专题06 探索离心率问题-2018版高人一筹之高二数学特色专题训练(选修2-1) 含解析

合集下载

高中数学专题 双曲线中的离心率问题(含答案解析)

高中数学专题 双曲线中的离心率问题(含答案解析)

高中数学专题 双曲线中的离心率问题限时:120 分钟满分:150 分一、单选题:本大题共 8 小题,每个小题 5 分,共 40 分. 在每小题给出的选项中,只有一项是符合题目要求的.1.设F 1、F 2分别是双曲线C :x 2-y 2b=1的左、右焦点,过F 2作x 轴的垂线与C 相交于A 、B 两点,若△ABF 1为正三角形,则C 的离心率为()A.2B.63C.22D.32.若双曲线C :y 2a 2-x 2b 2=1a >0,b >0 的一条渐近线被圆x 2+y -2 2=4所截得的弦长为23,则C的离心率为()A.2B.233C.223D.4333.已知双曲线C :x 2a2-y 2b 2=1(a >0,b >0)的右焦点为F ,A 、B 两点在双曲线的左、右两支上,且OA+OB =0,AF ⋅FB =0,3BF =FC ,且点C 在双曲线上,则双曲线的离心率为()A.103B.102C.52D.2334.如图,双曲线x 2a2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,直线l 过点F 1与双曲线的两条渐近线分别交于P ,Q 两点.若P 是F 1Q 的中点,且F 1Q ⋅F 2Q=0,则此双曲线的离心率为()A.3B.2C.22D.235.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若在C 上存在点P (不是顶点),使得∠PF 2F 1=3∠PF 1F ,则C 的离心率的取值范围为()A.2,2B.3,+∞C.(1,3]D.1,26.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点为F 1、F 2,点M ,N 在C 上,且F 1F 2 =3MN ,F 1M⊥F 2M ,则双曲线C 的离心率为()A.6+32B.6+3C.2+2D.5+27.已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的上下焦点分别为F 1,F 2,点M 在C 的下支上,过点M 作C的一条渐近线的垂线,垂足为D ,若MD >F 1F 2 -MF 1 恒成立,则C 的离心率的取值范围为()A.1,53B.53,2C.1,2D.53,+∞8.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点为A ,过A 的直线l 与C 的右支交于点B ,若线段AB 的中点在圆O :x 2+y 2=a 2上,且OB =7OA ,则双曲线C 的离心率为()A.2B.3C.2D.3二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.双曲线x 2a 2-y 2b 2=1的离心率为e 1,双曲线y 2b 2-x 2a2=1的离心率为e 2,则e 1+e 2的值不可能是()A.3B.22C.145D.5210.双曲线x 2-y 2a2=1的离心率为e ,若过点(2,2)能作该双曲线的两条切线,则e 可能取值为().A.324B.2C.32D.211.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线l 与圆x 2+y 2=a 2相切,且与C 交于M ,N 两点,若cos ∠F 1NF 2=45,则C 的离心率可能为()A.53B.32C.52D.13312.已知F 1、F 2是双曲线x 2a2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2作双曲线一条渐近线的垂线,垂足为点A,交另一条渐近线于点B,且AF2=13F2B,则该双曲线的离心率为().A.62B.2C.3D.5三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线方程为y=22x,则其离心率是.14.已知双曲线方程为C:x2a2-y2b2=1(a>0,b>0),左焦点F关于一条渐近线的对称点在另一条渐近线上,则该双曲线的离心率为.15.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F c,0,直线l:x=c与双曲线C交于A,B两点,与双曲线C的渐近线交于D,E两点,若DE=2AB,则双曲线C的离心率是.16.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,双曲线的左顶点为A,以F1F2为直径的圆交双曲线的一条渐近线于P,Q两点,其中点Q在y轴右侧,若AQ≥3AP,则该双曲线的离心率的取值范围是.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知F1,F2分别为双曲线x2a2-y2b2=1a>0,b>0的左、右焦点,P为双曲线右支上的任意一点,当PF12PF2取最小值时,求双曲线的离心率e的取值范围.18.已知椭圆C1:x2a21+y2b21=1a1>b1>0与双曲线C2:x2a22-y2b22=1a2>0,b2>0,有相同的左、右焦点F1,F2,若点P是C1与C2在第一象限内的交点,且F1F2=4PF2,设C1与C2的离心率分别为e1,e2,求e2-e1的取值范围.19.已知双曲线T:x2a2-y2b2=1(a>0,b>0)离心率为e,圆O:x2+y2=R2R>0.(1)若e=2,双曲线T的右焦点为F2,0,求双曲线方程;(2)若圆O过双曲线T的右焦点F,圆O与双曲线T的四个交点恰好四等分圆周,求b2a2的值;(3)若R=1,不垂直于x轴的直线l:y=kx+m与圆O相切,且l与双曲线T交于点A,B时总有∠AOB=π2,求离心率e的取值范围.20.已知点P是双曲线C:x2a2-y2b2=1(a>0,b>0)右支上一点,F1、F2是双曲线的左、右焦点,PF1=(2+3)PF2,∠F1PF2=60°.(1)求双曲线的离心率;(2)设R、r分别是△F1PF2的外接圆半径和内切圆半径,求Rr.21.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,A为双曲线C左支上一点,AF2-AF1=2b.(1)求双曲线C的离心率;(2)设点A关于x轴的对称点为B,D为双曲线C右支上一点,直线AD,BD与x轴交点的横坐标分别为x1,x2,且x1x2=1,求双曲线C的方程.22.已知双曲线C:x2a2-y2b2=1(a>0,b>0),若直线l与双曲线C交于A,B两点,线段AB的中点为M,且k AB⋅k OM=34(O为坐标原点).(1)求双曲线C的离心率;(2)若直线l不经过双曲线C的右顶点N2,0,且以AB为直径的圆经过点N,证明直线l恒过定点E,并求出点E的坐标.高中数学专题 双曲线中的离心率问题答案解析限时:120 分钟满分:150 分一、单选题:本大题共 8 小题,每个小题 5 分,共 40 分. 在每小题给出的选项中,只有一项是符合题目要求的.1.设F 1、F 2分别是双曲线C :x 2-y 2b=1的左、右焦点,过F 2作x 轴的垂线与C 相交于A 、B 两点,若△ABF 1为正三角形,则C 的离心率为()A.2B.63C.22D.3【解析】设AF 2 =t ,因为AB ⊥x 轴,则点A 、B 关于x 轴对称,则F 2为线段AB 的中点,因为△ABF 1为等边三角形,则∠AF 1F 2=30°,所以,AF 1 =2AF 2 =2t ,所以,AF 1 -AF 2 =AF 2 =t =2a =2,则AF 1 =2AF 2 =2t =4,所以,2c =F 1F 2 =AF 12-AF 2 2=42-22=23,则c =3,因此,该双曲线C 的离心率为e =ca= 3.故选:D .2.若双曲线C :y 2a 2-x 2b 2=1a >0,b >0 的一条渐近线被圆x 2+y -2 2=4所截得的弦长为23,则C的离心率为()A.2B.233C.223D.433【解析】双曲线C 的渐近线方程为y =±a b x ,直线y =±ab x 被圆x 2+y -2 2=4所得截得的弦长为23,则圆心0,2 到直线y =±ab x 的距离为d =22-3 2=1,由点到直线的距离公式可得d =21+ab2=1,解得a 2b 2=3,则b 2a2=13,因此,双曲线C 的离心率为e =ca =1+b a2=1+13=233.故选:B .3.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,A 、B 两点在双曲线的左、右两支上,且OA+OB =0,AF ⋅FB =0,3BF =FC ,且点C 在双曲线上,则双曲线的离心率为()A.103B.102C.52D.233【解析】设双曲线的左焦点为F ,连接AF ,BF ,CF ,因为AF ⋅FB =0,所以AF ⊥FB ,因为OA +OB =0,所以OA =OB ,因为OF =OF ,所以四边形AFBF 为矩形,设BF =t (t >0),则FC =3t ,BF =2a +t ,CF =2a +3t ,在Rt △CBF 中,BC 2+BF 2=CF 2,所以4t 2+2a +t 2=2a +3t 2,化简得t 2-at =0,解得t =a ,在Rt △BFF 中,BF 2+BF 2=FF 2,所以t 2+2a +t 2=4c 2,所以a 2+9a 2=4c 2,所以10a 2=4c 2,得10a =2c ,所以离心率e =c a =102,故选:B4.如图,双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,直线l 过点F 1与双曲线的两条渐近线分别交于P ,Q 两点.若P 是F 1Q 的中点,且F 1Q ⋅F 2Q=0,则此双曲线的离心率为()A.3B.2C.22D.23【解析】因为F 1Q ⋅F 2Q =0,则QF 1⊥QF 2,所以△F 1F 2Q 是直角三角形,又因为O 是F 1F 2的中点,所以OQ 是直角△F 1F 2Q 斜边中线,因此F 1O =OQ ,而点P 是线段F 1Q 的中点,所以△F 1OQ 是等腰三角形,因此∠F 1OP =∠POQ ,由双曲线渐近线的对称性可知中:∠F 1OP =∠F 2OQ ,于是有:∠F 1OP =∠POQ =∠F 2OQ =π3,因为双曲线渐近线的方程为:y =±b ax ,因此有:ba=tan π3⇒b a =3⇒b 2=3a 2⇒c 2-a 2=3a 2⇒c =2a ⇒e =2,故选:B .5.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若在C 上存在点P (不是顶点),使得∠PF 2F 1=3∠PF 1F ,则C 的离心率的取值范围为()A.2,2B.3,+∞C.(1,3]D.1,2【解析】设PF 1与y 轴交于Q 点,连接QF 2,则QF 1=QF 2,∴∠QF 1F 2=∠QF 2F 1,因为∠PF 2F 1=3∠PF 1F ,故P 点在双曲线右支上,且∠PF 2Q =∠PQF 2=2∠PF 1F 2,故|PQ |=|PF 2|,而|PF 1|-|PF 2|=2a ,故|PF 1|-|PF 2|=|PF 1|-|PQ |=|QF 1|=2a ,在Rt △QOF 1中,|QF 1|>|OF 1|,即2a >c ,故e =ca<2,由∠PF 2F 1=3∠PF 1F 2,且三角形内角和为180°,故∠PF 1F 2<180°4=45°,则cos ∠PF 1F 2=|OF 1||QF 1|>cos45°,即c2a>22,即e =c a >2,所以C 的离心率的取值范围为2,2 ,故选:A6.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点为F 1、F 2,点M ,N 在C 上,且F 1F 2 =3MN ,F 1M⊥F 2M ,则双曲线C 的离心率为()A.6+32B.6+3C.2+2D.5+2【解析】由于F 1F 2 =3MN ,所以x M =-2c ×13×12=-c 3,则-c32a2+y 2Mb 2=1,解得y M =b 3ac 2-9a 2,由于F 1M ⊥F 2M ,所以2c 3,b 3ac 2-9a 2 ⋅-4c 3,b3a c 2-9a 2 =0,整理得c 4-18a 2c 2+9a 4=0,两边除以a 4得e 4-18e 2+9=0,由于e >1,e 2>1,故解得e =6+ 3.故选:B7.已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的上下焦点分别为F 1,F 2,点M 在C 的下支上,过点M 作C的一条渐近线的垂线,垂足为D ,若MD >F 1F 2 -MF 1 恒成立,则C 的离心率的取值范围为()A.1,53B.53,2C.1,2D.53,+∞【解析】如图,过点F 2作渐近线的垂线,垂足为E ,设|F 1F 2|=2c ,则点F 2到渐近线y =±abx 的距离EF 2 =bca 2+b2=b .由双曲线的定义可得MF 1 -MF 2 =2a ,故MF 1 =MF 2 +2a ,所以MD +MF 1 =|MD |+MF 2 +2a ≥EF 2 +2a =b +2a ,即MD +MF 1 的最小值为2a +b ,因为MD >F 1F 2 -MF 1 恒成立,所以|MD |+MF 1 >F 1F 2 恒成立,即2a +b >2c 恒成立,所以,b >2c -2a ,即b 2>4c 2+4a 2-8ac ,即c 2-a 2>4c 2+4a 2-8ac ,所以,3c 2+5a 2-8ac <0,即3e 2-8e +5<0,解得1<e <53.故选:A .8.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点为A ,过A 的直线l 与C 的右支交于点B ,若线段AB 的中点在圆O :x 2+y 2=a 2上,且OB =7OA ,则双曲线C 的离心率为()A.2B.3C.2D.3【解析】设线段AB 的中点为E ,双曲线的右顶点为D ,左右焦点为F 1,F 2,连接DE ,DB ,因为线段AB 的中点E 在圆O :x 2+y 2=a 2上,所以DE ⊥AB ,所以△ADE ≌△BDE ,所以AD =BD =2a ,因为OB =7OA ,所以OB =7a ,在△ODB 中,由余弦定理得cos ∠ODB =OD2+DB 2-OB 22OD ⋅DB =a 2+4a 2-7a 24a 2=-12,因为∠ODB ∈0,π ,所以∠ODB =2π3,所以∠BDF 2=π3,过B 作BF ⊥x 轴于F ,则BF =3a ,DF =a ,所以B 2a ,3a ,所以4a 2a 2-3a 2b 2=1,得a 2=b 2,所以a 2=c 2-a 2,2a 2=c 2,所以c =2a ,所以离心率e =ca=2,故选:A二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.双曲线x 2a 2-y 2b 2=1的离心率为e 1,双曲线y 2b 2-x 2a2=1的离心率为e 2,则e 1+e 2的值不可能是()A.3B.22C.145D.52【解析】∵e 1+e 2 2=e 21+e 22+2e 1e 2=a 2+b 2a 2+a 2+b 2b 2+2×a 2+b 2a×a 2+b 2b=2+b 2a 2+a 2b2+2a 4+b 4+2a 2b 2a 2b 2=2+b 2a 2+a 2b 2+2a 2b 2+b 2a 2+2≥2+2+22+2=8,当且仅当b 2a 2=a 2b2即a =b 时取等号,所以e 1+e 2≥22.故选:CD .10.双曲线x 2-y 2a2=1的离心率为e ,若过点(2,2)能作该双曲线的两条切线,则e 可能取值为().A.324B.2C.32D.2【解析】斜率不存在时不合题意,所以直线切线斜率一定存在,设切线方程是y -2=k (x -2),由x 2-y 2a2=1y -2=k (x -2) 得(a 2-k 2)x 2+4k (k -1)x -4(k -1)2-a 2=0,显然a 2-k 2=0时,所得直线只有一条,不满足题意,所以k ≠±a ,由Δ=0得16k 2(k -1)2+4(a 2-k 2)[4(k -1)2+a 2]=0,整理为3k 2-8k +4+a 2=0,由题意此方程有两不等实根,所以Δ1=64-12(4+a 2)>0,a 2<43,则c 2=1+a 2<73(c 为双曲线的半焦距),e =c 1=c <213,即1<e <213,k =±a 代入方程3k 2-8k +4+a 2=0,得a =±1,此时e =2,综上,e 的范围是1,2 ∪2,213.故选:AC 11.已知双曲线C :x 2a2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线l 与圆x 2+y 2=a 2相切,且与C 交于M ,N 两点,若cos ∠F 1NF 2=45,则C 的离心率可能为()A.53B.32C.52D.133【解析】当点M ,N 同时在双曲线C 的左支上时,设切点为P ,则OP ⊥MN ,OP =a ,OF 1 =c ,PF 1 =c 2-a 2=b .作F 2Q ∥OP 交MN 于点Q ,则F 2Q ⊥MN ,而O 为F 1F 2的中点,则P 为QF 1的中点,故F 2Q =2OP =2a ,QF 1 =2PF 1 =2b ,因为cos ∠F 1NF 2=45,∠F 1NF 2为锐角,故sin ∠F 1NF 2=35所以NF 2 =F 2Qsin ∠F 1NF 2=10a 3,NQ =NF 2 cos ∠F 1NF 2=8a3,NF 1 =NQ -QF 1 =8a 3-2b ,所以NF 2 =NF 1 +2a =8a 3-2b +2a =10a 3,则2a =3b ,故双曲线C 的离心率e =ca =1+b 2a2=1+232=133.当点M ,N 在双曲线的两支上时,仍有F 2Q =2OP =2a ,QF 1 =2PF 1 =2b ,因为cos ∠F 1NF 2=45,∠F 1NF 2为锐角,故sin ∠F 1NF 2=35所以NF 2 =F 2Qsin ∠F 1NF 2=10a 3,NQ =NF 2 cos ∠F 1NF 2=8a3,NF 1 =NQ +QF 1 =8a 3+2b ,所以NF 2 =NF 1 -2a =8a 3+2b -2a =10a 3,则4a =3b ,故双曲线C 的离心率e =ca =1+b 2a2=1+432=53,故选:AD12.已知F 1、F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且AF 2=13F 2B ,则该双曲线的离心率为().A.62B.2C.3D.5【解析】当AF 2 =13F 2B时,设∠F 2OA =α,则∠AOB =2α,设a =1,如图,双曲线的渐近线方程为y =±b a x ,即tan α=b a ,在Rt △OAF 2中,tan α=|AF 2||OA |=ba ,设|AF 2|=bt ,|OA |=at ,又|AF 2|2+|OA |2=|OF 2|2,则(bt )2+(at )2=c 2,又双曲线中c 2=a 2+b 2,即有t =1,于是|OA |=a =1,|OF 2|=c =e ,|AF 2|=b ,|BF 2|=3b ,则|AB |=4b ,tan α=b a =b ,tan2α=4ba=4b ,代入得tan2α=2tan α1-tan 2α=2b 1-b 2=4b ,即2=4-4b 2,解得b =22,则e =c a =a 2+b 2=1+12=62,A 正确;当F 2A =13F 2B 时,设∠F 2OA =α,∠AOB =β,设a =1,如图,则∠F 2OB =α+β,∠F 1OB =π-(α+β),在Rt △OAF 2中,tan α=|AF 2||OA |=b a ,设|AF 2|=bt ,|OA |=at ,又|AF 2|2+|OA |2=|OF 2|2,则(bt )2+(at )2=c 2,又双曲线中c 2=a 2+b 2,即t =1,于是|OA |=a =1,|OF 2|=c =e ,|AF 2|=b ,|BF 2|=3b ,则|AB |=2b ,tan α=b a =b ,tan β=2ba=2b ,而tan ∠F 1OB =tan [π-(α+β)]=-tan (α+β)=tan α,即tan (α+β)=tan α+tan β1-tan α⋅tan β=-tan α,因此b +2b1-b ⋅2b=-b ,即3=2b 2-1,解得b =2,则e =c a =a 2+b 2=3,C 正确.故选:AC三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =22x ,则其离心率是.【解析】由题意知ba=22,又因为在双曲线中,c 2=a 2+b 2,所以e 2=c 2a 2=1+b 2a2=32,故e =62(负舍)14.已知双曲线方程为C :x 2a 2-y 2b 2=1(a >0,b >0),左焦点F 关于一条渐近线的对称点在另一条渐近线上,则该双曲线的离心率为.【解析】如图:设F 关于渐近线y =bax 对称的点A 在渐近线y =-b a x 上,FA 的中点B 在渐近线y =bax 上,则∠FOB =∠BOA ,又∠FOB =∠AOx ,所以∠FOB =∠BOA =∠AOx =60°,所以tan60°=ba=3,所以e =c a =a 2+b 2a 2=1+b a2=1+3=2.15.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为Fc ,0 ,直线l :x =c 与双曲线C 交于A ,B 两点,与双曲线C 的渐近线交于D ,E 两点,若DE =2AB ,则双曲线C 的离心率是.【解析】由双曲线方程可得其渐近线方程为:y =±ba x ,∵直线l :x =c ,∴AB 为双曲线的通径,则由x =cx 2a2-y2b 2=1得x =cy =±b 2a,则AB =2b 2a,由x=cy=±bax得x=cy=±bca,则DE =2bca,由DE=2AB得:2bca=4b2a即c=2b,所以a=c2-b2=3b,所以离心率e=ca=23316.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,双曲线的左顶点为A,以F1F2为直径的圆交双曲线的一条渐近线于P,Q两点,其中点Q在y轴右侧,若AQ≥3AP,则该双曲线的离心率的取值范围是.【解析】依题意可得,以F1F2为直径的圆的方程为x2+y2=c2,不妨设双曲线的这条渐近线方程为y=ba x,由y=baxx2+y2=c2,得:x=ay=b或x=-ay=-b,所以Q(a,b),P(-a,-b),双曲线的左顶点为A,则A(-a,0),所以AQ=(a+a)2+b2=4a2+b2,AP=(-a+a)2+b2=b,因为AQ≥3AP,所以4a2+b2≥3b,化简得a2≥2b2,所以a2≥2(c2-a2),所以e2=a2c2≤32,所以e ≤62,又e>1,所以e∈1,62.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知F1,F2分别为双曲线x2a2-y2b2=1a>0,b>0的左、右焦点,P为双曲线右支上的任意一点,当PF12PF2取最小值时,求双曲线的离心率e的取值范围.【解析】双曲线x2a2-y2b2=1a>0,b>0的左右焦点分别为F1,F2,P为双曲线右支上的任意一点,∴PF1-PF2=2a,PF1=2a+PF2,∴PF12PF2=2a+PF22PF2=4a2PF2+4a+PF2≥8a,当且仅当4a2PF2=PF2,即PF2=2a时取等号,∴PF1=2a+PF2=4a,∵PF 1 -PF 2 =2a <2c ,PF 1 +PF 2 =6a ≥2c ⇒e =ca≤3,∴e ∈1,3 ,故双曲线的离心率e 的取值范围为:1,3 ..18.已知椭圆C 1:x 2a 21+y 2b 21=1a 1>b 1>0 与双曲线C 2:x 2a 22-y 2b 22=1a 2>0,b 2>0 ,有相同的左、右焦点F 1,F 2,若点P 是C 1与C 2在第一象限内的交点,且F 1F 2 =4PF 2 ,设C 1与C 2的离心率分别为e 1,e 2,求e 2-e 1的取值范围.【解析】设PF 1 =m ,PF 2 =n ,F 1F 2 =2c ,由椭圆的定义可得m +n =2a 1,由双曲线的定义可得m -n =2a 1,解得m =a 1+a 2,n =a 1-a 2,由F 1F 2 =4PF 1 ,可得n =12c ,即a 1-a 2=12c ,由e 1=c a 1,e 2=c a 2,可得1e 1-1e 2=12,由0<e 1<1,可得1e 1>1,可得1e 2>12,即1<e 2<2,则e 2-e 1=e 2-2e 22+e 2=e 222+e 2,设2+e 2=t 3<t <4 ,则e 222+e 2=t -2 2t =t +4t-4,由于函数f t =t +4t -4在3,4 上递增,所以f t ∈13,1 ,即e 2-e 1的取值范围为13,1.19.已知双曲线T :x 2a 2-y 2b 2=1(a >0,b >0)离心率为e ,圆O :x 2+y 2=R 2R >0 .(1)若e =2,双曲线T 的右焦点为F 2,0 ,求双曲线方程;(2)若圆O 过双曲线T 的右焦点F ,圆O 与双曲线T 的四个交点恰好四等分圆周,求b 2a 2的值;(3)若R =1,不垂直于x 轴的直线l :y =kx +m 与圆O 相切,且l 与双曲线T 交于点A ,B 时总有∠AOB =π2,求离心率e 的取值范围.【解析】(1)因e =2,双曲线T 的右焦点为F 2,0 ,则c =2,ca =2,a =1,b 2=c 2-a 2=3,则双曲线方程为x 2-y 23=1.(2)如图所示,因为圆O与双曲线T的四个交点恰好四等分圆周,则OA=c,∠AOF=45°,则A22c,22c,代入双曲线方程x2a2-y2b2=1,可得b2a2-a2b2=2,令x=b2a2x>0,则x-1x=2,解得x=1+2,即b2a2=2+1.(3)由题知,作图如下,因为直线l:y=kx+m与圆O相切,且R=1,则圆心到直线l距离为mk2+1=1,化简得m2=k2+1,①又∠AOB=π2,设A x1,y1,B x2,y2,则k OA⋅k OB=-1,即y1x1⋅y2x2=-1,则k2x1x2+km x1+x2+m2x1x2=-1,②联立y=kx+mx2a2-y2b2=1得b2-a2k2x2-2a2kmx-a2m2-a2b2=0,则x1+x2=2a2kmb2-a2k2,x1x2=-a2m2+b2b2-a2k2,③联立①②③,得k2+1a2+a2b2-b2=0,则a2+a2b2-b2=0,又c2=a2+b2,则c2a2=c2-a2+2=b2+2>2,则e=ca>2,即离心率e的取值范围为2,+∞.20.已知点P 是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)右支上一点,F 1、F 2是双曲线的左、右焦点,PF 1=(2+3) PF 2 ,∠F 1PF 2=60°.(1)求双曲线的离心率;(2)设R 、r 分别是△F 1PF 2的外接圆半径和内切圆半径,求Rr.【解析】(1)由P 为双曲线的右支上一点,可得|PF 1|-|PF 2|=2a ,又PF 1=(2+3) PF 2 ,可得PF 1 =(3+1)a ,PF 2 =(3-1)a ,在△F 1PF 2中,∠F 1PF 2=60°,由余弦定理可得4c 2=(4+23)a 2+(4-23)a 2-2(3+1)(3-1)a 2⋅12=8a 2-2a 2=6a 2,即c =62a ,可得e =c a =62;(2)由2R =2csin60°=6a32=22a ,即R =2a ;因为S △PF 1F 2=12PF 1⋅ PF 2 ⋅sin60°=12(3+1)(3-1)a 2⋅32=32a 2,又S △PF 1F 2=12PF 1+ PF 2 +2c r =12(23a +6a )r ,所以r =323+6a =2-22a ,所以R r =222-2=2+22.21.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,A 为双曲线C 左支上一点,AF 2 -AF 1 =2b .(1)求双曲线C 的离心率;(2)设点A 关于x 轴的对称点为B ,D 为双曲线C 右支上一点,直线AD ,BD 与x 轴交点的横坐标分别为x 1,x 2,且x 1x 2 =1,求双曲线C 的方程.【解析】(1)由于A 为双曲线C 左支上一点,由双曲线的定义可知AF 2 -AF 1 =2a =2b ,所以2a 2=b 2=c 2-a 2.整理,得3a 2=c 2,所以ca=3,所以双曲线C 的离心率为3.(2)由(1)可设双曲线C 的标准方程为x 2a 2-y 22a2=1.设A x3,y3,B x3,-y3,D x4,y4.直线AD的方程为y-y3=y3-y4x3-x4x-x3.令y=0,则x1=-x3y4-x4y3y3-y4.直线BD的方程为y+y3=-y3-y4x3-x4x-x3,令y=0,则x2=x3y4+x4y3y3+y4.所以x1x2=-x3y4-x4y3y3-y4⋅x3y4+x4y3y3+y4=x23y24-x24y23y23-y24.因为A x3,y3,D x4,y4满足方程x2a2-y22a2=1,所以x23=a2+y232,x24=a2+y242,所以x1x2=x23y24-x24y23y23-y24=a2+y232y24-a2+y242y23y23-y24=a2=1,所以双曲线C的方程为x2-y22=1.22.已知双曲线C:x2a2-y2b2=1(a>0,b>0),若直线l与双曲线C交于A,B两点,线段AB的中点为M,且k AB⋅k OM=34(O为坐标原点).(1)求双曲线C的离心率;(2)若直线l不经过双曲线C的右顶点N2,0,且以AB为直径的圆经过点N,证明直线l恒过定点E,并求出点E的坐标.【解析】(1)设A x1,y1,B x2,y2,则Mx1+x22,y1+y22,由题意得x21a2-y21b2=1,x22a2-y22b2=1,所以x21-x22a2-y21-y22 b2=0,y21-y22x21-x22=b2a2,y1-y2x1-x2∙y1+y22x1+x22=b2a2,k AB=y1-y2x1-x2,k OM=y1+y22x1+x22,∴k AB⋅k OM=b2a2,即b2a2=34,a2=43b2,c2=a2+b2=73b2,e2=c2a2=74,∴e=72;(2)因为双曲线的右顶点N 2,0 ,所以双曲线C 的标准方程为x 24-y 23=1,因为k AB ⋅k OM =34,所以直线l 的斜率一定存在,并且k ≠±32(如果k =±32,则k OM =±32,AB ⎳OM ,这不可能),设直线l 的方程为y =kx +m ,联立方程y =kx +m x 24-y 23=1 得:3-4k 2 x 2-8kmx -4m 2-12=03-4k 2≠0 ,所以Δ=64k 2m 2-43-4k 2-4m 2-12 >0,即m 2-4k 2+3>0,所以x 1+x 2=8km 3-4k 2,x 1⋅x 2=-4m 2-123-4k 2.因为以AB 为直径的圆经过点N ,所以NA ⊥NB ,所以NA ⋅NB =0,又因为NA =x 1-2,y 1 ,NB =x 2-2,y 2 ,所以NA ⋅NB =x 1-2 x 2-2 +y 1y 2=x 1x 2-2x 1+x 2 +4+y 1y 2=0,又因为y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,所以NA ⋅NB =k 2+1 x 1x 2+km -2 x 1+x 2 +m 2+4=0,即k 2+1 ×-4m 2-123-4k 2+km -2 ×8km 3-4k 2+m 2+4=0,化简得m 2+16km +28k 2=0,即m +14k m +2k =0,解得m =-14k 或m =-2k ,且均满足m 2-4k 2+3>0,当m =-2k 时,y =kx -2k =k x -2 ,因为直线l 不过定点N 2,0 ,故舍去;当m =-14k 时,y =kx -14k =k x -14 ,所以直线l 恒过定点E 14,0 ;综上,e =72,直线l 恒过定点E 14,0 .·15·。

