到11张门票的概率是16.(12分)22.(1)该养殖场每天的捕捞量与前一天相比减少了10 kg.(2分)(2)由题意,得y=20(950-10x)-(5-x5)(950-10x)=-2x2+40x+14 250.(7分)(3)y=-2x2+40x+14 250=-2(x-10)2+14 450,∵-2<0,1≤x≤20且x为整数,(9分)∴当1≤x≤10时,y随x的增大而增大;当10<x≤20时,y随x的增大而减小;∴当x=10时,即在第10天y取得最大值,最大值为14 450元.(12分)23.(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴aa1=k,∴a=ka1.又∵c=a1,∴a=kc.(3分)(2)取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2.(7分)此时aa1=bb1=cc1=2,∴△ABC∽△A1B1C1,且c=a1.(10分)(注:本题是开放型题,只要给出的△ABC和△A1B1C1符合要求即可给分)(3)不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1.又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c,即a=4c,b=2c.(12分)∴b+c=2c+c<4c=a,而b+c>a,故不存在这样的△ABC和△A1B1C1,使得k=2.(14分)2011年安徽省初中毕业学业考试数学(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.-2,0,2,-3这四个数中最大的是A.2B.0C.-2D.-32.安徽省2010年末森林面积为3 804.2千公顷,用科学记数法表示3 804.2千正确的是A.3 804.2×103B.380.42×104C.3.804 2×106D.3.804 2×1073.右图是由五个相同的小正方体搭成的几何体,其左视图是A B C D4.设a=√19-1,a在两个相邻整数之间,则这两个整数是A.1和2B.2和3C.3和4D.4和55.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M:“这个四边形是等腰梯形”,下列推断正确的是A.事件M是不可能事件B.事件M是必然事件C.事件M发生的概率为15D.事件M发生的概率为256.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是A.7B.10C.9D.117.如图,☉O 的半径是1,A 、B 、C 是圆周上的三点,∠BAC=36°,则劣弧BC 的长是A.π5 B .25π C.35π D.45π8.一元二次方程x(x-2)=2-x 的根是 A.-1B.2C.1和2D.-1和29.如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=2√2,CD=√2,点P 在四边形ABCD 的边上,若P 到BD 的距离为32,则点P 的个数为A.1个B.2个C.3个D.4个10.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x,△AMN 的面积为y,则y 关于x 的函数图象的大致形状是A BC D二、填空题(本大题共4小题,每小题5分,满分20分) 11.因式分解:a 2b+2ab+b= .12.根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为:E=10n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 .13.如图,☉O 的两条弦AB 、CD 互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则☉O 的半径是 .14.定义运算:a ⊗b=a(1-b),下面给出了关于这种运算的几个结论: ①2⊗(-2)=6;②a ⊗b=b ⊗a;③若a+b=0,则(a ⊗a)+(b ⊗b)=2ab; ④若a ⊗b=0,则a=0.其中正确结论的序号是 .(在横线上填上你认为所有正确结论的序号) 三、(本大题共2小题,每小题8分,满分16分) 15.先化简,再求值:1x -1-2x 2-1,其中x=-2.16.江南生态食品加工厂收购了一批质量为10 000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量的3倍还多2 000千克,求粗加工的该种山货质量.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B 1 C1和△A2B2C2.(1)将△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A 2B2C2.18.在平面直角坐标系中,一只蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.(1)填写下列各点的坐标:A4( , ),A8( , ),A12( , );(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.五、(本大题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1 500 m高的C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°,求隧道AB的长.(参考数据:√3≈1.73)20.一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验中甲、乙两组学生成绩分布的条形统计图如下:(1)请补充完整下面的成绩统计分析表:平均分方差中位数合格率优秀率甲组 6.9 2.4 91.7% 16.7%乙组 1.3 83.3% 8.3%(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出三条支持乙组学生观点的理由.六、(本题满分12分)。
2010年安徽省芜湖市数学中考真题(word版含答案)
2010年芜湖市初中毕业学业考试数学试卷温馨提示:1. 数学试卷共8页,三大题,共24小题.请你仔细核对每页试卷下方页码和题数,核实无误后再答题,考试时间共120分钟,请合理分配时间.一、择题(本大题共10小题,每小题4分,共40分.)在每小题给出的四个选项中,只有一项是符合题意的,请把你认为正确的选项前字母填写在该题后面的括号中. 1.6-的绝对值是( ). A .6B .6-C .16D .16-2.2010年芜湖市承接产业转移示范区建设成效明显,一季度完成固定资产投资238亿元,用科学记数法可记作( ). A .823810⨯元B .923.810⨯元C .102.3810⨯元D .110.23810⨯元3.一个几何体的三视图如图所示,那么这个几何体是( ).4.下列命题中是真命题的是( ).A. 对角线互相垂直且相等的四边形是正方形B. 有两边和一角对应相等的两个三角形全等C. 两条对角线相等的平行四边形是矩形D. 两边相等的平行四边形是菱形 5.要使式子a有意义,a 的取值范围是( ). A .0a ≠ B .20a a >-≠且 C .2a >-或0a ≠ D.2a -≥或0a ≠6.