2021年广东省揭阳市中考数学一模试卷(有答案)
2021年揭阳市初二数学上期中一模试题(带答案)
求 的度数﹔
求证: 是等腰三角形.
23.如图, // , ,AQ平分 ,交BD的延长线于点Q,交DE于点H, ,求 的度数.
24.已知:如图,AC=BD,BD⊥AD于点D,AC⊥BC于点C.求证:∠ABC=∠BAD.
25.如图1,△ABC中,AD是∠BAC的角平分线,AE⊥BC于点E.
④只有两边夹角对应相等的两个三角形全等,而两边及一角分别相等的两个三角形不一定全等.因此④不正确;
所以正确的只有③,
故选:B.
【点睛】
本题考查平方根、立方根、无理数的估算以及三角形全等判定定理,掌握平方根、立方根的意义、掌握无理数的估算方法和三角形全等的判断方法是正确判断的前提.
6.B
解析:B
【分析】
15.如图,在 中, , 平分 交 于点 .若 ,且 , ,则 的面积是______.
16.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第____块去,这利用了三角形全等中的____原理.
17.如图所示,己知 的周长是 分别平分 和 ,且 ,则 的面积是__________.
18. 年 月 日凌晨,宝岛高雄发生 级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的 两处,用仪器探测生命迹象 ,已知探测线与地面的夹角分别是 和 (如图),则 的度数是_________.
19.已知等腰三角形的一边长等于 ,一边长等于 ,它的周长为______.
20.如图,在 中, 平分 , .若 , ,则 的度数为_______ .
广东省揭阳市2021版数学中考一模试卷(II)卷
广东省揭阳市2021版数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2020·吴江模拟) 如图,数轴上的点A表示的数为a,则a的相反数等于()A . ﹣2B . 2C .D .2. (2分)下列几何图形中,既是轴对称图形又是中心对称图形的是()A . 等边三角形B . 矩形C . 平行四边形D . 等腰梯形3. (2分) (2018七下·防城港期末) 以下调查中,适合使用全面调查的是()A . 企业招聘,对应聘人员进行面试B . 调查某批次汽车的抗撞击能力C . 调查春节联欢晚会的收视率D . 调查某水库中现有鱼的数量4. (2分)(2020·信阳模拟) 截止到4月21日0时,国外感染新型冠状病毒肺炎的人数已经突破2570000人,“山川异域,风月同天”,携手抗“疫“,刻不容缓.将2570000用科学记数法表示为()A . 2.57×106B . 2.57×105C . 25.7×105D . 2.57×1075. (2分)(2011·宁波) 下列计算正确的是()A . a6÷a2=a3B . (a3)2=a5C .D .6. (2分) (2020七下·高新期末) 把不等式x+2>4的解集表示在数轴上,正确的是()A .B .C .D .7. (2分)(2019·濮阳模拟) 如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=,CD=1,则BE的长是A . 5B . 6C . 7D . 88. (2分)如图,BD是⊙O的直径,∠A=60°,则∠DBC的度数是()A . 30°B . 45°C . 60°D . 25°9. (2分)某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A . 13x=12(x+10)+60B . 12(x+10)=13x+60C .D .10. (2分)(2014·柳州) 小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A . 无解B . x=1C . x=﹣4D . x=﹣1或x=411. (2分)如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则ΔCEF的周长等于A . 8B . 9.5C . 10D . 11.512. (2分) (2019八下·邗江期中) 若反比例函数的图象经过点(﹣2,3),则此函数图象也经过的点是()A . (﹣2,-3)B . (2,3)C . (﹣1,6)D . (﹣1.5,-4)二、填空题 (共6题;共8分)13. (1分) (2020八下·苏州期末) 当x________时,分式有意义.14. (1分)(2017·扬州) 因式分解:3x2﹣27=________.15. (1分)(2017·柘城模拟) 荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.16. (2分)(2017·泰兴模拟) 如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则CF:AB的值为________.17. (2分)(2017·天水) 如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为________米.18. (1分) (2018七上·秀洲月考) 观察下列各式:┉┉ 请你将猜想到的规律用含自然数n(n≥1)的代数式表示出来是___ __ ________.三、解答题 (共8题;共65分)19. (5分) (2017七下·江阴期中) 计算或化简下列各小题:(1);(2)(3);(4) .20. (5分)先化简,再求值:()÷ ,其中a= ,b=﹣1.21. (5分) (2019八上·无锡开学考) 如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移1格,再向上平移3格,其中每个格子的边长为1个单位长度.①在图中画出平移后的△A′B′C′;②若连接AA′,CC′,则这两条线段的关系是;③作直线MN,将△ABC分成两个面积相等的三角形.22. (3分)(2016·荆门) 秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:分数段频数频率60≤x<709a70≤x<80360.480≤x<9027b90≤x≤100c0.2请根据上述统计图表,解答下列问题:(1)在表中,a=________,b=________,c=________;(2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?23. (15分)(2020·射阳模拟) 如图,在三角形ABC中,AB=10,AC=BC=13,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF⊥AC,于点F,交CB的延长线于点E.(1)求证:DF是⊙O的切线;(2)求cos∠ADF的值.24. (15分)(2017·姜堰模拟) 2013年初,某市开始实施“旧物循环计划”,为旧物品二次利用提供了公益平台,到2013年底,全年回收旧物3万件,随着宣传力度的加大,2015年全年回收旧物试已经达6.75万件,若每年回收旧物的增长率相同.(1)求每年回收旧物的增长率;(2)按着这样的增长速度,请预测2016年全年回收旧物能超过10万件吗?25. (15分) (2019八下·灌云月考) 如图,在▱ABCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF =DE,连接AE,BF,EF.(1)求证:△ADE≌△BCF;(2)若∠ABE+∠BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.26. (2分) (2017九上·云阳期中) 如图,抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM重合部分的面积是□APQM面积的时,求□APQM面积.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共65分)19-1、19-2、19-3、19-4、20-1、21-1、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、。
广东省揭阳市2021年中考数学一模试卷B卷
广东省揭阳市2021年中考数学一模试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·茂南模拟) 的倒数是()A .B .C .D .2. (2分)下列计算正确的是()A . a3·(-a2)= a5B . (-ax2)3=-ax6C . 3x3-x(3x2-x+1)=x2-xD . (x+1)(x-3)=x2+x-33. (2分)(2018·吉林模拟) 国家游泳中心——“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260000平方米,将260000用科学记数法表示为2.6×10n ,则n的值是()A . 3B . 4C . 5D . 64. (2分)(2018·东莞模拟) 观察下列图形,其中既是轴对称又是中心对称图形的是()A .B .C .D .5. (2分) (2017九上·西湖期中) 下列事件是不确定事件的是().A . 在一个装着白球和黑球的袋中摸球,摸出红球B . 三角形内角和C . 杭州今年元旦节当天的最高气温是℃D . 任取两个正整数,其和大于6. (2分)如图所示,在⊙O中,,∠A=30°,则∠B=()A . 150°B . 75°C . 60°D . 15°7. (2分)(2018·深圳模拟) 点P(x﹣1,x+1)不可能在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分) 10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm)如下表所示:队员1队员2队员3队员4队员5甲队177176175172175乙队170175173174183设两队队员身高的平均数依次为甲,乙,身高的方差依次为S2甲, S2乙,则下列关系中正确的是()A . 甲=乙, S2甲>S2乙B . 甲<乙, S2甲<S2乙C . 甲>乙, S2甲>S2乙D . 甲=乙, S2甲<S2乙9. (2分) (2018九下·广东模拟) 如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧 AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为点D,E;在点C的运动过程中,下列说法正确的是()A . 扇形AOB的面积为B . 弧BC的长为C . ∠DOE=45°D . 线段DE的长是10. (2分)现给出下列四个命题:①无公共点的两圆必外离;②位似三角形是相似三角形;③菱形的面积等于两条对角线的积;④对角线相等的四边形是矩形。
2021-2022年揭阳市初二数学下期中一模试题(带答案) (4)
一、选择题1.已知点P(a,3)、Q(﹣2,b)关于y轴对称,则a ba b+-的值是()A.15-B.15C.﹣5 D.52.如图,动点Р在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点Р的坐标是()A.(2019,2)B.(2019,0)C.()2019,1D.(2020,1)3.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)4.关于点P(-2,0)在直角坐标平面中所在的象限说法正确的是()A.点P在第二象限B.点P在第三象限C.点P既在第二象限又在第三象限D.点P不在任何象限5.下列计算正确的是()A.32221-=B.1025÷=C.325+=D.(4)(2)22-⨯-=6.下列各式中,正确的是( )A.16=±4 B.±16=4 C.3273-=-D.2(4)4-=-7.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01;③计算3 (3+23)=5;④如果点P(3-2n,1)到两坐标轴的距离相等,那么n=1,其中假命题的有()A.1个B.2个C.3个D.4个8.下列说法正确的是()A.4的平方根是2 B.16的平方根是±4C.-36的算术平方根是6 D.25的平方根是±59.如图所示,数轴上的点A所表示的数为a,则a的值是()A .51+B .51-+C .51-D .510.如图,已知正方体纸盒的高为1,已知一只蚂蚁从其中一个顶点A ,沿着纸盒的外部表面爬行至另一个顶点B ,则蚂蚁爬行的最短距离是( )A .3B .2C .5D .21+ 11.下列各组数据中,是勾股数的是( )A .3,4,5B .1,2,3C .8,9,10D .5,6,9 12.如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A 处有一滴蜜糖,在玻璃杯的外壁,A 的相对方向有一小虫P ,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖A 处的最短距离是( )A .73厘米B .10厘米C .82厘米D .8厘米二、填空题13.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.14.若点P 1(a+3,4)和P 2(-2,b -1)关于x 轴对称,则a+b=___.15.已知21a -的平方根是3±,31a b --的算术平方根是4,那么2a b -的平方根是__________.16.已知103x ,小数部分是y ,求x ﹣y 的相反数_____.17.188=_____.18.如图,在直线l 上依次摆放着7个正方形,斜放置的三个正方形的面积分别是4,6,8,正放置的四个正方形的面积分别是1234,,,S S S S ,则1234S S S S +++=__________.19.已知一个直角三角形的两边长为3和5,则第三边长为______.20.在Rt ABC ∆中,斜边10BC =,则222BC AB AC ++=______.三、解答题21.如图,在平面直角坐标系中,点A (0,12),点B (m ,12),且B 到原点O 的距离OB =20,动点P 从原点O 出发,沿路线O →A →B 运动到点B 停止,速度为每秒5个单位长度,同时,点Q 从点B 出发沿路线B →A →O 运动到原点O 停止,速度为每秒2个单位长度.设运动时间为t .(1)求出P 、Q 相遇时点P 的坐标.(2)当P 运动到AB 边上时,连接OP 、OQ ,若△OPQ 的面积为6,求t 的值. 22.在直角坐标系中,ABC ∆的三个顶点的位置如图所示.(1)请画出ABC ∆关于y 轴对称的'''A B C ∆(其中',','A B C 分别是,,A B C 的对应点,不写画法);(2)直接写出',','A B C 三点的坐标'A ( ),'B ( ),'C ( ),(3)求出'''A B C ∆的面积23.已知某正数的两个不同的平方根是3a ﹣14和a +2;b +11的立方根为﹣3;c 6的整数部分;(1)求a +b +c 的值;(2)求3a ﹣b +c 的平方根.24.先化简,再求值:2(2)4(1)(21)(21)a a a a a ---++-,其中21a =-. 25.如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9.求AB 的长.26.如图,四边形ABCD ,AB =AD =2,BC =3,CD =1,∠A =90°,求∠ADC 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】直接利用关于y 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点P (a ,3)、Q (-2,b )关于y 轴对称,∴2a =,3b =,则23523a b a b ++==---. 故选:C .【点睛】本题主要考查了关于x ,y 轴对称点的性质,正确得出a ,b 的值是解题关键.注意:关于y 轴对称的点,纵坐标相同,横坐标互为相反数. 2.A解析:A【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.【详解】解:解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2019次运动后,动点P的横坐标为2019,纵坐标为1,0,2,0,每4次一轮,∴经过第2019次运动后,动点P的纵坐标为:2019÷4=504余3,故纵坐标为四个数中第三个,即为2,∴经过第2019次运动后,动点P的坐标是:(2019,2),故选:A.【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.3.C解析:C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.4.D解析:D【分析】根据点的坐标特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)求解即可.【详解】解:点P(-2,0)不在任何象限,故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.D解析:D【分析】二次根式的混合运算,加减法的基础是同类二次根式;除法运算按照法则进行,二次根式的化简,先乘后化简即可.【详解】∵=∴选项A错误;∵2=∴选项B错误;∵∴选项C错误;∵∴选项D正确.故选D.【点睛】本题考查了二次根式的混合运算,熟记二次根式混合运算的基本法则,特别是同类二次根式是加减运算的基础是解题的关键.6.C解析:C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A4=,此项错误;B、4=±,此项错误;C3=-,此项正确;D4==,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.7.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;③=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.8.D解析:D【分析】根据平方根和算术平方根的定义判断即可.【详解】解:A. 4的平方根是±2,故错误,不符合题意;B. 16的平方根是±2,故错误,不符合题意;C. -36没有算术平方根,故错误,不符合题意;D. 25的平方根是±5,故正确,符合题意;故选:D.【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.9.C解析:C【分析】先根据勾股定理求出直角三角形的斜边,即可得出选项.【详解】解:BC=BA=22+=,125∵数轴上点A所表示的数为a,∴a=51-故选:C.【点睛】本题考查了数轴和实数,勾股定理的应用,能读懂图象是解此题的关键.10.C解析:C【分析】从正方体外部可分三类走法直接走AB对角线,先走折线AD-DB,或走三条棱,求出其长度,比较大小即可【详解】方法一:走两个正方形两接的面展开成日字形的对角线在三角形ABC 中,由勾股定理AB=2222AC +BC =2+1=5;方法二:走一面折线AD-BD ,由勾股定理221+1=22+1;方法三折线AE-ED-DB 即AE+ED+DB=3;在正方体外部表面走有这三类走法,∵5<9, ∴53, ∵2>1, ∴21>, ∴222>, ∴22+32+3>, ∴)22+15>, ∴2+15>5故选择:C .【点睛】本题考查蚂蚁爬行最短路径问题是考查勾股定理的应用,掌握勾股定理的应用方法,会利用图形分析行走路径是解题关键.11.A解析:A【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A 、222345+=,能构成直角三角形,是正整数,故是勾股数;B 、222123+≠,不能构成三角形,故不是勾股数;C 、2220981,不能构成直角三角形,故不是勾股数;D 、222569+≠,不能构成直角三角形,故不是勾股数.故选:A .【点睛】本题主要考查了勾股数的定义及勾股定理的逆定理,熟悉相关性质是解题的关键.12.B解析:B【分析】把圆柱沿着点A所在母线展开,把圆柱上最短距离转化为将军饮马河型最短问题求解即可.【详解】把圆柱沿着点A所在母线展开,如图所示,作点A的对称点B,连接PB,则PB为所求,根据题意,得PC=8,BC=6,根据勾股定理,得PB=10,故选B.【点睛】本题考查了圆柱上的最短问题,利用圆柱展开,把问题转化为将军饮马河问题,灵活使用勾股定理是解题的关键.二、填空题13.【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等纵坐标是1020…4个数一个循环按照此规律解答即可【详解】解:观察点的坐标变化可知:第1次从原点运动到点(11)第2次接着运动到点(20)第2021,1解析:()【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,…4个数一个循环,按照此规律解答即可.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,4个数一个循环,由于2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故答案为:(2021,1).【点睛】本题考查了点的坐标规律探求,属于常考题型,由已知点的坐标变化找出规律是解题的关键.14.-8【分析】根据关于x轴对称的点的横坐标相等纵坐标互为相反数关于y 轴对称的点的纵坐标相等横坐标互为相反数得出ab的值即可得答案【详解】解:由题意得a+3=-2b-1=-4解得a=-5b=-3所以a+解析:-8【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,关于y轴对称的点的纵坐标相等,横坐标互为相反数,得出a、b的值即可得答案.【详解】解:由题意,得a+3=-2,b-1=-4.解得a=-5,b=-3,所以a+b=(-5)+(-3)=-8故答案为:-8.【点睛】本题考查关于x轴对称的点的坐标,熟记对称特征:关于x轴对称的点的横坐标相等,纵坐标互为相反数,关于y轴对称的点的纵坐标相等,横坐标互为相反数是解题关键.15.±1【分析】首先根据2a-1的平方根是±3可得:2a-1=9据此求出a的值是多少;然后根据3a+b-1的算术平方根是4可得:3a+b-1=16据此求出b的值是多少进而求出a-2b的平方根是多少即可【解析:±1【分析】首先根据2a-1的平方根是±3,可得:2a-1=9,据此求出a的值是多少;然后根据3a+b-1的算术平方根是4,可得:3a+b-1=16,据此求出b的值是多少,进而求出a-2b的平方根是多少即可.【详解】解:∵2a-1的平方根是±3,∴2a-1=9,解得a=5;∵3a+b-1的算术平方根是4,∴3a+b-1=16,∴3×5+b-1=16,解得b=2,∴a-2b=5-2×2=1,∴a-2b的平方根是:=±.1故答案为:±1.【点睛】此题主要考查了平方根、算术平方根的性质和应用.要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.16.【分析】先判断在那两个整数之间用小于的整数与10相加得出整数部分再用10+减去整数部分即可求出小数部分【详解】解:∵∴的整数部分是1∴10+的整数部分是10+1=11即x=11∴10+的小数部分是112【分析】10相加,得出整数部分,再用10+减去整数部分即可求出小数部分.【详解】<,解:∵12∴1,10+1=11,即x=11,∴10∴101011﹣1,即y1,∴x﹣y=111)=111=12∴x﹣y的相反数为﹣(1212.12.