朝阳区高三数学一模试卷(答案)

合集下载

北京市朝阳区高三数学第一次综合练习(一模)试题 理(含解析)-人教版高三全册数学试题

北京市朝阳区高三数学第一次综合练习(一模)试题 理(含解析)-人教版高三全册数学试题

北京市朝阳区高三年级第一次综合练习 数学试卷(理工类) 2016.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i 1i+= A .1i - B .1i -- C .1i -+ D .1i + 答案:D解析:分母实数化,即分子与分母同乘以分母的其轭复数:222(1)111i i i i i i -==++-。

2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是 A .M N N = B .()UMN =∅C .M N U =D .()U M N ⊆答案:D解析:∵函数 y =ln(x -1)的定义域M ={}|1x x >,N ={}|01x x <<,又U =R ∴{}|1U C N x x =≥≤或x 0,∴MN =∅,故 A ,C 错误,D 显然正确。

3. >e e ab>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案:A解析>0a b >≥,又xy e =是增函数,所以,a b e e >,由a b e e >知a b >,但,a b 取负值时,,a b 无意义, 故选A 。

4. 执行如图所示的程序框图,输出的S 值为 A .42B .19C .8D .3答案:B解析:依次执行结果如下:S =2×1+1=3,i =1+1=2,i <4; S =2×3+2=8,i =2+1=3,i <4; S =2×8+1=19,i =3+1=42,i ≥4; 所以,S =19,选B 。

北京市朝阳区高三年级期2022学年数学统一考试含答案

北京市朝阳区高三年级期2022学年数学统一考试含答案

北京市朝阳区2022-2022学年度高三年级第一学期统一考试数学试卷(文史类)2022.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知集合{|(1)0,}A x x x x =-<∈R ,1{|2,}2B x x x =<<∈R ,那么集合A B = A.∅B .1{|1,}2x x x <<∈RC .{|22,}x x x -<<∈RD .{|21,}x x x -<<∈R 2.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是A .1y x =- B .tan y x =C .3y x =D .2y x=-3. 已知3sin 5x =,则sin 2x 的值为A . 1225 B .2425 C .1225或1225- D .2425或2425-4. 设x ∈R 且0x ≠,则“1x >”是“1+2x x>”成立的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5. 设m ,n 是两条不同的直线,α,β是两个不同的平面.下列命题正确的是A .若,,m n m n αβ⊂⊂⊥,则αβ⊥ B .若//,,//m n αβαβ⊥,则 m n ⊥C .若,,//m n αβαβ⊥⊥,则//m nD .若,,m n m αβαβ⊥=⊥ ,则n β⊥6. 已知三角形ABC 外接圆O 的半径为1(O 为圆心),且OB OC +=0 , ||2||OA AB =,则CA BC ⋅等于( )A .154-B .34-C .154D .347. 已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数()1()()2g x f f x =-的零点个数是A .4 B .3 C .2 D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是()A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 设平面向量,若//,则y = .10. 已知角A 为三角形的一个内角,且3cos 5A =,sin A = . cos 2A = . 11. 已知 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 .12. 设各项均为正数的等比数列{}n a 的前n 项和为n S ,若23=a ,245S S =,则1a 的值为,4S 的值为.13.已知函数221,0,()(1)2,0,xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上具有单调性,则实数m 的取值范围是.14. 《九章算术》是我国古代一部重要的数学著作.书中有如下问题:“今有良马与驽马发长安,至齐。

北京市朝阳区2024届高三一模数学含答案

北京市朝阳区2024届高三一模数学含答案

北京市朝阳区高三年级第二学期质量检测一数学2024.4(考试时间120分钟满分150分)本试卷分为选择题40分和非选择题110分第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知全集{1,2,3,4},{|2}U A x U x ==∈<,则U A =ð(A ){1}(B ){1,2}(C ){3,4}(D ){2,3,4}(2)复数i3i+在复平面内对应的点位于(A )第一象限(B )第二象限(C )第三象限(D )第四象限(3)在ABC △2sin b A =,则B ∠=(A )6π(B )6π或65π(C )3π(D )3π或32π(4)已知a ∈R ,则“01a <<”是“函数3()(1)f x a x =-在R 上单调递增”的(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(5)已知直线60x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r =(A )2(B )(C )4(D )(6)已知等比数列{}n a 的前n 项和为n S ,且12341,4a a a a =++=,则6S =(A )9(B )16(C )21(D )25(7)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过点F 作垂直于x 轴的直线l ,,M N分别是l 与双曲线C 及其渐近线在第一象限内的交点.若M 是线段FN 的中点,则C 的渐近线方程为(A )y x=±(B )2y x =±(C )3y x =±(D )5y x =±(8)在ABC △中,2,AB AC BC ===,点P 在线段BC 上.当PA PB ⋅取得最小值时,PA =(A (B (C )34(D )74(9)在棱长为1的正方体1111ABCD A B C D -中,,,E F G 分别为棱11,,AA BC CC 的中点,动点H 在平面EFG 内,且1DH =.则下列说法正确的是(A )存在点H ,使得直线DH 与直线FG 相交(B )存在点H ,使得直线DH ⊥平面EFG (C )直线1B H 与平面EFG 所成角的大小为π3(D )平面EFG (10)已知n 个大于2的实数21,,,n x x x ,对任意(1,2,),i n x i = ,存在2i y ≥满足i i y x <,且i i y x i i x y =,则使得12115n n x x x x -+++ ≤成立的最大正整数n 为(A )14(B )16(C )21(D )23第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。