下列数据:16,20,22,25,24,25的平均数和中位数分别为( ). A.21和20 B.22和23 C.22和24 D.21和23 7.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( ).第3题图 A. B. C.D.A. 1a ≥ B.15a a >≠且 C.15a a ≠≥且 D. 5a ≠8.如图,在等腰梯形A B C D 中,A D B C ∥,对角线A C B D O ⊥于点,AE BC DF BC ⊥⊥,,垂足分别为E 、F ,4AD =,8BC =,则AE EF +等于( ).A.9 B.10 C.11 D.129.如图所示,在圆O 内有折线OABC ,其中81260OA AB A B ==∠=∠=︒,,,则BC 的长为 ( ).A .19B .16C .18D .2010.二次函数2y ax bx c =++的图象如图所示,反比例函数ay x=与正比例函数()y b c x =+在同一坐标系中的大致图象可能是( ).二、填空题(本大题共6小题,每小题5分,共30分.)将正确的答案填在题中的横线上. 11.一个正多边形的每个外角都是36︒,这个正多边形的边数是__________.12.因式分解22944x y y---=________.13.如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB CDAB =∥,2cm ,CD =6cm ,点P 到CD 的距离是2.7m ,则AB CD 与间的距离是 ________m.14.已知12x x ,为方程2310x x ++=的两实根,则312820x x ++=__________.15.若两圆相切,圆心距是7,其中一圆的半径为10,则另一个圆的半径为_____.16.芜湖国际动漫节期间,小明进行了富有创意的形象设计.如图1,他在边长为1的正方形ABCD 内作等边三角形BCE ,并与正方形的对角线交于F 、G 点,制成如图2的图标.则图标中阴影图形AFEGD 的面积=_________.A DC B E FO 第8题图第9题图xxxB .xP BDCA第13题图三、解答题(本大题共8小题,共80分.)解答应写明文字说明和运算步骤. 17.(本题共两小题,每小题6分,满分12分) (1)计算:320101π(1)sin584cos6022-⎛⎫⎛⎫-⨯+︒-︒︒ ⎪ ⎪⎝⎭⎝⎭.解:(2)求满足不等式组2513810.x x +>⎧⎨-⎩,①≤②的整数解.解:18.(本小题满分8分)图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB 与地面EH 平行,测得A 点到楼顶D 点的距离为5m ,每层楼高3.5m ,AE 、BF 、CH 都垂直于地面,EF =16m ,求塔吊的高CH 的长. 解:CDAF E G第16题图1第16题图2A B30° 15° 30° 15° 第18题图1第18题图219.(本小题满分8分)某中学为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题: (1)将统计图补充完整;(2)若该校共有1800名学生,根据以上调查结果估计该校全体学生每天完成作业所用总时间. 解:20.(本小题满分8分)用长度为20m 的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积. 解:21.(本小题满分8分)如图,直角梯形ABCD 中,90ADC AD BC ∠=︒,∥,点E 在BC上,点F 在AC 上,DFC AEB ∠=∠.(1)求证:ADF CAE △∽△;(2)当AD =8,DC =6,点E 、F 分别是BC 、AC 的中点时,求直角梯形ABCD 的面积.(1)证明:45° 45°第20题图DC A B F E第21题图(2)解:22.(本小题满分10分)“端午”节前,第一次爸爸去超市购买了大小、质量都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时随机取出火腿粽子的概率为13;妈妈发现小亮喜欢吃的火腿粽子偏少,第二次妈妈又去买了同样的5只火腿粽子和1只豆沙粽子放入同一盒中,这时随机取出火腿粽子的概率为12. (1)请计算出第一次爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若妈妈从盒中取出火腿粽子4只,豆沙粽子6只送爷爷和奶奶后,再让小亮从盒中不放回地任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用字母和数字表示豆沙粽子和火腿粽子,用列表法计算) 解:23.(本小题满分12分)如图,BD O 是⊙的直径,OA OB M ⊥,是劣弧AB 上一点,过M 点作O ⊙的切线MP 交OA 的延长线于P 点,MD 与OA 交于N 点. (1) 求证:PM PN =; (2) 若342BD PA AO B BC MP O C ==,,过点作∥交⊙于点,求BC 的长. (1) 证明:(2) 解:第23题图24.(本小题满分14分)如图,在平面直角坐标系中放置一矩形A B C O ,其顶点为(01)A,,()B -1,()C -0,()00D ,.将此矩形沿着过()E 1、3F ⎛⎫- ⎪ ⎪⎝⎭0的直线EF 向右下方翻折,B 、C 的对应点分别为B '、C '.(1) 求折痕所在直线EF 的解析式;(2) 一抛物线经过B 、E 、B '三点,求此二次函数解析式;(3) 能否在直线EF 上求一点P ,使得PBC △的周长最小?如能,求出点P 的坐标;若不能,说明理由. 解:第24题图2010芜湖市初中毕业学业考试数学试题参考答案二、填空题(本大题共6小题,每题5分,满分30分.)11.十 12.(32)(32)x y x y ++-- 13. 1.8 14.1- 15.317或16.32-三、解答题(本大题共8小题,共80分)解答应写明文字说明和运算步骤. 17.(本小题满分12分)(1)解:原式=1812⨯+ ························································································ 3分=81211++=······································································································ 6分 (2)解:由①得:2x >-. ··································································································· 2分由②得6x ≤. ························································································································· 4分 2x ∴-<≤6.∴满足不等式组的整数解为1-、0、1、2、3、4、5、6. ····················································· 6分 18.