数学分析 题目
2公务员数学分析-比例作业
(1)某工人的步行速度为每小时5公里,如果他先步行上班路程的1/10,然后乘上速度为每小时25公里的汽车,最后再行1公里刚好到厂,那么他可以比完全步行上班早二小时到厂。
问他的上班路程有多少公里?步行5 乘车25 V1:V2=1:5 T1:T2=5:1 T1=2.5 T2=0.59份是0.5*25+1=13.5 1份是 1.5 所以总路程是13.5+1.5=15(2)一辆汽车以每小时40千米的速度从甲城开往乙城,返回时它用原速度走了全程的4分之3多5千米,再改用每小时30千米的速度走完余下的路程,因此,返回甲城的时间比前往乙城的时间多用了10分钟,甲、乙两城相距多远?速度比是4:3 则时间比是3:4差一点是10分钟则全程是3*10=30分钟0.5*40=20千米1份减5千米是20千米则1份是20+5=25千米总的25*4=100千米(3)一个学生从家到学校,先用每分50米的速度走了2分,如果这样走下去,他会迟到8分;后来他改用每分60米的速度前进,结果早到学校5分。
这个学生家到学校的路程是多少米?速度比是5:6 时间比是6:5一个点差5-(-8)=13分钟则原来是13*6=78分钟78*50+50*2=4000米(4)王师傅加工一批零件,每天加工20个,可以提前一天完成.工作4天后,每天多加工5个,结果提前3天完成,问这批零件有多少个?效率比是20:25=4:5 则时间比是5:4 一个点相差3-1=2天则4份就是8天则总数是4*20+25*8=280(5)某项工程,可由若干台机器在规定时间内完成,如果增加两台机器,则只需要规定时间的7/8就可以完成;如果减少2台机器,那么就要推迟2/3小时才能做完.现问:由一台机器去完成这项工程要多长时间?增加两台机器时间比是8:7效率比是7:8则总台数是2*7=14台减少两台机器效率是14:12=7:6 时间比是6:7一个点是2/3 则14台时间是2/3*6=4小时则一台则是14*4=56小时(6)一辆从甲地开往乙地,如果车速提高20%,可以比原定时间提前1小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达。
考研数学分析真题答案
考研数学分析真题答案一、选择题1. 根据极限的定义,下列哪个选项是正确的?A. \(\lim_{x \to 0} x^2 = 0\)B. \(\lim_{x \to 0} \sin x = 1\)C. \(\lim_{x \to 0} \frac{1}{x} = 1\)D. \(\lim_{x \to 0} \frac{\sin x}{x} = 1\)答案:A2. 函数 \(f(x) = \sin x + x^2\) 在 \(x = 0\) 处的导数是多少?A. 1B. 2C. 0D. -1答案:A二、填空题1. 函数 \(y = \ln x\) 的定义域是 _________。
答案:\((0, +\infty)\)2. 若 \(\int_{0}^{1} x^2 dx = \frac{1}{3}\),那么\(\int_{0}^{1} x^3 dx\) 的值是 _________。
答案:\(\frac{1}{4}\)三、解答题1. 证明:对于任意正整数 \(n\),\(\sum_{k=1}^{n}\frac{1}{k(k+1)} = \frac{n}{n+1}\)。
证明:首先,我们可以将求和式拆分为部分和的形式:\[\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n}\left(\frac{1}{k} - \frac{1}{k+1}\right)\]通过观察,我们可以看到这是一个望远镜求和,大部分项会相互抵消,最终只剩下:\[1 - \frac{1}{n+1} = \frac{n}{n+1}\]2. 求函数 \(f(x) = x^3 - 3x^2 + 2x\) 在 \(x = 2\) 处的泰勒展开式,并计算其近似值。
解:首先,我们计算函数在 \(x = 2\) 处的各阶导数:\[f'(x) = 3x^2 - 6x + 2, \quad f''(x) = 6x - 6, \quad f'''(x) = 6\]在 \(x = 2\) 处,\(f(2) = 0\),\(f'(2) = -2\),\(f''(2) =6\),\(f'''(2) = 6\)。
数学分析证明题练习
数学分析证明题练习1. 证明题一题目证明:两个实数的和与积的大小关系。
解答设两个实数为$a$和$b$,其中$a\geq b$。
证明两个实数的和大于等于它们的积,即$a+b \geq ab$。
根据已知条件,我们有:$$a \geq b \quad \text{(1)}$$$$ab \geq b^2 \quad \text{(2)}$$根据(1)式,两边同时加上$b$,得:$$a+b \geq b+b$$化简得:$$a+b \geq 2b \quad \text{(3)}$$根据(2)式,两边同时加上$b^2$,得:$$ab+b^2 \geq b^2+b^2$$化简得:$$ab+b^2 \geq 2b^2 \quad \text{(4)}$$由于$a \geq b$,所以$(3)$式和$(4)$式成立,即:$$a+b \geq 2b$$$$ab+b^2 \geq 2b^2$$将上述两个不等式相加,得:$$(a+b) + (ab+b^2) \geq 2b + 2b^2$$化简得:$$a+b+ab+b^2 \geq 2b+2b^2$$再次化简得:$$a+b+ab+b^2 \geq 2(b+b^2)$$由于$(a+b)$和$(ab+b^2)$皆大于等于$2(b+b^2)$,所以可以得出结论:$$a+b \geq ab$$综上所述,两个实数的和大于等于它们的积。
2. 证明题二题目证明:若$f(x)$为可导函数,并且$f'(a) > 0$,则在点$a$的某个邻域内,$f(x)$严格单调递增。
解答根据函数可导的定义,我们有:$$f'(a) = \lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$由于$f'(a) > 0$,则存在一个正实数$k$,使得$0 < k < f'(a)$。
根据上述条件,我们可以找到一个正实数$\delta$,使得对于所有满足$0 < |x-a| < \delta$的$x$,有:$$\left|\frac{f(x)-f(a)}{x-a}-f'(a)\right| < k$$根据定义,上式可以化简为:$$-\delta < \frac{f(x)-f(a)}{x-a}-f'(a) < \delta$$移项得:$$-\delta(x-a) < f(x)-f(a)-f'(a)(x-a) < \delta(x-a)$$再次移项得:$$f(a)+f'(a)(x-a)-\delta(x-a) < f(x) < f(a)+f'(a)(x-a)+\delta(x-a)$$ 化简得:$$f(a)+[f'(a)-\delta](x-a) < f(x) < f(a)+[f'(a)+\delta](x-a)$$由于$f'(a)-\delta > 0$,所以函数$f(x)$在点$a$的某个邻域内严格单调递增。
数学分析习题及答案 (50)
习 题 12.5 偏导数在几何中的应用1. 求下列曲线在指定点处的切线与法平面方程:(1)⎪⎩⎪⎨⎧+==.1,2x x z x y 在⎪⎭⎫⎝⎛21,1,1点; (2)⎪⎪⎩⎪⎪⎨⎧=-=-=.2sin 4,cos 1,sin tz t y t t x 在2π=t 的点;(3)⎩⎨⎧=++=++.6,0222z y x z y x 在)1,2,1(-点;(4)⎩⎨⎧=+=+.,222222R z x R y x 在⎪⎭⎫⎝⎛2,2,2R R R 点。
解 (1)曲线的切向量函数为21(1,2,)(1)x x +,在⎪⎭⎫⎝⎛21,1,1点的切向量为1(1,2,)4。
于是曲线在⎪⎭⎫⎝⎛21,1,1点的切线方程为)12(41)1(2-=-=-z y x ,法平面方程为252168=++z y x 。
(2)曲线的切向量函数为(1cos ,sin ,2cos )2tt t -,在2π=t 对应点的切向量为。
