公开课(古典概型)精品PPT课件

合集下载

高中数学课件——古典概型28页PPT

高中数学课件——古典概型28页PPT

1
0















谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
高中数学课件——古典概型
6






,天高风来自景澈。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8













9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散

人教版数学第三章 古典概型 (共20张PPT)教育课件

人教版数学第三章 古典概型 (共20张PPT)教育课件
3.2.1 古典概型(一)
一.导入新课
问题:用试验的方法求随机事件的概率有什么不 足呢? 大量重复试验,耗时多,得到的仅是概率的近似值
二、知识探究
考察两个试验: (1)抛掷一枚质地均匀的硬币的试验; (2)掷一颗质地均匀的骰子的试验. 在这两个试验中,可能的结果分别有哪些?
正面朝上
反面朝上
(1)掷一枚质地均匀的硬币,结果只有两个,即 “正面朝上”或“反面朝上”。
之前有个网友说自己现在紧张得不得了 ,获得 了一个 大公司 的面试 机会, 很不想 失去这 个机会 ,一天 只吃一 顿饭在 恶补基 础知识 。不禁 要问, 之前做 什么去 了?机 会当真 就那么 少?在 我看来 到处都 是机会 ,关键 看你是 否能抓 住。运 气并非 偶然, 运气都 是留给 那些时 刻准备 着的人 的。只 有不断 的积累 知识, 不断的 进步。 当机会 真的到 来的时 候,一 把抓住 。相信 学习真 的可以 改变一 个人的 运气。 在当今社会,大家都生活得匆匆忙忙, 比房子 、比车 子、比 票子、 比小孩 的教育 、比工 作,往 往被压 得喘不 过气来 。而另 外总有 一些人 会运用 自己的 心智去 分辨哪 些快乐 或者幸 福是必 须建立 在比较 的基础 上的, 而哪些 快乐和 幸福是 无需比 较同样 可以获 得的, 然后把 时间花 在寻找 甚至制 造那些 无需比 较就可 以获得 的幸福 和快乐 ,然后 无怨无 悔地生 活,尽 情欢乐 。一位 清洁阿 姨感觉 到快乐 和幸福 ,因为 她刚刚 通过自 己的双 手还给 路人一 条清洁 的街道 ;一位 幼儿园 老师感 觉到快 乐和幸 福,因 为他刚 给一群 孩子讲 清楚了 吃饭前 要洗手 的道理 ;一位 外科医 生感觉 到幸福 和快乐 ,因为 他刚刚 从死神 手里抢 回了一 条人命 ;一位 母亲感 觉到幸 福和快 乐,因 为他正 坐在孩 子的床 边,孩 子睡梦 中的脸 庞是那 么的安 静美丽 ,那么 令人爱 怜。。 。。。 。

1-3古典概型精品PPT课件

1-3古典概型精品PPT课件
设A={有一次正面向上} ,则A={{正,正} , {正,反} , {反,正} }, 显然A包含的基本事件总数为3.
所以,P(A)=3/4=0.75
《概率统计》
返回
下页
结束
古典概型
4.1 古典概型的概率计算举例(“数一数”法)
例3. 口袋中有100只球,编号依次为1,2,3,…,100,现从中任取一球, 问取得的球编号不超过20的概率? 解:基本事件为:{1号球} , {2号球},…, {100号球} ,因而样本空 间Ω={{1号球} , {2号球},…, {100号球} }, 所以Ω的基本事件总数 为100。
从而,P(A)=
C31C42 C73
18 . 35
(具体算法描述见下页)
《概率统计》
返回
下页
结束
说明:若用1,2,3表示3个次品,用4,5,6,7表示4个正品,则以下为样本 空间Ω(基本事件总数为35),绿色的为A包含的基本事件(18个)。
01:1,2,3 02:1,2,4 03:1,2,5 04:1,2,6 05:1,2,7 06:1,3,4 07:1,3,5 08:1,3,6 09:1,3,7
所以,P(A)=1/2=0.5 例2. 将一枚硬币抛两次,问试验后有一次正面向上的概率是多少? 解:基本事件为:{正,正} , {正,反} , {反,正} , {反,反} ,因而样本 空间Ω={{正,正} , {正,反} , {反,正} , {反,反}}, 所以Ω的基本事件 总数为4。
《概率统计》
返回
下页
结束
古典“数一数”法)
例2. 将一枚硬币抛两次,问试验后有一次正面向上的概率是多少? 解:基本事件为:{正,正} , {正,反} , {反,正} , {反,反} ,因而样本空 间Ω={{正,正} , {正,反} , {反,正} , {反,反}}, 所以Ω的基本事件总数为 4。