(本小题满分8分)解:根据题意得 3.5165616DE AB EF =⨯===,. ························································· 2分 1516ACB CBG CAB ACB CAB CB AB ∠=∠-∠=︒∴∠=∠∴==,,. sin 308CG BC ∴=︒=.········································································································· 6分 856569CH CG HG CG DE AD =+=++=++=.69CH ∴塔吊的高为m. ········································································································ 8分19.(本小题满分8分) 解:(1)正确补全图 ··············································································································· 3分(2)由图可知6112216384856121688x ⨯+⨯+⨯+⨯+⨯=++++=3(小时) ································· 6分可以估计该校全体学生每天完成作业所用总时间=318005400⨯=(小时)所以该校全体学生每天完成作业所用总时间为5400小时. ··················································· 8分 20.(本小题满分8分)x m ,矩形的一边长为2x m.10(2x =- ································································ 2分所以该金属框围成的面积12102(22S xx ⎡⎤=-+⎣⎦·2(320(010x x x =-++<<-[此处未注明x 的取值范围不扣分]当30x ==-此时矩形的一边长260x =-(m),相邻边长为10(210(3-10-=(m) ·········································································· 7分100(3300S =-=-最大2) ·········································································· 8分 21.(本小题满分8分)证明:(1)在梯形ABCD 中,AD BC DAE ACE ∴∠=∠∥,. DFC AEB DFA AEC ∠=∠∴∠=∠,,ADF CAE ∴△∽△. ············································································································· 3分解:(2)由(1)知:AD CA ADF CAE AF CE∴=△∽△,. 869010AD DC ADC AC ==∠=︒∴==,,,. ············································ 5分 又152F AC AF AC ∴==是的中点,. 81025252542CE E BC BC CE CE ∴==∴==,.是的中点,. ········································· 7分 12512386222ABCD ⎛⎫∴=⨯+⨯=⎪⎝⎭直角梯形的面积. ························································ 8分 22.(本小题满分10分)解:(1)设第一次爸爸买了火腿粽子x 只、豆沙粽子y 只,根据题意得:135162xx y x x y ⎧=⎪+⎪⎨+⎪=⎪++⎩整理得:24y x y x =⎧⎨=+⎩ ····················································································· 2分解得:48x y =⎧⎨=⎩ ························································································································· 4分(2)在妈妈买过之后,盒中有火腿粽子9只和豆沙粽子9只.从盒中取出火腿粽子4只、豆沙粽子6只送爷爷和奶奶后,盒中还有火腿粽子5只和豆沙粽子3只.最后小亮任取2只,恰有火腿粽子、豆沙粽子各1只的概率是30155628=. ···························································· 6分 可能的情况列表如下:(记豆沙粽子a 、b 、c ;火腿粽子1、2、3、4、5)··············································································································································· 10分 23.(本小题满分12分) (1)证明:连结OM , ········································································································ 1分9090MP O OM MP OMD DMP OA OB OND ODM ∴⊥∴∠+∠=︒⊥∴∠+∠=︒是⊙的切线,..,.MNP OND ODM OMD DMP MNP PM PN ∠=∠∠=∠∴∠=∠∴=又,,. ············ 4分 (2)解:设1342322BC OM E BD OA OB BD PA AO =∴===∴==交于,,.. 5PO ∴=. ······························································································································· 5分 12BC MP OM MP OM BC BE BC ⊥∴⊥∴=∥,,.. ··················································· 7分第23题答案图90BOM MOP OMP ∠+∠=︒,在Rt △中,90MPO MOP ∠+∠=︒,BOM MOP ∴∠=∠.又90BEO OMP ∠=∠=︒,OM BEOMP BEO OP BO∴=△∽△.. ··················································································· 10分得:2485255BE BE BC ==∴=,,. ··················································································· 12分24.