于是曲线在2π=t 对应点的切线方程为222112-=-=+-z y x π, 法平面方程为(1)(1)2x y z π-++-+-=402x y π++--=。
(3)曲线的切向量函数为2(,,)y z z x x y ---,在)1,2,1(-点的切向量为(6,0,6)-。
于是曲线在)1,2,1(-点的切线方程为⎩⎨⎧-==+22y z x , 法平面方程为z x =。
(4)曲线的切向量函数为4(,,)yz xz xy --,在⎪⎭⎫⎝⎛2,2,2R R R 点的切向量为22(1,1,1)R --。
于是曲线在⎪⎭⎫⎝⎛2,2,2R R R点的切线方程为222R z R y R x +-=+-=-,法平面方程为022=+--R z y x 。
2.在曲线32,,t z t y t x ===上求一点,使曲线在这一点的切线与平面102=++z y x 平行。
解 曲线的切向量为2(1,2,3)t t ,平面的法向量为(1,2,1),由题设,22(1,2,3)(1,2,1)1430t t t t ⋅=++=,由此解出1t =-或13-,于是)1,1,1(-- 和 )271,91,31(--为满足题目要求的点。
数学分析习题精选精解
数学分析习题精选精解数学分析是数学中的一个重要分支,其核心内容是函数论和微积分学。
在学习数学分析的过程中,习题的练习是不可或缺的一环。
通过多做习题,巩固知识点、提高解题能力和思维能力,进而提高数学水平。
下面我们选取一些经典的数学分析习题,进行精选精解。
一、极限【例1】设$\lim\limits_{n\to\infty}{\sqrt[n]{n}}=a$,求$a$的值。
【解】这是一个简单的极限问题,我们采用夹逼法求解。
显然有$\sqrt[n]{n-1}<\sqrt[n]{n}<\sqrt[n]{n+1}$。
那么$\lim\limits_{n\to\infty}{\sqrt[n]{n-1}}=\lim\limits_{n\to\infty}{\sqrt[n]{n+1}}=1$。
因此,$\lim\limits_{n\to\infty}{\sqrt[n]{n}}=1$。
二、导数与微分【例2】已知$f(x)=\begin{cases}\sqrt{x-a},x\geqa\\0,x<a\end{cases}$,求$f'(a)$和$f''(a)$。
【解】首先,我们求$f'(x)$。
当$x\geq a$时,$f'(x)=\dfrac{1}{2\sqrt{x-a}}$。
当$x<a$时,$f'(x)=0$。
因此,$f'(a)=\lim\limits_{x\to a}{\dfrac{f(x)-f(a)}{x-a}}=\lim\limits_{x\to a}{\dfrac{\sqrt{x-a}}{x-a}}=\lim\limits_{x\to 0}{\dfrac{\sqrt{x}}{x}}=+\infty$。
再求$f''(x)$。
当$x\geq a$时,$f''(x)=\dfrac{-1}{4(x-a)^{\frac{3}{2}}}$。
数学分析(1)期末模拟考试题(证明部分新)
数列极限类 1. 证明: 112111lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n . 证 因为11211122222+≤⎪⎪⎭⎫ ⎝⎛++++++≤+n n n n n n n n n又11limlim22=+=+∞→∞→n n nn n n n ,由迫敛原理得112111lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n . 2. 设() ,2,121,1111=⎪⎪⎭⎫ ⎝⎛+=>=+n a a a a a a n n n ,证明{}n a 有极限,并求此极限的值. 证 由均值不等式得a a a a a a a a n n n n n =⎥⎦⎤⎢⎣⎡⋅≥⎪⎪⎭⎫ ⎝⎛+=+2212111,即{}n a 有下界. 又0212121=-⎪⎪⎭⎫ ⎝⎛+≤-⎪⎪⎭⎫ ⎝⎛+=-+n n n n n n n n n a a a a a a a a a a ,即{}n a 单调减,于是A a n n =∞→lim 存在,且由极限的保号性可得1≥A .对已知递推公式,令∞→n 和极限的唯一性得⎪⎭⎫⎝⎛+=A a A A 21, 解得a A =(负根舍去),即有a a n n =∞→lim .单调性的证明也可如下完成:11211212221=⎪⎪⎭⎫ ⎝⎛+≤⎪⎪⎭⎫ ⎝⎛+=+n n n n n a a a a a a ,或n n n n n a a a a a =⎪⎪⎭⎫ ⎝⎛+≤+2121. 3. 设() ,2,16,1011=+==+n x x x n n ,试证数列{}n x 存在极限,并求此极限.证 由4166,10121==+==x x x 知, 21x x >.假设1+>k k x x ,则21166+++=+>+=k k k k x x x x ,由归纳法知{}n x 为单调下降数列.又显然有0>n x ,所以{}n x 有下界.由单调有界原理知,数列{}n x 收敛.所以可令a x n n =∞→lim ,对n n x x +=+61两边取极限得0662=--⇒+=a a a a ,解得3=a 或2-=a (舍去),故3lim =∞→n n x .4. 设+N ∈∃N ,当N n >时,有n n b A a ≤≤且()0lim =-∞→n n n a b .求证极限n n a ∞→lim 与n n b ∞→lim 存在且等于A .证 由n n b A a ≤≤得n n n a b a A -≤-≤0,由迫敛原理得A a n n =∞→lim ,再由()0lim =-∞→n n n a b 及A a n n =∞→lim 可得n n b ∞→lim 存在且等于A .5. 设()n n n n n n y x y y x x b y a x +==>=>=++21,,0,01111.求证: (1) {}n x 与{}n y 均有极限; (2) n n n n y x ∞→∞→=lim lim .证 因为()1121++=+≤=n n n n n n y y x y x x ,所以()()n n n n n n y y y y x y =+≤+=+21211,即{}n y 单调减少有下界,而n n n n n n n x x x y x x y y =≥=≥≥++111,即{}n x 单调增加有上界.所以{}n x 与{}n y 都收敛.在()121+=+n n n y y x 两边取极限得n n n n y x ∞→∞→=lim lim .6. 设0>n a ,且1lim1<=+∞→q a a nn n ,求证{}n a 收敛且0lim =∞→n n a .证 因为1lim1<=+∞→q a a nn n ,对给定的+N ∈∃>-=00,021N qε,当0N n >时,有()n n n n n n a a r r q q q a a q q q q a a <⇒<=+=-+<<--⇒-<-+++111121212121, 所以,当0N n >时,有112210a r a r ra a n n n n ---<<<<< ,由迫敛原理得0lim =∞→n n a .闭区间上连续函数的性质7. 证明方程01sin =++x x 在⎪⎭⎫⎝⎛-2,2ππ内至少有一个根. 证 令()1sin ++=x x x f ,则()x f 在⎥⎦⎤⎢⎣⎡-2,2ππ上连续,且22ππ-=⎪⎭⎫ ⎝⎛-f ,222ππ+=⎪⎭⎫ ⎝⎛f ,即022<⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛-ππf f .由根的存在性定理得至少存在一点∈ξ⎪⎭⎫⎝⎛-2,2ππ,使得()0=ξf ,即方程01sin =++x x 在⎪⎭⎫⎝⎛-2,2ππ内至少有一个根.8. 证明方程12=⋅xx 至少有一个小于1的正根.(10分)证 令()12-=xx x f ,则f 在[]1,0上连续且()()()011110<-=⋅-=⋅f f ,由闭区间上连续函数的零点存在定理,()1,0∈∃ξ,使得()12012=⋅⇒=-⋅=ξξξξξf .9. 