【点睛】在1~2之间.17.【分析】先化简二次根式再合并同类二次根式即可【详解】故答案为:【点睛】本题主要考查二次根式的化简以及同类二次根式的合并掌握二次根式的化简以及同类二次根式的合并方法是解题关键【分析】先化简二次根式,再合并同类二次根式即可.【详解】故答案为:2.【点睛】本题主要考查二次根式的化简以及同类二次根式的合并,掌握二次根式的化简以及同类二次根式的合并方法是解题关键.18.12【分析】如图易证△CDE≌△ABC得AB2+DE2=DE2+CD2=CE2同理FG2+LK2=HL2S1+S2+S3+S4=4+8=12【详解】解:如图∵∴∵在△CDE和△ABC中∴△CDE≌△解析:12【分析】如图,易证△CDE≌△ABC,得AB2+DE2=DE2+CD2=CE2,同理FG2+LK2=HL2,S1+S2+S3+S4=4+8=12.【详解】解:如图,∵EDC CBA ACE90∠∠∠===︒,EC CA=,ECD ACB ACB CAB90∠∠∠∠+=+=︒,∴ECD ACB∠∠=,∵在△CDE和△ABC中,EDC CBAECD CABEC CA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDE≌△ABC(AAS),∴AB=CD,BC=DE,∴AB2+DE2=DE2+CD2=CE2=8,同理可证FG2+LK2=HL2=4,∴S1+S2+S3+S4=CE2+HL2=4+8=12.故答案为:12.【点睛】本题考查了全等三角形的证明,考查了勾股定理的灵活运用,本题中证明AB2+DE2=DE2+CD2=CE2是解题的关键.19.4或【分析】分5是斜边和5是直角边两种情况再分别利用勾股定理即可得【详解】由题意分以下两种情况:(1)当5是斜边时则第三边长为;(2)当5是直角边时则第三边长为;综上第三边长为4或故答案为:4或【点解析:434分5是斜边和5是直角边两种情况,再分别利用勾股定理即可得.【详解】由题意,分以下两种情况:(1)当5是斜边时,4=;(2)当5是直角边时,=综上,第三边长为4故答案为:4【点睛】本题考查了勾股定理,依据题意,正确分两种情况讨论是解题关键.20.200【分析】根据勾股定理可知两直角边的平方和与斜边平方相同进而得出答案【详解】∵在中斜边∴∴200故答案为:200【点睛】本题考查勾股定理解题关键是根据勾股定理发现题干中解析:200【分析】根据勾股定理,可知两直角边的平方和与斜边平方相同,进而得出答案.【详解】∵在Rt ABC ∆中,斜边10BC =∴2222=100=10BC AB AC +=∴222BC AB AC ++=200故答案为:200.【点睛】本题考查勾股定理,解题关键是根据勾股定理,发现题干中222=BC AB AC +.三、解答题21.(1)P (8,12);(2)满足条件的值为277或297或1098. 【分析】(1)由勾股定理得AB=16,当P 、Q 相遇,P 和Q 走过的路程之和是AB+OA ,即可求得; (2)分类讨论, P 、Q 都在AB 边上和点Q 在OA 上,即可求得.【详解】(1)设t 秒后P ,Q 相遇.在Rt △AOB 中,∵∠BAO =90°,OA =12,OB =20,∴16AB ==,由题意:5t +2t =12+16,此时BQ =8.AQ =AB ﹣BQ =16﹣8=8,∴P (8,12).(2)当P ,Q 都在AB 边上时, ()11216512262t t ⨯⨯---=, 解得t =277或297当点Q 在OA 上时,12×16(28﹣2t )=6, 解得t =1098, 综上所述,满足条件的值为277或297或1098. 【点睛】 本题考查平面直角坐标系、勾股定理和动点类型习题,掌握分类讨论思想是解决本题的关键.22.(1)所画图形见解析;(2)3,-3 ;-1,-3;0,4 ;(3)11【分析】(1)分别作出各点关于y 轴的对称点,再顺次连接各点即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)作矩形DB EF ',用矩形的面积减去三个三角形的面积,即可得到A B C S'''.【详解】解:(1)如图所示:(2)由图可知,A '(3,-3),B '(-1,-3),C '(0,4);(3)如图,作矩形DB EF ',则DB EF S S S S S ''''''''''=---△A B C △C DB △C FA △A EB 四边形1117417316411222=⨯-⨯⨯-⨯⨯-⨯⨯=, ∴11A B C S '''=△.【点睛】本题考查的是作图-轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键. 23.(1)-33;(2)7±【分析】(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b 的值,根据263<<可得c 的值; (2)分别将a ,b ,c 的值代入3a-b+c ,可解答. 【详解】解:(1)∵某正数的两个平方根分别是3a-14和a+2,∴(3a-14)+(a+2)=0,∴a=3,又∵b+11的立方根为-3,∴b+11=(-3)3=-27,∴b=-38,又∵469<<, ∴263<<,又∵c 6的整数部分,∴c=2;∴a+b+c=3+(-38)+2=-33;(2)当a=3,b=-38,c=2时,3a-b+c=3×3-(-38)+2=49,∴3a-b+c 的平方根是±7.【点睛】本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.24.23a +,6-【分析】先把整式进行化简,得到最简整式,再把1a =代入计算,即可得到答案. 【详解】解:原式22224444413a a a a a a =-+-++-=+,∴当1a =时,原式21)36=+=-【点睛】本题考查了整式的混合运算,整式的化简求值,解题的关键是掌握运算法则,正确的进行化简.25.【分析】由题意可知三角形CDB 是直角三角形,利用已知数据和勾股定理直接可求出DC 的长,再利用勾股定理求出AD 的长,进而求出AB 的长.【详解】∵CD ⊥AB 于D ,且BC=15,BD=9,AC=20∴∠CDA=∠CDB=90°在Rt △CDB 中,CD 2+BD 2=CB 2,∴CD 2+92=152∴CD=12;在Rt △CDA 中,CD 2+AD 2=AC 2∴122+AD 2=202∴AD=16,∴AB=AD+BD=16+9=25.26.135°.【分析】首先在Rt △BAD 中,利用勾股定理求出BD 的长,求出∠ADB=45°,再根据勾股定理逆定理在△BCD 中,证明△BCD 是直角三角形,即可求出答案.【详解】解 连接BD ,在Rt △BAD 中,∵AB =AD =2,∴∠ADB =45°,BD,在△BCD 中,DB 2+CD 2=)2+12=9=CB 2,∴△BCD 是直角三角形,∴∠BDC =90°,∴∠ADC=∠ADB+∠BDC=45°+90°=135°.故答案为135°.【点睛】此题主要考查了勾股定理以及逆定理的运用,解决问题的关键是求出∠ADB=45°,再求出∠BDC=90°.。
2021-2022年揭阳市初三数学下期中一模试题(带答案) (2)
一、选择题1.如图平面直角坐标系中,点A ,B 均在函数y =k x (k >0,x >0)的图像上,⊙A 与x 轴相切,⊙B 与y 轴相切,若点B (1,8),⊙A 的半径是⊙B 半径的2倍,则点A 的坐标为( )A .(2,2)B .(2,4)C .(3,4)D .(4,2) 2.如图,AB 是⊙O 的直径,∠BOD =120°,点C 为弧BD 的中点,AC 交OD 于点E ,DE =1,则AE 的长为( )A .3B .5C .23D .25 3.如图,AB 为O 的切线,点A 为切点,OB 交O 于点C ,点D 在O 上,连接,,AD CD OA ,若20ABO ︒∠=,则ADC ∠的度数为( )A .20︒B .25︒C .30︒D .35︒4.4.如图,AD 是ABC ∆的外接圆O 的直径,若50BCA ︒∠=,则BAD ∠=( )A .30︒B .40︒C .50︒D .60︒ 5.把二次函数243y x x =-+化成2()y a x h k =++的形式是( )A .2(2)1y x =++B .2(2)7y x =++C .2(2)1y x =--D .2(2)7y x =-- 6.二次函数2y ax bx c =++的图象如图所示,其对称轴是1x =-,且过点(0,2),下列结论中正确的是( )A .0abc <B .20a b +=C .2am bm a b +<-D .方程220ax bx c ++-=的解为12x =-,20x =7.已知二次函数y=(m+2)23mx -,当x<0时,y 随x 的增大而增大,则m 的值为( ) A .5B 5C .5D .2 8.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如表: x ﹣1 0 1 3 y﹣1 3 5 3 则代数式﹣2a (4a +2b +c )的值为( ) A .92 B .152 C .9 D .159.学校研究性学习小组的同学测量旗杆的高度.如图,在教学楼一楼地面C 处测得旗杆顶部的仰角为60︒,在教学楼三楼地面D 处测得旗杆顶部的仰角为30,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为( )A .7B .8C .9D .1010.关于直角三角形,下列说法正确的是( )A .所有的直角三角形一定相似B .如果直角三角形的两边长分别是3和4,那么第三边的长一定是5C .如果已知直角三角形两个元素(直角除外),那么这个直角三角形一定可解D .如果已知直角三角形一锐角的三角函数值,那么这个直角三角形的三边之比一定确定 11.在RtΔABC 中,若∠C=90°,cosA=35,则sinA 的值为( ) A .35B .45C .34D .54 12.在Rt ABC 中,90C ∠=︒,5AB =,4BC =,则tan A 的值为( ) A .35 B .45 C .34 D .43二、填空题13.如图,有一圆形木制艺术品,记为⊙O ,其半径为12cm ,在距离圆心8cm 的点A 处发生虫蛀,现需沿过点A 的直线PQ 将圆形艺术品裁掉一部分,然后用美化材料沿PQ 进行粘贴,则美化材料(即弦PQ 的长)最少需要_____cm .14.如图,点P 为⊙O 外一点,PA ,PB 分别与⊙O 相切于点A ,B ,∠APB =90°.若⊙O 的半径为2,则图中阴影部分的面积为_____(结果保留π).15.抛物线y =a (x ﹣2)(x ﹣2a )(a 是不等于0的整数)顶点的纵坐标是一个正整数,则a 等于_____. 16.抛物线23(2)4=---y x 的顶点坐标是______.17.抛物线212133y x x =-++与x 轴交于点A B 、,与y 轴交于点C ,则ABC 的面积为 _______.18.如图,ABC 中,90A ∠=︒,点D 在AC 上,ABD ACB ∠=∠,15AD AC =,则sin ABD ∠=________.19.江堤的横断面如图,堤高BC 10=米,迎水坡AB 的坡比是1:3,则堤脚AC 的长是______.20.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()2sin cos θθ-=________.21.如图,在Rt ABC 中,∠ACB=90°,AC=3,BC=4,CD ⊥AB ,垂足为D ,E 为BC 的中点,AE 与CD 交于点F ,则DF 的长为_________22.在锐角ABC 中,2232sin cos A B ⎛⎫⎛⎫-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=0,则∠C 的度数为____. 三、解答题23.如图,ABC 中,AB AC =,以AC 为直径的半圆O 交BC 于点D ,DE AB ⊥于点E .(1)求证:DE 为半圆的切线;(2)若23BC =,120BAC ∠=︒,求AD 的长.24.如图1,AB 为O 的直径,AB CD ⊥于点M ,点E 为CM 上一点,AE 的延长线交O 于点F ,AE DE =.点N 为AF 的中点,连接ON .(1)判断ADF 的形状,并说明理由;(2)求证:OM ON =;(3)如图2,连接FB 并延长,过点D 做DG FB ⊥,交FB 的延长线于点G ,求证:DG 是O 的切线.25.已知直线y =x +3分别交x 轴和y 轴于点A 和B ,抛物线y =ax 2+bx +c 经过点A 和B ,且抛物线的对称轴为直线x =﹣2.(1)抛物线与x 轴的另一个交点C 的坐标为 ;(2)试确定抛物线的解析式;(3)在同一平面直角坐标系中分别画出两个函数的图象(请用2B 铅笔或黑色水笔加黑加粗),观察图象,写出二次函数值小于一次函数值的自变量x 的取值范围 . 26.如图,在平面直角坐标系中,已知AOB ,90AOB ∠=︒,AO BO =,点A 的坐标为()3,1-.(1)求点B 的坐标.(2)求过点A ,O ,B 的二次函数的表达式.(3)设点B 关于二次函数的对称轴l 的对称点为1B ,求1AB B 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】把B 的坐标为(1,8)代入反比例函数解析式,根据⊙B 与y 轴相切,即可求得⊙B 的半径,则⊙A 的半径即可求得,即得到B 的纵坐标,代入函数解析式即可求得横坐标.【详解】解:把B的坐标为(1,8)代入反比例函数解析式得:k=8,则函数的解析式是:y=8x,∵B的坐标为(1,8),⊙B与y轴相切,∴⊙B的半径是1,则⊙A的半径是2,把y=2代入y=8x得:x=4,则A的坐标是(4,2).故选:D.【点睛】本题考查了反比例函数图象上点的坐标特征以及切线的性质,根据点B的坐标利用反比例函数图象上点的坐标特征求出k值是解题的关键.2.A解析:A【分析】连接AD,可证∠ODA=∠OAD=∠AOD=60°,根据弧中点,得出∠DAC=30°,△ADE是直角三角形,用勾股定理求AE即可.【详解】解:连接AD,∵∠BOD=120°,AB是⊙O的直径,∴∠AOD=60°,∵OA=OD,∴∠OAD=∠ODA =60°,∵点C为弧BD的中点,∴∠CAD=∠BAC=30°,∴∠AED=90°,∵DE=1,∴AD=2DE=2,AE==故选:A.【点睛】本题考查了圆周角的性质、勾股定理,解题关键是通过连接弦构造直角三角形,并通过弧相等导出30°角.3.D解析:D【分析】根据切线的性质得∠OAB=90°,利用互余计算出∠AOB的度数,然后根据圆周角定理得到∠ACD=35°,.【详解】解:∵AB为⊙O的切线,点A为切点,∴OA⊥AB,∴∠OAB=90°,∴∠AOB=90°-20°=70°,∵∠AOB=2∠ADC=70°,∴∠ADC=1×70°=35°.2故选:D.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.4.B解析:B【分析】根据圆周角定理即可得到结论.【详解】解:∵AD是△ABC的外接圆⊙O的直径,∴∠ABD=90°,∵∠BCA=50°,∴∠ADB=∠BCA=50°,∠=90°-50°=40°∴BAD故选:B.【点睛】本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键.5.C解析:C【分析】利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.【详解】解:()()22243443421y x x x x x =-+=-++-=--. 故选:C .【点睛】此题考查了二次函数的顶点式,掌握利用配方法将二次函数一般式转化为顶点式是解题的关键.6.D解析:D【分析】根据抛物线的开口方向,对称轴的定义,抛物线的最值,结合图像逐一计算判断即可.【详解】∵抛物线开口向下,∴a <0,∵对称轴在原点的左侧, ∴2b a-<0, ∴b <0, ∵抛物线的对称轴是1x =-,且过点(0,2),∴c=2>0,2b a-= -1即b=2a , ∴abc >0,∴选项A ,B 错误;根据图像知,当x= -1时,函数取得最大值,且最大值为y=a-b+c ,当x=m 时,函数值y=2am bm c ++,∴2am bm c ++≤a -b+c ,∴2am bm a b +≤-,∴选项C 错误;∵c=2,b=2a ,∴方程220ax bx c ++-=变形为220ax ax +=,∵a <0,∴220x x +=,解得12x =-,20x =,∴方程220ax bx c ++-=的解为12x =-,20x =,∴选项D 正确;故选D .【点睛】本题考查了二次函数的开口方向,对称轴,最值问题,熟练掌握最值的意义,对称轴的意义是解题的关键.7.A解析:A【分析】根据次数为2可列方程,再根据函数增减性确定m 值.【详解】解:根据题意可知,232m -=,解得,m =∵二次函数y=(m+2)23mx -,当x<0时,y 随x 的增大而增大,∴m+2<0,解得m <-2,综上,m=故选:A .【点睛】本题考查了二次函数的定义和增减性,解题关键是根据二次函数的定义列方程,依据增减性确定二次项系数的符号. 8.B解析:B【分析】由当x=0和x=3时y 值相等,可得出二次函数图象的对称轴为直线x=32,进而可得出2b a -的值,由x=1时y=5,可得出当x=2时y=5,即4a+2b+c=5,再将2b a -=32及4a+2b+c=5代入2b a -(4a+2b+c )中即可求出结论. 【详解】解:∵当x =0和x =3时,y 值相等,∴二次函数图象的对称轴为直线x =32, ∴3=22b a -. ∵当x =1时,y =5,∴当x =2×32﹣1=2时,y =5, ∴4a +2b +c =5. ∴2b a -(4a +2b +c )=32×5=152. 故选:B .【点睛】 本题考查了二次函数图象上点的坐标特征以及二次函数的性质,利用二次函数的性质及二次函数图象上点的坐标特征,找出2b a-和(4a+2b+c )的值是解题的关键. 9.C解析:C【分析】过点D 作DE ⊥AB ,垂足为E ,则四边形ACDE 为矩形,AE=CD=6米,AC=DE .设BE=x 米,先解Rt △BDE ,得出DE=3x 米,AC=3x 米,再解Rt △ABC ,得出AB=3x 米,然后根据AB-BE=AE ,列出关于x 的方程,解方程即可.【详解】解:过点D 作DE ⊥AB ,垂足为E ,由题意可知,四边形ACDE 为矩形,则AE=CD=6米,AC=DE .设BE=x 米.∵在Rt △BDE 中,∠BED=90°,∠BDE=30°,∴DE=tan 30BE =︒米, ∴x 米.∵在Rt △ABC 中,∠BAC=90°,∠ACB=60°,∴AB=tan 60AC ︒=米,∵AB-BE=AE ,∴3x-x=6,∴x=3,AB=3×3=9(米).即旗杆AB 的高度为9米.故选:C .【点睛】此题考查了解直角三角形的应用-仰角俯角问题,作出辅助线,构造直角三角形是解题的关键. 10.D解析:D【分析】根据题目条件,利用举反例的方法判断即可.【详解】∵因为等腰直角三角形和一般直角三角形是不相似的,∴选项A 错误;若斜边长为4,∴选项B 错误;已知两个角分别为45°,45°,这个直角三角形是无法求解的,缺少解直角三角形需要的边元素,∴选项C 错误;∵已知直角三角形的一个锐角的三角函数值,∴就能确定斜边与直角边的比或两直角边的比,根据勾股定理可以确定第三边的量比,∴直角三角形的三边之比一定确定,故选D.【点睛】本题考查了命题的真伪,以数学基本概念,基本性质,基本法则为基础,通过举反例的方法判断是解题的关键.11.B解析:B【分析】根据正弦和余弦的平方和等于1求解.【详解】解:∵()()22sin cos 1A A +=,∴()2234sin 1cos 155A A ⎛⎫=-=-= ⎪⎝⎭, 故选B .【点睛】本题考查锐角三角函数的性质,熟练掌握正弦函数与余弦函数的平方和等于1的性质是解题关键. 12.D解析:D【分析】由勾股定理算出AC 的值,然后根据正切函数的定义即可得到解答.【详解】解:由勾股定理可得:2222543AC AB BC =-=-=,∴tanA=43BC AC =, 故选D .【点睛】 本题考查解直角三角形,熟练掌握勾股定理及三角函数的定义是解题关键.二、填空题13.8【分析】如图连接OA 过点A 作弦P′Q′⊥OA 连接OQ′此时P′Q′的值最小利用勾股定理以及垂径定理求解即可【详解】解:如图连接OA 过点A 作弦P′Q′⊥OA 连接OQ′此时P′Q′的值最小在Rt △OA解析:85【分析】如图,连接OA ,过点A 作弦P ′Q ′⊥OA ,连接OQ ′,此时P ′Q ′的值最小.利用勾股定理以及垂径定理求解即可.【详解】解:如图,连接OA ,过点A 作弦P ′Q ′⊥OA ,连接OQ ′,此时P ′Q ′的值最小.在Rt △OAQ ′中,AQ ′=22OQ OA '-=22128-=45(cm ),∵OA ⊥P ′Q ′,∴AQ ′=AP ′,∴P ′Q ′=2AQ ′=85(cm ),故答案为:85.【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.14.4-π【分析】连接OAOB 由S 阴影=S 正方形OBPA-S 扇形AOB 则可求得结果【详解】解:连接OAOB ∵PAPB 分别与⊙O 相切于点AB ∴OA ⊥APOB ⊥PBPA=PB ∴∠OAP=∠OBP=90°=∠解析:4-π【分析】连接OA ,OB ,由S 阴影=S 正方形OBPA -S 扇形AOB 则可求得结果.【详解】解:连接OA ,OB ,∵PA ,PB 分别与⊙O 相切于点A ,B ,∴OA ⊥AP ,OB ⊥PB ,PA=PB ,∴∠OAP=∠OBP=90°=∠BPA ,∴四边形OBPA 是正方形,∴∠AOB=90°,∴阴影部分的面积=S 正方形OBPA -S 扇形AOB 则=22-904360π⨯⨯=4-π. 故答案为:4-π.【点睛】此题考查了切线长定理,正方形的判定与性质,扇形面积公式等知识.解题关键是连接半径,构造正方形,把阴影部分面积转化为正方形面积与扇形面积差.15.-1【分析】令y=0时则有则有进而可得对称轴为直线然后可求抛物线顶点纵坐标为由此可得当a 不为±1时纵坐标不为整数进而可求解a 的值【详解】解:由题意得:令y=0时则有解得:∴抛物线与x 轴交点的坐标为由解析:-1【分析】令y=0时,则有()220a x x a ⎛⎫--= ⎪⎝⎭,则有122,2x x a ==,进而可得对称轴为直线11x a =+,然后可求抛物线顶点纵坐标为12a a--+,由此可得当a 不为±1时,纵坐标不为整数,进而可求解a 的值.【详解】解:由题意得:令y=0时,则有()220a x x a ⎛⎫--= ⎪⎝⎭, 解得:122,2x x a==, ∴抛物线与x 轴交点的坐标为()2,0,2,0a ⎛⎫ ⎪⎝⎭, 由抛物线的对称性可得对称轴为直线11x a =+, ∴把11x a =+代入抛物线解析式得顶点纵坐标为12y a a=--+, ∵顶点的纵坐标是一个正整数且a 是不等于0的整数,∴1a =±,当1a =时,y=0(不符合题意,舍去);当1a =-时,y=4,(符合题意)∴1a =-;故答案为-1.【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.16.【分析】根据题目中的抛物线可以写出该抛物线的顶点坐标本题得以解决【详解】解:∵物线∴该抛物线的顶点坐标为(2-4)故答案为:(2-4)【点睛】本题考查了二次函数的性质解题的关键是明确题意利用二次函数 解析:(2,4)-【分析】根据题目中的抛物线,可以写出该抛物线的顶点坐标,本题得以解决.【详解】解:∵物线23(2)4=---y x ,∴该抛物线的顶点坐标为(2,-4),故答案为:(2,-4).