人教a版选修1-1《探索离心率问题》特色训练有答案-(高二数学)

人教a版选修1-1《探索离心率问题》特色训练有答案-(高二数学)

专题05 探索离心率问题一、选择题1.【山西实验中学、南海桂城中学2018届高三上学期联考】已知双曲线()222210,0x y a b a b -=>>离心率为,则其渐近线与圆()22214x a y a -+=的位置关系是( )A . 相交B . 相切C . 相离D . 不确定【答案】C【解析】因为一条渐近线方程为0ay bx -=,又离心率为ca=所以a b =,所以渐近线方程为0y x -=,由()22214x a y a -+=知圆心(),0a ,半径12a ,圆心到直线的距离122d ==>,所以直线与圆相离,故选C .2.【黑龙江省哈尔滨市第六中学2017-2018学年高二上学期期中考】过双曲线22221x y a b-=右焦点F 作一条直线,当直线的斜率为2时,直线与双曲线左右两支各有一个交点;当直线的斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线的离心率的取值范围是A . (B .C .D . ()1【答案】B3.【天津市耀华中学2018届高三第一次月考】已知双曲线2221(0)4x y a a -=>的右焦点与抛物线212y x =的焦点重合,则该双曲线的离线率为 ( )A .95 B C . 32D【答案】D【解析】由题意得222435a a e +=⇒=∴== ,选D . 4.【山西省山大附中等晋豫名校2018届高三第四次调研诊断考试】已知椭圆22221x y a b+=的左、右焦点分别为12,F F ,且122F F c =,点A 在椭圆上, 1120AF F F ⋅=, 212AF AF c ⋅=,则椭圆的离心率e =( )ABCD【答案】C5.设1F 、2F 分别为双曲线2221x y a b -=(0a >, 0b >)的左、右焦点, P 为双曲线右支上任一点.若212PF PF 的最小值为8a ,则该双曲线离心率e 的取值范围是( ).A . ()0,2B . (]1,3C . [)2,3D . []3,+∞【答案】B【解析】由定义知: 12122,2PF PF a PF a PF -=∴=+()2222122222448a PF PF a a PF a PF PF PF +∴==++≥ 当且仅当2224a PF PF =,设22PF a =时取得等号,2 2PF c a c a a ≥-∴-≤ 即3c a ≤ 3e ≤又双曲线的离心率1e >,](1,3 e ∴∈ 故答案选B点睛:根据双曲线的定义给出12PF PF 、的数量关系,再依据条件结合基本不等式求得最小值时的取值,确定限制条件求得离心率,注意双曲线的离心率大于1.6.【北京市西城育才中学2016-2017学年高二上期中】椭圆22212x y a +=的一个焦点与抛物线28y x =焦点重合,则椭圆的离心率是( ).ABC D 【答案】C点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.7.【河南省商丘市第一高级中学2017-2018学年高二10月月考】12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点A 、B .若2ABF 为等边三角形,则双曲线的离心率为( )A . 4BCD 【答案】B 【解析】2ABF 为等边三角形,不妨设22AB BF AF m ===A 为双曲线上一点, 12112F A F A F A AB F B a -=-==B 为双曲线上一点, 212122,4,2BF BF a BF a F F c -===由21260,120ABF F BF ∠=︒∴∠=︒ 在12F BF 中运用余弦定理得:2224416224cos120c a a a a =+-⨯⨯⨯︒227c a =27e =,e ∴=故答案选B点睛:根据双曲线的定义算出各边长,由等边三角形求得内角120︒,再利用余弦定理计算出离心率。

2019届高中数学 专题06 探索离心率问题特色训练 新人教A版选修2-1.doc

2019届高中数学 专题06 探索离心率问题特色训练 新人教A版选修2-1.doc

2019届高中数学 专题06 探索离心率问题特色训练 新人教A 版选修2-1一、选择题1.【山西实验中学、南海桂城中学2018届高三上学期联考】已知双曲线()222210,0x y a b a b-=>>离心率为()22214x a y a -+=的位置关系是( ) A . 相交 B . 相切 C . 相离 D . 不确定【答案】C【解析】因为一条渐近线方程为0ay bx -=,又离心率为ca=所以a b =,所以渐近线方程为0y x -=,由()22214x a y a -+=知圆心(),0a ,半径12a ,圆心到直线的距离12d ==>,所以直线与圆相离,故选C .2.【黑龙江省哈尔滨市第六中学2017-2018学年高二上学期期中考】过双曲线22221x y a b-=右焦点F 作一条直线,当直线的斜率为2时,直线与双曲线左右两支各有一个交点;当直线的斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线的离心率的取值范围是A . (B .C .D . ()1【答案】B3.【天津市耀华中学2018届高三第一次月考】已知双曲线2221(0)4x y a a -=>的右焦点与抛物线212y x =的焦点重合,则该双曲线的离线率为 ( )A .95 B C . 32 D 【答案】D【解析】由题意得222435a a e+=⇒=∴==选D.4.【山西省山大附中等晋豫名校2018届高三第四次调研诊断考试】已知椭圆22221x ya b+=的左、右焦点分别为12,F F,且122F F c=,点A在椭圆上,112AF F F⋅=,212AF AF c⋅=,则椭圆的离心率e=()ABCD【答案】C5.设1F、2F分别为双曲线2221x ya b-=(0a>,0b>)的左、右焦点,P为双曲线右支上任一点.若212PFPF的最小值为8a,则该双曲线离心率e的取值范围是().A. ()0,2B. (]1,3C. [)2,3D. []3,+∞【答案】B【解析】由定义知:12122,2PF PF a PF a PF-=∴=+()2222122222448a PFPF aa PF aPF PF PF+∴==++≥当且仅当2224aPFPF=,设22PF a=时取得等号,22PF c a c a a≥-∴-≤即3c a≤3e≤又双曲线的离心率1e>,](1,3e∴∈故答案选B点睛:根据双曲线的定义给出12PF PF 、的数量关系,再依据条件结合基本不等式求得最小值时的取值,确定限制条件求得离心率,注意双曲线的离心率大于1.6.【北京市西城育才中学2016-2017学年高二上期中】椭圆22212x y a +=的一个焦点与抛物线28y x =焦点重合,则椭圆的离心率是( ).A B C D 【答案】C点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.7.【河南省商丘市第一高级中学2017-2018学年高二10月月考】12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点A 、B .若2ABF 为等边三角形,则双曲线的离心率为( )A . 4BCD 【答案】B 【解析】2ABF 为等边三角形,不妨设22AB BF AF m ===A 为双曲线上一点, 12112F A F A F A AB F B a -=-==B 为双曲线上一点, 212122,4,2BF BF a BF a F F c -===由21260,120ABF F BF ∠=︒∴∠=︒ 在12F BF 中运用余弦定理得:2224416224cos120c a a a a =+-⨯⨯⨯︒227c a =27e =,e ∴=故答案选B点睛:根据双曲线的定义算出各边长,由等边三角形求得内角120︒,再利用余弦定理计算出离心率。

(完整word版)圆锥曲线的离心率问题专题训练

(完整word版)圆锥曲线的离心率问题专题训练

圆锥曲线的离心率问题专题训练1.若椭圆1222=+m y x 的离心率等于21,则m = . 2.已知双曲线的渐近线方程为023=±y x ,则双曲线的离心率为 。

3. 过双曲线焦点且垂直于对称轴的直线与双曲线交于A 、B 两点,若|AB|为双曲线实轴长的2倍,则双曲线的离心率为 。

4.已知 F 1 、F 2是椭圆)0(12222>>=+b a by a x 的两个焦点,椭圆上存在一点P ,使得 S ⊿F 1PF 2=23b ,则该椭圆的离心率的取值范围是 。

5.若点P 为椭圆)0(12222>>=+b a by a x 上一点,F 1、F 2为左右两个焦点,且|PF 1|=6|PF 2|,则椭圆离心率的取值范围为 。

6.若点P 为双曲线)0,0(12222>>=-b a by a x 上一点,F 1、F 2为左右两个焦点,且|PF 1|=6|PF 2|,则双曲线离心率的取值范围为 。

7.分别过椭圆)0(12222>>=+b a by a x 的左右焦点F 1、F 2所作的两条直线21l l 、的交点总在椭圆内部,,则该椭圆的离心率的取值范围为 。

8.双曲线)0,0(12222>>=-b a by a x 左右两个焦点为F 1、F 2,以F 1F 2为一边向上作正三角形PF 1F 2,两边与双曲线的交点恰为所在边的中点,则双曲线的离心率为 。

9.若点P 为椭圆)0(12222>>=+b a by a x 上一点,A 、B 为长轴的左右顶点,PA 、PB 的斜率之积为32-,则椭圆的离心率是 。

10.抛物线x y 42=的焦点为F ,准线为l ,l 与双曲线)0(1222>=-a y ax 交于A 、B 两点。

若三角形FAB 为直角三角形,则双曲线的离心率为 。

11.已知椭圆)0(12222>>=+b a by a x 的左焦点为F ,过原点的直线与椭圆交于A 、B 两点,连接AF 、BF ,若|AF|=6,|AB|=10,co s ∠ABF=54,则椭圆的离心率是 。

(完整版)圆锥曲线离心率专题

(完整版)圆锥曲线离心率专题

圆锥曲线离心率专题训练1.已知F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得PF1⊥PF2,则椭圆离心率的取值范围是()A.[,1)B.[,1)C.(0,]D.(0,]2.二次曲线时,该曲线离心率e的范围是()A.B.C.D.3.椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,∠OPA=90°,则该椭圆的离心率e的范围是()A.[,1)B.(,1)C.[,)D.(0,)4.双曲线的离心率e∈(1,2),则k的取值范围是()A.(﹣∞,0)B.(﹣3,0)C.(﹣12,0)D.(﹣60,﹣12)5.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A.B.C.D.6.已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围()A.B.C.D.7.已知椭圆x2+my2=1的离心率,则实数m的取值范围是()A.B.C.D.8.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x轴上,左、右焦点分别为F1,F2且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,双曲线的离心率的取值范围为(1,2),则该椭圆的离心率的取值范围是()A.(0,)B.(,)C.(,)D.(,1)9.椭圆的内接矩形的最大面积的取值范围是[3b2,4b2],则该椭圆的离心率e的取值范围是()A.B.C.D.10.如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值范围为()A.[2,+∞)B.(,+∞)C.[,+∞)D.(,+∞)11.已知双曲线的焦距为2c,离心率为e,若点(﹣1,0)与点(1,0)到直线的距离之和为S,且S,则离心率e的取值范围是()A.B.C.D.12.已知F1,F2是椭圆的两个焦点,若存在点P为椭圆上一点,使得∠F1PF2=60°,则椭圆离心率e的取值范围是()A.B.C.D.13.已知方程x3+2ax2+3bx+c=0(a,b,c∈R)的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则的取值范围是()A.B.C.D.14.已知椭圆上到点A(0,b)距离最远的点是B(0,﹣b),则椭圆的离心率的取值范围为()A.B.C.D.15.已知双曲线的中心在原点,焦点x轴上,它的一条渐近线与x轴的夹角为α,且,则双曲线的离心率的取值范围是()A.B.C.(1,2)D.16.已知双曲线﹣=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值范围是()A.(1,]B.(1,)C.(2,]D.(,2]17.椭圆+=1(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=a,且a∈[,],则该椭圆离心率的取值范围为()A.[,1]B.[,]C.[,1)D.[,]18.已知椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),若椭圆上存在点P使,则该椭圆的离心率的取值范围为()A.(0,)B.()C.(0,)D.(,1)19.已知直线l:y=kx+2(k为常数)过椭圆的上顶点B和左焦点F,且被圆x2+y2=4截得的弦长为L,若,则椭圆离心率e的取值范围是()A.B.C.D.20.双曲线的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l的距离之和.则双曲线的离心率e的取值范围是()A.B.C.D.21.点A是抛物线C1:y2=2px(p>0)与双曲线C2:(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于()A.B.C.D.22.在椭圆上有一点M,F1,F2是椭圆的两个焦点,若,则椭圆离心率的范围是()A.B.C.D.23.椭圆+y2=1上存在一点P,使得它对两个焦点F1,F2的张角∠F1PF2=,则该椭圆的离心率的取值范围是()A.B.C.D.24.椭圆(a>b>0)上存在点P到原点的距离等于该椭圆的焦距,则椭圆的离心率的取值范围是()A.(0,1)B.(0,C.D.25.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A.B.C.D.26.设A1、A2为椭圆的左右顶点,若在椭圆上存在异于A1、A2的点P,使得,其中O为坐标原点,则椭圆的离心率e的取值范围是()A.B.C.D.27.已知点F1、F2分别是双曲线=1的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点,若A、B和双曲线的一个顶点构成的三角形为锐角三角形,则该双曲线的离心率e的取值范围是()A.(1,1+)B.(1,)C.(﹣1,1+)D.(1,2)28.如图,已知A(﹣2,0),B(2,0),等腰梯形ABCD满足|AB|=﹣2|CD|,E为AC上一点,且.又以A、B为焦点的双曲线过C、D、E三点.若,则双曲线离心率e的取值范围为()A.B.C.D.29.已知椭圆(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A.B.C.D.30.已知P为椭圆(a>b>0)上一点,F1,F2是椭圆的左、右焦点,若使△PF1F2为直角三角形的点P 有且只有4个,则椭圆离心率的取值范围是()A.(0,)B.(,1)C.(1,)D.(,+∞)参考答案与试题解析1.已知F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得PF1⊥PF2,则椭圆离心率的取值范围是()A.[,1)B.[,1)C.(0,]D.(0,]解:如图所示,下面证明椭圆的短轴的一个端点是到椭圆的中心距离最短的点.设椭圆上任意一点P(x0,y0),则,可得.∴|OP|2==+=≥b2,当且仅当x0=0时取等号.∴椭圆的短轴的一个端点是到椭圆的中心距离最短的点.若椭圆上存在点P,使得PF1⊥PF2,则c≥b,∴c2≥b2=a2﹣c2,化为,解得.又e<1,∴.故选B.2.二次曲线时,该曲线离心率e的范围是()A.B.C.D.解:∵m∈[﹣2,﹣1],∴该曲线为双曲线,a=2,b2=﹣m,∴c=离心率e==∵m∈[﹣2,﹣1],∴∈[,],∴e∈故选C3.椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,∠OPA=90°,则该椭圆的离心率e的范围是()A.[,1)B.(,1)C.[,)D.(0,)解:可设椭圆的标准方程为:(a>b>0).设P(x,y),∵∠OPA=90°,∴点P在以OA为直径的圆上.该圆为:,化为x2﹣ax+y2=0.联立化为(b2﹣a2)x2+a3x﹣a2b2=0,则,解得,∵0<x<a,∴,化为c2>b2=a2﹣c2,∴,又1>e>0.解得.∴该椭圆的离心率e的范围是.故选:C.4.双曲线的离心率e∈(1,2),则k的取值范围是()A.(﹣∞,0)B.(﹣3,0)C.(﹣12,0)D.(﹣60,﹣12)解:∵双曲线的离心率e∈(1,2),∴双曲线标准方程为:﹣=1∴k<0,∴1<e2<4,1<<4,﹣12<k<0,故答案选C5.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A.B.C.D.解:F1(﹣c,0),F2(c,0),c>0,设P(x1,y1),则|PF1|=a+ex1,|PF2|=a﹣ex1.在△PF1F2中,由余弦定理得cos120°==,解得x12=.∵x12∈(0,a2],∴0≤<a2,即4c2﹣3a2≥0.且e2<1∴e=≥.故椭圆离心率的取范围是e∈.故选A.6.已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围()A.B.C.D.解:不防设椭圆方程:(a>b>0),再不妨设:B(0,b),三角形重心G(c,0),延长BG至D,使|GD|=,设D(x,y),则,,由,得:,解得:,.而D是椭圆的内接三角形一边AC的中点,所以,D点必在椭圆内部,则.把b2=a2﹣c2代入上式整理得:.即.又因为椭圆离心率e∈(0,1),所以,该椭圆离心率e的取值范围是.故选B.7.已知椭圆x2+my2=1的离心率,则实数m的取值范围是()A.B.C.D.解:椭圆x2+my2=1化为标准方程为①若1>,即m>1,,∴,∴,∴②若,即0<m<1,,∴,∴,∴∴实数m的取值范围是故选C.8.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x轴上,左、右焦点分别为F1,F2且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,双曲线的离心率的取值范围为(1,2),则该椭圆的离心率的取值范围是()A.(0,)B.(,)C.(,)D.(,1)解:设椭圆的方程为+=1(a>b>0),其离心率为e1,双曲线的方程为﹣=1(m>0,n>0),|F1F2|=2c,∵有公共焦点的椭圆与双曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,∴在椭圆中,|PF1|+|PF2|=2a,而|PF2|=|F1F2|=2c,∴|PF1|=2a﹣2c;①同理,在该双曲线中,|PF1|=2m+2c;②由①②可得a=m+2c.∵e2=∈(1,2),∴<=<1,又e1==,∴==+2∈(,3),故选C.9.椭圆的内接矩形的最大面积的取值范围是[3b2,4b2],则该椭圆的离心率e的取值范围是()A.B.C.D.解:在第一象限内取点(x,y),设x=acosθ,y=bsinθ,(0<θ<)则椭圆的内接矩形长为2acosθ,宽为2bsinθ,内接矩形面积为2acosθ•2bsinθ=2absin2θ≤2ab,由已知得:3b2≤2ab≤4b2,∴3b≤2a≤4b,平方得:9b2≤4a2≤16b2,9(a2﹣c2)≤4a2≤16(a2﹣c2),5a2≤9c2且12a2≥16c2,∴≤≤即e∈故选B.10.如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值范围为()D.(,+∞)A.[2,+∞)B.(,+∞)C.[,+∞)解:BD==,∴a1=,c1=1,a2=,c2=x,∴e1=,e2=,e1e2=1但e1+e2中不能取“=”,∴e1+e2=+=+,令t=﹣1∈(0,﹣1),则e1+e2=(t+),t∈(0,﹣1),∴e1+e2∈(,+∞)∴e1+e2的取值范围为(,+∞).故选B.11.已知双曲线的焦距为2c,离心率为e,若点(﹣1,0)与点(1,0)到直线的距离之和为S,且S,则离心率e的取值范围是()A.B.C.D.解:直线l的方程为,即bx﹣ay﹣ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线l的距离d1=,同理得到点(﹣1,0)到直线l的距离.d2=,s=d1+d2==.由S,即得•a≥2c2.于是得4e4﹣25e2+25≤0.解不等式,得.由于e>1>0,所以e的取值范围是e∈.故选A.12.已知F1,F2是椭圆的两个焦点,若存在点P为椭圆上一点,使得∠F1PF2=60°,则椭圆离心率e的取值范围是()A.B.C.D.解:如图,当动点P在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P对两个焦点的张角∠F1PF2渐渐增大,当且仅当P点位于短轴端点P0处时,张角∠F1PF2达到最大值.由此可得:∵存在点P为椭圆上一点,使得∠F1PF2=60°,∴△P0F1F2中,∠F1P0F2≥60°,可得Rt△P0OF2中,∠OP0F2≥30°,所以P0O≤OF2,即b c,其中c=∴a2﹣c2≤3c2,可得a2≤4c2,即≥∵椭圆离心率e=,且a>c>0∴故选C13.已知方程x3+2ax2+3bx+c=0(a,b,c∈R)的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则的取值范围是()A.B.C.D.解:设f(x)=x3+2ax2+3bx+c,由抛物线的离心率为1,可知f(1)=1+2a+3b+c=0,故c=﹣1﹣2a﹣3b,所以f(x)=(x﹣1)[x2+(2a+1)x+(2a+3b+1)]的另外两个根分别是一个椭圆一个双曲线的离心率,故g(x)=x2+(2a+1)x+(2a+3b+1),有两个分别属于(0,1),(1,+∞)的零点,故有g(0)>0,g(1)<0,即2a+3b+1>0且4a+3b+3<0,则a,b满足的可行域如图所示,由于,则P(﹣1,)而表示(a,b)到(0,0)的距离,且(0,0)到P(﹣1,)的距离为d=可确定的取值范围是(,+∞).故答案为:A.14.已知椭圆上到点A(0,b)距离最远的点是B(0,﹣b),则椭圆的离心率的取值范围为()A.B.C.D.解:设点P(x,y)是椭圆上的任意一点,则,化为.∴|PA|2=x2+(y﹣b)2===f(y),∵椭圆上的点P到点A(0,b)距离最远的点是B(0,﹣b),由二次函数的单调性可知:f(y)在(﹣b,b)单调递减,∴,化为c2≤b2=a2﹣c2,即2c2≤a2,∴.又e>0.∴离心率的取值范围是.故选:C.15.已知双曲线的中心在原点,焦点x轴上,它的一条渐近线与x轴的夹角为α,且,则双曲线的离心率的取值范围是()A.B.C.(1,2)D.解:∵双曲线的焦点在x轴上,故其渐近线方程为y=x则tanα=∵,∴1<tanα<,即1<<∴1<=<3求得<<2故选B.16.已知双曲线﹣=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值范围是()A.(1,]B.(1,)C.(2,]D.(,2]解:根据内角平分线的性质可得=,再由双曲线的定义可得5PF2﹣PF2=2a,PF2=,由于PF2=≥c﹣a,∴≥c,≤.再由双曲线的离心率大于1可得,1<e≤,故选A.17.椭圆+=1(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=a,且a∈[,],则该椭圆离心率的取值范围为()A.[,1]B.[,]C.[,1)D.[,]解:∵B和A关于原点对称∴B也在椭圆上设左焦点为F′根据椭圆定义:|AF|+|AF′|=2a又∵|BF|=|AF′|∴|AF|+|BF|=2a …①O是Rt△ABF的斜边中点,∴|AB|=2c又|AF|=2csinα…②|BF|=2ccosα…③②③代入①2csinα+2ccosα=2a∴=即e==∵a∈[,],∴≤α+π/4≤∴≤sin(α+)≤1∴≤e≤故选B18.已知椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),若椭圆上存在点P使,则该椭圆的离心率的取值范围为()A.(0,)B.()C.(0,)D.(,1)解:在△PF1F2中,由正弦定理得:则由已知得:,即:aPF1=cPF2设点P(x0,y0)由焦点半径公式,得:PF1=a+ex0,PF2=a﹣ex0则a(a+ex0)=c(a﹣ex0)解得:x0==由椭圆的几何性质知:x0>﹣a则>﹣a,整理得e2+2e﹣1>0,解得:e<﹣﹣1或e>﹣1,又e∈(0,1),故椭圆的离心率:e∈(﹣1,1),故选D.19.已知直线l:y=kx+2(k为常数)过椭圆的上顶点B和左焦点F,且被圆x2+y2=4截得的弦长为L,若,则椭圆离心率e的取值范围是()A.B.C.D.解:圆x2+y2=4的圆心到直线l:y=kx+2的距离为d=∵直线l:y=kx+2被圆x2+y2=4截得的弦长为L,∴由垂径定理,得2,即,解之得d2≤∴≤,解之得k2∵直线l经过椭圆的上顶点B和左焦点F,∴b=2且c==﹣,即a2=4+因此,椭圆的离心率e满足e2===∵k2,∴0<≤,可得e2∈(0,]故选:B20.双曲线的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l的距离之和.则双曲线的离心率e的取值范围是()A.B.C.D.解:直线l的方程为+=1,即bx+ay﹣ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线l的距离,同理得到点(﹣1,0)到直线l的距离.,.由,得..于是得5≥2e2,即4e4﹣25e2+25≤0.解不等式,得≤e2≤5.由于e>1>0,所以e的取值范围是.故选D.21.点A是抛物线C1:y2=2px(p>0)与双曲线C2:(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于()A.B.C.D.解:取双曲线的其中一条渐近线:y=x,联立⇒;故A(,).∵点A到抛物线C1的准线的距离为p,∴+=p;∴=.∴双曲线C2的离心率e===.故选:C.22.在椭圆上有一点M,F1,F2是椭圆的两个焦点,若,则椭圆离心率的范围是()A.B.C.D.解:由椭圆定义可知:|MF1|+|MF2|=2a,所以…①,在△MF1F2中,由余弦定理可知…②又,…③,由①②③可得:4c2=4a2﹣4b2﹣2|MF1|•|MF2|cosθ.所以|MF1|•|MF2|cosθ=0.所以c≥b,即c2≥b2=a2﹣c2,2c2≥a2,,所以e∈.故选B.23.椭圆+y2=1上存在一点P对两个焦点F1,F2的张角∠F1PF2=,则该椭圆的离心率的取值范围是()A.(0,]B.[,1)C.(0,]D.[,1)解:∵椭圆方程为:+y2=0,∴b2=1,可得c2=a2﹣1,c=∴椭圆的离心率为e=又∵椭圆上一点P,使得角∠F1PF2=,∴设点P的坐标为(x0,y0),结合F1(﹣c,0),F2(c,0),可得=(﹣c﹣x0,﹣y0),=(c﹣x0,﹣y0),∴=+=0…①∵P(x0,y0)在椭圆+y2=1上,∴=1﹣,代入①可得+1﹣=0将c2=a2﹣1代入,得﹣a2﹣+2=0,所以=,∵﹣a≤x0≤a∴,即,解之得1<a2≤2∴椭圆的离心率e==∈[,1).24.如果椭圆(a>b>0)上存在点P,使P到原点的距离等于该椭圆的焦距,则椭圆的离心率的取值范围是()A.(0,1)B.C.D.(0,解:设P(x,y),∵P到原点的距离等于该椭圆的焦距,∴x2+y2=4c2①∵P在椭圆上,∴②联立①②得,∵0≤x2≤a2∴∴∴∴e∈故选C25.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A.B.C.D.解:①当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此种情况有2个满足条件的等腰△F1F2P;②当△F1F2P构成以F1F2为一腰的等腰三角形时,以F2P作为等腰三角形的底边为例,∵F1F2=F1P,∴点P在以F1为圆心,半径为焦距2c的圆上因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2P,此时a﹣c<2c,解得a<3c,所以离心率e当e=时,△F1F2P是等边三角形,与①中的三角形重复,故e≠同理,当F1P为等腰三角形的底边时,在e且e≠时也存在2个满足条件的等腰△F1F2P这样,总共有6个不同的点P使得△F1F2P为等腰三角形综上所述,离心率的取值范围是:e∈(,)∪(,1)26.设A1、A2为椭圆的左右顶点,若在椭圆上存在异于A1、A2的点P,使得,其中O为坐标原点,则椭圆的离心率e的取值范围是()A.B.C.D.解:A1(﹣a,0),A2(a,0),设P(x,y),则=(﹣x,﹣y),=(a﹣x,﹣y),∵,∴(a﹣x)(﹣x)+(﹣y)(﹣y)=0,y2=ax﹣x2>0,∴0<x<a.代入=1,整理得(b2﹣a2)x2+a3x﹣a2b2=0 在(0,a )上有解,令f(x)=(b2﹣a2)x2+a3x﹣a2b2=0,∵f(0)=﹣a2b2<0,f(a)=0,如图:△=(a3)2﹣4×(b2﹣a2)×(﹣a2b2)=a2(a4﹣4a2b2+4b4)=a2(a2﹣2c2)2≥0,∴对称轴满足0<﹣<a,即0<<a,∴<1,>,又0<<1,∴<<1,故选D.27.已知点F1、F2分别是双曲线=1的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点,若A、B和双曲线的一个顶点构成的三角形为锐角三角形,则该双曲线的离心率e的取值范围是()A.(1,1+)B.(1,)C.(﹣1,1+)D.(1,2):解:根据双曲线的对称性,得△ABE中,|AE|=|BE|,∴△ABE是锐角三角形,即∠AEB为锐角由此可得Rt△AF1E中,∠AEF<45°,得|AF1|<|EF1|∵|AF1|==,|EF1|=a+c∴<a+c,即2a2+ac﹣c2>0两边都除以a2,得e2﹣e﹣2<0,解之得﹣1<e<2∵双曲线的离心率e>1∴该双曲线的离心率e的取值范围是(1,2)故选D.28.如图,已知A(﹣2,0),B(2,0),等腰梯形ABCD满足|AB|=﹣2|CD|,E为AC上一点,且.又以A、B为焦点的双曲线过C、D、E三点.若,则双曲线离心率e的取值范围为()A.B.C.D.解:如图,以AB的垂直平分线为γ轴,直线AB为x轴,建立直角坐标系xOγ,则CD⊥γ轴.因为双曲线经过点C、D,且以A、B为焦点,由双曲线的对称性知C、D关于γ轴对称,设c为双曲线的半焦距(c=2),依题意,记,h是梯形的高,由定比分点坐标公式得,.设双曲线的方程为,则离心率,由点C、E在双曲线上,将点C、E坐标和代入双曲线的方程,得,①.②由①式得,③将③式代入②式,整理得,故由题设得,,解得,所以,双曲线的离心率的取值范围为[].故选A.29.已知椭圆(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A.B.C.D.解:把x=c代入椭圆的方程可得,解得.取A,则B,∵∠OBF=∠AOF﹣∠OFB,,=∴tanα=tan∠OBF=====,∵,∴,∴.解得.故选A.30.已知P为椭圆(a>b>0)上一点,F1,F2是椭圆的左、右焦点,若使△PF1F2为直角三角形的点P 有且只有4个,则椭圆离心率的取值范围是()A.(0,)B .(,1)C.(1,)D.(,+∞)解:①当PF1⊥x轴时,由两个点P满足△PF1F2为直角三角形;同理当PF2⊥x轴时,由两个点P满足△PF1F2为直角三角形.∵使△PF1F2为直角三角形的点P有且只有4个,∴以原点为圆心,c为半径的圆与椭圆无交点,∴c<b,∴c2<b2=a2﹣c2,∴,又e >0,解得.故选A.21。