2021年北京市朝阳区高考数学一模试卷【含答案】

2021年北京市朝阳区高考数学一模试卷【含答案】

2021年北京市朝阳区高考数学一模试卷参考答案与试题解析一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(4分)已知集合A={﹣1,0,1,2,3},B={x|x﹣1≥0},则A∩B=()A.{0,1,2,3}B.{1,2,3}C.{2,3}D.{3}【分析】利用集合交集的定义求解即可.【解答】解:因为集合A={﹣1,0,1,2,3},B={x|x﹣1≥0}={x|x≥1},所以A∩B={1,2,3}.故选:B.【点评】本题考查了集合的运算,主要考查了集合交集的求解,解题的关键是掌握交集的定义,属于基础题.2.(4分)如果复数的实部与虚部相等,那么b=()A.﹣2B.1C.2D.4【分析】利用复数代数形式的乘除运算化简,再由实部与虚部相等求得b值.【解答】解:∵的实部与虚部相等,∴b=﹣2.故选:A.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(4分)已知等差数列{a n}的前n项和为S n,a3=1,S9=18,则a1=()A.0B.﹣1C.﹣2D.﹣3【分析】先由题设求得a5,再利用等差数列的性质求得结果.【解答】解:∵S9=18==9a5,∴a5=2,又a3=1,∴由等差数列的性质可得:a1+a5=a1+2=2a3=2,∴a1=0,故选:A.【点评】本题主要考查等差数列的性质及基本量的计算,属于基础题.4.(4分)已知圆x2+y2=4截直线y=kx+2所得弦的长度为,则实数k=()A.B.C.D.【分析】求出圆的圆心与半径,利用弦长,推出弦心距,利用点到直线的距离公式求解即可.【解答】解:圆x2+y2=4截直线y=kx+2所得弦的长度为,可得弦心距为:=1,所以:,解得k=.故选:D.【点评】本题考查直线与圆的位置关系的应用,点到直线的距离公式的应用,是基础题.5.(4分)已知双曲线的离心率为2,则双曲线C的渐近线方程为()A.B.C.D.y=±2x【分析】根据题意,由双曲线的离心率e=2可得c=2a,由双曲线的几何性质可得b=a,由此求解双曲线的渐近线方程.【解答】解:根据题意,双曲线的离心率为2,其焦点在x轴上,其渐近线方程为y=±x,又由其离心率e==2,则c=2a,则b==a,即=,则其渐近线方程y=±x;故选:A.【点评】本题考查双曲线的几何性质,注意由双曲线的标准方程分析焦点的位置,确定双曲线的渐近线方程,是中档题.6.(4分)在△ABC中,若a2﹣b2+c2+ac=0,则B=()A.B.C.D.【分析】直接利用余弦定理的应用求出结果.【解答】解:若a2﹣b2+c2+ac=0,所以,由于B∈(0,π),所以B=.故选:D.【点评】本题考查的知识要点:余弦定理的应用,主要考查学生的运算能力和数学思维能力,属于基础题.7.(4分)某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥最长的棱长为()A.2B.C.D.【分析】首先把三视图转换为几何体的直观图,进一步求出几何体的各个棱长,从而确定结果.【解答】解:根据几何体的三视图转换为直观图为:该几何体为三棱锥A﹣BCD;如图所示:所以:AB=BC=,CD=BD=1,AD=,AC=,故选:C.【点评】本题考查的知识要点:三视图和几何体的直观图之间的转换,三棱锥的棱长的求法,主要考查学生的运算能力和数学思维能力,属于基础题.8.(4分)在△ABC中,“tan A tan B<1”是“△ABC为钝角三角形”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】解法一:对角分类讨论,利用正切和差公式及其三角函数的单调性即可判断出结论.解法二:tan A tan B<1⇔1﹣>0⇔cos A cos B cos C<0⇔△ABC为钝角三角形,即可判断出结论.【解答】解:解法一:(1)若C为钝角,则A,B为锐角,∴tan C=﹣tan(A+B)=﹣<0,解得tan A tan B<1.若A或B为钝角,则tan A tan B<1成立.(2)若tan A tan B<1成立,假设A或B为钝角,则△ABC为钝角三角形.假设A,都B为锐角,tan C=﹣tan(A+B)=﹣<0,解得C为钝角,则△ABC为钝角三角形.综上可得:在△ABC中,“tan A tan B<1”是“△ABC为钝角三角形”的充要条件.解法二:tan A tan B<1⇔1﹣>0⇔>0⇔cos A cos B cos C<0⇔△ABC为钝角三角形.∴在△ABC中,“tan A tan B<1”是“△ABC为钝角三角形”的充要条件.故选:C.【点评】本题考查了分类讨论、正切和差公式及其三角函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.9.(4分)已知抛物线C:y2=4x的焦点为F,准线为l,点P是直线l上的动点.若点A在抛物线C上,且|AF|=5,则|PA|+|PO|(O为坐标原点)的最小值为()A.8B.C.D.6【分析】不妨设A为第一象限内的点,坐标为(a,b),由抛物线的定义可得|AF|=a+1=5,解得A点的坐标,设点A关于直线x=﹣1的对称点为A′(﹣6,4),由对称性可得|PA|+|PO|=|PA′|+|PO|≥|A′O|,即可得出答案.【解答】解:不妨设A为第一象限内的点,坐标为(a,b)由抛物线的方程可得焦点F(1,0),则|AF|=a+1=5,解得a=4,所以A(4,4),所以点A关于直线x=﹣1的对称点为A′(﹣6,4),故|PA|+|PO|=|PA′|+|PO|≥|A′O|==2,当且仅当A′,P,O三点共线时,等号成立,即|PA|+|PO|的最小值为2.故选:B.【点评】本题考查图形的对称性,抛物线的定义,解题中注意数形结合思想的应用,属于中档题.10.(4分)在棱长为1的正方体ABCD﹣A1B1C1D1中,P是线段BC1上的点,过A1的平面α与直线PD垂直.当P在线段BC1上运动时,平面α截正方体ABCD﹣A1B1C1D1所得的截面面积的最小值是()A.1B.C.D.【分析】画出图形,判断截面的位置,结合正方体的特征,转化求解截面面积的最小值即可.【解答】解:当P在B点时,BD⊥平面ACC1A1,平面α截正方体ABCD﹣A1B1C1D1所得的截面面积:1×=是最大值;当P与C1重合时,DC1⊥平面A1D1CB,平面α截正方体ABCD﹣A1B1C1D1所得的截面面积:1×=是最大值当P由B向C1移动时,平面α截正方体ABCD﹣A1B1C1D1所得的截面A1EF,E由A向B移动,当P到BC1的中点时,取得最小值,如图此时E为AB的中点,F为D1C1的中点,(P在底面ABCD上的射影为DH,H是BC的中点,此时EC ⊥DH,可得DP⊥EC,同理可得DP⊥CF,可证明DP⊥平面A1ECF),A1E=CE=,AC=,EF=,四边形A1ECF是菱形,所以平面α截正方体ABCD﹣A1B1C1D1所得的截面面积:=.故选:C.【点评】本题考查直线与平面垂直,截面面积的最小值问题,考查空间想象能力,转化思想以及计算能力,是难题.二、填空题共5小题,每小题5分,共25分.11.(5分)在(x+)8的展开式中,x4的系数为28.(用数字作答)【分析】求出展开式的通项,然后令x的指数为2,求出r的值,由此即可求解.【解答】解:展开式的通项为T,令8﹣2r=4,解得r=2,所以x4的系数为C,故答案为:28.【点评】本题考查了二项式定理的应用,考查了学生的运算能力,属于基础题.12.(5分)已知函数则f(0)=1;f(x)的值域为(﹣∞,2).【分析】根据分段函数的表达式直接代入即可求出f(0),利用指数函数和对数函数的性质分别进行求解即可.【解答】解:f(0)=20=1,当x<1时,0<2x<2,此时0<f(x)<2,当x≥1时,log2x≥0,则﹣log2x≤0,即此时f(x)≤0,综上f(x)<2,即函数f(x)的值域为(﹣∞,2),故答案为:1,(﹣∞,2).【点评】本题主要考查分段函数的应用,利用指数函数和对数函数的单调性的性质是解决本题的关键,是基础题.13.(5分)已知向量=(,1),=(x,y)(xy≠0),且||=1,•<0,则向量的坐标可以是(,).(写出一个即可)【分析】利用已知条件画出图形,判断向量的坐标的位置,即可写出结果.【解答】解:向量=(,1),=(x,y)(xy≠0),且||=1,•<0,如图,可知向量的坐标可以是黑色圆弧上的任意一点,向量的坐标可以是(,).故答案为:(,).【点评】本题考查向量的数量积的应用,点的坐标的求法,是基础题.14.(5分)李明自主创业,经营一家网店,每售出一件A商品获利8元.现计划在“五一”期间对A商品进行广告促销,假设售出A商品的件数m(单位:万件)与广告费用x(单位:万元)符合函数模型.若要使这次促销活动获利最多,则广告费用x应投入3万元.【分析】由题意知,每售出1万件A商品获利8万元,可得售出m万件A商品的总获利为24﹣,设f(x)=24﹣(x≥0),利用导数求最值得答案.【解答】解:由题意知,每售出1万件A商品获利8万元,∴售出m万件A商品的总获利为:8m﹣x=8(3﹣)﹣x=24﹣,设f(x)=24﹣(x≥0),则f′(x)=(x≥0),令f′(x)>0,即>0(x≥0),解得0≤x<3,∴当0≤x<3时,f′(x)>0,函数f(x)在[0,3)单调递增,当x>3时,f′(x)<0,函数f(x)在(3,+∞)上单调递减,则当x=3时,函数f(x)取得极大值,即最大值,∴要使这次促销活动获利最多,则广告费用x应投入3万元.故答案为3.【点评】本题考查函数模型的选择及应用,训练了利用导数求最值,考查运算求解能力,是中档题.15.(5分)华人数学家李天岩和美国数学家约克给出了“混沌”的数学定义,由此发展的混沌理论在生物学、经济学和社会学领域都有重要作用在混沌理论中,函数的周期点是一个关键概念,定义如下:设f (x)是定义在R上的函数,对于x0∈R,令x n=f(x n﹣1)(n=1,2,3,…),若存在正整数k使得x k=x0,且当0<j<k时,x j≠x0,则称x0是f(x)的一个周期为k的周期点.给出下列四个结论:①若f(x)=e x﹣1,则f(x)存在唯一一个周期为1的周期点;②若f(x)=2(1﹣x),则f(x)存在周期为2的周期点;③若f(x)=则f(x)不存在周期为3的周期点;④若f(x)=x(1﹣x),则对任意正整数n,都不是f(x)的周期为n的周期点.其中所有正确结论的序号是①④.【分析】由周期点的定义,可得直线y=x与y=f(x)存在交点.分别对选项分析,结合函数的最值和函数值的符号,可得结论.【解答】解:对于x0∈R,令x n=f(x n﹣1)(n=1,2,3,…),若存在正整数k使得x k=x0,且当0<j<k时,x j≠x0,则称x0是f(x)的一个周期为k的周期点.对于①f(x)=e x﹣1,当k=1时,x1=f(x0)=e x0﹣1,因为直线y=x与y=f(x)只有一个交点(1,1),故①正确;对于②,f(x)=2(1﹣x),k=2时,x2=f(x1)=2(1﹣x1)=2[1﹣f(x0)]=4x0﹣2,由x2=x0,可得x0=,x1=,…,x n=,不满足当0<j<k时,x j≠x0,所以f(x)不存在周期为2的周期点,故②不正确;对于③,当,,,满足题意,故存在周期为3的周期点,故③错误,对于④,f(x)=x(1﹣x)=﹣(x﹣)2+,所以f(x)≤,即f(x)<,所以不是周期点,故④正确.故答案为:①④.【点评】本题考查函数的新定义的理解和运用,主要是周期点的定义,考查运算能力和推理能力,属于中档题.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(13分)已知函数由下列四个条件中的三个来确定:①最小正周期为π;②最大值为2;③;④f(0)=﹣2.(Ⅰ)写出能确定f(x)的三个条件,并求f(x)的解析式;(Ⅱ)求f(x)的单调递增区间.【分析】(Ⅰ)若函数f(x)满足条件④,则由f(0)=A sinφ=﹣2,推出与A>0,0<φ<矛盾,可得函数f(x)不能满足条件④,由条件①,利用周期公式可求ω=2,由条件②,可得A=2,由条件③,可得f(﹣)=0,结合范围0<φ<,可求φ=,可得函数解析式.(Ⅱ)利用正弦函数的单调性即可求解.【解答】解:(Ⅰ)若函数f(x)满足条件④,则f(0)=A sinφ=﹣2,这与A>0,0<φ<矛盾,故函数f(x)不能满足条件④,所以函数f(x)只能满足条件①,②,③,由条件①,可得=π,又因为ω>0,可得ω=2,由条件②,可得A=2,∴f(x)=2sin(2x+φ)由条件③,可得f(﹣)=2sin(﹣+φ)=0,∴sin(﹣+φ)=0,∴﹣+φ=kπ,k∈Z,∴φ=+kπ,k∈Z,又因为0<φ<,所以φ=,所以f(x)=2sin(2x+).(Ⅱ)令﹣+2kπ≤2x+≤+2kπ,k∈Z,∴﹣+kπ≤x≤+kπ,∴f(x)的单调递增区间为[﹣+kπ,+kπ],(k∈Z).【点评】本题主要考查了由y=A sin(ωx+φ)的部分图象确定其解析式,考查了正弦函数的图象和性质,属于基础题.17.(13分)如图,在四棱锥P﹣ABCD中,O是AD边的中点,PO⊥底面ABCD,PO=1.在底面ABCD 中,BC∥AD,CD⊥AD,BC=CD=1,AD=2.(Ⅰ)求证:AB∥平面POC;(Ⅱ)求二面角B﹣AP﹣D的余弦值.【分析】(Ⅰ)先证明四边形ABCO是平行四边形,即可得到AB∥OC,由线面平行的判定定理证明即可;(Ⅱ)建立空间直角坐标系,然后求出所需点的坐标,利用待定系数法求出平面BAP的法向量,由向量的夹角公式求解即可.【解答】(Ⅰ)证明:在四边形ABCD中,因为BC∥AD,,O是AD的中点,则BC∥AO,BC=AO,所以四边形ABCO是平行四边形,所以AB∥OC,又因为AB⊄平面POC,CO⊂平面POC,所以AB∥平面POC;(Ⅱ)连结OB,因为PO⊥平面ABCD,所以PO⊥OB,PO⊥OD,又因为点O时AD的中点,且,所以BC=OD,因为BC∥AD,CD⊥AD,BC=CD,所以四边形OBCD是正方形,所以BO⊥AD,建立空间直角坐标系如图所示,则A(0,﹣1,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,1),所以,设平面BAP的法向量为,则,即,令y=1,则x=z=﹣1,故,因为OB⊥平面PAD,所以是平面PAD的一个法向量,所以=,由图可知,二面角B﹣AP﹣D为锐角,所以二面角B﹣AP﹣D的余弦值为.【点评】本题考查了立体几何的综合应用,涉及了线面平行的判定定理的应用,在求解空间角的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.18.(14分)我国脱贫攻坚战取得全面胜利,现行标准下农村贫困人口全部脱贫,消除了绝对贫困.为了解脱贫家庭人均年纯收入情况,某扶贫工作组对A,B两个地区2019年脱贫家庭进行简单随机抽样,共抽取500户家庭作为样本,获得数据如表:A地区B地区100户150户2019年人均年纯收入超过10000元200户50户2019年人均年纯收入未超过10000元假设所有脱贫家庭的人均年纯收入是否超过10000元相互独立.(Ⅰ)从A地区2019年脱贫家庭中随机抽取1户,估计该家庭2019年人均年纯收入超过10000元的概率;(Ⅱ)在样本中,分别从A地区和B地区2019年脱贫家庭中各随机抽取1户,记X为这2户家庭中2019年人均年纯收入超过10000元的户数,求X的分布列和数学期望;(Ⅲ)从样本中A地区的300户脱贫家庭中随机抽取4户,发现这4户家庭2020年人均年纯收入都超过10000元.根据这个结果,能否认为样本中A地区2020年人均年纯收入超过10000元的户数相比2019年有变化?请说明理由.【分析】(Ⅰ)利用概率公式求解即可;(Ⅱ)确定X的取值,分别求解其概率,然后列出分布列求出数学期望即可;(Ⅲ)先通过2019年的样本数据可得0.012,然后据此说明理由即可.【解答】解:(Ⅰ)设事件C:从A地区2019年脱贫家庭中随机抽取1户,该家庭2019年人均纯收入超过10000元,从表格数据可知,A地区抽出的300户家庭中2019年人均年收入超过10000元的有100户,因此P(C)可以估计为=;(Ⅱ)设事件A:从样本中A地区2019年脱贫家庭中随机抽取1户,该家庭2019年人均纯收入超过10000元,设事件B:从样本中B地区2019年脱贫家庭中随机抽取1户,该家庭2019年人均纯收入超过10000元,由题意可知,X的可能取值为0,1,2,=,==,=,所以X的分布列为:X012P所以X的数学期望为E(X)==;(Ⅲ)设事件E为“从样本中A地区的300户脱贫家庭中随机抽取4户,这4户家庭2020年人均年纯收入都超过10000元”,假设样本中A地区2020年人均年纯收入超过10000元的户数相比2019年没有变化,则由2019年的样本数据可得0.012.答案示例1:可以认为有变化,理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为样本中A地区2020年人均年纯收入超过10000元的户数相比2019年发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化,理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.【点评】本题考查了离散型随机变量及其分布列以及离散型随机变量的期望,考查了逻辑推理能力与运算能力,属于中档题.19.(15分)已知椭圆C的短轴的两个端点分别为A(0,1),B(0,﹣1),离心率为.(Ⅰ)求椭圆C的方程及焦点的坐标;(Ⅱ)若点M为椭圆C上异于A,B的任意一点,过原点且与直线MA平行的直线与直线y=3交于点P,直线MB与直线y=3交于点Q,试判断以线段PQ为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.【分析】(Ⅰ)由题意可得b的值,再由离心率及a,b,c之间的关系求出a的值,进而求出椭圆的方程;(Ⅱ)设直线MA的方程,由题意可得直线OP的方程,与y=3联立求出P的坐标,将直线AM的方程与椭圆联立求出M的坐标,进而求出直线BM的方程,与y=3联立求出Q的坐标,设以PQ为直径的圆的方程过T点,可得数量积=0,求出T的坐标,即圆过的定点的坐标.【解答】解(Ⅰ)由题意可得b=1,e==,c2=a2﹣b2,解得a2=3,所以椭圆的方程为:+y2=1,且焦点坐标(±,0);(Ⅱ)设直线MA的方程为:y=kx+1,(k≠0)则过原点的直线且与直线MA平行的直线为y=kx,因为P是直线y=kx,y=3的交点,所以P(,3),因为直线AM的方程与椭圆方程+y2=1联立:,整理可得:(1+3k2)x2+6kx=0,可得x M=﹣,y M=+1=,即M(﹣,),因为B(0,﹣1),直线MB的方程为:y=﹣﹣1,联立,解得:y=3,x=﹣12k,由题意可得Q(﹣12k,3),设T(x0,y0),所以=(x0﹣,y0﹣3),=(x0+12k,y0﹣3),由题意可得以线段PQ为直径的圆过T点,所以=0,所以(x0﹣,y0﹣3)•(x0+12k,y0﹣3)=0,可得x02+12kx0﹣x0﹣36+y02﹣6y0+9=0,①,要使①成立,,解得:x0=0,y0=﹣3,或x0=0,y0=9,所以T的坐标(0,﹣3)或(0,9).【点评】本题考查求椭圆的方程及直线与椭圆的综合,以线段为直径的圆的方程恒过定点可得数量积为0的性质,属于中档题.20.(15分)已知函数f(x)=(ax﹣1)e x(a∈R).(Ⅰ)求f(x)的单调区间;(Ⅱ)若直线y=ax+a与曲线y=f(x)相切,求证:a∈(﹣1,).【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(Ⅱ)求出函数的导数,根据直线和f(x)相切,得到a=,结合y=的单调性证明结论成立即可.【解答】解:(Ⅰ)f′(x)=(ax+a﹣1)e x,令f′(x)=0,得ax=1﹣a,当a=0时,f′(x)=﹣e x<0,y=f(x)在R单调递减,当a>0时,x,f′(x),f(x)的变化如下:x(﹣∞,)(,+∞)f′(x)﹣0+f(x)递减极小值递增当a<0时,x,f′(x),f(x)的变化如下:x(﹣∞,)(,+∞)f′(x)+0﹣f(x)递增极大值递减综上:当a=0时,y=f(x)在R单调递减,当a>0时,y=f(x)的单调递增区间是(﹣∞,),单调递减区间是(,+∞),当a<0时,y=f(x)的单调递增区间是(﹣∞,),单调递减区间是(,+∞);(Ⅱ)证明:由题意得f′(x)=(ax+a﹣1)e x,设直线y=ax+a与曲线y=f(x)相切于点(x0,y0),则,由①﹣②得﹣a=ax0,即a(+x0)=0,若a=0,则f(x)=﹣e x,ax+a=0,直线y=0与曲线y=f(x)不相切,不符合题意,所以a≠0,所以+x0=0,③,令φ(x)=e x+x,则φ′(x)=e x+1>0,故φ(x)单调递增,∵φ(﹣)=﹣>0,φ(﹣1)=e﹣1﹣1<0,故存在唯一x0∈(﹣1,﹣)使得+x0=0,将③代入①得a+ax0﹣x0+a=0,故a==,易知在(﹣1,﹣)内y=x++1单调递减,且x++1<0,故y=在(﹣1,﹣)内单调递增,∵x0∈(﹣1,﹣),∴﹣1<a<﹣,故a∈(﹣1,﹣).【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及切线方程问题,考查转化思想,分类讨论思想,是难题.21.(15分)设数列A m:a1,a2,…,a m(m≥2),若存在公比为q的等比数列B m+1:b1,b2,…,b m+1,使得b k<a k<b k+1,其中k=1,2,…,m,则称数列B m+1为数列A m的“等比分割数列”.(Ⅰ)写出数列A4:3,6,12,24的一个“等比分割数列”B5;(Ⅱ)若数列A10的通项公式为a n=2n(n=1,2,…,10),其“等比分割数列”B11的首项为1,求数列B11的公比q的取值范围;(Ⅲ)若数列A m的通项公式为a n=n2(n=1,2,…,m),且数列A m存在“等比分割数列”,求m的最大值.【分析】(Ⅰ)根据“等比分割数列”的定义即可求解;(Ⅱ)根据定义可得q n﹣1<2n<q n(n=1,2,3,…,10),从而求得q>2,且q n﹣1<2n(n=1,2,3,…,10),n=1时显然成立,当n=2,3,…,10时,将q n﹣1<2n转化为q<,利用指数函数的单调性即可求得q的取值范围;(Ⅲ)设B m+1是数列A m的“等比分割数列”,首项为b1,公比为q,由定义可得b1q n﹣1<n2<b1q n(n =1,2,…,m),设m≥6,解不等式可推出矛盾,可得m≤5,当m=5时,取b1=0.99,q=2.09,满足定义,从而得解.【解答】解:(Ⅰ)根据定义可得数列A4:3,6,12,24的一个“等比分割数列”B5:2,4,8,16,32.(答案不唯一)(Ⅱ)由题意可得,q n﹣1<2n<q n(n=1,2,3,…,10),所以q>2,且q n﹣1<2n(n=1,2,3,…,10),当n=1时,1<2成立;当n=2,3,…,10时,应有q<成立,因为y=2x在R上单调递增,所以=随着n的增大而减小,故q<,综上,q的取值范围是(2,).(Ⅲ)设B m+1是数列A m的“等比分割数列”,首项为b1,公比为q,由题意,应有b1q n﹣1<n2<b1q n(n=1,2,…,m),显然b1>0,q>0,设m≥6,此时有b1<1<b1q<4<b1q2<9<b1q3<16<b1q4<25<b1q5<36<b1q6<….所以>,可得q3>9,所以q>>2,又b1q3>9,所以b1q5>9×22=36,与b1q5<36<b1q6矛盾,故m≤5,又当m=5时,取b1=0.99,q=2.09,可得0.99<1<0.99×2.09<4<0.99×2.092<9<0.99×2.093<16<0.99×2.094<25<0.99×2.095,所以m=5时成立,综上,m的最大值为5.【点评】本题主要考查新定义,数列的应用,考查转化思想与运算求解能力,属于难题.。

2023年北京朝阳区高三一模数学试卷(解析版)

2023年北京朝阳区高三一模数学试卷(解析版)