《高二数学古典概型》课件

《高二数学古典概型》课件

CHAPTER 04
古典概型的应用
在统计学中的应用
样本空间和样本点的确定
参数估计和假设检验
在统计学中,古典概型常被用于确定 样本空间和样本点,以便进行概率分 析和推断。
古典概型在参数估计和假设检验中也 有广泛应用,例如贝叶斯推断、似然 比检验等。
概率模型的建立
基于古典概型的概率模型,可以用于 描述和预测各种随机现象,例如市场 调查、人口普查等。
有重要意义。
实际应用广泛
02
在现实生活中,许多问题可以通过古典概型进行建模和解决,
如概率计算、决策分析等。
培养逻辑思维
03
学习古典概型有助于培养学生的逻辑思维和推理能力,提高分
析和解决问题的能力。
古典概型未来的发展方向
01
02
03
理论完善
随着概率论的发展,古典 概型的理论体系将不断完 善和丰富。
应用领域拓展
概率的加法公式是概率计算中的重要 公式之一,它可以用于计算多个事件 同时发生的概率。
条件概率与独立性
条件概率是指事件A在另一个事件B已经发生条件下的发生概率。记作 P(A|B),其中"|"表示"在...条件下"。
独立性是指两个事件之间没有相互影响,一个事件的发生与否不会影响 到另一个事件的发生概率。如果两个事件A和B是独立的,则 P(A∩B)=P(A)P(B)。
通过实际问题的解决, 加深对古典概型的理解
和应用能力。
参与讨论和交流
与其他学生和教师进行 讨论和交流,分享学习 心得和经验,提高学习
效果。
THANKS FOR WATCHING
感谢您的观看
事件的发生不受其他事件的影响。

《古典概型》ppt课件

《古典概型》ppt课件

有限性
样本空间中包含的基本事件是有 限的。,每个基本
事件都有确定的概率。
这一性质使得古典概型在实际应 用中具有可操作性和实用性。
互斥性
两个或多个基本事件不能同时发 生。
在古典概型中,由于每个基本事 件发生的概率是相等的,因此它 们之间是互斥的,即不可能同时
在统计学中的应用
样本统计
在统计学中,样本统计量是用来描述数据特征的重要工具。 古典概型可用于计算样本统计量的概率分布,如样本均值、 样本方差等。
假设检验
古典概型在假设检验中也有应用,特别是在使用似然比检验 和贝叶斯统计时。通过比较不同假设下的概率,可以判断哪 个假设更合理。
在实际生活中的应用
决策制定
发生。
互斥性是古典概型中一个重要的 性质,它确保了概率计算的正确
性和合理性。
03
古典概型的应用
在概率论中的应用
概率计算
古典概型提供了一种计算概率的简单 方法,特别是对于离散随机事件。通 过列举所有可能的结果和满足条件的 结果,可以直接计算概率。
概率分布
在概率论中,古典概型常用于推导离 散随机变量的概率分布,如二项分布 、泊松分布等。这些分布在实际应用 中具有广泛的应用价值。
古典概型可以帮助人们在不确定的情况下做出决策。例如,在赌博游戏中,玩 家可以使用古典概型来计算获胜的概率。
风险评估
在风险评估中,古典概型可以用来计算风险事件发生的概率。例如,在保险行 业中,保险公司可以使用古典概型来评估不同风险事件的发生概率和损失程度。
04
古典概型与现代概率论的联系
古典概型在现代概率论中的地位
古典概型是现代概率论的基础
古典概型为概率论的发展提供了基本的概念和原理,为后续的概率模型和理论奠 定了基础。