高二数学 专题 求离心率(强化训练)(解析版)

高二数学 专题 求离心率(强化训练)(解析版)

专题求离心率题型一利用几何性质求解题型二利用坐标法求解题型三利用第一定义求解题型四利用第二定义求解题型五利用第三定义求解题型六与斜率乘积相关题型七焦点三角形双余弦定理模型题型八焦点弦与定比分点题型一利用几何性质求解1.已知椭圆C :()222210x y a b a b+=>>的上顶点为B ,两个焦点为1F ,2F ,线段2BF 的垂直平分线过点1F ,则椭圆的离心率为.【答案】12/0.5【分析】求出线段2BF 的中点坐标,根据两直线垂直斜率关系可得224a c =,再结合222a b c=+可求得离心率.【详解】如图,设2BF 的垂直平分线与2BF 交于点H ,由题,()1,0F c -,()2,0F c ,()0,B b ,则,22c b H ⎛⎫⎪⎝⎭,()10232F Hb b kc c c -∴==--,200BF b b k c c -==--,121F H BF k k ⋅=- ,13b b c c ⎛⎫∴⨯-=- ⎪⎝⎭,化简得,223b c =,由222a b c =+,解得224a c =,22214c e a ∴==,即12e =.故答案为:12.2.已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为()1,0F c -,坐标原点为O ,若在双曲线右支上存在一点P 满足1PF =,且PO c =,则双曲线C 的离心率为.1【分析】构建焦点三角形,判断出其为直角三角形,进而可求.【详解】如图,因为12||||PO c FO F O ===,所以1122,PF O OPF PF O OPF ∠=∠∠=∠,所以1212π2OPF OPF F PF ∠+∠=∠=,则2222221212||||||,32)4PF PF F F c a c +=∴+-=,22240c a -+=,220e -+=,解得1e =.13.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点P 在椭圆C 上,且212PF F F ⊥,过P 作1F P 的垂线交x 轴于点A ,若212AF c =,记椭圆的离心率为e ,则2e =.【分析】由题意可得22122PF F F AF =⋅,从而可求得2PF c =,根据勾股定理可求得1PF ,利用椭圆离心率的定义即可求得结果.【详解】如下图所示:因为212PF F F ⊥,1AP PF ⊥,所以122PF F APF ,可得22122P F F A F F PF =,即222212122P F A F c F c c F =⋅=⋅=,可得2PF c =;又在12Rt PF F 中,1PF ==,由椭圆定义可得122PF PF a +=2c a +=,所以12c e a ===,可得22e ==⎝⎭4.椭圆22221(0)x y a b a b+=>>的两个焦点为()()12,0,,0,F c F c M -是椭圆上一点,且满足120F M F M ⋅= .则椭圆离心率e 的取值范围为()A .22⎡⎢⎣⎦B .22⎛ ⎝⎭C .22⎛⎫⎪ ⎪⎝⎭D .2⎫⎪⎪⎣⎭【答案】D【分析】根据给定条件,可得12F M F M ⊥,进而得出||MO c b =≥,再求出离心率范围即得.【详解】由点M 满足120F M F M ⋅=,得12F M F M ⊥,即12F MF △是直角三角形,原点O 是斜边12F F 的中点,因此||MO c =,又点M 在椭圆上,则c b ≥,即2222c b a c ≥=-,整理得2212c a ≥,即212e ≥,而01e <<,因此212e ≤<,所以椭圆离心率e 的取值范围为22⎫⎪⎪⎣⎭.故选:D5.点P 在椭圆上,且在第一象限,过右焦点2F 作12F PF ∠的外角平分线的垂线,垂足为A ,O 为坐标原点,若OA =,则该椭圆的离心率为.【答案】3【分析】延长2F A ,交1PF 于点Q ,根据PA 是12F PF ∠的外角平分线,得到2||=AQ AF ,2||PQ PF =,再利用椭圆的定义求解.【详解】延长2F A ,交1PF 于点Q ,∵PA 是12F PF ∠的外角平分线,2||AQ AF ∴=,2||PQ PF =,又O 是12F F 的中点,1QF AO ∴∥,且12||QF OA ==.又1112||2QF PF PQ PF PF a =+=+=,2a ∴=,222233()a b a c ∴==-,则62a c =,∴离心率为c a =故答案为:36.如图,A B C ,,是椭圆()222210x y a b a b+=>>上的三个点,AB 经过原点O AC ,经过右焦点F ,若BF AC⊥且3BF CF =,则该椭圆的离心率为.【答案】2【分析】设椭圆的左焦点为()1,0F c -,连接111,,AF BF CF ,设CF m =,利用对称性得到13AF BF m ==,23AF a m =-,12CF a m =-,再根据BF AC ⊥,分别在1AF C △和1R t AF F 中,利用勾股定理求解.【详解】解:如图所示:设椭圆的左焦点为()1,0F c -,连接111,,AF BF CF ,设CF m =,由对称性知:13AF BF m ==,23AF a m =-,12CF a m =-,因为1//AF BF ,所以1AF AC ⊥,在1AF C △中,22211AF AC CF +=,即()()2229222m a m a m +-=-,解得3a m =,在1R t AF F 中,()()2229232m a m c +-=,将3a m =代入上式,得22c e a ==,故答案为:22题型二利用坐标法求解7.已知F 为双曲线C :()222210,0x y a b a b-=>>的右焦点,平行于x 轴的直线l 分别交C 的渐近线和右支于点A ,B ,且90OAF ∠=︒,OBF OFB ∠=∠,则C 的离心率为()A.2BC .32D【答案】B【分析】设(),B m n ,联立方程组求得,an A n b ⎛⎫⎪⎝⎭,根据90OAF ∠=︒,得到1AF OA k k ⋅=-,求得ab n c =,再由(),B m n 在双曲线C 上,化简得到22422a c am c+=,结合OB OF =,化简得到222a c =,进而求得双曲线的离心率.【详解】双曲线C :()222210,0x y a b a b -=>>的渐近线方程为b y x a =±.设(),B m n ,联立方程组b y x a y n ⎧=⎪⎨⎪=⎩,解得,an A n b ⎛⎫⎪⎝⎭.因为90OAF ∠=︒,所以1AF OAk k ⋅=-,即1n ban a c b⋅=--,可得ab n c=.又因为点(),B m n 在双曲线C 上,所以22221m na b-=,将ab n c =代入,可得22422a c a m c +=,由OBF OFB ∠=∠,所以OB OF =,所以222m n c +=,即22422222a c a a bc c c++=,化简得222a c =,则ce a==.故选:B.8.已知1F ,2F 是双曲线()222210,0x y a b ab-=>>的左、右焦点,若双曲线上存在点P 满足2212PF PF a ⋅=- ,则双曲线离心率的最小值为()AB C .2D【答案】D【分析】设P 的坐标,代入双曲线的方程,利用数量积的坐标表示,结合双曲线离心率的计算公式求解即得.【详解】设00(,)P x y ,双曲线的半焦距为c ,则有0||x a ≥,2200221x y a b-=,12(,0),(,0)F c F c -,于是200100(,),(,)PF c x y PF c x y =--=---,因此22222222222222220210000222(1)x c c PF PF x c y x b c x b c a b c b a a a⋅=-+=+--=⋅--≥⋅--=- ,当且仅当0||x a =时取等号,则222a b -≥-,即222b a ≥,离心率c e a ==≥,故选:D9.过双曲线22221(0,0)x y a b a b-=>>的左焦点且垂直于x 轴的直线与双曲线交于,A B 两点,D 为虚轴上的一个端点,且ADB ∠为钝角,则此双曲线离心率的取值范围为()A.(B.C.)2D.)+∞【答案】D【分析】根据双曲线的性质求出,,A B D 的坐标,写出向量,DA DB,根据∠ADB 为钝角,结合向量的数量积公式化简求解即可.【详解】设双曲线22221(0,0)x y a b a b-=>>的左焦点为1(,0)F c -,令x c =-,得2by a=±,可设22,,,b b A c B c a a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭由对称性,不妨设(0,)D b ,可得2,b DA c b a ⎛⎫=-- ⎪⎝⎭ ,2,b DB c b a ⎛⎫=--- ⎪⎝⎭,由题意知,,A D B 三点不共线,所以∠ADB 为钝角0DA DB ⇔⋅<,即为2220b b c b b a a ⎛⎫⎛⎫-+-< ⎪⎪⎝⎭⎝⎭,将222b c a =-代入化简得4224420e a c a -+>,由ce a=,可得42420e e -+>,又1e >,解得22e >e ,综上,离心率的取值范围为)+∞.故选:D.10.已知双曲线C :()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,过1F 作x 轴的垂线交C 于点P ﹒2OM PF ⊥于点M (其中O 为坐标原点),且有223PF MF =,则C 的离心率为.【分析】由向量垂直的坐标表示得出关于,,a b c 的齐次式后可得离心率.【详解】如图,易得2(,b P c a -,2(,0)F c ,22(2,b PF c a=- ,设(,)M x y ,2(,)MF c x y =-- ,由223PF MF = 得2(2,3(,)b c c x y a-=--,223()3c c x b y a =-⎧⎪⎨-=-⎪⎩,解得2133x c b y a ⎧=⎪⎪⎨⎪=⎪⎩,即21(,33b M c a ,21(,33b OM c a = ,又2OM PF ⊥,∴42222033b OM PF c a ⋅=-= ,ce a =,222b c a =-代入得2222(1)0e e --=,因为1e >故解得e =故答案为:622.11.已知双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12F F ,,过点1F 作直线分别交双曲线左支和一条渐近线于点,A B (,A B 在同一象限内),且满足1F A AB =.联结2AF ,满足21AF BF ⊥.若该双曲线的离心率为e ,求2e 的值.【答案】12-【分析】设点()0000,()0,0A x y x y <>,由21AF BF ⊥,A 在双曲线上,1F A AB =得到B 的坐标,然后根据B在渐近线b y x a =-上列方程,解方程得到a b =,然后求离心率即可.【详解】不妨设()0000,()0,0A x y x y <>,由21AF BF ⊥得00001y y x c x c⋅=--+,化简得222000y x c +-=(1),A 在双曲线上,∴2200221x y a b -=,即2222002a y x a b =+,代入(1)解得20b y c=,1F A AB = ,()002,2B x c y ∴+,又B 在渐近线by x a=-上,()0022by x c a∴=-+,即0022bx ay bc +-=.两边平方得222222000444b x a y b c abcy =++(2),将2222002a y x a b =+和20b y c =代入(2)得242422322224444a b a b b c ab a b c c++=+,化简得22340a ab b --=,解得a =或a b =(舍去),即)222a c a =-,化简得212e =-.故答案为:12-.12.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,过1F 斜率为43的直线与C 的右支交于点P ,若线段1PF 与y 轴的交点恰为1PF 的中点,则C 的离心率为()A .13B C .2D .3【答案】D【分析】求得P 点坐标,根据直线1PF 的斜率列方程,化简求得双曲线的离心率.【详解】由于线段1PF 与y 轴的交点恰为1PF 的中点,且O 是12F F 的中点,所以212PF F F ⊥,由22221c y a b -=解得2P by a=,则2,b P c a ⎛⎫⎪⎝⎭,而()1,0F c -,所以1222242223PF b b c a a k c ac ac -====,2222833,3830ac c a c ac a =---=,两边除以2a 得23830e e --=,解得3e =或13e =-(舍去).故选:D13.直线2y x =与椭圆C :22221x y a b+=的交点在x 轴上的射影恰好是椭圆的焦点,则椭圆C 的离心率为()A1BC1D.12【答案】A【分析】根据A 在椭圆上和直线2y x =上列方程,整理后求得椭圆的离心率.【详解】设在第一象限的交点为A ,右焦点为(),0F c ,根据题意:AF x ⊥轴,A 在椭圆上,由22221c y a b +=解得2A b y a =,则2,b A c a ⎛⎫ ⎪⎝⎭,A 在直线2y x =上,则(),2A c c ,所以22b c a=,22b ac =,222-=a c ac ,所以()221001e e e +-=<<,解得1e =.故选:A题型三利用第一定义求解14.已知椭圆221222:1(0),,x y C a b F F a b+=>>分别是C 的左,右焦点,P 为C 上一点,若线段1PF 的中点在y 轴上,12π6PF F ∠=,则C 的离心率为()AB .23CD.2【答案】A【分析】根据中点关系可得2PF x ⊥轴,进而根据直角三角形中的边角关系,结合椭圆定义即可求解.【详解】由于线段1PF 的中点M 在y 轴上,O 是12F F 的中点,所以22//,MO PF PF x ∴⊥轴,122F F c =,12π6PF F ∠=,所以1221212112tan ,cos 32F F PF F F PF F PF PF F =∠=∠,2a a e ⇒=⇒=故选:A15.1F ,2F 是椭圆E :()222210 x y a b a b+=>>的左,右焦点,点M 为椭圆E 上一点,点N 在x 轴上,满足1245FM N F MN ∠=∠=︒,1234NF NF =,则椭圆E 的离心率为.【答案】57【分析】根据1245FM N F MN ∠=∠=︒,得到12F M F M ⊥,且MN 是12F MF ∠的角平分线,再结合1234NF NF =和角平分线定理得到1243F M F M=,然后在12Rt F MF △中,利用勾股定理求解.【详解】解:因为1245FM N F MN ∠=∠=︒,所以12F M F M ⊥,则MN 是12F MF ∠的角平分线,所以1122F M F N F MF N=,又因为1234NF NF =,所以1243F M F M=,设124,3F M F x M x ==,由椭圆定义得122F M F M a +=,即432x x a +=,解得27x a =,则1286,77F M F M a a ==,则22286477a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以222549c a =,则57c e a ==,故答案为:5716.已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,经过2F 的直线交椭圆C 于,P Q 两点,O 为坐标原点,且()2220,2OP OF PQ PF F Q +⋅==,则椭圆C 的离心率为.【分析】利用向量的数量积的运算律,以及椭圆的定义,利用齐次化方法求离心率.【详解】因为()2220,2OP OF PQ PF F Q +⋅== ,所以()22302OP OF PF +⋅=,即()()22302OP OF OF OP +⋅-=,所以21OP OF OF c === ,所以12π2F PF ∠=.设2F Q x =,则22PF x =,所以1122,2PF a x QF a x =-=-,由22211||PF PQ QF +=得222(22)(3)(2)a x x a x -+=-,所以3a x =,所以2124,33a PF a PF ==,在12Rt PFF △中,由2221212PF PF F F +=,得22224(2)33a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以53c e a ==.故答案为:17.已知1F ,2F 分别是椭圆2222:1x y C a b +=(0a b >>)的左,右焦点,M ,N 是椭圆C 上两点,且112MF F N = ,20MF MN ⋅=,则椭圆C 的离心率为()A .34B .23C D 【答案】C【分析】设1NF n =,结合椭圆的定义,在2Rt MNF △中利用勾股定理求得3an =,12Rt MF F △中利用勾股定理求得223620c a =,可求椭圆C 的离心率.【详解】连接2NF ,设1NF n =,则12MF n =,222MF a n =-,22NF a n =-,在2Rt MNF △中22222N M MF NF +=,即()()()2223222n a n a n +-=-,22222948444n a an n a an n ∴+-+=-+,2124n an ∴=,3an =,123a MF ∴=,243a MF =,在12Rt MF F △中,2221212MF MF F F +=,即222416499a a c =+,223620c a ∴=,2205369e ==,又()0,1e ∈ ,e ∴=故选:C.18.已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且12120F PF ∠=,124PF PF =,则C 的离心率为()AB .215C D 【答案】A【分析】根据124PF PF =,12120F PF ∠=,利用余弦定理可得2c =,再由双曲线定义可得32m a =,由离心率定义可得c e a ==.【详解】如下图所示:根据题意可设21,4,0PF m PF m m ==>,易知122F F c =;由余弦定理可知2222112212212221741cos 24P m PF F F F P c F PF m m F PF +-∠=⋅==--⋅,可得22214c m =;即212c =,由双曲线定义可知可知1232PF PF m a -==,即32m a =;所以离心率213c e a ==.故选:A19.已知12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点,过点1F 倾斜角为30 的直线与双曲线的左,右两支分别交于点,A B .若22AF BF =,则双曲线C 的离心率为()AB C .2D .【答案】A【分析】设22AF BF m ==,利用双曲线的定义及题中几何关系将m 用a c 、表示,再利用几何关系建立关于a c 、齐次方程,从而求出离心率.【详解】如图,过2F 作2AB F N ⊥与N,设22AF BF m ==,则12AF m a =-,12BF a m =+,∴114AB BF AF a =-=,2AN a =,1F N m =,由题意知1230BF F ︒∠=,∴在12Rt F NF 中,212sin 30F N F F c ︒==,112cos30F N F F ︒==,∴m =,在2Rt ANF 中,22222AN NF AF +=,即())2222a c +=解得c a=双曲线C.故选:A.题型四利用第二定义求解20.已知直线1y x =-与双曲线221ax by +=(0a >,0b <)的渐近线交于A ,B 两点,且过原点和线段AB中点的直线的斜率为,则a b的值为.【答案】【分析】设()11,A x y ,()22,B x y ,利用点差法可求ab的值.【详解】设()11,A x y ,()22,B x y ,AB 的中点为()00,M x y ,故2211222211ax by ax by ⎧+=⎨+=⎩,所以()()()()111122220a x y x y b x y x y -++-+=即()()1201200a x x x b y y y -+-=,所以0121200y y y a b x x x -+⨯⨯=-.因为过原点和线段AB中点的直线的斜率为002y x =-.由:1AB y x =-+可得12121y y x x -=--,所以()102a b ⎛⎫+⨯-⨯= ⎪ ⎪⎝⎭,所以2a b =-.故答案为【点睛】直线和圆锥曲线的位置关系中,如果涉及到弦的中点问题,可以考虑用点差法来简化计算.21.已知椭圆C 的左右焦点分别为1F ,2F ,P ,Q 为C 上两点,2223PF F Q =,若12PF PF ⊥ ,则C 的离心率为()A .35B .45CD【答案】D【分析】根据椭圆的焦点三角形,结合勾股定理即可求解.【详解】设23PF m =,则22QF m = ,123PF a m =- ,122QF a m =- .5PQ m =在1PQF △中得:()()222232522a m m a m -+=-,即215m a =.因此225PF a = ,185PF a = ,212F F c = ,在12PF F △中得:22264442525a a c +=,故221725a c =,所以175e =.故选:D22.设1F ,2F 分别是椭圆C 的左,右焦点,过点1F 的直线交椭圆C 于M ,N 两点,若113MF F N =,且24cos 5MNF ∠=,则椭圆C 的离心率为.【分析】如图,设1F N x =,由题意,椭圆定义结合余弦定理可得3ax =,后在12NF F △由余弦定理可得12F F ,即可得答案.【详解】如图,设1F N x =,则13MF x =,4MN x =.又由椭圆定义可得2223,2MF a x F N a x =-=-.则在2MNF 中,由余弦定理可得:()()()222222222162234425825MN NF MF x a x a x MN NF x a x +-+---=⇒=⋅-()222288410101681868253x ax a x ax ax x x ax x x a x +⇒=⇒+=-⇒=⇒=-.则125,33a aF N NF ==,则在12NF F △由余弦定理可得:12F F a=.又12222c F F c c e a =⇒=⇒==.故答案为:2223.已知椭圆22221x y a b+=的右焦点为2F ,过右焦点作倾斜角为π3的直线交椭圆于,G H 两点,且222GF F H = ,则椭圆的离心率为()A .12BC .23D【答案】C【分析】根据题意写出直线方程,与椭圆方程联立,运用韦达定理与222GF F H =构建出关于a 、b 、c 的齐次方程,根据离心率公式即可解得.【详解】设()2,0F c ,()11,G x y ,()22,H x y ,过点2F 做倾斜角为π3的直线斜率k =直线方程为)y x c =-,联立方程)22221x y a by x c ⎧+=⎪⎨⎪=-⎩,可得22224123033a b y b cy b ⎛⎫++-= ⎪⎝⎭,根据韦达定理:21222233cy y a b+=-+,4122233b y y a b =-+,因为222GF F H =,即()()1122,2,c x y x c y --=-,所以122y y =-,所以()22121242112221222323y y y y b y y y y a b⎛ +⎝⎭+=-=-=---+,即2224132c a b =+,所以22238a b c +=,联立22222238a b c a b c ⎧+=⎨=+⎩,可得2249a c =,24293e e =⇒=.故选:C.24.已知椭圆C :22221x y a b+=(0a b >>)的左焦点为1F ,过左焦点1F 作倾斜角为π6的直线交椭圆于A ,B 两点,且113AF F B =,则椭圆C 的离心率为()A .12B .23CD【答案】C【分析】联立直线与椭圆方程可得韦达定理,进而根据向量共线的坐标运算可得22239a b c +=,进而结合222a b c =+求解离心率.【详解】设()1,0F c -,()11,A x y ,()22,B x y ,过点1F 所作直线的倾斜角为π6所以直线方程可写为x c =-,联立方程22221x y a b x c ⎧+=⎪⎨⎪=-⎩,可得()2222430a b y cy b +--=,()()22422043cb a b =++>∆,根据韦达定理:12y y +=412223b y y a b =-+,因为113AF F B =,即()()1122,3,c x y x c y ---=+,所以123y y =-,所以()2222212124211222233122333c a b y y y y b y y y y a b ⎛⎫ ⎪++⎝⎭+=-=-=---+,即2223133c a b =+,所以22239a b c +=,联立22222239a b c a b c ⎧+=⎨=+⎩,可得223a c =,2133e e =⇒=.故选:C25.设12,F F 分别为椭圆22221(0)x ya b a b+=>>的左右焦点,M 为椭圆上一点,直线12,MF MF 分别交椭圆于点A ,B ,若11222,3MF F A MF F B ==,则椭圆离心率为()ABC .37D【答案】D【分析】设出()00,M x y ,根据向量的定比分点,将,A B 两点的坐标表示成含00,x y 的式子,再代入椭圆方程联立即可解得2237a c =,即可求得离心率.【详解】如下图所示:易知()()12,0,,0F c F c -,不妨设()00,M x y ,()()1122,,,A x y B x y ,易知2200221x y a b+=,由112MF F A = 可得()()01012020c x x c y y ⎧--=+⎪⎨-=-⎪⎩,即0101322c x x y y --⎧=⎪⎪⎨⎪=-⎪⎩同理由223MF F B = 可得0202433c x x y y -⎧=⎪⎪⎨⎪=-⎪⎩;将()()1122,,,A x y B x y 两点代入椭圆方程可得22002222002232214331c x y a bc x y a b ⎧--⎛⎫⎛⎫-⎪ ⎪ ⎪⎝⎭⎝⎭⎪+=⎪⎨-⎛⎫⎛⎫⎪- ⎪ ⎪⎪⎝⎭⎝⎭+=⎪⎩;即222000222220002296144168199c x cx y a bc x cx y a b ⎧+++=⎪⎪⎨+-⎪+=⎪⎩,又2200221x y a b +=,整理得220220322c cx a c cx a ⎧+=⎨-=⎩解得2237a c =,所以离心率217c e a==;故选:D26.已知椭圆()2222:10x y E a b a b +=>>,过左焦点F 且不与x 轴垂直的直线l 交E 于P 、Q 两点,若直线2a x c =-上存在点T ,使得PQT △是等边三角形,则E 的离心率的取值范围是()A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.⎛ ⎝⎭D.⎫⎪⎪⎝⎭【答案】D【分析】设直线PQ 的方程为x my c =-,其中0m ≠,设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与椭圆方程联立,列出韦达定理,求出PQ 的长以及等边PQT △的高,根据几何关系可得出a c 该椭圆离心率的取值范围.【详解】知点(),0F c -,设直线PQ 的方程为x my c =-,其中0m ≠,设点()11,P x y 、()22,Q x y,联立22221x my cx y ab =-⎧⎪⎨+=⎪⎩可得()22222420a b m y b cmy b +--=,()()422422224244410b c m b a b m a b m ∆=++=+>,由韦达定理可得2122222b cmy y a b m +=+,412222b y y a b m=-+,所以,()2222221ab m PQ a b m+=+,设线段PQ 的中点为()00,M x y ,则21202222y y b cm y a b m +==+,22200222222b cm a cx my c c a b m a b m=-=-=-++,因为PQT △为等边三角形,则TM PQ ⊥,且直线TM 的斜率为m -,所以,()32220222a b a TM x c c a b m =+=+,且πtan3TM PM ==,即TM=,即()()322222222221a b m a b m c a b m +=++,整理可得(a c =1ca<<,故选:D.题型五利用第三定义求解27.双曲线()2222:10,0x y E a b a b-=>>被斜率为4的直线截得的弦AB 的中点为()2,1,则双曲线E 的离心率为()ABC .2D【答案】B【解析】根据点差法,设出交点坐标,代入作差即可得解.【详解】设()()1122,,,A x y B x y 代入双曲线方程作差有:()()()()1112121222x x x x y y y y a b -+-+=,有2121221212()()2()()y y y y b a x x x x -+==-+,所以223c a=,e =故选:B .【点睛】本题考查了解析几何中的点差法,点差法主要描述直线和圆锥曲线相交中斜率和中点的关系,在解题中往往大大简化计算,本题属于基础题.28.已知斜率为1的直线l 与双曲线C :22221x y a b-=(0a >,0b >)相交于B 、D 两点,且BD 的中点为3(1)M ,.则C 的离心率为()A .2BC .3D【答案】A【解析】设()()1122,,,B x y D x y ,得22112222222211x y a b x y ab ⎧-=⎪⎪⎨⎪-=⎪⎩,两式做差得到()()()()2121221212y y y y b a x x x x -+=-+,代入条件即可计算离心率.【详解】设()()1122,,,B x y D x y 22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式做差得()()()()12121212220x x x x y y y y a b -+-+-=整理得()()()()2121221212y y y y b a x x x x -+=-+,而12121BD y y k x x --==,122x x +=,126y y +=,代入有223b a =,即2223c a a -=可得2ce a==.故选:A.【点睛】直线与圆锥曲线相交所得弦中点问题,是解析几何的内容之一,也是高考的一个热点问题,其解法可以利用“点差法”.29.已知椭圆,点F 为左焦点,点P 为下顶点,平行于FP 的直线l 交椭圆于A ,B 两点,且AB 的中点为11,2M ⎛⎫⎪⎝⎭,则椭圆的离心率为()A.2B .12C .14D.2【答案】A【分析】点差法解决中点弦问题.【详解】由题意,设椭圆方程为22221x y a b+=,有(),0F c -,()0,P b -,设11(,)A x y ,22(,)B x y ,AB 的中点为11,2M ⎛⎫⎪⎝⎭,122x x ∴+=,121y y +=.//PF l ,1212PF l y y b k k c x x -∴==-=-.由2211221x y a b +=,2222221x y a b+=.两式相减得1212121222()()()()0x x x x y y y y a b +-+-+=,即1212221212()()()()x x y y a y y b x x +-=-+-,∴222a cbb =,可得:22bc a =,22244()c a c a ∴-=,化为:424410e e -+=,解得212e =,01e <<,e ∴=故选:A .30.已知F 1(﹣c ,0),F 2(c ,0)分别为双曲线C :2222x y a b-=1(a >0,b >0)的左、右焦点,直线l :x y c b +=1与C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于T (﹣5c ,0),则C 的离心率为()ABCD【答案】D【分析】设M (x 1,y 1),N (x 2,y 2),线段MN 的中点为S (x 0,y 0),运用点满足双曲线方程,作差,结合中点坐标公式和平方差公式,以及直线的斜率公式,两直线垂直的条件,以及双曲线的离心率公式,计算可得所求值.【详解】设M (x 1,y 1),N (x 2,y 2),线段MN 的中点为S (x 0,y 0),联立方程组2222221122222222b x a y a b b x a y a b ⎧-=⎨-=⎩,两式相减可得b 2(x 12﹣x 22)=a 2(y 12﹣y 22),可得b 2(x 1﹣x 2)(x 1+x 2)=a 2(y 1﹣y 2)(y 1+y 2),可得2b 2(x 1﹣x 2)x 0=2a 2(y 1﹣y 2)y 0,所以kMN 20122120b x y y b c x x a y -=-==-,即b c -2020y b x a⋅=(1),由kMN ⋅kST =-1,可得b c -⋅005y x c =-+1(2),由(1)(2)可得x 025a c =-,y 0=5b ,即S (25a c -,5b ),又S 在直线l 上,所以225a c-+5=1,解得e c a ==故选:D .【点睛】本题考查了双曲线的方程和性质,考查了点差法和方程思想、运算求解能力,属于中档题.31.(多选)已知椭圆222:12x y C m+=的焦点分别为()10,2F ,()20,2F -,设直线l 与椭圆C 交于M ,N 两点,且点11,22P ⎛⎫⎪⎝⎭为线段MN 的中点,则下列说法正确的是()A .26m =B .椭圆CC .直线l 的方程为320x y +-=D .2F MN的周长为【答案】AC【分析】先由题意求出2m 即可判断A ;再根据离心率公式即可判断B ;由点差法可以求出直线l 的斜率,由直线的点斜式化简即可判断C ;由焦点三角形的周长公式即可判断D.【详解】如图所示:根据题意,因为焦点在y 轴上,所以224m -=,则26m =,故选项A 正确;椭圆C的离心率为c e a ==,故选项B 不正确;不妨设()()1122,,,M x y N x y ,则2211126x y +=,2222126x y +=,两式相减得()()()()1212121226x x x x y y y y +-+-=-,变形得121212123y y x x x x y y -+=-⨯-+,又注意到点11,22P ⎛⎫⎪⎝⎭为线段MN 的中点,所以121212121221122P P x x x x x y y y y y ++====++,所以直线l 的斜率为121212123313l y y x k xx x y y ⨯=-+⨯--=-+=-=,所以直线l 的方程为11322y x ⎛⎫-=-- ⎪⎝⎭,即320x y +-=,故选项C 正确;因为直线l 过1F ,所以2F MN 的周长为()()222121224F M F N MN F M F M F N F N a a a ++=+++=+==,故选项D 不正确.故选:AC .32.已知椭圆()222210x y a b a b+=>>上一点M ,点F 为右焦点,点P 为下顶点,2FP MF = ,则椭圆的离心率为.【分析】过M 作MN x ⊥轴于N ,根据相似关系确定3,22c b M ⎛⎫⎪⎝⎭,代入方程计算得到答案.【详解】如图所示:过M 作MN x ⊥轴于N ,2FP MF = ,则122b MN OP ==,122c NF FO ==,故3,22c b M ⎛⎫⎪⎝⎭,则222291441c b a b+=,整理得到29344e =,故33e =.题型六与斜率乘积相关33.已知A ,B 分别是双曲线()2222:10,0x y C a b a b-=>>的左、右顶点,F 是C 的焦点,点P 为C 的右支上位于第一象限的点,且PF x ⊥轴.若直线PB 与直线PA 的斜率之比为3,则C 的离心率为()ABC .2D .3【答案】C【分析】由已知可得A ,B ,P 的坐标,求得PA ,PB 所在直线的斜率,再由直线PB 与直线PA 的斜率之比为3列式求双曲线C 的离心率.【详解】由题意可得,(,0)A a -,(,0)B a ,P 点的横坐标为c ,代入22221c y a b-=,又0P y >,所以2(,)b P c a ,2PAb a kc a =+,2PBb a kc a =-,则3PBPAk c a kc a +==-,可得2ca=.即双曲线的离心率为2.故选:C .34.设双曲线()222210,0x y a b a b-=>>的右焦点为(),0F c ,点A 满足3OA OF = ,点P 、Q 在双曲线上,且2AQ AP = .若直线PQ ,PF 的斜率之积为13,则双曲线的离心率为.【详解】如图,取P ,Q 的中点为M ,连接OM ,PF,则由题意可得,2PA PM =,2AF FO =,所以APF ,AMO 相似,所以PF MO ∥,因为直线PQ ,PF 的斜率之积为13,所以13PQ OM k k =⋅,设()11P x y ,()22,Q x y ,则1212,22x x y y M ++⎛⎫⎪⎝⎭,且22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减可得()()()()12121212220x x x x y y y y a b +-+--=,即()()()()2121221212y y y y b x x x x a +-=+-,即2213PQ OMb k a k ==⋅,即2213b a =,所以双曲线的离心率为233e ===.35.设椭圆()2222:10x y a b a bΓ+=>>的右焦点为(),0F c ,点()3,0A c 在椭圆外,P 、Q 在椭圆上,且P 是线段AQ 的中点.若直线PQ 、PF 的斜率之积为12-,则椭圆的离心率为.【答案】2【分析】取线段PQ 的中点M ,连接OM ,推导出//OM PF ,可得出12OM PQ PF PQ k k k k ==-,利用点差法可求得22b a的值,由此可求得椭圆Γ的离心率的值.【详解】如下图所示:由题意可知,点(),0E c -为椭圆Γ的左焦点,因为点()3,0A c 、(),0F c ,易知点F 为线段AE 的中点,又因为P 为AQ 的中点,所以,//PF QE ,取线段PQ 的中点M ,连接OM ,则2AP AF PMOF==,所以,//OM PF ,所以,OM PF k k =,故12OM PQ PF PQ k k k k ==-,设点()11,P x y 、()22,Q x y ,则点1212,22x x y y M ++⎛⎫⎪⎝⎭,所以,22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两个等式作差可得22221212220x x y y a b --+=,可得2221222212y y b x x a -=--,所以,122221212222121212012202OM PQy y y y y y b k k x x x x x x a +---=⋅==-=-+---,所以,椭圆Γ的离心率为2c e a ====.故答案为:22.36.已知椭圆C :()222210x y a b a b+=>>的焦距为2c ,左焦点为F ,直线l 与C 相交于A ,B 两点,点P 是线段AB 的中点,P 的横坐标为13c .若直线l 与直线PF 的斜率之积等于316-,则C 的离心率为.【答案】12/0.5【分析】设()()1111,,,A x y B x y ,求出PF 的斜率,利用点差法求出直线l 的斜率,在根据题意求出,,a b c 之间的关系即可得解.【详解】(),0F c -,设()()1111,,,A x y B x y ,因为点P 是线段AB 的中点,P 的横坐标为13c ,所以12122,,332y y c c x x P +⎛⎫+=⎪⎝⎭,则()121212123224832PFy y y y y y k x x c c c+++===++,由直线l 与C 相交于A ,B 两点,得2222112222221,1x y x y a b a b+=+=,两式相减得2222112222220x y x y a b a b+--=,即()()()()12121212220x x x x y y y y a b -+-++=,所以()()()()2121221212y y y y b x x x x a -+=--+,即212122l k y y x x b a⋅=++-,所以()222221211223l x x c y y b b k a y a y +=-=-⋅+⋅+,则()()2212122233623841l PFy y b b k a c y y k c a +⋅=-⋅⋅=-=-+,所以2234b a =,所以离心率12c e a ===.故答案为:12.37.双曲线C :()222210,0x y a b a b -=>>的右顶点为A ,点,M N 均在C 上,且关于y 轴对称.若直线AM ,AN的斜率之积为54-,则C 的离心率为()A .32B C .2D 【答案】A【分析】根据已知条件列方程,化简求得22b a,进而求得双曲线的离心率.【详解】依题意(),0A a -,设(),M m t ,则(),N m t -,m a >且222222222222221,m t a b t a t a m a a b b b+-===+,而22254AM ANt t t k k m a m a a m ⋅=⋅==-+-+-,()222222222225455t a t a t m a a a b b ⎛⎫=-=+-= ⎪⎝⎭,2254b a =,所以32c e a ==.故选:A38.已知椭圆()2222:10x y C a b a b+=>>的右顶点为A ,P 、Q 为C 上关于坐标原点对称的两点,若直线AP ,AQ 的斜率之积为25-,则C 的离心率为()A B C D 【答案】A【分析】根据题意结合椭圆方程整理得22AP AQ b k k a⋅=-,进而可求离心率.【详解】由题意可知:(),0A a ,设()()000,0P x y y ≠,则()00,Q x y --,可得000000,AP AQ y y y k k x a x a x a -===---+,则200022000AP AQy y y k k x a x a x a ⋅=⋅=-+-,又因为点()00,P x y 在椭圆上,则2200221x y a b +=,整理得()2222002b y a x a=-,可得()222220202222200APAQb a x y b a kk x a x a a-⋅===---,即2225b a -=-,所以C的离心率155e ===.故选:A.39.椭圆C :()222210x y a b a b+=>>的左顶点为A ,点P ,Q 是C 上的任意两点,且关于y 轴对称.若直线AP ,AQ 的斜率之积为19,则C 的离心率为()AB.3CD【答案】C【分析】设00(,)P x y ,则00(,)Q x y -,根据斜率公式结合题意可得19AP AQ k k ⋅=,再结合2200221x y a b+=可求出离心率.【详解】由题意得(,0)A a -,设00(,)P x y ,因为点P ,Q 是C 上的任意两点,且关于y 轴对称,所以00(,)Q x y -,2200221x y a b +=,所以0000,AP AQ y yk k x a a x ==+-,所以20002200019AP AQy y y k k x a a x a x ⋅=⋅==+--,因为2200221x y a b +=,所以2222002()b a x y a-=,所以2220222220()19b a x b a a x a -==-,所以离心率c e a =====,故选:C题型七焦点三角形双余弦定理模型40.已知双曲线()222210,0x y a b a b-=>>左右焦点分别为1F ,2F ,过2F 的直线在第一象限与双曲线相交于点A ,与y 轴的负半轴交于点B ,且2232AF F B =,1AF AB = ,则双曲线的离心率为.【分析】根据题意,设()230AF t t => ,利用由双曲线的定义,求得23AF a = ,22F B a = ,15AF AB a == ,分别在12AF F △和1AF B △中,由余弦定理,列出方程,求得,a c 关系式,即可求解.【详解】因为2232AF F B =且1AF AB = ,可设()230AF t t => ,则212,5F B t AF AB t === ,由双曲线的定义,可得1222AF AF t a -==,所以t a =,所以23AF a = ,22F B a = ,15AF AB a ==,分别在12AF F △和1AF B △中,可得()()()()()()222222532552cos 253255a a c a a a A a aa a+-+-==⨯⨯⨯⨯,整理得:285c a ⎛⎫= ⎪⎝⎭,所以双曲线的离心率为5..41.已知双曲线2222:1(0,0)x y a b a bΓ-=>>的左、右焦点分别为1F 、2F ,O 为坐标原点.过1F 作双曲线Γ一条渐近线的垂线,垂足为D ,若2DF OD =,则双曲线Γ的离心率为.【分析】先由已知双曲线方程得出一条渐近线方程,再利用点到直线的距离公式求出1DF ,进而求出OD ,2DF ,再利用余弦定理得出a 与c 的关系,进而求出离心率.【详解】由双曲线2222:1(0,0)x y a b a b Γ-=>>的性质可知,双曲线的一条渐近线方程为b y x a =-,焦点1(,0)F c -,2(,0)F c .由1F 作该渐近线的垂线,则由点到直线的距离公式可得1DF b =,所以OD a ==,所以2DF =,由于1FOD ∠与2F OD ∠互补,所以12cos cos 0F OD F OD ∠+∠=,即2222228022a c b a c a ac ac+-+-+=,可得225c a =,则离心率c e a ==42.已知1F ,2F 分别是双曲线Γ:()222210,0x y a b a b -=>>的左、右焦点,过1F 的直线分别交双曲线左、右两支于A ,B 两点,点C 在x 轴上,25CB F A =uu r uuu r,2BF 平分1F BC ∠,则双曲线Γ的离心率为()A B C D .83【答案】A【分析】因为25CB F A =uu r uuu r,所以12F AF ∽1F BC △,设122F F c =,则28F C c =,设1AF t =,则15BF t =,4AB t =.由角平分线的性质可得24AF t =,由双曲线的定义可得23at =,22BF t =,再结合余弦定理可得226c t =,从而可求解.【详解】因为25CB F A =uu r uuu r,则2//CB F A ,所以12F AF ∽1F BC △,设122F F c =,则28F C c =,设1AF t =,则15BF t =,4AB t =.因为2BF 平分1F BC ∠,由角平分线定理可知,11222841BF F F c BCF Cc ===,所以1420BC BF t ==,所以2145AF BC t ==,由双曲线定义知212AF AF a -=,即42t t a -=,23at =,①又由122BF BF a -=得2522BF t a t =-=,在2ABF △中,由余弦定理知2222222222164161cos 22424AB BF AF t t t ABF AB BF t t +-+-∠===⋅⋅⨯⨯,在12F BF 中,由余弦定理知22212121212cos 2BF BF F F F BF BF BF +-∠=⋅⋅,即222125444252t t c t t +-=⨯⨯,化简得226c t =,把①代入上式得22249a c =,解得c e a ==故选:A .43.已知双曲线E :2222x y a b-=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与E 交于A ,B两点(B 在x 轴的上方),且满足1117AF F B =.若直线的倾斜角为120°,则双曲线的离心率为()A .2B .72C .52D .32【答案】D【解析】设1,F B k = 则117AF k = ,由双曲线的定义知,2212,27F A a k F B a k =+=+,在12AF F ∆和12BF F ∆中分别利用余弦定理,然后两式相减即可求解.【详解】设1,F B k = 则117AF k = ,则122F F c =,由双曲线的定义知,2212,27F A a k F B a k =+=+,在12AF F ∆中,由余弦定理可得,22221121122cos 60AF AF F F AF F F =+-⋅⋅ ,即()222111122227772a k k c k c ⎛⎫⎛⎫+=+-⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭,在12BF F ∆中,由余弦定理可得,22221121122cos120BF BF F F BF F F =+-⋅⋅即()()222122222a k k c k c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭两式相减可得,843a c =,所以离心率32c e a ==.故选:D【点睛】本题考查双曲线及其性质、直线与双曲线的位置关系,及三角形中的余弦定理;考查运算求解能力和转化与化归能力;双曲线定义的灵活运用是求解本题的关键;属于中档题、常考题型.44.已知12,F F 分别为双曲线()2222100x yC a b a b-=>>:,的左、右焦点,过1F 的直线与双曲线左支交于,A B 两点,且113AF BF =,以O 为圆心,2OF 为半径的圆经过点B ,则C 的离心率为()A .3B .2CD 【答案】B【分析】设1BF m =,利用双曲线定义表示出22,BF AF 的长,再利用勾股定理可得()()22222m m a c ++=,在12BF F △和12AF F △中,分别利用余弦定理可得223b m a =,联立两式即可得离心率e ==【详解】如下图所示,连接22,BF AF ,易知以O 为圆心,2OF 为半径的圆经过点1F ,即12F F 为圆O 的直径,所以12BF BF ⊥;不妨设()1,0BF m m =>,则13AF m =,由双曲线定义可得222,32,BF m a AF m a =+=+所以2221212||||BF BF F F +=,即()()22222m m a c ++=,整理得2222m am b +=⋅⋅⋅⋅⋅⋅①在12BF F △中可得,()2222124244cos 224m c m a b am BF F m c mc+-+-∠==⋅;在12AF F △中可得,()2222129432412cos 23212m c m a b am AF F m c mc+-+-∠==⋅⋅;又易知1212cos cos 0BF F AF F ∠+∠=,可得223b m a=⋅⋅⋅⋅⋅⋅②联立①②可得,2232a b =,则双曲线的离心率为e ==故选:B45.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1F ,2F ,直线3y x =与双曲线C 交于A ,B两点(点A 在第二象限),且12AB F =.则双曲线C 的离心率为()A BC .13+D 【答案】A【分析】根据直线斜率可得倾斜角,作焦点三角形,利用余弦定理,结合双曲线的定义,可得答案.【详解】因为12AB F F =,所以OA =因为AB k =130AOF ∠=︒.所以。