2023年北京朝阳区高三一模数学试卷(详解)一、单选题2.A.B.C.D.【答案】【解析】若,则( )A 【分析】根据不等式的性质判断A ,取特殊值判断BCD.【详解】,,即,故A 正确;取,则不成立,故B 错误;取,则不成立,故C 错误;取,则,故D 错误.故选:A1.A.B.C.D.【答案】【解析】已知集合,集合,则( )C 【分析】化简,再由集合并集的运算即可得解.【详解】由题意,,所以.故选:C.3.A.5B.6C.7D.8【答案】【解析】设,若,则( )A 【分析】先求出展开式第项,再由列出方程,即可求出的值.【详解】展开式第项,∵,∴,∴.故选:A.4.A. B.C.D.【答案】【解析】已知点,.若直线上存在点P ,使得,则实数k 的取值范围是( )D 【分析】将问题化为直线与圆有交点,注意直线所过定点与圆的位置关系,再应用点线距离公式列不等式求k 的范围.【详解】由题设,问题等价于过定点的直线与圆有交点,又在圆外,所以只需,可得.故选:D5.A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】【解析】已知函数,则“”是“”的( )C 【分析】由的奇偶性、单调性结合充分条件、必要条件的概念即可得解.【详解】因为定义域为,,所以为奇函数,且为上的增函数.当时,,所以,即“”是“”的充分条件,当时,,由的单调性知,,即,所以“”是“”成立的必要条件.综上,“”是“”的充要条件.故选:C6.A.B.C.2D.或2过双曲线的右焦点F 作一条渐近线的垂线,垂足为A .若(O 为坐标原点),则该双曲线的离心率为( )【答案】【解析】B 【分析】由题意易得所以,从而,再由求解.【详解】解:在中,因为,所以,则,所以,故选:B7.A.B.C.D.【答案】【解析】在长方体中,与平面相交于点M ,则下列结论一定成立的是( )C 【分析】根据平面交线的性质可知,又平行线分线段成比例即可得出正确答案,对于ABD 可根据长方体说明不一定成立.【详解】如图,连接,交于,连接,,在长方体中,平面与平面的交线为,而平面,且平面,所以,又,,所以,故C 正确.对于A ,因为长方体中与不一定垂直,故推不出,故A 错误;对于B ,因为长方体中与不一定相等,故推不出,故B 错误;对于D ,由B 知,不能推出与垂直,而是中线,所以推不出,故D 错误.故选:C8.A.的一个周期为B.的最大值为C.的图象关于直线对称D.在区间上有3个零点【答案】【解析】声音是由于物体的振动产生的能引起听觉的波,我们听到的声音多为复合音.若一个复合音的数学模型是函数,则下列结论正确的是( )D 【分析】A.代入周期的定义,即可判断;B.分别比较两个函数分别取得最大值的值,即可判断;C.代入对称性的公式,即可求解;D.根据零点的定义,解方程,即可判断.【详解】A.,故A 错误;B.,当,时,取得最大值1,,当,时,即,时,取得最大值,所以两个函数不可能同时取得最大值,所以的最大值不是,故B 错误;C.,所以函数的图象不关于直线对称,故C 错误;D.,即,,即或,解得:,所以函数在区间上有3个零点,故D 正确.故选:D9.A.5B.10C.13D.26【答案】【解析】如图,圆M 为的外接圆,,,N 为边BC 的中点,则( )C 【分析】由三角形中线性质可知,再由外接圆圆心为三角形三边中垂线交点可知,同理可得,再由数量积运算即可得解.【详解】 是BC 中点,,M 为的外接圆的圆心,即三角形三边中垂线交点,,同理可得,.故选:C10.A.14B.15C.16D.17【答案】【解析】已知项数为的等差数列满足,.若,则k 的最大值是( )B 【分析】通过条件,,得到,再利用条件得到,进而得到不等关系:,从而得到的最大值.【详解】由,,得到,即,当时,恒有,即,所以,由,得到,所以,,整理得到:,所以.故选:B二、填空题11.【答案】【解析】【踩分点】若复数,则 .根据以及复数商的模等于复数的模的商,计算可得答案.【详解】因为,所以.故答案为:【点睛】本题考查了复数模的性质,考查了复数的模长公式,属于基础题.12.【答案】函数的值域为 .【解析】【踩分点】【分析】利用对数函数和指数函数的图象和性质分别求和的值域,再取并集即可.【详解】因为当时,,当时,,所以函数的值域为,故答案为:13.【答案】【解析】【踩分点】经过抛物线的焦点的直线与抛物线相交于A ,B 两点,若,则(O 为坐标原点)的面积为 .【分析】求出焦点坐标,设直线方程,联立抛物线方程,韦达定理,利用弦长求出直线方程,可求得O 点到直线距离,进一步求出三角形面积.【详解】由题意知,抛物线的焦点,设,,直线AB :,联立方程,消去x 可得,,韦达定理得,因为,所以,即,所以直线AB :,所以点O 到直线AB 的距离为,所以.故答案为:14.【答案】【解析】某军区红、蓝两方进行战斗演习,假设双方兵力(战斗单位数)随时间的变化遵循兰彻斯特模型:,其中正实数,分别为红、蓝两方初始兵力,t 为战斗时间;,分别为红、蓝两方t 时刻的兵力;正实数a ,b 分别为红方对蓝方、蓝方对红方的战斗效果系数;和分别为双曲余弦函数和双曲正弦函数.规定当红、蓝两方任何一方兵力为0时战斗演习结束,另一方获得战斗演习胜利,并记战斗持续时长为T .给出下列四个结论:①若且,则;②若且,则;③若,则红方获得战斗演习胜利;④若,则红方获得战斗演习胜利.其中所有正确结论的序号是 .①②④【分析】对于①根据已知条件利用作差法比较大小即可得出,所以①正确;对于②,利用①中结论可得蓝方兵力先为0,即解得,②正确;对于③和④,若要红方获得战斗演习胜利,分别解出红、蓝两方兵力为0时所用时间、,比较大小即可知③错误,④正确.【详解】对于①,若且,则,即,所以,由可得,即①正确;对于②,当时根据①中的结论可知,所以蓝方兵力先为0,即,化简可得,即,两边同时取对数可得,【踩分点】即,所以战斗持续时长为,所以②正确;对于③,若红方获得战斗演习胜利,则红方可战斗时间大于蓝方即可,设红方兵力为0时所用时间为,蓝方兵力为0时所用时间为,即,可得同理可得即,解得又因为都为正实数,所以可得,红方获得战斗演习胜利;所以可得③错误,④正确.故答案为:①②④.三、解答题15.【答案】【解析】在中,,,.(1)若,则;(2)当(写出一个可能的值)时,满足条件的有两个.(答案不唯一)【分析】(1)求出,再由余弦定理求解即可;(2)根据已知两边及一边的对角求三角形解得情况,建立不等式求出的范围即可得解.【详解】(1),,,,由余弦定理,,即,解得.【踩分点】(2)因为,,所以当时,方程有两解,即,取即可满足条件(答案不唯一)16.【答案】【解析】如图,在三棱柱中,平面ABC ,D ,E 分别为AC ,的中点,,.(1)求证:平面BDE ;(2)求直线DE 与平面ABE 所成角的正弦值;(3)求点D 到平面ABE 的距离.(1)证明见解析;(2);(3).【分析】(1)根据线面垂直的性质得到,根据等腰三角形三线合一的性质得到,然后利用线面垂直的判定定理证明即可;(2)利用空间向量的方法求线面角即可;(3)利用空间向量的方法求点到面的距离即可.【详解】(1)在三棱柱中,,为,的中点,∴,∵平面,∴平面,∵平面,∴,在三角形中,,为中点,∴,∵,平面,∴平面.(2)如图,以为原点,分别以为轴建立空间直角坐标系,在直角三角形中,,,∴,,,,,,,,设平面的法向量为,,令,则,,所以,设直线与平面所成角为,所以.(3)设点到平面的距离为,所以.【踩分点】17.设函数,从条件①、条件②、条件③这三个条件中选择两个作为已知,使得存在.(1)求函数的解析式;(2)求在区间上的最大值和最小值.条件①:;条件②:的最大值为;条件③:的图象的相邻两条对称轴之间的距离为.注:如果选择的条件不符合要求,得0分;如果选择多组条件分别解答,按第一组解答计分.【答案】【解析】【踩分点】(1)选择条件②③,(2)最大值为,最小值为.【分析】(1)由正弦函数和余弦函数的奇偶性可排除条件①,先利用辅助角公式化简,再根据正弦函数的图象和性质即可求解;(2)利用整体代入法,结合正弦函数的图象和性质即可求解.【详解】(1)若选择条件①,因为,所以,由可得对恒成立,与矛盾,所以选择条件②③,由题意可得,设,由题意可得,其中,,因为的最大值为,所以,解得,所以,,由的图象的相邻两条对称轴之间的距离为可得,所以解得,所以.(2)由正弦函数的图象可得当时,,,所以在区间上的最大值为,最小值为.18.【答案】【解析】某地区组织所有高一学生参加了“科技的力量”主题知识竟答活动,根据答题得分情况评选出一二三等奖若干,为了解不同性别学生的获奖情况,从该地区随机抽取了500名参加活动的高一学生,获奖情况统计结果如下:性别人数获奖人数一等奖二等奖三等奖男生200101515女生300252540假设所有学生的获奖情况相互独立.(1)分别从上述200名男生和300名女生中各随机抽取1名,求抽到的2名学生都获一等奖的概率;(2)用频率估计概率,从该地区高一男生中随机抽取1名,从该地区高一女生中随机抽取1名,以X 表示这2名学生中获奖的人数,求X 的分布列和数学期望;(3)用频率估计概率,从该地区高一学生中随机抽取1名,设抽到的学生获奖的概率为;从该地区高一男生中随机抽取1名,设抽到的学生获奖的概率为;从该地区高一女生中随机抽取1名,设抽到的学生获奖的概率为,试比较与的大小.(结论不要求证明)(1)(2)分布列见解析,期望(3)【分析】(1)直接计算概率;(2)的所有可能取值为0,1,2,求出高一男生获奖概率和高一女生获奖概率,再计算概率得到分布列,最后计算期望即可;(3)计算出,,比较大小即可.【详解】(1)设事件为“分别从上述200名男生和300名女生中各随机抽取1名,抽到的2名学生都获一等奖”,则,【踩分点】(2)随机变量的所有可能取值为0,1,2.记事件为“从该地区高一男生中随机抽取1名,该学生获奖”,事件为“从该地区高一女生中随机抽取1名,该学生获奖”.由题设知,事件,相互独立,且估计为估计为.所以,,.所以的分布列为12故的数学期望(3),理由:根据频率估计概率得,由(2)知,,故,则.19.【答案】已知函数.(1)求的单调区间;(2)若对恒成立,求a 的取值范围;(3)证明:若在区间上存在唯一零点,则.(1)答案见解析(2)(3)证明见解析【解析】【分析】(1)讨论、,结合导数的符号确定单调区间;(2)由,讨论、研究导数符号判断单调性,进而判断题设不等式是否恒成立,即可得参数范围;(3)根据(2)结论及零点存在性确定时在上存在唯一零点,由零点性质及区间单调性,应用分析法将问题转化为证在上恒成立,即可证结论.【详解】(1)由题设,当时,,则在R上递增;当时,令,则,若,则,在上递减;若,则,在上递增;综上,时的递增区间为R,无递减区间;时的递减区间为,递增区间为.(2)由,当时,在上恒成立,故在上递增,则,满足要求;当时,由(1)知:在上递减,在上递增,而,所以在上递减,在上递增,要使对恒成立,所以,只需,令且,则,即递减,所以,故在上不存在;综上,(3)由(2)知:时,在恒有,故不可能有零点;【踩分点】时,在上递减,在上递增,且,所以上,无零点,即,且趋向于正无穷时趋向正无穷,所以,在上存在唯一,使,要证,只需在上恒成立即可,令,若,则,令,则,即在上递增,故,所以,即在上递增,故,所以在上恒成立,得证;故,得证.【点睛】关键点点睛:第三问,通过讨论确定在某一单调区间上存在唯一零点的a 的范围后,应用分析法证恒成立即可.20.【答案】【解析】已知椭圆经过点.(1)求椭圆E 的方程及离心率;(2)设椭圆E 的左顶点为A ,直线与E 相交于M ,N 两点,直线AM 与直线相交于点Q .问:直线NQ 是否经过x 轴上的定点?若过定点,求出该点坐标;若不过定点,说明理由.(1)椭圆E 的方程为,离心率为.(2)直线过定点.【分析】(1)根据椭圆经过点即可求得椭圆方程,利用离心率公式即可求离心率;(2)表示出直线的方程为,即可求得点,再利用点斜式表示得直线的方程为,即可求出与轴的交点,利用韦达定理等量替换即可求出直线NQ 恒过的定点.【详解】(1)因为椭圆经过点,所以,解得,所以椭圆E的方程为,因为所以,所以离心率为.(2)直线过定点,理由如下:由可得,显然,设则有直线的方程为令,解得,则,所以直线的斜率为且,所以直线的方程为令,则所以直线过定点.【点睛】关键点点睛:本题第二问的关键在于利用直线的点斜式方程求的点点的坐标,再利用点斜式方程表示出直线与轴的交点横坐标,利用韦达定理等量代换求恒过定点.【踩分点】21.【答案】【解析】已知有穷数列满足.给定正整数m ,若存在正整数s ,,使得对任意的,都有,则称数列A 是连续等项数列.(1)判断数列是否为连续等项数列?是否为连续等项数列?说明理由;(2)若项数为N 的任意数列A 都是连续等项数列,求N 的最小值;(3)若数列不是连续等项数列,而数列,数列与数列都是连续等项数列,且,求的值.(1)数列是连续等项数列,不是连续等项数列,理由见解析;(2)11(3)0【分析】(1)根据新定义直接验证数列,1,0,1,0,1,,可得结论;(2)先根据新定义证明时,数列一定是连续等项数列,再验证时,不是连续等项数列即可;(3)由都是连续等项数列可得,,再由反证法证得,即可得出的值.【详解】(1)数列是连续等项数列,不是连续等项数列,理由如下:因为,所以是连续等项数列.因为为;为;为;为,所以不存在正整数,使得.所以A 不是连续等项数列.(2)设集合,则中的元素个数为.因为在数列中,所以.若,则.所以在这个有序数对中,至少有两个有序数对相同,即存在正整数,使得.所以当项数时,数列一定是连续等项数列.若,数列不是连续等项数列.若,数列不是连续等项数列.若,数列不是连续等项数列.若,数列不是连续等项数列.若,数列不是连续等项数列.若,数列不是连续等项数列.若,数列不是连续等项数列.若,数列不是连续等项数列.所以的最小值为11.(3)因为与都是连续等项数列,所以存在两两不等的正整数,使得,下面用反证法证明.假设,因为,所以中至少有两个数相等.不妨设,则所以是连续等项数列,与题设矛盾.所以.所以.【点睛】方法点睛:对于新定义问题,一般先要读懂定义内容,第一问一般是给具体的函数或数列验证是否满足所给定义,只需要结合新定义,验证即可,在验证过程中进一步加强对新定义的理解,第二步一般在第一步强化理解的基础上,所给函数或数列更加一般或复杂,进一步利用新定义处理,本题第三问根据与都是连续等项数列得出,,利用反证法求是关键点.【踩分点】。

2021-2022学年北京市朝阳区高三一模数学试卷参考答案

2021-2022学年北京市朝阳区高三一模数学试卷参考答案

北京市朝阳区高三年级第二学期质量检测一数学参考答案 2022.3一、选择题:(本题满分40分)二、填空题:(本题满分25分)三、解答题:(本题满分85分) (16)(本小题13分)解:(Ⅰ)因为sin cos 0a C c A +=,由正弦定理sin sin a cA C =,得sin sin sin cos 0A C C A +=,即sin (sin cos )0C A A +=. 因为(0,)C ∠∈π,所以sin 0C ≠. 所以sin cos 0A A +=. 所以2A π∠≠.所以cos 0A ≠. 所以sin tan 1cos AA A ==-.所以4A 3π∠=. ········································································· 6分 (Ⅱ)选条件②③:由正弦定理sin sin a bA B =,及a =sin B ,sin 4=,所以b . 因为3=4A π∠,所以(0,)4B π∠∈,所以cos B=.所以sin sin()sin cos cos sinC A B A B A B=+=+=(+.所以11sin122ABCS ab C===△. ······························· 13分选条件①③:由余弦定理2222cosa b c bc A=+-,及b=,得222102c c=++解得c=.所以2b=.所以11sin2122ABCS bc A==⨯=△. ··································· 13分(17)(本小题13分)解:(Ⅰ)由题意得,(0.0060.0180.0320.0200.010)101t+++++⨯=,解得0.014t=.因为0.06450.14550.18650.32750.20850.109572.6⨯+⨯+⨯+⨯+⨯+⨯=,所以估计全校学生的平均成绩为72.6.···········································4分(Ⅱ)X的所有可能取值为0,1,2,3.3103152491(0)CP XC===,211053151(14)59C CP XC===,121053151(22)9C CP XC===,35315291(3)CP XC===.所以X的分布列为所以X 的数学期望为2445202()0123191919191E X =⨯+⨯+⨯+⨯=. ··········· 10分 (Ⅲ)()()D X D Y =. ········································································ 13分 (18)(本小题14分)解:(Ⅰ)因为AC DB ⊥,EF DB ∥,所以AC EF ⊥.所以1A H EF ⊥,HC EF ⊥.又因为1A H ⊂平面1A HC ,HC ⊂平面1A HC ,1A HHC H =,所以EF ⊥平面1A HC . ····························································· 4分(Ⅱ)(i )因为平面1A EF ⊥平面BCDFE ,平面1A EF平面BCDFE EF =,1A H ⊂平面1A EF ,1A H EF ⊥,所以1A H ⊥平面BCDFE . 因为HC ⊂平面BCDFE , 所以1A H HC ⊥. 又因为HC EF ⊥,如图建立空间直角坐标系H xyz -, 则(0,0,0)H ,1(0,0,2)A ,(0,3,0)C , (1,1,0)B ,(1,1,0)D -,2(,0,0)3F -.所以1(0,3,2)A C =-,(1,2,0)DC =. 设平面1A DC 的一个法向量为(,,)x y z =n , 则10,0,A C DC ⎧⋅=⎪⎨⋅=⎪⎩n n 即320,20.y z x y -=⎧⎨+=⎩ 令3z =,则2y =,4x =-. 所以(4,2,3)=-n .由(I )可知,EF ⊥平面1A HC ,所以平面1A HC 的一个法向量是(1,0,0)=m .所以cos ,||||n m n m n m ⋅〈〉===. 由题可知,二面角1D AC H --为锐角,. ·································································· 10分 (ii )设(,,)N x y z 是线段1A F 上一点,设11A N A F λ=(0)[,1]λ∈.则2(,,2)(,0,2)3x y z λ-=--.解得23x λ=-,0y =,22z λ=-.所以2(1,1,22)3NB λλ=+-.因为2104(1)23(22)8033NB λλλ⋅=-+++-=-<n ,所以0NB ≠⋅n .所以直线BN 与平面1A DC 相交. ················································· 14分(19)(本小题15分) 解:(Ⅰ)()1e x f x a '=-,因为曲线()y f x =在点(1,(1))f 处的切线与x 轴重合, 所以(1)1e =0f a '=-. 所以1=ea , 经检验符合题意. ······················································· 4分 (Ⅱ)①当0a 时,()e 10x f x a '=-+>,函数()f x 在区间(,)-∞+∞上单调递增,所以()f x 在区间(1,)+∞上无极值. 所以0a 不合题意.②当0a >时,令()e 10x f x a '=-+=,解得1=ln x a. 当1<ln x a 时,()0f x '>,函数()f x 在区间1(,ln )a -∞上单调递增; 当1>lnx a 时,()0f x '<,函数()f x 在区间1(ln ,)a+∞上单调递减. 所以当1=lnx a时,函数()f x 取得极大值.令1ln1a>,解得10<e a <.所以a 的取值范围是1(0,)e. ···················································· 10分(Ⅲ)由题可知,2()(2)2e x g x f x x a -=-=--,10<ea <. 则2()e 1x g x a -'=-.令()0g x '=,即2e 10x a --=,解得=2+ln x a . 因为10<ea <,则ln 1a <-,所以2+ln 1a <. 当(1,)x ∈+∞,()0g x '<,所以函数()g x 在区间(1,)+∞上单调递减.…15分(20)(本小题15分)解:(Ⅰ)由已知得半焦距1c =,因为椭圆C 过点3(1,)2,由椭圆定义得352422a =+=,所以2a =. 又因为222a b c =+,所以b所以椭圆方程为22143x y +=.离心率e 12c a ==. ···························· 5分 (Ⅱ)依题可设直线:4l x my =+.由224,1,43x my x y =+⎧⎪⎨+=⎪⎩得22(34)24360m y my +++=.令222357640144()144(4)m m m ∆-=-=+>,得2m >或2m <-. 设2121(,),(,)A x y B x y ,21y y ≠, 则1212222436,3434m y y y y m m +=-=++, 所以121223()my y y y =-+.由题得23(4,),(1,)M y Q m-,则22113,43MA MQ y y y m k k x +-=-=.则21212112112123()3()3()333(4)()()MA MQ k y y y y y y k my y y x y my y m m---===---+-+2121121123()3()233()3()22y y y y y y y y y =---==+-.···································· 15分(21)(本小题15分)解:(Ⅰ){0,5,10,15,20}X X +=,{2,1,0,1,2,3,4,5,6,7,8,9,10,11,12}X Y +=--.··································· 4分 (Ⅱ)因为111213123n n n n n x x x x x x x x x x x x x x +<+<+<<+<+<+<<+,所以X X +中至少包含21n -个元素,所以||21X X n +-. 因为||X n =,由题得||2X X n +<, 又因为||X X +是整数, 所以||21X X n +-. 所以||21X X n +=-. 所以X X +中的所有元素为111213123,,,,,,,,n n n n n x x x x x x x x x x x x x x +++++++.又因为1122121223,,,,,,,,n n n n n x x x x x x x x x x x x x x -+++++++是X X +中的21n -个元素,且2112212132n n n n n x x x x x x x x x x x x x x -+<+<+<<+<+<+<<+,所以121j j x x x x -+=+(2,3,,j n =), 即121j j x x x x --=-(2,3,,j n =), 所以112210n n n n x x x x x x ----=-==->.所以数列12,,,n x x x 是等差数列. ················································· 9分 (Ⅲ)因为{|}B k m k m =∈-Z ,所以||21B m =+.设1(21)n x x m q r -=++,其中,q r ∈N ,02r m . 设{}i a 是首项为1x m +,公差为21m +的等差数列, 即1(1)(21)i a x m i m =++-+,i *∈N . 令集合121{,,,}q A a a a +=,则111||111121||||n n n x x r x x r x xA q mB B -----=+=+=+++.所以1111{,1,2,,(21)2}A B x x x x m q m +=+++++,即11{|(21)2}A B t x t x m q m +=∈+++Z . 因为11(21)(21)2n x x m q r x m q m =++++++, 所以112{|}{,,,}n n A B t x t x x x x +⊇∈⊇Z .所以X A B ⊆+. ······································································· 15分。