设函数f 在[)+∞,0上连续,且满足()1lim =+∞→x f x .若f 在[)+∞,0上能取到负值,试证明:(1) [)+∞∈∃,00x ,使得()00=x f ; (2) f 在[)+∞,0上有负的最小值.证 由条件可设[)+∞∈',0x 且()0<'x f ,由()1lim =+∞→x f x ,存在)(0x M M '>>使得()021>>M f ,由根的存在性定理,得()[)+∞⊂'∈∃,0,0M x x ,使得()00=x f .(1)得证. (2) 由()1lim =+∞→x f x ,存在)(0x M M '>>使得当M x ≥时,有()021>>x f .又f 在[]M .0上连续,故[]M ,0∈∃ξ,使得()[](){}()0min ,0<'<=∈x f x f f M x ξ.而当[)+∞∈,M x 时,()021>>x f ,故对[)+∞∈∀,0x 有()≥x f ()[](){}()0min ,0<'<=∈x f x f f M x ξ.所以结论成立.10. 设n 为正整数,n a a a 221,,, 为n 2个实常数,且02<n a .求证多项式函数()n n n n n a x a x a x x P 21212122++++=--在()+∞∞-,内至少有两个零点.证 因为()0022<=n n a P ,又()()+∞=+∞=+∞→-∞→x P x P n x n x 22lim ,lim ,所以存在0>M ,使得()()0,022>>-M P M P n n ,又n P 2在[]0,M -和[]M ,0上都连续,由根的存在性定理,()0,1M -∈∃ξ和()M ,02∈∃ξ,使得()()02212==ξξn n P P ,所以,结论成立.11. 设()xt x x t x t x f sin sin sin sin lim -→⎪⎭⎫⎝⎛=,求()x f 的表达式,并指明()x f 的间断点及其类型.解: ()xx xx x t x x t xt xx t ex x t x t x f sin sin sin sin sin sin sin sin sin sin 1lim sin sin lim =⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛=-→-→,所以0=x 为第一类可去间断点;() ,2,1±±==k k x π为第二类无穷间断点.12. 设()x f 在[]b a ,上连续,且满足()b x f a <<,求证:()b a x ,0∈∃,使得()00x x f =.证明:令()()x x f x F -=,则()x F 在[]b a ,上连续,()()()()()()0<-⋅-=⋅b b f a a f b F a F .由连续函数的零点定理,必存在()b a x ,0∈∃,使得()00=x F ,故()b a x ,0∈∃使得()00x x f =.13. 设()x f 是[]a 2,0上的连续函数,且满足条件()()a f f 20=.证明存在[]a x ,00∈,使得()()a x f x f +=00.证明: 令()()()a x f x f x F +-=,则()x F 在[]a ,0上连续,且()()()a f f F -=00,()()()()()()()02002=-=+⇒-=a f f a F F a f a f a F .若()()00==a F F ,则存在00=x 或a x =0使得()()a x f x f +=00.若()0F 与()a F 都不为零,则()()00<⋅a F F由连续函数的零点定理,必存在()a x ,00∈∃,使得()00=x F ,故()a x ,00∈∃使得()()a x f x f +=00.(注:两个数的和为零,则这两个数要么同时为零,要么,它们异号).14. 设函数()x f 在[)+∞,0上连续,且满足()1lim =+∞→x f x ,若存在()+∞∈,00x ,使得()00<x f ,求证:(1) ()+∞∈∃,0ξ使得()0=ξf ; (2) ()x f 在[)+∞,0上有负的最小值.证明: (1) 因为()1lim =+∞→x f x ,由函数的局部保不等式性,存在充分大的0>M (不妨设0x M >),使得M x >时,有()21>x f ,所以当M x >1时,()x f 在[]10,x x 上连续且()()010<⋅x f x f ,由连续函数的零点存在定理,存在[]()+∞⊂∈∃,0,10x x ξ使得()0=ξf .(2) 又()x f 在[]0,0x 上连续,故由最值定理,存在[]1,0x ∈η,使当[]1,0x x ∈时,()()ηf x f ≥,而()()00<≤x f f η,且[)+∞∈,1x x 时,()()ηf x f >>>021.所以()x f 在[)+∞,0上有负的最小值()ηf .15. 设()nx a x a x a x f n sin 2sin sin 21+++= ,若()x x f sin ≤,求证1221≤+++n na a a .证法1(用导数定义)因为 ()()n n na a a f nx na x a x a x f +++='⇒+++=' 212120cos 2cos 2cos . 又()()0000sin 0=⇒=≤f f ,所以()()()()1sin lim lim 00lim0000=≤=--='→→→xx x x f x f x f f x x x ,所以1221≤+++n na a a .证法2(用重要极限1)()1sin lim sin lim 2sin lim sin lim lim 0002010=≤+++=→→→→→xx x nxa x x a x x a x x f x x n x x x 所以1sin lim 2021=≤+++→xx na a a x n .导数与微分证明16. 设()⎪⎩⎪⎨⎧=≠=.0,0,0,1sin 3x x xx x f 证明: ()x f 在0=x 处可微; ()x f '在0=x 处不可微 证 因为()()()01sin lim 00lim0200==--='→→xx x f x f f x x ,所以函数()x f 在处可导,由可导与可微的关系知()x f 在0=x 处可微;又当0≠x 时, ()xx x x x f 1cos 1sin32-=', 而()()⎪⎭⎫ ⎝⎛-=-'-'→→x x x x f x f x x 1cos 1sin 3lim 00lim00极限不存在,故()x f '在0=x 处不可导, 由可导与可微的关系知()x f '在0=x 处不可微; 17. 设()0x f ''存在,证明: ()()()()0200002limx f hx f h x f h x f h ''=--++→ 证:()()()()()()()()()()()[]()0000000000020000)21lim 212lim 2limx f x f x f h x f h x f h x f h x f h h x f h x f h x f h x f h x f h h h ''=''+''=⎥⎦⎤⎢⎣⎡-'--'+'-+'=-'-+'=--++→→→ 18. 设()x f 为()+∞∞-,内的可导函数,周期为T .求证:()x f '也是以T 为周期的函数.证明:因为()()()()x f T x f x f T x f '=+'⇒=+,所以()x f '也是以T 为周期的函数. 中值定理的应用 19. 设01210=++++n a a a n ,证明多项式()n n x a x a a x f +++= 10在()1,0内至少有一个零点.证 作辅助函数()12101121+++++=n n x a n x a x a x F ,则()x F 在闭区间[]1,0满足罗尔中值定理的三个条件,故存在()1,0∈ξ使得()010=+++='n n a a a F ξξξ ,故()n n x a x a a x f +++= 10在()1,0内至少有一个零点.20. 设g f ,都是可导函数,且()()x g x f '<',证明当a x >时,()()()()a g x g a f x f -<-证 因为()()⇒'<'≤x g x f 0()x g 严格单调增.