高中数学《圆锥曲线的离心率问题》基础知识与练习题(含答案解析)

高中数学《圆锥曲线的离心率问题》基础知识与练习题(含答案解析)

高中数学《圆锥曲线的离心率问题》基础知识与练习题(含答案解析)离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数,a c 之间的联系。

一、基础知识: 1、离心率公式:ce a=(其中c 为圆锥曲线的半焦距) (1)椭圆:()0,1e ∈ (2)双曲线:()1,+e ∈∞2、圆锥曲线中,,a b c 的几何性质及联系 (1)椭圆:222a b c =+,① 2a :长轴长,也是同一点的焦半径的和:122PF PF a += ② 2b :短轴长 ③ 2:c 椭圆的焦距 (2)双曲线:222c b a =+① 2a :实轴长,也是同一点的焦半径差的绝对值:122PF PF a −=② 2b :虚轴长 ③ 2:c 椭圆的焦距3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a 有关,另一条边为焦距。

从而可求解 (2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解2、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。

如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可(3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞ 二、典型例题:例1:设12,F F 分别是椭圆()2222:10x y C a b a b +=>>的左、右焦点,点P 在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为( ) A .33 B .36C .13D .16思路:本题存在焦点三角形12PF F ,由线段1PF 的中点在y 轴上,O 为12F F 中点可得2PF y ∥轴,从而212PF F F ⊥,又因为1230PF F ∠=,则直角三角形12PF F 中,1212::2:1:3PF PF F F =,且12122,2a PF PF c F F =+=,所以12122323F F c c e a a PF PF ∴====+ 答案:A小炼有话说:在圆锥曲线中,要注意O 为12F F 中点是一个隐含条件,如果图中存在其它中点,则有可能与O 搭配形成三角形的中位线。