北京市朝阳区高三一模理科数学试题及答案

北京市朝阳区高三一模理科数学试题及答案

北京市朝阳区高三一模理科数学试题及答案一、选择题(共5小题;共25分)1. 若集合,集合,则等于A. B. C. D.2. 已知平面向量,满足:,,则与的夹角为______A. B. C. D.3. 如图,设区域,向区域内随机投一点,且投入到区域内任一点都是等可能的,则点落入到阴影区域的概率为______A. B. C. D.4. 在中,,“ ” 是“ ”的______A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 执行如图所示的程序框图,输出的值为______A. B. C. D.二、填空题(共1小题;共5分)6. 双曲线的一个焦点到其渐近线的距离是,则 ______;此双曲线的离心率为______.三、解答题(共2小题;共26分)7. 已知函数,.(1)求的值及函数的最小正周期;(2)求函数在上的单调减区间.8. 已知函数,.(1)求函数的单调区间;(2)若函数在区间的最小值为,求的值.四、选择题(共3小题;共15分)9. 复数在复平面内对应的点位于______A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. 已知函数.下列命题:①函数的图象关于原点对称;②函数是周期函数;③当时,函数取最大值;④函数的图象与函数的图象没有公共点,其中正确命题的序号是______A. ①③B. ②③C. ①④D. ②④11. 直线与圆交于不同的两点,,且,其中是坐标原点,则实数的取值范围是______A.B.C.D.五、填空题(共4小题;共20分)12. 在各项均为正数的等比数列中,,,则该数列的前项和为______.13. 在极坐标系中,为曲线上的点,为曲线上的点,则线段长度的最小值是______.14. 某三棱锥的三视图如图所示,则这个三棱锥的体积为______;表面积为______.15. 有标号分别为、、的红色卡片张,标号分别为、、的蓝色卡片张.现将全部的张卡片放在行列的格内(如图).若颜色相同的卡片在同一行,则不同的放法种数为______.(用数字作答)六、解答题(共2小题;共26分)16. 已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)直线与椭圆交于,两点,点是椭圆的右顶点.直线与分别与轴交于点、,试问以线段为直径的圆是否过轴上的定点?若是,求出定点坐标;若不是,说明理由.17. 从中这个数中取个数组成递增等差数列,所有可能的递增等差数列的个数记为.(1)当,时,写出所有可能的递增等差数列及的值;(2)求;(3)求证:.七、填空题(共1小题;共5分)18. 如图,在四棱锥中,底面.底面为梯形,,,,.若点是线段上的动点,则满足的点的个数是______.答案第一部分1. C2. B3. A4. B5. A第二部分6. ;第三部分7. (1)..函数的最小正周期为.(2)令得又因为,所以.函数在上的单调减区间为.8. (1)求导,得.(1)当时,,故函数在上单调递减.(2)当时,恒成立,所以函数在上单调递减.(3)当时,令,又因为,解得.①当时,,所以函数在单调递减.②当时,,所以函数在单调递增.综上所述,当时,函数的单调减区间是,当时,函数的单调减区间是,单调增区间为.(2)(1)当时,由(Ⅰ)可知,在上单调递减,所以的最小值为,解得,舍去.(2)当时,由(Ⅰ)可知,①当,即时,函数在上单调递增,所以函数的最小值为,解得.②当,即时,函数在上单调递减,在上单调递增,所以函数的最小值为,解得,舍去.③当,即时,函数在上单调递减,所以函数的最小值为,得,舍去.综上所述,.第四部分9. B 10. C11. D第五部分12.13.14. ;15.第六部分16. (1)由题意,得解得,.所以椭圆的方程是.(2)以线段为直径的圆过轴上的定点.由方程组消去,得由点在椭圆内部,得恒成立.设,,则有而,则直线的方程为直线的方程为从而,.若以线段为直径的圆过轴上的定点,则等价于恒成立.由,,得恒成立.因为所以解得.故以线段为直径的圆过轴上的定点.17. (1)符合要求的递增等差数列为,共个.所以.(2)设满足条件的一个等差数列的首项为,公差为,.根据等差数列的通项公式,得则的可能取值为.对于给定的,当分别取时,可得递增等差数列个(如时,,当分别取时,可得递增等差数列个:.其他同理).所以当取时,可得符合要求的等差数列的个数为(3)设等差数列首项为,公差为,则得记的整数部分是,则即,则的可能取值为.对于给定的,当分别取时,可得递增等差数列个.当取时,则符合要求的等差数列的个数为由,得又因为所以从而即.第七部分18.。

北京朝阳区高三一模数学(理)试题答案

北京朝阳区高三一模数学(理)试题答案

北京市朝阳区高三年级第一次综合练习数学学科测试答案(理工类)三、解答题: (15)(本小题满分13分)解:(Ⅰ)1cos 1()sin 222x f x x ωω-=-+1sin cos 22x x ωω=+ sin()6x ωπ=+. …………………………………………4分因为()f x 最小正周期为π,所以2ω=. ………………………………6分 所以()sin(2)6f x x π=+.由222262k x k ππππ-≤+≤π+,k ∈Z ,得36k x k πππ-≤≤π+. 所以函数()f x 的单调递增区间为[,36k k πππ-π+],k ∈Z . ………………8分(Ⅱ)因为[0,]2x π∈,所以72[,]666x πππ+∈, …………………………………10分所以1sin(2)126x π-≤+≤. ………………………………………12分所以函数()f x 在[0,]2π上的取值范围是[1,12-]. ……………………………13分(16)(本小题满分13分)解:(Ⅰ)设事件A :在一次试验中,卡片上的数字为正数,则 21()42P A ==. 答:在一次试验中,卡片上的数字为正数的概率是12.…………………………3分(Ⅱ)设事件B :在四次试验中,至少有两次卡片上的数字都为正数.由(Ⅰ)可知在一次试验中,卡片上的数字为正数的概率是12. 所以041344111111()1[()()()]222216P B C C =-⋅+⋅=. 答:在四次试验中,至少有两次卡片上的数字都为正数的概率为1116.……………7分 (Ⅲ)由题意可知,ξη,的可能取值为1,01-,,2,所以随机变量X 的可能取值为2,101,--,,,24.21(2)448P X=-==⨯; 21(1)448P X=-==⨯; 77(0)4416P X===⨯; 21(=1)448P X ==⨯;21(=2)448P X ==⨯; 11(=4)4416P X ==⨯.所以随机变量X 的分布列为所以1()2101881688164E X =-⨯-⨯+⨯+⨯+⨯+⨯=24.……………………13分 (17)(本小题满分14分) 证明:(Ⅰ)由已知,PE PFPB PCλ==, 所以 EF BC . 因为BCAD ,所以EFAD .而EF ⊄平面PAD ,AD ⊂平面PAD , 所以EF平面PAD . ……………………………………………………4分(Ⅱ)因为平面ABCD ⊥平面PAC ,平面ABCD平面PAC AC =,且PA AC ⊥,所以PA ⊥平面ABCD . 所以PA AB ⊥,PA AD ⊥. 又因为AB AD ⊥,所以,,PA AB AD 两两垂直. ……………………………………………………5分如图所示,建立空间直角坐标系, 因为1AB BC ==,2PA AD ==, 所以()()0,0,01,0,0,A B ,()()()1,1,0,0,2,0,0,0,2C D P .当12λ=时,F 为PC 中点, 所以11(,,1)22F ,所以11(,,1),(1,1,0)22BF CD =-=-.设异面直线BF 与CD 所成的角为θ,所以11|(,,1)(1,1,0)|cos |cos ,|3BF CD θ-⋅-=〈〉==, 所以异面直线BF 与CD .…………………………………9分 (Ⅲ)设000(,,)F x y z ,则000(,,2),(1,1,2)PF x y z PC =-=-. 由已知PF PC λ=,所以000(,,2)(1,1,2)x y z λ-=-,所以000,,22.x y z λλλ=⎧⎪=⎨⎪=-⎩ 所以(,,22)AF λλλ=-.设平面AFD 的一个法向量为1111(,,)x y z =n ,因为()0,2,0AD =,所以110,0.AF AD n n ⎧⋅=⎪⎨⋅=⎪⎩ 即1111(22)0,20.x y z y λλλ++-=⎧⎨=⎩令1z λ=,得1(22,0,)λλn =-.设平面PCD 的一个法向量为2222(,,)x y z =n ,因为()()0,2,2,1,1,0PD CD =-=-,所以220,0.PD CD n n ⎧⋅=⎪⎨⋅=⎪⎩ 即2222220,0. y z x y -=⎧⎨-+=⎩令21x =,则2(1,1,1)=n .若平面AFD ⊥平面PCD ,则120n n ⋅=,所以(22)0λλ-+=,解得23λ=. 所以当23λ=时,平面AFD ⊥平面PCD .…………………………………………14分 (18)(本小题满分1 3分)解:函数定义域为{}0x x >, 且(2)(1)()2(2).a x a x f x x a x x--'=-++=…………2分 ①当0a ≤,即02a≤时,令()0f x '<,得01x <<,函数()f x 的单调递减区间为(0,1), 令()0f x '>,得1x >,函数()f x 的单调递增区间为(1,)+∞.②当012a <<,即02a <<时,令()0f x '>,得02ax <<或1x >, 函数()f x 的单调递增区间为(0,)2a,(1,)+∞.令()0f x '<,得12a x <<,函数()f x 的单调递减区间为(,1)2a.③当12a=,即2a =时,()0f x '≥恒成立,函数()f x 的单调递增区间为(0,)+∞. …7分(Ⅱ)①当0a ≤时,由(Ⅰ)可知,函数()f x 的单调递减区间为(0,1),()f x 在(1,2]单调递增. 所以()f x 在(]0,2上的最小值为(1)1f a =+, 由于22422221121()2(1)10e e e e e e a a f =--+=--+>, 要使()f x 在(]0,2上有且只有一个零点, 需满足(1)0f =或(1)0,(2)0,f f <⎧⎨<⎩解得1a =-或2ln 2a <-. ②当02a <≤时,由(Ⅰ)可知,(ⅰ)当2a =时,函数()f x 在(0,2]上单调递增; 且48414(e )20,(2)22ln 20e ef f -=--<=+>,所以()f x 在(]0,2上有且只有一个零点.(ⅱ)当02a <<时,函数()f x 在(,1)2a 上单调递减,在(1,2]上单调递增;又因为(1)10f a =+>,所以当(,2]2ax ∈时,总有()0f x >.因为22e12a aa +-<<+,所以22222222(e)e[e(2)](ln e22)0a a a a aaaaf a a a ++++----=-++++<.所以在区间(0,)2a 内必有零点.又因为()f x 在(0,)2a 内单调递增, 从而当02a <≤时,()f x 在(]0,2上有且只有一个零点. 综上所述,02a <≤或2ln 2a <-或1a =-时,()f x 在(]0,2上有且只有一个零点. …………………………………………………………………………………………13分 (19)(本小题满分14分)解:(Ⅰ)设椭圆的方程为()222210x y a b a b+=>>,依题意得22222,1314a b c c a ab ⎧=+⎪⎪⎪=⎨⎪⎪+=⎪⎩解得24a =,21b =. 所以椭圆C 的方程为2214x y +=. ………………………………………………4分 (Ⅱ)显然点(2,0)A .(1)当直线l 的斜率不存在时,不妨设点E 在x轴上方,易得(1,(1,22E F -,(3,(3,22M N -,所以1EM FN ⋅=. …………………………………………6分 (2)当直线l 的斜率存在时,由题意可设直线l 的方程为(1)y k x =-,显然0k =时,不符合题意. 由22(1),440y k x x y =-⎧⎨+-=⎩得2222(41)8440k x k x k +-+-=. 设1122(,),(,)E x y F x y ,则22121222844,4141k k x x x x k k -+==++. 直线AE ,AF 的方程分别为:1212(2),(2)22y y y x y x x x =-=---,令3x =,则1212(3,),(3,)22y yM N x x --. 所以1111(3)(3,)2y x EM x x -=--,2222(3)(3,)2y x FN x x -=--. ……………………10分所以11221212(3)(3)(3)(3)22y x y x EM FN x x x x --⋅=--+⋅--121212(3)(3)(1)(2)(2)y y x x x x =--+--2121212(1)(1)(3)(3)(1)(2)(2)x x x x k x x --=--+⋅--2121212121212()1[3()9][1]2()4x x x x x x x x k x x x x -++=-++⨯+⋅-++222222222222244814484141(39)(1)4484141244141k k k k k k k k k k k k k --+-++=-⋅+⋅+⋅-++-⋅+++22221653()(1)414k k k k +-=⋅++22216511164164k k k +==+++. ……………………………………………12分 因为20k >,所以21644k +>,所以22165511644k k +<<+,即5(1,)4EM FN ⋅∈.综上所述,EM FN ⋅的取值范围是5[1,)4. ……………………………………14分 (20)(本小题满分13分) 解:(Ⅰ)1011()|23|7654321012857kk k S xx τ+==-=+++++++++=∑. ……3分(Ⅱ)数10,9,8,7,6,5,4,3,2,1的2倍与3倍分别如下:20,18,16,14,12,10,8,6,4,2, 30,27,24,21,18,15,12,9,6,3其中较大的十个数之和与较小的十个数之和的差为20372131-=,所以()131S τ≤.对于排列0(1,5,6,7,2,8,3,9,4,10)τ=,此时0()131S τ=,所以()S τ的最大值为131. ……………………………………………………………8分 (Ⅲ)由于数1,2,3,4所产生的8个数都是较小的数,而数7,8,9,10所产生的8个数都是较大的数,所以使()S τ取最大值的排列中,必须保证数1,2,3,4互不相邻,数7,8,9,10也互不相邻;而数5和6既不能排在7,8,9,10之一的后面,又不能排在1,2,3,4之一的前面.设11x =,并参照下面的符号排列1△○□△○□△○□△○其中2,3,4任意填入3个□中,有6种不同的填法;7,8,9,10任意填入4个圆圈○中,共有24种不同的填法;5填入4个△之一中,有4种不同的填法;6填入4个△中,且当与5在同一个△时,既可以在5之前又可在5之后,共有5种不同的填法,所以当11x =时,使()S τ达到最大值的所有排列τ的个数为624452880⨯⨯⨯=,由轮换性知,使()S τ达到最大值的所有排列τ的个数为28800. ……………………………13分。