古典概型优秀PPT讲义

古典概型优秀PPT讲义

5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
从表中可以看出同时掷两个骰子的结果共有三六种
2号骰子 1号骰子
1
2
3
4
5
6
1
(1,1)(1,2) (1,3)((1,1,44)) (1,5) (1,6)
2
2号骰子 1号骰子
1
2
3
4
5
6
1
(1,1)(1,2) (1,3)((1,1,44)) (1,5) (1,6)
2
(2,1) (2,2)((22,,33)) (2,4)(2,5) (2,6)
3
(3,1)((33,,22)) (3,3) (3,4) (3,5) (3,6)
4
((44,,11)) (4,2) (4,3) (4,4)(4,5) (4,6)
有限性
等可能性
问题五:某同学随机地向一靶心进行射击这一试验的
结果有:命中一0环、命中九环、命中八环、命中七
环、命中六环、命中五环和不中环
你认为这是古典概型吗
5
为什么
6
7
有限性
8 9
等可能性
5 6 7 8 9109 8 7 6 5 9 8 7 6
5
问题六:在古典概率模型中如何求随机事件出现的概 率
基本事件有什么特点:
一点
二点
三点
四点 五点
六点
问题:一 在一次试验中,会同时出现 “1点”与 “2点”
这两个基本事件吗?不会 任何两个基本事件是互斥的
二 事件出现偶数点包含哪几个基本事件

《古典概型》课件

《古典概型》课件

古典概型的实例
1
抛硬币实验

通过抛硬币实验,我们可以计算出正面和反面的概率,并探索硬币投掷的随机性。
2
掷骰子实验
掷骰子实验可以用来研究骰子的点数分布情况,以及各个点数出现的概率。
3
抽彩票实验
参与抽彩票实验可以帮助我们了解中奖的概率和预测我们是否能够中奖。
古典概型的计算方法
排列与组合的基本概念
排列和组合是计算古典概型 概率的基础,它们描述了对 象选择和排序的不同方式。
全排列、有重复的排列
全排列是指从一组对象中选 择所有可能的排列方式,而 有重复的排列则允许重复选 择同一个对象。
组合、有重复的组合
组合是指从一组对象中选择 不同对象的所有可能的组合 方式,而有重复的组合则允 许多次选择同一个对象。
古典概型的误区
1 容斥原理
容斥原理是用于处理 古典概型中的重叠事 件的概率计算方法。
古典概型的未来
古典概型仍然是概率论研 究的重要基础,将继续为 我们理解概率世界提供有 用的工具。
古典概型的应用场景
古典概型可应用于投资 决策、天气预测、赌博 和物理实验等领域。
古典概型的公式
事件的概率公式
古典概型中,事件的概率 等于事件发生的次数除以 实验总次数。
随机事件的定义
随机事件指的是在实验中 可能出现的多种不同结果 之一。
独立事件的概率
对于多个独立事件的古典 概型,事件的概率等于各 个事件概率的乘积。
《古典概型》PPT课件
欢迎来到《古典概型》PPT课件!通过这个课件,你将了解什么是古典概型, 其特点和应用场景。准备好获取关于概率和实验的知识了吗?让我们开始吧!
概述
什么是古典概型?

古典概型ppt课件

古典概型ppt课件

2.概率的加法公式是什么对立事件的概
率有什么关系
若事件A与事件B互斥,则
P A+B =P A +P B . 若事件A与事件B相互对立,则 P
A +P B =1. 3.通过试验和观察的方法,可以得到1些事 件的概率估计,但这种方法耗时多,操作不 方便,并且有些事件是难以组织试验的.因 此,我们希望在某些特殊条件下,有1个计 算事件概率的通用方法.
3.2 古典概型 3.2.1 古典概型
问题提出
1.两个事件之间的关系包括包含事件、 相等事件、互斥事件、对立事件,事件之 间的运算包括和事件、积事件,这些概念 的含义分别如何
若事件A发生时事件B一定发生,则A B. 若事件A发生时事件B一定发生,反之亦 然,则A=B.若事件A与事件B不同时发 生,则A与B互斥.若事件A与事件B有且 只有一个发生,则A与B相互对立.
知识探究 1 :基本事件
思考1:抛掷两枚质地均匀的硬币,有哪 几种可能结果连续抛掷3枚质地均匀的硬 币,有哪几种可能结果
正,正 , 正,反 ,
反,正 ,
反,反 ;
正,正,正 , 正,正,反 , 正,反,正 , 反,正, 正, 正,反,反 , 反,正,反 , 反,反,正 , 反,反, 反.
思考2:上述试验中的每1个结果都是随 机事件,我们把这类事件称为基本事件. 在1次试验中,任何两个基本事件是什么 关系
A=a,b,B=a,c,C=a,d,D=b,c,E=b,d ,F=c,d;
A+B+C.
知识探究 2 :古典概型
思考1:抛掷1枚质地均匀的骰子有哪些 基本事件每个基本事件出现的可能性相 等吗
思考2:抛掷1枚质地不均匀的硬币有哪 些基本事件每个基本事件出现的可能性 相等吗