(本小题满分14分)解:(1)由于折痕所在直线EF过(E、()3F -0,tan EFO ∴∠=直线EF 倾斜角为60︒, 所以直线EF 的解析式为:1tan 60y -=︒化简得:4y =+. ··········································································································· 3分 (2)设矩形沿直线EF 向右下方翻折后,B 、C 的对应点为1122()()B x y C x y B B A AE AE A ''''''⊥,,,.过作交所在直线于点. 60B E BE B EF BEF ''==∠=∠=︒, 603B EA A E B A '''''∴∠=︒∴==,.1102(02)A A B y x y B '''∴∴==--与重合,在轴上.,即,.[此时需说明()11B x y y ',在轴上]. ························································································ 6分 设二次函数解析式为:2y ax bx c =++第24题答案图抛物线经过()B -1、()E 1、()0-2B ',.得到231271c a c a c -=⎧⎪+=⎨⎪-+=⎩解得132a b c ⎧=-⎪⎪⎪=⎨⎪=-⎪⎪⎩2123y x ∴=---该二次函数解析式. ···································································· 9分 (3)能,可以在直线EF 上找到P 点,连接B C EF P BP '交于点,再连接.由于B P BP P C '=,此时点到、B '在一条直线上,故BP PC B P PC '+=+的和最小, 由于BC 为定长,所以满足PBC ∆周长最小. ····································································· 10分 设直线B C '的解析式为:y kx b =+20b b-=⎧⎪⎨=-+⎪⎩:29B C y x '∴=--直线的解析式为. ············································ 12分2910411x y x P B C EF y y ⎧⎧=⎪=--⎪⎪'∴⎨⎨⎪⎪=-=+⎩⎪⎩又为直线和直线的交点,解得P ⎛⎫∴ ⎪⎝⎭10点的坐标为-11. ····················································································· 14分 [注:对于以上各大题的不同解法,解答正确可参照评分!]。
2010年安徽省中考摸底考数学试卷及答案
2010年安徽省中考摸底考试卷数学试题考生注意:本卷共八大题,计23小题,满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题4分,满分40分)1、2-的相反数是…………………………………………………()A、2B、-2C、4 D2、2009年我省GDP突破万亿达到10052.9亿元,这意味着安徽已经成为全国GDP万亿俱乐部的第14个成员,10052.9亿元用科学记数法表示为(保留三个有效数字)………………()元A、121.0010⨯ B、121.00510⨯ C、121.0110⨯ D、121.0052910⨯3、如图,把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为……………………………………………………………………()A、55°B、65°C、125°D、135°4、如图是一个几何体的三视图,根据图中标注的数据求出这个几何体的体积为……()A、24πB、32πC、36πD、48π5、小明正在玩飞镖游戏,如果小明将飞镖随意投中如图所示的正方体木框中,那么投中阴影部分的概率为……………………………………………………………………………()A、16B、18C、19D、5186、已知⊙O1和⊙O2的半径是方程2560x x-+=两根,且两圆的圆心距等于5,则⊙O1和⊙O2的位置是……………………………………………………………………………()A、相交B、外离C、外切D、内切7、将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上,点A、B的读数分别为86°、30°,则∠ACB的大小为………………………………………………()A、15°B、28°C、29°D、34°8、如图,CD 是平面镜,光线从A 点出发经CD 上点E 反射照到B 点,若入射角为α,AC ⊥CD ,BD ⊥CD ,且AC=3,BD=6,CD=12,则tan α值为…………………( ) A 、35B 、43C 、45D 、349、如图所示是二次函数2y ax bx c =++图象的一部分,图象过A 点(3,0),对称轴为1x =,给出四个结论:①240b ac ->;②20a b +=;③0a b c ++=;④当1x =-或3x =时,函数y的值都等于0。
2010年安徽省中考数学试卷解读报告
2010年安徽省中考数学试卷解读报告丁浩勇(无为县刘渡中心学校 238341)摘要:共分三个部分——试题解读与点评,试卷综合解读与评析,中考数学复习中存在的问题与建议.第一部分:试题解读与点评一.选择题:(本大题10小题,每小题4分,满分40分)1. 在2101,,,-这四个数中,既不是正数也不是负数的是………………( ) A.1- B.0 C.1 D.2 答案:B【考查目的】考查学生对正、负数概念的理解.【思路分析】解答本题,一要弄清正数和负数的概念,二要掌握0既不是正数也不是负数,它是正数与负数的分界.【规范解题】-1是负数,1和2是正数,0既不是正数也不是负数.【误区剖析】对负数概念不理解,认为前面加上负号“-”的数是负数,没有的就是正数,这样误以为0也是正数.【点评】每年的中考题都会出现一些考查学生有理数概念方面的基础题,如正数与负数、数轴、相反数、倒数、绝对值等,达到引导注重“双基”教学的目的.2. 计算x x ÷3)2(的结果正确的是………( ) A.28x B.26x C.38x D.36x 答案:A【考查目的】考查整式的乘除运算.【思路分析】按照整式的乘除运算规律和运算顺序进行运算. 【规范解题】2333388)2()2(x x x x x x x =÷=÷⋅=÷.【误区剖析】本题导致错误的原因有:①积的乘方运算时出错,即333632)2(x x x =⋅⨯=;②除法运算时出错,即3133x xx x ==÷÷.【点评】涉及整式的加、减、乘、除等运算时,一定要掌握它们的运算法则和运算顺序.3. 如图,直线1l ∥2l ,∠1=550,∠2=650,则∠3为…………………………( ) A.500. B.550 C.600 D.650 答案:C【考查目的】考查对顶角性质、平行线性质、三角形内角和定理.【思路分析】根据对顶角性质和平行线性质把已知角与未知角转化到一个三角形中,再利用三角形内角和定理来求∠3.【规范解题】∵1l ∥2l ,︒=∠652,∴︒=∠=∠6524.又∵︒=∠+∠+∠︒=∠=∠180345,5515,∴︒=︒-︒-︒=∠6065551803.【误区剖析】本题致错的原因在于对三角形内角和定理及对顶角性质掌握不牢,或对平行线性54第3题图1 32 l 1l 2质应用混乱,或不会把未知与已知转化到一个三角形中.