圆锥曲线离心率求法专题训练-含答案

圆锥曲线离心率求法专题训练-含答案

圆锥曲线离心率求法专题训练(一)1.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点P 在椭圆上,且1230PF F ∠=︒,2160PF F ∠=︒,则椭圆的离心率等于( )A 1B 1CD -2.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是1F ,2F ,过右焦点2F 相交于A ,B 两点,若满足223AF F B =,则椭圆的离心率为( )A .35B .12C D3.在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>上存在点P ,使得12||3||PF PF =,其中1F 、2F 分别为椭圆的左、右焦点,则该椭圆的离心率取值范围是( ) A .1[,1)4B .1(,1)4C .1(,1)2D .1[,1)24.已知椭圆22221(0)x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,若椭圆上存在一点P ,使得12||||2PF PF b -=,则该椭圆离心率的取值范围为( )A .1(0,]2B .1[.1)2C .D .5.已知平行四边形ABCD 内接于椭圆2222:1(0)x y a b a bΩ+=>>,且AB ,AD 斜率之积的取值范围为43(,)54--,则椭圆Ω的离心率的取值范围为( )A .1)2B .C .1(4D .11(,)546.在椭圆222211x y m m +=-,(1)m >的左、右焦点分别为1F ,2F ,过2F 垂直于x 轴的直线交椭圆于A ,B 两点,且83ABO S ∆=,则椭圆的离心率为( )A .13B .12C .2D .167.已知椭圆C 的两个焦点分别为1F ,2F ,以12F F 为直径的圆交椭圆于点P ,且21122PF F PF F ∠=∠,则C 的离心率为( )A .1-B .2-CD 18.椭圆2222:1(0,0)x y M a b a b+=>>的左、右焦点分别为1F ,2F ,P 为椭圆M 上任一点,且12||||PF PF ⋅最大值取值范围为2[2c ,23]c (其中222)c a b =-,则椭圆M 的离心率的取值范围是( )A .B .C .D .11[,]32圆锥曲线离心率求法专题训练(二)1.已知1F ,2F 是椭圆22221(0)x y a b a b+=>>的左、右焦点,椭圆上一点M 满足1260F MF ∠=︒,则该椭圆离心率取值范围是( )A .1(0,]2B .1[,1)2C .D .2.已知1F ,2F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点P ,Q 是C 上位于x 轴上方的任意两点,且12//PF QF .若12||||PF QF b +,则C 的离心率的取值范围是( )A .1(0,]2B .1[,1)2C .D .3.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为(1,0)F ,一个顶点为(2,0)A ,设(,0)B t ,点P 是椭圆C上的动点,若||||PB AB 恒成立,则t 的取值范围是( )A .1[0,]2B .1[,)2+∞C .[2-,2]D .(2,)+∞4.已知双曲线22221(0,0)y x a b a b-=>>的上下焦点分别为1F ,2F ,过1F 作双曲线渐近线的垂线1F P ,垂足为点P ,若1POF ∆2,则双曲线的离心率为( )A .2BC D5.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过右焦点作平行于其中一条渐近线的直线交双曲线于点A ,若△12AF F 的内切圆半径为3b,则双曲线的离心率为( )A B .2CD .36.设双曲线2222:1x y C a b-=的左、右焦点分别为1F 、2F ,右顶点为A ,M 为双曲线上一点,且2212MF A MAF MF A ∠=∠=∠,则双曲线的离心率为( )A .2BCD .37.已知双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线为1l ,2l ,若双曲线C 的右支上存在一点P ,使得点P 到1l ,2l 的距离之和为b ,则双曲线C 离心率的取值范围是( )A .)+∞B .C .[2,)+∞D .(1,2]8.双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,右焦点为F ,过点A 的直线交双曲线C 于另一点B ,当BF AF ⊥时满足||2||AF BF >,则双曲线离心率e 的取值范围是( )A .12e <<B .312e <<C .322e << D .1e <<圆锥曲线离心率求法专题训练(三)1.已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且[6πα∈,]4π,则该椭圆离心率e 的取值范围为( )A .[2B .[2,1) C .[21] D .2.椭圆22110064x y +=的焦点为1F 、2F ,椭圆上的点P 满足1260F PF ∠=︒,则△12F PF 的面积是( )A B C D .6433.已知椭圆22221(0)x y a b a b+=>>的右顶点为A ,点P 在椭圆上,O 为坐标原点,且90OPA ∠=︒,则椭圆的离心率的取值范围为( )A . B .(2 C .2 D .4.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足0FA FB =,||||2||FB FA FB ,则椭圆C 的离心率的取值范围是( )A .B .1)C .1]D .1,1)5.椭圆22221(0)x y a b a b+=>>的两个焦点为1F ,2F ,若P 为椭圆上一点,且12||3||PF PF =,则该椭圆离心率的取值范围为( )A .(0,1]3 B .1[3,1) C .(0,1]2 D .1[2,1)6.设椭圆2222:1(0)x y E a b a b+=>>的一个焦点为(1,0)F ,点(1,1)A -为椭圆E 内一点,若椭圆E 上存在一点P ,使得||||9PA PF +=,则椭圆E 的离心率的取值范围是( ) A .1[,1)2B .11[,]32C .11[,]54D .12[,]237.已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为(,0)F c ,上顶点为(0,)A b ,直线2a x c=上存在一点P 满足FP AP FA AP =-,则椭圆的离心率的取值范围为( )A .1[,1)2B .C .D .8.椭圆2221x y a +=上存在一点P ,使得它对两个焦点1F ,2F 的张角122F PF π∠=,则该椭圆的离心率的取值范围是( )A .(0B .,1)C .(0,1]2D .1[2,1)圆锥曲线离心率求法专题训练(四)1.设椭圆方程为22221(0)x y a b a b+=>>,焦距为2c ,(2,0)A c -,(2,0)B c ,如果椭圆上存在一点P ,使得AP BP ⊥,则离心率的取值范围为( )A .1)2B .4)5C .D .2.设椭圆22221(0)x y a b a b+=>>的两焦点为1F 、2F ,若椭圆上存在一点Q ,使12120FQF ∠=︒,椭圆离心率e 的取值范围为( )A 1e <B 1e <<C .603e< D .112e <<3.已知椭圆22221(0)x y a b a b+=>>的左,右焦点分别为1F ,2F ,若椭圆上存在点P ,使得12PF PF ⊥,则椭圆离心率的取值范围是( )A .B .C .D .4.已知点1F ,2F 为椭圆22221(0)x y a b a b+=>>的左右焦点,若椭圆上存在点P 使得12||2||PF PF =,则此椭圆的离心率的取值范围是( )A .1(0,)3 B .(0,1]2 C .1(3,1]2D .1[3,1)5.已知椭圆22221(0)x y a b a b+=>>的两个焦点分别为1F ,2F ,若椭圆上存在点P 使得12F PF ∠是钝角,则椭圆离心率的取值范围是( )A . B . C .1(0,)2D .1(,1)26.已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,且12||2F F c =,若椭圆上存在点M 使得1221sin sin a cMF F MF F =∠∠,则该椭圆离心率的取值范围为( )A .1)B .1)C .D .1,1)7.已知椭圆的左、右焦点为1F 、2F ,若椭圆上存在点P 使1260F PF ∠=︒,则椭圆的离心率的取值范围为()A .,1)B .(0C .1[2,1)D .(0,1]28.设1F ,2F 为椭圆的两个焦点,若椭圆上存在点P 满足12120F PF ∠=︒,则椭圆的离心率的取值范围是( )A . B . C . D .圆锥曲线离心率求法专题训练(五)1.已知椭圆:22221(,0)x y a b a b+=>和圆222:O x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为A ,B .若椭圆上存在点P ,使得0PA PB =,则椭圆离心率e 的取值范围是( )A .1[2,1)B .(0C.,1) D .1[22.若双曲线22221(0,0)x y a b a b-=>>的两个焦点为1F ,2F ,若双曲线上存在一点P ,满足12||3||PF PF =,则该双曲线的离心率的取值范围是( ) A .12e << B .12eC .12e <D .12e <3.设椭圆22221x y a b+=的左、右焦点分别是1F ,2F ,如果在椭圆上存在一点p ,使12F PF ∠为钝角,则椭圆离心率的取值范围是 .4.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,若双曲线上存在一点P 使21||||PF aPF c=,则该双曲线的离心率的取值范围是 .5.已知1F 、2F 分别为双曲线22221(0,0)xy a b ab-=>>的左、右焦点,若双曲线左支上存在一点P 使得221||8||PF a PF =,则双曲线的离心率的取值范围是 .圆锥曲线离心率求法专题训练(一)1.(2021秋•昌邑区校级期中)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点P 在椭圆上,且1230PF F ∠=︒,2160PF F ∠=︒,则椭圆的离心率等于( )A1B1CD-解:1230PF F ∠=︒,2160PF F ∠=︒,12||2F F c =,∴△12PF F 是直角三角形,2||PF c =,1||PF =,由椭圆的定义可得,12||||2PF PF a +=,∴2c a +=,∴1c e a ==.故选:B . 2.(2021秋•平城区校级月考)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是1F ,2F ,过右焦点2F的直线与椭圆相交于A ,B 两点,若满足223AF F B =,则椭圆的离心率为( ) A .35B .12C.2D解:设直线方程为x y c +,设1(A x ,1)y ,2(B x ,2)y ,与椭圆方程联立得222241()02a b y cy b +-=,12222y y a b+=+4122212b y y a b =-+①223AF F B =,1(c x ∴-,12)3(y x c -=-,2)y ,得123y y =-②,由①②联立可得,22213242a b c +=,即22222323c a b a c =+=-,得2243c a =,椭圆的离心率c e a ==D . 3.(2021秋•青羊区校级月考)在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>上存在点P ,使得12||3||PF PF =,其中1F 、2F 分别为椭圆的左、右焦点,则该椭圆的离心率取值范围是( )A .1[,1)4B .1(,1)4C .1(,1)2D .1[,1)2解:12||3||PF PF =,又点P 在椭圆上,∴由椭圆的定义可得,12||||2PF PF a +=, 2||2a PF ∴=,点P 在椭圆上,2||PF a c ∴-,∴2a a c -,即12ce a=, 又1e <,∴112e <,故椭圆的离心率取值范围是1[,1)2.故选:D . 4.(2021秋•五华区校级月考)已知椭圆22221(0)x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,若椭圆上存在一点P ,使得12||||2PF PF b -=,则该椭圆离心率的取值范围为( )A .1(0,]2B .1[.1)2C. D. 解:由题意可得122||||2c PF PF c --,由题意可得22b c ,而222b a c =-,c e a=, 所以可得:22e,而(0,1)e ∈,故选:D . 5.(2021春•河南期中)已知平行四边形ABCD 内接于椭圆2222:1(0)x y a b a bΩ+=>>,且AB ,AD 斜率之积的取值范围为43(,)54--,则椭圆Ω的离心率的取值范围为( )A.1)2B. C.1(4D .11(,)54解:设1(A x ,1)y ,2(B x ,2)y ,由平行四边形对角线互相平分可得A 与C ,B 与D 关于原点对称, 所以可得2(D x -,2)y -,所以2221121222211212AB ADy y y y y y k k x x x x x x -+-⋅=⋅=-+-, 将A ,B 的坐标代入可得22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩相减可得22221212220x x y y a b --+=, 可得2221222212y y b x x a -=--,由题意可得:224354b a -<-<-,即223445b a <<, 可得:2234145c a <-<,解得:c e a =∈,1)2,故选:A .6.(2021秋•洛南县校级月考)在椭圆222211x y m m +=-,(1)m >的左、右焦点分别为1F ,2F ,过2F 垂直于x 轴的直线交椭圆于A ,B 两点,且83ABO S ∆=,则椭圆的离心率为( )A .13B .12CD .16解:由椭圆的方程可得22a m =,221b m =-,所以2221c a b =-=,可得1c =,设A 的坐标为0(,)c y ,则220221y c a b +=,所以20||b y a =,所以20182||23AOB b S c y c a ∆=⋅⋅=⋅=,可得3a =,所以离心率13c e a ==,故选:A .7.(2021•迎江区校级三模)已知椭圆C 的两个焦点分别为1F ,2F ,以12F F 为直径的圆交椭圆于点P ,且21122PF F PF F ∠=∠,则C 的离心率为( )A.1-B.2-CD1解:在△12F PF 中,1290F PF ∠=︒,2160PF F ∠=︒设2||PF m =,则1212||2,||c F F m PF ===,又由椭圆定义可知122||||1)a PF PF m =+=则离心率212c c e a a ===,故选:D . 8.(2021•新华区校级开学)椭圆2222:1(0,0)x y M a b a b+=>>的左、右焦点分别为1F ,2F ,P 为椭圆M 上任一点,且12||||PF PF ⋅最大值取值范围为2[2c ,23]c (其中222)c a b =-,则椭圆M 的离心率的取值范围是( )A .2B .[2C .D .11[,]32解:由题意的定义可得:12||||2PF PF a +=, 再由均值不等式可得:2221212||||2||||()()22PF PF aPF PF a +⋅==,12||||PF PF ⋅的最大值为2a ,由题意可得22223c a c 可得21132e,解得22e ,故选:A . 圆锥曲线离心率求法专题训练(二)1.(2021•安徽开学)已知1F ,2F 是椭圆22221(0)x y a b a b+=>>的左、右焦点,椭圆上一点M 满足1260F MF ∠=︒,则该椭圆离心率取值范围是( )A .1(0,]2B .1[,1)2C .D . 解:设11||MF r =,22||MF r =,由余弦定理得:222121212||||||2||||cos60F F MF MF MF MF =+-︒,∴22212124r r r r c +-=,又122r r a +=,即222121224r r r r a ++=,解得222212483a c r r ++=,2212443a c r r -=,2212122r r r r +,∴2222488833a c a c +-, 得224c a ,01e <<,∴1[,1)2e ∈.故选:B .2.(2021秋•河北月考)已知1F ,2F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点P ,Q 是C 上位于x 轴上方的任意两点,且12//PF QF .若12||||PF QF b +,则C 的离心率的取值范围是( )A .1(0,]2B .1[,1)2C .D . 解:如图,延长1PF ,交椭圆C 于M ,根据椭圆的对称性可知,21||||QF F M =,则1211||||||||||PF QF PF MF PM +=+=,因为焦点弦||PM 的最小值为22b a ,由题意可知,22b b a ,所以12b a ,则2302e <=.所以C 的离心率的取值范围.故选:C .3.(2021春•泗县校级期末)已知椭圆2222:1(0)x yC a b a b+=>>的一个焦点为(1,0)F ,一个顶点为(2,0)A ,设(,0)B t ,点P 是椭圆C 上的动点,若||||PB AB 恒成立,则t 的取值范围是( )A .1[0,]2B .1[,)2+∞C .[2-,2]D .(2,)+∞解:由已知可得1c =,2a =,则2223b a c =-=,所以22143x y +=,设0(P x ,0)y ,则2200143x y +=,所以220003(22)4x y x =--,若||||PB AB 恒成立,则||2||2PB AB 恒成立,所以200()2(2)2x t y t -+-,整理可得000(2)(2)(2)8x x t x -+-,当02x =时,不等式恒成立,当022x -<,不等式可化为028x t+恒成立,因为021()82max x +=,所以12t , 综上,t 的取值范围是1[2,)+∞.故选:B .4.(2021秋•南充月考)已知双曲线22221(0,0)y x a b a b-=>>的上下焦点分别为1F ,2F ,过1F 作双曲线渐近线的垂线1F P ,垂足为点P ,若1POF ∆23,则双曲线的离心率为( ) A .2B 3C 39D 23解:焦点1(0,)F c ,设曲线的渐近线的方程为ay x b=,因为1F P OP ⊥, 所以直线1F P 的方程为b y c x a -=-,即a y x c b =+,联立b y x c aa y xb ⎧=-+⎪⎪⎨⎪=⎪⎩,解得ab x c =,所以121322OPF ab ab Sc c =⋅⋅=,所以3b a =2222232311()3c c b e a a a ===+=+, 故选:D .5.(2021秋•许昌月考)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过右焦点作平行于其中一条渐近线的直线交双曲线于点A ,若△12AF F 的内切圆半径为3b,则双曲线的离心率为( )A .3B .2C .5D .3解:设双曲线的左、右焦点,1(,0)F c -,2(,0)F c ,设双曲线的一条渐近线方程为by x a=, 可得直线2AF 的方程()by x c a =-,联立双曲线22221(0)x y b a a b -=>>,可得22(2c a A c +,22())2b a c ac -,设1||AF m =,2||AF n =,由三角形的面积的等积法可得,2211()(2)22322b b c a m n c c ac-⋅++=⋅⋅,化简可得2332c m n a c a+=--①,由双曲线的定义可得2m n a -=②,在三角形12AF F 中,22()sin 2b c a n ac θ-=,(θ为直线2AF 的倾斜角),由tan b a θ=,22sin cos 1θθ+=,可得22sin b b c a bθ==+,可得222c a n a -=③, 由①②③化简可得2220c ac a --=,()(2)0c a c a +-=,所以c a =-(舍),2c a =,所以离心率2ce a==, 故选:B .6.(2021秋•南宁月考)设双曲线2222:1x y C a b-=的左、右焦点分别为1F 、2F ,右顶点为A ,M 为双曲线上一点,且2212MF A MAF MF A ∠=∠=∠,则双曲线的离心率为( ) A .2BCD .3解:因为22MF A MAF ∠=∠,所以2||||AM MF =+,故M 在2AF 中垂线上,则M 在曲线右支上, 所以21112MAF MF A AMF MF A ∠=∠+∠=∠,所以11MF A AMF ∠=∠,所以1||||AF AM =, 所以12||||AF MF =,(,0)A a ,2(,0)F c ,故2M a cx +=,22||M MF c a a x c=-, 所以22||()2c a c a MF a c +=⋅-,1||AF c a =+,所以2()2c a c a c a a c+⋅-=+,即22ac c a c a a +-=+,即2242ac c a ac +=+,所以2()42c c c a a a+=+⋅,即240e e --=,所以e =1e >,所以e =B . 7.(2021•浙江开学)已知双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线为1l ,2l ,若双曲线C 的右支上存在一点P ,使得点P 到1l ,2l 的距离之和为b ,则双曲线C 离心率的取值范围是( ) A.)+∞B.C .[2,)+∞D .(1,2]解:由题意可得直线1l ,2l 的方程分别为:0bx ay +=,0bx ay -=,设0(P x ,0)y ,则2200221x y a b-=,所以22222200b x a y a b -=,即220000()()bx ay bx ay a b +-=, 所以220000a b bx ay bx ay +=-,设P 到直线1l ,2l 的距离分别为1d ,2d,则001||bx ay d c +==, 同理可得:002||bx ay d c-=, 由题意两点22002200000012||||||||22a b bx ay bx ay bx ay bx ay a b abd d c cc c +-++--+===, 当且仅当22200()bx ay a b -=,即00bx ay ab -=±,时取等号,由题意可得2ab b c ,所以可得2ca ,故选:C .8.(2021秋•恩施州月考)双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,右焦点为F ,过点A 的直线交双曲线C 于另一点B ,当BF AF ⊥时满足||2||AF BF >,则双曲线离心率e 的取值范围是( )A .12e <<B .312e <<C .322e << D .3312e +<<解:如图,(,0)F c ,把x c =代入22221x y a b -=,得2b y a =±,不妨设B 在第一象限,则2(,)b B c a ,由题意可得22b a c a +>,即2222()a ac c a +>-,可得2230e e --<,解得:312e -<<.又1e >,∴双曲线离心率e 的取值范围是312e <<.故选:B .圆锥曲线离心率求法专题训练(三)1.(2021•江西模拟)已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且[6πα∈,]4π,则该椭圆离心率e 的取值范围为( )A .2[3B .2[,1) C .2[31] D .3[6 解:由已知,点B 和点A 关于原点对称,则点B 也在椭圆上,设椭圆的左焦点为1F ,则根据椭圆定义:1||||2AF AF a +=,根据椭圆对称性可知:1||||AF BF =,因此||||2AF BF a +=①;因为AF BF ⊥,则在Rt ABF ∆中,O 为斜边AB 中点,则||2||2AB OF c ==,那么||2sin AF c α=②,||2cos BF c α=③;将②、③代入①得,2sin 2cos 2c c a αα+=,则离心率11sin cos 2)4c e a πααα===++,由[6πα∈,]4π,5[412ππα+∈,]2π,由562sin 12π+62sin()[4πα++∈1],则2[e ∈31],故选:C .2.(2020秋•潞州区校级期末)椭圆22110064x y +=的焦点为1F 、2F ,椭圆上的点P 满足1260F PF ∠=︒,则△12F PF 的面积是( )A 643B 913C 163D .643 解:椭圆22110064x y +=的焦点为1F 、2F ,椭圆上的点P 满足1260F PF ∠=︒,∴由椭圆定义得:12||||20PF PF +=,221212||||2||||400PF PF PF PF ∴++=,① 由余弦定理得:22121212||||2||||cos 436PF PF PF PF F PF +-∠=⨯,② 联立①②,得:12256||||3PF PF =,∴△12F PF 的面积是12112563643||||sin 60223S PF PF =︒=⨯=故选:A .3.(2020秋•尖山区校级月考)已知椭圆22221(0)x y a b a b+=>>的右顶点为A ,点P 在椭圆上,O 为坐标原点,且90OPA ∠=︒,则椭圆的离心率的取值范围为( ) A .3(B .2(C .2D .3 解:设(,)P x y ,90OPA ∠=︒,∴点P 在以OA 为直径的圆上.该圆为:22()(2a x y -+=2)2a,化为220x ax y -+=.联立椭圆方程可化为222322()0b a x a x a b -+-=,解得22P ab x c=,0x a <<,220ab a c ∴<<,化为2222c b a c >=-,212e ∴>,又10e >>21e <<.故选:B .4.(2020•镇海区校级模拟)设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足0FA FB =,||||2||FB FA FB ,则椭圆C 的离心率的取值范围是( )A .2[5B .5[1) C .2[31] D .[31,1)解:作出椭圆的左焦点F ',由椭圆的对称性可知,四边形AFBF '为平行四边形, 又0FA FB =,即FA FB ⊥,故平行四边形AFBF '为矩形,||||2AB FF c '∴==,设AF n '=,AF m =,则在直角三角形ABF 中,2m n a +=,2224m n c +=,① 得22mn b =,②①÷②得222m n c n m b +=,令mt n=,得2212c t t b +=,又由||||2||FB FA FB ,得[1m t n =∈,2],2212[2c t t b ∴+=∈,5]2,即22[1c b ∈,5]4即22514c b ,得22415b c , 即222415a c c -,即224115a c -,则22925a c ,即221529c a ,得1529e 得2523e 则椭圆的离心率的取值范围是2[2,5]3,故选:A .5.(2020•永康市模拟)椭圆22221(0)x y a b a b+=>>的两个焦点为1F ,2F ,若P 为椭圆上一点,且12||3||PF PF =,则该椭圆离心率的取值范围为( )A .(0,1]3B .1[3,1)C .(0,1]2D .1[2,1)解:P 为椭圆22221(0)x y a b a b+=>>上一点,1F ,2F 为椭圆焦点,且12||3||PF PF =,可得12||||2PF PF a +=,13||2PF a a c =+,12e ∴.∴椭圆离心率的范围是1[2,1)故选:D .6.(2018•恩施州一模)设椭圆2222:1(0)x y E a b a b+=>>的一个焦点为(1,0)F ,点(1,1)A -为椭圆E 内一点,若椭圆E 上存在一点P ,使得||||9PA PF +=,则椭圆E 的离心率的取值范围是( ) A .1[,1)2B .11[,]32C .11[,]54D .12[,]23解:记椭圆的左焦点为1(1,0)F -,则1||1AF =,11||||||PF PA AF +,112||||||||||1910a PF PF PA AF PF ∴=++++=,即5a ;11||||||PF PA AF -,112||||||||||918a PF PF PA AF PF ∴=+-+-=,即4a ,45a ∴,∴11[,]54c a ∈故选:C .7.(2020秋•安顺期末)已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为(,0)F c ,上顶点为(0,)A b ,直线2a x c=上存在一点P 满足FP AP FA AP =-,则椭圆的离心率的取值范围为( )A .1[,1)2B .2[C .51[-D .2] 解:设2(a P c ,)y ,由FP AP FA AP =-,可得()0FP FA AP +=,则2(a FP FA c c+=-,)(y c +-,2)(2a b c c =-,)y b +,2(a AP c =,)y b -,所以由()0FP FA AP +=,可得:22(2)()()0a a c y b y b c c -++-=,可得:4222220a a b y c--=-,整理可得:4222222()0a a c a c c ---,即42310e e -+,235352e -+,即51512e-+,由于椭圆的离心率小于1511e -<, 故选:C .8.(2012•西安一模)椭圆2221x y a +=上存在一点P ,使得它对两个焦点1F ,2F 的张角122F PF π∠=,则该椭圆的离心率的取值范围是( ) A .(02B .2[,1) C .(0,1]2D .1[2,1)解:椭圆方程为:2220x y a +=,21b ∴=,可得221c a =-,21c a =-椭圆的离心率为21a e -=又椭圆上一点P ,使得角122F PF π∠=,∴设点P 的坐标为0(x ,0)y ,结合1(,0)F c -,2(,0)F c ,可得10(PF c x =--,0)y -,20(PF c x =-,0)y -,∴22212000PF PF x c y =-+=⋯① 0(P x ,0)y 在椭圆2221x y a+=上,∴220021x y a =-,代入①可得22200210x x c a -+-=将221c a =-代入,得22200220x x a a --+=,所以4220221a a x a -=-,0a x a -∴220x a ,即4222201a a a a --,解之得22a ∴椭圆的离心率221121[a e a -=-,1).圆锥曲线离心率求法专题训练(四)1.(2015秋•南关区校级期末)设椭圆方程为22221(0)x y a b a b+=>>,焦距为2c ,(2,0)A c -,(2,0)B c ,如果椭圆上存在一点P ,使得AP BP ⊥,则离心率的取值范围为( )A .1)2B .4)5C .D . 解:椭圆方程为22221(0)x y a b a b+=>>,焦距为2c ,(2,0)A c -,(2,0)B c ,椭圆上存在一点P ,使得AP BP ⊥,∴设(cos ,sin )P a b αα,则(cos 2,sin )AP a c b αα=+,(cos 2,sin )BP a c b αα=-,AP BP ⊥,∴22222cos 4sin 0AP BP a c b αα=-+=,22222222444c a cos b sin e a a θθ+∴==222222sin 4a cos a sin c a θθθ+-=22224a c sin a θ-=,02θπ<<,∴当0θ→时,12e =;当2πθ=时,e =,∴离心率的取值范围为1)2.2.(2013秋•安吉县校级月考)设椭圆22221(0)x y a b a b+=>>的两焦点为1F 、2F ,若椭圆上存在一点Q ,使12120FQF ∠=︒,椭圆离心率e 的取值范围为( )A 1e <B 1e <<C .603e< D .112e << 解:椭圆的焦点在x 轴,设椭圆的上顶点为A ,椭圆上存在一点Q ,12120FQF ∠=︒,160F AO ∴∠︒, 1tan 3c F AO b∴∠=,∴33b c∴2222222113b a c a c c c -==-,故2234c a ,32ce a ∴=,又1e <.∴1e <.故选:A . 3.(2020•池州模拟)已知椭圆22221(0)x y a b a b+=>>的左,右焦点分别为1F ,2F ,若椭圆上存在点P ,使得12PF PF ⊥,则椭圆离心率的取值范围是( )A .B .C .D . 解:由12PF PF ⊥,知△12F PF 是直角三角形,||OP c b ∴=,即222c a c -,2ac ∴,ce a=,01e <<,∴1e <,故选:C .4.(2015秋•晋安区校级期末)已知点1F ,2F 为椭圆22221(0)x y a b a b+=>>的左右焦点,若椭圆上存在点P使得12||2||PF PF =,则此椭圆的离心率的取值范围是( ) A .1(0,)3B .(0,1]2C .1(3,1]2D .1[3,1)解:由题意设12||2||2PF PF x ==,则22x x a +=,解得23a x =,故14||3a PF =,22||3a PF =,当P 与两焦点1F ,2F 能构成三角形时,由余弦定理可得222121644242cos 9933a a a ac F PF =+-⨯⨯⨯∠,由12cos (1,1)F PF ∠∈-可得222212201644cos (999a a a c F PF =-∠∈,236)9a ,即222436499a a c <<,∴22119c a <<,即2119e <<,∴113e <<; 当P 与两焦点1F ,2F 共线时,可得2()a c a c +=-,解得13c e a ==;综上可得此椭圆的离心率的取值范围为1[3,1)故选:D .5.(2015秋•西城区期末)已知椭圆22221(0)x y a b a b+=>>的两个焦点分别为1F ,2F ,若椭圆上存在点P 使得12F PF ∠是钝角,则椭圆离心率的取值范围是( )A .2(0,)2 B .2(,1)2 C .1(0,)2D .1(,1)2解:如图,当动点P 在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角12F PF ∠渐渐增大,当且仅当P 点位于短轴端点0P 处时,张角12F PF ∠达到最大值.由此可得:椭圆上存在点P 使得12F PF ∠是钝角,∴△012P F F 中,10290F P F ∠>︒,Rt ∴△02P OF 中,0245OP F ∠>︒, 所以02P O OF <,即b c <,222a c c ∴-<,可得222a c <,22e ∴>,01e <<,∴212e <<.故选:B .6.(2018秋•城厢区校级期末)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,且12||2F F c =,若椭圆上存在点M 使得1221sin sin a cMF F MF F =∠∠,则该椭圆离心率的取值范围为( ) A .(0,21)- B .2(2,1) C .2(0,)2D .(21-,1)解:在△12MF F 中,由正弦定理可得,122112||||sin sin MF MF MF F MF F =∠∠, 又1221sin sin a cMF F MF F =∠∠,即有1222||2||||||MF a MF c a MF MF -==,解得222||a MF a c=+, 由于2||a c MF a c -<<+,即有22()()2()a c a c a a c -+<<+,即为2222a c a -<,显然成立; 又2a a c <+,即有(21)c a >-,则离心率(21ce a=∈-,1).故选:D .7.已知椭圆的左、右焦点为1F 、2F ,若椭圆上存在点P 使1260F PF ∠=︒,则椭圆的离心率的取值范围为()A .3[2,1) B .(0,3]2 C .1[2,1) D .(0,1]2解:如图,当动点P 在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角12F PF ∠渐渐增大,当且仅当P 点位于短轴端点0P 处时,张角12F PF ∠达到最大值.存在点P 为椭圆上一点, 使得1260F PF ∠=︒,∴△012P F F 中,10260F P F ∠︒, Rt ∴△02P OF 中,0230OP F ∠︒,所以023P OOF ,即3b c ,2223a c c ∴-,可得224a c ,∴12ca ,01e <<,∴112e <.故选:C . 8.(2015•怀化二模)设1F ,2F 为椭圆的两个焦点,若椭圆上存在点P 满足12120F PF ∠=︒,则椭圆的离心率的取值范围是( ) A .3[,1)2B .3(,1)2C .3(0,)2D .3(0,]2解:1(,0)F c -,2(,0)F c ,0c >,设1(P x ,1)y ,则11||PF a ex =+,21||PF a ex =-.在△12PF F 中,由余弦定理得2221111()()41cos12022()()a ex a ex c a ex a ex ++--︒=-=+-,解得2221243c a x e -=.21(0x ∈,2]a ,2222430c a a e -∴<,即22430c a -.且21e <32c e a ∴=. 故椭圆离心率的取范围是3[,1)2e ∈.故选:A .圆锥曲线离心率求法专题训练(五)1.(2013•天心区校级二模)已知椭圆:22221(,0)x y a b a b+=>和圆222:O x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为A ,B .若椭圆上存在点P ,使得0PA PB =,则椭圆离心率e 的取值范围是( )A .1[2,1) B .(0,]2 C.[2,1) D .1[2,2解:由0PA PB =,可得90APB ∠=︒,利用圆的性质,可得||OP =,222||2OP b a ∴=,222a c ∴ 212e ∴,01e <<∴1e <故选:C .2.(2017秋•海淀区校级期末)若双曲线22221(0,0)x y a b a b -=>>的两个焦点为1F ,2F ,若双曲线上存在一点P ,满足12||3||PF PF =,则该双曲线的离心率的取值范围是( ) A .12e <<B .12eC .12e <D .12e <解根据双曲线定义可知12||||2PF PF a -=,即223||||2PF PF a -=.2||a PF ∴=,1||3PF a = 在△12PF F 中,1212||||||F F PF PF <+,224||c PF <,22||2c PF a <=,∴2ca<, 当p 为双曲线顶点时,2ca=又双曲线1e >,12e ∴<故选:C . 3.(2016秋•双台子区校级期中)设椭圆22221x y a b+=的左、右焦点分别是1F ,2F ,如果在椭圆上存在一点p ,使12F PF ∠为钝角,则椭圆离心率的取值范围是. 解:设0(P x ,0)y ,则0||x a <,又12F PF ∠为钝角,当且仅当120PF PF <有解, 即22200c x y >+有解,即22200()minc x y >+.又2222002b y b x a =-,2222220002[c x y b x b a∴+=+∈,2)a ,即2220()minx y b +=.故22c b >,222c a c >-,∴2212c a >,即e >,又01e <<,∴1e <<.故答案为:. 4.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,若双曲线上存在一点P 使21||||PF aPF c=,则该双曲线的离心率的取值范围是1] . 解:21||||PF aPF c=,P ∴在双曲线右支,设P 点的横坐标为o x ,注意到o x a . 由双曲线第二定义得:1||o PF a ex =+,2||o PF ex a =-,则有00ex a a a ex c -=+,得()o a a c x a ec ea+=-,分子分母同时除以a ,得:2a ca e e+-,∴211ee e+-,解得121e<+.故答案为:(11].5.(2012•江苏模拟)已知1F 、2F 分别为双曲线22221(0,0)xy a b a b-=>>的左、右焦点,若双曲线左支上存在一点P 使得221||8||PF a PF =,则双曲线的离心率的取值范围是 (1,3] . 解:P 为双曲线左支上一点,12||||2PF PF a ∴-=-,21||||2PF PF a ∴=+,①又221||8||PF a PF =,②∴由①②可得,1||2PF a =,2||4PF a =.1212||||||PF PF F F ∴+,即242a a c +,∴3c a ,③ 又1122||||||PF F F PF +>,224a c a ∴+>,∴1ca>.④ 由③④可得13c a <. 故答案为:(1,3].。