古典概型(共24张PPT)

古典概型(共24张PPT)

解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,它总共出现的 情况如下表所示:
2号骰子 1号骰子
1
2
3
4
5
6
1
(1,1)(1,2) (1,3)((1,1,44)) (1,5) (1,6)
2
(2,1) (2,2)((22,,33)) (2,4)(2,5) (2,6)
3
(3,1)((33,,22)) (3,3) (3,4) (3,5) (3,6)
(1,2),(1,3),(1,4),(1,5),
(2,3),(2,4),(2,5),(3,4),
(3,5),(4,5). 因此,共有10个基本事件.
(2)如下图所示,上述10个基本事件的可能性相同,且只有3个基本事件是摸到
2只白球(记为事件A),
小结
满足以下两个特点的随机试验的概率模型称为古典概型
1
2
试 验 2
1点
P(“1点”)
2点
3点
P(“2点”)
P(“5点”)
4点 5点 P(“3点”) P(“6点”)
6点
P(“4点”)
1 6
问题3:观察对比,找出试验1和试验2的共同特点:
基本事件
基本事件出现的可能性

“正面朝上”

“反面朝上”
1
试 “1点”、“2点” 验2 “3点”、“4点”
“5点”、“6点”
没有区别。
为什么要把两个骰子标上记号?如果不标记号会出 现什么情况?你能解释其中的原因吗?
如果不标上记号,类似于(3,6)和(6,3)的结果将
没有区别。
这时,所有可能的结果将是:
2号骰子
因此,1号在骰子投掷两
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本概念 方法探究 典型例题 课堂训练 课堂小结
一次试验可能出现的每一个结果 称为一个 基本事件
例 从字母a、b、c、d任意取出两个不同字母的试
验中,有哪些基本事件?
b
c
a
cb d
dc
d
解:所求的基本事件共有6个:
A {a,b} B {a, c} C {a, d}
D {b, c} E {b, d} F {c, d}
1.甲、乙2人下棋,下成和棋的概率是 1 ,乙获胜的概
率是 1 ,则甲不胜的概率是( B ) 2
3
A. 1
B. 5 C. 1 D. 2
2
6
6
3
2. 从装有两个红球和两个黑球的口袋内任取两个球, 那么互斥而不对立的两个事件是( )C A.“至少有一个黑球”与“都是黑球” B.“至少有一个黑球”与“至少有一个红球” C.“恰有一个黑球”与“恰有两个黑球” D.“至少有一个黑球”与“都是红球”
“不中环”。
你认为这是古典概型吗?
5 6
为什么?
7
有限性 等可能性
8 9 5 6 7 8 9109 典型例题 课堂训练 课堂小结
问题6:在古典概率模型中,如何求随机事件出现的概率?
试验: 掷一颗均匀的骰子,
事件A为“出现偶数点”,请问事件 A的概率是多少?
P(“一正一反”)=2 1 42
基本概念 方法探究 典型例题 课堂训练 课堂小结列一表般法适 解例(((:2123)))(同一其向1时)共中上掷掷有向的两一多上点个个少的数均骰种点之匀子不数和的的同之是骰结的和9子的果结是,概有果9计的率6?种算是结,:多果我少有们?多把少两种个?骰子标上用两成果举记于步的的。号分完结列1, 2以便区分,它总共出现的情况如下表所示:
高一数学组 韩宇
即时训练
1.甲、乙2人下棋,下成和棋的概率是 1 ,乙获胜的概
率是 1 ,则甲不胜的概率是(
2