当a x >时, ()()a g x g >. 又由柯西中值定理得,存在()x a ,∈ξ使得()()()()()()()()()()()()()()()()a g x g a f x f g f a g x g a f x f g f a g x g a f x f -<-⇒<''=--⇒''=--1ξξξξ.21. 对任意的[)+∞∈,0x ,有()x x ≤+1ln ,且等号只在0=x 时成立.证明: 令()()(),001ln =⇒-+=f x x x f 存在()x ,0∈ξ,使得()()x f x f ξ'=,而()()001<⇒<+-='x f f ξξξ,当且仅当0=x 时()00=f ,所以结论成立.22. 设()x f 在[]a ,0上连续,在()a ,0内可导,且满足()()00==a f f ,求证:存在()a ,0∈ξ,使得()()02='+ξξξf f .提示:令()()x f x x F 2=,用罗尔中值定理可证.23. 设函数f 在[]b a ,上连续,在()b a ,内二阶可导,连结点()()a f a A ,与点()()()b f b B ,的直线交曲线()x f y =于点()()c f c M ,,其中b c a <<.证明:存在()b a ,∈ξ,使得()0=''ξf .证 因为B M A ,,三点共线,所以()()()()()()cb c f b f a c a f c f a b a f b f --=--=--. 在[]c a ,及[]b c ,上分别应用中值定理得: 存在()c a ,1∈η,使()()()a c a f c f f --='1η;存在()b c ,2∈η,使()()()cb c f b f f --='2η,即()()21ηηf f '='.由于f 二阶可导,故函数f '在区间[]21,ηη上满足罗尔中值定理的条件,故()()b a ,,21⊂∈∃ηηξ,使得()0=''ξf .24. 设10<<<b a ,证明不等式:abab a b 2arctan arctan -<-. 提示:在[]b a ,上用拉格朗日中值定理,注意将分母放大!25. 设b a <<0,证明不等式aba b a b b a a 1ln ln 222<--<+.26. 设()1,0∈x ,证明不等式()x x x x 2arctan 1ln <++<. 证 将要证的不等式变形为()2arctan 1ln 1<++<xxx ,令()()x x x f arctan 1ln ++=,则()()()x f x f ,1,0,00∈∀=在[]x ,0上满足拉格朗日中值定理的条件,于是()(),01,0⊂∈∃x ξ使得()211110arctan 1ln ξξ+++=-++x x x , 又由x +11与211x +在[]1,0上的连续性与单调性可得11121,111212<+<<+<ξξ,所以 ()2arctan 1ln 1<++<xxx ,故要证的不等式成立.27. 已知()x f 在0=x 的某邻域内有二阶连续导数,且()()()00,00,00≠''≠'≠f f f ,证明:存在唯一的一组实数321,,λλλ,使当0→h 时,()()()()032321f h f h f h f -++λλλ是比2h 高阶的无穷小量.证法1 (洛比达法则)()()()()()()()()()()()()0942123924lim 23322lim032lim3213210321023210f h f h f h f h h f h f h f h f h f h f h f h h h ''++=''+''+'''+'+'=-++→→→λλλλλλλλλλλλ令()()009421321=''++f λλλ,并由要证可知,前三式的分子的极限都应是零,可得到 ⎪⎩⎪⎨⎧=++=++=++0940321321321321λλλλλλλλλ (2) 因为0941321111≠,故(2)有唯一非零解.故结论成立.28. 设函数f 在),(+∞a 内可导,且()x f x +∞→lim 及()x f x '+∞→lim 都存在.证明()0lim ='+∞→x f x .证 当a x >时,由条件知,函数f 在区间[]1,+x x 上连续可导,故()1,+∈∃x x ξ,使得()()()ξf x f x f '=-+1.因为()x f x +∞→lim 及()x f x '+∞→lim 都存在,所以()x f x '+∞→lim =()()()[]()()0lim 1lim 1lim lim =-+=-+='+∞→+∞→+∞→+∞→x f x f x f x f f x x x ξξ.29. 证明;当2021π<<<x x 时,1212tan tan x x x x >证 令()x x x f tan =,则 ()xx xx x xx x x f 2222cos 2sin 21tan sec -=-='. 令()()⎪⎭⎫⎝⎛∈>-='⇒-=2,0,02cos 12sin 21πx x x g x x x g ,所以()x g 在⎪⎭⎫ ⎝⎛2,0π内单调增,则当0>x 时, ()()00=>g x g ,从而()0>'x f ,所以()x f 在⎪⎭⎫⎝⎛2,0π内单调增, 则当2021π<<<x x 时, ()()1212112212tan tan tan tan x x x x x x x x x f x f >⇒>⇒>.用单调性证明不等式30. 证明;当0>x 时, ()xx x +>+1arctan 1ln证 令()()()x x x x f arctan 1ln 1-++=,()()()()2221211;111ln 1x xx x f x x x f +++=''+-++=',当0>x 时,()0>''x f ,所以()x f '在()+∞,0内单调增,故当0>x 时, ()()00='>'f x f 因而得()x f 在()+∞,0内单调增, 故当0>x 时, ()()()xxx f x f +>+⇒=>1arctan 1ln 00. 31. 设e x 31≤≤,证明不等式:()1ln ln 23ln 122≤-≤-x x .32. 设0>x ,证明不等式11≤--xe x。
folland第二章题目
folland第二章题目
Folland的数学分析教材第二章的题目主要涉及到度量空间和拓扑空间的基本概念和性质。
在这一章中,主要讨论了度量空间中距离的性质、开集、闭集、邻域、极限点、稠密集、完备度量空间等概念。
同时还涉及到拓扑空间的定义、开集、闭集、邻域、连通性、紧致性等内容。
具体题目可能包括:
1. 证明度量空间中的开球是开集。
2. 证明度量空间中的闭球是闭集。
3. 证明度量空间中的极限点的性质。
4. 证明完备度量空间中的柯西序列收敛。
5. 证明拓扑空间中开集的交、并仍然是开集。
6. 证明拓扑空间中闭集的有限交、任意并仍然是闭集。
7. 证明拓扑空间中紧致集的闭子集仍然是紧致的。
以上是一些可能出现在Folland数学分析教材第二章的题目,涉及到度量空间和拓扑空间的基本概念和性质。
希望这些回答能够帮助到你。
国开(中央电大)本科《数学分析专题研究》网上形考(任务1至3)试题及答案
国开(中央电大)本科《数学分析专题研究》网上形考(任务1至3)试题及答案国开(中央电大)本科《数学分析专题研究》网上形考(任务1至3)试题及答案形考任务1 试题及答案题目1: , , 是三个集合, 若, 则有( )成立。
[答案] 题目2: , 则( )。
[答案] 题目3: 与自然数集N等势的集合称之为( )。
[答案]可列集题目4: 设是从到的映射, 则下列说法正确的是( )。
[答案] 题目5: 设, 是两个集合且, 则( )。
[答案]= 题目6: 设是中的关系, 若, 则称为( )。
[答案]反对称的题目7: 设是一集合, 对于, 规定, 则是一( )。
[答案]半序集题目8: 若集合, 则( )。
[答案] 题目9: 对整数加法来说, 整数集中( )。
[答案]零元和负元素都存在题目10: 对于复数集 , 下列说法正确的是( )。
[答案]它不能成为有序域题目11:1.设是中的关系, 若是_______, 对称的, 传递的, 则称是等价关系。