2023年北京市朝阳区高三一模考试数学试卷+答案解析(附后)

2023年北京市朝阳区高三一模考试数学试卷+答案解析(附后)

2023年北京市朝阳区高三一模考试数学试卷1. 已知集合,集合,则( )A. B. C. D.2. 若,则( )A. B. C. D.3. 设,若,则( )A. 5B. 6C. 7D. 84. 已知点,若直线上存在点P,使得,则实数k 的取值范围是( )A. B.C. D.5. 已知函数,则“”是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 过双曲线的右焦点F作一条渐近线的垂线,垂足为若为坐标原点,则该双曲线的离心率为( )A. B. C. 2 D. 或27.在长方体中,与平面相交于点M,则下列结论一定成立的是( )A. B. C. D.8. 声音是由于物体的振动产生的能引起听觉的波,我们听到的声音多为复合音.若一个复合音的数学模型是函数,则下列结论正确的是( )A. 的一个周期为B. 的最大值为C. 的图象关于直线对称D. 在区间上有3个零点9. 如图,圆M为的外接圆,,,N为边BC的中点,则( )A. 5B. 10C. 13D. 2610. 已知项数为的等差数列满足,若,则k的最大值是( )A. 14B. 15C. 16D. 1711. 若复数,则________.12. 函数的值域为________.13. 经过抛物线的焦点的直线与抛物线相交于A,B两点,若,则为坐标原点的面积为______.14. 在中,,,若,则________;当________写出一个可能的值时,满足条件的有两个.15. 某军区红、蓝两方进行战斗演习,假设双方兵力战斗单位数随时间的变化遵循兰彻斯特模型:,其中正实数,分别为红、蓝两方初始兵力,t为战斗时间;,分别为红、蓝两方t时刻的兵力;正实数a,b分别为红方对蓝方、蓝方对红方的战斗效果系数;和分别为双曲余弦函数和双曲正弦函数.规定当红、蓝两方任何一方兵力为0时战斗演习结束,另一方获得战斗演习胜利,并记战斗持续时长为给出下列四个结论:①若且,则;②若且,则;③若,则红方获得战斗演习胜利;④若,则红方获得战斗演习生利.其中所有正确结论的序号是________.16. 如图,在三棱柱中,平面ABC,D,E分别为AC,的中点,,求证:平面BDE;求直线DE与平面ABE所成角的正弦值;求点D到平面ABE的距离.17. 设函数,从条件①、条件②、条件③这三个条件中选择两个作为已知,使得存在.求函数的解析式;求在区间上的最大值和最小值.条件①:;条件②:的最大值为;条件③:的图象的相邻两条对称轴之间的距离为注:如果选择的条件不符合要求,得0分;如果选择多组条件分别解答,按第一组解答计分.18. 某地区组织所有高一学生参加了“科技的力量”主题知识竟答活动,根据答题得分情况评选出一二三等奖若干,为了解不同性别学生的获奖情况,从该地区随机抽取了500名参加活动的高一学生,获奖情况统计结果如下:获奖人数性别人数一等奖二等奖三等奖男生200101515女生300252540假设所有学生的获奖情况相互独立.分别从上述200名男生和300名女生中各随机抽取1名,求抽到的2名学生都获一等奖的概率;用频率估计概率,从该地区高一男生中随机抽取1名,从该地区高一女生中随机抽取1名,以X表示这2名学生中获奖的人数,求X的分布列和数学期望EX;用频率估计概率,从该地区高一学生中随机抽取1名,设抽到的学生获奖的概率为;从该地区高一男生中随机抽取1名,设抽到的学生获奖的概率为;从该地区高一女生中随机抽取1名,设抽到的学生获奖的概率为,试比较与的大小.结论不要求证明19. 已知函数求的单调区间;若对恒成立,求a的取值范围;证明:若在区间上存在唯一零点,则20. 已知椭圆经过点求椭圆E的方程及离心率;设椭圆E的左顶点为A,直线与E相交于M,N两点,直线AM与直线相交于点问:直线NQ是否经过x轴上的定点?若过定点,求出该点坐标;若不过定点,说明理由.21. 已知有穷数列满足给定正整数m,若存在正整数s,,使得对任意的,都有,则称数列A是连续等项数列.判断数列,1,0,1,0,1,是否为连续等项数列?是否为连续等项数列?说明理由;若项数为N的任意数列A都是连续等项数列,求N的最小值;与数列都是连续等项数列,且,求的值.答案和解析1.【答案】C【解析】略2.【答案】A【解析】略3.【答案】A【解析】略4.【答案】D【解析】略5.【答案】C【解析】略6.【答案】B【解析】略7.【答案】C【解析】略8.【答案】D【解析】略9.【答案】C【解析】略10.【答案】B【解析】略11.【答案】【解析】略12.【答案】【解析】略13.【答案】2【解析】略14.【答案】答案不唯一【解析】略15.【答案】①②④【解析】略16.【答案】解:在三棱柱中,因为平面ABC,所以又D,E分别为AC,的中点,则,所以因为,所以又,所以平面由知,,又平面ABC,所以平面因为平面ABC,所以所以DA,DB,DE两两垂直.如图建立空间直角坐标系,则,,,所以,,设平面ABE的一个法向量为,则即令,则,于是设直线DE与平面ABE所成角为,则,所以直线DE与平面ABE所成角的正弦值为因为直线DE与平面ABE所成角的正弦值为,所以点D到平面ABE的距离为【解析】略17.【答案】解:选条件②③其中,根据条件②可知,函数的最大值为又,所以根据条件③可知,函数的最小正周期为,所以所以由,得,则,所以当,即时,取得最小值,最小值为当,即时,取得最大值,最大值为【解析】略18.【答案】解:设事件A为“分别从上述200名男生和300名女生中各随机抽取1名,抽到的2名学生都获一等奖”,则随机变量X的所有可能取值为0,1,记事件B为“从该地区高一男生中随机抽取1名,该学生获奖”,事件C为“从该地区高一女生中随机抽取1名,该学生获奖”.由题设知,事件B,C相互独立,且估计为,估计为所以,,所以X的分布列为X012P故X的数学期望【解析】略19.【答案】解:因为,所以①若,则,所以在区间上单调递增.②若,令,得当时,,所以在区间上单调递减;当时,,所以在区间上单调递增.综上,当时,的单调递增区间为当时,的单调递减区间为,单调递增区间为①若,当时,,,则在区间上单调递增.所以所以符合题意.②若,则由可知在区间上单调递减,所以当时,综上,a的取值范围为若在区间上存在唯一零点,则,且即欲证:只需证:只需证:,即证:由知,在区间上恒成立,所以在区间上恒成立.所以所以【解析】略20.【答案】解:因为椭圆过点所以,得所以椭圆E的方程为因为,,所以所以椭圆的离心率直线NQ过定点理由如下:由得显然,设,,则,直线AM的方程为令,得,则所以直线NQ的斜率为,且所以直线NQ的方程为令,则所以直线NQ过定点【解析】略21.【答案】解:数列A是连续等项数列,不是连续等项数列.理由如下:因为,所以A是连续等项数列.因为,,,为,1,0,,,,为1,0,1,,,,为0,1,0,,,,为1,0,1,,所以不存在正整数s,,使得所以A不是连续等项数列.设集合,则S中的元素个数为因为在数列A中,,所以若,则所以在,,,,这个有序数对中,至少有两个有序数对相同,即存在正整数s,,使得,所以当项数时,数列A一定是连续等项数列.若,数列0,0,1不是连续等项数列.若,数列0,0,1,1不是连续等项数列.若,数列0,0,1,1,0不是连续等项数列.若,数列0,0,1,1,0,不是连续等项数列.若,数列0,0,1,1,0,,1不是连续等项数列.若,数列0,0,1,1,0,,1,不是2一连续等项数列.若,数列0,0,1,1,0,,1,,不是连续等项数列.若,数列0,0,1,1,0,,1,,,0不是连续等项数列.所以N的最小值为所以存在两两不等的正整数i,j,使得,,,,,,,,,,,下面用反证法证明假设,因为,,,,所以,,,中至少有两个数相等.不妨设,则,,,,所以A是连续等项数列,与题设矛盾.所以所以【解析】略。

北京市朝阳区高三数学一模试卷附解析

北京市朝阳区高三数学一模试卷附解析

北京市朝阳区高三数学一模试卷一、单项选择题1.集合,那么〔〕A. B. C. D. {3}2.如果复数的实部与虚部相等,那么〔〕A. -2B. 1C. 2D. 43.等差数列的前项和为,,那么〔〕A. 0B. -1C. -2D. -34.圆截直线所得弦的长度为,那么实数〔〕A. B. C. D.5.双曲线的离心率为2,那么双曲线C的渐近线方程为〔〕A. B. C. D.6.在中,假设,那么〔〕A. B. C. D.7.某三棱锥的三视图如下列图,网格纸上小正方形的边长为1,那么该三棱锥最长的棱长为〔〕A. 2B.C.D.8.在中,“ 〞是“ 为钝角三角形〞的〔〕A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9.抛物线的焦点为F,准线为l,点P是直线l上的动点.假设点A在抛物线C上,且,那么〔O为坐标原点〕的最小值为〔〕A. 8B.C.D. 610.在棱长为1的正方体中,是线段上的点,过的平面与直线垂直,当在线段上运动时,平面截正方体所得的截面面积的最小值是〔〕A. 1 B. C. D.二、填空题11.在的展开式中,的系数为________.〔用数字作答〕12.函数那么________;的值域为________.13.向量,且,那么向量的坐标可以是________.〔写出一个即可〕14.李明自主创业,经营一家网店,每售出一件商品获利8元.现方案在“五一〞期间对商品进行广告促销,假设售出商品的件数〔单位:万件〕与广告费用〔单位:万元〕符合函数模型.假设要使这次促销活动获利最多,那么广告费用应投入________万元.15.华人数学家李天岩和美国数学家约克给出了“混沌〞的数学定义,由此开展的混沌理论在生物学、经济学和社会学领域都有重要作用在混沌理论中,函数的周期点是一个关键概念,定义如下:设是定义在R上的函数,对于,令,假设存在正整数k使得,且当时,,那么称是的一个周期为k的周期点.给出以下四个结论:①假设,那么存在唯一一个周期为1的周期点;②假设,那么存在周期为2的周期点;③假设那么不存在周期为3的周期点;④假设,那么对任意正整数n,都不是的周期为n的周期点.其中所有正确结论的序号是________.三、解答题16.函数由以下四个条件中的三个来确定:①最小正周期为;②最大值为2;③ ;④ .〔1〕写出能确定的三个条件,并求的解析式;〔2〕求的单调递增区间.17.如图,在四棱锥中,O是边的中点,底面.在底面中,.〔1〕求证:平面;〔2〕求二面角的余弦值.18.我国脱贫攻坚战取得全面胜利,现行标准下农村贫困人口全部脱贫,消除了绝对贫困.为了解脱贫家庭人均年纯收入情况,某扶贫工作组对A,B两个地区2021年脱贫家庭进行简单随机抽样,共抽取500户家庭作为样本,获得数据如下表:假设所有脱贫家庭的人均年纯收入是否超过10000元相互独立.〔1〕从A地区2021年脱贫家庭中随机抽取1户,估计该家庭2021年人均年纯收入超适10000元的概率;〔2〕在样本中,分别从A地区和B地区2021年脱贫家庭中各随机抽取1户,记X为这2户家庭中2021年人均年纯收入超过10000元的户数,求X的分布列和数学期望;〔3〕从样本中A地区的300户脱贫家庭中随机抽取4户,发现这4户家庭2021年人均年纯收入都超过10000元.根据这个结果,能否认为样本中A地区2021年人均年纯收入超过10000元的户数相比2021年有变化?请说明理由.C的短轴的两个端点分别为,离心率为.〔1〕求椭圆C的方程及焦点的坐标;〔2〕假设点M为椭圆C上异于A,B的任意一点,过原点且与直线平行的直线与直线交于点P,直线与直线交于点Q,试判断以线段为直径的圆是否过定点?假设过定点,求出定点的坐标;假设不过定点,请说明理由.20.函数.〔1〕求的单调区间;〔2〕假设直线与曲线相切,求证:.21.设数列,假设存在公比为q的等比数列:,使得,其中,那么称数列为数列的“等比分割数列〞.〔1〕写出数列:3,6,12,24的一个“等比分割数列〞;〔2〕假设数列的通项公式为,其“等比分割数列〞的首项为1,求数列的公比q的取值范围;〔3〕假设数列的通项公式为,且数列存在“等比分割数列〞,求m的最大值.答案解析局部一、单项选择题1.【解析】【解答】由题意,所以.故答案为:B.【分析】利用集合交集的定义求解即可。