【点睛】本题考查了二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答. 17.2【分析】由与x 轴交于点AB 即y=0求出x 即得到图象与x 轴的交点坐标与y 轴交于点C 即x=0求出y 得到与y 轴的交点坐标得出ABAC 的长度从而得出△ABC 的面积;【详解】∵与x 轴交于点AB 则解得:即交点解析:2【分析】 由212133y x x =-++与x 轴交于点A 、B ,即y=0,求出x ,即得到图象与x 轴的交点坐标,与y 轴交于点C ,即x=0,求出y ,得到与y 轴的交点坐标,得出AB 、AC 的长度,从而得出△ABC 的面积;【详解】 ∵212133y x x =-++与x 轴交于点A 、B , 则2121=033x x -++, 解得:11x =- ,23x = ,即交点坐标分别为(-1,0),(3,0); ∵212133y x x =-++与y 轴交于点C , 将x=0代入得y=1,∴ 点C(0,1),∴ △ABC 的面积为:1141222AB OC ⨯⨯=⨯⨯= , 故答案为:2.【点睛】本题主要考查了二次函数与坐标轴的交点坐标求法,进而得出有关三角形的面积,正确得出有关坐标是解题的关键. 18.【分析】由为公共角证明可得由设则求解再利用从而可得答案【详解】解:为公共角设(负根舍去)故答案为:【点睛】本题考查的是相似三角形的判定与性质求解锐角三角函数值掌握以上知识是解题的关键【分析】由A ∠为公共角,ABD ACB ∠=∠,证明,ABD ACB ∽ 可得2,AB AD AC =由15AD AC =,设,AD m = 则5,AC m = 求解,AB = ,BD == 再利用 sin ,AD ABD BD ∠=从而可得答案.【详解】 解: A ∠为公共角,ABD ACB ∠=∠,,ABD ACB ∴∽,AB AD AC AB∴= 2,AB AD AC ∴= 15AD AC =,设,AD m = 5,AC m ∴= 2255,AB m m m ∴==,AB ∴= (负根舍去)90,A ∠=︒,BD ∴===sinAD ABD BD ∴∠===故答案为:6【点睛】 本题考查的是相似三角形的判定与性质,求解锐角三角函数值,掌握以上知识是解题的关键.19.米【分析】在Rt △ABC 中已知了坡面AB 的坡比是铅直高度BC 和水平宽度AC 的比值据此即可求解【详解】解:根据题意得:BC :AC=1:解得:AC=BC=10(米)故答案为:10米【点睛】本题考查了解直解析:【分析】在Rt △ABC 中,已知了坡面AB 的坡比是铅直高度BC 和水平宽度AC 的比值,据此即可求解.【详解】解:根据题意得:BC :AC=1解得:故答案为:【点睛】本题考查了解直角三角形的应用——坡度坡角问题,理解坡度坡角定义是关键. 20.【分析】根据正方形的面积公式可得大正方形的边长为5小正方形的边长为5再根据直角三角形的边角关系列式即可求解【详解】解:∵大正方形的面积是125小正方形面积是25∴大正方形的边长AB=5小正方形的边长解析:1 5【分析】根据正方形的面积公式可得大正方形的边长为55,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.【详解】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长AB=55,小正方形的边长CD=5,在Rt△ABC中BC=AD=sinθ×AB=55sinθ,AC=cosθ×AB=55cosθ,∵AC-AD=CD,∴55cosθ-55sinθ=5,∴cosθ-sinθ=5,∴(cosθ-sinθ)2=15∴(sinθ-cosθ)2=15.故答案为:15.【点睛】本题考查了解直角三角形的应用,正方形的面积,难度适中.21.【分析】如图过点F作FH⊥AC于H首先证明设FH=2kAH=3k根据tan∠FCH=构建方程求解即可【详解】解:如图过点F作FH⊥AC于H 在Rt△ABC中∵∠ACB=90°AC=3BC=4∴AB=解析:54 85【分析】如图,过点F作FH⊥AC于H.首先证明23FHAH,设FH=2k,AH=3k,根据tan ∠FCH=FHAD CH CD=,构建方程求解即可. 【详解】 解:如图,过点F 作FH ⊥AC 于H .在Rt △ABC 中,∵∠ACB=90°,AC=3,BC=4,∴222243CB AC +=+,∵CD ⊥AB ,∴S △ABC =12•AC•BC=12•AB•CD , ∴CD=125,2222123()5AC CD -=-=95, ∵FH ∥EC ,∴FH AH EC AC=, ∵EC=EB=2, ∴23FH AH = ,设FH=2k ,AH=3k ,CH=3-3k , ∵tan ∠FCH=FH AD CH CD=, ∴92512335k k =-, ∴k=917, ∴FH=1817,CH=3-2717=2417, ∴22221824()()1717CH FH +=+3017, ∴DF=1230517-=5485, 故答案为5485. 【点睛】本题考查了解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会利用参数构建方程解决问题.22.75°【分析】由非负数的性质可得:可求从而利用三角形的内角和可得答案【详解】解:由题意得sinA =cosB =解得∠A =60°∠B =45°∠C =180°﹣∠A ﹣∠B =75°故答案为:75°【点睛】本题解析:75°【分析】由非负数的性质可得:sin cos 2A B ⎧=⎪⎪⎨⎪=⎪⎩,可求,A B ∠∠,从而利用三角形的内角和可得答案.【详解】解:由题意,得sinA=2,cosB=2, 解得∠A =60°,∠B =45°,∠C =180°﹣∠A ﹣∠B =75°,故答案为:75°.【点睛】本题考查了非负数的性质:偶次方、三角形的内角和定理,特殊角的三角函数值,掌握以上知识是解题的关键.三、解答题23.(1)见解析;(2)3π. 【分析】(1)连接OD ,根据AB=AC ,得到∠B=∠C ,根据OD=OC ,得到∠ODC=∠C ,从而得到∠B=∠ODC ,得证DO ∥AB ,由DE ⊥AB ,得到DE ⊥OD ,问题得证;(2)连接AD ,根据AC 是直径,得到AD ⊥BC ,根据等腰三角形三线合一的性质,得到BD=DC=12BC120BAC ∠=︒,得到∠C=30°,从而得到AD=1,AC=2, ∠DAO=∠AOD= 60°,套用弧长公式计算即可.【详解】(1)连接OD ,∵AB=AC ,∴∠B=∠C ,∵OD=OC ,∴∠ODC=∠C ,∴∠B=∠ODC ,∴DO ∥AB ,∵DE ⊥AB ,∴DE ⊥OD ,∴DE 是圆O 的切线;(2)连接AD ,∵AC 是直径,∴AD ⊥BC ,∵AB=AC ,∴BD=DC=12BC =3, ∵120BAC ∠=︒,∴∠C=30°, ∴AD=1,AC=2,∠DAO=∠AOD= 60°,∴AD =601180π⨯⨯=3π.【点睛】本题考查了圆的切线,弧长公式,等腰三角形的性质,平行线的性质,直角三角形的性质,熟练掌握切线的判定,并灵活选用方法证明是解题的关键.24.(1)等腰三角形,见解析;(2)见解析;(3)见解析【分析】(1)根据垂径定理定理和圆周角定理可得C ADC ∠=∠,F C ∠=∠,然后根据已知AE DE =可以得到 EAD ADC ∠=∠,得到F EAD ∠=∠,得到结果(2)连接OE ,OD ,可证AOE DOE ≌△△.可得AEO DEO ∠=∠.利用角平分线的性质求出OM ON =(3)由题意可得AOE DOE ∠=∠,NOE MOE ∠=∠根据180AOE MOE ∠+∠=︒得到180DOE NOE ∠+∠=︒, 证出N 、O 、D 三点共线,证出矩形DNFG ,可证DG OD ⊥,结论得证.【详解】(1)等腰三角形证明:如图1 连接AC∵AB 为O 的直径,AB CD ⊥于点M∴C ADC ∠=∠∵F C ∠=∠(同弧所对圆周角相等)∵AE DE =,∴EAD ADC ∠=∠∴F EAD ∠=∠,∴AD DF =.∴ADF 是等腰三角形(2)如图2 连接OE ,OD , 在AOE △与DOE △中AE DE EO EO OA OD =⎧⎪=⎨⎪=⎩∴AOE △≌DOE △∴AEO DEO ∠=∠∵OM DE ⊥ 点N 为AF 的中点∴ 90ONE OME ∠=∠=︒利用角平分线的性质得OM ON =.(3)∵AOE △≌DOE △∴AOE DOE ∠=∠∵90ONE OME ∠=∠=︒,AEO DEO ∠=∠∴NOE MOE ∠=∠又∵180AOE MOE ∠+∠=∴180DOE NOE ∠+∠=∴N 、O 、D 三点共线∵DG FB ⊥,90ONE ∠=,90AFG ∠=∴四边形DNFG 为矩形∴90GDN ∠=∴DG 是O 的切【点睛】本题主要考查了等腰三角形的性质,垂径定理,圆周角定理,切线的判定等概念,熟练掌握知识点是解题的关键.25.(1)(﹣1,0);(2)y =x 2+4x +3;(3)﹣3<x <0.【分析】(1)先求出点B ,点A 坐标,由对称性可求点C 坐标;(2)利用待定系数法可求解析式;(3)由图象可求解.【详解】解:(1)∵直线y =x +3分别交x 轴和y 轴于点A 和B ,∴点A (﹣3,0),点B (0,3),∵抛物线的对称轴为直线x =﹣2.抛物线与x 轴的另一个交点为C ,∴点C (﹣1,0),故答案为(﹣1,0);(2)∵抛物线y =ax 2+bx +c 经过点A (﹣3,0),B (0,3),点C (﹣1,0),∴30930c a b c a b c =⎧⎪=-+⎨⎪=-+⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴二次函数的解析式为:y =x 2+4x +3;(3)如图所示:当﹣3<x <0时,二次函数值小于一次函数值,故答案为:﹣3<x <0.【点睛】本题考查了二次函数与不等式,待定系数法求解析式,求出抛物线的解析式是本题的关键.26.(1)点B 的坐标是()1,3;(2)251366y x x =+;(3)1 235=AB B S △. 【分析】(1)过点A 作AD x ⊥轴于点D .过点B 作BE x ⊥轴于点E .证明()OEB AAS ADO ≌△△,利用三角形全等的性质可得1OE AD ==,3==BE OD ,从而可得答案;(2) 设过点A ,O ,B 的抛物线的函数表达式为2y ax bx c =++,把()()()3,1,0,0,1,3,A O B -代入解析式,利用待定系数法列方程组解方程组可得答案; (3)如图,延长DA 交1BB 于,M 由1,B B 关于l 对称,则1,DA BB ⊥ 先求解抛物线的对称轴1313651026x =-=-⨯,1,B B 关于l 对称,再求解1,,BB AM 利用三角形的面积公式可得答案.【详解】解(1)过点A 作AD x ⊥轴于点D .过点B 作BE x ⊥轴于点E .∴ 90,ADO BEO ∠=∠=︒90AOD DAO ∠+∠=︒,()3,1,A -3,1,OD AD ∴==∵90AOB ∠=︒,∴90AOD BOE ∠+∠=︒.∴DAO BOE ∠=∠.在Rt AOD 和Rt OBE 中,90ADO BEO DAO BOEAO BO ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴()OEB AAS ADO ≌△△.∴1OE AD ==,3==BE OD∴ 点B 的坐标是()1,3.(2)()()()3,1,0,0,1,3,A O B -设过点A ,O ,B 的抛物线的函数表达式为2y ax bx c =++,∴3 931a b ca b cc++=⎧⎪-+=⎨⎪=⎩.∴5 6 136abc⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩.过点A,O,B的抛物线的函数表达式为251366y x x=+.(3)如图,延长DA交1BB于,M由1,B B关于l对称,则1,DA BB⊥251366y x x=+的对称轴1313651026x=-=-⨯.1,B B关于l对称,()()1,3,3,1,B A-1132321,105BB⎛⎫∴=⨯+=⎪⎝⎭()33M-,,312,AM∴=-=∴1123232255AB BS=⨯⨯=.【点睛】本题考查的是图形与坐标,三角形全等的判定与性质,利用待定系数法求解二次函数的解析式,二次函数的性质,掌握以上知识是解题的关键.。
广东省揭阳市2021年中考数学试卷(I)卷
广东省揭阳市2021年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七上·大同期末) 以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是()A . -3℃B . 15℃C . -10℃D . -1℃2. (2分) (2018七上·临沭期末) 近年来,国家重视精准扶贫,收效显著,据统计到目前为止约有65 000 000人脱贫.则65 000 000用科学记数法表示正确的是()A .B .C . 0.65×108D .3. (2分)如图是某几何体的三视图,则该几何体的侧面展开图是()A .B .C .D .4. (2分)解分式方程 ,分以下四步,其中错误的一步是().A . 方程两边分式的最简公分母是B . 方程两边都乘以 ,得整式方程C . 解这个整式方程,得D . 原方程的解为5. (2分)某校在汉字听写大赛中,10名学生得分情况分别是:人数3421分数80859095这10名学生所得分数的中位数和众数分别是()A . 85和80B . 80和85C . 85和85D . 85.5和806. (2分)(2020·张家港模拟) 若关于x的一元二次方程有两个不相等的实数根,则实数k的取值范围是()A .B . 且C .D . 或7. (2分) (2015八下·津南期中) 在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A . (3,7)B . (5,3)C . (7,3)D . (8,2)8. (2分)如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是()A .B .C .D .9. (2分) (2017八上·微山期中) 将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A . (﹣3,2)B . (﹣1,2)C . (1,﹣2)D . (1,2)10. (2分)如图,在正方形ABCD中,AB=3,点E在CD边上,DE=1,把△ADE绕点A顺时针旋转90°,得到△ABE′,连接EE′,则线段EE′的长为()A .B .C . 4D .二、填空题 (共5题;共5分)11. (1分)已知和互为相反数,求x+4y的平方根________。
揭阳市2021年九年级数学中考一模试卷A卷
揭阳市2021年九年级数学中考一模试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)-的倒数是()A .B . -C .D . -2. (2分)(2019·广州模拟) 如图是一个几何体的三视图,则该几何体的展开图是()A .B .C .D .3. (2分)(2017·沭阳模拟) 在学雷锋活动中,我市青少年积极报名争当“助人为乐志愿者”,仅一个月时间就有107000人报名,将107000用科学记数法表示为()A . 10.7×104B . 1.07×105C . 0.107×106D . 1.07×1064. (2分) (2018九下·河南模拟) 把一个多边形割去一个角后,得到的多边形内角和为1440°,请问这个多边形原来的边数为()A . 9B . 10C . 11D . 以上都有可能5. (2分)(2017·东莞模拟) 下列说法正确的是()A . 要调查人们对“低碳生活”的了解程度,宜采用普查方式B . 一组数据3,4,4,6,8,5的众数和中位数都是3C . 必然事件的概率是100%,随机事件的概率是50%D . 若甲组数据的方差S甲2=0.128,乙组数据的方差S乙2=0.036;则乙组数据比甲组数据稳定6. (2分)(2018·南通) 如图,,以点为圆心,小于长为半径作圆弧,分别交于点,再分别以为圆心,大于的同样长为半径作圆弧,两弧交于点,作射线,交于点 .若,则的度数为()A .B .C .D .7. (2分)下列式子结果为负数的是()A . (﹣3)0B . ﹣|﹣3|C . (﹣3)2D . (﹣3)﹣28. (2分)在Rt△ABC中,∠C=90°,若AB=2AC,则sinA 的值是()A .B .C .D .9. (2分)(2018·鄂尔多斯模拟) 小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A 的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A . =15B . =15C . =D . =10. (2分)一只小鸟自由自在地在空中飞行,然后随意落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是()A .B .C .D .11. (2分) (2018九上·武昌期中) 关于的一元二次方程的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 有且只有一个实数根D . 没有实数根12. (2分)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1 ,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2 ,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn-1Dn-2的中点为Dn-1 ,第n次将纸片折叠,使点A与点Dn-1重合,折痕与AD交于点Pn(n>2),则AP6的长为()A .B .C .D .二、填空题 (共7题;共7分)13. (1分)分解因式:x2+y2﹣2xy=________.14. (1分) (2020九下·镇江月考) 如图,在一次测绘活动中,小华同学站在点A的位置观测停泊于B、C 两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为________米.15. (1分)(2016·曲靖) 如果整数x>﹣3,那么使函数y= 有意义的x的值是________(只填一个)16. (1分) (2016九上·卢龙期中) 某药品经过两次降价,每瓶零售价由168元降为128元,已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得________.17. (1分)(2019·广州模拟) 如图,在直角坐标系中,点、点、,则外接圆的半径为________.18. (1分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是________ .19. (1分)分式方程的根是________.三、解答题 (共7题;共68分)20. (5分)(2019·乌鲁木齐模拟) 计算: .21. (10分) (2020八上·甘州期末) 已知一次函数y=﹣2x﹣2.(1)根据关系式画出函数的图象.(2)求出此函数图像与坐标轴围成的三角形的面积22. (10分)(2019·岐山模拟) 某校组织一项公益知识竞赛,比赛规定:每个代表队由3名男生、4名女生和1名指导老师组成.但参赛时,每个代表队只能有3名队员上场参赛,指导老师必须参加,另外2名队员分别在3名男生和4名女生中各随机抽出一名.七年级(1)班代表队有甲、乙、丙三名男生和A、B、C、D4名女生及1名指导老师组成.求:(1)抽到D上场参赛的概率;(2)恰好抽到由男生丙、女生C和这位指导老师一起上场参赛的概率.(请用“画树状图”或“列表”的方式给出分析过程)23. (11分) (2019八下·天台期末) 如图1,在正方形ABCD中,点E , F分别是AC , BC上的点,且满足DE ⊥EF ,垂足为点E ,连接DF.(1)求∠E DF=________(填度数);(2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG的面积;②设AG = ,CF = ,△BFG 的面积记为S,试确定S与,的关系,并说明理由.24. (7分)(2016·阿坝) 某学校计划组织500人参加社会实践活动,与某公交公司接洽后,得知该公司有A,B型两种客车,它们的载客量和租金如表所示:A型客车B型客车载客量(人/辆)4528租金(元/辆)400250经测算,租用A,B型客车共13辆较为合理,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的代数式填写下表:车辆数(辆)载客量(人)租金(元)A型客车x45x400xB型客车13﹣x________________(2)采用怎样的租车方案可以使总的租车费用最低,最低为多少?25. (10分)(2018·湖州) 已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分别为AC,BC边上的点(不包括端点),且 =m,连结AE,过点D作DM⊥AE,垂足为点M,延长DM交AB于点F.(1)如图1,过点E作EH⊥AB于点H,连结DH.①求证:四边形DHEC是平行四边形;②若m= ,求证:AE=DF;(2)如图2,若m= ,求的值.26. (15分)(2016·深圳模拟) 如图,已知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)如图(1),己知点H(0,﹣1).问在抛物线上是否存在点G (点G在y轴的左侧),使得S△GHC=S△GHA?若存在,求出点G的坐标;若不存在,请说明理由;(3)如图(2),抛物线上点D在x轴上的正投影为点E(﹣2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共7题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共7题;共68分)20-1、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、。
2021-2022年揭阳市初三数学下期中一模试题(带答案)
(2)为了保证每天利润不低于1300元,单价不高于30元/个,那么商品的销售单价应该定在什么范围?
23.如图,已知等边 的边长为 ,点 、 分别在 、 边上, .
(1)把 沿 折叠,使得点 的对应点是点 落在 边上(如图1).求折痕 的长度;
(2)如图2,若点 在 上运动,且始终保持
一、ቤተ መጻሕፍቲ ባይዱ择题
1.已知关于 的一元二次方程 有两个不相等的实数根 则实数 的大小关系可能是()
A. B.
C. D.
2.对于二次函数 ( , 是常数)中自变量 与函数 的部分对应值如下表:
下列结论错误的是()
A.函数图像开口向上B.当 时,
C.当 时, 随 的增大而增大.D.方程 有两个不相等的实数根
3.如图,抛物线 交 轴于点 , ,交 轴于点 ,抛物线的顶点为 ,下列四个结论:①无论 取何值, 恒成立;②当 时, 是等腰直角三角形;③若 ,则 ;④ , 是抛物线上的两点,若 ,且 ,则 .正确的有()
【详解】
设抛物线解析式为y=x2-(m+n)x+mn-5,
∵一元二次方程 有两个不相等的实数根 ,
∴当x=a或x=b时,y=0,
∵1>0,
∴抛物线y=x2-(m+n)x+mn-5图象的开口向上,与x的交点坐标为(a,0),(b,0),
∵a<b,
∴当a<x<b时,y<0,
当x=m时,y=m2-(m+n)m+mn-5=-5<0,
A. 米B. 米C. 米D. 米
10.在正方形网格中,∠AOB如图所示放置,则sin∠AOB的值为()