[答案]反身的 2.设是非空的实数集, 若存在实数, 满足1), 有;2)_______, 则称是数集的下确界。
[答案] 3.一个集合若不能与_______建立一个双射, 则称该集合为有限集。
[答案]其任一真子集 4.若集合上的运算满足_______, 则的左零元就是的右零元, 也就是的零元。
[答案]交换律 5.对于半序集合的元素, 若_______, 则称为的极大元。
[答案]任意的都不成立6.既约分数可以化成有限小数当且仅当只含有_______的因数。
[答案]2与5 7._______。
[答案] 8.设是非空有界实数集, 令 , 则_______。
[答案] 9.在自然数集中, 能进行减法运算当且仅当被减数_______减数。
[答案]> 10.若数列单调增加且有________, 则数列收敛。
[答案]上界题目12: 设集合A={1, 2, 3456.7, 8}, 关系D4为整除关系(1)写出集合A中的最大元, 最小元, 极大元, 极小元;(2)写出A的子集B={12, 4}的上界、下界、最小上界和最大下界。
高中数学高等代数和数学分析题目
高中数学高等代数和数学分析题目在高中数学课程中,高等代数和数学分析是两个重要的学习内容。
以下是一些典型的高中数学高等代数和数学分析的题目,帮助同学们巩固知识和提高解题能力。
第一题:高等代数已知函数 $f(x) = 2x^3 - 4x^2 + 3x - 2$ ,求 $f(x)$ 的导函数 $f'(x)$。
解法:根据导函数的定义,导函数 $f'(x)$ 是函数 $f(x)$ 的导数。
对于多项式函数,可以使用幂函数的导数规则进行求导。
首先,对每一项进行求导:$\frac{d}{dx}(2x^3) = 6x^2$$\frac{d}{dx}(-4x^2) = -8x$$\frac{d}{dx}(3x) = 3$将求导结果相加,得到:$f'(x) = 6x^2 - 8x + 3$因此,函数 $f(x)$ 的导函数 $f'(x)$ 为 $6x^2 - 8x + 3$。
第二题:高等代数已知函数 $g(x) = \frac{x^2 + 3x - 2}{x + 1}$ ,求 $g'(x)$。
为了求 $g'(x)$,我们需要使用除法的求导法则。
首先,对分子的每一项进行求导:$\frac{d}{dx}(x^2) = 2x$$\frac{d}{dx}(3x) = 3$然后,对分母进行求导:$\frac{d}{dx}(x + 1) = 1$对于除法的求导法则,我们可以使用以下公式:$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) -f(x)g'(x)}{(g(x))^2}$将求导结果带入公式,得到:$g'(x) = \frac{(2x)(x + 1) - (x^2 + 3x - 2)(1)}{(x + 1)^2}$化简上式,得到:$g'(x) = \frac{2x^2 + 2x - x^2 - 3x + 2}{(x + 1)^2}$$g'(x) = \frac{x^2 - x + 2}{(x + 1)^2}$因此,函数 $g(x)$ 的导函数 $g'(x)$ 为 $\frac{x^2 - x + 2}{(x + 1)^2}$。
浙大数学分析考研真题
浙大数学分析考研真题浙大数学分析考研真题数学分析是数学的基础学科之一,也是考研数学科目中的重要部分。
浙江大学的数学分析考研真题一直备受考生关注。
本文将从历年的浙大数学分析考研真题中选取一些典型题目进行分析和讨论,以帮助考生更好地理解和应对这一科目。
第一道题目是2018年浙大数学分析考研真题中的一道选择题。
题目要求考生判断函数序列$f_n(x)=\frac{nx}{1+n^2x^2}$在区间$(0,1)$上的一致收敛性。
这是一个经典的一致收敛性问题,需要考生熟练掌握一致收敛的定义和判断方法。
通过计算函数序列的极限函数,可以发现该函数序列在区间$(0,1)$上一致收敛于零函数。
这道题目考查了考生对一致收敛的理解和运用能力。
接下来是2019年浙大数学分析考研真题中的一道计算题。
题目给出一个积分$\int_0^1\frac{x^3}{(1+x^2)^2}dx$,要求考生计算该积分的值。
这是一个典型的定积分计算题,需要考生熟练掌握定积分的计算方法和技巧。
通过变量代换或部分分式分解等方法,可以将该积分化简为简单的有理函数积分,最终得到积分的精确值。
这道题目考查了考生对定积分计算的掌握程度。
第三道题目是2020年浙大数学分析考研真题中的一道证明题。
题目要求考生证明函数$f(x)=\frac{x}{1+x}$在区间$(0,+\infty)$上是严格单调递增的。
这是一个典型的函数单调性证明题,需要考生运用导数的定义和性质进行证明。
通过计算函数的导数,可以得到导函数$f'(x)=\frac{1}{(1+x)^2}$,由导函数的正负性可以证明原函数在区间$(0,+\infty)$上是严格单调递增的。
这道题目考查了考生对函数单调性证明的能力。
最后是2021年浙大数学分析考研真题中的一道应用题。
题目给出一个函数$f(x)=\frac{1}{x}$,要求考生求出该函数在区间$(1,+\infty)$上的最小值。
这是一个典型的最值问题,需要考生熟练掌握最值的求解方法和技巧。
大学数学分析题题库
大学数学分析题题库题目一:极限与连续性1. 计算下列极限:(a) $\lim_{x \to 0} \frac{\sin(3x)}{4x}$(b) $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$(c) $\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1}$2. 判断函数在给定点或区间内的连续性:(a) 函数$f(x) = \sqrt{x}$在$x=0$处是否连续?(b) 函数$g(x) = \frac{1}{x}$在区间$(1, 2)$内是否连续?(c) 函数$h(x) = \begin{cases} x, & x < 1 \\ 2, & x \geq 1 \end{cases}$在$x=1$处是否连续?题目二:微分学基础1. 计算下列函数的导数:(a) $f(x) = 3x^2 - 2x + 1$(b) $g(x) = \sin(x) + \cos(x)$(c) $h(x) = e^x \cdot \ln(x)$2. 判断函数在给定点处的可导性:(a) 函数$f(x) = |x|$在$x=0$处是否可导?(b) 函数$g(x) = \sqrt[3]{x}$在$x=8$处是否可导?题目三:积分与面积1. 计算下列定积分:(a) $\int_{0}^{1} x^2 \, dx$(b) $\int_{-\pi}^{\pi} \sin(x) \, dx$(c) $\int_{1}^{e} \frac{1}{x} \, dx$2. 计算两个曲线之间的面积:(a) 曲线$y = x^2$与$x$轴所围成的面积;(b) 曲线$y = \sin(x)$与$y = \cos(x)$在区间$[0, \pi/2]$内所围成的面积。
题目四:级数与收敛性1. 判断下列级数的敛散性:(a) $\sum_{n=1}^{\infty} \frac{1}{n^2}$(b) $\sum_{n=1}^{\infty} \frac{1}{2^n}$(c) $\sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{n}$2. 判断函数项级数的一致收敛性:(a) 级数$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$在区间$[0,\pi]$上是否一致收敛?(b) 级数$\sum_{n=1}^{\infty} \frac{\cos(nx)}{n}$在区间$(-\infty, \infty)$上是否一致收敛?总结:数学分析题库涵盖了极限与连续性、微分学、积分与面积以及级数与收敛性等重要概念和技巧。
数学分析(2)期末试题参考答案
∑ A′
∑ ℓα (
)
µ(Iα) µ Jβxα,γ
≥
ε0 m
>
ε.