【点评】本题主要考查学生对图形的基础知识、基本技能和基本方法的掌握情况,解答此类问题一定要注意化归思想的重要作用.4. 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是…………………………( )A.2.89×107. B.2.89×106. C.2.89×105. D.2.89×104. 答案:B【考查目的】考查科学记数法.【思路分析】先把289万转化为2890000,然后用科学记数法来表示它. 【规范解题】由于289万等于2890000,那么61089.22890000⨯=.【误区剖析】本题有两点易错之处:一是转化289万时出错;二是用科学记数法表示时出错. 【点评】科学记数法是一种很重要的记数方法,在当今社会里,“大数”与“小数”与我们的关系越来越密切.近年来取材于现实生活中的数据来考查科学记数法的问题在中考中屡见不鲜.5. 如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是( )答案:D【考查目的】考查视图知识及对几何体的简单了解.【思路分析】分析观察各几何体,然后比较它们的视图得出结论.【规范解题】各几何体的主视图、左视图、俯视图分别是:正方体(三个正方形);球(三个圆);直三棱柱(长方形、三角形、两个并列的长方形);圆柱(长方形、圆、长方形).只有圆柱符合要求.【误区剖析】缺乏空间想象能力误认为直三棱柱的俯视图也是一个长方形.【点评】本题除了要理解视图的知识外,还要求有一定的空间想象能力.空间观念是新课标提出的一个新的要求,平时的教学中要注意对学生观察能力和空间观念的培养.6. 某企业1~5月分利润的变化情况如图所示,以下说法与图中反映的信息相符的是………………( )A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差与1~5月份利润的极差不同C.1~5月份利润的的众数是130万元D.1~5月份份利润的的中位数为120万元 答案:C【考查目的】考查极差、众数、中位数概念以及从统计图中获取信息的能力.A.正方体B.球C.直三棱柱D.圆柱第6题图110 140 130 115 120 100利润/万元月份 5 4 3 2 1【思路分析】从折线统计图中获取数据对4个备选结果逐一进行验证.【规范解题】观察折线统计图:①1~2月份、2~3月份利润增长分别为10万元、20万元;②1~4月份、1~5月份利润的极差都是20万元;③1~5月份利润的众数是130万元;④1~5月份利润的中位数115万元.比较选择支得出C 正确.【误区剖析】本题需要识图,如不能从折线图中获取正确信息,导致错误在所难免.另外,对极差、众数、中位数概念的理解产生歧义也会导致计算出错.【点评】从统计图表中获取信息、整理信息、分析信息和描述信息是新课标的基本要求,也是中考的必考内容.7. 若二次函数52++=bx x y 配方后为k x y +-=2)2(则b 、k 的值分别为……( ) A.0,5 B.0,1 C.—4,5 D.—4,1 答案:D【考查目的】考查配方法和化归思想.【思路分析】化k x y +-=2)2(为一般形式后与52++=bx x y 比较系数得出b 、k 的值. 【规范解题】∵k x y +-=2)2(,∴442++-=k x x y .又∵52++=bx x y ,∴1,4=-=k b .【误区剖析】本题求解时,如果对配方法掌握不够熟练可导致运算方法错误,或是运算粗心,出现符号错误.【点评】配方法是一种重要的数学方法,它在一元二次方程和二次函数等领域都有重要应用.8. 如图,⊙O 过点B 、C .圆心O 在等腰直角△ABC 的内部,︒=∠90BAC ,OA =1,BC =6,则⊙O 的半径为………( )A.10B.32C.23D.13 答案:C【考查目的】考查等腰三角形性质、勾股定理、垂径定理等相关知识. 【思路分析】由等腰三角形“三线合一”及垂径定理知ABC ∆底边上的垂直平行线经过圆心,结合勾股定理可求出圆的半径.【规范解题】如图,过O 点作BC OD ⊥,垂足为D .由垂径定理得OD 是BC 的垂直平分线.在等腰直角ABC ∆中,∵点D 是底边BC 的中点,∴AD 是BC 的垂直平分线.∴O 点在AD 上.连接OB ,由勾股定理,得13232222=+=+=ODBDOB .【误区剖析】不能综合运用不同图形的相关性质,导致思路受阻,从而找不到转化途径和解题思路.【点评】本题涉及到圆、等腰三角形、勾股定理等内容的图形综合题,解题的关键是通过作辅助线将已知条件转化到一个直角三角形中来求解.9. 下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和O B A 第8题D C是…………………………………………( )A.495B.497C.501D.503 答案:A【考查目的】考查学生经历探索发现规律的能力.【思路分析】找出这个多位数各位上数字出现的规律后计算结果.【规范解题】当第1位数字是3时,按如上操作得到的多位数是362486248…,那么它的前100位所有数字之和为49542624)8426(3=+++⨯++++.【误区剖析】解决本题的关键是要发现这个多位数各位上数字的排列规律,找不出规律而无从下手.【点评】鼓励学生独立思考,引导学生自主探索,发现规律,能很好地培养学生的创新能力,这类找规律题是新课改之后的中考热点这一.10. 甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4s m /和6s m /,起跑前乙在起点,甲在乙前面100m 处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离)(m y 与时间)(s t 的函数图象是……………………………………………………………………………( ) 答案:C【考查目的】考查函数的图象及将实际问题转化为数学问题的能力.【思路分析】解决本题首先要弄清甲、乙两人的运动情况.由于乙的速度比甲快,所以乙一段时间后追上甲,并先到达目的地.【规范解题】乙追上甲的时间为50)46(100=-÷(秒),乙从起点到达目的地的时间是20061200=÷(秒),对照选择支,只有C 符合要求.【误区剖析】没有看懂题意,找不出两个变量之间的关系,或对函数图象在每一区段所表达的意义不理解,从而不能将实际问题与函数图象联系起来分析.【点评】创设问题情境得出分段函数的图象,学生平时在这方面的训练较少,但在中考题中却常见.因此,在教学中要加强这方面内容的教学.二、填空题(本大题4小题,每小题5分,满分20分) 11. 计算=-⨯263_______________.答案:22【考查目的】考查二次根式的运算技能.【思路分析】利用二次根式的运算法则进行运算,并化为最简结果. 【规范解题】22223263263=-=-⨯=-⨯.【误区剖析】没有掌握二次根式的运算法则导致计算错误,或是没有化简为最简结果.AO t/s 300 100200 100 y/mB O t/s300 100275 100 y/mC O t/s 300 100 200 50y/mDO t/s300 100 275 50y/m【点评】通过二次根式的乘法与减法运算来考查学生对二次根式的基础知识的掌握情况,引导教师要注重“三基”教学.12. 不等式组⎩⎨⎧≤-<+-843,24x x 的解集是_____________.答案:2<x≤4【考查目的】考查一元一次不等式组的解法.【思路分析】先分别求出不等式组中每个不等式的解集,利用数轴得出这些解集的公共部分,这个公共部分就是不等式组的解集.