高中压轴选择题离心率专项

高中压轴选择题离心率专项

高中数学压轴选择题离心率专项一.选择题(共50小题)1.椭圆焦点在x 轴上,A 为该椭圆右顶点,P 在椭圆上一点,∠OPA=90°,则该椭圆的离心率e 的范围是( )A .[12,1)B .( 22,1)C .[12, 63)D .(0, 22) 2.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 作斜率为1的直线交椭圆于A ,B 两点.若向量OA →+OB →与向量a →=(3,﹣1)共线,则该椭圆的离心率为( )A . 33B . 63C . 34D . 23 3.设椭圆C :x 2a +y 2b =1(a >b >0)的左、右焦点分别为F 1、F 2,其焦距为2c ,点Q (c ,a 2)在椭圆的内部,点P 是椭圆C 上的动点,且|PF 1|+|PQ |<5|F 1F 2|恒成立,则椭圆离心率的取值范围是( )A .(15, 22)B .(14, 22)C .(13, 22)D .(25, 22) 4.已知椭圆x 2a 2+y 2b 2=1(a >b >0),点A (c ,b ),右焦点F (c ,0),椭圆上存在一点M ,使得OM →⋅OA →=OF →⋅OA →,且OM →+OF →=tOA →(t ∈R ),则该椭圆的离心率为( )A . 22B . 32C . 33D . 23 5.已知点A 为椭圆E :x 2a +y 2b =1(a >b >0)的左顶点,B ,C 两点在椭圆E 上,若四边形OABC 为平行四边形,O 为坐标系原点,∠OAB=30°,则椭圆E 的离心率为( )A .2 23B . 22C .12D . 24 6.已知椭圆x 2a +y 2b =1(a >b >0)的左顶点和上顶点分别为A ,B ,左、右焦点分别是F 1,F 2,在线段AB 上有且只有一个点P 满足PF 1⊥PF 2,则椭圆的离心率为( )A . 5−12B . 3−12C . 53D . 327.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P 在椭圆C 上,线段PF 2与圆x 2+y 2=b 2相切于点Q ,且点Q 为线段PF 2的中点,则a 2+e 2b(其中e 为椭圆C 的离心率)的最小值为( )A . 6B .3 64C . 5D .3 548.已知双曲线x 2a ﹣y 2b =1(a >0,b >0)的左、右焦点分别是F 1,F 2,过F 2的直线交双曲线的右支于P ,Q 两点,若|PF 1|=|F 1F 2|,且3|PF 2|=2|QF 2|,则该双曲线的离心率为( )A .75B .43C .2D .1039.己知O 为坐标原点,双曲线x 2a ﹣y 2b =1(a >0,b >0)的两条渐近线分别为l 1,l 2,右焦点为F ,以OF 为直径作圆交l 1于异于原点O 的点A ,若点B 在l 2上,且AB →=2FA →,则双曲线的离心率等于( )A . 2B . 3C .2D .310.设双曲线x 2a 2﹣y 2b 2=1(a >0,b >0)的右焦点为F ,过点F 作x 轴的垂线交两渐近线于点A ,B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若OP →=λOA →+u OB →(λ,μ∈R ),λ2+u 2=58,则双曲线的离心率为( ) A .2 33 B .3 55 C .3 22 D .98 11.设A 、B 分别为双曲线C :x 2a 2﹣y 2b 2=1(a >0,b >0)的左、右顶点,P ,Q 是双曲线C 上关于x 轴对称的不同两点,设直线AP 、BQ 的斜率分别为m 、n ,则2b a +a b +12|mn |+ln |m |+ln |n |取得最小值时,双曲线C 的离心率为( ) A . 2 B . 3 C . 6 D . 62 12.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)和圆C 2:x 2+y 2=b 2,若椭圆C 1上存在点P ,过点P 作圆C 2的两条切线PA ,PB (A ,B 为对应的切点),且满足∠APB =π3,则椭圆最圆的时离心率e=( )A . 33B . 24C . 32D . 3413.设双曲线C :x 2a 2﹣y 2b 2=1(a >0,b >0)的左右焦点分别为F 1,F 2,若在曲线C 的右支上存在点P ,使得△PF 1F 2的内切圆半径为a ,圆心记为M ,又△PF 1F 2的重心为G ,满足MG ∥F 1F 2,则双曲线C 的离心率为( )A . 2B . 3C .2D . 514.已知第一象限内的点M 既在双曲线C 1:x 2a 2﹣y 2b 2=1(a >0,b >0)上,又在抛物线C 2:y 2=2px 上,设C 1的左,右焦点分别为F 1、F 2,若C 2的焦点为F 2,且△MF 1F 2是以MF 1为底边的等腰三角形,则双曲线的离心率为( )A . 2B . 3C .1+ 2D .2+ 315.已知E ,F 为双曲线C :x 2a 2−y 2b 2=1(0<a <b )的左右焦点,抛物线y 2=2px (p >0)与双曲线有公共的焦点F ,且与双曲线交于A 、B 不同两点,若5|AF |=4|BE |,则双曲线的离心率为( )A .4+ 7B .4− 3C .4+ 3D .4− 716.设A 为椭圆x 2a +y 2b =1(a >b >0)上一点,点A 关于原点的对称点为B ,F 为椭圆的右焦点,且AF ⊥BF .若∠ABF ∈[π4,5π12],则该椭圆离心率的取值范围是( )A .(0, 22]B .[ 22,1)C .[0, 63]D .[ 22, 63]17.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点和上顶点分别为A 、B ,左、右焦点分别是F 1,F 2,在线段AB 上有且只有一个点P 满足PF 1⊥PF 2,则椭圆的离心率的平方为( )A . 32B . 3−12C .3+ 52D .3− 52 18.已知双曲线x 2a −y 2b =1,(a ,b >0)的左、右焦点分别为F 1,F 2,过F 1且与x 轴垂直的直线交双曲线于A ,B 两点,直线AF 2与双曲线的另一个交点为C ,若S △ABC =3S △BCF 2,则双曲线的离心率为( )A . 2B . 3C .2D . 519.已知A ,B 分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,不同两点P ,Q 在椭圆C 上,且关于x 轴对称,设直线AP ,BQ 的斜率分别为m ,n ,则当2b a +a b +12mn+ln |m |+ln |n |取最小值时,椭圆C 的离心率为( ) A . 33 B . 23 C .12 D . 22 20.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)和圆x 2+y 2=b 2,若椭圆C 上存在点P ,使得过点P 引圆O 的两条切线,切点分别为A 、B ,满足∠APB=60°,则椭圆的离心率e 的取值范围是( )A .0<e ≤ 32B .12≤e <1C . 32<e <1D . 32≤e <1 21.已知椭圆和双曲线有共同的焦点F 1,F 2,P 是它们的一个交点,且∠F 1PF 2=π3,记椭圆和双曲线的离心率分别为e 1,e 2,则当1e 1e 2取最大值时,e 1,e 2的值分别是( )A . 22, 62B .12, 52C . 33, 6D . 24, 3 22.如图所示,A ,B ,C 是双曲线x 2a −y 2b =1(a >0,b >0)上的三个点,AB 经过原点O ,AC 经过右焦点F ,若BF ⊥AC 且|BF |=|CF |,则该双曲线的离心率是( )A . 102B . 10C .32D .3 23.过双曲线x 2a 2﹣y 2b 2=1(b >0,a >0)的左焦点F (﹣c ,0)(c >0),作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若OE →=12(OF →+OP →),则双曲线的离心率为( )A . 102B . 105C . 10D . 2 24.已知点P 是双曲线x 2a 2−y 2b 2=1(a >0,b >0)左支上除顶点外的一点,F 1,F 2分别是双曲线的左、右焦点,∠PF 1F 2=α,∠PF 2F 1=β,双曲线离心率为e ,则tan a 2tan β2=( )A .e−1e +1B .e +1e−1C .e 2+1e 2−1D .e 2−1e 2+1 25.设F 是双曲线x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,双曲线两条渐近线分别为l 1,l 2,过F 作直线l 1的垂线,分别交l 1,l 2于A 、B 两点,且向量BF →与FA →同向.若|OA |,|AB |,|OB |成等差数列,则双曲线离心率e 的大小为( )A . 52B . 62C . 72D .2 26.已知点P 为双曲线x 2a −y 2b =1(a >0,b >0)的右支上一点,F 1、F 2为双曲线的左、右焦点,使(OP →+OF 2→)⋅F 2P →=0(O 为坐标原点),且|PF 1→|= 3|PF 2→|,则双曲线离心率为( )A . 6+12B . 6+1C . 3+12D . 3+1 27.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1,O 为坐标原点,点P 在椭圆上,点Q 在椭圆的右准线上,若PQ →=2F 1O →,F 1Q →=λ(F 1P →|F 1P →|+F 1O →|F 1O →|)(λ>0)则椭圆的离心率为( ) A .12 B . 32 C . 5−12 D . 5+1428.设双曲线的﹣个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A . 2B . 3C . 3+12D . 5+1229.已知双曲线E 的离心率为e ,左、右两焦点分别为F 1、F 2,抛物线C 以F 2为顶点,F 1为焦点,点P 为抛物线与双曲线右支上的一个交点,若a |PF 2|+c |PF 1|=8a 2,则e 的值为( )A . 3B .3C . 2D . 630.已知双曲线x 2a 2−y 2b 2=1(a >b >0)的半焦距为c ,直线l 的方程为bx +ay ﹣ab=0,若原点O 到直线l 的距离为 34c ,则双曲线的离心率为( ) A .2 33或2 B .2 33 C . 2或2 33 D .2 31.如果以原点为圆心的圆经过双曲线x 2a −y 2b =1(a >0,b >0)的顶点,并且被直线x =a 2c (c 为双曲线的半焦距)分为弧长为3:1的两段弧,则该双曲线的离心等于…( )A .2B . 3C . 2D .6232.过双曲线M :x 2﹣y 2b 2=1的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B ,C ,且|AB |=|BC |,则双曲线M 的离心率是( ) A . 10 B . 5 C .103 D . 5233.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点.且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .4 33B .2 33C .3D .2 34.已知椭圆C :x 2a +y 2b =1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx ﹣ay +2ab=0相切,则C 的离心率为( )A . 63B . 33C . 23D .13 35.已知O 为坐标原点,F 是椭圆C :x 2a +y 2b =1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A .13B .12C .23D .3436.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点F ,C 与过原点的直线相交于A ,B 两点,连结AF ,BF ,若|AB |=10,|AF |=6,cos∠ABF =45,则C 的离心率为( )575737.设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1、B 1和A 2、B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( )A .(2 33,2]B .[2 33,2)C .(2 33,+∞)D .[2 33,+∞)38.设双曲线的左准线与两条渐近线交于A ,B 两点,左焦点为在以AB 为直径的圆内,则该双曲线的离心率的取值范围为( )A .(0, 2)B .(1, 2)C .( 22,1) D .( 2,+∞) 39.设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足|PF 1|:|F 1F 2|:|PF 2|=4:3:2,则曲线r 的离心率等于( )A .12或32B .23或2C .12或2D .23或3240.椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( )A .(0, 22]B .(0,12]C .[ 2−1,1)D .[12,1) 41.曲线x 210−m +y 26−m =1(m <6)与曲线x 25−m +y 29−m=1(5<m <9)的( ) A .焦距相等 B .离心率相等 C .焦点相同 D .准线相同42.已知双曲线C :x 22−y 2b 2=1(a >0,b >0)的右焦点为F ,过F 且斜率为 3的直线交C 于A 、B 两点,若AF →=4FB →,则C 的离心率为( )558543.双曲线x 2a 2−y 2b 2=1(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A .(1,3)B .(1,3]C .(3,+∞)D .[3,+∞]44.设△ABC 是等腰三角形,∠ABC=120°,则以A ,B 为焦点且过点C 的双曲线的离心率为( )A .1+ 22B .1+ 32C .1+ 2D .1+ 3 45.双曲线x 2a 2−y 2b 2=1(a >0,b >0)的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( )A .(1, 2]B .[ 2,+∞)C .(1, 2+1]D .[ 2+1,+∞)46.从椭圆x 2a +y 2b =1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A . 24B .12C . 22D . 32 47.已知双曲线x 2a −y 2b =1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)48.设F 1、F 2分别是椭圆x 2a +y 2b =1(a >b >0)的左、右焦点,P 是其右准线上纵坐标为 3c (c 为半焦距)的点,且|F 1F 2|=|F 2P |,则椭圆的离心率是( ) A . 3−12 B .12 C . 5−12 D . 22 49.设F 1,F 2分别是双曲线x 2a −y 2b =1的左、右焦点.若双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|,则双曲线离心率为( )A . 52B . 102C . 152D . 5 50.已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是准线上一点,且PF1⊥PF2,|PF1|•|PF2|=4ab,则双曲线的离心率是()A.2B.3C.2 D.3高中压轴选择题离心率专项参考答案与试题解析一.选择题(共50小题)1.椭圆焦点在x 轴上,A 为该椭圆右顶点,P 在椭圆上一点,∠OPA=90°,则该椭圆的离心率e 的范围是( )A .[12,1)B .( 22,1)C .[12, 63)D .(0, 22) 【分析】可设椭圆的标准方程为:x 2a 2+y 2b 2=1(a >b >0).设P (x ,y ),由于∠OPA=90°,可得点P 在以OA 为直径的圆上.该圆为:(x −a 2)2+y 2=(a 2)2,化为x 2﹣ax +y 2=0.与椭圆的方程联立可得:(b 2﹣a 2)x 2+a 3x ﹣a 2b 2=0,得到x =ab 22,由于0<x <a ,可得0<ab 22<a ,解出即可. 【解答】解:可设椭圆的标准方程为:x 2a +y 2b =1(a >b >0). 设P (x ,y ),∵∠OPA=90°,∴点P 在以OA 为直径的圆上. 该圆为:(x −a 2)2+y 2=(a 2)2,化为x 2﹣ax +y 2=0.联立 x 2−ax +y 2=0x 2a 2+y 2b 2=1化为(b 2﹣a 2)x 2+a 3x ﹣a 2b 2=0, 解得x =ab 2c 2, ∵0<x <a ,∴0<ab 2c 2<a , 化为c 2>b 2=a 2﹣c 2,∴e 2>12,又1>e >0.解得 22<e <1. ∴该椭圆的离心率e 的范围是( 22,1). 故选:B .【点评】本题考查了椭圆与圆的标准方程及其性质,考查了分析问题和解决问题的能力,属于难题.2.过椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点F 作斜率为1的直线交椭圆于A ,B 两点.若向量OA →+OB →与向量a →=(3,﹣1)共线,则该椭圆的离心率为( )A . 33B . 63C . 34D . 23【分析】设A (x 1,y 1),B (x 2,y 2).F (﹣c ,0).直线l 的方程为:y=x +c ,与椭圆方程联立化为:(a 2+b 2)x 2+2ca 2x +a 2c 2﹣a 2b 2=0,根据向量OA →+OB →与向量a →=(3,﹣1)共线,及其根与系数的关系即可得出. 【解答】解:设A (x 1,y 1),B (x 2,y 2).F (﹣c ,0).直线l 的方程为:y=x +c ,联立 y =x +cx 22+y 2b 2=1,化为:(a 2+b 2)x 2+2ca 2x +a 2c 2﹣a 2b 2=0,∴x 1+x 2=−2ca 2a 2+b 2,y 1+y 2=x 1+x 2+2c=2cb 2a 2+b 2,∴向量OA →+OB →=(−2ca 2a 2+b 2,2cb 2a 2+b 2),∵向量OA →+OB →与向量a →=(3,﹣1)共线, ∴﹣−2ca 2a +b ﹣3×2cb 2a +b =0,∴a 2=3b 2,∴e =c a = 1−b 22= 63.故选:B .【点评】本题考查了椭圆的标准方程及其性质、向量共线定理、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.3.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,其焦距为2c ,点Q (c ,a2)在椭圆的内部,点P 是椭圆C 上的动点,且|PF 1|+|PQ |<5|F 1F 2|恒成立,则椭圆离心率的取值范围是( )A .(15, 22)B .(14, 22)C .(13, 22)D .(25, 22)【分析】点Q (c ,a2)在椭圆的内部,b 2a >a2,|PF 1|+|PQ |=2a ﹣|PF 2|+|PQ |,由﹣|QF 2|+|PQ |≤|PQ |﹣|PF 2|≤|QF 2|,且|QF 2|=a2,要|PF 1|+|PQ |<5|F 1F 2|恒成立,即2a ﹣|PF 2|+|PQ |≤2a +a2<5×2c .【解答】解:∵点Q (c ,a 2)在椭圆的内部,∴b 2a >a2,⇒2b 2>a 2⇒a 2>2c 2.c a < 22|PF 1|+|PQ |=2a ﹣|PF 2|+|PQ |又因为﹣|QF 2|+|PQ |≤|PQ |﹣|PF 2|≤|QF 2|,且|QF 2|=a2,要|PF 1|+|PQ |<5|F 1F 2|恒成立,即2a ﹣|PF 2|+|PQ |≤2a +a2<5×2c5a 2<10c ,c a >14,则椭圆离心率的取值范围是(14, 22). 故选:B【点评】本题考查了椭圆的方程、性质,椭圆的离心率,转化思想是解题关键,属于难题.4.已知椭圆x 2a +y 2b=1(a >b >0),点A (c ,b ),右焦点F (c ,0),椭圆上存在一点M ,使得OM →⋅OA →=OF →⋅OA →,且OM →+OF →=tOA →(t ∈R ),则该椭圆的离心率为( )A . 22B . 32C . 33D . 23【分析】设M (x ,y ),由OM →⋅OA →=OF →⋅OA →⇒cx +by=c 2,…①,由OM →+OF →=tOA →(t ∈R ),cy ﹣bx=bc…② 由①②得x=a 2c−2b 2ca 2,y=2bc 2a 2,…③把③代入椭圆x 2a 2+y 2b 2=1(a >b >0)得a 4c 2+4c 6=a 6⇒2c 3=b 3+bc 2,c 3﹣b 3=bc 2﹣c 3,⇒(c ﹣b )(b 2+bc +2c 2)=0⇒b=c .【解答】解:设M (x ,y ),∵OM →⋅OA →=OF →⋅OA →∴OA →⋅(OM →−OF )→=0,⇒OA →⋅FM →=0⇒即OA ⊥MF ⇒cx +by=c 2,…①.OM →+OF →=(x +c ,y ),因为OM →+OF →=tOA →(t ∈R ),OM →+OF →与OA →共线,cy ﹣bx=bc…② 由①②得x=a 2c−2b 2c a ,y=2bc 2a ,…③把③代入椭圆x 2a +y 2b =1(a >b >0)得a 4c 2+4c 6=a 6⇒2c 3=b 3+bc 2,c 3﹣b 3=bc 2﹣c 3,⇒(c ﹣b )(b 2+bc +2c 2)=0⇒b=c⇒a= 2c ,椭圆的离心率e=c a = 22.故选:A【点评】本题考查了向量与圆锥曲线的综合应用,及向量的线性运算、转化思想,属于难题.5.已知点A 为椭圆E :x 2a +y 2b=1(a >b >0)的左顶点,B ,C 两点在椭圆E 上,若四边形OABC 为平行四边形,O 为坐标系原点,∠OAB=30°,则椭圆E 的离心率为( )A .2 23B . 22C .12D . 24【分析】如图所示,四边形OABC 为平行四边形,∠OAB=30°,直线OC 的方程为:y= 33x ,联立 y =33x x 2a 2+y 2b 2=1,解得:x C .同理联立 y = 33(x +a )x 2a 2+y 2b 2=1,解得x B .根据|OA |=|CB |=a ,即x C ﹣x B =a 化简即可得出.【解答】解:如图所示,四边形OABC 为平行四边形,∠OAB=30°,∴直线OC 的方程为:y= 33x ,联立 y =33x x 22+y 2b 2=1,解得:x C = 3ab 22. 同理联立 y =33(x +a )x 22+y 2b 2=1,化为:(a 2+3b 2)x 2+2a 3x +a 4﹣3a 2b 2=0.解得x B =a −2a 3a 2+3b2=3ab 2−a3a 2+3b 2. ∵|OA |=|CB |=a ,∴ 3 a 2+3b 2﹣3ab 2−a 3a +3b =a . 化为:a=3b .∴椭圆的离心率e=ca = 1−b 2a2=2 23.故选:A .【点评】本题考查了椭圆的标准方程及其性质、平行四边形的性质,考查了推理能力与计算能力,属于难题.6.已知椭圆x 2a +y 2b=1(a >b >0)的左顶点和上顶点分别为A ,B ,左、右焦点分别是F 1,F 2,在线段AB 上有且只有一个点P 满足PF 1⊥PF 2,则椭圆的离心率为( )A . 5−12B . 3−12C . 53D . 32【分析】由题意可求得AB 的方程,设出P 点坐标,代入AB 得方程,由PF 1⊥PF 2,得PF 1→•PF 2→=0,结合椭圆的离心率的性质即可求得答案. 【解答】解:依题意,作图如下∵A (﹣a ,0),B (0,b ),F 1(﹣c ,0),F 2(c ,0),∴直线AB 的方程为:x −a+y b=1,整理得:bx ﹣ay +ab=0,设直线AB 上的点P (x ,y ) 则bx=ay ﹣ab ,∴x=aby ﹣a ,∵PF 1⊥PF 2,∴PF 1→•PF 2→=(﹣c ﹣x ,﹣y )•(c ﹣x ,﹣y )=x 2+y 2﹣c 2=(a b)2+y 2﹣c 2,令f (y )=(ab )2+y 2﹣c 2,则f′(y )=2(a b y ﹣a )×ab+2y ,∴由f′(y )=0得:y=a 2b a 2+b 2,于是x=﹣ab 2a 2+b2,∴PF 1→•PF 2→=(﹣ab 2a 2+b 2)2+(a 2b a 2+b2)2﹣c 2=0,整理得:a 2b 2a 2+b 2=c 2,又b 2=a 2﹣c 2,e 2=c 2a2,∴e 4﹣3e 2+1=0,∴e 2=3± 52,又椭圆的离心率e ∈(0,1),∴e 2=3− 52=( 5−12)2,∴椭圆的离心率为e= 5−12.故选A .【点评】本题考查椭圆的性质,考查向量的数量积,考查直线的方程,着重考查椭圆性质的应用,是重点更是难点,属于难题.7.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 在椭圆C 上,线段PF 2与圆x 2+y 2=b 2相切于点Q ,且点Q 为线段PF 2的中点,则a 2+e 2b(其中e为椭圆C 的离心率)的最小值为( )A . 6B .3 64 C .5 D .3 54【分析】如图所示,由切线的性质可得:OQ ⊥PF 2.又点O 为线段F 1F 2的中点,利用三角形中位线定理可得:OQ ∥PF 1,PF 1⊥PF 2.再利用椭圆的定义、勾股定理可得(2b )2+(2a ﹣2b )2=(2c )2,化为:b=2a 3.c 2=a 2﹣b 2=59a 2.代入a 2+e 2b,利用基本不等式的性质即可得出.【解答】解:如图所示,由切线的性质可得:OQ ⊥PF 2. 又点O 为线段F 1F 2的中点,Q 为线段PF 2的中点, ∴OQ ∥PF 1,∴PF 1⊥PF 2.∴|PF 1|=2|OQ |=2b ,|PF 2|=2a ﹣2b .在Rt △PF 1F 2中,(2b )2+(2a ﹣2b )2=(2c )2, 化为:b 2+(a ﹣b )2=c 2=a 2﹣b 2,化为:b=2a 3.∴c 2=a 2﹣b 2=a 2−(2a 3)2=59a 2.∴a 2+e 2b=a 2+c 2a 2b=a 4+59a 2a 2×2a =9a 2+56a ≥2 9a 2⋅56a = 5,当且仅当a 2=59时取等号. ∴a 2+e 2b(其中e 为椭圆C 的离心率)的最小值为 5.故选:C .【点评】本题考查了椭圆的定义标准方程与几何性质、三角形中位线定理、勾股定理、基本不等式的性质,考查了推理能力与计算能力,属于难题.8.已知双曲线x 2a 2﹣y 2b2=1(a >0,b >0)的左、右焦点分别是F 1,F 2,过F 2的直线交双曲线的右支于P ,Q 两点,若|PF 1|=|F 1F 2|,且3|PF 2|=2|QF 2|,则该双曲线的离心率为( )A .75B .43C .2D .103【分析】先作出图形,并作出双曲线的右准线l ,设P 到l 的距离为d ,根据双曲线的第二定义即可求出Q 到l 的距离为32d .过Q 作l 的垂线QQ 1,而过P 作QQ 1的垂线PM ,交x 轴于N ,在△PMQ 中有c−a 2c−d12d =25,这样即可求得d=5c−5a 2c6,根据已知条件及双曲线的定义可以求出|PF 2|=2c ﹣2a ,所以根据双曲线的第二定义即可得到2c−2a 5c−5a 2c=c a ,进一步可整理成5(c a )2−12(ca )+7=0,这样解关于c a 的方程即可.【解答】解:如图,l 为该双曲线的右准线,设P 到右准线的距离为d ; 过P 作PP 1⊥l ,QQ 1⊥l ,分别交l 于P 1,Q 1;∵|PF 2||PP 1|=|QF 2||QQ 1|,3|PF 2|=2|QF 2|; ∴d |QQ 1|=23,|QQ 1|=32d ; 过P 作PM ⊥QQ 1,垂直为M ,交x 轴于N ,则:|NF 2||MQ |=c−a 2c −d 12d =25;∴解得d=5c−5a 2c6;∵根据双曲线的定义,|PF 1|﹣|PF 2|=2a ,∴|PF 2|=2c ﹣2a ;∴根据双曲线的第二定义,2c−2a 5c−5a 2c6=ca ;整理成:5(c a )2−12(ca )+7=0;∴解得c a =75,或ca=1(舍去);即该双曲线的离心率为75.故选A .【点评】考查双曲线的第二定义,双曲线的准线方程,双曲线的焦距、焦点的概念,以及对双曲线的定义的运用,双曲线的离心率的概念,相似三角形的比例关系.9.己知O 为坐标原点,双曲线x 2a 2﹣y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,右焦点为F ,以OF 为直径作圆交l 1于异于原点O 的点A ,若点B 在l 2上,且AB →=2FA →,则双曲线的离心率等于( ) A . 2 B . 3 C .2D .3【分析】求出双曲线的渐近线的方程和圆的方程,联立方程求出A ,B 的坐标,结合点B 在渐近线y=﹣bax 上,建立方程关系进行求解即可.【解答】解:双曲线的渐近线方程l 1,y=b a x ,l 2,y=﹣bax ,F (c ,0),圆的方程为(x ﹣c2)2+y 2=c 24,将y=b a x 代入(x ﹣c2)2+y 2=c 24,得(x ﹣c 2)2+(b a x )2=c 24,即c 2a x 2=cx ,则x=0或x=a 2c ,当x=a 2c 时,y ═b a •a 2c =ab c ,即A (a 2c ,ab c), 设B (m ,n ),则n=﹣ba•m ,则AB →=(m ﹣a 2c ,n ﹣ab c ),FA →=(a 2c ﹣c ,ab c ),∵AB →=2FA →,∴(m ﹣a 2c ,n ﹣ab c )=2(a 2c ﹣c ,abc )则m ﹣a 2c =2(a 2c ﹣c ),n ﹣ab c =2•abc ,即m=3a 2c ﹣2c ,n=3ab c ,即3ab c =﹣b a •(3a 2c ﹣2c )=﹣3ab c +2bc a ,即6ab c =2bc a,则c 2=3a 2, 则ca = 3, 故选:B .【点评】本题主要考查双曲线离心率的计算,根据条件建立方程组关系,求出交点坐标,转化为a ,c 的关系是解决本题的关键.考查学生的计算能力.10.设双曲线x 2a 2﹣y 2b2=1(a >0,b >0)的右焦点为F ,过点F 作x 轴的垂线交两渐近线于点A ,B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若OP →=λOA →+u OB →(λ,μ∈R ),λ2+u 2=58,则双曲线的离心率为( )A .2 33B .3 55C .3 22D .98【分析】由方程可得渐近线,可得A ,B ,P 的坐标,由已知向量式可得λ+μ=1,λ﹣μ=b c ,解之可得λμ的值,由λ2+u 2=58,可得a ,c 的关系,由离心率的定义可得.【解答】解:双曲线的渐近线为:y=±bax ,设焦点F (c ,0),则当x=c 时,y ═±b a •c=±bca,即A (c ,bc a ),B (c ,﹣bc a ),P (c ,b 2a ),因为OP →=λOA →+μOB →, 所以(c ,b 2a)=((λ+μ)c ,(λ﹣μ)bc a),所以λ+μ=1,λ﹣μ=bc,解得:λ=c +b 2c ,μ=c−b2c ,∵λ2+u 2=58,∴(c +b 2c )2+(c−b 2c )2=58,即2c 2+2b 24c 2=58,即c 2=4b 2.则c 2=4(c 2﹣a 2), 则3c 2=4a 2.3c=2a ,则e= 3=2 33,故选:A .【点评】本题主要考查双曲线离心率的计算,根据交点坐标,结合平面向量的数量积公式是解决本题的关键.11.设A 、B 分别为双曲线C :x 2a 2﹣y 2b 2=1(a >0,b >0)的左、右顶点,P ,Q 是双曲线C 上关于x 轴对称的不同两点,设直线AP 、BQ 的斜率分别为m 、n ,则2b a +a b +12|mn |+ln |m |+ln |n |取得最小值时,双曲线C 的离心率为( ) A . 2 B . 3 C . 6 D . 62【分析】设P (x 0,y 0),则Q (x 0,﹣y 0),y 02=b 2(x 02a﹣1).A (﹣a ,0),B (a ,0),利用斜率计算公式得到:mn=﹣b 2a ,则2b a +a b +12|mn |+ln |m |+ln |n |=2b a +a b +a 22b 2+ln b 2a 2=f (a b ),令a b =t >0,则f (t )=2t +t +12t 2﹣2lnt .利用导数研究其单调性,求得最小值点,再由离心率公式即可得出.【解答】解:设P (x 0,y 0),则Q (x 0,﹣y 0),y 02=b 2(x 02a﹣1),即有y 02x 02−a 2=b 2a2,由双曲线的方程可得A (﹣a ,0),B (a ,0),则m=y 0x 0+a ,n=y 0a−x 0,∴mn=y 02a 2−x 02=﹣b 2a2,∴2b a +a b +12|mn |+ln |m |+ln |n | =2b a +a b +a 22b 2+ln b 2a 2 =f (a b ),令a b =t >0,则 f (t )=2t +t +12t 2﹣2lnt . f′(t )=﹣2t +1+t ﹣2t =(t +1)(t 2−2)t ,可知:当t= 2时,函数f (t )取得最小值 f ( 2)= 2+ 2+12×2﹣2ln 2=2 2+1﹣ln2.∴ab = 2. ∴e=c a = 1+(b a )2= 1+12= 62. 故选:D .【点评】本题考查了双曲线的标准方程及其性质、利用导数研究函数的单调性极值与最值,考查了推理能力与计算能力,属于难题.12.已知椭圆C 1:x 22+y 2b2=1(a >b >0)和圆C 2:x 2+y 2=b 2,若椭圆C 1上存在点P ,过点P 作圆C 2的两条切线PA ,PB (A ,B 为对应的切点),且满足∠APB =π3,则椭圆最圆的时离心率e=( )A . 33B . 24C . 32D . 34【分析】连接OA ,OB ,OP ,依题意,O 、P 、A 、B 四点共圆,可得∠APB=60°,∠APO=∠BPO=30°,在直角三角形OAP 中,∠AOP=60°,cos ∠AOP=b |OP |=12,可得b <|OP |≤a ,可得椭圆C 的离心率的取值范围.【解答】解:连接OA ,OB ,OP ,依题意,O 、P 、A 、B 四点共圆, ∵∠APB=60°, ∠APO=∠BPO=30°,在直角三角形OAP 中,∠AOP=60°,∴cos ∠AOP=b |OP |=12,∴|OP |=2b , ∴b <|OP |≤a , ∴2b ≤a , ∴4b 2≤a 2,由a 2=b 2+c 2,即4(a 2﹣c 2)≤a 2, ∴3a 2≤4c 2,即e ≥ 32,又0<e <1,∴ 32≤e <1, ∴椭圆C 的离心率的取值范围是32≤e <1. ∴椭圆最圆的时离心率e= 32.故选:C .【点评】本题考查了椭圆的标准方程及其性质、四点共圆的性质、直角三角形的边角关系、不等式的性质,考查了推理能力与计算能力,属于难题.13.设双曲线C :x 2a 2﹣y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,若在曲线C 的右支上存在点P ,使得△PF 1F 2的内切圆半径为a ,圆心记为M ,又△PF 1F 2的重心为G ,满足MG ∥F 1F 2,则双曲线C 的离心率为( ) A . 2 B . 3 C .2D . 5【分析】设P (s ,t )(s ,t >0),F 1(﹣c ,0),F 2(c ,0),运用三角形的重心坐标,求得内心的坐标,可得t=3a ,再结合双曲线的定义和等积法,求得|PF 2|=2c﹣a ,再由双曲线的离心率公式和第二定义,可得s=2a ,将P 的坐标代入双曲线的方程,运用a ,b ,c 的关系和离心率公式,即可得到所求值. 【解答】解:设P (s ,t )(s ,t >0),F 1(﹣c ,0),F 2(c ,0), 可得重心G (s−c +c 3,t3)即(s3,t3),设△PF 1F 2的内切圆与边F 1F 2的切点N ,与边PF 1的切点为K , 与边PF 2上的切点为Q ,则△PF 1F 2的内切圆的圆心的横坐标与N 的横坐标相同. 由双曲线的定义,|PF 1|﹣|PF 2|=2a .①由圆的切线性质|PF 1|﹣PF 2|=|F I K |﹣|F 2Q |=|F 1N |﹣|F 2N |=2a , ∵|F 1N |+|F 2N |=|F 1F 2|=2c ,∴|F 2N |=c ﹣a ,|ON |=a , 即有M (a ,a ), 由MG ∥F 1F 2,则△PF 1F 2的重心为G (s3,a ),即t=3a ,由△PF 1F 2的面积为12•2c•3a=12a (|PF 1|+|PF 2|+2c ),可得|PF 1|+|PF 2|=4c ② 由①②可得|PF 2|=2c ﹣a , 由右准线方程x=a 2c,双曲线的第二定义可得e=c a =|PF 2|s−a 2c,解得s=2a , 即有P (2a ,3a ),代入双曲线的方程可得4a 2a 2﹣9a 2b 2=1,可得b= 3a ,c= a 2+b 2=2a ,即e=c a=2.故选:C .【点评】本题考查双曲线的定义、方程和性质,主要是离心率和准线方程,运用定义法是解题的关键,同时考查内心和重心的坐标的求法,考查化简整理的运算能力,属于难题.14.已知第一象限内的点M 既在双曲线C 1:x 2a ﹣y 2b=1(a >0,b >0)上,又在抛物线C 2:y 2=2px 上,设C 1的左,右焦点分别为F 1、F 2,若C 2的焦点为F 2,且△MF 1F 2是以MF 1为底边的等腰三角形,则双曲线的离心率为( ) A . 2 B . 3 C .1+ 2D .2+ 3【分析】根据条件得到抛物线和双曲线的焦点相同,根据双曲线和抛物线的定义得到△MF 1F 2为等腰直角三角形,利用定义建立方程进行求解即可. 【解答】解∵设C 1的左,右焦点分别为F 1、F 2,若C 2的焦点为F 2, ∴抛物线的准线方程为x=﹣c ,若△MF 1F 2是以MF 1为底边的等腰三角形, 由于点M 也在抛物线上, ∴过M 作MA 垂直准线x=﹣c 则MA=MF 2=F 1F 2,则四边形AMF 2F 1为正方形, 则△MF 1F 2为等腰直角三角形, 则MF 2=F 1F 2=2c ,MF 1= 2MF 2=2 2c , ∵MF 1﹣MF 2=2a , ∴2 2c ﹣2c=2a , 则( 2﹣1)c=a ,则离心率e=c a = 2−1=1+ 2,故选:C【点评】本题主要考查双曲线离心率的计算,根据双曲线和抛物线的定义得到△MF 1F 2为等腰直角三角形是解决本题的关键.考查学生的转化和推理能力.15.已知E ,F 为双曲线C :x 2a 2−y 2b2=1(0<a <b )的左右焦点,抛物线y 2=2px (p>0)与双曲线有公共的焦点F ,且与双曲线交于A 、B 不同两点,若5|AF |=4|BE |,则双曲线的离心率为( )A .4+ 7B .4− 3C .4+ 3D .4− 7【分析】根据双曲线的定义求出|BE |=10a ,|BF |=8a ,结合抛物线的定义求出交点B 的纵坐标,结合直角三角形的边角关系建立方程进行求解即可.【解答】解:根据双曲线和抛物线的对称性得|BF |=|AF |=45|BE |,∵|BE |﹣|BF |=2a , ∴|BE |﹣45|BE |=|BE |=2a ,则|BE |=10a ,|BF |=8a ,∵抛物线y 2=2px (p >0)与双曲线有公共的焦点F ,∴p2=c ,且x=﹣c 是抛物线的准线, 则|BD |=|BF |=8a ,设B(x,y),则由抛物线的性质得x+c=8a,即x=8a﹣c,代入抛物线方程y2=2px=4cx得y2=4c(8a﹣c),则|DE|2=y2=4c(8a﹣c),在直角三角形BDE中,BE2=DE2+BD2,即100a2=64a2+4c(8a﹣c),即36a2﹣32ac+4c2=0,即c2﹣8ac+9a2=0,解e2﹣8e+9=0,得e=8±64−362=4±7,∵0<a<b,∴e=ca=1+b22>2,∴e=4+7,故选:A【点评】本题主要考查双曲线离心率的计算,根据抛物线和双曲线的定义建立方程关系,求出a,c的关系是解决本题的关键.综合性较强,有一定的难度.16.设A为椭圆x2a2+y2b2=1(a>b>0)上一点,点A关于原点的对称点为B,F为椭圆的右焦点,且AF⊥BF.若∠ABF∈[π4,5π12],则该椭圆离心率的取值范围是()A.(0,22] B.[22,1) C.[0,63] D.[22,63]【分析】设左焦点为:N.连接AF,AN,AF,BF,可得:四边形AFNB为矩形.根据椭圆的定义:|AF|+|AN|=2a.∠ABF=α,可得∠ANF=α.可得2a=2ccosα+2csinα,e=1sinα+cosα=2sin(α+π4),根据α的取值范围即可得出.【解答】解:设左焦点为:N.连接AF,AN,AF,BF,可得:四边形AFNB为矩形.根据椭圆的定义:|AF|+|AN|=2a.∠ABF=α,则:∠ANF=α.∴2a=2ccosα+2csinα∴e=2c2a=1sinα+cosα=2sin(α+π4),α=∠ABF∈[π4,5π12],∴(α+π4)∈[π2,2π3],∴sin(α+π4)∈[32,1].∴e∈[22,63].故选:D.【点评】本题考查了椭圆的定义标准方程及其性质、三角函数求值,考查了推理能力与计算能力,属于难题.17.已知椭圆x2a2+y2b2=1(a>b>0)的左顶点和上顶点分别为A、B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为()A.32B.3−12C.3+52D.3−52【分析】由题意可求得AB的方程,设出P点坐标,代入AB得方程,由PF1⊥PF2,得PF 1→•PF 2→=0,结合椭圆的离心率的性质即可求得答案.【解答】解:依题意,作图如下:A (﹣a ,0),B (0,b ),F 1(﹣c ,0),F 2(c ,0),∴直线AB 的方程为:椭圆x 2a 2+y 2b2=1整理得:bx ﹣ay +ab=0,设直线AB 上的点P (x ,y )则bx=ay ﹣ab , ∴x=ab y ﹣a ,∵PF 1⊥PF 2,∴PF 1→•PF 2→=(﹣c ﹣x ,﹣y )•(c ﹣x ,﹣y )=x 2+y 2﹣c 2=(a b)2+y 2﹣c 2,令f (y )=(ab )2+y 2﹣c 2,则f′(y )=2(a b y ﹣a )×ab+2y ,∴由f′(y )=0得:y=a 2b a 2+b ,于是x=﹣ab 2a 2+b 2,∴PF 1→=(﹣ab 2a 2+b 2)2+(a 2ba 2+b)2﹣c 2=0,整理得:a 2b 2a 2+b 2=c 2,又b 2=a 2﹣c 2,e 2=c 2a2,∴e 4﹣3e 2+1=0,∴e 2=3± 52,又椭圆的离心率e ∈(0,1),∴e 2=3− 52.椭圆的离心率的平方3− 52,故选D .【点评】本题考查椭圆的性质,考查向量的数量积,考查直线的方程,着重考查椭圆性质的应用,是重点更是难点,属于难题.18.已知双曲线x 2a 2−y 2b2=1,(a ,b >0)的左、右焦点分别为F 1,F 2,过F 1且与x 轴垂直的直线交双曲线于A ,B 两点,直线AF 2与双曲线的另一个交点为C ,若S △ABC =3S△BCF 2,则双曲线的离心率为()A . 2B . 3C .2D . 5【分析】如图所示,S △ABC =3S △BCF 2,|AC |=3|F 2C |,求得A (﹣c ,b 2a),求得直线AF 2的方程,代入双曲线方程,运用韦达定理解得x C .根据AF 2→=4CF 2→,由向量的坐标运算,结合离心率公式和a ,b ,c 的关系,即可得出所求值. 【解答】解:如图所示: ∵S △ABC =3S△BCF 2,∴|AC |=3|F 2C |.由x=﹣c ,代入双曲线的方程,可得y=±b 2a,取A (﹣c ,b 2a ),直线AF 2的方程为:y ﹣0=b 2a−0−c−c(x ﹣c ),化为:y=﹣b 22ac (x ﹣c ),代入双曲线x 2a −y 2b=1,(a ,b >0),可得:(4c 2﹣b 2)x 2+2cb 2x ﹣b 2c 2﹣4a 2c 2=0, ∴x C ×(﹣c )=﹣b 2c 2+4a 2c 24c 2−b 2,解得x C =b 2c +4a 2c 4c 2−b 2.∵AF 2→=4CF 2→, ∴c ﹣(﹣c )=4(c ﹣b 2c +4a 2c 4c −b ),化为:5a 2=c 2,解得e=ca= 5.故选:D .【点评】本题考查了双曲线的标准方程及其性质、直线与双曲线相交问题、一元二次方程的根与系数的关系、向量坐标运算性质、三角形面积计算公式,考查了推理能力与计算能力,属于难题.19.已知A ,B 分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,不同两点P ,Q 在椭圆C 上,且关于x 轴对称,设直线AP ,BQ 的斜率分别为m ,n ,则当2b a+ab +12mn+ln |m |+ln |n |取最小值时,椭圆C 的离心率为( )A . 33B . 23C .12D . 22【分析】设P (x 0,y 0),则Q (x 0,﹣y 0),y 02=b 2(a 2−x 02)a .A (﹣a ,0),B (a ,0),利用斜率计算公式肯定:mn=b 2a 2,2b a +a b +12mn +ln |m |+ln |n |=2ba+a b +a 22b 2+ln b 2a 2=f (a b ),令a b =t >1,则f (t )=2t +t +12t 2﹣2lnt .利用导数研究其单调性即可得出.【解答】解:设P (x 0,y 0),则Q (x 0,﹣y 0),y 02=b 2(a 2−x 02)a . A (﹣a ,0),B (a ,0),则m=y 0a +x 0,n=y 0a−x 0,∴mn=y 02a −x 02=b 2a, ∴2b a +a b +12mn +ln |m |+ln |n |=2b a +a b +a 22b2+ln b 22=f (ab ),令a b =t >1,则f (t )=2t +t +12t 2﹣2lnt . f′(t )=−2t2+1+t ﹣2t =(t +1)(t 2−2)t 2, 可知:当t= 2时,函数f (t )取得最小值f ( 2)= 2+ 2+12×( 2)2﹣2ln 2=2 2+1﹣ln2.∴ab= 2. ∴e = 1−(b a )2= 22.故选:D .【点评】本题考查了椭圆的标准方程及其性质、利用导数研究函数的单调性极值与最值,考查了推理能力与计算能力,属于难题.20.设椭圆C :x 2a +y 2b=1(a >b >0)和圆x 2+y 2=b 2,若椭圆C 上存在点P ,使得过点P 引圆O 的两条切线,切点分别为A 、B ,满足∠APB=60°,则椭圆的离心率e 的取值范围是( )A .0<e ≤ 32B .12≤e <1 C . 32<e <1 D . 32≤e <1【分析】由题意可知:由椭圆C :x 2a 2+y2b2=1(a >b >0)焦点在x 轴上,由图可知:O 、P 、A 、B 四点共圆,∠APB=60°,则∠APO=∠BPO=30°,cos ∠AOP=b 丨OP 丨=12,|OP|=2b,因此b<|OP|≤a,即2b≤a,由a2=b2+c2,可得3a2≤4c2,e≥3 2,又0<e<1,即可求得椭圆的离心率e的取值范围.【解答】解:由椭圆C:x2a2+y2b2=1(a>b>0)焦点在x轴上,连接OA,OB,OP,依题意,O、P、A、B四点共圆,∵∠APB=60°,∠APO=∠BPO=30°,在直角三角形OAP中,∠AOP=60°,∴cos∠AOP=b丨OP丨=12,∴|OP|=b1=2b,∴b<|OP|≤a,∴2b≤a,∴4b2≤a2,由a2=b2+c2,即4(a2﹣c2)≤a2,∴3a2≤4c2,即c2a2≥3 4,∴e≥32,又0<e<1,∴32≤e<1,∴椭圆C的离心率的取值范围是32≤e<1.故选D.【点评】本题考查椭圆的离心率,考查四点共圆的性质及三角函数的概念,考查转化与方程思想,属于难题.21.已知椭圆和双曲线有共同的焦点F 1,F 2,P 是它们的一个交点,且∠F 1PF 2=π3,记椭圆和双曲线的离心率分别为e 1,e 2,则当1e 1e 2取最大值时,e 1,e 2的值分别是( )A . 22, 62B .12, 52 C . 33, 6D . 24, 3【分析】不妨设椭圆与双曲线的标准方程分别为:x 2a+y 2b =1(a >b >0),c= a 2−b 2,x 2a 12−y 2b 12=1,c= a 12+b 12.设|PF 1|=m ,|PF 2|=n .m >n .利用定义可得:m +n=2a ,m ﹣n=2a 1,解得m ,n .利用余弦定理可得:cos π3=m 2+n 2−(2c )22mn =12,化简整理可得:1e 12+3e 22=4,再利用基本不等式的性质即可得出.【解答】解:不妨设椭圆与双曲线的标准方程分别为:x 2a 2+y 2b2=1(a >b >0),c= a 2−b 2,x 2a 12−y 2b 12=1,c= a 12+b 12. 设|PF 1|=m ,|PF 2|=n .m >n . 则m +n=2a ,m ﹣n=2a 1, ∴m=a +a 1,n=a ﹣a 1.cos π3=m 2+n 2−(2c )22mn =12,化为:(a +a 1)2+(a −a 1)2﹣4c 2=(a +a 1)(a ﹣a 1).∴a 2+3a 12﹣4c 2=0, ∴1e 12+3e 22=4, ∴4≥2 1e 12×3e 22,化为:1e 1e 2≤ 3,当且仅当e 1= 22,e 2= 62时取等号.故选:A .【点评】本题考查了椭圆与双曲线的定义标准方程及其性质、余弦定理、基本不等式的性质,考查了推理能力与计算能力,属于难题.22.如图所示,A ,B ,C 是双曲线x 2a 2−y 2b 2=1(a >0,b >0)上的三个点,AB 经过原点O ,AC 经过右焦点F ,若BF ⊥AC 且|BF |=|CF |,则该双曲线的离心率是( )A . 102B . 10C .32D .3【分析】运用直角三角形斜边上中线等于斜边的一半,求得A 的坐标,由对称得B 的坐标,由于BF ⊥AC 且|BF |=|CF |,求得C 的坐标,代入双曲线方程,结合a ,b ,c 的关系和离心率公式,化简整理成离心率e 的方程,代入选项即可得到答案. 【解答】解:由题意可得在直角三角形ABF 中, OF 为斜边AB 上的中线,即有|AB |=2|OA |=2|OF |=2c , 设A (m ,n ),则m 2+n 2=c 2,又m 2a 2﹣n 2b2=1, 解得m=a c 2+b 2c ,n=b 2c,即有A (a c 2+b 2c,b 2c),B (﹣a c 2+b 2c,﹣b 2c),又F(c,0),由于BF⊥AC且|BF|=|CF|,可设C(x,y),即有yx−c•2c2+a c2+b2=﹣1,又(c+a c2+b2c)2+(b2c)2=(x﹣c)2+y2,可得x=b2+c2c,y=﹣a c2+b2+c2c,将C(b2+c2c,﹣a c2+b2+c2c)代入双曲线方程,可得(b2+c2)2 c2a2﹣(a c2+b2+c2)2c2b2=1,化简可得c2+b2(b2﹣a2)=a3,由b2=c2﹣a2,e=ca,可得(2e2﹣1)(e2﹣2)2=1,对照选项,代入检验可得e=102成立.另解:设双曲线的另一个焦点为E,令|BF|=|CF|=|AE|=m,|AF|=n,由双曲线的定义有,|CE|﹣|CF|=|AE|﹣|AF|=2a,在直角三角形EAC中,m2+(m+n)2=(m+2a)2,代入2a=m﹣n,化简可得m=3n,又m﹣n=2a得n=a,m=3a,在直角三角形EAF中,m2+n2=(2c)2,即为9a2+a2=4c2,可得e=ca=102.故选:A.【点评】本题考查双曲线的方程和性质,主要考查双曲线的a ,b ,c 的关系和离心率的求法,注意运用点在双曲线上满足方程,同时注意选择题的解法:代入检验,属于难题.23.过双曲线x 2a ﹣y 2b =1(b >0,a >0)的左焦点F (﹣c ,0)(c >0),作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若OE →=12(OF →+OP →),则双曲线的离心率为( )A . 102B . 105C . 10D . 2【分析】由OE →=12(OF →+OP →),知E 为PF 的中点,令右焦点为F′,则O 为FF′的中点,则PF′=2OE=a ,能推导出在Rt △PFF′中,PF 2+PF′2=FF′2,由此能求出离心率. 【解答】解:∵若OE →=12(OF →+OP →),∴E 为PF 的中点,令右焦点为F′,则O 为FF′的中点, 则PF′=2OE=a , ∵E 为切点, ∴OE ⊥PF ∴PF′⊥PF ∵PF ﹣PF′=2a ∴PF=PF′+2a=3a在Rt △PFF′中,PF 2+PF′2=FF′2 即9a 2+a 2=4c 2∴离心率e=c a = 102.故选:A .。