A. B. C. D.
11.已知在Rt△ABC中,∠C=90°,AC= ,AB=4,则cosB的值是( )
2021-2022年揭阳市初二数学下期中一模试题(带答案) (3)
一、选择题1.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④ 2.如图,//AB CD ,一副三角尺按如图所示放置,18AEG ∠=︒,则HFD ∠为( )A .23B .33C .36D .383.给出下列4个命题:①经过直线外一点,有且只有一条直线与这条直线平行;②同旁内角互补;③如果直线//b c ,a b ⊥,那么a c ⊥;④如果0a ≤,那么a a =-.其中假命题的个数有( )A .1个B .2个C .3个D .4个4.某商场新购进一种服装,每套售价1000元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价比原来提高了2%,则调价前上衣的单价是( )A .200元B .480元C .600元D .800元 5.若2()(2)3x a x x x b +-=-+,则实数b 等于( )A .2-B .2C .12-D .126.一次函数y mx n =-+22()m n n -结果是( )A .mB .m -C .2m n -D .2m n -7.若方程6kx ﹣2y=8有一组解32x y =-⎧⎨=⎩,则k 的值等于(( ) A .23- B .23 C .16- D .168.如图,若弹簧的总长度y (cm )是关于所挂重物x (kg )的一次函数y =kx +b ,则不挂重物时,弹簧的长度是( )A .5cmB .8cmC .9cmD .10cm9.如图,在平面直角坐标系中,已知()0,6A 、()3,0B 、()1,4C 过A 、B 两点作直线,连接OC ,下列结论正确的有( )A .直线AB 解析式:36y x =-+B .点C 在直线AB 上 C .线段BC 17D .:1:3AOC BOC S S ∆∆= 10.平面直角坐标系中,点 A (-2,-1) ,B (1,3) ,C (x ,y ) ,若 AC ∥ x 轴,则线段BC 的最小值为( )A .2B .3C .4D .5 11.下列计算正确的是( ). A .()()22a b a b b a +-=-B .224x y xy +=C .()235a a -=-D .81111911=12.在Rt ABC 中,90C ∠=︒,且4c =,若3a =,那么b 的值是( )A .1B .5C 7D 5二、填空题13.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.14.如图,12∠=∠,4120︒∠=,则3∠=____.15.若2(321)4330x y x y -++--=,则x y -=_____. 16.已知x ,y 满足二元一次方程3x +y =6,若y <0,则x 的取值范围是_____. 17.已知直线y kx b =+,若0k b kb ++=,且0kb >,那么该直线不经过第______象限.18.若点M (a -3,a +4)在y 轴上,则a =___________.19.已知a 、b 满足2|3|0a b -++=,则(a +b )2021的值为________.20.如图,折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处,已知CD =1,∠B =30°,则AC 的长是__________.三、解答题21.数学课上,张老师给出这样一个问题——已知:如图,直线//a b ,//a c ,请说明://b c .请你把小明的说明过程补充完整:说明:作直线l 分别和a ,b ,c 相交(如图)//a b (已知)1∴∠=______,(______)又//a c (已知)1∴∠=______,(两直线平行,内错角相等)∴______,//b c ∴,(______)由此我们可以得到一个基本事实:平行于同一条直线的两条直线互相______.22.(1)解方程组:1?37x y x y =+⎧⎨+=⎩; (2)解方程组:5210?258?x y x y +=⎧⎨+=⎩. 23.定义:在平面直角坐标系中,对于任意两点(,)A p q ,(,)B m n ,如果点(,)T x y 满足4p m x -=,4q n y -=,那么称点T 是点A 、B 的“和谐点”. 例如(4,5)A -,(3,1)B -,当点(,)T x y 满足43744x --==-,5(1)342y --==,则称点73(,)42T -是点A 、B 的“和谐点”. (1)直接写出点(2,3)A -,(4,7)B -的“和谐点”C 的坐标:(2)点(2,0)D -,点(,21)E t t -+,点(,)T x y 是点D 、E 的“和谐点”.①求y 与x 之间的函数关系式;②若直线ET 交x 轴于点H ,当∠TDH =90°时,求点E 的坐标.24.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A 到B 记为:A→B (+1,+4),从D 到C 记为:D→C (﹣1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C (______,_____),B→C (______,_____),D→_____(﹣4,﹣2); (2)若这只甲虫从A 处去P 处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置;(3)若这只甲虫的行走路线为A→B→C→D ,请计算该甲虫走过的路程.25.计算与求值(1)计算:)()(0215510π-+-+-; (2)求)(2316x +=中x 的值.26.如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC=60°,∠DAE=45°,点D 到地面的垂直距离DE=32米.求点B 到地面的垂直距离BC .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB ∥CD ,不符合题意;②∵∠3=∠4,∴BC ∥AD ,符合题意;③∵AB ∥CD ,∴∠B+∠BCD =180°,∵∠ADC =∠B ,∴∠ADC+∠BCD =180°,由同旁内角互补,两直线平行可得BC ∥AD ,故符合题意; ④∵AB ∥CE ,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.2.B解析:B【分析】过点G作AB平行线交EF于P,根据平行线的性质求出∠EGP,求出∠PGF,根据平行线的性质、平角的概念计算即可.【详解】解:过点G作AB平行线交EF于P,由题意易知,AB∥GP∥CD,∴∠EGP=∠AEG=18°,∴∠PGF=72°,∴∠GFC=∠PGF=72°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=33°.故选:B.【点睛】本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.3.B解析:B【分析】根据直线的位置关系、平行线的性质、垂线的性质及实数的性质分别判断后即可确定正确的选项.【详解】解:①经过直线外一点,有且只有一条直线与这条直线平行,正确,是真命题,不符合题意;②两直线平行,同旁内角互补,故原命题错误,是假命题,符合题意;③在同一平面内,如果直线b∥c,a⊥b,那么a⊥c,故错误,是假命题,符合题意;④如果a≤0,那么|a|=-a ,正确,是真命题,不符合题意,假命题有2个,故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解直线的位置关系、平行线的性质、垂线的性质及实数的性质,难度不大.4.D解析:D【分析】设调价前上衣的单价是x 元,裤子的单价是y 元,根据“调价前每套售价1000元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价比原来提高了2%”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】解:设调价前上衣的单价是x 元,裤子的单价是y 元,依题意,得:()()()100015%110%100012%x y x y +=⎧⎨++-=⨯+⎩, 解得:800200x y =⎧⎨=⎩. 故选:D .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.B解析:B【分析】等式左边去括号后两边经过比对可以得解 .【详解】解:原等式可变为:()22223x a x a x x b +--=-+,∴可得:232a b a -=-⎧⎨=-⎩, 解之得:a=-1,b=2,故选B .【点睛】本题考查二元一次方程组的应用和多项式的乘法,熟练掌握代数式相等的意义、多项式的乘法法则及二元一次方程组的解法是解题关键.6.D解析:D【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,∴=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.7.A解析:A【分析】根据方程的解满足方程,课的关于k 的方程,根据解方程,可得答案.【详解】解:由题意,得6×(-3)k-2×2=8,解得k=-23, 故选A .【点睛】 本题考查了二元一次方程,利用方程的解满足方程得出关于的k 方程是解题关键. 8.B解析:B【分析】利用待定系数法求解一次函数的关系式,再令x =0计算即可求解不挂重物时弹簧的长度.【详解】解:将(4,10),(20,18)代入y =kx +b ,得4102018k b k b +=⎧⎨+=⎩,解得128k b ⎧=⎪⎨⎪=⎩, ∴182y x =+, 当x =0时,y =8,∴不挂重物时,弹簧的长度是8cm .故选:B .【点睛】本题考查了一次函数的应用,根据题意和图象求出函数解析式是解题关键.9.B解析:B【分析】根据待定系数法,求得直线AB 解析式,即可判断A ,把()1,4C 代入直线AB 解析式,即可判断B ,利用两点间的距离公式,即可求解BC 的长,进而判断C ,求出AC :BC=1:2,进而判断D .【详解】设直线AB 解析式:y=kx+b ,把()0,6A 、()3,0B 代入得603b k b =⎧⎨=+⎩,解得:62b k =⎧⎨=-⎩, ∴直线AB 解析式:26y x =-+,故A 错误;∵当x=1,y=-2×1+6=4,∴()1,4C 在直线AB 上,故B 正确;∵BC==,故C错误;∵=,∴AC= AB-BC∴AC :BC=1:2,∴:1:2AOC BOC S S ∆∆=,故D 错误.故选B .【点睛】本题主要考查一次函数的待定系数法,两点间的距离公式,直线上点的坐标特征,熟练掌握一次函数的图像和性质,是解题的关键.10.C解析:C【分析】由垂线段最短可知点BC ⊥AC 时,BC 有最小值,从而可确定点C 的坐标.【详解】解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(1,-1),∴线段的最小值为4.故选:C【点睛】本题主要考查的是垂线段的性质、点的坐标的定义,掌握垂线段的性质是解题的关键.11.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a2−b2,故A错误;B.2x与2y不是同类项,不能合并,故B错误;C.原式=a6,故C错误;D.原式=11D正确;故选:D.【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.12.C解析:C【分析】根据勾股定理计算,即可得到答案.【详解】在Rt △ABC 中,∠C =90°,由勾股定理得,b =故选:C .【点睛】本题考查的是勾股定理,关键是掌握“如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2”.二、填空题13.5°【分析】根据角平分线的定义可得再根据折叠的性质可得再根据平分可得进而可得【详解】解:∵的角平分线为∴又∵与关于对称∴∵与关于对称∴又∵平分∴又∵为折痕∴∵∴又∵∴∴又∵∴故答案为:675°【点睛解析:5°.【分析】根据角平分线的定义可得1FBE ∠=∠,再根据折叠的性质可得1MBF FBE ∠=∠=∠,NBF FBD ∠=∠,CBA CBF ∠=∠, 再根据BN 平分CBM ∠可得CBN NBM ∠=∠,进而可得318067.58ABC ∠=⨯=. 【详解】解:∵FBD ∠的角平分线为BE ,∴1FBE ∠=∠, 又∵BM 与BE 关于BF 对称,∴1MBF FBE ∠=∠=∠, ∵BN 与BD 关于BF 对称,∴NBF FBD ∠=∠FBE EBD =∠+∠11=∠+∠21=∠,又∵BN 平分CBM ∠,∴CBN NBM ∠=∠,又∵BC 为折痕,∴CBA CBF ∠=∠CBN NBF =∠+∠21NBM =∠+∠,∵NBM NBF MBF ∠=∠-∠211=∠=∠1=∠,∴31CBA ∠=∠,又∵180CBA CBF FBD ∠+∠+∠=,∴3112121180∠+∠+∠+∠=,∴81180∠=,又∵31ABC ∠=∠, ∴318067.58ABC ∠=⨯=, 故答案为:67.5°.【点睛】 本题考查了折叠的性质,角平分线的定义,平角的定义,解题的关键是理解题意,找到31808ABC ∠=⨯. 14.60°【分析】本题首先利用证明直线与平行继而利用对顶角性质以及两直线平行同旁内角互补求解【详解】如下图所示:∵∠1=∠5∠2=∠6又∵∠1=∠2∴∠5=∠6∴∥∵∠4=120°∴∠7=∠4=120°解析:60°【分析】本题首先利用12∠=∠证明直线1l 与2l 平行,继而利用对顶角性质以及两直线平行,同旁内角互补求解3∠.【详解】如下图所示:∵∠1=∠5,∠2=∠6,又∵∠1=∠2,∴∠5=∠6,∴1l ∥2l .∵∠4=120°,∴∠7=∠4=120°,又∵∠3+∠7=180°,∴∠3=60°.故填:60°.【点睛】本题考查平行线的判定与性质,需要灵活运用两直线平行,内错角、同位角相等、同旁内角互补.15.4【分析】根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出xy 的值再代入原式中即可【详解】解:∵∴①×3-②×2得把代入①得解得∴故答案为:4【点睛】本题考查了非负数的性质及二元一次方解析:4【分析】根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x 、y 的值,再代入原式中即可.【详解】解:∵2(321)4330x y x y -++--=,∴32104330x y x y -+=⎧⎨--=⎩①②, ①×3-②×2得,9x =-,把9x =-代入①得,27210y --+=,解得13y =-,∴9134x y -=-+=.故答案为:4.【点睛】本题考查了非负数的性质及二元一次方程组的解法.注意:几个非负数的和为零,则每一个数都为零.16.x >2【分析】把x 看作已知数求出y 根据y <0求出x 的范围即可【详解】方程整理得:y=6-3x 由y <0得到6-3x <0解得:x >2故答案为x >2【点睛】此题考查了二元一次方程的解解一元一次不等式熟练掌解析:x >2.【分析】把x 看作已知数求出y ,根据y <0求出x 的范围即可.【详解】方程整理得:y=6-3x,由y<0,得到6-3x<0,解得:x>2.故答案为x>2.【点睛】此题考查了二元一次方程的解,解一元一次不等式,熟练掌握定义是解本题的关键.17.一【分析】根据k+b+kb=0且kb>0可以得到kb的正负情况然后根据一次函数的性质即可得到直线y=kx+b经过哪几个象限不经过哪个象限本题得以解决【详解】解:∵k+b+kb=0且kb>0∴k+b=解析:一【分析】根据k+b+kb=0,且kb>0,可以得到k、b的正负情况,然后根据一次函数的性质,即可得到直线y=kx+b经过哪几个象限,不经过哪个象限,本题得以解决.【详解】解:∵k+b+kb=0,且kb>0,∴k+b=-kb<0,k和b同号,∴k<0,b<0,∴直线y=kx+b经过第二、三、四象限,不经过第一象限,故答案为:一.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.18.3【分析】在y轴上的点横坐标为零即a-3=0即可解答【详解】解:∵点M (a-3a+4)在y轴上∴a-3=0∴a=3故答案为:3【点睛】本题考查了平面直角坐标系中点的坐标特征第一象限内点的坐标特征为(解析:3【分析】在y轴上的点横坐标为零,即a-3=0,即可解答【详解】解:∵点M(a-3,a+4)在y轴上∴a-3=0∴a=3故答案为:3【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.19.-1【分析】要使只有当和时成立即此时解出a和b代入中求出结果即可【详解】由题意可知∴∴故答案为:-1【点睛】本题考查非负数的性质几个非负数的和为0时那么这几个非负数都为0解析:-1【分析】30b +=0=和30b +=时成立.即此时20a -=,30b +=,解出a 和b ,代入2021()a b +中求出结果即可.【详解】由题意可知20a -=,30b +=,∴23a b ==-,.∴20212021()(23)1a b +=-=-.故答案为:-1.【点睛】本题考查非负数的性质,几个非负数的和为0时,那么这几个非负数都为0. 20.【分析】由折叠的性质可得CD=DE=1∠C=∠AED=90°由直角三角形的性质可求BD 的长再运用勾股定理可求解【详解】解:∵将△ABC 折叠使点C 落在斜边AB 上的点E 处∴CD=DE=1∠C=∠AED=【分析】由折叠的性质可得CD=DE=1,∠C=∠AED=90°,由直角三角形的性质可求BD 的长,再运用勾股定理可求解.【详解】解:∵将△ABC 折叠使点C 落在斜边AB 上的点E 处,∴CD=DE=1,∠C=∠AED=90°,∵∠B=30°,∴BD=2DE=2,AB=2AC ,∴BC=BD+CD=2+1=3,由勾股定理得,222AB BC AC =+∴4222AC BC AC =+ ∴AC =【点睛】本题考查了勾股定理与折叠问题,熟练掌握折叠的性质是本题关键.三、解答题21.∠2;两直线平行,同位角相等;∠3;∠2=∠3;内错角相等,两直线平行;平行【分析】根据平行线的判定和性质解答即可.【详解】解:∵a ∥b (已知)∴∠1=∠2,( 两直线平行,同位角相等)又∵a ∥c (已知)∴∠1=∠3,( 两直线平行,内错角相等 )∴∠2=∠3,∴b ∥c ,(内错角相等,两直线平行);得出:平行于同一条直线的两条直线互相平行;故答案为:∠2,两直线平行,同位角相等,∠3,∠2=∠3,内错角相等,两直线平行,平行.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.22.(1)21x y =⎧⎨=⎩;(2)34212021x y ⎧=⎪⎪⎨⎪=⎪⎩. 【分析】(1)利用代入消元法求解即可;(2)变形后,用加减消元法求解即可.【详解】解:(1)137x y x y =+⎧⎨+=⎩①②, 将①代入②中得3(1)7y y ++=,解得1y =,将1y =代入①中得:112x =+=,故该方程组的解为:21x y =⎧⎨=⎩; (2)5210258x y x y +=⎧⎨+=⎩①②, ①×2得:10420x y +=③,②×5得:102540x y +=④,④-③得:2120y =,解得2021y =, 将2021y =代入①中得:20210152x +⨯=,解得3421x =,故该方程组的解为:34212021x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题考查解二元一次方程组.熟练掌握解二元一次方程组的两种方法,并能灵活运用是解题关键.23.(1)35(,)22-;(2)①524y x =--;②(6,11)E - 【分析】(1)由 “和谐点”定义.代入计算32x =-,52y =即可求出“和谐点”C 的坐标: (2)①由点(,)T x y 是点D 、E 的“和谐点”.按定义求出2=4t x --,214t y -=,用含x 的式子表示t 得24t x =--,消去t 则524y x =--, ②直线ET 交x 轴于点H ,当∠TDH =90°时,由TD ⊥x 轴说明T 、D 两点横坐标相同得224t ---=,求出t 即可. 【详解】(1)由点(2,3)A -,(4,7)B -与“和谐点”定义. 243=442p m x ---==-,375=442q n y -+==, “和谐点”C 的坐标:C (32-,52); (2)①点(2,0)D -,点(,21)E t t -+,点(,)T x y 是点D 、E 的“和谐点”. 2=4t x --,()0212144t t y --+-==, 221(,)44t t T ---, 24t x =--,524y x =--, ②直线ET 交x 轴于点H ,当∠TDH =90°时,TD ⊥x 轴,224t ---=, 6t =,2112111t -+=-+=-,6,-11.E()【点睛】本题考查平面直角坐标系中新定义问题,掌握新定义的坐标关系,会根据新定义规则进行计算抓住T、D和坐标关系是解题关键.24.(1) (3,4);(2,0);A;(2)答案见解析;(3)10.【分析】(1)根据规定及实例可知A→C记为(3,4)B→C记为(2,0)D→A记为(﹣4,﹣2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P的坐标,在图中标出即可;(3)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长.【详解】(1)规定:向上向右走为正,向下向左走为负∴A→C记为(3,4)B→C记为(2,0)D→A记为(﹣4,﹣2);(2)P点位置如图所示.(3)据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);该甲虫走过的路线长为1+4+2+1+2=10.故答案为(3,4);(2,0);A;【点睛】本题主要考查了正数与负数,利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.25.(15;(2)1x =或7x =-【分析】(1)先进行绝对值、开方、0指数运算,再相加即可;(1)先开方,再解一元一次方程即可.【详解】解:(1))01π+1515=++= (2))(2316x +=开方得,34x +=±, 343-4x x +=+=或,解得,1x =或7x =-.【点睛】本题考查了绝对值、平方根和0指数,掌握基本知识点,熟练运用绝对值法则、0指数的意义和开平方运算是解题关键.26.【分析】在Rt △ADE 中,运用勾股定理可求出梯子的总长度,在Rt △ABC 中,根据已知条件再次运用勾股定理可求出BC 的长.【详解】解:在Rt △DAE 中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,.∴AD2=AE 2+DE 2=()2+()2=36,∴AD=6,即梯子的总长为6米.∴AB=AD=6.在Rt △ABC 中,∵∠BAC=60°,∴∠ABC=30°,∴AC=12AB=3, ∴BC 2=AB 2-AC 2=62-32=27, ∴m ,∴点B 到地面的垂直距离.【点睛】本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.。
揭阳市2021版中考数学试卷(I)卷
揭阳市2021版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)在+5,-4,-π,,22 ,—(),,-,,—(-5) , -42 ,这几个数中,负数()个.A . 3.B . 4C . 5D . 62. (2分)在下列式子中,x可以取2和3的是()A .B .C .D .3. (2分)如果把中的x,y都扩大10倍,则分式的值为()A . 是原来的20倍B . 不变C . 是原来的10倍D . 是原来的倍4. (2分)有20名同学参加“英语拼词”比赛,他们的成绩各不相同,按成绩取前10名参加复赛. 若小新知道了自己的成绩,则由其他19名同学的成绩得到的下列统计量中,可判断小新能否进入复赛的是()A . 平均数B . 极差C . 中位数D . 方差5. (2分)某商人一次卖出两件衣服,一件赚了百分之15,一件亏了百分之15,售价都是9775元,在这次生意中,该商人()A . 不赚不赔B . 赚了490元C . 亏了450元D . 亏了490元6. (2分)(2019·荆州) 如图,点为扇形的半径上一点,将沿折叠,点恰好落在上的点处,且(表示的长),若将此扇形围成一个圆锥,则圆锥的底面半径与母线长的比为()A .B .C .D .7. (2分)如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A . 25°B . 45°C . 35°D . 30°8. (2分)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A . 65°B . 130°C . 50°D . 100°9. (2分) (2019八下·江城期末) 把直线y=-x+1向上平移3个单位长度后得到的直线的解析式为()A . y=-x+4B . y=-x-2C . y=x+4D . y=x-210. (2分)如图,平面直角坐标系xOy中,已知定点A(1,0)和B(0,1),若动点C在x轴上运动,则使△ABC为等腰三角形的点C有()个.A . 2个B . 3个C . 4个D . 5个二、填空题 (共8题;共8分)11. (1分)(2018·南通) 分解因式: ________.12. (1分)(2017·宁德模拟) 2016年9月26日,我国自主设计建造的世界最大球面射电望远镜落成启用.该望远镜理论上能接收到13 700 000 000光年以外的电磁信号.数据13 700 000 000光年用科学记数法表示为________光年.13. (1分) (2019七下·包河期末) 当x=________时,分式与分式的值相等.14. (1分)(2017·泰州模拟) 如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,顶点C的坐标为(﹣3,3 ),反比例函数y= 的图象与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是________.15. (1分) (2019九上·博白期中) 如图所示,四边形ABCD是边长为3的正方形,点E在BC上,BE=1,△ABE绕点A逆时针旋转后得到△ADF,则FE的长等于________.16. (1分) (2015八下·淮安期中) 如图,在▱ABCD中,AD=6,点E、F分别是BD、CD的中点,则EF=________17. (1分) (2020八下·温州期中) 已知一个平行四边形的一组邻边长分别是方程(x-5)²=x-5的两根,则该平行四边形的周长为________。
2021-2022学年揭阳市重点中学中考数学全真模拟试题含解析