α=1 γ=1
α=1
γ=1
另 一 方 面, 对 于 每 个 xα, 存 在 一 个 Kk, 使 得 xα ∈ Kk。 因 为 P 是 利 用 K1, . . . , Kκ 的边界构造的网格分划,所以相应的 Iα × Jβxα,γ 一定包含在这个
恰好覆盖
Em,于是
∑A′
α=1
µ(Iα)
≥
ε0。对于每个
Iα (1 于是
≤ α ≤ A′),取一个
∑ℓα
γ=1
µ(Jβxα ,γ
)
≥
1 m
xα ∈ Iα ∩ Em,设 ,所以我们有
Jβxα,1 , . . . , Jβxα,ℓα
恰好覆盖
Kxα ,
∑ A′ ∑ ℓα ( µ Iα
) × Jβxα,γ
=
i) 求证:
∫
∫
∫
ωi = ωi + ωi, i = 1, 2.
γ3
γ1
γ2
ii) 求证:
∫
lim
ωi = 0, i = 1, 2.
R→+∞ γ2
iii) 计算广义积分:
C = ∫ +∞ cos (x2) dx, S = ∫ +∞ sin (x2) dx
0
0
() 解答: i) 因为 ωi ∈ Ω1 R2 、dωi = 0 (i = 1, 2),所以由 Green 公式可知结论
解答:(证法一)因为
K
紧且
Lebesgue ∫
零测,所以
Jordan
零测,于是
华北电力大学数学分析期末试题
华北电力大学(北京)2010—2011学年第一学期期末试题《数学分析》试题本试题卷共4页,28道小题。
全卷满分100分。
考试用时120分钟。
1.答题前,考生务必将自己的姓名、学院、专业、班级、学号填写在试题卷和答题卡上,并将考试条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷、草稿纸上无效。
3.填空题、判断题、计算题和证明题用0.5毫米黑色墨水签字笔将答案直接答在答题卡上对于应的答题区域内。
答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷、答题卡和演草纸一并上交。
第I 部分:客观题(共20分)一、选择题:本大题共10个小题,每小题2分,共20 分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1、{n a }、{n b }和{n c }是三个数列,且存在N,∀ n>N 时,有≤n a ≤n b nc ,则( )A. {n a }和{n b }都收敛时,{n c }收敛B. {n a }和{n b }都发散时,{n c }发散C. {n a }和{n b }都有界时,{n c }有界D. {n b }有界时,{n a }和{n c }都有界2、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f . 则 ( )A. ∈∃ξ(b a ,),使0)('=ξf B. ∈∃ξ(b a ,),使0)('≠ξfC. ∈∀x (b a ,),使0)('≠x f D. 当)(b f >)(a f 时,对∈∀x (b a ,)有 )('x f >03、设 =)(x f ⎪⎩⎪⎨⎧=≠-0 ,0 , )1(1x k x x x 在0=x 处连续,则=k ( ) A. 1 B. e C.e1D. -14、函数)(x f 在点0x 连续的充要条件是( )A. )0(0-x f 和)0(0+x f 中至少有一个存在B. )0(0-x f 和)0(0+x f 存在且相等C. )0(0-x f =)0(0+x f =)(0x fD. )(x f 在点0x 可导5、=)(x f ⎩⎨⎧<+≥ 3 , 3, 2x b ax x x 为使f 在点3=x 可导,应取( )A.3=a ,0=bB. 0=a ,3=bC.6=a ,9-=bD. 9-=a ,6=b 6、设函数f 定义在区间Ⅰ上,且满足Lipschitz 条件:0>∃L ,使对∈∀21,x x Ⅰ,有2121)()(x x L x f x f -≤-,则)(x f 在区间Ⅰ上( )A. 连续但未必一致连续B. 一致连续但未必连续C. 必一致连续D. 必不一致连续7、当x 很小时,下列近似公式正确的是( )A. x e x≈ B.x x ≈ln C. x x n +≈+11 D. x x ≈sin8、若)(x f 和)(x g 对于区间(b a ,)内每一点都有)()(''x g x f =,在(b a ,) 内有( )A.)()(x g x f =B.为常数)(2121 , c )( , )(c c x g c x f ==D. )()(x cg x f =(c 为任意常数) D. c x g x f +=)()( (c 为任意常数) 9、''f (0x )在点00=x 必( )A. x x f x x f x ∆-∆+→∆)()(lim 02020 B. '000)()(lim ⎪⎪⎭⎫ ⎝⎛∆-∆+→∆x x f x x f x C. '000)()(lim ⎪⎪⎭⎫⎝⎛∆-∆+→∆x x f x x f x D. x x f x x f x ∆-∆+→∆)()(lim 0'0'0 10、=)(x f ⎪⎪⎩⎪⎪⎨⎧>+=<,0 ,2.( ,0,0,,sin x x k x k x x kx为常数)函数 )(x f 在 点00=x 必 ( )A.左连续B. 右连续C. 连续D. 不连续第II 部分:主观题(共80分)二、 填空题:本大题共5个小题,每小题2分,共10分.请将答案填在答题卡对应题号的位置上。
北航数学分析期中考题-答案
北京航空航天大学第一学期期中《工科数学分析(I) 》试卷班号学号姓名成绩一 计算下面各题(满分40分,每个题目5分)1) 计算极限21sin 11x x x x e解:221sin 1sin lim11sin 1x x x x x x x exx x ………….. (3分)=12…………… (2分)2) 求下面无穷小的阶1tan 1sin 0x x x .解:tan sin 1tan1sin 1tan1sin 1sin 1cos 1tan 1sin x xx x x xx x xx………………………(3分)1sin 1cos lim2x x x x 为1阶 (2分)3) 假设cos sin 0xf xx求'f x.解:cos cos ln sin sin xx x fxe ……………….. (2分)2''cos lnsin cosln sin 2cos cos sin lnsin sin cossin sinln sin sinx x x xxx f ee x x xx x x xx……….(3分)4) 假设sin ,cos .x t t y t t 求dy dx.解:dy dy dx dx dtdt(2分)cos sin cos sin t t ttt t(3分)5) 假设223,x f x x xe 求.nfx解:2'10212''22223232323nnx nn xxnnn xnfxx x e C x x e Cxx eCxxe(3分)212221231221112133nx n n xxnxx x en xe n n e ex n xn n(2分)6) 求ln f x x 在2x 的n 阶Taylor 展开,并写出peano 余项.