2018届高中数学专题06探索离心率问题特色训练新人教A版选修2

2018届高中数学专题06探索离心率问题特色训练新人教A版选修2

专题06 探索离心率问题一、选择题1.【山西实验中学、南海桂城中学2018届高三上学期联考】已知双曲线()222210,0x y a b a b-=>>离心率为()22214x a y a -+=的位置关系是( ) A . 相交 B . 相切 C . 相离 D . 不确定【答案】C【解析】因为一条渐近线方程为0ay bx -=,又离心率为ca=所以a b =,所以渐近线方程为0y x -=,由()22214x a y a -+=知圆心(),0a ,半径12a ,圆心到直线的距离12d ==>,所以直线与圆相离,故选C .2.【黑龙江省哈尔滨市第六中学2017-2018学年高二上学期期中考】过双曲线22221x y a b-=右焦点F 作一条直线,当直线的斜率为2时,直线与双曲线左右两支各有一个交点;当直线的斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线的离心率的取值范围是A . (B .C .D . ()1【答案】B3.【天津市耀华中学2018届高三第一次月考】已知双曲线2221(0)4x y a a -=>的右焦点与抛物线212y x =的焦点重合,则该双曲线的离线率为 ( )A .95 B C . 32 D 【答案】D【解析】由题意得222435a a e+=⇒=∴==选D.4.【山西省山大附中等晋豫名校2018届高三第四次调研诊断考试】已知椭圆22221x ya b+=的左、右焦点分别为12,F F,且122F F c=,点A在椭圆上,112AF F F⋅=,212AF AF c⋅=,则椭圆的离心率e=()ABCD【答案】C5.设1F、2F分别为双曲线2221x ya b-=(0a>,0b>)的左、右焦点,P为双曲线右支上任一点.若212PFPF的最小值为8a,则该双曲线离心率e的取值范围是().A. ()0,2B. (]1,3C. [)2,3D. []3,+∞【答案】B【解析】由定义知:12122,2PF PF a PF a PF-=∴=+()2222122222448a PFPF aa PF aPF PF PF+∴==++≥当且仅当2224aPFPF=,设22PF a=时取得等号,22PF c a c a a≥-∴-≤即3c a≤3e≤又双曲线的离心率1e>,](1,3e∴∈故答案选B点睛:根据双曲线的定义给出12PF PF 、的数量关系,再依据条件结合基本不等式求得最小值时的取值,确定限制条件求得离心率,注意双曲线的离心率大于1.6.【北京市西城育才中学2016-2017学年高二上期中】椭圆22212x y a +=的一个焦点与抛物线28y x =焦点重合,则椭圆的离心率是( ).A B C D 【答案】C点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.7.【河南省商丘市第一高级中学2017-2018学年高二10月月考】12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点A 、B .若2ABF 为等边三角形,则双曲线的离心率为( )A . 4BCD 【答案】B【解析】2ABF 为等边三角形,不妨设22AB BF AF m ===A 为双曲线上一点, 12112F A F A F A AB F B a -=-==B 为双曲线上一点, 212122,4,2BF BF a BF a F F c -===由21260,120ABF F BF ∠=︒∴∠=︒ 在12F BF 中运用余弦定理得:2224416224cos120c a a a a =+-⨯⨯⨯︒227c a =27e =,e ∴=故答案选B点睛:根据双曲线的定义算出各边长,由等边三角形求得内角120︒,再利用余弦定理计算出离心率。

湖北省天门市渔薪高中二年级人教版选修2-1离心率专题测验

湖北省天门市渔薪高中二年级人教版选修2-1离心率专题测验

椭圆与双曲线的离心率专题一、方程法求离心率1椭圆122222=+n y m x 和双曲线122222=-n y m x 有公共焦点,则椭圆的离心率是 ( ) A .23B .315C .46 D .6302已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等3设1a >,则双曲线22221(1)x ya a -=+的离心率e 的取值范围是( ) A .B .C .(25),D .(24椭圆12222=+b y a x (a >b >0)的左焦点F 到过顶点A(-a , 0), B(0, b )离心率为 ( ) A .21 B .54CD 5已知点,F A 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点、右顶点,点(0,)B b 满足0FB AB ⋅=,则双曲线的离心率为( ) AB .CD . 二、定义法求离心率6已知21,F F 为椭圆的两个焦点,P 为椭圆上一点,若3:2:1::211221=∠∠∠PF F F PF F PF , 则此椭圆的离心率为 _________7已知F 1、F 2分别是双曲线)0,0(12222>>=-b a by a x 的左右焦点,P 为双曲线上的一点,若,9021=∠PF F 且21PF F ∆三边长成等差数列,则双曲线的离心率是 ( )A2 B3 C4 D58如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是C ,C 在第二、四象 限的公共点若四边形21BF AF 为矩形,则2C 的离心率是( )A .2B .3C .23 D .269设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为10已知心在原点的椭圆与双曲线有公共焦点,且左右焦点分别为12,F F ,两条曲线在第一象限的交点记为P ,12PF F ∆是以1PF 为底边的等腰三角形.若110PF =,椭圆与双曲线的离心率分别为12,e e ,则12e e ⋅的取值范围是 ( )A )51,0(B )31,51(C 1(,)3+∞D 1(,)5+∞ 三、性质法求离心率11直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A 、B 两点,||AB 为C 的实轴长的2倍,则C 的离心率为 ( )A B C .2 D .312设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为 ( )A B C D 13已知双曲线221x y m n -=的一条渐近线方程为43y x =,则该双曲线的离心率e 为14已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是 ( )A .(0,1)B .1(0,]2C .D . 15已知双曲线22221x y a b-=(0,0)a b >>,若过其右焦点F 作倾斜角为045的直线l 与双曲线右支有两个不同的交点,则双曲线的离心率的范围是 ( )A .)+?B .C .[2,)+?D .(1,2)16已知双曲线左右焦点分别为1F 、2F ,点P 为其右支上一点,1260∠=F PF ,且12∆=F PF S , 若1PF ,21214F F ,2PF 成等差数列,则该双曲线的离心率为 ( ) A .3 B . 32 C . 2 D . 21若椭圆22189x yk+=+的离心率为12e=,则k2如图,正六边形ABCDEF的顶点A、D其余四个顶点B、C、E、F3设12,F F是双曲线2222:1(0,0)x yC a ba b-=>>的两个焦点,P是C上一点,若216,PF PF a+=且12PF F∆的最小内角为30,则C的离心率为_______4直线xy22=与椭圆12222=+byax)0(>>ba的两个交点在x轴上的射影恰为椭圆的两焦点,则椭圆的离心率为( )A22B23C33D215椭圆的两个焦点和短轴两个顶点,是一个含60°角的菱形的四个顶点,则椭圆的离心率为6过双曲线22221(0,0)x ya ba b-=>>的左焦点)0)(0,(>-ccF,作圆:2224ax y+=的切线,切点为E,延长FE交双曲线右支于点P,若1()2OE OF OP=+,则双曲线的离心率为( ) A B C D7设椭圆12222=+byax(a>b>0)的两焦点为F1、F2,若椭圆上存在一点Q,使∠F1QF2=120º,则椭圆离心率e的取值范围是8过双曲线M:2221yxb-=的左顶点A作斜率为1的直线l,若l与双曲线M的两条渐近线分别相交于B、C,且|AB|=|BC|,则双曲线M的离心率是( )9椭圆22221(0,0)x ya ba b+=>>与直线1=+yx交于P、Q两点,且OQOP⊥,其O为坐标原点(1)求2211ba+的值;(2)若椭圆的离心率e满足33≤e≤22,求椭圆长轴的取值范围9 (1)2(2) [5,6]2018年10月最新下载可搜索或者按住CTRL点击博学网。

数学人教版高中二年级选修2 离心率问题

数学人教版高中二年级选修2 离心率问题
圆锥曲线离心率问题
1、若椭圆的两个焦点及一个短轴端点构成正三角
形,则其离心率为

2、 若的离心率为 ( )。
3、已知椭圆两焦点为F1、F2,A为椭圆上一点,且AF1⊥AF2, ∠AF2F1=600 ,求此椭圆的离心率;
感悟:
1、在求离心率时,一般寻找a、c 的等量关系;
小结:离心率如何找等量或不等关系?
(2)、已知F1,F2分别是双曲线 P为双曲线上一点, PF1 4 PF2 求离心率的取值范围。
的左,右焦点,
变式:已知F1,F2分别是双曲线 P为双曲线上一点, sin PF1F2 a
sin PF2 F1 c
的左,右焦点, 求离心率的取值范围。
(3) F1,F2分别是双曲线ax22-by22 =1 (a>0,b>0)的左,右 焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线 另一条渐近线于点M,若点M在以线段F1F2为直径的圆外, 则双曲线离心率的取值范围是____________.
2、除了用b2=a2-c2外还可用 程思想求e
的代换,通过方
3、在椭圆中涉及焦点三角形的问题的时候,要充分 利用椭圆的定义、正弦定理、余弦定理和相似全等 三角形等知识
(1)已知椭圆两焦点为F1、F2,椭圆上存在一点使AF1⊥AF2, 求此椭圆的离心率;
利用点与圆锥曲线的位置关系,建立不等关系
利用曲线的范围,坐标的范围建立不等关系 利用均值不等式,建立不等关系。 焦半径范围,建立不等关系 曲线的平面几何性质,建立不等关系

2018届高中数学专题06探索离心率问题特色训练新人教A版选修2_1

2018届高中数学专题06探索离心率问题特色训练新人教A版选修2_1

- 让每一个人同等地提高自我专题 06 探究离心率问题一、选择题1.【山西实验中学、南海桂城中学 2018届高三上学期联考】已知双曲线x2y2 1 a0, b 0离心率为a2b22x a21a2的地点关系是(,则其渐近线与圆y2)4A.订交B.相切C.相离D.不确定【答案】 C【分析】由于一条渐近线方程为ay bx0,又离心率为c2 ,因此a b ,因此渐近线方程为y x 0 ,a2y 21a2知圆心a,01a ,圆心到直线的距离d a2a1由 x a,半径,因此直线与圆相42222离,应选 .C2.【黑龙江省哈尔滨市第六中学2017-2018 学年高二上学期期中考】过双曲线 x2y2 1 右焦点F 作一条a2b2直线,当直线的斜率为 2 时,直线与双曲线左右两支各有一个交点;当直线的斜率为 3 时,直线与双曲线右支有两个不一样的交点,则双曲线的离心率的取值范围是A.1, 2B5, 10C2, 10D1, 21 ...【答案】 B3.【天津市耀华中学2018届高三第一次月考】已知双曲线x2y2y212 x 的a21(a 0) 的右焦点与抛物线4焦点重合,则该双曲线的离线率为()A.9B.5C.3D.35 5325【答案】 D- 让每一个人同等地提高自我【分析】由题意得222335a 4 3a 5 e,.55选 D 4.【山西省山大附中等晋豫名校2018 届高三第四次调研诊疗考试】已知椭圆别为 F1, F2,且 F1F22c ,点A在椭圆上,1 1 20,12AF F F AF AF33151D.2A.B.C.3222【答案】 C5.设F1、F2分别为双曲线x2y20 , b0 )的左、右焦点,21(aa b2PF1的最小值为 8a ,则该双曲线离心率 e 的取值范围是().PF2A.0,2B.1,3C.2,3D.3,【答案】Bx2y21 的左、右焦点分a2b2c2,则椭圆的离心率 e ()P为双曲线右支上任一点.若【分析】由定义知:PF1PF22a,PF12a PF2PF12PF222a4a24a PF28aPF2PF2PF2当且仅当 4a2PF2,设 PF22a 时获得等号,PF2PF2 c a c a 2a即 c 3a e 3又双曲线的离心率e1, e(1,3- 让每一个人同等地提高自我故答案选 B点睛:依据双曲线的定义给出PF 1 、PF 2 的数目关系,再依照条件联合基本不等式求得最小值时的取值,确定限制条件求得离心率,注意双曲线的离心率大于1.6.【北京市西城育才中学2016-2017学年高二上期中】椭圆x 2 y 2 1 的一个焦点与抛物线 y 2 8x 焦点a 2 2重合,则椭圆的离心率是( ).3 2 3 2 6A .B .3C .D .223【答案】 C点睛:解决椭圆和双曲线的离心率的求值及范围问题其重点就是确定一个对于 a,b, c 的方程或不等式, 再根据 a, b,c 的关系消掉 b 获得 a, c 的关系式,而成立对于 a, b, c 的方程或不等式,要充足利用椭圆和双曲线的几何性质、点的坐标的范围等 .7.【河南省商丘市第一高级中学2017-2018 学年高二 10 月月考】 F 1 , F 2x 2 y 2 1(a 0, b 0)是双曲线b 2a 2的左、右焦点,过 F 1 的直线 l 与双曲线的左右两支分别交于点 A 、B .若 ABF 2 为等边三角形,则双曲线的离心率为()A .4B .7C .5D .3【答案】 B【分析】ABF 2 为等边三角形,不如设AB BF 2 AF 2mA 为双曲线上一点,F A F A F A AB F B 2aB 为双曲线上一点,BF2BF12a, BF24a, F1 F22c由ABF260 ,F1BF2120在F1BF2中运用余弦定理得:4c24a216a2 2 2a 4a cos120c27a2e27 ,e7故答案选 B点睛:依据双曲线的定义算出各边长,由等边三角形求得内角120 ,再利用余弦定理计算出离心率。

2020年高一高二数学百所名校好题分项解析汇编专题06 圆锥曲线中的离心率问题(选修2-1)(解析版)

2020年高一高二数学百所名校好题分项解析汇编专题06  圆锥曲线中的离心率问题(选修2-1)(解析版)