北京市朝阳区2021届高三数学第一次模拟考试试题(含解析).doc

北京市朝阳区2021届高三数学第一次模拟考试试题(含解析).doc

北京市朝阳区2021届高三数学第一次模拟考试试题(含解析)(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分,考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}13,5A =,,{}|(1)(4)0B x x x =∈--<Z ,则A B =( )A. {}3B. {}1,3C. {}1,2,3,5D.{}1,2,3,4,5【答案】C 【解析】 【分析】化简集合B ,再根据并集定义进行计算即可得到. 【详解】因为{}|(1)(4)0B x x x =∈--<Z {2,3}=, 所以A B ={1,2,3,5}.故选:C【点睛】本题考查了一元二次不等式的解法,考查了集合的并集运算,属于基础题. 2.下列函数中,既是偶函数又在区间(0,)+∞上单调递增的是( ) A. 3y x = B. 21y x =-+C. 2log y x =D. ||2x y =【答案】D 【解析】 【分析】根据函数的奇偶性和单调性,对四个函数逐一判断可得答案. 【详解】函数3y x =是奇函数,不符合;函数21y x =-+是偶函数,但是在(0,)+∞上单调递减,不符合;函数2log y x =不是偶函数,不符合;函数||2x y =既是偶函数又在区间(0,)+∞上单调递增,符合. 故选:D【点睛】本题考查了函数的奇偶性和单调性,属于基础题.3.在等比数列{}n a 中,11a =,48a =-,则{}n a 的前6项和为( ) A. 21- B. 11C. 31D. 63【答案】A 【解析】 【分析】利用11a =,48a =-求出公比2q =-,再根据等比数列的前n 项和公式计算可得. 【详解】因为11a =,48a =-,设公比为q ,则341a qa =881-==-,所以2q =-, 所以6616(1)1[1(2)]2111(2)a q S q -⨯--===----, 故选:A【点睛】本题考查了等比数列通项公式的基本量的计算,考查了等比数列的前n 项和公式,属于基础题.4.如图,在ABC 中,点D ,E 满足2BC BD =,3CA CE =.若DE x AB y AC =+(,)x y R ∈,则x y +=( )A. 12- B. 13- C.12 D.13【答案】B 【解析】【分析】利用平面向量的线性运算可得DE 1126AB AC =-+,再根据平面向量基本定理可得11,26x y =-=,从而可得答案.【详解】因为DE AE AD =-23AC AB BD =--2132AC AB BC =--21()32AC AB AC AB =--- 1126AB AC =-+,又DE x AB y AC =+,所以11,26x y =-=, 所以111263x y +=-+=-.故选:B【点睛】本题考查了平面向量的线性运算,考查了平面向量基本定理,属于基础题. 5.已知抛物线C :22(0)y px p =>的焦点为F ,准线为l ,点A 是抛物线C 上一点,AD l ⊥于D .若4AF =,60DAF ∠=︒,则抛物线C 的方程为( ) A. 28y x = B. 24y x =C. 22y x =D. 2y x =【答案】B 【解析】 【分析】根据抛物线的定义求得4=AD ,然后在直角三角形中利用60DAF ∠=︒可求得2p =,从而可得答案.【详解】根据抛物线的定义可得4AD AF ==, 又60DAF ∠=︒,所以12AD p AF -=, 所以42p -=,解得2p =, 所以抛物线C 的方程为24y x =. 故选:B【点睛】本题考查了抛物线的定义,利用定义得4AD AF ==是解题关键,属于基础题.6.现有甲、乙、丙、丁、戊5种在线教学软件,若某学校要从中随机选取3种作为教师“停课不停学”的教学工具,则其中甲、乙、丙至多有2种被选取的概率为( ) A.23B.25C.35D.910【答案】D 【解析】 【分析】根据古典概型的概率公式计算出所求事件的对立事件的概率,再用对立事件的概率公式即可求出结果.【详解】甲、乙、丙至多有2种被选取的对立事件为:甲、乙、丙都被选取,记此事件为A , 依题意所有基本事件为:(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中事件A 所包含的事件数为1, 所以根据古典概型的概率公式可得1()10P A =, 再根据对立事件的概率公式可得所求事件的概率为191()11010P A -=-=. 故选:D【点睛】本题考查了对立事件的概率公式,考查了古典概型的概率公式,属于基础题. 7.在ABC 中,AB BC =,120ABC ∠=︒.若以A ,B 为焦点的双曲线经过点C ,则该双曲线的离心率为( )B.2C.12【答案】C 【解析】 【分析】设双曲线的实半轴长,半焦距分别为,a c ,根据双曲线的定义可得2AC BC a -=,根据余弦定理可得AC =,再根据离心率公式即可求得结果. 【详解】设双曲线的实半轴长,半焦距分别为,a c , 因为120ABC ∠=︒,所以AC BC >, 因为以A ,B 为焦点的双曲线经过点C所以2AC BC a -=,2AB BC c ==,在三角形ABC 中由余弦定理得222cos1202AB BC AC AB BC +-=⨯⨯,所以222214428c c AC c+--=,解得2212AC c =,所以AC =,所以22c a -=,所以12c a =, 故选:C【点睛】本题考查了双曲线的定义,考查了余弦定理,考查了双曲线的离心率,属于基础题.8.已知函数()=)(>0)f x ωxφω的图象上相邻两个最高点的距离为π,则“6π=ϕ”是“()f x 的图象关于直线3x π=对称”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】 【分析】根据相邻两个最高点的距离为π求出2ω=,可得())f x x ϕ=-,再根据正弦函数的对称轴的性质以及充分不必要条件的概念可得答案. 【详解】依题意得T π=,所以2ππω=,所以2ω=,所以())f x x ϕ=-,当3x π=,6π=ϕ时,())36f x ππ=⨯-2π==,所以()f x 的图象关于直线3x π=对称;当3x π=,76ϕπ=时,7()))362f x πππ=⨯-=-=,此时()f x 的图象也关于直线3x π=对称,所以“6π=ϕ”是“()f x 的图象关于直线3x π=对称”的充分不必要条件, 故选:A【点睛】本题考查了三角函数的周期性,对称性,考查了充分不必要条件的概念,属于中档题.9.已知函数222,1,()2ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()2af x ≥在R 上恒成立,则实数a 的取值范围为( )A. (-∞B. 3[0,]2C. [0,2]D.【答案】C 【解析】 【分析】对x 进行分类讨论,使得x 与a 分离,再转化为关于x 的函数的最值,进而求出a 的范围. 【详解】(1)当1x ≤时,由()2a f x ≥得23(2)2x a x ≥-, 当314x <≤时,2322x a x ≤-232()4x x =-恒成立,因为222333933()()()42416443332()2()2()444x x x x x x x -+-+-+==---913316()32442()4x x =-++- 令34t x =-,则104t <≤,令193()2164y t t =++,则219(1)216y t'=-0<, 所以193()2164y t t =++在1(0,]4上递减,所以11938()212444164y ≥++==⨯, 即913316()32442()4x x -++-的最小值为2, 所以此时2a ≤,当34x ≤时,2322x a x ≥-913316()32442()4x x =-++-1393[()]324416()4x x =--++-恒成立, 因为1393[()]324416()4x x --++-1324≤-⨯0=,当且仅当0x =时所以0a ≥,(2)当1x >时,由()2a f x ≥得21ln 2xa x ≤+恒成立,令21ln 2xy x =+(1)x >,则22ln 11(ln )2x y x -'=+,由0y '>得12x e >,由0y '<得121x e <<, 所以函数21ln 2x y x =+12(1,)e 上递减,在12(,)e +∞上递增, 所以x e =时,min 221122ey e==+,所以2a e ≤, 综上所述:02a ≤≤. 故选:C【点睛】本题考查了分离参数法,等价转化思想,分类讨论思想,构造法,考查了由导数研究函数的单调性,求函数的最值,考查了基本不用等式,属于中档题.10.如图,在正方体1111ABCD A B C D -中,M ,N 分别是棱AB ,1BB 的中点,点P 在对角线1CA 上运动.当△PMN 的面积取得最小值时,点P 的位置是( )A. 线段1CA 的三等分点,且靠近点1AB. 线段1CA 的中点C. 线段1CA 的三等分点,且靠近点CD. 线段1CA 的四等分点,且靠近点C【答案】B 【解析】将问题转化为动点P 到直线MN 的距离最小时,确定点P 的位置,建立空间直角坐标系,取MN 的中点Q ,通过坐标运算可知PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离,再由空间两点间的距离公式求出||PQ 后,利用二次函数配方可解决问题.【详解】设正方体的棱长为1,以A 为原点,1,,AB AD AA 分别为,,x y z 轴,建立空间直角坐标系,如图所示:则1(,0,0)2M ,1(1,0,)2N ,MN 的中点31(,0,)44Q ,1(0,0,1)A ,(1,1,0)C ,则1(1,1,1)AC =-, 设(,,)P t t z ,(1,1,)PC t t z =---, 由1AC 与PC 共线,可得11111t t z---==-,所以1t z =-,所以(1,1,)P z z z --,其中01z ≤≤,因为2221||(1)(10)(0)2PM z z z =--+--+-25334z z =-+2221||(11)(10)()2PN z z z =--+--+-25334z z =-+所以||||PM PN =,所以PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离, 由空间两点间的距离公式可得22231||(1)(10)()44PQ z z z =--+--+-29338z z =-+2133()28z =-+,所以当12c =时,||PQ 取得最小值64,此时P 为线段1CA 的中点, 由于2||4MN =为定值,所以当△PMN 的面积取得最小值时,P 为线段1CA 的中点. 故选:B【点睛】本题考查了空间向量的坐标运算,考查了空间两点间的距离公式,考查了数形结合法,考查了二次函数求最值,属于基础题.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分. 11.若复数21iz =+,则||z =________. 【答案】2 【解析】 【分析】根据||||z z =以及复数商的模等于复数的模的商,计算可得答案.【详解】因为21i z =+,所以2||||||1z z i==+22|1|11i ===++. 故答案为:2【点睛】本题考查了复数模的性质,考查了复数的模长公式,属于基础题.12.已知某三棱锥的三视图如图所示,则该三棱锥的最长棱的长为________,它的体积为________.【答案】 (1). 5 (2). 4 【解析】 【分析】根据三视图画出直观图,根据三视图中的数据得到直观图中的数据,再计算可得答案. 【详解】如图所示是三棱锥的直观图:其中AF ⊥平面BCD ,垂足为F ,根据三视图可知,2BE ED ==,2CE EF ==,3AF =,所以22BF DF BC CD ====22(22)317AB AD ==+=,2222345AC AF CF =+=+=,比较可知该三棱锥的最长棱的长为5AC =, 它的体积为1113424332BCD AF S ∆⨯⨯=⨯⨯⨯⨯=, 故答案为:(1)5 (2)4【点睛】本题考查了由三视图还原直观图,考查了三棱锥的体积公式,属于基础题. 13.某购物网站开展一种商品的预约购买,规定每个手机号只能预约一次,预约后通过摇号的方式决定能否成功购买到该商品.规则如下:(ⅰ)摇号的初始中签率为0.19;(ⅱ)当中签率不超过1时,可借助“好友助力”活动增加中签率,每邀请到一位好友参与“好友助力”活动可使中签率增加0.05.为了使中签率超过0.9,则至少需要邀请________位好友参与到“好友助力”活动. 【答案】15 【解析】 【分析】先求出需要增加中签率为0.71,再用0.71除以0.05得14.2,取15即可得到答案. 【详解】因为摇号的初始中签率为0.19,所以要使中签率超过0.9,需要增加中签率0.90.190.71-=,因为每邀请到一位好友参与“好友助力”活动可使中签率增加0.05, 所以至少需要邀请0.714.20.05=,所以至少需要邀请15位好友参与到“好友助力”活动. 故答案为:15【点睛】本题考查了阅读理解能力,解题关键是求出需要增加的中签率,属于基础题. 14.已知函数()cos 2xf x x π=.数列{}n a 满足()(1)n a f n f n =++(*n N ∈),则数列{}n a 的前100项和是________. 【答案】100 【解析】 【分析】根据三角函数知识,利用n 为奇数时,()0f n =,2n 为奇数时时,()f n n =-,2n为偶数时,()f n n =,可求出1234100,,,,,a a a a a ,再相加即可得到答案.【详解】因为()cos2xf x x π=,所以(1)(3)(5)(101)0f f f f =====,(2)2,(6)6,(10)10,,(98)98f f f f =-=-=-=-,(4)4,(8)8,(12)12,,(100)100f f f f ====,所以12(2)2a a f ===-,34(4)4a a f ===,56(6)6a a f ===-,78(8)8a a f ===,,99100(100)100a a f ===, 所以1234567899100a a a a a a a a a a +++++++++2[(2)(4)(6)(8)(100)]f f f f f =+++++2(24681012100)=-+-+-+-+2252100=⨯⨯=.故答案为: 100【点睛】本题考查了特殊角的余弦函数值和诱导公式,考查了数列的前n 项和,考查了分组求和,属于基础题.15.数学中有许多寓意美好的曲线,曲线22322:()4C x y x y +=被称为“四叶玫瑰线”(如图所示).给出下列三个结论:①曲线C 关于直线y x =对称;②曲线C 上任意一点到原点的距离都不超过1;2的正方形,使得曲线C 在此正方形区域内(含边界). 其中,正确结论的序号是________. 【答案】①② 【解析】 【分析】将(,)y x 代入22322:()4C x y x y +=也成立得①正确;221x y +≤,故②正确;联立22322()4y xx y x y=±⎧⎨+=⎩得四个交点,满足条件的最小正方形是以,,,A B C D 为中点,边长为2的正方形,故③不正确.【详解】对于①,将(,)y x 代入22322:()4C x y x y +=得22322()4y x y x +=成立,故曲线C 关于直线y x =对称,故①正确;对于②,因为22322222()()44x y x y x y ++=≤,所以221x y +≤221x y +≤, 所以曲线C 上任意一点到原点的距离都不超过1,故②正确;对于③,联立22322()4y x x y x y =±⎧⎨+=⎩得2212x y ==,从而可得四个交点22(A ,(B ,(C ,D , 依题意满足条件的最小正方形是各边以,,,A B C D 为中点,边长为2的正方形,故不存在一个以原点为中心、的正方形,使得曲线C 在此正方形区域内(含边界),故③不正确. 故答案为:①②【点睛】本题考查了由曲线方程研究曲线的对称性,考查了不等式知识,考查了求曲线交点坐标,属于中档题.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.在△ABC 中,sin cos()6b A a B π=-. (1)求B ;(2)若5c =,.求a . 从①7b =,②4Cπ这两个条件中任选一个,补充在上面问题中并作答.【答案】(1)3π(2)7b =时,8a =;4C π时,5352a【解析】 【分析】(1)利用正弦定理边化角得sin cos()6B Bπ,再根据两角和与差的正弦、余弦公式变形可得sin()03Bπ,再根据角的范围可得结果;(2)若选①7b =,根据余弦定理可得结果;若选②4C π,先求出sin A ,再根据正弦定理可得结果.【详解】(1)因为sin cos()6b A a B π=-,sin sin a b A B=, 所以sin sin sin cos()6B A A Bπ. 又因为sin 0A ≠,所以sin cos()6BBπ,即31sin cos sin 22B B B . 所以sin()03Bπ.又因为2333Bπππ-<-<,所以03Bπ,所以3Bπ=.(2)若选①7b=,则在△ABC中,由余弦定理2222cosb ac ac B=+-,得25240a a--=,解得8a=或3a=-(舍).所以8a=.若选②4Cπ,则62sin sin()sin cos cos sin34344A B Cππππ,由正弦定理sin sina cA C=,得622,解得5352a.所以535a.【点睛】本题考查了两角和与差的正弦、余弦公式,考查了正弦定理、余弦定理,属于基础题.17.如图,在三棱柱111ABC A B C-中,平面11ACC A⊥平面ABC,四边形11ACC A是正方形,点D,E分别是棱BC,1BB的中点,4AB=,12AA=,25BC=.(1)求证:1AB CC⊥;(2)求二面角1D AC C--的余弦值;(3)若点F在棱11B C上,且1114B C B F,判断平面1AC D与平面1A EF是否平行,并说明理由.【答案】(1)证明见解析(2)13(3)平面1AC D 与平面1A EF 不平行;详见解析 【解析】 【分析】(1)根据平面ABC ⊥平面11ACC A 和1CC AC ⊥得1CC ⊥平面ABC .,得1AB CC ⊥; (2)以A 为原点,建立空间直角坐标系A xyz -,根据两个半平面的法向量可求得结果; (3)根据平面1AC D 的法向量与向量1A E 不垂直可得结论.【详解】(1)证明:因为四边形11ACC A 是正方形,所以1CC AC ⊥. 又因为平面ABC ⊥平面11ACC A ,平面ABC平面11ACC A AC =,所以1CC ⊥平面ABC 又因为AB平面ABC ,所以1AB CC ⊥.(2)由(1)知,1CC AB ⊥,11//AA CC ,所以1AA AB ⊥. 又4AB =,12AC AA ==,25BC = 所以222AB AC BC +=.所以AC AB ⊥. 如图,以A 为原点,建立空间直角坐标系A xyz -. 所以(0,0,0)A ,(4,0,0)B ,(0,0,2)C ,1(0,2,0)A .则有(2,0,1)D ,1(0,2,2)C ,(4,1,0)E , 平面1ACC 的一个法向量为(1,0,0)u =. 设平面1AC D 的一个法向量为(,,)v x y z =, 又(2,0,1)AD,1(0,2,2)AC ,由10,0.v AD v AC ⎧⋅=⎪⎨⋅=⎪⎩得20,220.x z y z +=⎧⎨+=⎩令1x =,则2z =-,2y =.所以(1,2,2)v.设二面角1D AC C --的平面角为θ,则||11|cos |||||133u v u v . 由题知,二面角1D AC C --为锐角,所以其余弦值为13. (3)平面1AC D 与平面1A EF 不平行.理由如下: 由(2)知,平面1AC D 的一个法向量为(1,2,2)v ,1(4,1,0)A E,所以120A E v,所以1A E 与平面1AC D 不平行.又因为1A E ⊂平面1A EF ,所以平面1AC D 与平面1A EF 不平行.【点睛】本题考查了面面垂直的性质定理,考查了线面垂直的性质,考查了二面角的向量求法,考查了用法向量判断面面平行,属于中档题.18.某科研团队研发了一款快速检测某种疾病的试剂盒.为了解该试剂盒检测的准确性,质检部门从某地区(人数众多)随机选取了80位患者和100位非患者,用该试剂盒分别对他们进行检测,结果如下:(1)从该地区患者中随机选取一人,对其检测一次,估计此患者检测结果为阳性的概率; (2)从该地区患者中随机选取3人,各检测一次,假设每位患者的检测结果相互独立,以X 表示检测结果为阳性的患者人数,利用(1)中所得概率,求X 的分布列和数学期望; (3)假设该地区有10万人,患病率为0.01.从该地区随机选取一人,用该试剂盒对其检测一次.若检测结果为阳性,能否判断此人患该疾病的概率超过0.5?并说明理由. 【答案】(1)1920(2)详见解析(3)此人患该疾病的概率未超过0.5,理由见解析 【解析】 【分析】(1)直接用古典概型的概率公式计算可得答案;(2)可知随机变量X 服从二项分布,即~(,)X B n p ,其中3n =,1920p =,根据二项分布的概率公式可得分布列和数学期望;(3)根据患病率为0.01可知10万人中由99000人没患病,1000人患病,没患病检测呈阳性的有990人,患病的检测呈阳性的950人,共有990+950=1450人呈阳性,所其中只有950人患病,所以患病率为9500.51450<,由此可得答案. 【详解】(1)由题意知,80位患者中有76位用该试剂盒检测一次,结果为阳性. 所以从该地区患者中随机选取一位,用该试剂盒检测一次,结果为阳性的概率估计为76198020=. (2)由题意可知~(,)X B n p ,其中3n =,1920p =. X 的所有可能的取值为0,1,2,3.0331911(0)()()20208000P X C ==⨯=, 112319157(1)()()20208000P X C ==⨯=,22131911083(2)()()20208000P X C ==⨯=,33031916859(3)()()20208000P X C ==⨯=. 所以X 的分布列为故X 的数学期望1957()32020E X np ==⨯=. (3)此人患该疾病的概率未超过0.5.理由如下:由题意得,如果该地区所有人用该试剂盒检测一次,那么结果为阳性的人数为119990001000990950194010020⨯+⨯=+=,其中患者人数为950. 若某人检测结果为阳性,那么他患该疾病的概率为9509700.519401940<=. 所以此人患该疾病的概率未超过0.5.【点睛】本题考查了古典概型的概率公式,考查了二项分布的概率公式、分布列、数学期望,属于中档题.19.已知椭圆2222:1(0)x y C a b a b+=>>,圆222:O x y r +=(O 为坐标原点).过点(0,)b 且斜率为1的直线与圆O 交于点(1,2),与椭圆C 的另一个交点的横坐标为85-. (1)求椭圆C 的方程和圆O 的方程;(2)过圆O 上的动点P 作两条互相垂直的直线1l ,2l ,若直线1l 的斜率为(0)k k ≠且1l 与椭圆C 相切,试判断直线2l 与椭圆C 的位置关系,并说明理由.【答案】(1)2214x y +=;225x y +=(2)直线2l 与椭圆C 相切,详见解析【解析】 【分析】(1)根据圆O 过点(1,2)可得圆O 的方程为:225x y +=,根据过点(0,)b 且斜率为1的直线过点(1,2),可得1b =,可得直线与椭圆相交的另一个交点坐标为83(,)55--,将其代入椭圆方程可得椭圆C 的方程为2214x y +=;(2)设圆O 上的动点000(,)(2)P x y x ≠±,所以22005x y +=,设直线1l :00()y y k x x -=-,将其代入2214x y +=,得2220000(14)8()4()40k x k y kx x y kx ++-+--=,利用判别式为0,可得2220000(1)2(1)0y k x y k y -++-=,设直线2l :001()y y x x k-=--,将其代入2214x y +=,利用判别式为0可证直线2l 与椭圆C 相切. 【详解】(1)因为圆O 过点(1,2),所以圆O 的方程为:225x y +=. 因为过点(0,)b 且斜率为1的直线方程为y x b =+, 又因为过点(1,2),所以1b =.因为直线与椭圆相交的另一个交点坐标为83(,)55--,所以22283()()5511a --+=,解得24a =. 所以椭圆C 的方程为2214x y +=.(2)直线2l 与椭圆C 相切.理由如下:设圆O 上的动点000(,)(2)P x y x ≠±,所以22005x y +=. 依题意,设直线1l :00()y y k x x -=-.由220044,()x y y kx y kx ⎧+=⎨=+-⎩得2220000(14)8()4()40k x k y kx x y kx ++-+--=. 因为直线1l 与椭圆C 相切,所以2220000[8()]4(14)[4()4]0k y kx k y kx ∆=--+--=.所以220014()k y kx +=-.所以2220000(4)2(1)0x k x y k y -++-=.因为22005x y +=,所以220041x y -=-.所以2220000(1)2(1)0y k x y k y -++-=.设直线2l :001()y y x x k-=--, 由220044,1()x y y y x x k ⎧+=⎪⎨-=--⎪⎩得220000248(1)()4()40x x x y x y k k k k +-+++-=. 则222100001116[(4)()2()(1)]x x y y k k ∆=--+-+-2220000216[(4)2(1)]x kx y y k k =--+- 2220000216[(1)2(1)]y kx y y k k =--+- 2220000216[(1)2(1)]0y k kx y y k =--++-=.所以直线2l 与椭圆C 相切.【点睛】本题考查了由椭圆上点的坐标求椭圆方程,考查了由圆上的点的坐标求圆的方差,考查了直线与椭圆相切的位置关系,考查了运算求解能力,利用判别式为0是解题关键,属于中档题.20.已知函数()11xx f x e x +=--. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)判断函数()f x 的零点的个数,并说明理由;(3)设0x 是()f x 的一个零点,证明曲线xy e =在点00(,)x x e 处的切线也是曲线ln y x =的切线.【答案】(1)320x y -+=(2)()f x 有且仅有两个零点,详见解析(3)证明见解析 【解析】 【分析】(1)根据导数的几何意义可求得结果;(2)根据单调性和零点存在性定理可得()f x 在(,1)-∞和(1,)+∞上各有唯一一个零点,由此可得答案;(3)根据导数的几何意义求出曲线xy e =在点00(,)xx e 处的切线为0000e e e x x x y x x =-+,设曲线ln y x =在点33(,)x y 处的切线斜率为0e x ,根据导数的几何意义求出切线方程为00e 1x y x x =--,根据0x 是()f x 的一个零点,可证两条切线重合.【详解】(1)因为()11xx f x e x +=--, 所以001010)2(e f -=+=-,()2(1)2e xx f x -'=+,02(01)203e ()f -'==+.所以曲线()y f x =在点(0,(0))f 处的切线的方程为320x y -+=. (2)函数()f x 有且仅有两个零点.理由如下: ()f x 的定义域为{|,1}x x R x ∈≠.因为22()e 0(1)xf 'x x =+>-, 所以()f x 在(,1)-∞和(1,)+∞上均单调递增.因为(0)20f =>,21(2)3e 0f --=-<,所以()f x 在(,1)-∞上有唯一零点1x .因为2e (2)30f =->,545()e 904f =-<,所以()f x 在(1,)+∞上有唯一零点2x . 综上,()f x 有且仅有两个零点.(3)曲线xy e =在点00(,)x x e 处的切线方程为00()-=-x x y e e x x ,即0000e e e x x x y x x =-+.设曲线ln y x =在点33(,)x y 处的切线斜率为0e x ,则031e x x =,031e x x =,30y x =-,即切点为001(,)ex x -. 所以曲线ln y x =在点001(,)e x x -处的切线方程为 0001e ()e x x y x x +=-,即0e 1x y x x =--.因为0x 是()f x 的一个零点,所以00011x x ex +=-. 所以00000000011e e e (1)(1)1x x x x x x x x x -+-+=-=-=--.所以这两条切线重合 所以结论成立.【点睛】本题考查了根据导数的几何意义求切线的斜率,考查了用导数研究函数的单调性,考查了利用零点存在性判断零点个数,属于中档题. 21.设数列12:,,,n A a a a (3n ≥)的各项均为正整数,且12n a a a ≤≤≤.若对任意{3,4,,}k n ∈,存在正整数,(1)i j i j k ≤≤<使得k i j a a a =+,则称数列A 具有性质T .(1)判断数列1:1,2,4,7A 与数列2:1,2,3,6A 是否具有性质T ;(只需写出结论) (2)若数列A 具有性质T ,且11a =,22a =,200n a =,求n 的最小值; (3)若集合123456{1,2,3,,2019,2020}S S S S S S S ==,且i j S S =∅(任意,{1,2,,6}i j ∈,i j ≠).求证:存在i S ,使得从i S 中可以选取若干元素(可重复选取)组成一个具有性质T 的数列.【答案】(1)数列1A 不具有性质T ;数列2A 具有性质T (2)n 的最小值为10(3)证明见解析 【解析】 【分析】(1)47a =不满足存在正整数,(1)i j i j k ≤≤<使得k i j a a a =+,故数列1A 不具有性质T ;根据定义可知数列2A 具有性质T ;(2)由题可知22a =,3224a a ≤=,4328a a ≤≤,,872128a a ≤≤,所以9n ≥,再验证可知9n =时,数列A 不具有性质T ,10n =时,数列A 具有性质T ,从而可知n 的最小值为10;(3)反证法:假设结论不成立,即对任意(1,2,,6)i S i =都有:若正整数,,i a b S a b ∈<,则i b a S -∉,再根据定义推出矛盾,从而可证结论正确.【详解】(1)数列1A 不具有性质T ;数列2A 具有性质T . (2)由题可知22a =,3224a a ≤=,4328a a ≤≤,,872128a a ≤≤,所以9n ≥.若9n =,因为9200a =且982a a ≤,所以8128100a ≥≥.同理,765436450,3225,1612.5,8 6.25,4 3.125.a a a a a ≥≥≥≥≥≥≥≥≥≥ 因为数列各项均为正整数,所以34a =.所以数列前三项为1,2,4.因为数列A 具有性质T ,4a 只可能为4,5,6,8之一,而又因为48 6.25a ≥≥, 所以48a =.同理,有567816,32,64,128a a a a ====. 此时数列为1,2,4,8,16,32,64,128,200.但数列中不存在19i j ≤≤<使得200i j a a =+,所以该数列不具有性质T . 所以10n ≥.当10n =时,取:1,2,4,8,16,32,36,64,100,200A .(构造数列不唯一) 经验证,此数列具有性质T . 所以,n 的最小值为10.(3)反证法:假设结论不成立,即对任意(1,2,,6)i S i =都有:若正整数,,i a b S a b ∈<,则i b a S -∉.否则,存在i S 满足:存在,i a b S ∈,a b <使得i b a S -∈,此时,从i S 中取出,,a b b a -: 当a b a <-时,,,a b a b -是一个具有性质T 的数列; 当a b a >-时,,,b a a b -是一个具有性质T 的数列; 当a b a =-时,,,a a b 是一个具有性质T 的数列.(i )由题意可知,这6个集合中至少有一个集合的元素个数不少于337个, 不妨设此集合为1S ,从1S 中取出337个数,记为12337,,,a a a ,且12337a a a <<<.令集合1337{|1,2,,336}i N a a i S =-=⊆.由假设,对任意1,2,,336i =,3371i a a S -∉,所以234516N S S S S S ⊆.(ii )在23456,,,,S S S S S 中至少有一个集合包含1N 中的至少68个元素,不妨设这个集合为2S , 从21S N 中取出68个数,记为1268,,,b b b ,且1268b b b <<<.令集合628{|1,2,,67}i N b i b S ==-⊆.由假设682i b b S -∉.对任意1,2,,68k =,存{1,2,,336}k s ∈使得337k k s b a a =-.所以对任意1,2,,67i =,686868337337()()i i i s s s s b b a a a a a a -=---=-,由假设681i s s a a S -∉,所以681i b b S -∉,所以6812i b b S S -∉,所以23456N S S S S ⊆.(iii )在3456,,,S S S S 中至少有一个集合包含2N 中的至少17个元素,不妨设这个集合为3S , 从23S N 中取出17个数,记为1217,,,c c c ,且1217c c c <<<.令集合137{|1,2,,16}i N c c i S -==⊆.由假设173i c c S -∉.对任意1,2,,17k =,存在{1,2,,67}k t ∈使得68k t k c b b =-.所以对任意1,2,,16i =,1717176868()()i i i t t t t c c b b b b b b -=---=-,同样,由假设可得1712i t t b b S S -∉,所以17123i c c S S S -∉,所以3456N S S S ⊆.(iv )类似地,在456,,S S S 中至少有一个集合包含3N 中的至少6个元素,不妨设这个集合为4S ,从34S N 中取出6个数,记为126,,,d d d ,且126d d d <<<,则6456{|1,2,,5}i d d i S S N -⊆==.(v )同样,在56,S S 中至少有一个集合包含4N 中的至少3个元素,不妨设这个集合为5S , 从45S N 中取出3个数,记为123,,e e e ,且123e e e <<,同理可得153326{,}e e e e S N --=⊆.(vi )由假设可得2131326()()e e e e e e S -=---∈/. 同上可知,1245123S S S e e S S -∈/,而又因为21e e S -∈,所以216e e S -∈,矛盾.所以假设不成立. 所以原命题得证.【点睛】本题考查了对新定义的理解和运用能力,考查了反证法,考查了集合的并集运算,准确理解定义和运用定义解题是解题关键,属于难题.。