【规范解题】解不等式-x+4<2,得x>2;解不等式3x-4≤8,得x≤4.所以原不等式组的解集是2<x≤4.【误区剖析】对不等式的性质掌握不牢导致解不等式错误,或不理解不等式组解集的含义导致求公共部分的范围出错.【点评】利用数轴求不等式组的解集既直观,又快捷,教学中注意渗透这种数形结合的思想.13. 如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB =500,点D 是弧BAC 上一点,则∠D =______________.答案:︒40【考查目的】考查圆周角定理及其推论.【思路分析】根据圆周角定理得出A D ∠=∠,再由圆周角定理的推论得出︒=∠90ABC ,从而可以求出A ∠.【规范解题】∵AC 是⊙O 的直径,︒=∠90ABC .∴︒=∠50ACB ,∴︒=∠40A .又∵A ∠和C ∠是同弧所对的圆周角,∴︒=∠=∠40A D .【误区剖析】没有发现A ∠和C ∠是同弧所对的圆周角,或没有意识到直径所对的圆周角)(ABC ∠是直角,而使思维受阻,得不到问题的解决.【点评】本题是一道关于圆的基础题,我们在教学中要切实做到把基础知识和基本技能教学到位,做到点子上,落实在根本上.14. 如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是__________________.(把所有正确答案的序号都填写在横线上)①∠BAD =∠ACD ②∠BAD =∠CAD ③CD AC BD AB +=+ ④CD AC BD AB -=- 答案: ② ③ ④【考查目的】考查三角形全等、勾股定理及线段垂直平分线的性质.【思路分析】①由ACD BAC ∠=∠不能得出等腰三角形;②由CAD BAD ∠=∠可以得出ACD ABD ∆≅∆;③把CD AC BD AB +=+两边平方,利用勾股定理可以得出结论;④与③同理.【规范解题】①由ACD BAC ∠=∠不能得出ACD ABD ∆≅∆,所以此条件不能得出.ADCB第14题图第13题图BAD C50OO②∵在△ABD 和△ACD 中,CAD BAD ∠=∠,︒=∠=∠=90,ADC ADB AD AD , ∴ACD ABD ∆≅∆.∴AC AB =.③∵CD AC BD AB +=+,∴22)()(CD AC BD AB +=+. ∴CD AC CDACBD AB BD AB ⋅++=⋅++222222.又∵222222,CD ADACBD AD AB+=+=,∴)(2)(2CD AC CD BD AB BD +=+.∴CD BD =.∴AC AB =. ④与③同理可得AC AB =.【误区剖析】这类多选题学生出错率较高,或是多选,或是漏选,都会导致结果错误. 【点评】多选题对学生的要求较高,具有很好的区分度,体现了中考的选拔功能. 三,(本大题共2小题,每小题8分,满分16分) 15. 先化简,再求值: aa a a a -+-÷--2244)111(,其中1-=a【考查目的】考查分式的化简与求值问题.【思路分析】先根据分式的混合运算顺序对分式进行化简,再把a 的值代入求值. 【规范解题】2)2()1(1244)111(222-=--⋅--=-+-÷--a a a a a a a a a a a a .当1-=a 时,原式312112=---=-a a .【误区剖析】在进行化简时,分式的运算法则使用不当导致运算错误,或没有化简直接代入求值使计算繁琐出错.【点评】代数式的化简与求值是考查基础知识与基本技能的重要内容,是中考的常见题型之一.因此,一定要掌握它的一般方法与步骤.16. 若河岸的两边平行,河宽为900米,一只船由河岸的A 处沿直线方向开往对岸的B 处,AB 与河岸的夹角是600,船的速度为5米/秒,求船从A 到B 处约需时间几分.(参考数据:7.13≈)【考查目的】考查用锐角三角函数解决简单的实际问题.【思路分析】添加辅助线构造直角三角形,利用特殊角的三角函数值求解.【规范解题】如图,过点B 作BC 垂直河岸,垂足为C .在ACB Rt ∆中,有360060sin 900sin =︒=∠=BACBC AB ,所以时间4.3326053600≈=⨯=t (分),即船从A处到B 处约需3.4分.【误区剖析】错误的原因有:①难以将实际问题转化为数学问题,构造不出直角三角形,而使解答搁浅;②没有把时间单位秒、分互化,导致计算结果错误.C第16题图BA 60O【点评】三角函数知识是解决实际问题的强有力工具,中考题中常常会出现这类问题.平时应该加强这方面内容的教学,引导学生从实际问题中感悟数学原理和方法,建立数学模型,发展学生的数学应用意识和解决问题的能力.四.(本大题共2小题,每小题8分,满分16分) 17. 点P(1,a )在反比例函数xk y =的图象上,它关于y 轴的对称点在一次函数42+=x y 的图象上,求此反比例函数的解析式.【考查目的】考查轴对称变换点的坐标变化规律、解方程、一次函数及反比例函数的相关知识. 【思路分析】把点P 关于y 轴的对称点坐标代入一次函数的表达式求出a 的值,得出P 点坐标,再把P 点坐标代入反比例函数表达式,求出k 的值.【规范解题】点P(1,a )关于y 轴的对称点是(-1,a ).∵点(-1,a )在一次函数42+=x y 的图象上,∴24)1(2=+-⨯=a .∵P(1,2)在反比例函数xk y =的图象上,∴2=k .∴反比例函数的解析式为xy 2=.【误区剖析】本题求解的误区是:①关于y 轴的对称点坐标规律掌握不牢固,导致求对称点坐标出错;②不能将函数图象上的点的坐标与函数表达式进行有效对接.【点评】根据已知条件确定函数的表达式是考查函数这部分内容的主要考点之一.18.在小正方形组成的15×15的网络中,四边形ABCD 和四边形D C B A ''''的位置如图所示. ⑴现把四边形ABCD 绕D 点按顺时针方向旋转900,画出相应的图形1111D C B A ;⑵若四边形ABCD 平移后,与四边形D C B A ''''成轴对称,写出满足要求的一种平移方法,并画出平移后的图形2222D C B A .【考查目的】考查图形的旋转、平移和轴对称,以及发散思维能力和探索能力.【思路分析】(1)根据旋转变换的规律画出图形.(2)本小题是开放型问题,答案不唯一,只要画出符合条件的一个图形即可.【规范解题】(1)旋转后得到的图形1111D C B A 如图如示.(2)将四边形ABCD 先向右平移4个单位,再向下平移6个单位.四边形2222D C B A 如图如AB CD D ' A ' C ' B ' 第18题图第18题图 D 1ACA22C2D 'A ' C 'B 'D2B2 BB1C2 A1D1示.【误区剖析】(1)由于审题不清画图时未以点D 为旋转中心,或旋转方向与角度不符. (2)画出的图形不是四边形ABCD 经过平移得到的,或不与四边形1111D C B A 成轴对称. 【点评】这类图案设计题,不同于传统的尺规作图题,要求我们利用图形的平移、对称、旋转、位似等变换知识来设计图形.这类试题综合性较强,题型以作图题为主,具有一定的开放性和灵活性,此类问题近年来倍受中考命题者的青睐.五.(本大题共2小题,每小题10分,满分20分)19.在国家政策的宏观调控下,某市的商品房成交均价由今年3月份的14000元/2m 下降到5月份的12600元/2m .⑴问4、5两月平均每月降价的百分率是多少?(参考数据:95.09.0≈)⑵如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破10000元/2m ?请说明理由.