2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.如图,在ABC 中,D 、E 分别在边AB 、AC 上,//DE BC ,//EF CD 交AB 于F ,那么下列比例式中正确的是( )A .AF DE DF BC =B .DF AF DB DF =C .EF DE CD BC = D .AF AD BD AB= 2.如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定3.在⊙O 中,已知半径为5,弦AB 的长为8,则圆心O 到AB 的距离为( )A .3B .4C .5D .6 4.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,则下列结论:①ac>0;②a-b+c<0; ③当x 0<时,y 0<;2a b 0+=④,其中错误的结论有( )A .②③B .②④C .①③D .①④5.实数a 在数轴上的位置如图所示,则22(4)(11)a a ---化简后为( )A .7B .﹣7C .2a ﹣15D .无法确定6.4的算术平方根为()A.2±B.2C.2±D.27.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=18.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c9.已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1 B.2 C.3 D.410.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是()①13EAEC=,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,共18分)11.在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC1;然后将△ABC1沿直线BC1翻折,得到△A1BC1;再将△A1BC1沿直线A1B翻折,得到△A1BC2;…,若翻折4次后,得到图形A2BCAC1A1C2的周长为a+c+5b,则翻折11次后,所得图形的周长为_____________.(结果用含有a,b,c的式子表示)12.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.13.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是__________.14.如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE.延长AF 交边BC于点G,则CG为_____.______________.1536416.2011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为▲ 辆.三、解答题(共8题,共72分)17.(8分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.18.(8分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.试判断DE与⊙O的位置关系,并说明理由;过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.19.(8分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元/个)之间的对应关系如图所示.试判断y与x之间的函数关系,并求出函数关系式;若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的函数关系式;若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出最大利润.20.(8分)如图所示,直线y=12x+2与双曲线y=kx相交于点A(2,n),与x轴交于点C.求双曲线解析式;点P在x轴上,如果△ACP的面积为5,求点P的坐标.21.(8分)如图,已知AB 是O 的直径,点C 、D 在O 上,60D ∠=且6AB =,过O 点作OE AC ⊥,垂足为E .()1求OE 的长;()2若OE 的延长线交O 于点F ,求弦AF 、AC 和弧CF 围成的图形(阴影部分)的面积S .22.(10分)如图,在四边形ABCD 中,AB=BC=1,CD=3,DA=1,且∠B=90°,求:∠BAD 的度数;四边形ABCD的面积(结果保留根号).23.(12分)已知:正方形ABCD 绕点A 顺时针旋转至正方形AEFG ,连接CE DF 、.如图,求证:CE DF =;如图,延长CB 交EF 于M ,延长FG 交CD 于N ,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角.24.如图,直线y=﹣x+3分别与x 轴、y 交于点B 、C ;抛物线y=x 2+bx+c 经过点B 、C ,与x 轴的另一个交点为点A (点A 在点B 的左侧),对称轴为l 1,顶点为D .(1)求抛物线y=x2+bx+c的解析式.(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.①结合函数的图象,求x3的取值范围;②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断.【详解】A、∵EF∥CD,DE∥BC,∴AF AEDF EC=,AE DEAC BC=,∵CE≠AC,∴AF DEDF BC≠,故本选项错误;B、∵EF∥CD,DE∥BC,∴AF AEDF EC=,AE ADEC BD=,∴AF ADDF BD=,∵AD≠DF,∴DF AFDB DF≠,故本选项错误;C、∵EF∥CD,DE∥BC,∴DE AEBC AC=,EF AECD AC=,∴EF DECD BC=,故本选项正确;D、∵EF∥CD,DE∥BC,∴AD AEAB AC=,AF AEAD AC=,∴AF ADAD AB=,∵AD≠DF,∴AF ADBD AB≠,故本选项错误.故选C.【点睛】本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健.2、C【解析】因为R不动,所以AR不变.根据三角形中位线定理可得EF= 12AR,因此线段EF的长不变.【详解】如图,连接AR,∵E、F分别是AP、RP的中点,∴EF为△APR的中位线,∴EF= 12AR,为定值.∴线段EF的长不改变.故选:C.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.3、A【解析】解:作OC⊥AB于C,连结OA,如图.∵OC⊥AB,∴AC=BC=12AB=12×8=1.在Rt△AOC中,OA=5,∴OC=2222543OA AC-=-=,即圆心O到AB的距离为2.故选A.4、C【解析】①根据图象的开口方向,可得a的范围,根据图象与y轴的交点,可得c的范围,根据有理数的乘法,可得答案;②根据自变量为-1时函数值,可得答案;③根据观察函数图象的纵坐标,可得答案;④根据对称轴,整理可得答案.【详解】图象开口向下,得a <0,图象与y 轴的交点在x 轴的上方,得c >0,ac <,故①错误;②由图象,得x=-1时,y <0,即a-b+c <0,故②正确;③由图象,得图象与y 轴的交点在x 轴的上方,即当x <0时,y 有大于零的部分,故③错误;④由对称轴,得x=-2b a=1,解得b=-2a , 2a+b=0故④正确;故选D .【点睛】考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左;当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.5、C【解析】根据数轴上点的位置判断出a ﹣4与a ﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:根据数轴上点的位置得:5<a <10,∴a ﹣4>0,a ﹣11<0,则原式=|a ﹣4|﹣|a ﹣11|=a ﹣4+a ﹣11=2a ﹣15,故选:C .【点睛】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.6、B【解析】的值,再继续求所求数的算术平方根即可.,而2,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.7、B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.8、C【解析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选A.9、B【解析】先由平均数是3可得x的值,再结合方差公式计算.【详解】∵数据1、2、3、x、5的平均数是3,∴12355x++++=3,解得:x=4,则数据为1、2、3、4、5,∴方差为15×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,故选B.【点睛】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.10、C【解析】①如图,由平行线等分线段定理(或分线段成比例定理)易得:13 EA OAEC OC'='=;②设过点B且与y轴平行的直线交AC于点G,则S△ABC=S△AGB+S△BCG,易得:S△AED=12,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=12,又易得G为AC中点,所以,S△AGB=S△BGC=12,从而得结论;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得结论;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以④错误.【详解】解:①如图,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴13 EA OAEC OC'='=,故①正确;②设过点B且与y轴平行的直线交AC于点G(如图),则S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=12×1×1=12,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=12,同理得:G 为AC 中点,∴S △ABG =S △BCG =12, ∴S △ABC =1,故 ②正确;③由②知:△AED ≌△AGB ,∴BG=DE=1,∵BG ∥EF ,∴△BGC ∽△FEC ,∴13BG CG EF CE ==, ∴EF=1.即OF=5,故③正确;④易知,点B 的位置会随着点A 在直线x=1上的位置变化而相应的发生变化,故④错误;故选C .【点睛】本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.二、填空题(本大题共6个小题,每小题3分,共18分)11、2a+12b【解析】如图2,翻折4次时,左侧边长为c ,如图2,翻折5次,左侧边长为a ,所以翻折4次后,如图1,由折叠得:AC =A 1C = 11A C =12A C =22A C b =,所以图形2112A BCAC AC 的周长为:a+c+5b ,因为∠ABC <20°,所以()9120200360+⨯︒=︒<︒,翻折9次后,所得图形的周长为: 2a +10b ,故答案为: 2a +10b .12、214【解析】先由根与系数的关系得:两根和与两根积,再将m 2+n 2进行变形,化成和或积的形式,代入即可.【详解】由根与系数的关系得:m+n=52,mn=12, ∴m 2+n 2=(m+n )2-2mn=(52)2-2×12=214, 故答案为:214. 【点睛】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如1211+x x 、x 12+x 22等等,本题是常考题型,利用完全平方公式进行转化. 13、14. 【解析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论.【详解】解:∵由图可知,黑色方砖4块,共有16块方砖, ∴黑色方砖在整个区域中所占的比值41164==, ∴它停在黑色区域的概率是14; 故答案为14. 【点睛】本题考查了概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 14、45【解析】如图,作辅助线,首先证明△EFG ≌△ECG ,得到FG =CG (设为x ),∠FEG =∠CEG ;同理可证AF =AD =5,∠FEA=∠DEA ,进而证明△AEG 为直角三角形,运用相似三角形的性质即可解决问题.【详解】连接EG ;∵四边形ABCD 为矩形,∴∠D =∠C =90°,DC =AB =4;由题意得:EF =DE =EC =2,∠EFG =∠D =90°;在Rt △EFG 与Rt △ECG 中,EF EC EG EG=⎧⎨=⎩, ∴Rt △EFG ≌Rt △ECG (HL ),∴FG =CG (设为x ),∠FEG =∠CEG ;同理可证:AF =AD =5,∠FEA =∠DEA ,∴∠AEG =12×180°=90°, 而EF ⊥AG ,可得△EFG ∽△AFE,∴2EF AF FG =∴22=5•x ,∴x =45, ∴CG =45, 故答案为:45. 【点睛】此题考查矩形的性质,翻折变换的性质,以考查全等三角形的性质及其应用、射影定理等几何知识点为核心构造而成;对综合的分析问题解决问题的能力提出了一定的要求.15、-1【解析】 364--1.故答案为:-1.16、2.85×2. 【解析】根据科学记数法的定义,科学记数法的表示形式为a×20n ,其中2≤|a|<20,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于2还是小于2.当该数大于或等于2时,n 为它的整数位数减2;当该数小于2时,-n 为它第一个有效数字前0的个数(含小数点前的2个0).【详解】解:28500000一共8位,从而28500000=2.85×2.三、解答题(共8题,共72分)17、(1)3,补图详见解析;(2)712【解析】(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可【详解】由扇形图可以看到发箴言三条的有3名学生且占25%,故该班团员人数为:325%12÷=(人), 则发4条箴言的人数为:1222314----=(人),所以本月该班团员所发的箴言共212233441536⨯+⨯+⨯+⨯+⨯=(条),则平均所发箴言的条数是:36123÷=(条).(2)画树形图如下:由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为712P =.【点睛】此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键18、(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣332.【解析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵3,∴223+33()=6,∵sin∠DBF=31 =62,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=3DF DO DO ==∴则,1322π-=. 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键.19、(1)y 是x 的一次函数,y=-30x+1(2)w=-30x 2+780x -31(3)以3元/个的价格销售这批许愿瓶可获得最大利润4元【解析】(1)观察可得该函数图象是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,进而把其余两点的横坐标代入看纵坐标是否与点的纵坐标相同.(2)销售利润=每个许愿瓶的利润×销售量.(3)根据进货成本可得自变量的取值,结合二次函数的关系式即可求得相应的最大利润.【详解】解:(1)y 是x 的一次函数,设y=kx+b ,∵图象过点(10,300),(12,240),∴10k b 30012k b 240+=⎧⎨+=⎩,解得k 30b 600=-⎧⎨=⎩.∴y=-30x +1. 当x=14时,y=180;当x=16时,y=120,∴点(14,180),(16,120)均在函数y=-30x+1图象上.∴y 与x 之间的函数关系式为y=-30x+1.(2)∵w=(x -6)(-30x +1)=-30x 2+780x -31,∴w 与x 之间的函数关系式为w=-30x 2+780x -31.(3)由题意得:6(-30x+1)≤900,解得x≥3.w=-30x 2+780x -31图象对称轴为:()780x 13230=-=⨯-. ∵a=-30<0,∴抛物线开口向下,当x≥3时,w 随x 增大而减小.∴当x=3时,w最大=4.∴以3元/个的价格销售这批许愿瓶可获得最大利润4元.20、(1)6yx=;(2)(23-,0)或22,03⎛⎫- ⎪⎝⎭【解析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.【详解】解:(1)把A(2,n)代入直线解析式得:n=3,∴A(2,3),把A坐标代入y=kx,得k=6,则双曲线解析式为y=6x.(2)对于直线y=12x+2,令y=0,得到x=-4,即C(-4,0).设P(x,0),可得PC=|x+4|.∵△ACP面积为5,∴12|x+4|•3=5,即|x+4|=2,解得:x=-23或x=-223,则P坐标为23⎛⎫- ⎪⎝⎭,或223⎛⎫-⎪⎝⎭,.21、(1)OE=32;(2)阴影部分的面积为32π【解析】(1)由题意不难证明OE为△ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE≌△AFE,进而将要求的阴影部分面积转化为扇形FOC的面积,利用扇形面积公式求解即可.【详解】解:(1) ∵AB是⊙O的直径,∴∠ACB =90°,∵OE ⊥AC ,∴OE // BC ,又∵点O 是AB 中点,∴OE 是△ABC 的中位线,∵∠D =60°,∴∠B =60°,又∵AB =6,∴BC =AB ·cos 60°=3,∴OE =12 BC =32; (2)连接OC ,∵∠D =60°,∴∠AOC =120°,∵OF ⊥AC ,∴AE =CE ,AF =CF ,∴∠AOF =∠COF =60°,∴△AOF 为等边三角形,∴AF =AO =CO ,∵在Rt △COE 与Rt △AFE 中,AF CO AE CE =⎧⎨=⎩, ∴△COE ≌△AFE ,∴阴影部分的面积=扇形FOC 的面积,∵S 扇形FOC =2603360π⨯=32π. ∴阴影部分的面积为32π.【点睛】本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合.22、(1)135BAD ∠=︒;(2)212ABC ADC ABCD S S S ∆∆+=+=四边形 【解析】 (1)连接AC ,由勾股定理求出AC 的长,再根据勾股定理的逆定理判断出△ACD 的形状,进而可求出∠BAD 的度数;(2)由(1)可知△ABC 和△ADC 是Rt △,再根据S 四边形ABCD =S △ABC +S △ADC 即可得出结论. 【详解】解:(1)连接AC ,如图所示:∵AB=BC=1,∠B=90°∴22112+=又∵AD=1,3∴ AD 2+AC 2=3 CD 23)2=3即CD 2=AD 2+AC 2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC 和△ADC 是Rt △,∴S 四边形ABCD =S △ABC +S △ADC =1×1×12+1×2×12=1222+ . 【点睛】考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23、(1)证明见解析;(2),,,DAG BAE CNF FMC ∠∠∠∠.【解析】(1)连接AF 、AC ,易证∠EAC=∠DAF ,再证明ΔEAC ≅ΔDAF ,根据全等三角形的性质即可得CE=DF ;(2)由旋转的性质可得∠DAG 、∠BAE 都是旋转角,在四边形AEMB 中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE ,同理可得∠DAG=∠CNF ,由此即可解答.【详解】(1)证明:连接,AF AC ,∵正方形ABCD 旋转至正方形AEFG∴DAG BAE ∠∠=,45BAC GAF ∠=∠=︒∴BAE BAC DAG GAF ∠+∠=∠+∠∴EAC DAF ∠=∠在EAC ∆和DAF ∆中,AE AD EAC FAD AC AF =⎧⎪∠=∠⎨⎪=⎩,∴EAC DAF ∆≅∆∴CE DF =(2).∠DAG 、∠BAE 、∠FMC 、∠CNF ;由旋转的性质可得∠DAG 、∠BAE 都是旋转角,在四边形AEMB 中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE ,同理可得∠DAG=∠CNF ,【点睛】本题考查了正方形的性质、旋转的性质及全等三角形的判定与性质,证明ΔEAC ≅ΔDAF 是解决问题的关键.24、(2)y=x 2﹣4x+3;(2)①2<x 3<4,②m 的值为113172-2. 【解析】(2)由直线y=﹣x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)①先求得抛物线的顶点坐标为D(2,﹣2),当直线l2经过点D时求得m=﹣2;当直线l2经过点C时求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.【详解】(2)在y=﹣x+3中,令x=2,则y=3;令y=2,则x=3;得B(3,2),C(2,3),将点B(3,2),C(2,3)的坐标代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直线l2平行于x轴,∴y2=y2=y3=m,①如图①,y=x2﹣4x+3=(x﹣2)2﹣2,∴顶点为D(2,﹣2),当直线l2经过点D时,m=﹣2;当直线l2经过点C时,m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如图①,当直线l2在x轴的下方时,点Q在点P、N之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x轴,即PQ∥x轴,∴点P、Q关于抛物线的对称轴l2对称,又抛物线的对称轴l2为x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,将点Q(x2,y2)的坐标代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(负值已舍去),∴m=()2﹣4×+3=113172-如图②,当直线l2在x轴的上方时,点N在点P、Q之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ.由上可得点P、Q关于直线l2对称,∴点N在抛物线的对称轴l2:x=2,又点N在直线y=﹣x+3上,∴y3=﹣2+3=2,即m=2.故m 11317-2.【点睛】本题是二次函数综合题,本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识.在(2)中注意待定系数法的应用;在(2)①注意利用数形结合思想;在(2)②注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.。
广东省揭阳市2021年中考一模试卷
物理中考一模试卷一、单项选择题〔共6题;共12分〕1.以下运开工程涉及的物理知识描述正确的选项是〔〕A. 三级跳远时快速助跑是为了增大惯性B. 百米赛跑时裁判员通过一样时间比较路程的方法判断运动快慢C. 引体向上时人对单杠的拉力与单杠对人的拉力是一对平衡力D. 划船比赛时船桨和水之间力的作用是相互的2.如下列图的四种情景中,所使用的杠杆属于省力杠杆的是〔〕A. 瓶起子B. 筷子C. 食品夹D. 天平3.关于光学知识说法正确的选项是( 〕A. 漫反射不遵从光的反射定律B. 小猫叉不到鱼,是因为看到鱼变深的虚像C. 白光通过三棱镜发生色散D.近视眼需要用凸透镜矫正4.以下关于物态变化的说法,正确的选项是〔〕A. 晶体在熔化过程中要不断吸热B. 水在蒸发过程中要不断放热C. 往豆浆中加糖,豆浆会变甜这是液化现象D. 冰块的形成是升华现象5.针对以下列图的四幅图,以下说法不正确的选项是〔〕A. 甲图中易拉罐变瘪了,说明了大气压的存在B. 乙图两个外表光滑的铅块相互压紧后,能悬挂假设干钩码而不分开,说明分子在不停的作无规那么运动C. 丙图中,人造地球卫星从A点运动到B点时将重力势能转化为动能,机械能不变D. 丁图中白雾的形成是由于水蒸气液化放热6.如下列图,是一种自动测定油箱内油面高度的装置,R是转动式变阻器,它的金属滑片P是杠杆的一端,以下说法正确的选项是〔〕A. 油位越高,R两端的电压越大B. R、在电路中是并联的C. 油位越高,流过R的电流越大D. 油量表是由电流表改装而成的二、多项选择题〔共1题;共3分〕7.如下列图,以下对电磁实验现象相应的解释正确的选项是〔〕A. 甲图中,闭合开关。
小磁针的N极向左偏转B. 乙图中,线圈匝数多的电磁铁,磁性强C. 丙图中,该装置用来研究电磁感应现象D. 丁图中,磁铁放在水平面上,导体ab竖直向上运动,电流表指针一定不会偏转三、综合题〔共3题;共8分〕8.道路维修时常用到路面钻机〔俗称“啄木鸟〞〕,该机械利用压缩气体推动活塞将钻头打入路面.气体推动活塞时是将________能转化为________能;这与汽油机中的________冲程相似.“啄木鸟〞中用到了柴油机,假设其机械效率是40%,那么完全燃烧50kg柴油对外做的有用功是________ J〔柴油的热值是4.3×107J/kg〕.9.滑板车和轮滑都是小朋友非常喜欢的运动。
2021年广东省中考数学一模试卷(含答案解析)