北京市朝阳区2020届高三第一次模拟考试数学试题 含答案

北京市朝阳区2020届高三第一次模拟考试数学试题 含答案

(A) − 1 2
(B) − 1 3
(C) 1 2
(D) 1 3
A
E
B
D
C
(第 4 题图)
(5)已知抛物线 C : y2 = 2 px( p 0) 的焦点为 F ,准线为 l ,点 A 是抛物线 C 上一点, AD ⊥ l 于 D .
若 AF = 4 , DAF = 60 ,则抛物线 C 的方程为
为了使中签率超过 0.9 ,则至少需要邀请________位好友参与到“好友助力”活动.
(14)已知函数
f
(x) =
x cos x 2
.数列 {an } 满足 an
=
f
(n) +
f
(n +1)
( n N* ),则数列{an } 的前100 项和
是________.
(15)数学中有许多寓意美好的曲线,曲线 C : (x2 + y2 )3 = 4x2 y2 被称为“四叶玫瑰线”(如图所示).
(A) y2 = 8x
(B) y2 = 4x
(C) y2 = 2x(D来自 y2 = x(6)现有甲、乙、丙、丁、戊 5 种在线教学软件,若某学校要从中随机选取 3 种作为教师“停课不停学”的
教学工具,则其中甲、乙、丙至多有 2 种被选取的概率为
(A) 2 3
(B) 2 5
(C) 3 5
(D) 9 10
与平面 A1EF 是否平行,并说明理由.
D A A1
F
(18)(本小题 14 分)
B
E
B1
某科研团队研发了一款快速检测某种疾病的试剂盒.为了解该试剂盒检测的准确性,质检部门从某地
(17)(本小题 14 分)

朝阳区高三数学一模试卷(答案)

朝阳区高三数学一模试卷(答案)