高一数学(选修2-1)百所名校速递分项汇编专题06 圆锥曲线中的离心率问题一、选择题1.【贵州省铜仁市思南中学2018-2019学年高二上学期第二次月考】已知,是椭圆和双曲线的公共焦点,是它们的一个公共点,且,记椭圆和双曲线的离心率分别为,,则的最大值是()A.B.C.D.【答案】D【解析】如图,设椭圆的长半轴长为,双曲线的半实轴长为,则根据椭圆及双曲线的定义,,设,则在中由余弦定理得,化简,该式变成,,,的最大值是,故选D.2.【黑龙江省大庆实验中学2018-2019学年高二上学期期中考试】已知是椭圆的左、右焦点,若椭圆上存在一点使得,则椭圆的离心率的取值范围为()A.B.C.D.【答案】B3.【黑龙江省哈尔滨师范大学附属中学2018-2019学年高二上学期第一次月考】已知椭圆的右顶点为,点在椭圆上,为坐标原点,且,则椭圆的离心率的取值范围为A.B.C.D.【答案】B【解析】∵∠APO=90°,∴点P在以AO为直径的圆上,∵O(0,0),A(a,0),∴以AO为直径的圆方程为,即2+y2−a=0,由消去y,得(b2−a2)2+a3−a2b2=0.设P(m,n),∵P、A是椭圆与2+y2−a=0两个不同的公共点,∴,可得.∵由图形得0<m<a,∴,即b2<a2−b2,可得a2−c2<c2,得a2<2c2,∴,解得椭圆离心率,又∵e∈(0,1),∴椭圆的离心率e的取值范围为.本题选择B选项.4.【重庆市綦江区南州中学高2019届高二下第三学月考】已知分别是椭圆的左,右焦点,现以为圆心作一个圆恰好经过椭圆中心并且交椭圆于点,若过的直线是圆的切线,则椭圆的离心率为()A.B.C.D.【答案】D【解析】如图所示:由题意可得:,所以,化为,即,解得,故选D.5.设椭圆=1(a>b>0)的左、右焦点分别为F1,F2,P是椭圆上一点,|PF1|=λ|PF2|,∠F1PF2=,则椭圆离心率的取值范围为()A.B.C.D.【答案】B【解析】设F1(-c,0),F2(c,0),由椭圆的定义可得,|PF1|+|PF2|=2a,可设|PF2|=t,可得|PF1|=λt,即有(λ+1)t=2a①由∠F1PF2=,可得|PF1|2+|PF2|2=4c2,即为(λ2+1)t2=4c2,②由②÷①2,可得e2=令m=λ+1,可得λ=m-1,∵,∴∴即有由≤e2≤,解得,≤e≤.故选:B6.【湖北省武汉市华中师范大学第一附属中学2018-2019学年高二上学期期中】如图,F1、F2是椭圆C1与等轴双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则椭圆C1离心率是A.B.C.D.【答案】A7.【广西南宁市第三中学2018-2019学年高二上学期期中】已知是双曲线的左右焦点,若直线与双曲线交于两点,且四边形是矩形,则双曲线的离心率为()A.B.C.D.【答案】C【解析】联立方程所以的长的为:因为矩形的对角线的长度相等,所以解得故选C。

高二圆锥曲线离心率专题训练-学生版

高二圆锥曲线离心率专题训练-学生版

高二圆锥曲线离心率专题训练µ椭圆1已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,直线BF 与椭圆C 的另一个交点为D ,且BF =2FD ,则C 的离心率为()A.33B.32C.23D.222若椭圆C :x 2a 2+y 2b2=1a >b >0 的短轴长是焦距的2倍,则C 的离心率为()A.12B.55C.22D.53椭圆x 2a 2+y 2b 2=1a >b >0 中,点F 2为椭圆的右焦点,点A 为椭圆的左顶点,点B 为椭圆的短轴上的顶点,若F 2B ⊥AB ,此椭圆称为“黄金椭圆”,“黄金椭圆”的离心率为()A.22B.-1+52C.12D.334已知椭圆x 2a 2+y 2b 2=1a >b >0 的右焦点为F ,椭圆上的A ,B 两点关于原点对称,FA =2FB ,且FA ⋅FB ≤49a 2,则该椭圆离心率的取值范围是()A.0,53B.0,73C.53,1D.73,15已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F ,过F 作一条倾斜角为45°的直线与椭圆C 交于A ,B 两点,若M -3,2 为线段AB 的中点,则椭圆C 的离心率是()A.33 B.12 C.25 D.556已知F 是椭圆的一个焦点,若存在直线y =kx 与椭圆相交于A ,B 两点,且∠AFB =60°,则椭圆离心率的取值范围是( ).A.32,1B.0,32C.32,1D.0,327如图,直径为4的球放地面上,球上方有一点光源P ,则球在地面上的投影为以球与地面切点F 为一个焦点的椭圆,已知是A 1A 2椭圆的长轴,P A 1垂直于地面且与球相切,P A 1=6,则椭圆的离心率为()A.12B.23C.13D.228设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于P ,Q 两点,若△F 1PQ 为等边三角形,则椭圆的离心率是()A.22B.23C.32D.339已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左顶点为A ,上顶点为B ,右焦点为F ,若∠ABF =90°,则椭圆C 的离心率为()A.3-12B.5-12C.3+14D.5+1410若椭圆C :x 2a 2+y 2b2=1a >b >0 上存在一点D ,使得函数f x =x +1x -1图象上任意一点关于点D 的对称点仍在f x 的图象上,且椭圆C 的长轴长大于4,则C 的离心率的取值范围是()A.0,21015B.21015,1C.0,63D.63,111已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点F 1,F 2,过原点的直线l 与椭圆C 相交于M ,N 两点.其中M 在第一象限.MN =F 1F 2 ,NF 1 MF 1≥33,则椭圆C 的离心率的取值范围为()A.0,6-12 B.(0,6-2] C.(0,3-1] D.22,3-1 12已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过点F 作圆x 2+y 2=b 2的切线,若两条切线互相垂直,则椭圆C 的离心率为()A.12B.22C.23D.6313椭圆C :x 2a 2+y 2b 2=1a >b >0 的左、右焦点分别为F 1,F 2,下顶点为A ,直线AF 2与椭圆C 的另一个交点为B ,F 1A ⋅F 1B =0,则椭圆C 的离心率为()A.22B.33C.12D.5514设点F 1、F 2分别是椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点,点M 、N 在C 上(M 位于第一象限)且点M 、N 关于原点对称,若MN =F 1F 2 ,NF 2 =3MF 2 ,则C 的离心率为()A.108 B.104 C.58 D.55815已知点P 在以F 1,F 2为左、右焦点的椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,椭圆内存在一点Q 在PF 2的延长线上,且满足QF 1⊥QP ,若sin ∠F 1PQ =35,则该椭圆离心率取值范围是()A.15,13 B.13,22 C.22,1 D.0,2216已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,A 是椭圆C 的左顶点,点P 在过A 且斜率为34的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则椭圆C 的离心率为.µ双曲线1已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点M 是过坐标原点O 且倾斜角为60°的直线l 与双曲线C 的一个交点,且MF 1 +MF 2 =MF 1 -MF 2 则双曲线C 的离心率为()A.2B.2+3C.3+1D.32已知F 1、F 2是双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,点A 是双曲线C 的右顶点,点P 在过点A 且斜率为233的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则双曲线C 的离心率为()A.32B.2C.3D.43过双曲线x 2a 2-y 2b2=1的右焦点F 2作垂直于实轴的弦PQ ,F 1是左焦点,若∠PF 1Q =90°,则双曲线的离心率是()A.2B.1+2C.2+2D.3-24过双曲线x 2a 2-y 2b2=1a >0,b >0 的右焦点F 作一条渐近线的垂线,垂足为A .若∠AFO =2∠AOF (O 为坐标原点),则该双曲线的离心率为()A.52B.233C.2D.233或25双曲线x2a2-y2b2=1的一条渐近线方程为y=2x,则双曲线的离心率为()A.2B.5C.3D.56设双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线l分别与双曲线左、右两支交于M,N两点,且F2M⊥F2N,F2M=F2N,则双曲线C的离心率为() A.3 B.3 C.5 D.5-17若双曲线C:x2a2-y2b2=1(a>0,b>0)的一条渐近线被圆x-22+y2=4所截得的弦长为2,则C的离心率为() A.2 B.3 C.2 D.2338过双曲线x2a2-y2b2=1(a>0,b>0)的右焦点F且斜率为3的直线与双曲线的左右支各有一个交点,则双曲线的离心率取值范围是() A.(1,3) B.(1,2) C.(3,+∞) D.(2,+∞)9已知椭圆x23a2+y23b2=1(a>0,b>0)与双曲线x2a2-y2b2=1相同的焦点,则椭圆和双曲线的离心e1,e2分别为() A.e1=22,e2=3 B.e1=22,e2=62 C.e1=12,e2=3 D.e1=12,e2=6210已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过点F 1的直线l 与C 的左、右两支分别交于点A ,B ,若△ABF 2是边长为4的等边三角形,则C 的离心率为()A.3B.7C.5D.211已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点,若A 为线段BF 1的中点,且BF 1⊥BF 2,则C 的离心率为()A.3B.2C.3+1D.312已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点F 1关于渐近线的对称点恰好落在以F 2为圆心,OF 2 为半径的圆上,则该双曲线的离心率为()A.2 B.3 C.2 D.3+113设A 、B 分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右顶点,P 、Q 是双曲线C 上关于x 轴对称的不同两点,设直线AP 、BQ 的斜率分别为m 、n ,若mn =-1,则双曲线C 的离心率e 是.14已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 ,以原点O 为圆心,C 的焦距为半径的圆交x 轴于A ,B 两点,P ,Q 是圆O 与C 在x 轴上方的两个交点.若AB =2PQ ,则C 的离心率为.15设F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,O 是坐标原点,过F 2作C 的一条渐近线的垂线,垂足为P ,若PF 1 =2PF 2 ,则双曲线C 的离心率为.16过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c ,0)作圆x 2+y 2=a 2的切线,切点为E ,延长FE 交抛物线y 2=4cx 于点P ,O 为坐标原点,若OE =12OF +OP ,则双曲线的离心率为.17设F 1,F 2为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过左焦点F 1的直线l 与C 在第一象限相交于一点P ,若F 1P =F 1F 2 ,且直线l 倾斜角的余弦值为78,则C 的离心率为.18设双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,B 为双曲线E 上在第一象限内的点,线段F 1B 与双曲线E 相交于另一点A ,AB 的中点为M ,且F 2M ⊥AB ,若∠AF 1F 2=30°,则双曲线E 的离心率为.19已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,双曲线的左顶点为A ,以F 1F 2为直径的圆交双曲线的一条渐近线于P ,Q 两点,其中点Q 在y 轴右侧,若AQ ≥3AP ,则该双曲线的离心率的取值范围是.。

19 椭圆与双曲线的离心率-2018版高人一筹之高三数学一轮复习特色训练 含解析

19 椭圆与双曲线的离心率-2018版高人一筹之高三数学一轮复习特色训练 含解析

2018届KS5U 高三一轮特色专题训练一、选择题 1.如图,1F 、2F 分别是双曲线22221(0,0)x y a b a b-=>>的两个焦点,以坐标原点O 为圆心,1F O 为半径的圆与该双曲线左支交于A 、B 两点,若2F AB ∆是等边三角形,则双曲线的离心率为A 3B 、2C 、31-D 31+【答案】D【解析】连接1AF ,则12AF F ∆为直角三角形,由2F AB ∆是等边三角形,得)21212130,3,,231,3131c AF F AF c AF c AF AF a c e a ︒∠===-=====-,故选D.2。

从椭圆12222=+by a x (a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB //OP (O 是坐标原点),则该椭圆的离心率是 A.42B.21C.22 D.23 【答案】CKS5UKS5U]3。

已知1F 、2F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点A 、B .若2ABF ∆为等边三角形,则双曲线的离心率为 A 。

7B. 4 C 。

233D 。

3【答案】B【解析】如图,设等边三角形边长为m ,设1AF x =,根据双曲线的定义有2m x m m x a +-=-=,解得4,2m a x a ==。

在三角形12BF F 中,由余弦定理得()()()222π264264cos3c a a a a =+-⋅⋅⋅,化简得22428,7ca e ==。

4.已知椭圆22122:1(0)x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,过P 作圆的切线PA ,PB ,切点为A ,B 使得3π=∠BPA ,则椭圆1C 的离心率的取值范围是 A .3[,1)2B .23[,]22C .2[,1)2D .1[,1)2【答案】A5.已知,,P A B 是双曲线22221x y a b-=上不同的三点,且,A B 关于原点对称,若直线,PA PB 的斜率乘积34PA PB k k =,则该双曲线的离心率是 A. 2 B 。

2018届高考数学(理)一轮复习:微专题2 圆锥曲线的离心率

2018届高考数学(理)一轮复习:微专题2 圆锥曲线的离心率

微专题2圆锥曲线的离心率化,同时它又是圆锥曲线统一定义中的三要素之一.有关求解圆锥曲线离心率的试题在历年高考试卷中均有出现.一般地,求解离心率的值或者取值范围的问题,关键是将几何条件转化为a,b,c的方程或不等式,然后再解方程或不等式,要注意的是建立的方程或不等式应该是齐次式.另外,不能忽略了圆锥曲线离心率的自身限制条件(椭圆、双曲线离心率的取值范围不一致),否则很容易产生增根或者扩大所求离心率的取值范围.一、直接求出a、c,求解离心率e已知标准方程或a、c易求时,可利用离心率公式e=c来求解.已知双曲线x2a2-y2=1(a>0)的一条准线与抛物线y2=-6x的准线重合,则该双曲线的离心率为________.二、构造a、c的齐次式,解出离心率e抓住题目中的等量关系,根据a,b,c的关系,构造出关于a,c(尤其是a,c的齐次式),设F1,F2分别是椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,P是其右准线上纵坐标为3c(c 为半焦距)的点,且|F1F2|=|F2P|,则椭圆的离心率是________.反思提炼:这种方法也是圆锥曲线中最常用的方法,应该引起重视.在解题中要牢牢抓住试题中的等量关系,根据等量关系列出a,c得式子(有b的转化为a,c),再经过变形就可以求出e=ca的值.同时应注意椭圆和双曲线中e的范围限制.如图,在平面直角坐标系xOy 中,A 1、A 2、B 1、B 2为椭圆x a 2+y b 2=1(a >b >0)的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为________.·变式训练·(1)设F 是双曲线的一个焦点,点P 在双曲线上,且线段PF 的中点恰为双曲线虚轴的一个端点,则双曲线的离心率为________.(2)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b 2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.三、求离心率e 的取值范围求解此类题目一般要根据题目给出的条件,建立有关字母(主要是a ,c )的关系式或不等设P 是椭圆x 2a 2+y 2b2=1(a >b >0)上一点,且∠F 1PF 2=90°,其中F 1,F 2是椭圆的两个焦点,求椭圆离心率的取值范围.反思提炼:上面两种方法是我们求离心率范围的实质,要抓住题目中的不等量关系建立起关于a ,c 的不等式,从而求出e 的范围.·变式训练·如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,P 是椭圆上一点,Q 为上顶点,M 在PF 1上,F 1M →=λMP →(λ∈R ),PO ⊥F 2M .若λ=2,求椭圆离心率e 的取值范围.【总结】椭圆离心率的考查,一般分两个层次:一是由离心率的定义,只需分别求出a ,c ,这注重考查椭圆标准方程中量的含义;二是整体考查,求a ,c 的比值,这注重于列式,即需根据条件列出关于a ,c 的一个等量关系,通过解方程得到离心率的值.抓住这两点,你无往而不胜.1.椭圆x a 2+y b2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 1作倾斜角为45°的直线与椭圆的一个交点为M ,若MF 2垂直于x 轴,则椭圆的离心率为__________.2.设双曲线x 2a 2-y 2b2=1(b >a >0)的半焦距为c ,直线l 过A (a ,0)、B (0,b )两点,且坐标原点O 到直线l 的距离为34c ,则双曲线的离心率e =__________. 3.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线被圆C :x 2+y 2-6x =0所截得的弦长等于25,则该双曲线的离心率等于__________.4.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于__________.5.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为e ,若椭圆上存在点P ,使得PF 1PF 2=e ,则该椭圆离心率e 的取值范围是__________. 6.在平面直角坐标系xOy 中,以椭圆x 2a 2+y 2b2=1(a >b >0)上的一点A 为圆心的圆与x 轴相切于椭圆的一个焦点,与y 轴相交于B 、C 两点,若△ABC 是锐角三角形,则该椭圆的离心率的取值范围是__________.7.已知椭圆x 2+y 2b2=1(0<b <1)的左焦点为F ,左、右顶点分别为A ,C ,上顶点为B .过F ,B ,C 作⊙P ,其中圆心P 的坐标为(m ,n ).(1)当m +n >0时,求椭圆离心率的范围;(2)直线AB 与⊙P 能否相切?证明你的结论.8.如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为(43,13),且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.第8题图。

2018届高中数学专题06探索离心率问题特色训练新人教A版选修2_1

2018届高中数学专题06探索离心率问题特色训练新人教A版选修2_1

专题06 探索离心率问题一、选择题1.【山西实验中学、南海桂城中学2018届高三上学期联考】已知双曲线()222210,0x y a b a b-=>>离心率为()22214x a y a -+=的位置关系是( ) A . 相交 B . 相切 C . 相离 D . 不确定【答案】C【解析】因为一条渐近线方程为0ay bx -=,又离心率为ca=所以a b =,所以渐近线方程为0y x -=,由()22214x a y a -+=知圆心(),0a ,半径12a ,圆心到直线的距离12d ==>,所以直线与圆相离,故选C .2.【黑龙江省哈尔滨市第六中学2017-2018学年高二上学期期中考】过双曲线22221x y a b-=右焦点F 作一条直线,当直线的斜率为2时,直线与双曲线左右两支各有一个交点;当直线的斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线的离心率的取值范围是A . (B .C .D . ()1【答案】B3.【天津市耀华中学2018届高三第一次月考】已知双曲线2221(0)4x y a a -=>的右焦点与抛物线212y x =的焦点重合,则该双曲线的离线率为 ( )A .95 B C . 32 D 【答案】D【解析】由题意得222435a a e+=⇒=∴==选D.4.【山西省山大附中等晋豫名校2018届高三第四次调研诊断考试】已知椭圆22221x ya b+=的左、右焦点分别为12,F F,且122F F c=,点A在椭圆上,112AF F F⋅=,212AF AF c⋅=,则椭圆的离心率e=()ABCD【答案】C5.设1F、2F分别为双曲线2221x ya b-=(0a>,0b>)的左、右焦点,P为双曲线右支上任一点.若212PFPF的最小值为8a,则该双曲线离心率e的取值范围是().A. ()0,2B. (]1,3C. [)2,3D. []3,+∞【答案】B【解析】由定义知:12122,2PF PF a PF a PF-=∴=+()2222122222448a PFPF aa PF aPF PF PF+∴==++≥当且仅当2224aPFPF=,设22PF a=时取得等号,22PF c a c a a≥-∴-≤即3c a≤3e≤又双曲线的离心率1e>,](1,3e∴∈故答案选B点睛:根据双曲线的定义给出12PF PF 、的数量关系,再依据条件结合基本不等式求得最小值时的取值,确定限制条件求得离心率,注意双曲线的离心率大于1.6.【北京市西城育才中学2016-2017学年高二上期中】椭圆22212x y a +=的一个焦点与抛物线28y x =焦点重合,则椭圆的离心率是( ).A B C D 【答案】C点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.7.【河南省商丘市第一高级中学2017-2018学年高二10月月考】12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点A 、B .若2ABF 为等边三角形,则双曲线的离心率为( )A . 4BCD 【答案】B 【解析】2ABF 为等边三角形,不妨设22AB BF AF m ===A 为双曲线上一点, 12112F A F A F A AB F B a -=-==B 为双曲线上一点, 212122,4,2BF BF a BF a F F c -===由21260,120ABF F BF ∠=︒∴∠=︒ 在12F BF 中运用余弦定理得:2224416224cos120c a a a a =+-⨯⨯⨯︒227c a =27e =,e ∴=故答案选B点睛:根据双曲线的定义算出各边长,由等边三角形求得内角120︒,再利用余弦定理计算出离心率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.【山西实验中学、南海桂城中学2018届高三上学期联考】已知双曲线()222210,0x y a b a b -=>>离心率为()22214x a y a -+=的位置关系是( )A . 相交B . 相切C . 相离D . 不确定【答案】C【解析】因为一条渐近线方程为0ay bx -=,又离心率为ca=所以a b =,所以渐近线方程为0y x -=,由()22214x a y a -+=知圆心(),0a ,半径12a ,圆心到直线的距离12d ==>,所以直线与圆相离,故选C .2.【黑龙江省哈尔滨市第六中学2017-2018学年高二上学期期中考】过双曲线22221x y a b-=右焦点F 作一条直线,当直线的斜率为2时,直线与双曲线左右两支各有一个交点;当直线的斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线的离心率的取值范围是A . (B .C .D . ()1【答案】B3.【天津市耀华中学2018届高三第一次月考】已知双曲线2221(0)4x y a a -=>的右焦点与抛物线212y x =的焦点重合,则该双曲线的离线率为 ( )A .95 B C . 32D【答案】D【解析】由题意得222435a a e+=⇒=∴==选D.4.【山西省山大附中等晋豫名校2018届高三第四次调研诊断考试】已知椭圆22221x ya b+=的左、右焦点分别为12,F F,且122F F c=,点A在椭圆上,112AF F F⋅=,212AF AF c⋅=,则椭圆的离心率e=()ABCD.2【答案】C5.设1F、2F分别为双曲线2221x ya b-=(0a>,0b>)的左、右焦点,P为双曲线右支上任一点.若212PFPF的最小值为8a,则该双曲线离心率e的取值范围是().A. ()0,2B. (]1,3C. [)2,3D. []3,+∞【答案】B【解析】由定义知:12122,2PF PF a PF a PF-=∴=+()2222122222448a PFPF aa PF aPF PF PF+∴==++≥当且仅当2224aPFPF=,设22PF a=时取得等号,22PF c a c a a≥-∴-≤即3c a≤3e≤又双曲线的离心率1e>,](1,3e∴∈故答案选B点睛:根据双曲线的定义给出12PF PF 、的数量关系,再依据条件结合基本不等式求得最小值时的取值,确定限制条件求得离心率,注意双曲线的离心率大于1.6.【北京市西城育才中学2016-2017学年高二上期中】椭圆22212x y a +=的一个焦点与抛物线28y x =焦点重合,则椭圆的离心率是( ).A B C . 2 D 【答案】C点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.7.【河南省商丘市第一高级中学2017-2018学年高二10月月考】12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点A 、B .若2ABF 为等边三角形,则双曲线的离心率为( )A . 4BCD 【答案】B 【解析】2ABF 为等边三角形,不妨设22AB BF AF m ===A 为双曲线上一点, 12112F A F A F A AB F B a -=-==B 为双曲线上一点, 212122,4,2BF BF a BF a F F c -===由21260,120ABF F BF ∠=︒∴∠=︒ 在12F BF 中运用余弦定理得:2224416224cos120c a a a a =+-⨯⨯⨯︒227c a =27e =,e ∴=故答案选B点睛:根据双曲线的定义算出各边长,由等边三角形求得内角120︒,再利用余弦定理计算出离心率。

8.【南宁市2018届高三毕业班摸底联考】已知椭圆的一条弦所在的直线方程是,弦的中点坐标是,则椭圆的离心率是( )A .B .C .D .【答案】C9.【山西省大同市第一中学2017届高三上学期11月月考】已知双曲线C : 22x a -22y b=1(a >0,b >0)的右焦点F 和A (0,b )的连线与C 的一条渐近线相交于点P ,且2PF AP =,则双曲线C 的离心率为( )A . 3BC . 4D . 2【答案】D【解析】由题意知,右焦点为(),0F c 。

设点P 的坐标为(),m n ,则()(),,,PF x c y AP x y b =--=- ∵2PF AP =,∴()(),2,c m n m n b --=-,解得3{ 23cm b n ==,故点P 的坐标为2,33c b ⎛⎫ ⎪⎝⎭,又点P 在渐近线by x a=上, ∴233b b c a =⨯,即2ca =。

∴2ce a==。

选D 。

10.【云南省红河州2017届高三毕业生复习统一检测】已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线与圆()2238x y -+=相交于A ,B 两点,且|AB |=4,则此双曲线的离心率为( )A . 5 BCD【答案】C点睛:圆的方程已经确定,那就可以根据点到直线的距离计算出a b 、的数量关系。

在处理解析几何的题目时往往要转化为点点距离或者点线距离,有弦长时还可以考虑弦长公式。

11.【江西省南昌市2018届高三上学期摸底】已知双曲线2222:1(0,0)x y C a b a b -=>> 的左右焦点分别为12,F F , P 为双曲线C 上第二象限内一点,若直线by x a=恰为线段2PF 的垂直平分线,则双曲线C 的离心率为( )A B C D【答案】C【解析】设()2,0F c ,渐近线方程为b y x a =,对称点为(),P m n ,即有n am c b=--,且()1122b m c n a +⋅=⋅,解得222,a b abm n c c -==,将222,a b ab P c c ⎛⎫- ⎪⎝⎭,即2222,a c ab c c ⎛⎫- ⎪⎝⎭,代入双曲线的方程可得()222222222241aca b a c c b--=,化简可得2241c a -=,即有e 2=5,解得e =,故选C .点睛:本题考查双曲线的离心率的求法,注意运用中点坐标公式和两直线垂直的条件:斜率之积为1﹣,以及点满足双曲线的方程,考查化简整理的运算能力,属于中档题;设出2F 的坐标,渐近线方程为by x a=,对称点为(),P m n ,运用中点坐标公式和两直线垂直的条件:斜率之积为1﹣,求出对称点的坐标,代入双曲线的方程,由离心率公式计算即可得到所求值.12.【云南省红河州2017届高三毕业生复习统一检测】已知12,F F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,过点1F 且垂直于实轴的直线与双曲线的两条渐近线分别相交于,A B 两点,若坐标原点O 恰为2ABF ∆的垂心(三角形三条高的交点),则双曲线的离心率为( )A .3B C D . 3 【答案】C即,2,0bc bc c c a a ⎛⎫⎛⎫-⋅= ⎪ ⎪⎝⎭⎝⎭,则2220bc c a ⎛⎫-+= ⎪⎝⎭,即222b a =,∵22222b a c a ==- ∴223c a =,则c =则离心率c e a ===C . 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.13.【黑龙江省牡丹江市第一高级中学2017-2018学年高二10月月考】已知F 1,F 2是椭圆的左、右焦点,点P 在椭圆上,且,线段PF 1与y 轴的交点为Q ,O 为坐标原点,若△F 1OQ 与四边形OF 2PQ 的面积之比为1: 2,则该椭圆的离心率等于 ( )A .B .C .D .【答案】C将 和代入椭圆方程得即 解得故选 C【点睛】本题考查椭圆的标准方程及其几何性质,特别是椭圆离心率的求法,利用已知几何条件建立关于的等式,是解决本题的关键14.【江西省抚州市南城县第二中学2016-2017学年高二下学期第一次月考】设12,F F 分别是双曲线22221x y a b-= 的左、右焦点.若双曲线上存在点M ,使01260F MF ∠= ,且122MF MF = ,则双曲线离心率为( )A B C . 2 D 【答案】B【解析】由双曲线定义可知1222MF MF a MF -==,所以21122,4,2MF a MF a F F c ===,由12F MF ∠的余弦定理,可得222244168,c a a a =+-即e =B .二、填空题15.【2017-2018学年高中数学(苏教版)选修1-1 课时跟踪训练】已知双曲线22221(0,0)x y a b a b-=>>,两条渐近线的夹角为60°,则双曲线的离心率为________.【答案】2点睛:求双曲线离心率的常用方法 (1)根据题意直接求出,a c ,由ce a=求解; (2)根据条件求得,a b间的关系,由ce a=== (3)根据条件得到,a c 间的二次关系式,然后利用ce a=化为关于e 的二次方程求解。

16.【黑龙江省哈尔滨市第六中学2017-2018学年高二上学期期中】已知1F , 2F 是椭圆和双曲线的公共焦点, P 是它们的一个公共点,且123F PF π∠=,椭圆的离心率为1e ,双曲线的离心率2e ,则221213e e +=_______. 【答案】4点睛:求双曲线离心率的常用方法(1)根据题意直接求出,a c ,由ce a=求解;(2)根据条件求得,a b 间的关系,由ce a=== (3)根据条件得到,a c 间的二次关系式,然后利用ce a=化为关于e 的二次方程求解。

17.【北京市海淀区育英学校2017学年高二上学期期中】已知,是椭圆在左,右焦点,是椭圆上一点,若是等腰直角三角形,则椭圆的离心率等于__________.【答案】或【解析】由是等腰直角三角形,若为直角顶点,即有,即为,即有.则.角或角为直角,不妨令角为直角,此时,代入椭圆方程,得.又等腰直角,得,故得,即,即.得,又,得.故椭圆离心率为或.点睛:这个题目考考查了分类讨论的思想,已知是等腰直角三角形,可得到要讨论哪个角是直角,若为直角顶点,可得,进而求得离心率。

相关文档
最新文档