【考查目的】考查一元二次方程的解法和利用方程模型解决实际问题的能力. 【思路分析】(1)根据题意,设未知数列方程求解.(2)根据前面得出的降价百分率计算出7月份的均价,与10000元/2m 比较得出结论. 【规范解题】(1)解:设4、5两月平均每月降价的百分率为x ,根据题意,得12600)1(140002=-x .化简,得9.0)1(2=-x .解得05.01≈x ,95.12≈x (不合题意,舍去).因此,4、5两月平均每月降价的百分率约为5%.(2)解:如果按此降价的百分率继续回落,估计7月份的商品房成交均价为113409.012600)1(126002=⨯=-x >10000.由此可知,7月份该市的商品房成交均价不会跌破10000元/2m .【误区剖析】(1)不能正确找出题中的相等关系,得出错误的方程; (2)一元二次方程的解法掌握不牢,解方程过程中出现运算错误.【点评】 利用方程模型,考查学生解决实际问题的能力,是中考命题的重点之一.近来年,命题者与时俱进,设计的此类问题紧跟时代节拍,具有较强的实用价值.20.如图,AD ∥FE ,点B 、C 在AD 上,∠1=∠2,BF =BC . (1)求证:四边形BCEF 是菱形(2)若AB =BC =CD ,求证:△ACF ≌△BDE【考查目的】考查平行线、平行四边形、三角形全等的相关知识.【思路分析】(1)由于四边形BCEF 的邻边相等,证得它是平行四边形就可得出是菱形.(2)设法找到满足两个三角形全等的三组条件即可.【规范解题】(1)证明:∵AD ∥FE ,∴2∠=∠FEB .∵21∠=∠,∴1∠=∠FEB .∴EF BF =.∵BC BF =,∴EF BC =.∴四边形BCEF 是平行四边形.∵FC BF =,∴四边形BCEF 是菱形.B2 第20题图2 DF ECBA 1(2)证明:∵BC EF =,CD BC AB ==,AD ∥FE ,∴四边形ABEF 、四边形CDEF 均为平行四边形,∴BE AF =,ED FC =.又∵BD BC AC ==2,∴BDE ACF ∆≅∆.【误区剖析】①证明的过程不能做到步步有据;②证明的格式书写不规范,不符合逻辑推理的要求.【点评】本题是一道几何证明题,难度不大,那些要求过高的几何证明题在中考中已经不见踪影,这对我们教学有很好的指导作用.六、(本题满分12分)21.上海世博会门票价格如下表所示:门票价格一览表指 定 日 普 通 票 200元 平 日 优 惠 票100元 …………某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种票至少买一张. ⑴有多少种购票方案?列举所有可能结果;⑵如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率. 【考查目的】考查简单概率问题和分类讨论思想.【思路分析】(1)从某一种票的张数手,从小到大依次列举. (2)在(1)的结果中找出选到11张门票的次数.【规范解题】(1)解:共有6种购票方案,指定日普通票张数和平日优惠票张数分别是1和11、2和9、3和7、4和5、5和3、6和1.(2)解:由(1)知,共有6种购票方案,且选到每种方案的可能性相等,而恰好选到11张门票的方案只有1种,因此恰好选到11张门票的概率是61.【误区剖析】(1)审题不严,忽略“每种票至少买一张”这个条件,导致列举结果增多; (2)概率的意义模糊不清,导致从无下手.【点评】本题以上海世博会门票问题为背景,考查简单概率问题,引导数学教学要与生活和社会中热点问题紧密相联,培养学生运用数学知识、方法和思想去解决实际问题.七、(本题满分12分)22.春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x 天(201≤≤x 且x 为整数)的捕捞与销售的相关信息如下:鲜鱼销售单价(元/kg ) 20 单位捕捞成本(元/kg )55x -捕捞量(kg )x 10950-(1)在此期间该养殖场每天的捕捞量与前一天的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x 天的收入y (元)与x (天)之间的函数关系式?(当天收入=日销售额—日捕捞成本)(3)试说明⑵中的函数y 随x 的变化情况,并指出在第几天y 取得最大值,最大值是多少? 【考查目的】考查二次函数的知识和分析问题的能力.【思路分析】建构当天收入y (元)与x (天)之间的函数关系式的关键是理解“日销售额=日捕捞量×单价”和“日捕捞成本=日捕捞量×单位捕捞成本”这两个等量关系;理解二次函数增减性的实际意义是解决最值问题的关键.【规范解题】(1)解:该养殖场每天的捕捞量与前一天的捕捞量相比每天减少了10kg . 解:由题意,得14250402)10950)(55()10950(202++-=----=x x x x x y .解:∵-2<0,14450)10(21425040222+--=++-=x x x y ,x 是1≤x ≤20的整数,∴当1≤x ≤10时,y 随x 的增大而增大;当10≤x ≤20时,y 随x 的增大而减小;当10=x 时即在第10天,y 取得最大值,最大值为14450元.【误区剖析】不明白日销售额、日捕捞成本的计算方法,导致函数关系式出错;不会转化函数关系式,或利用函数的图象求函数的最值.【点评】本题以现实生活为背景,要求学生结合具体情境用函数观点解决实际问题.近年来这类题所占的比例呈上升趋势,试题形式越来越灵活,试题背景越来越新颖.八、(本题满分14分)23.如图,已知△ABC ∽△111C B A ,相似比为k (1>k ),且△ABC 的三边长分别为a 、b 、c (c b a >>),△111C B A 的三边长分别为1a 、1b 、1c .⑴若1a c =,求证:kc a =;⑵若1a c =,试给出符合条件的一对△ABC 和△111C B A ,使得a 、b 、c 和1a 、1b 、1c 都是正整数,并加以说明;⑶若1a b =,1b c =,是否存在△ABC 和△111C B A 使得2=k ?请说明理由.【考查目的】考查相似三角形知识及推理论证能力和探究能力.【思路分析】(1)根据相似三角形相似比的定义结合已知条件推出结论; (2)本小题是开放型的,写出符合条件的一对三角形即可;(3)先假设存在这样的△ABC 和111C B A ∆,使得2=k ,然后从假设出发看看是否有矛盾. 【规范解题】(1)证明:∵△ABC ∽△111C B A ,且相似比为k (k >1),∴k a a =1,∴1ka a =.又∵1a c =,∴kc a =.(2)解:取4,6,8===c b a ,同时取2,3,4111===c b a .此时2111===c c b b a a ,∴△ABC ∽△111C B A ,且1a c =.第23题图CBAA 1b 1c 1a 1C 1B 1(3)解:不存在.理由如下:若2=k ,则1112,2,2c c b b a a ===.又11,b c a b ==,∴c b b a a 442211====.∴c b 2=.∴c c c b +=+2<a c =4.而c b +>a ,故不存在这样的△ABC 和△A 1B 1C 1,使得2=k .【误区剖析】(1)不理解相似比的含义,导致推理受阻;(2)开放题虽然思路开阔,但没有固定的解题模式,思维不够敏捷就无从下手;(3)不习惯逆向思维导致判断错误.【点评】本题具有一定的综合性和开放性,对能力要求较高,需要综合分析条件与结论,推理论证和逆向思维等多种能力来完成,体现了中考的选拔功能.