北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2012.3三、解答题:(15)(本小题满分13分)解:(Ⅰ)因为π()cos()410f αα=-=,所以(cos sin )210αα+=, 所以 7cos sin 5αα+=. 平方得,22sin 2sin cos cos αααα++=4925, 所以 24sin 225α=. ……………6分 (II )因为()π()2g x f x f x ⎛⎫=⋅+⎪⎝⎭=ππcos()cos()44x x -⋅+=(cos sin )(cos sin )22x x x x +⋅- =221(cos sin )2x x - =1cos 22x . ……………10分当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,π2π2,33x ⎡⎤∈-⎢⎥⎣⎦. 所以,当0x =时,()g x 的最大值为12; 当π3x =时,()g x 的最小值为14-. ……………13分(16)(本小题满分13分) 解:(Ⅰ)依题意,0.0451000200,0.025*******a b =⨯⨯==⨯⨯=. ……………4分 (Ⅱ)设其中成绩为优秀的学生人数为x ,则350300100401000x ++=,解得:x =30, 即其中成绩为优秀的学生人数为30名. ……………7分(Ⅲ)依题意,X 的取值为0,1,2,2102403(0)52C P X C ===,1110302405(1)13C C P X C ===,23024029(2)52C P X C ===, 所以X 的分布列为350125213522EX =⨯+⨯+⨯=,所以X 的数学期望为2. ……………13分(17)(本小题满分14分)证明:(Ⅰ)取AD 的中点N ,连接MN,NF .在△DAB 中,M 是BD 的中点,N 是AD 的中点,所以1=2MN//AB,MN AB , 又因为1=2EF//AB,EF AB ,所以MN//EF 且MN =EF .所以四边形MNFE 为平行四边形, 所以EM//FN .又因为FN ⊂平面ADF ,⊄EM 平面ADF ,故EM//平面ADF . …………… 4分 解法二:因为EB ⊥平面ABD ,AB BD ⊥,故以B 为原点,建立如图所示的空间直角坐标系-B xyz . ……………1分 由已知可得 (0,0,0),(0,2,0),(3,0,0),B A D3(3,-2,0),(,0,0)2C E F M (Ⅰ)3=(,0,-3)(3,-2,0)2EM ,AD=, 设平面ADF 的一个法向量是()x,y,z n =. 由0,0,AD AF n n ⎧⋅=⎪⎨⋅=⎪⎩得32x -y =0,=0.⎧⎪⎨⎪⎩ 令y=3,则n =. 又因为3(=3+0-3=02EM n ⋅=⋅,所以EM n ⊥,又EM ⊄平面ADF ,所以//EM 平面ADF . ……………4分NCA F EBMD(Ⅱ)由(Ⅰ)可知平面ADF的一个法向量是n =. 因为EB ⊥平面ABD ,所以EB BD ⊥.又因为AB BD ⊥,所以BD ⊥平面EBAF . 故(3,0,0)BD =是平面EBAF 的一个法向量. 所以1cos <=2BD BD,BD n n n⋅>=⋅,又二面角D-AF -B 为锐角, 故二面角D-AF -B 的大小为60︒. ……………10分 (Ⅲ)假设在线段EB 上存在一点P ,使得CP 与AF 所成的角为30︒. 不妨设(0,0,t)P(0t ≤≤,则=(3,-2,-),=PC AF t .所以2cos <2PC AF PC,AF PC AF ⋅>==⋅,2=, 化简得35-=, 解得0t =<.所以在线段EB 上不存在点P ,使得CP 与AF 所成的角为30︒.…………14分 (18)(本小题满分13分)解:因为2e (),1ax f x x =+所以222e (2)()(1)ax ax x a f x x -+'=+.(Ⅰ)当1a =时, 2e ()1xf x x =+,222e (21)()(1)x x xf x x -+'=+, 所以(0)1,f = (0)1f '=.所以曲线()y f x =在点(0,(0))f 处的切线方程为10x y -+=. ……………4分(Ⅱ)因为222222e (2)e ()(2)(1)(1)ax ax ax x a f x ax x a x x -+'==-+++, ……………5分 (1)当0a =时,由()0f x '>得0x <;由()0f x '<得0x >.所以函数()f x 在区间(,0)-∞单调递增, 在区间(0,)+∞单调递减. ……………6分 (2)当0a ≠时, 设2()2g x ax x a =-+,方程2()20g x ax x a =-+=的判别式2444(1)(1),a a a ∆=-=-+ ……………7分①当01a <<时,此时0∆>.由()0f x '>得x <,或x >;由()0f x '<得11x a a-+<<.所以函数()f x 单调递增区间是1(,a -∞和1()a ++∞,单调递减区间11(,a a +. ……………9分②当1a ≥时,此时0∆≤.所以()0f x '≥,所以函数()f x 单调递增区间是(,)-∞+∞. ……………10分 ③当10a -<<时,此时0∆>.由()0f x '>x <<;由()0f x '<得x <,或x >.所以当10a -<<时,函数()f x 单调递减区间是1(,a +-∞和1()a +∞,单调递增区间11(a a +-. ……………12分④当1a ≤-时, 此时0∆≤,()0f x '≤,所以函数()f x 单调递减区间是(,)-∞+∞. …………13分(19)(本小题满分14分)解: (Ⅰ)依题意,c =1b =,所以a == 故椭圆C 的方程为2213x y +=. ……………4分(Ⅱ)①当直线l 的斜率不存在时,由221,13x x y =⎧⎪⎨+=⎪⎩解得1,3x y ==±.不妨设A,(1,B ,因为132233222k k +=+=,又1322k k k +=,所以21k =,所以,m n 的关系式为213n m -=-,即10m n --=. ………7分 ②当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2213x y +=整理化简得,2222(31)6330k x k x k +-+-=. 设11(,)A x y ,22(,)B x y ,则2122631k x x k +=+,21223331k x x k -=+. ………9分 又11(1)y k x =-,22(1)y k x =-. 所以12122113121222(2)(3)(2)(3)33(3)(3)y y y x y x k k x x x x ----+--+=+=---- 12211212[2(1)](3)[2(1)](3)3()9k x x k x x x x x x ---+---=-++121212122(42)()6123()9kx x k x x k x x x x -++++=-++222222223362(42)6123131336393131k k k k k k k k k k k -⨯-+⨯++++=--⨯+++ 222(126)2.126k k +==+………12分所以222k =,所以2213n k m -==-,所以,m n 的关系式为10m n --=.………13分 综上所述,,m n 的关系式为10m n --=. ………14分 (20)(本小题满分13分)解:(Ⅰ)若0:0,1,1,3,0,0A ,则1:1,0,1,3,0,0A ;2:2,1,2,0,0,0A ; 3:3,0,2,0,0,0A ; 4:4,1,0,0,0,0A ; 5:5,0,0,0,0,0A .若4:4,0,0,0,0A ,则 3:3,1,0,0,0A ; 2:2,0,2,0,0A ; 1:1,1,2,0,0A ;0:0,0,1,3,0A . ………4分(Ⅱ)先证存在性,若数列001:,,,n A a a a 满足0k a =及0(01)i a i k >≤≤-,则定义变换1T -,变换1T -将数列0A 变为数列10()T A -:01111,1,,1,,,,k k n a a a k a a -+---.易知1T -和T 是互逆变换. ………5分 对于数列,0,0,,0n 连续实施变换1T -(一直不能再作1T -变换为止)得,0,0,,0n 1T-−−→1,1,0,,0n -1T-−−→2,0,2,0,,0n -1T-−−→3,1,2,0,,0n -1T-−−→1T-−−→01,,,n a a a ,则必有00a =(若00a ≠,则还可作变换1T -).反过来对01,,,n a a a 作有限次变换T ,即可还原为数列,0,0,,0n ,因此存在数列0A 满足条件.下用数学归纳法证唯一性:当1,2n =是显然的,假设唯一性对1n -成立,考虑n 的情形. 假设存在两个数列01,,,n a a a 及01,,,n b b b 均可经过有限次T 变换,变为,0,,0n ,这里000a b ==,1212n n a a a b b b n +++=+++=若0n a n <<,则由变换T 的定义,不能变为,0,,0n ;若n a n =,则120n a a a ====,经过一次T 变换,有0,0,,0,n T−−→1,1,,1,0由于3n ≥,可知1,1,,1,0(至少3个1)不可能变为,0,,0n .所以0n a =,同理0n b =令01,,,n a a a T−−→121,,,,na a a ''',01,,,n b b b T−−→121,,,,nb b b ''',则0n n a b ''==,所以1211n a a a n -'''+++=-,1211nb b b n -'''+++=-. 因为110,,,n a a -''T−−−−→有限次-1,0,,0n ,110,,,n b b -''T−−−−→有限次-1,0,,0n ,故由归纳假设,有i i a b ''=,1,2,,1i n =-.再由T 与1T -互逆,有01,,,n a a a T−−→111,,,,0n a a -'',01,,,n b b b T−−→111,,,,0nb b -'',所以i i a b =,1,2,,i n =,从而唯一性得证. ………9分(Ⅲ)显然i a i ≤(1,2,,)i n =,这是由于若对某个0i ,00i a i >,则由变换的定义可知,0i a通过变换,不能变为0.由变换T 的定义可知数列0A 每经过一次变换,k S 的值或者不变,或者减少k ,由于数列0A 经有限次变换T ,变为数列,0,,0n 时,有0m S =,1,2,,m n =,所以m m S mt =(m t 为整数),于是1m m m S a S +=+1(1)m m a m t +=++,0m a m ≤≤, 所以m a 为m S 除以1m +后所得的余数,即[](1)1mm m S a S m m =-++.………13分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2012.3三、解答题:(15)(本小题满分13分)解:(Ⅰ)因为π()cos()410f αα=-=,所以(cos sin )210αα+=, 所以 7cos sin 5αα+=. 平方得,22sin 2sin cos cos αααα++=4925, 所以 24sin 225α=. ……………6分 (II )因为()π()2g x f x f x ⎛⎫=⋅+⎪⎝⎭=ππcos()cos()44x x -⋅+=(cos sin )(cos sin )22x x x x +⋅- =221(cos sin )2x x - =1cos 22x . ……………10分当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,π2π2,33x ⎡⎤∈-⎢⎥⎣⎦. 所以,当0x =时,()g x 的最大值为12; 当π3x =时,()g x 的最小值为14-. ……………13分(16)(本小题满分13分) 解:(Ⅰ)依题意,0.0451000200,0.025*******a b =⨯⨯==⨯⨯=. ……………4分 (Ⅱ)设其中成绩为优秀的学生人数为x ,则350300100401000x ++=,解得:x =30, 即其中成绩为优秀的学生人数为30名. ……………7分(Ⅲ)依题意,X 的取值为0,1,2,2102403(0)52C P X C ===,1110302405(1)13C C P X C ===,23024029(2)52C P X C ===, 所以X 的分布列为350125213522EX =⨯+⨯+⨯=,所以X 的数学期望为2. ……………13分(17)(本小题满分14分)证明:(Ⅰ)取AD 的中点N ,连接MN,NF .在△DAB 中,M 是BD 的中点,N 是AD 的中点,所以1=2MN//AB,MN AB , 又因为1=2EF//AB,EF AB ,所以MN//EF 且MN =EF .所以四边形MNFE 为平行四边形, 所以EM//FN .又因为FN ⊂平面ADF ,⊄EM 平面ADF ,故EM//平面ADF . …………… 4分 解法二:因为EB ⊥平面ABD ,AB BD ⊥,故以B 为原点,建立如图所示的空间直角坐标系-B xyz . ……………1分 由已知可得 (0,0,0),(0,2,0),(3,0,0),B A D3(3,-2,0),(,0,0)2C E F M (Ⅰ)3=((3,-2,0)2EM ,AD=u u u r u u u r, 设平面ADF 的一个法向量是()x,y,z n =.由0,0,AD AF n n ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r 得32x -y =0,=0.⎧⎪⎨⎪⎩ 令y=3,则n =. 又因为3(=3+0-3=02EM n ⋅=⋅u u u r,所以EM n ⊥u u u r,又EM ⊄平面ADF ,所以//EM 平面ADF . ……………4分NCA F EBMD(Ⅱ)由(Ⅰ)可知平面ADF的一个法向量是n =. 因为EB ⊥平面ABD ,所以EB BD ⊥.又因为AB BD ⊥,所以BD ⊥平面EBAF .故(3,0,0)BD =u u u r是平面EBAF 的一个法向量.所以1cos <=2BD BD,BD n n n ⋅>=⋅u u u ru u u r u u u r,又二面角D-AF -B 为锐角, 故二面角D-AF -B 的大小为60︒. ……………10分 (Ⅲ)假设在线段EB 上存在一点P ,使得CP 与AF 所成的角为30︒.不妨设(0,0,t)P(0t ≤≤,则=(3,-2,-),=PC AF t u u u r u u u r.所以cos <PC AF PC,AF PC AF ⋅>==⋅u u u r u u u ru u u r u u u ru u u r u u u r ,2=,化简得35-=,解得0t =<.所以在线段EB 上不存在点P ,使得CP 与AF 所成的角为30︒.…………14分 (18)(本小题满分13分)解:因为2e (),1ax f x x =+所以222e (2)()(1)ax ax x a f x x -+'=+.(Ⅰ)当1a =时, 2e ()1xf x x =+,222e (21)()(1)x x xf x x -+'=+, 所以(0)1,f = (0)1f '=.所以曲线()y f x =在点(0,(0))f 处的切线方程为10x y -+=. ……………4分(Ⅱ)因为222222e (2)e ()(2)(1)(1)ax ax ax x a f x ax x a x x -+'==-+++, ……………5分 (1)当0a =时,由()0f x '>得0x <;由()0f x '<得0x >.所以函数()f x 在区间(,0)-∞单调递增, 在区间(0,)+∞单调递减. ……………6分 (2)当0a ≠时, 设2()2g x ax x a =-+,方程2()20g x ax x a =-+=的判别式2444(1)(1),a a a ∆=-=-+ ……………7分①当01a <<时,此时0∆>.由()0f x '>得x <,或x >;由()0f x '<得11x a a-+<<.所以函数()f x 单调递增区间是1(,a -∞和1()a ++∞,单调递减区间11(,a a +. ……………9分②当1a ≥时,此时0∆≤.所以()0f x '≥,所以函数()f x 单调递增区间是(,)-∞+∞. ……………10分 ③当10a -<<时,此时0∆>.由()0f x '>x <<;由()0f x '<得x <,或x >.所以当10a -<<时,函数()f x 单调递减区间是1(,a +-∞和1()a +∞,单调递增区间11(a a +-. ……………12分④当1a ≤-时, 此时0∆≤,()0f x '≤,所以函数()f x 单调递减区间是(,)-∞+∞. …………13分(19)(本小题满分14分)解: (Ⅰ)依题意,c =1b =,所以a == 故椭圆C 的方程为2213x y +=. ……………4分(Ⅱ)①当直线l 的斜率不存在时,由221,13x x y =⎧⎪⎨+=⎪⎩解得1,3x y ==±.不妨设A,(1,B ,因为132233222k k +=+=,又1322k k k +=,所以21k =,所以,m n 的关系式为213n m -=-,即10m n --=. ………7分 ②当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2213x y +=整理化简得,2222(31)6330k x k x k +-+-=. 设11(,)A x y ,22(,)B x y ,则2122631k x x k +=+,21223331k x x k -=+. ………9分 又11(1)y k x =-,22(1)y k x =-. 所以12122113121222(2)(3)(2)(3)33(3)(3)y y y x y x k k x x x x ----+--+=+=---- 12211212[2(1)](3)[2(1)](3)3()9k x x k x x x x x x ---+---=-++121212122(42)()6123()9kx x k x x k x x x x -++++=-++222222223362(42)6123131336393131k k k k k k k k k k k -⨯-+⨯++++=--⨯+++ 222(126)2.126k k +==+………12分所以222k =,所以2213n k m -==-,所以,m n 的关系式为10m n --=.………13分 综上所述,,m n 的关系式为10m n --=. ………14分 (20)(本小题满分13分)解:(Ⅰ)若0:0,1,1,3,0,0A ,则1:1,0,1,3,0,0A ;2:2,1,2,0,0,0A ; 3:3,0,2,0,0,0A ; 4:4,1,0,0,0,0A ; 5:5,0,0,0,0,0A .若4:4,0,0,0,0A ,则 3:3,1,0,0,0A ; 2:2,0,2,0,0A ; 1:1,1,2,0,0A ;0:0,0,1,3,0A . ………4分(Ⅱ)先证存在性,若数列001:,,,n A a a a L 满足0k a =及0(01)i a i k >≤≤-,则定义变换1T -,变换1T -将数列0A 变为数列10()T A -:01111,1,,1,,,,k k n a a a k a a -+---L L .易知1T -和T 是互逆变换. ………5分 对于数列,0,0,,0n L 连续实施变换1T -(一直不能再作1T -变换为止)得,0,0,,0n L 1T -−−→1,1,0,,0n -L 1T -−−→2,0,2,0,,0n -L 1T-−−→3,1,2,0,,0n -L 1T -−−→L 1T-−−→01,,,n a a a L ,则必有00a =(若00a ≠,则还可作变换1T -).反过来对01,,,n a a a L 作有限次变换T ,即可还原为数列,0,0,,0n L ,因此存在数列0A 满足条件.下用数学归纳法证唯一性:当1,2n =是显然的,假设唯一性对1n -成立,考虑n 的情形. 假设存在两个数列01,,,n a a a L 及01,,,n b b b L 均可经过有限次T 变换,变为,0,,0n L ,这里000a b ==,1212n n a a a b b b n +++=+++=L L 若0n a n <<,则由变换T 的定义,不能变为,0,,0n L ;若n a n =,则120n a a a ====L ,经过一次T 变换,有0,0,,0,n L T−−→1,1,,1,0L 由于3n ≥,可知1,1,,1,0L (至少3个1)不可能变为,0,,0n L .所以0n a =,同理0n b =令01,,,n a a a L T−−→121,,,,n a a a '''L ,01,,,n b b b L T−−→121,,,,n b b b '''L ,则0nn a b ''==,所以1211n a a a n -'''+++=-L ,1211n b b b n -'''+++=-L . 因为110,,,n a a -''L T−−−−→有限次-1,0,,0n L ,110,,,n b b -''L T−−−−→有限次-1,0,,0n L ,故由归纳假设,有i i a b ''=,1,2,,1i n =-L . 再由T 与1T -互逆,有01,,,n a a a L T−−→111,,,,0n a a -''L ,01,,,n b b b L T−−→111,,,,0nb b -''L ,所以i i a b =,1,2,,i n =L ,从而唯一性得证. ………9分 (Ⅲ)显然i a i ≤(1,2,,)i n =L ,这是由于若对某个0i ,00i a i >,则由变换的定义可知,0i a通过变换,不能变为0.由变换T 的定义可知数列0A 每经过一次变换,k S 的值或者不变,或者减少k ,由于数列0A 经有限次变换T ,变为数列,0,,0n L 时,有0m S =,1,2,,m n =L ,所以m m S mt =(m t 为整数),于是1m m m S a S +=+1(1)m m a m t +=++,0m a m ≤≤, 所以m a 为m S 除以1m +后所得的余数,即[](1)1mm m S a S m m =-++.………13分。

相关文档
最新文档