3
A. 1
B. 5 C. 1 D. 2
2
6
6
3
2. 从装有两个红球和两个黑球的口袋内任取两个球, 那么互斥而不对立的两个事件是( ) A.“至少有一个黑球”与“都是黑球” B.“至少有一个黑球”与“至少有一个红球” C.“恰有一个黑球”与“恰有两个黑球” D.“至少有一个黑球”与“都是红球”
问题4:向一个圆面内随机地投射一个点,如 果该点落在圆内任意一点都是等可能的,你认 为这是古典概型吗?为什么?
有限性
等可能性
基本概念 方法探究 典型例题 课堂训练 课堂小结
问题5:某同学随机地向一靶心进行射击,这一试验
的结果有:“命中10环”、“命中9环”、“命中8
环”、“命中7环”、“命中6环”、“命中5环”和
即时训练
4. 从一批羽毛球产品中任取一个,其质量小于4.8 g 3的. 概某率人为在0打.3靶,中质,量连小续于射4.击852次g的,概事率件为“0至.3少2,有那一么次
中质靶量”在[的4互.8斥,事4.件85是) (g)范围内的概率是. ( )
A.0.02
B.0.38
C.0.62
D.0.68
即时训练
基本事件的总数 n
在使用古典概型的概率公式时,应该注意: 要判断所用概率模型是不是古典概型(前提)
基本概念 方法探究 典型例题 课堂训练 课堂小结
例1.同时抛掷两枚均匀的硬币,会出现几种结果?列举出来. 出现 “一枚正面向上,一枚反面向上” 的概率是多少?
解:



反反

基本事件有: ( 正 ,正 ) ( 正 ,反 ) ( 反 ,正 ) ( 反 ,反 )
即时训练
一次也没有中靶
4. 从一批羽毛球产品中任取一个,其质量小于4.8 g 3的. 概某率人为在0打.3靶,中质,量连小续于射4.击852次g的,概事率件为“0至.3少2,有那一么次
中质靶量”在[的4互.8斥,事4.件85是) (g)范围内的概率是. ( A )
A.0.02
B.0.38
C.0.62
探讨: 基本事件总数为:6 1点,2点,3点,4点,5点,6点 事件A 包含 3 个基本事件: 2 点 4点 6 点
P(A) P(A)
P(“2点”)
1
1
6
6
3
1
6
2
P(“4点”)
1
3
6
6
P(“6点”)
基本概念 方法探究 典型例题 课堂训练 课堂小结
古典概型的概率计算公式:
P(A)
A包含的基本事件的个数m
1点
2点
3点
4点 5点
6点
问题1:(1)在一次试验中,会同时出现 “1点” 与“2点”
这两个基本事件吗?不会 任何两个基本事件是互斥的
(2)事件“出现偶数点”包含哪几个基本事件? “2点” “4点” “6点”
事件“出现的点数不大于4”包含哪几个基本事件? “1点” “2点” “3点” “4点”
任何事件(除不可能事件)都可以表示成基本事件的和
树状图
基本概念 方法探究 典型例题 课堂训练 课堂小结
问题2:以下每个基本事件出现的概率是多少?


1 正面向上
反面向上
P(“正面向上”) P(“反面向上”)
1
2


2
1点
P(“1点”)
2点
3点
P(“2点”) P(“5点”)
4点 5点
P(“3点”) P(“6点”)
6点
P(“4点”)
1 6
基本概念 方法探究 典型例题 课堂训练 课堂小结
(2) 每个基本事件出现的可能性 相等
等可能性
基本概念 方法探究 典型例题 课堂训练 课堂小结
有限性
(1) 试验中所有可能出现的基本事件的个数 只有有限个
(2) 每个基本事件出现的可能性 相等
等可能性
我们将具有这两个特点的概率模型称为 古典概率模型
简称:古典概型
基本概念 方法探究 典型例题 课堂训练 课堂小结
D.0.68
基本概念 方法探究 典型例题 课堂训练 课堂小结
试验1:掷一枚质地均匀的硬币一次,观察出现 哪几种结果? 2 种
正面朝上
反面朝上
试验2:掷一颗均匀的骰子一次,观察出现的点
数有哪几种结果? 6 种
1点
2点
3点
4点
5点
6点
一次试验可能出现的每一个结果 称为一个基本事件
基本概念 方法探究 典型例题 课堂训练 课堂小结
问题3:观察对比,找出试验1和试验2的共同特点:
基本事件
基本事件出现的可能性
试 验 1
“正面朝上” “反面朝上”
试 “1点”、“2点”
验 “3点”、“4点” 2 “5点”、“6点”
两个基本事件
的概率都是
1 2
六个基本事件
的概率都是 1 有限性 6
(1) 试验中所有可能出现的基本事件的个数 只有有限个
相关文档
最新文档