解:2ln ln 22ln 2122ln 2ln 12x f xx x x (2分)1122ln 2ln 1ln 21222knk nk x x o x (3分)7) 假设函数x f xe , 判断函数的凹凸性.解''''x x fx ee (4分)凸函数 (1分)8) 已知1sin ,0,0,0.mx xf xm x x 为正整数.求:m 满足什么条件,函数在0x 连续, m 满足什么条件,函数在0x可导.解:1m ,函数在0x 连续 (2分)2m,函数在0x可导数 (3分)二 证明下面问题(10分)假设1110,0,,2nn n x x xx 证明数列nx .证明: 1) 数列单调递减有下界(5分)1111,21110222nn nn nnn nnnnx x x x x x xx x xx2) (5分)11lim 2nnx bb b b,b三. 证明下面问题(10分) 假设数列nx 满足112nn n x x , 用Cauchy 收敛定理证明n x 收敛.证明 1) (5分)112112121,.......111........22211111112 (1).1222222nPn n Pn P nP n P nnn P n P npn P P nn pN x x x x x x x x2) 柯西定理写正确5分10,ln /ln 21,,,npnN n N pN x x四. 证明下面不等式 (10 分)2sin 1,0,2xx ex x .证明: 1) 下面每个式子2分,共6分2'''1sin ,0,2cos ,0,1sin ,0,x x xx F xe x xF x x e x x F xe x x2) (2分)''0,0,,F xx '00F 因此'0,0,F xx3) (2分)00F ,21sin 0,0,2xx F x ex x五. (10分)假设函数f x 和g x 在,a b 存在二阶导数,并且''0g x,且0f af bg a g b ,证明下面问题:1)在,a b 内0g x ;2) 在,a b内至少存在一点在,满足''''f f g g .证明: 1) 下面每个式子2分,共6分用反证法证明,假设,,0a b g. 则''111''222''''''12312331200,,00,,00,g ag g x a g x x a g b g g x b g x x b g x g x g x x x g x x x x矛盾,结论得证. 2) 令''F xf xg x f x g x …….. ( 2分)'''''F xf xg xf xg x………………(2分)0F a F b '''''0F fg f g…………(1分)六 (10分) 假设函数f x在0,1存在二阶导数,00,11,f f 并''010,f f 求解和证明下面问题.1) 写出f x 在0,1x x 的Lagrange 余项的Taylor 公式;2) 证明在0,1至少存在一点0,1满足''4f .证明 1) 下面每个式子2分'''211100,2f x f f xf x 介于0,x 之间.2'''1211111,2f xf f x f x 介于,1x 之间.2)'''2''2112''11100221112fx f f xf x f x f xf x 2分2''2''112''2''112''''2111111221111221max ,12fx fx f x f x f fxx 2分而221xx 在0,1区间上的最大值12, (2分)因此''''11max , 4.f f七 (10分)证明下面问题假设f x 定义在,a b 上. 如果对,a b 内任何收敛的点列n x 都有lim n nf x 存在, 则f在,a b上一致连续.证明: 1) 写出不一致连续定义3分 如果f在,a b上不一致连续, 则010,,,,,n n n nn ns t a b s t f s f t n2) 写出下面3分(有界数列必存在收敛子列),,,n ns t a b 则存在,,,lim lim k kkkn n n n kks t a b s t3) 下面结论4分构造11,,.......,,..........k k n n n n ns t s t z 数列收敛且极限为, (2分)则有已知条件lim n nf z 存在, 因此lim lim kk n n kkf s f t (2分)与1)矛盾.八 (10分)附加题 (下面两个题目任选其一)1) 假设函数11cos nnfx x, 证明下面问题a) 对于任意的自然数n , 方程12nfx在0,2中仅有一根.b) 设0,,2n x 满足12nnfx , 则lim .2nn x证明: 1) 5分01,02nnf f ,由介值定理10,,22nnnx fx . (3分)1'sin 1cos 0,0,2n nfxn x x x(2分)因此根唯一. 2) 5分由于1111arccos11,lim arccos 1,nn n n f f e nn n(2分)由极限的保号性11,,arccos 211arccos2n nnnN nN f nffxn(2分)单调性1arccos 2nx n和夹逼定理lim .2nnx (1分)2) 用有限覆盖定理证明下面问题 假设函数f x 定义在,a b , 对于0,x a b , 0lim xx f x 都存在, 则f x 在,a b 上有界.证明: 1)4分lim xx f x 存在,根据函数局部有界性,,,,,,xx xx x a b U x t U x f tM2)3分根据有限覆盖定理,,,xx a bU x a b,存在有限个1,,i kx i i U x a b3)3分取1max i x i kMM ,则,xa b ,1,i kx i i xU x ,则f x M 。
数学分析(2)期末试题集(证明题部分)
故 是偶函数;
(2)
其中 在 与 之间.
考虑上式右端两个因子之积:当 时, ,即有 ;当 时, ,同样有 ;当 时, ,也就是说,在 上有 ,所以, 单调不减.
20.设 在 上连续,在 内可导,且 ,记 ,
(1)求 ;
(2)求证: ,使得 ;
(3)求证: ,使得 .
(1)解 ;
(2)证:因为 ,又 在 上连续,在 内可导,由罗尔中值定理, ,使得 ,即 ;
,
即有 .
(2)首先,由分部积分公式,有
,
再由被积函数的连续性,可知存在 ,使得
,
而 ,所以必有 ;
又由分部积分法,可得
.
17.设函数 在 上连续,且 .试证明:在 内至少存在两个不同的点 与 ,使 .
证法1令 ,则有 .
,
由连续函数的性质,必存在 ,使得 . 在 和 上都满足洛尔中值定理的条件,故存在 ,使得
.
证法2由 知, 至少存在一个零点 .
若 在 只有一个零点,则 在 的两侧异号且不变号,不妨设
.
由 与 ,同时注意到 在 上的单调性,则有
,
此为矛盾.因此至少存在两个不同的点 与 ,使 .
18.设 在 上有二阶连续导数,且 .
(1)写出 的带拉格朗日余项的一阶麦克劳林公式;
(2)证明在 上至少存在一点 ,使得 .
证取变换 ,则 ,已知积分等式变为
.
注意到 时,也有 ,因而 在 上连续,于是
.
由此可得 ,使得 .
13.设 在 上连续且单调减少,证明对任意的常数 ,有
.
证法1只需证明积分 .为此令 ,所以
,
故结论成立.