第二部分:试卷综合解读与评析纵观2010年安徽省中考数学试卷,我们欣喜地看到试题既注重“三基”,又突出能力;既源于课本,又改革创新;既联系实际,又背景新颖.它是一份很好的诠释新课程理念的中考试卷,充分体现了义务阶段教育的基础性、普及性和发展性.一、命题的指导思想试卷以《数学课程标准》及《2010年安徽初中毕业学业考试纲要》为依据,其指导思想是:准确把握基础教育课程改革的方向,体现义务教育的性质,面向全体学生,切实减轻学生过重的课业负担,全面推进素质教育的实施.同时,充分发挥中考的选拔功能,坚持有利于促进高中阶段教育事业的发展和学生数学成绩的整体提高.二、命题原则命题注重在全面检查学生基础知识和基本技能的基础上,重视对学生运用所学知识分析、解决实际问题的能力的考查,能反映课标对学生知识与技能、过程与方法、情感态度与价值观方面的基本要求;试题力求灵活开放,有助于学生拓宽思维空间,便于学生创造性地发挥;注意结合社会热点问题、焦点问题,引导学生关注国家、人类和世界的命运.三、卷面分析1.试卷结构试卷满分150分,共八大题,23小题.试题分选择题、填空题和解答题三种类型,其中选择题共10个小题,满分40分,约占总分的27%;填空题共4个小题,满分20分,约占总分的13%;解答题包括计算题、证明题、应用题以及探索、开放性试题,共9个小题,满分90分,占总分的60%.与去年相比,试卷结构上没有变化.2.考查内容分布试题的考点覆盖了课标所列的基础知识和核心内容,其中考查“数与代数”领域的问题是第1、2、4、7、9、10、11、12、15、17、19、22题,共12个小题(6个选择题,2全填空题,4个解答题),合计72分,占总分的48%;考查“空间与图形”领域的问题是第3、5、8、13、14、16、18、20、23题,共9个小题(3个选择题,2个填空题,4个解答题),合计62分,约占总分的41%;考查“统计与概率”领域的问题是第6、21题(1个选择题和1个解答题),共16分,占总分的11%;“实践与综合应用”领域的考查渗透在前面三个领域内容的考查之中,它出现在第18、19、22、23题中.四、试题特点分析1.试题源于教材,突出“三基”的考查本套试题着眼于基础知识、基本技能和基本思想方法的考查,突出了义务教育的基础性和普及性.如选择题的第1~8题,填空题的第11~13题,解答题的第15、16、17、18、19、21题,考查都是最基本的概念,最基本的计算,淡化了对几何证明技巧的考查,取而代之的是考查学生对图形变换等基础知识的理解和对图形的直观感受.整份试卷考查“三基”的有101分,约占分值的67%.同时,试题立足课本,更加注重课本中例、习题的作用,如第13题、第19题就是根据课本例题改编的,第1、2、3、5、11、12题就是由课本习题变形引申而来.学生解答这类源于课本的题目,会感到亲切自然.2.联系生活实际,注重用数学意识的考查数学是人们生活、劳动和学习必不可少的工具,学习数学的根本目的在于运用数学知识去解决实际问题.今年的试卷更加注重对学生应用意识的考查,整卷有第4、6、10、16、19、21、22共7道应用题,分值54分,占总分的36%.应用题的背景有城镇就业问题、企业利润问题、优育竞技问题、船舶航行问题、商品房交易问题、上海世博会购票问题、水库养殖问题等,这些学生熟悉的背景,有利于学生考试水平的发挥.同时,也能促使学生更加关注社会、关注生活,学会用数学的眼光看世界.3.设计探索型问题,突出创新意识的考查探索是创新的基石,培养学生创新意识是义务教育的课程目标之一.让学生在探究、操作中研究数学,是今年安徽省试题的又一特色.如第9题探究一个多位数前100位的所有数字之和,第14题探究等腰三角相似的条件,第18题让学生在开放的情景下操作图形设计图案,第23题探究三角形相似的条件等,这些问题有的题型新颖,有的结论开放,非常有利于学生综合所学知识,结合生活经验,开展探索,解决问题.第三部分:中考数学复习中存在的问题与建议问题1 偏离课本,忽视基础近年来的中考数学题,多数取材于课本,由课本中的例、习题加工改造而成.而我们在中考复习时,却脱离课本,过份追求那些难度偏大的试题,从而导致学生对课本概念、公式、性质、定理等基础知识理解不透,掌握不牢,因小失大,得不偿实.建议:回归课本,夯实基础课本素材是命题的基本依据,是编拟中考试题的蓝本.因此,在中考复习时,一定要回归课本,认真钻研教材,帮助学生理清知识体系,弄清课本例题的解题思路,领会其解题技能与思想方法,做到举一反三,重视课本习题的变式教学,引导学生从“变”的现象中发现“不变”本质,从“不变”的本质中探究“变”的规律.问题2 训练份量过重,分析讲评不足组织复习时,让学生盲目地做大量的机械的试题,耗费学生宝贵的时间和精力.轻视习题讲评课的教学,讲评时就题论题核对答案,没有分析学生出错的原因,同一个问题,学生会多次犯同样的错误,严重影响学生的学习信心.建议:强调训练质量,讲评有的放矢在梳理课本知识点,形成知识网络的基础上,进行一定量的强化训练是完全有必要的,但并不是提倡题海战术,训练要有针对性,目的是帮助学生查漏补诎,纠正学生答题时“会而不对,对而不全”的问题.试卷讲评时要给学生提供这一类问题(而不仅仅是这一题)的解题思路与方法,做到触类旁通.对于错解,要帮学生找出“错因”,开出“处方”.问题3 复习就是做题,丧失应用能力学数学就是做题,没有引导学生把所学的数学知识应用到现实中去,偏离了学数学在于用数学这个根本目标.这样,学生不能形成良好的数学思维习惯和应用意识,面对那些联系实际的中考题,。
2010安徽中考数学试题及答案
2010安徽中考数学试题及答案一、选择题1. 若 6x = 7 - 9y,则 x 的值等于:A) -1 B) -3 C) 1/2 D) 2/3答案: B) -32. 在数轴上,点 A 的坐标是 -5,点 B 的坐标是 3,那么 AB 的距离是:A) 8 B) -8 C) 2 D) -2答案: A) 83. 一个矩形的长是 10,宽是 x,若其周长为 32,则 x 的值等于:A) 2 B) 3 C) 4 D) 5答案: D) 54. 若√x - 3 = 2,则 x 的值等于:A) 1 B) 25 C) 4 D) 9答案: B) 255. 若 x = 2 ,则 3x + 4 的值等于:A) 2 B) 7 C) 10 D) 14答案: C) 101. 在一个正方形 ABCD 中,角 D 的补角是:答案: 90°2. 若 3x = 2 ,则 x*5 的值是:答案: 103. 如图所示,若 x+y = 180°,则 y 的值是:答案: 90°三、解答题1. 已知一个等腰直角三角形,直角边长为 3cm,求其斜边长。
解:根据勾股定理,已知直角边长 a = 3cm,斜边长 c 等于:c = √(a^2 + a^2) = √(9 + 9) = √18 cm2. 三个数字的和是12,就个数字之间的比例是 2:3:5,求这三个数字。
解:设三个数字分别为 2x,3x,5x,则有:2x + 3x + 5x = 1210x = 12x = 1.2因此,三个数字分别为 2x = 2.4, 3x = 3.6, 5x = 61. 若小明去操场骑自行车,每分钟骑行 300 米,骑行 20 分钟后停下来休息,然后以每分钟400 米的速度继续骑行,问他骑行 10 分钟后总路程是多少米?解:假设小明停下来休息后,已经骑行了 20 * 300 = 6000 米。
再以每分钟 400 米的速度骑行 10 分钟,则总路程为:6000 + 400 * 10 = 6000 + 4000 = 10000 米五、解析题小明、小华和小李一起比赛谁先爬到山顶。