2021年广东省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中,是无理数的是()D. √6A. √4B. 3.14C. 3112.5G被认为是物联网、自动驾驶汽车、智慧城市的“结缔组织”,是工业互联网的中坚力量.近年来,我国5G发展取得明显成就,根据中国工信部的数据,截至2020年10月底,全国累计建设开通5G基站达69.5万个,将数据69.5万用科学记数法表示为()A. 695×103B. 69.5×104C. 6.95×105D. 0.695×1063.某种品牌的产品共5件,其中有2件次品,小王从中任取两件,则小王取到都是次品的概率是()A. 0.5B. 0.1C. 0.4D. 0.64.下列运算中,正确的是()A. x2⋅x3=x6B. (a−1)2=a2−1C. (a+b)(−a−b)=a2−b2D. (−2a2)2=4a45.若|a−1|+(b+2)2=0,则(a+b)2014+a2015的值为()A. −1B. 0C. 1D. 26.一个正三棱柱和一个正四棱柱的底面边长和高都相等,当一只小猫只看到它的一个侧面时,它看到()A. 正三棱柱的区域大B. 正四棱柱的区域大C. 两者的区域一样大D. 无法确定7.如图,AB是⊙O的直径,C,D是⊙O上的点,且OC//BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③BC平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()A. ②④⑤⑥B. ①③⑤⑥C. ②③④⑥D.①③④⑤8.√15介于两个相邻整数之间,这两个整数是()A. 2~3B. 3~4C. 4~5D. 5~69. 如图所示,有三种卡片,其中边长为a 的正方形1张,边长为a 、b 的矩形卡片4张,边长为b 的正方形4张用这9张卡片刚好能拼成一个正方形,则这个正方形的面积为( )A. a 2+4ab +4b 2B. 4a 2+8ab +4b 2C. 4a 2+4ab +b 2D. a 2+2ab +b 210. 如图,函数y =ax 2+bx +c 的图象过点(−1,0)和(m,0),请思考下列判断,正确的个数是( )①abc <0;②4a +c <b ;③bc =1−1m;④am 2+(2a +b)m +a +b +c <0;⑤|am +a|=√b 2−4acA. 2个B. 3个C. 4个D. 5个二、填空题(本大题共7小题,共28.0分)11. 已知关于x 、y 二元一次方程组{mx −3y =163x −ny =0的解为{x =5y =3,则关于x 、y 二元一次方程组{m(x +1)−3(y −2)=163(x +1)−n(y −n)=0的解是______. 12. 将二次函数y =x 2−4x +a 的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y =3有两个交点,则a 的取值范围是______.13. 一个扇形的弧长为5π3cm ,面积256πcm 2,则此扇形的圆心角度数为______.14. 若关于x 的一元二次方程(m +4)x 2+5x +m 2+3m −4=0的常数项为0,则m 的值等于______.15. 已知:a +b +c =0,abc ≠0,则代数式1a 2+b 2−c 2+1b 2+c 2−a 2+1c 2+a 2−b 2=______. 16. 如图,在平行四边形ABCD 中,AB =10,AD =16,∠A =60°,P 为AD 的中点,F 是边AB 上不与点A ,B 重合的一个动点,将△APF 沿PF 折叠,得到△A′PF ,连接BA′,则△BA′F 周长的最小值为______.17.如图,AB=1,以AB为斜边作直角△ABC,以△ABC的各边为边分别向外作正方形,EM⊥KH于M,GN⊥KH于N,则图中阴影面积和的最大值为______ .三、解答题(本大题共8小题,共62.0分)18.计算:(1)2−1−(−0.5)0−sin30°;(2)(x−2)2−x(x−3);(3)解方程:3−xx−4+14−x=1;(4)解不等式组:{12x+1<321−5(x+1)≤6.19.为了解某中学300名男生的身高情况,现随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图),估计该校男生的身高在169.5cm~174.5cm之间的人数有______ 人.20.如图.点C、D是以AB为直径的半圆O上的两点,已知AB=10,tan∠ABC=34.∠ABD=45°.(1)求AC的长:(2)求∠DCB的度数;(3)求DC的长.21.如图所示,在直角坐标系中,点A是反比例函数y1=k的图象上一点,xAB⊥x轴的正半轴于B点,C是OB的中点;一次函数y2=ax+b的图象经过A、C两点,并交y轴于点D(0,−2),若S△AOD=4.(1)写出点C的坐标;(2)求反比例函数和一次函数的解析式;(3)当y1<y2时,求x的取值范围.22.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如表:售价(元/件)100110120130……月销量(件)200180160140……已知月销量是售价的一次函数,该运动服的进价为每件50元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是______元;②月销量是______件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?23. 问题情境在综合实践课上,老师让同学们在正方形中进行图形变换探究活动,已知四边形ABCD是正方形,点P是对角线BD上的一个动点.操作发现:(1)如图(1),将射线PA绕点P逆时针旋转90°,交BC于点E,则线段AP和PE之间的数量关系是______(2)如图(2),在(1)的基础上,兴趣小组的同学们将△ABE沿射线BC平移到△DCF的位置,连接PF,发现PF⊥BP,请你证明这个结论.24. 已知如图,AB是⊙O的直径,点P在⊙O上,且PA=PB,点M是⊙O外一点,MB与⊙O相切于点B,连接OM,过点A作AC//OM交⊙O于点C,连接BC交OM于点D.AC;(1)求证:OD=12(2)求证:MC是⊙O的切线;(3)若OD=9,DM=16,连接PC,求PC的长.25. 如图1,抛物线y=−x2+bx+c经过点A(2,0),B(0,2),与x轴交于另一点C.(1)求抛物线的解析式及点C的坐标;(2)点P是抛物线y=−x2+bx+c在第一象限上的点,过点P分别向x轴、y轴作垂线,垂足分别为D,E,求四边形ODPE的周长的最大值;(3)如图2,点P是抛物线y=−x2+bx+c在第一象限上的点,过点P作PN⊥x轴,垂足为N,交AB于M,连接PB,PA.设点P的横坐标为t,当△ABP的面积等于△ABC面积的1时,求t的值.3【答案与解析】1.答案:D解析:A.√4=2,是整数,属于有理数;B.3.14是有限小数,属于有理数;C.3是分数,属于有理数;11D.√6是无理数.故选:D.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.答案:C解析:解:69.5万=695000=6.95×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数.本题考查了科学记数法.解题的关键是明确用科学记数法表示一个数的方法:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上零).3.答案:B解析:本题主要考查了树状图法或列表法求概率,根据概率的求法,首先列出表格,表示出全部情况的总数,然后找出符合条件的情况数目,二者的比值就是其发生的概率.解:3件正品用A,B,C表示,2件次品用a,b表示,列表如下:由表格知,共有20种等可能的情况,其中小王取到都是次品的情况只有2种,=0.1.所以小王取到都是次品的概率是220故选B.4.答案:D解析:解:A、x2⋅x3=x5,故此选项错误;B、(a−1)2=a2−2a+1,故此选项错误;C、(a+b)(−a−b)=−a2−2ab−b2,故此选项错误;D、(−2a2)2=4a4,故此选项正确;故选:D.分别利用积的乘方运算法则以及完全平方公式、同底数幂的乘法运算法则化简求出答案.此题主要考查了积的乘方运算以及完全平方公式、同底数幂的乘法运算等知识,正确化简各式是解题关键.5.答案:D解析:解:∵|a−1|+(b+2)2=0,∴a−1=0,b+2=0.∴a=1,b=−2.∴原式=[1+(−2)]2014+12015=1+1=2.故选:D.首先由非负数的性质可求得a、b的值,然后将a、b的值代入所求代数式进行计算即可.本题主要考查的是非负数的性质,由非负数的性质求得a、b的值是解题的关键.6.答案:D解析:本题主要考察的是视点、视角和盲区,结合实际问题考查的过程中考察了学生的理解能力和空间想象能力.正三棱柱和一个正四棱柱的底面边长和高都相等,但是视距不能确定、棱长不能确定,所以看到的区域大小不能确定.故选:D7.答案:D解析:此题是圆综合题,主要考查了圆的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌握圆的性质.①由直径所对圆周角是直角,②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角,③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC;④用半径垂直于不是直径的弦,必平分弦;⑤用三角形的中位线得到结论;⑥得不到△CEF和△BED中对应相等的边,所以不一定全等.解:①∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,①成立;②∵∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角,∴∠AOC≠∠AEC,②不成立;③∵OC//BD,∴∠OCB=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠DBC,∴BC平分∠ABD,③成立;④∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OC//BD,∴∠AFO=90°,∵点O为圆心,∴AF=DF,④成立;⑤由④有,AF=DF,∵点O为AB中点,∴OF是△ABD的中位线,∴BD=2OF,⑤成立;⑥∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,⑥不成立.故选D.8.答案:B解析:此题主要考查了估算无理数的大小,正确得出√15的取值范围是解题关键.直接利用估算无理数的方法得出√15的取值范围即可.解:∵3<√15<4,∴这两个整数是:3~4.故选B.9.答案:A解析:解:由题意,得a2+4ab+4b2故选:A.由边长为a的正方形1张,边长为a、b的矩形卡片4张,边长为b的正方形4张,可得拼成的正方形面积为a2+4ab+4b2,根据完全平方式可求正方形边长.本题考查了完全平方公式的几何背景,完全平方式,关键是熟练运用完全平方公式解决问题.10.答案:D解析:解:∵抛物线开口向下,∴a<0,∵抛物线交y轴于正半轴,∴c>0,>0,∵−b2a∴b>0,∴abc<0,故①正确,∵a<0,∴2a+c<a+c,x=−1时,y=a−b+c=0,则b=a+c,∴2a+c<b,∴4a+c<b,故②正确,∵y=ax2+bx+c的图象过点(−1,0)和(m,0),∴−1×m=ca,am2+bm+c=0,∴amc +bc+1m=0,∴bc =1−1m,故③正确,∵−1+m=−ba,∴−a+am=−b,∴am=a−b,∵am2+(2a+b)m+a+b+c=am2+bm+c+2am+a+b=2a−2b+a+b=3a−b<0,故④正确,∵m+1=|−b+√b2−4ac2a −−b−√b2−4ac2a|,∴m+1=|√b2−4aca|,∴|am+a|=√b2−4ac,故⑤正确,故选:D.①利用图象信息即可判断;②根据x=−1时,y=0得到b=a+c,由a<0得到2a+c<a+c,即2a+c<b,即可判断;③根据m是方程ax2+bx+c=0的根,结合两根之积−m=ca,即可判断;④根据两根之和−1+m=−ba,可得ma=a−b,可得am2+(2a+b)m+a+b+c=am2+ bm+c+2am+a+b=2a−2b+a+b=3a−b<0,⑤根据抛物线与x轴的两个交点之间的距离,列出关系式即可判断;本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c);△决定抛物线与x 轴交点个数:△=b 2−4ac >0时,抛物线与x 轴有2个交点;△=b 2−4ac =0时,抛物线与x 轴有1个交点;△=b 2−4ac <0时,抛物线与x 轴没有交点.11.答案:{x =4y =5解析:解:当X =x +1,Y =y −2时,方程组可转化为{mX −3Y =163X −nY =0, 由于关于x 、y 二元一次方程组{mx −3y =163x −ny =0的解为{x =5y =3, ∴关于X 、Y 的方程组{mX −3Y =163X −nY =0的解{X =5Y =3. ∴x +1=5,y −2=3.∴x =4,y =5.∴关于x 、y 二元一次方程组{m(x +1)−3(y −2)=163(x +1)−n(y −n)=0的解是{x =4y =5. 故答案为:{x =4y =5. 观察两个方程组的系数等特点,发现当当X =x +1,Y =y −2时,两个方程组完全一样,所以它们的解也相同,从而求出x 、y 的值.本题考查了二元一次方程组的解,观察两个方程组,找到规律运用换元法是解决本题的关键. 12.答案:a <6解析:解:∵y =(x −2)2+a −4,∴抛物线y =x 2−4x +a 的顶点坐标为(2,a −4),把点(2,a −4)向左平移1个单位,再向上平移1个单位,所得对应点的坐标为(1,a −3), ∴平移后的抛物线解析式为y =(x −1)2+a −3,即y =x 2−2x +a −2,∵抛物线y =x 2−2x +a −2与直线y =3有两个交点,∴方程x 2−2x +a −2=3有两个实数解,整理得x 2−2x +a −5=0,∵△=(−2)2−4(a −5)>0,∴a <6.故答案为a <6.先利用配方法得到抛物线y=x2−4x+a的顶点坐标为(2,a−4),再利用点平移的坐标变换规律得到点(2,a−4)平移后所得对应点的坐标为(1,a−3),利用顶点式得到平移后的抛物线解析式为y= (x−1)2+a−3,即y=x2−2x+a−2,然后利用方程x2−2x+a−2=3有两个实数解,则△= (−2)2−4(a−5)>0,从而解不等式即可.本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.13.答案:60°解析:此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.利用扇形面积公式S=12Rl求出R的值,再利用扇形面积公式S=nπ×R2360计算即可得到圆心角度数.解:∵一个扇形的弧长是5π3cm,面积256cm2,∴S=12Rl,即256π=12×R×5π3,解得:R=5,∴S=256π=nπ×52360,解得:n=60°,故答案是:60°.14.答案:1解析:解:∵关于x的一元二次方程(m+4)x2+5x+m2+3m−4=0的常数项为0,∴m+4≠0且m2+3m−4=0,解得m=1或m=−4(舍),故答案为:1.根据一元二次方程的常数项为0得出m的值,再由二次项系数不能为0得出答案.此题主要考查了一元二次方程的一般形式以及一元二次方程的解法,根据常数项为0进而求出m的值是解题关键.15.答案:0解析:解:∵a+b+c=0,即c=−(a+b),a=−(b+c),c=−(a+b)∴原式=1a2+b2−(a+b)2+1b2+c2−(b+c)2+1c2+a2−(c+a)2=−12ab−12bc−12ac=−c+a+b2abc=0由已知a+b+c=0,得到c=−(a+b),a=−(b+c),c=−(a+b),代入所求式子中,利用完全平方公式化简,通分并利用同分母分式的加法法则计算,将a+b+c=0代入即可求出值.此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.16.答案:2√21+2解析:解:如图,作BH⊥AD于H,连接BP.∵PA=8,AH=5,∴PH=8−5=3,∵BH=5√3,∴PB=√PH2+BH2=√32+(5√3)2=2√21,由翻折可知:PA=PA′=8,FA=FA′,∴△BFA′的周长=FA′+BF+BA′=AF+BF+BA′=AB+BA′=10+BA′,∴当BA′的周长最小时,△BFA′的周长最小,∵BA′≥PB−PA′,∴BA′≥2√21−8,∴BA′的最小值为2√21−8,∴△BFA′的周长的最小值为10+2√21−8=2√21+2.故答案为:2√21+2.△BFA′的周长=FA′+BF+BA′=AF+BF+BA′=AB+BA′=10+BA′,推出当BA′的周长最小时,△BFA′的周长最小,由此即可解决问题.本题考查翻折变换,平行四边形的性质,两点之间线段最短等知识,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.答案:54解析:解:作CO⊥AB交AB于点O,延长AB交EM于点P,交GN于点Q,由题意可得,AC=EA,BC=GB,∠EPA=∠AOC=90°,∠COB=∠BQG,∵∠EAP+∠CAO=90°,∠EAP+∠AEP=90°,∴∠CAO=∠AEP,在△EAP和△ACO中,{∠AEP=∠CAO ∠EPA=∠AOC AE=CA,∴△EAP≌△ACO(AAS),∴AP=CO,同理可知,△COB≌△BQG,CO=BQ,∴阴影部分的面积=矩形APMK的面积+矩形BQNH的面积+△ABC的面积,∴阴影部分的面积是:AK⋅AP+BH⋅BQ+AB⋅OC2=1×AP+1×BQ+1×CO2=52CO,∴当CO取得最大值时,图中阴影面积和取得最大值,∵当△ACB是等腰直角三角形时,CO取得最大值,∴CO的最大值是12,∴图中阴影面积和的最大值是52×12=54,故答案为:54.根据题意,作出合适的辅助线,然后即可表示出阴影部分的面积,然后即可计算出图中阴影面积和的最大值.本题考查勾股定理、三角形、正方形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.18.答案:解:(1)原式=12−1−12=−1;(2)原式=x 2−4x +4−x 2+3x=−x +4;(3)方程两边都乘以x −4得:3−x −1=x −4,解得:x =3,检验:当x =3时,x −4≠0,所以x =3是原方程的解,即原方程的解是x =3;(4){12x +1<32①1−5(x +1)≤6②∵解不等式①得:x <1,解不等式②得:x ≥−2,∴不等式组的解集是−2≤x <1.解析:(1)先根据零指数幂,负整数指数幂,特殊角的三角函数值进行计算,再算加减即可;(2)先算乘法,再合并同类项即可;(3)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;(4)先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解分式方程,解一元一次不等式组,整式的混合运算,零指数幂,负整数指数幂,特殊角的三角函数值等知识点,能灵活运用知识点进行计算和化简是解此题的关键.19.答案:72解析:解:由频数分布直方图可知,样本容量为:6+10+16+12+6=50,身高在169.5cm ~174.5cm 之间的频数是12,12÷50=0.24,∴身高在169.5cm ~174.5cm 之间的频率为:0.24,300×0.24=72,故答案为:72.根据频数分布直方图去计算出样本容量,找出身高在169.5cm ~174.5cm 之间的频数,得到该组的频率,求出身高在169.5cm ~174.5cm 之间的人数.本题考查读频数分布直方图的能力和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.答案:解:(1)∵AB是直径,∴∠ACB=90°,∵tan∠ABC=ACBC =34,∴可以假设AC=3k,BC=4k,则有25k2=100,∴k=2或−2(舍弃),∴AC=6,BC=8.(2)连接AD.∵AB是直径,∴∠ADB=90°,∵∠ABD=45°,∴∠DAB=45°,∴∠DCB=∠DAB=45°.(3)过点B作BT⊥CD交CD的延长线于T.∵BC=8,∠TCB=∠TBC=45°,∴TC=TB=4√2,∵∠ABD=∠CBT=45°,∴∠ABC=∠DBT,∵∠ACB=∠T=90°,∴△ABC∽△DBT,∴ACDT =BCBT,∴6DT =84√2,∴DT=3√2,∴CD=CT−DT=√2.解析:(1)解直角三角形求出AC即可.(2)连接AD,证明△ABD是等腰直角三角形即可解决问题.(3)过点B作BT⊥CD交CD的延长线于T.解直角三角形求出CT,利用相似三角形的性质求出DT即可解决问题.本题考查圆周角定理,等腰直角三角形的判定和性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型. 21.答案:解:(1)设点C 的坐标为(m,0),∵C 是OB 的中点,∴OC =BC .在△COD 和△CBA 中,{∠DCO =∠ACBOC =BC ∠DOC =∠ABC =90°,∴△COD≌△CBA(ASA),∴OD =BA .∵点D(0,−2),∴点A 的坐标为(2m,2).∴S △AOD =S △ABC +S △DOC =2S △DOC =2×12OC ⋅OD =2m =4,∴m =2,∴点C 的坐标为(2,0).(2)∵m =2,∴点A 的坐标为(4,2).∵点A 在反比例函数y 1=k x 的图象上,∴k =4×2=8,∴反比例函数的解析式为y 1=8x ;将C(2,0)、D(0,−2)代入y 2=ax +b 中,{0=2a +b −2=b,解得:{a =1b =−2, ∴一次函数的解析式为y =x −2.(3)联立两函数解析式成方程组,{y =8x y =x −2,解得:{x =−2y =−4或{x =4y =2, ∴两函数图象的另一个交点为(−2,−4).观察函数图象可知:当−2<x <0 或x >4时,一次函数图象在反比例函数图象上方, ∴当y 1<y 2时,x 的取值范围为−2<x <0 或x >4.解析:(1)设点C 的坐标为(m,0),通过证△COD≌△CBA 可得出点A 的坐标为(2m,2),根据三角形的面积公式结合S △AOD =4即可求出m 值,由此即可得出点C 的坐标;(2)由m 的值可得出点A 的坐标,利用反比例函数图象上点的坐标特征即可得出反比例函数解析式,再根据点C 、D 的坐标利用待定系数法即可求出一次函数解析式;(3)联立两函数解析式成方程组,通过解方程组可求出两函数图象的另一交点坐标,根据函数图象的上下位置关系即可得出结论.本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、三角形的面积以及全等三角形的判定与性质,解题的关键是:(1)根据S △AOD =4找出关于m 的一元一次方程;(2)根据点的坐标利用待定系数法求出函数解析式;(3)联立两函数解析式成方程组,通过解方程组求出两函数图象的另一交点坐标.22.答案:x −50 −2x +400解析:解:(1)请用含x 的式子表示:①销售该运动服每件的利润是(x −50)元;②解:(1)设月销量y 与x 的关系式为y =kx +b ,由题意得,{100k +b =200110k +b =180, 解得{k =−2b =400. 则y =−2x +400;故答案为:x −50,−2x +400;(2)由题意得,y =(x −60)(−2x +400)=−2x 2+520x −24000=−2(x −130)2+9800,故售价为130元时,当月的利润最大,最大利润是9800元.(1)先表示出单件的利润,然后运用待定系数法求出月销量;(2)根据月利润=每件的利润×月销量列出函数关系式,根据二次函数的性质求出最大利润.本题考查的是二次函数的应用,掌握待定系数法求函数解析式和二次函数的性质以及最值的求法是解题的关键.23.答案:(1)PA =PE ,理由:如图1,过点P 作PG ⊥BC 于G ,PH ⊥AB 于H ,则四边形BGPH是正方形,∴PH=PG,∠HPG=90°,∵∠APE=90°,∴∠APH+∠HPB=∠HPB+∠EPG,∴∠APH=∠EPG,在△APH与△EPG中,∴△APH≌△EPG(ASA),∴PA=PE;故答案为:PA=PE;(2)如图2,连接PC,过P作PG⊥BC于G,∵四边形ABCD是正方形,∴AD=CD,在△ADP与△CDP中,∴△ADP≌△CDP,(SAS)∴AP=CP,∵PA=PE,∴PE=PC,又∵PG⊥BC,∴EG=CG,∵BE=CF,∴BG=FG,∴PB=PF,∵∠DBC=45°,∴∠BPF=90°,∴PF⊥PB.解析:本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.(1)过点P作PG⊥BC于G,PH⊥AB于H,根据正方形的性质和全等三角形的性质即可得到结论;(2)连接PC ,过P 作PG ⊥BC 于G ,根据正方形的性质得到AD =CD ,根据全等三角形的性质得到AP =CP ,然后根据等腰三角形的性质即可得到结论.24.答案:解:(1)∵AC//OM ,∴△BOD ~△BAC , ∴OD AC =OB AB =12.∴OD =12AC ;(2)连接OC ,∵AC//OM ,∴∠OAC =∠BOM ,∠ACO =∠COM ,∵OA =OC ,∴∠OAC =∠ACO∴∠BOM =∠COM ,在△OCM 与△OBM 中,{OC =OB∠BOM =∠COM OM =OM,∴△OCM≌△OBM(SAS);又∵MB 是⊙O 的切线,∴∠OCM =∠OBM =90°,∴MC 是⊙O 的切线;(3)∵∠OCD +∠MCD =∠CMD +∠MCD =90°,∴∠OCD =∠CMD ,∵∠OCM =∠CDO =∠CDM =90°,∴△CDO∽△MDC ,∴CD 2=OD ⋅DM =9×16,解得:CD =12,∴BC =2CD =24,∴CO =√CD 2+OD 2=√122+92=15,∴AB=30,∴PA=PB=15√2;过点A作AH⊥PC于点H,AC=9,则AC=18,∵OD=12AC=9√2,PH=√PA2−AH2=12√2,∴AH=CH=√22∴PC=PH+CH=9√2+12√2=21√2.解析:(1)先证明△BOD~△BAC,然后依据相似三角形的性质进行证明即可;(2)连接OC,由切线的性质得到∠OBM=90°,然后依据平行线的性质和等腰三角形的性质,证明∠BOM=∠COM,然后利用SAS证明△OCM≌△OBM,由全等三角形的性质可得到∠OCM=∠OBM= 90°;(3)根据圆周角定理和平行线的性质得到∠ACB=∠APB=90°,根据垂径定理得到∠OCD=∠CMD,过点A作AH⊥PC于点H,根据相似三角形的性质和勾股定理即可得到结论.本题为圆的综合题,主要考查了切线的判定和性质,相似三角形的判定和性质,勾股定理,圆周角定理,全等三角形的判定和性质,正确的作出辅助线是解题的关键.25.答案:解:(1)将点A和点B的坐标代入y=−x2+bx+c得:{−4+2b+c=0c=2,解得:b=1,c=2.∴抛物线的解析式为y=−x2+x+2.令y=0,则0=−x2+x+2,解得:x=2或x=−1.∴点C的坐标为(−1,0).(2)设点P的坐标为(t,−t2+t+2),则PE=t,PD=−t2+t+2,∴四边形ODPE的周长=2(−t2+t+2+t)=−2(t−1)2+6,∴当P点坐标为(1,2)时,∴四边形ODPE周长最大值为6.(3)∵A(2,0),B(0,2),∴AB的解析式为y=−x+2.∵P点的横坐标为t,∴P点纵坐标为−t2+t+2.又∵PN⊥x轴,∴M点的坐标为(t,−t+2),∴PM=−t2+t+2−(−t+2)=−t2+2t.∴S△ABP=S△PMB+S△PMA=12PM⋅ON+12PM⋅AN=12PM⋅OA=−t2+2t.又∵S△ABC=12AC⋅OB=12×3×2=3,∴−t2+2t=3×13,解得:t1=t2=1.∴当t=1时,△ABP的面积等于△ABC的面积的13.解析:(1)将点A和点B的坐标代入抛物线的解析式可求得b、c的值,从而可得到抛物线的解析式,然后令y=0可得到关于x的方程可求得点C的坐标;(2)设点P的坐标为(t,−t2+t+2),用含t的式子表示出PE、PD的长度,然后可得到四边形ODPE 的周长与t的函数关系式,最后利用配方法可求得点P的横坐标,以及四边形ODPE周长的最大值;(3)先求得直线AB的解析式,设P点的坐标为(t,−t2+t+2),则点M的坐标为(t,−t+2),由S△ABP= S△PMB+S△PMA可得到△ABP的面积与t的函数关系式,然后,再根据,△ABP的面积等于△ABC的面积的13列方程求解即可.本题主要考查的是二次函数的综合应用,解答本题主要应用了代入系数法求二次函数的解析式、二次函数的最值、三角形的面积公式、解一元二次方程,得到PM的长度与点M的横坐标之间的关系是解题的关键.。
广东省揭阳市2021年中考数学试卷(I)卷(新版)
广东省揭阳市2021年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七上·宁海期中) ﹣6的相反数是()A . 6B . ﹣6C .D . -2. (2分) (2020八下·曲阳期末) 在平面直角坐标系中,点M(2,-5)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)(2020·柳江模拟) 下列计算正确的是()A .B .C .D .4. (2分) (2019七下·东至期末) 如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A . 70°B . 80°C . 90°D . 100°5. (2分)一个几何体的三视图如图所示,该几何体是()A . 直三棱柱B . 长方体C . 圆锥D . 立方体6. (2分)(2019·玉林) 菱形不具备的性质是()A . 是轴对称图形B . 是中心对称图形C . 对角线互相垂直D . 对角线一定相等7. (2分)在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除了颜色外无其他差别.从中随机摸出一个小球,恰好是黄球的概率为()A .B .C .D .8. (2分) (2018九上·新野期中) 如图,某小区有一长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为()米.A . 2B . 1C . 8或1D . 89. (2分) (2019八下·仁寿期中) 如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:① ;②当0<x<3时,;③如图,当x=3时,EF= ;④当x>0时,随x的增大而增大,随x的增大而减小.其中符合题意结论的个数是()A . 1B . 2C . 3D . 410. (2分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为()A .B .C .D .二、填空题 (共6题;共7分)11. (1分)(2020·慈溪模拟) 分解因式:2m²-6m=________。
2021年广东省揭阳市中考数学一模试卷
6.不等式组 的解集在数轴上表示正确的是( )
A. B.
C. D.
7.丽华根据演讲比赛中九位评委所给的分数作了如下表格:
平均数
中位数
众数
方差
8.5
8.3
8.1
0.15
如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
A.平均数B.众数C.方差D.中位数
8.关于x的方程mx2﹣2x+1=0中,如果m<1,那么这个方程的根的情况是( )
(1)如图1,若∠PCB=∠A.