证法2
数学分析原理的应用题目
数学分析原理的应用题目1. 导数与微分•求函数f(x)=x2+3x−2在点x=1处的导数值。
•求函数$g(x)=\\sin(x)+\\cos(2x)$在点$x=\\frac{\\pi}{4}$处的导数值。
•求函数$h(x)=e^x\\ln(x)$在点x=2处的导数值。
2. 极值与最值•求函数f(x)=2x3−3x2的最小值。
•求函数$g(x)=\\frac{1}{x^2}$在区间(0,1)上的最大值。
•求函数$h(x)=x^3\\sin(x)$在区间$[0,\\frac{\\pi}{2}]$上的最小值。
3. 泰勒级数展开•将函数$f(x)=\\cos(x)$在点x=0处展开成泰勒级数的前5项。
•将函数$g(x)=\\ln(1+x)$在点x=0处展开成泰勒级数的前3项。
•将函数$h(x)=\\sqrt{1+x}$在点x=0处展开成泰勒级数的前4项。
4. 不定积分•计算不定积分$\\int (3x^2+2x+1)dx$。
•计算不定积分$\\int \\frac{1}{x}dx$。
•计算不定积分$\\int \\sin(x)+\\cos(x)dx$。
5. 定积分•计算定积分$\\int_{0}^{1} (2x^3+3x^2)dx$。
•计算定积分$\\int_{-\\pi}^{\\pi} \\sin(x)dx$。
•计算定积分$\\int_{1}^{e} \\frac{1}{x}dx$。
6. 微分方程•求解微分方程$\\frac{dy}{dx} + y = e^x$。
•求解微分方程$\\frac{dy}{dx} = 2x$。
•求解微分方程$\\frac{d^2y}{dx^2} + 2\\frac{dy}{dx} + y = 0$。
7. 线性代数•求解线性方程组$\\begin{cases} 2x + 3y = 1 \\\\ 4x - y = 2\\end{cases}$。
•求解线性方程组$\\begin{cases} 3x + 2y + z = 5 \\\\ x - 2y + z = 3\\\\ 2x + y - z = 1 \\end{cases}$。
中科院数学分析试题答案
中国科学院数 数学分析试题1求a,b 使下列函数在x=0处可导:21ax b y x +≥⎧=⎨+⎩当x 0;当x<0.解:由于函数在x=0处可导,从而连续,由(00),(00)1f b f +=-=得到b=1;又由(0),(0)0f a f +-==得到a=0.即得。
2 1110,,.1n n n a ∞∞==>+∑∑n n1已知级数发散求证级数也发散a a证明: 用反证法。
由0n a >知1n ∞=∑n 1级数a ,111n ∞=+∑n a 均为正项级数。
假设级数111n ∞=+∑n a 收敛,则1lim 01n →∞=+na ,于是有11lim lim lim 1111111n n n n n n a a a →∞→∞→∞===-+++n n 1a a ,从而由正项级数的比较判别法知级数1n ∞=∑n 1a 收敛,矛盾,从而得证。
3 1(1).n x dx ≥-⎰m 设m,n 0为整数,求积分x 的值解:111111n100(1),1I(m,n)=(1-x)(1)|(1)(1)(1,1).01111n m m m n n x dx x x x n d x n x dx I m n m m m m +++--=----=+-++++⎰⎰⎰m 设I(m,n)=x 则由分部积分法有从而111(,)(1,1)(2,2)(,0)11212n n n n n I m n I m n I m n I m n m m m m m m n--=+-=+-==+++++++!1!!()!1(1)!!n m n m n m n m n m ==+++++即得解。
4 0().aaa dx f x dx -=⎰⎰xf(x)设a>0,f(x)是定义在[-a,a]上的连续的偶函数,则1+e证明:由f(x)是定义在[-a,a]上的连续的偶函数知()()f x f x -=,从而令x t =-有()()()11a a at t t a a af t e f t dx dt dt e e -----=-=++⎰⎰⎰x f(x)1+e 从而1()1()()212aaaat t a a aae f t dx dx dt f x dx e ----=+=+⎰⎰⎰⎰x x f(x)f(x)1+e 1+e 0000011[()()][()()]()22aaaaa f x dx f x dx f x dx f x dx f x dx -=+=+=⎰⎰⎰⎰⎰得证。
数学分析练习题
数学分析练习题一、选择题(每题4分,共20分)1. 函数f(x) = x^2 + 3x - 2在区间(-∞, -4)上的单调性是:A. 单调递增B. 单调递减C. 无单调性D. 无法确定2. 若函数f(x)在点x=a处连续,且f(a)=0,则f(x)在x=a处的极限值是:A. 0B. 1C. -1D. 无法确定3. 对于函数f(x) = sin(x),其在x=π/2处的导数是:A. 0B. 1C. -1D. 无法确定4. 若f(x) = x^3 - 6x^2 + 11x - 6,求f'(x) =:A. 3x^2 - 12x + 11B. x^3 - 6x^2 + 11C. 3x^2 - 12xD. 3x^2 - 12x + 105. 函数f(x) = e^x在区间[0, 1]上的最大值是:A. 1B. eC. e^1D. 无法确定二、填空题(每题3分,共15分)6. 若f(x) = x^3 + 2x^2 - 5x + 7,求f''(x) = __________。
7. 若函数f(x) = ln(x) + 1,求f(1) = __________。
8. 函数f(x) = x^2 + 1在x=2处的切线斜率是 __________。
9. 若f(x) = x^3 - 2x^2 + x - 5,求f'(1) = __________。
10. 函数f(x) = cos(x)在区间[0, π]上的最大值是 __________。
三、计算题(每题10分,共30分)11. 求函数f(x) = x^3 - 4x^2 + 2x + 5在x=1处的泰勒展开式。
12. 证明函数f(x) = x^2在区间(0, 1)上是凹函数。
13. 求不定积分∫(3x^2 - 2x + 1)dx。
四、解答题(每题15分,共40分)14. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求其在区间[1, 3]上的最大值和最小值。
数学分析试题及答案
z = 0 与 z = h ( h > 0 )之间的部分,定向为下侧。
七.设 A(x, y) = 2xy(x 4 + y 2 )λ i − x 2 (x 4 + y 2 )λ j 是右半平面 D = { (x, y) | x > 0 } 上 的向量场,试确定常数 λ ,使得 A(x, y) 为 D 上函数 u(x, y) 的梯度场,并求出 u(x, y) 。
∑ 计算 ∞ (−1)n+1 的值。 n2 n=1
4
复旦大学 2005~2006 学年第一学期期末考试试卷
答案
1. (本题满分 40 分,每小题 8 分) (1) 2 2x + y − 2 = 0 。
(2) 1 。 2
1
(3) y = e e 为极大值。 x=e
(4)曲线在 (0, 1] 上为上凸,在[1,+∞) 上为下凸, (1, − 7) 为拐点。
∫∫∫ 四.计算三重积分 e|z|dxdydz ,其中 Ω = { (x, y, z) | x2 + y 2 + z 2 ≤ 1}。 Ω
五. 计算曲线积分
∫ 2 y 2 + z 2 ds ,
L
其中 L 是球面 x2 + y 2 + z 2 = a 2 ( a > 0 )与平面 x = y 相交而成的圆周。
A t(1 + t 2 ) 2
x→+∞ 1 t(1 + t 2 )
∫ 所以存在 X > 0 ,当 x > X 时成立 A cos xt dt < ε ,于是当 x > X 时成立
数学分析面试真题答案解析
数学分析面试真题答案解析是数学基础课程中非常重要的一门学科。
它对于培养学生的逻辑思维能力、分析问题的能力以及解决实际问题的能力有着重要的作用。
所以,在面试过程中,问题经常是考察学生数学思维能力的一个重要方面。
以下是一些常见的面试真题及其解析,希望能对读者有所帮助。
一、求极限1. 计算极限$\lim_{x\to 0}\frac{\sin x}{x}$。
解析:要计算这个极限,可以利用泰勒展开的思想。
根据泰勒级数展开,有$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} -\cdots$。
因此,原极限可以改写为$\lim_{x\to 0}\frac{x -\frac{x^3}{3!} + \frac{x^5}{5!} - \cdots}{x}$。
显然,当$x\to0$时,分子和分母同时趋于0,所以可以使用洛必达法则,即对分子和分母同时求导,有$\lim_{x\to 0}(1 - \frac{x^2}{2!} +\frac{x^4}{4!} - \cdots) = 1$。
2. 计算极限$\lim_{n\to\infty}\frac{n}{\sqrt[n]{n!}}$。
解析:我们可以利用中的极限性质,即$\lim_{n\to\infty}\sqrt[n]{n!} =\lim_{n\to\infty}\frac{n}{\sqrt[n]{n!}}$。
所以,原极限可以改写为$\lim_{n\to\infty}\sqrt[n]{n!}$。
根据Stirling公式,$\lim_{n\to\infty}\frac{\sqrt{2\pin}\left(\frac{n}{e}\right)^n}{n!} = 1$。
所以,原极限为1。
二、连续与可导1. 设$f(x)$在$x_0$处连续,且$\lim_{x\to x_0}f'(x)$存在,证明$f(x)$在$x_0$处可导。
解析:由题意可知,$\lim_{x\to x_0}f'(x) = L$存在。