①求证:直线PC是⊙O的切线;
②若CP=CA,OA=2,求CP的长;
(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.
25.如图,抛物线与x轴相交于点A(﹣3,0)、点B(1,0),与y轴交于点C(0,3),点D是抛物线上一动点,联结OD交线段AC于点E.
三、解答题
18.计算: .
19.已知2a2+3a-6=0.求代数式3a(2a+1)-(2a+1)(2a-1)的值.
20.陈钢和王昊两人从甲市开车前往乙市,甲、乙两市的行使路程为180千米.已知王昊行使速度是陈钢行使速度的1.5倍,若陈钢比王昊早出发0.5小时,结果陈钢比王昊晚到0.5小时,求陈钢、王昊两人的行使速度.
(1)求这条抛物线的解析式,并写出顶点坐标;
(2)求∠ACB的正切值;
(3)当△AOE与△ABC相似时,求点D的坐标.
参考答案
1.D
【分析】
根据负实数都小于0即可得出答案.
【详解】
解:在实数 , ,0, 中,最大的实数是 ,
故选: .
【点睛】
2021-2022年揭阳市初三数学下期中一模试题(带答案) (4)
一、选择题1.小明在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则最可能符合这一结果的实验是( )A .掷一枚骰子,出现3点的概率B .抛一枚硬币,出现反面的概率C .任意写一个整数,它能被3整除的概率D .从一副扑克中任取一张,取到“大王”的概率2.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为( )A .2B .3C .4D .123.一枚质地均匀的正方体骰子,其六个面上分别刻有1, 2, 3, 4, 5, 6六个数字,投掷这个骰子一次,得到的点数与3、4作为三角形三边的长,能构成三角形的概率是( ) A .12 B .56 C .13 D .234.已知数据:1174,5,2π1-,0.其中无理数出现的频率为( ) A .0.2B .0.4C .0.6D .0.8 5.如果关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根,那么k 的取值范围是( )A .k ≥﹣14B .k ≥﹣14且k ≠0C .k <﹣14D .k >-14且k ≠0 6.一元二次方程2(21)2(21)x x +=+的解是( ) A .1212x x == B .1212x x ==- C .1211,22x x =-= D .1211,2x x == 7.在某种病毒的传播过程中,每轮传染平均1人会传染x 个人,若最初2个人感染该病毒,经过两轮传染,共有y 人感染.则y 与x 的函数关系式为( ) A .()221y x =+ B .()22y x =+ C .222y x =+ D .()212y x =+ 8.关于x 的一元二次方程2430x x -+=的实数根有( )A .0个B .1个C .2个D .3个9.如图,正方形ABCD ,对角线,AC BD 相交于点O ,过点D 作ODC ∠的角平分线交OC 于点G ,过点C 作CF DG ⊥,垂足为F ,交BD 于点E ,则:ADG BCE S S 的比为( )A .(21):1+B .(221):1-C .2∶1D .5∶210.如图,四边形ABCD 是正方形,点E 、F 分别在线段BC 、DC 上,∠BAE =25°,若线段AE 绕点A 逆时针旋转后与线段AF 重合,则旋转的角度是( )A .25°B .40°C .90°D .50°11.如图,在△ABC 中,AD 是BC 边上的高线,CE 是AB 边上的中线,DG ⊥CE 于点G ,CD =AE .若BD =6,CD =5,则△DCG 的面积是( )A .10B .5C .103D .5312.如图,在正方形ABCD 中,E F 、分别在CD AD 、边上,且CE DF =,连接BE CF 、相交于G 点.则下列结论:①BE CF =;②BCG DFGE S S ∆=四边形;③2CG BG GE =⋅;④当E 为CD 中点时,连接DG ,则45FGD ∠=︒;正确结论的个数是( )A .1B .2C .3D .4二、填空题13.在单词“BANANA ”中随机选择一个字母,选到字母“N ”的概率是____.14.乐乐同学有两根长度为4cm ,7cm 的木棒,母亲节时他想自己动手给妈妈钉一个三角形相框,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是__________.15.如图,四边形ACDE 是证明勾股定理时用到的一个图形,a ,b ,c 是Rt ABC 和Rt BED 边长,易知2=AE c ,这时我们把关于x 的形如220++=ax cx b 的一元二次方程称为“勾系一元二次方程”.若1x =-是“勾系一元二次方程”220++=ax cx b 的一个根,且2ABC S =,则四边形ACDE 的周长是_________.16.若m 是方程x 2+2x -1=0的一个根,则m 2+2m -4=______.17.若x=2是一元二次方程x 2+x+c=0的一个解,则c 2=__.18.如图,在平面直角坐标系中,边长为1的正方形1111D C B A (记为第1个正方形)的顶点1A 与原点重合,点1B 在y 轴上,点1D 在x 轴上,点1C 在第一象限内,以1C 为顶点作等边122C A B ,使得点2A 落在x 轴上,22A B x ⊥轴,再以22A B 为边向右侧作正方形2222A B C D (记为第2个正方形),点2D 在x 轴上,以2C 为顶点作等边233C A B ,使得点3A 落在x 轴上,33A B x ⊥轴,若按照上述的规律继续作正方形,则第2021个正方形的边长为_________.19.如图,已知菱形OABC的顶点O(0,0),B(2,2),每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为_____.20.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD= °.三、解答题21.问题情景:某校数学学习小组在讨论“随机掷两枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:“随机掷两枚均匀的硬币,可以有‘二正、一正一反、二反’三种情况,所以P(一正一反)13=”小颖反驳道:“这里的‘一正一反’实际上含有‘一正一反,一反一正’这两种情况,所以P(一正一反)1. 2 =”(1)________的说法是正确的.(2)为验证二人的猜想是否正确,小聪与小颖各做了100次试验,得到如下数据:二正一正一反二反小聪245026小颖244729计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的试验中,你能得到“一正一反”的概率是多少吗?(3)对概率的研究而言,小聪与小颖两位同学的试验说明了什么?22.有三张背面完全相同的、、A B C 三张卡片,其正面分别画有三种不同的图形:双曲线、抛物线、圆,现将三张卡片背面朝上后洗均匀(1)从中任意摸出一张卡片,求摸到的卡片上画有中心对称图形的概率;(2)从中任意摸出一张卡片,放回洗匀后再摸出一张,请用树状图或者列表法求两次摸到的卡片上所画图形都既是中心对称图形又是轴对称图形的概率23.解下列方程:(1)2(x ﹣2)2=x 2﹣4.(2)2x 2﹣4x ﹣1=0.24.关于x 的方程()22210x x m ---=有实数根,且m 为非正整数.求m 的值及此时方程的根.25.在正方形ABCD 中,点E 、F 分别在BC 边和CD 上,且满足AEF 是等边三角形,连接AC 交EF 于点G .(1)求证:CE CF =;(2)若等边AEF 边长为2,求AC 的长.26.如图所示,已知P 为正方形ABCD 外的一点.1PA =,2PB =.将ABP △绕点B 顺时针旋转90︒,使点P 旋转至点P ',且3AP '=,求BP C '∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知试验结果的频率在30%—40%之间,然后分别计算出四个选项的概率,概率在30%—40%之间即符合题意.【详解】A、掷一枚骰子,出现4点的概率为16,不符合题意;B、抛一枚硬币,出现反面的概率为12,不符合题意;C、任意写出一个整数,能被3整除的概率为13,符合题意;D、从一副扑克中任取一张,取到“大王”的概率为1 54.故答案为C.【点睛】本题主要考查了利用频率估计概率以及运用概率公式求概率,掌握利用频率估计概率的方法成为解答本题的关键.2.B解析:B【解析】试题分析:首先设袋中白球的个数为x个,然后根据概率公式,可得15344x++=,解得:x=3.经检验:x=3是原分式方程的解.∴袋中白球的个数为3个.故选B.考点:概率公式.3.B解析:B【分析】骰子的六个面上分别刻有数字1,2,3,4,5,6,其中能与3、4构成三角形的有2、3、4、5、6,根据概率公式计算可得.【详解】解:骰子的六个面上分别刻有数字1,2,3,4,5,6,其中能与3、4构成三角形的有2、3、4、5、6,∴能构成等腰三角形的概率是=56, 故选:B .【点睛】 此题主要考查了概率公式的应用,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 4.B解析:B【分析】根据无理数的定义和“频率=频数÷总数”计算即可.【详解】解:共有5个数,其中无理数有,2π1-,共2个所以无理数出现的频率为2÷5=0.4.故选B .【点睛】此题考查的是无理数的判断和求频率问题,掌握无理数的定义和频率公式是解决此题的关键.5.B解析:B【分析】根据一元二次方程的定义以及根的判别式的意义得出k 2≠0,且△=b 2-4ac ≥0,建立关于k 的不等式组,求出k 的取值范围.【详解】解:由题意知,k 2≠0,且△=b 2-4ac =(2k +1)2-4k 2=4k +1≥0.解得k ≥-14且k ≠0. 故选:B .【点睛】 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.6.C解析:C【分析】先将原方程整理为2(21)2(21)0x x +-+=,再利用因式分解法求出方程的解,即可得出结论.【详解】解:2(21)2(21)x x +=+,移项,得2(21)2(21)0x x +-+=,分解因式,得(21)(21)0x x +-=,则210x +=或210x -=, 解得:1211,22x x =-=. 故选:C .【点睛】本题考查了解一元二次方程,掌握一元二次方程的解法及步骤是解题的关键. 7.A解析:A【分析】用含有x 的代数式分别表示出每轮传染的人数和总人数即可得解.【详解】∵每轮传染平均1人会传染x 个人,∴2人感染时,一轮可传染2x 人,∴一轮感染的总人数为2x+2=2(1+x)人;∵每轮传染平均1人会传染x 个人,∴2(1+x)人感染时,二轮可传染2(1+x)x 人,∴二轮感染的总人数为[2(1+x)+ 2(1+x)x]= ()221x +人; ∴()221y x =+, 故选A.【点睛】本题考查了平均增长问题,准确表示每一轮传染的人数是解题的关键.8.C解析:C【分析】根据一元二次方程根的判别式判断即可.【详解】解:一元二次方程2430x x -+=的根的判别式为:b 2-4ac=(-4)2-4×3×1=4>0,所以,方程有两个不相等的实数根,故选:C .【点睛】本题考查了一元二次方程根的判别式,求出根的判别式的值是解题关键.9.A解析:A【分析】由题意先证得DE DC =和()DOG COE ASA ∆≅∆,设2AD DC a ==,进而可用含a 的式子表示出线段AG 和BE 的长,要求:ADG BCE S S ∆∆的比值即求AG 和BE 的比值,代入即可求解.【详解】 解:正方形ABCD ,AD DC ∴=,45ODC OCD OAD ∠=∠=∠=︒,90DOC BOC ∠=∠=︒,OD OC =, DF 平分ODC ∠,22.5EDF CDF ∴∠=∠=︒,CF DG ⊥,67.5DEF DCF ∴∠=∠=︒,67.54522.5OCE ∴∠=︒-︒=︒,DE DC =,OCE ODG ∴∠=,又OD OC =,90DOC BOC ∠=∠=︒,()DOG COE ASA ∴∆≅∆,OG OE ∴=,设2AD DC a ==,则有OA OB =,2DE a =,BD =,2)BE BD DE a ∴=-=,2AG AO OG a =+=, 12ADG S AG OD ∆=,12BCE S BE OC ∆=,OD OC =,::2:2)1):1ADG BCE S S AG BE a a ∆∆∴===,故选:A .【点睛】本题主要考查了正方形的性质,角平分线的定义以及全等三角形的判定与性质,解题的关键是将两个三角形的面积比转化成两条线段的比,综合性较强.10.B解析:B【分析】证明Rt △ABE ≌Rt △ADF (HL ),可得∠BAE =∠DAF =25°,求出∠EAF 即可解决问题.【详解】解:∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =∠B =∠D =90°由旋转不变性可知:AE =AF ,在Rt △ABE 和Rt △ADF 中,AB AD AE AF=⎧⎨=⎩ , ∴Rt △ABE ≌Rt △ADF (HL ),∴∠BAE =∠DAF =25°,∴∠EAF =90°﹣25°﹣25°=40°,∴旋转角为40°,故选:B .【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,求出Rt △ABE 和Rt △ADF 全等是解题的关键,也是本题的难点.11.B解析:B【分析】作EF ⊥BC 于F 点,首先结合直角三角形中“斜中半”定理可求得△ABD 中AB 的长度,从而结合勾股定理求出AD 的长度,再根据中位线定理可得EF 的长度,然后进一步判定△EDC 为等腰三角形,并根据“三线合一”的性质推出12DCG EDC S S =△△,最后根据12EDC S CD EF =△求解即可. 【详解】∵AD 是BC 边上的高线,CE 是AB 边上的中线,∴△ABD 为直角三角形,E 为斜边AB 上的中点,∴AE=BE=DE ,∵CD =AE ,CD =5,∴AB=2AE =10,在Rt △ABD 中,由勾股定理可得:AD =∴AD =8,作EF ⊥BC 于F 点,则EF 为△ABD 的中位线, ∴142EF AD ==, 又∵CD=ED ,DG ⊥CE 于点G , ∴△EDC 为等腰三角形,12DCG EDC S S =△△, ∵11541022EDC S CD EF ==⨯⨯=△, ∴11052DCG S =⨯=△, 故选:B .【点睛】本题主要考查直角三角形中“斜中半”定理,中位线定理,以及等腰三角形的判定与性质综合问题,灵活运用“斜中半”定理求出三角形的边长是解题关键.12.D解析:D【分析】证明△BCE ≌△CDF 可判断①;利用△BCE ≌△CDF 可得S △BCE =S △CDF ,从而可判断②;证明△BCG ∽△CEG 得CG GE BG CG=,可判断③;过D 作DM ⊥FG 于M ,证明MD=MG 即可判断④,从而可得结论.【详解】解:∵四边形ABCD 是正方形∴BC=CD ,∠BCE=∠CDF又CE=DF∴△BCE ≌△CDF∴BE CF =,故①正确;②∵△BCE ≌△CDF∴S △BCE =S △CDF ,∴S △BCE -S △CGE =S △CDF -S △CG , ∴BCG DFGE S S ∆=四边形;③∵△BCE ≌△CDF∴∠CBE=∠FCD∵∠BCG+90GCE ∠=︒,∴∠90BCG CBG +∠=︒∴∠90BGC =︒又∵∠BGC=∠CGE=90°,∠GBC=∠GCE∴△BCG ∽△CEG ∴CG GE BG CG=, ∴2CG BG GE =⋅,故③正确;④过D 作DM ⊥FG 于M ,如图所示,设DF=a ,则AD=2a∵CE=DF ∴225BE BC CE a =+= 利用面积法可得1122BC CE BE CG = ∴255CG a = 同理可得,255DM a = ∴225FM DF DM =-= ∴255a ∴MD=MG∵∠DMG=90° ∴45FGD ∠=︒,故④正确∴正确的结论有4个,故选:D .【点睛】此题主要考查了运用正方形的有关性质进行讲明和求解,熟练掌握正方形的性质是解答此题的关键.二、填空题13.【分析】由单词BANANA 中有2个N 直接利用概率公式求解即可求得答案【详解】一共有BANANA 六种结果其中是N 的有2种所以P 选到字母N 故答案为:【点睛】本题考查概率的计算方法列举出所有可能出现的结果解析:13. 【分析】 由单词"BANANA"中有2个N,直接利用概率公式求解即可求得答案.【详解】一共有B、A、N、A、N、A六种结果,其中是“N”的有2种,所以P选到字母“N”21 63 ==.故答案为:13.【点睛】本题考查概率的计算方法,列举出所有可能出现的结果是正确解答的前提.14.4(或)【分析】由五根木棒能与47的木棒组成三角形的有:6cm10cm直接利用概率公式求解即可【详解】设第三根木棒的长度是xcm∵7-4<x<7+4∴3cm<x<11cm∴在桌上的五根木棒中只有6c解析:4(或2 5 )【分析】由五根木棒能与4cm,7cm的木棒组成三角形的有:6cm,10cm,直接利用概率公式求解即可.【详解】设第三根木棒的长度是xcm,∵7-4<x<7+4,∴3cm<x<11cm,∴在桌上的五根木棒中,只有6cm,10cm这两根能与4cm,7cm的木棒组成三角形,∴能钉成三角形相框的概率是25=0.4,故答案为:0.4(或2 5 ).【点睛】此题考查三角形的三边关系,概率的计算公式,根据三角形的三边关系确定第三根木棒的长度范围由此得到符合的木棒是解题的关键.15.12【分析】根据题意可以求得a+b的值再根据勾股定理可以求得c的值从而可以求得四边形ACDE的周长【详解】解:∵x=-1是勾系一元二次方程的一个根∴∴∵S△ABC=2a2+b2=c2∴=2得ab=4解析:12【分析】根据题意可以求得a+b的值,再根据勾股定理可以求得c的值,从而可以求得四边形ACDE 的周长.【详解】解:∵x=-1是“勾系一元二次方程”20++=ax b的一个根,∴a b-+=,∴a b+=,∵S△ABC=2,a2+b2=c2,∴2ab =2,得ab =4, ∴(a +b )2=a 2+2ab +b 2=c 2+2ab =c 2+8,(a +b )2=)222c =,∴c 2+8=2c 2,解得,c =-(舍去),∵四边形ACDE 的周长是:a +b +a +bc c c ==12,故答案为:12.【点睛】本题考查一元二次方程的解、三角形的面积、勾股定理的证明,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.-3【分析】由于可知m 是方程的解可得将其带入求值即可;【详解】∵∴∵m 是的一个根∴∴故答案为:-3【点睛】本题考查了方程的解的定义此类型的题的特点是:利用方程解的定义找到相等的关系再把所求的代数式化 解析:-3【分析】由于2210x x +-=可知221x x +=,m 是方程的解,可得221m m += ,将其带入求值即可;【详解】∵2210x x +-=,∴ 221x x +=,∵ m 是2210x x +-=的一个根,∴ 221m m +=,∴ 224143m m +-=-=- ,故答案为:-3.【点睛】本题考查了方程的解的定义,此类型的题的特点是:利用方程解的定义找到相等的关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值;17.36【分析】根据一元二次方程的解的定义把x=2代入方程x2+x+c=0即可求得c 的值进而求得c2的值【详解】解:依题意得22+2+c=0解得c=-6则c2=(-6)2=36故答案为:36【点睛】本题解析:36【分析】根据一元二次方程的解的定义,把x=2代入方程x 2+x+c=0即可求得c 的值,进而求得c 2的值.解:依题意,得22+2+c=0,解得,c=-6,则c 2=(-6)2=36.故答案为:36.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18.【分析】根据等边三角形的性质求出第23个正方形的边长发现规律即可求解【详解】依题意可得:第一个正方形的边长为1∴C1D1=1∠C1D1A2=90°∵是等边三角形是正方形∴∠B2A2C1=60°∠B2解析:20202【分析】根据等边三角形的性质求出第2,3个正方形的边长,发现规律即可求解.【详解】依题意可得:第一个正方形的边长为1,∴C 1D 1=1,∠C 1D 1A 2=90°,∵122C A B 是等边三角形,2222A B C D 是正方形,∴∠B 2A 2C 1=60°,∠B 2A 2D 2=90°,∴∠C 1A 2D 1=30°,∴A 2B 2=A 2C 1=2C 1D 1=2,∴正方形2222A B C D 的边长为2=21,同理可得:正方形3333A B C D 的边长=2A 2B 2=4=22,…∴正方形n n n n A B C D 的边长=2n-1,其中n 为正整数,∴第2021个正方形的边长为20202,故答案为:20202.【点睛】此题主要考查图形与坐标规律变化、等边三角形与正方形的性质,解题的关键是根据题意发现边长的变化规律.19.(﹣1﹣1)【分析】根据菱形的性质可得D 点坐标根据旋转的性质即可求得旋转后D 点的坐标【详解】解:∵菱形OABC 的顶点O (00)B (22)∴D 点坐标为(11)∵每秒旋转45°则第60秒时得45°×60解析:(﹣1,﹣1)【分析】根据菱形的性质,可得D 点坐标,根据旋转的性质,即可求得旋转后D 点的坐标.解:∵菱形OABC 的顶点O (0,0),B (2,2),∴D 点坐标为(1,1).∵每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360=7.5周,∴OD 旋转了7周半,菱形的对角线交点D 的坐标为(﹣1,﹣1),故答案为:(﹣1,﹣1).【点睛】本题考查了菱形及旋转的性质,熟练掌握旋转的性质是解题关键.20.【分析】先证明四边形BDEC 是菱形然后求出∠ABD 的度数再利用三角形内角和等于180°求出∠BAD 的度数然后根据轴对称性可得∠BAC=∠BAD 然后求解即可【详解】∵CD 与BE 互相垂直平分∴四边形BD解析:【分析】先证明四边形BDEC 是菱形,然后求出∠ABD 的度数,再利用三角形内角和等于180°求出∠BAD 的度数,然后根据轴对称性可得∠BAC=∠BAD ,然后求解即可.【详解】∵CD 与BE 互相垂直平分,∴四边形BDEC 是菱形.∴DB=DE .∵∠BDE=70°,∴∠ABD=00180702=55°. ∵AD ⊥DB ,∴∠BAD=90°﹣55°=35°.根据轴对称性,四边形ACBD 关于直线AB 成轴对称,∴∠BAC=∠BAD=35°.∴∠CAD=∠BAC+∠BAD=35°+35°=70°.三、解答题21.(1)小颖;(2)0.50;0.47;1 2;(3)对概率的研究不能仅仅通过有限次试验得出结果,而是要通过大量的重复试验得出事件发生的频率,从而去估计该事件发生的概率.【分析】(1)要判断谁说的正确只要看他们说的情况有没有漏掉的即可.(2)根据频率=所求情况数与总情况数之比,即可得出结果.(3)在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.【详解】解:(1)“一正一反”实际上含有“一正一反,一反一正”二种情况,共四种,所以小颖的说法是正确的;故答案为:小颖;(2)小明得到的“一正一反”的频率是50÷100=0.50,小颖得到的“一正一反”的频率是47÷100=0.47,据此,我得到“一正一反”的概率是12;(3)对概率的研究不能仅仅通过有限次实验得出结果,而是要通过大量的实验得出事物发生的频率去估计该事物发生的概率.我认为小聪与小颖的实验都是合理的,有效的.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.22.(1)23;(2)49.【分析】(1)先确定三张卡片中画有中心对称图形的个数,然后根据概率的意义解答即可;(2)画出树状图,然后根据概率公式列式计算即可.【详解】解:(1)双曲线、抛物线、圆中是中心对称图形的有双曲线和圆两张卡片,∴从中任意摸出一张卡片,摸到的卡片上画有中心对称图形的概率P为23;(2)三种图形中既是中心对称图形又是轴对称图形的是双曲线和圆,∴两次都摸到A或C卡片时满足题意,根据题意列树状图如下:一共9种情况,两次摸到的卡片是A或C的有4种情况,∴两次摸到的卡片上所画图形都既是中心对称图形又是轴对称图形概率P为49.【点睛】本题考查了概率的意义以及通过列树状图或列表法求概率,属于基础题,熟练掌握列树状图或列表法求概率是解决本题的关键.23.(1)x1=2,x2=6 (2)x1=6x2=16【分析】(1)先移项得到2(x﹣2)2﹣(x﹣2)(x+2)=0,然后利用因式分解法解方程;(2)利用配方法解方程即可.【详解】解:(1)原式移项得:2(x﹣2)2﹣(x﹣2)(x+2)=0,因式分解得:(x﹣2)(2x﹣4﹣x﹣2)=0,所以x﹣2=0或2x﹣4﹣x﹣2=0;所以x1=2,x2=6;(2)x2﹣2x=12,x 2﹣2x+1=12+1,即(x ﹣1)2=32,∴x ﹣1=所以x 1=x 2=1 【点睛】 此题考查了一元二次方程的解法中的因式分解法和配方法.此题比较简单,解题的关键是注意选择适当的解题方法,注意因式分解法与配方法的解题步骤.24.0m =,121x x ==.【分析】根据一元二次方程有实数根可以判断△≥0,又根据m 为非正整数,可以判断0m =,进而求解即可;【详解】解:∵方程有实数根,∴()()224210m =-+-≥△. 解得:0m ≥.又∵ m 为非正整数,∴ 0m =.当0m =时,方程为2210x x -+=.此时方程的解为121x x ==.【点睛】本题考查了一元二次方程有实数根的情况,正确掌握解一元二次方程的方法是解题的关键;25.(1)见解析 (21【分析】(1)根据正方形和等边三角形的性质,证Rt ABE Rt ADF △≌△即可;(2)由(1)可知,AC 垂直平分EF ,根据勾股定理和斜边中线等于斜边的一半求AG 、CG 即可.【详解】(1)证明:正方形ABCD ,∴AB AD =,B D ∠=∠=90°,BC CD =. AEF 是等边三角形,AE AF ∴=.(HL)Rt ABE Rt ADF ∴△≌△.BE DF ∴=.CE CF ∴=.(2)由(1)得,CE=CF ,AE=AF=2,AC ∴垂直平分EF .1EG FG ∴==.AG ∴===,∵∠ECF=90°,EG=GF , ∴112CG EF ==,1AC AG CG ∴=+=.【点睛】本题考查了正方形、等边三角形、全等三角形的判定与性质、勾股定理等知识,解题关键是准确把握已知,熟练运用全等三角形、勾股定理等知识进行证明和计算.26.135°【分析】连接'PP ,由ABP △绕点B 顺时针旋转90︒得△CBP′,可求∠BPP′=∠BP′P=45°,由勾股定理'PP =,可证△'APP 是直角三角形,'90APP ∠=︒,可求'135BP C ∠=︒.【详解】解:连接'PP ,∵ABP △绕点B 顺时针旋转90︒得△CBP′,∴'2BP BP ==,∠PBP′=90°,∠BPP′=∠BP′P=45°,在Rt △PBP′中,由勾股定理'PP ==∵(22218139=+=+=,即222''AP AP PP +=,∴△'APP 是直角三角形,∴'90APP ∠=︒,∴BP C BPA BPP P PA '''∠=∠=∠+∠,4590=︒+︒,135=︒,∴'135BP C ∠=︒.【点睛】本题考查正方形的性质,三角形旋转变换,等腰直角三角形的性质,勾股定理以及勾股定理逆定理,角的和差计算,掌握正方形的性质,三角形旋转变换,等腰直角三角形的性质,勾股定理以及勾股定理逆定理,角的和差计算是解题关键.。
揭阳市初三中考数学一模模拟试卷【含答案】
揭阳市初三中考数学一模模拟试卷【含答案】一、选择题(本大题共12小題,每小题3分,共36分)每小题都给出标号为(A ),(B ),(C ).(D )的四个选项,其中只有一个是正确的,请考生用2B 铅笔在答题卡上将选定的答案标号涂属.1.(3分)2-的绝对值是( )A .2B .2-C .12D .12- 2.(3分)某8种食品所含的热量值分别为:120,184,122,119,126,119,118,124,则这组数据的众数和中位数分别是( )A .134,120B .119,120C .119,121D .119,1223.(3分)若几何体的三视图如图所示,则该几何体是( )A .长方体B .圆柱C .圆锥D .三棱柱4.(3分)计算223()a a 的结果是( )A .7aB .10aC .8aD .12a5.(3分)若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒6.(3分)若关于x 的一元二次方程240x x m +-=有两个实数根,则实数m 的取值范围是( )A .4m -…B .4m -…C .4m …D .4m …7.(3分)在平面直角坐标系xOy 中,若一次函数1(0)y kx k =-≠的图象经过点P ,且y 的值随x 值的增大而减少,则点P 的坐标可以为( )A .(2,1)B .(2,1)-C .(2,1)--D .(2,1)-8.(3分)《卖油翁》中写道:“(翁)乃取葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技艺之高超若铜钱直径4cm ,中闻有边长为1cm 的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油滴恰好落入孔中的概率是( )A .2πB .1πC .12πD .14π9.(3分)如图,BC 是O 的直径,AB 是O 的弦,PA ,PC 均是O 的切线,若40B ∠=︒,则P ∠的度数是( )A .80︒B .90︒C .100︒D .120︒10.(3分)如图,在菱形ABCD 中,点E ,F 分别是AB ,AC 的中点,连接EF ,若4EF =,则菱形ABCD 的周长为( )A .16B .20C .24D .3211.(3分)如图,点A ,B 在函数1(0y x x =>的图象上,点C ,D 在函数(0,0)k y k x x=>>的图象上,////AD BC y 轴,若点A ,B 的横坐标分别为1和2,32ABCD S =四边形,则k 的值为( )A .32B .2C .3D .412.(3分)如图,在正方形ABCD 中,点O 是对角线AC 的中点,P 是线段AO 上的动点(不与点A ,O 重合),PE PB ⊥交CD 于点E ,PF CD ⊥于点F ,则对于下列结论:①PE PB =;②DF BF =;③PC PA CE -=④PA CE PC CF=,其中错误结论的个数是( )A .0B .1C .2D .3二、填空题(本大题共6小题,每小题3分,共18分)13.(3在实数范围内的值存在,则实数x 的取值范围是 . 14.(3分)化简:1(1)(1)1m m---的结果是 . 15.(3分)一个整数52800⋯用科学记数法表示为105.2810⨯,则原数中“0”的个数为 .16.(3分)如图,在ABC ∆中,DE 是AC 边的垂直平分线,且分别与BC ,AC 交于点D 和E ,若65B ∠=︒,30C ∠=︒,则BAD ∠= ︒.17.(3分)如图,在33⨯的方格纸中,每个小方格都是边长为1的正方形,O ,A ,B 都是格点,若图中扇形AOB 恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为 .18.(3分)如图,在ABC ∆中,5AB AC ==,6BC =,若P 是BC 边上任意一点,且满足APM ABC ∠=∠,PM 与AC 边的交点为M ,则线段AM 的最小值是 .三、解答题(本大题共9小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.(5分)计算:20190(1)(2sin 60π---+︒20.(5分)求满足不等式组()3210131322x x x x --<⋯⋯⎧⎪⎨--⋯⋯⎪⎩①②…的所有整数解 21.(5分)尺规作图(保留作图痕迹,不写作法和证明)如图,已知:ABC ∆,90ACB ∠=︒,求作:O ,使圆心O 在AC 边上,且O 与AB ,BC 均相切.22.(6分)如图,反比例函数(0)k y k x=≠的图象与正比例函数2y x =-交于(1,)A m -和B 两点,点C 在第三象限内,AC x ⊥轴,BC AB ⊥.(1)求k 的值及点B 的坐标;(2)求cos C 的值.23.(8分)学校今年组织学生参加志愿者活动,活动分为甲、乙、丙三组图和扇形统计图反映了学生参加活动的报名情况,请你根据图中的信息,解答下列问题:(1)若在参加活动的学生中随机抽取一名学生,则抽到乙组学生的概率是 .(2)今年参加志愿者共 人,并把条形统计图补充完整;(3)学校两年前参加志愿者的总人数是810人,若这两年的年增增长率相同,求这个年增长率.(精确到1%)24.(8分)某新建成学校举行美化绿化校园活动,九年级计划购买A ,B 两种花木共100棵绿化操场,其中A 花木每棵50元,B 花木每棵100元.(1)若购进A ,B 两种花木刚好用去8000元,则购买了A ,B 两种花木各多少棵?(2)如果购买B 花木的数量不少于A 花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.25.(8分)如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD 、AC 分别交于点E 、F ,且ACB DCE ∠=∠.(1)判断直线CE 与O 的位置关系,并证明你的结论;(2)若tan 2ACB ∠=,2BC =,求O 的半径.26.(11分)已知抛物线m ;2y ax bx c =++与x 轴交于(2,0)A -,(6,0)B 两点,与y 轴交于点(0,6)C ,其对称轴n 与x 轴交于点F .(1)求抛物线m 的表达式;(2)如图1,若动点P 在对称轴n 上,当PAC ∆的周长最小时,求点P 的坐标;(3)如图2,设点C 关于对称轴n 的对称点为D ,M 是线段OC 上的一个动点若DMC MEO ∆∆∽,求直线DM 的表达.27.(10分)已知,在Rt ABC∆中,90A∠=︒,点D在BC边上,点E在AB边上,12 BDE C∠=∠,过点B作BF DE⊥交DE的延长线于点F.(1)如图1,当AB AC=时:①EBF∠的度数为;②求证:2DE BF=.(2)如图2,当AB kAC=时,求BFDE的值(用含k的式子表示).参考答案与试题解析一、选择题(本大题共12小題,每小题3分,共36分)每小题都给出标号为(A ),(B ),(C ).(D )的四个选项,其中只有一个是正确的,请考生用2B 铅笔在答题卡上将选定的答案标号涂属.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:2-的绝对值是2,即|2|2-=.故选:A .【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.【分析】根据众数和中位数的概念求解即可.【解答】解:在这8个数中,119出现了2次,出现的次数最多,∴众数是119;把这组数据按照从小到大的顺序排列为:118,119,119,中学数学一模模拟试卷一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选 项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1. 下列各数中:-4、12π、39、0.010010001、73、0是无理数的有A.1个B.2个C.3个D.4个2.关于x 的方程-2x 2+4x+1=0的两个根分别是x 1、x 2,则x 12+x 22是 A.2 B. -2 C. 3 D. 53.点P 在平面直角坐标系中,位于x 轴上方,距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 关于x 轴对称的点的坐标是A.(3,4)、(-3,4)B. (4,-3)、(-4,-3)C. (3,-4)、(-3,-4)D. (4,3)、(-4,3)4.如图,在四边形ABCD 中,点E 在线段DC 直线AD ∥BC 的条件有:(1)∠D=∠BCE ,(2)∠B=∠BCE ,(3)∠B=1800,(4)∠A+∠D=1800 ,(5)∠B=∠DA.1个B. 2个C. 3个D. 4个5.等腰三角形的两边长分别是2cm 、5cm ,则等腰三角形的周长是A.9cmB.12cmC.9cm 或12cmD. 都不对6.如图,在Rt △ABC 中,∠C=900,Sin ∠A=43,AB=8cm ,则△ABC 的面积是 A.6cm B.24cm C. 27cm D. 67cm7.班主任老师给获得文明小组的同学们发放水果,若每人5个,多8个,若每人7个,差4个,问有多少名同学?多少个水果?A.6名,38个B.4名,28个C. 5名,30个D. 7名,40个8.如图,二次函数y=ax 2+bx+c 的图像如图所示,直线m 是图像的对称轴,则下列各式的取值正确的是:a>0, b<0,c>0,b 2-4ac<0,2a+b>0,a+b+c>0A.1个B. 2个C. 3个D. 4个9.X 的值适合不等式31x 122-x +≤+且x 是正整数,则x 的值是A.0,1B.0,1,2C. 1,2D.110. 如图,某下水道的横截面是圆形的,水面CD 的宽度为2m ,F是线段CD 的中点,EF 经过圆心O 交⊙O 与点E ,EF=3m ,则⊙O 直径的长是 A.m 32 B.m 35 C.m 34 D. m 31011.如图,等腰△ABC 中,∠BAC=1200,点D 在边BC上,等腰△ADE 绕点A 顺时针旋转300后,点D 落在边AB 上,点E 落在边AC 上,若AE=2cm ,则四边形ABDE 的面积是多少 A. 4cm B. 3cm C.23cm D.43cm12.如图,在正方形ABCD 中,对角线相交于点O ,BN 平分∠CBD ,AD C B MNE F 第十七题图 H交边CD 于点N ,交对角线AC 于点M ,若OM=1,则线段DN 的长是多少A. 1.5B. 2C. 2D. 22第Ⅱ卷(非选择题,共114分)二、填空题:本大题共8个小题,每小题5分,满分40分.13.某校春季运动会,小红参加100米和200米的比赛,每组六人分别在1--6号跑道同时进行比赛,问小红两次都抽到3号跑道的概率是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
三、解答题:
17.( 6 分)解不等式组:
,并将不等式组的解集在数轴上表示出来.
18.( 6 分)如图,已知∠ AOB, OA=OB,点 E 在 OB 上,四边形 AEBF是矩形. ( 1)请你只用无刻度的直尺在图中画出∠ AOB的平分线(保留画图痕迹); ( 2)若∠ AOB=45°, OA=OB=2 ,求 BE的长.
)
A. 20.12 ×102 B. 0.2012 × 104 C. 2.012 ×103 D. 2.012 ×104
8.某课外小组的同学们实践活动中调查了
20 户家庭某月用电量,如表所示:
用电量(度)
120
140
160
180
220
户数
2
4
5
7
2
则这户家庭用电量的众数和中位数分别是(
)
A. 180, 160 B . 160, 180 C . 160, 160 D . 180, 180
15 .如图,要拼出和图中的菱形相似的较长对角线为
为
.
88cm 的大菱形(如图)需要图
1 中的菱形的个数
16.如图,在 Rt △ ABC中,∠ BAC=90°, AB=AC=2 ,AD为 BC边上的高,动点 P 在 AD上,从点 A 出发,
沿 A→ D方向运动,设 AP=x,△ ABP的面积为 S1,矩形 PDFE的面积为 S2,y=S1+S2,则 y 与 x 的关系式是
A≤∠ B, sinA , cosB
24.( 9 分)如图,在⊙ O中,直径 AB⊥ CD,垂足为 E,点 M在 OC上, AM的延长线交⊙ O于点 G,交过 C 的
直线于 F,∠ 1=∠ 2,连结 CB与 DG交于点 N.
( 1)求证: CF是⊙ O的切线;
( 2)求证:△ ACM∽△ DCN;
( 3)若点 M是 CO的中点,⊙ O的半径为 4, cos ∠BOC= ,求 BN的长.
9.下列四个点中,有三个点在同一反比例函数
y= 的图象上,则不在这个函数图象上的点是(
)
A.( 5, 1) B .(﹣ 1, 5) C.(﹣ 3,﹣ ) D.( , 3) 10.如图,△ ABC中, AB=AC,∠ A=40°,延长 AC到 D,使 CD=BC,点 P 是△ ABD的内心,则∠ BPC=( )
22.( 7 分)如图,直线 y=﹣x ﹣ 2 交 x 轴于点 A,交 y 轴于点 B,抛物线 y=ax 2+bx+c 的顶点为 A,且经过点 B. ( 1)求该抛物线的解析式;
( 2)若点 C( m,﹣ )在抛物线上,求 m的值.
( 3)根据图象直接写出一次函数值大于二次函数值时
x 的取值范围.
54
( 1)这 5 所初中九年级学生的总人数有多少人?
( 2)统计时,老师漏填了表中空白处的数据,请你帮老师填上;
( 3)从这 5 所初中九年级学生中随机抽取一人,恰好是
108 分以上(不包括 108 分)的概率是多少?
四、解答题(二): 20.( 7 分)校运会期间,某班预计用 90 元为班级同学统一购买矿泉水,生活委员发现学校小卖部有优惠 活动:购买瓶装矿泉水打 9 折,经计算按优惠价购买能多买 5 瓶,求每瓶矿泉水的原价和该班实际购买矿 泉水的数量. 21.如图 1,纸片 ? ABCD中, AD=5, S? ABCD=15,过点 A 作 AE⊥ BC,垂足为 E,沿 AE 剪下△ ABE,将它平移至 △ DCE′的位置,拼成四边形 AEE′ D,则四边形 AEE′ D的形状为 A.平行四边形 B .菱形 C .矩形 D .正方形 ( 2)如图 2,在( 1)中的四边形纸片 AEE′ D 中,在 EE′上取一点 F,使 EF=4,剪下△ AEF,将它平移至 △ DE′ F′的位置,拼成四边形 AFF′D. ①求证:四边形 AFF′ D 是菱形. ②求四边形 AFF′ D的两条对角线的长.
A. 105° B. 110° C. 130° D. 145°
二、填空题: 11.计算: | ﹣ 2|+2 0﹣2﹣ 1= 12.因式分解: x2﹣ 9=
. .
13.如图, AB=AC,要使△ ABE≌△ ACD,应添加的条件是
(添加一个条件即可).
14.当 x=
时,二次函数 y=x2+2x 有最小值.
五、解答题(三):
23.( 9 分)对于钝角α,定义它的三角函数数值如下:
sin α =sin ( 180°﹣α), cos α =﹣ cos ( 180°﹣α).
( 1)求 sin135 °, cos150 °的值;
( 2)若一个三角形的三个内角的比为 1: 1:4, A,B 是这个三角形的两个顶点,且∠ 是方程 4x 2﹣mx﹣ 1=0 的两个不相等的实数根,求 mx 的取值范围是(
)
A. x> 2 B . x≠ 2 C. x=2 D. x< 2
4.如图,已知∠ 1=36°,∠ 2=36°,∠ 3=140°,则∠ 4 的度数等于(
)
A. 40° B . 36° C. 44° D. 100°
5.如图,你能看出这个倒立的水杯的俯视图是(
)
A.
2021 年广东省揭阳市中考数学一模试卷
一、选择题
1.计算:(﹣ 1) 2017的值是(
)
A. 1 B.﹣ 1 C. 2017 D .﹣ 2017
2.下列运算正确的是(
)
A. m2? n2=( mn) 4 B. 5x2y ﹣ 4x2y=1 C. m﹣2= ( m≠ 0) D.( m﹣ n) 2=m2﹣ n2
B.
C.
D.
6.如果( 2+ )2=a+b (a, b 为有理数),那么 a+b 等于(
)
A. 7 B . 8 C. 10 D. 10
7. 2017 年 1 月,在揭阳市第六届人民代表大会会议上,陈市长指出了,
2016 年预计全市生产总值 2012 亿
元.请你将揭阳市全市生产总值(单位:亿元)用科学记数法来表示(
19.( 6 分) 2015 年榕城区从中随机调查了 5 所初中九年级学生的数学考试成绩,学生的考试成绩情况如
表(数学考试满分 120 分)
分数段
频数
频率
72 分以下
368
0.2
72﹣﹣﹣﹣ 80 分
460
0.25
81﹣﹣﹣﹣ 95 分
96﹣﹣﹣﹣ 108 分
184
0.2
109﹣﹣﹣﹣ 119 分
120 分