2019年全国高考文科数学试题分类汇编之统计与概率

合集下载

2019年全国高考文科数学分类汇编---概率统计

2019年全国高考文科数学分类汇编---概率统计

2019年全国高考文科数学分类汇编---概率统计1(2019北京文科).改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额支付方式不大于(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(Ⅰ)400人;(Ⅱ)1 25;(Ⅲ)见解析.【解析】【分析】(Ⅰ)由题意利用频率近似概率可得满足题意的人数;(Ⅱ)利用古典概型计算公式可得上个月支付金额大于2000元的概率;(Ⅲ)结合概率统计相关定义给出结论即可.【详解】(Ⅰ)由图表可知仅使用A的人数有30人,仅使用B的人数有25人,由题意知A,B两种支付方式都不使用的有5人,所以样本中两种支付方式都使用的有1003025540---=,所以全校学生中两种支付方式都使用的有401000400100⨯=(人). (Ⅱ)因为样本中仅使用B 的学生共有25人,只有1人支付金额大于2000元,所以该学生上个月支付金额大于2000元的概率为125. (Ⅲ)由(Ⅱ)知支付金额大于2000元的概率为125,因为从仅使用B 的学生中随机调查1人,发现他本月的支付金额大于2000元,依据小概率事件它在一次试验中是几乎不可能发生的,所以可以认为仅使用B 的学生中本月支付金额大于2000元的人数有变化,且比上个月多.【点睛】本题主要考查古典概型概率公式及其应用,概率的定义与应用等知识,意在考查学生的转化能力和计算求解能力.2.(2019全国1卷文科)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A. 8号学生 B. 200号学生C. 616号学生D. 815号学生【答案】C 【解析】 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到, 所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.3.(2019全国1卷文科)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.【答案】(1)43 ,55;(2)能有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】【分析】(1)从题中所给的22⨯列联表中读出相关的数据,利用满意的人数除以总的人数,分别算出相应的频率,即估计得出的概率值;(2)利用公式求得观测值与临界值比较,得到能有95%的把握认为男、女顾客对该商场服务的评价有差异. 【详解】(1)由题中表格可知,50名男顾客对商场服务满意的有40人,所以男顾客对商场服务满意率估计为1404 505P==, 50名女顾客对商场满意的有30人,所以女顾客对商场服务满意率估计为2303 505P==,(2)由列联表可知22100(40203010)1004.762 3.8417030505021K⨯-⨯==≈>⨯⨯⨯,所以能有95%的把握认为男、女顾客对该商场服务的评价有差异.【点睛】该题考查的是有关概率与统计的知识,涉及到的知识点有利用频率来估计概率,利用列联表计算2K 的值,独立性检验,属于简单题目.4.(2019全国2卷文科)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标概率为A. 23B.35 C. 25D. 15【答案】B 【解析】 【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解. 【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种, 所以恰有2只做过测试的概率为63105=,选B . 【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.5.(2019全国2卷文科)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.6.(2019全国2卷文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.的(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.【答案】(1) 增长率超过0400的企业比例为21100,产值负增长的企业比例为2110050=;(2)平均数0.3;标准差0.17. 【解析】 【分析】(1)本题首先可以通过题意确定100个企业中增长率超过0400的企业以及产值负增长的企业的个数,然后通过增长率超过0400的企业以及产值负增长的企业的个数除随机调查的企业总数即可得出结果;(2)可通过平均值以及标准差的计算公式得出结果。

2019年高考概率与统计(文科)过关试卷

2019年高考概率与统计(文科)过关试卷

2019年高考---概率与统计(文科)过关试卷一、填空题(共6小题,每小题10分,共60分)1、、某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是_____________2、、为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.2 8.6 10.0 11.3 11.9支出y(万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆy bx a=+,其中ˆˆˆ0.76,b a y bx==-,据此估计,该社区一户收入为15万元家庭年支出为万元3、、从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为_____________4、、从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为_____________5、我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为石6、在区间[0,2]上随机地取一个数x,则事件“121-1log2x≤+≤()1”发生的概率为二、解答题(共2小题,每小题20分,共40分)7、海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg”,估计A 的概率; (2)填写下面列联表,学*科网并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50 kg 箱产量≥50 kg旧养殖法新养殖法(3P () 0.050 0.010 0.001k3.841 6.635 10.82822()()()()()n ad bc K a b c d a c b d -=++++.8、某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数 012345≥保费0.85aa1.25a 1.5a 1.75a 2a出险次数 0 1 2 3 4 5≥频数605030302010(1(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”. 求()P B 的估计值;(3)求续保人本年度的平均保费估计值.。

2019年高考数学真题专题15 概率与统计(解答题)

2019年高考数学真题专题15  概率与统计(解答题)

专题15 概率与统计(解答题)1.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客40 10女顾客30 20(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828【答案】(1)男、女顾客对该商场服务满意的概率的估计值分别为0.8,0.6;(2)有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.8 50=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.6 50=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)由题可得22100(40203010)4.76250507030K⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.2.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.y的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数 2 24 53 14 7 (1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 附:748.602≈.【答案】(1)产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)这类企业产值增长率的平均数与标准差的估计值分别为30%,17%. 【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i ii s n y y ==-∑ 222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.02960.02740.17s ==⨯≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.3.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)0.35a =,0.10b =;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.700.200.15a =++,故0.35a =.10.050.150.700.10b =---=.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.4.【2019年高考天津卷文数】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为, , , , , A B C D E F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.员工项目 ABCDEF子女教育 ○ ○ × ○ × ○ 继续教育 × × ○ × ○ ○ 大病医疗 × × × ○ × × 住房贷款利息 ○ ○ × × ○ ○ 住房租金 × × ○ × × × 赡养老人○○×××○(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率. 【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i )见解析,(ii )1115. 【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(i)从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },A B A C A D A E A F B C{, },{, },{, },{, {,}},,B D B E B FCD C E{,},C F {,},{,},{,}D E D F E F,共15种.(ii)由表格知,符合题意的所有可能结果为{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,},}A B A D A E A F B D B CE BF E C F D F E F,共11种.所以,事件M发生的概率11 ()15P M=.5.【2019年高考北京卷文数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额支付方式不大于2 000元大于2 000元仅使用A 27人3人仅使用B 24人1人(1)估计该校学生中上个月A,B两种支付方式都使用的人数;(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.【答案】(1)该校学生中上个月A,B两种支付方式都使用的人数约为400;(2)0.04;(3)见解析.【解析】(1)由题知,样本中仅使用A的学生有27+3=30人,仅使用B的学生有24+1=25人,A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100–30–25–5=40人.估计该校学生中上个月A,B两种支付方式都使用的人数为401000400 100⨯=.(2)记事件C 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”, 则1()0.0425P C ==. (3)记事件E 为“从样本仅使用B 的学生中随机抽查1人,该学生本月的支付金额大于2 000元”. 假设样本仅使用B 的学生中,本月支付金额大于2 000元的人数没有变化, 则由(2)知,4(0)0.P E =.答案示例1:可以认为有变化.理由如下:()P E 比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化, 所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E 是随机事件,()P E 比较小,一般不容易发生,但还是有可能发生的, 所以无法确定有没有变化.6.【2018年高考全国Ⅱ卷文数】下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17L )建立模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7L )建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)模型①:226.1亿元,模型②:256.5亿元;(2)模型②得到的预测值更可靠,理由见解析.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 y $=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 y $=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =–30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y $=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.7.【2018年高考全国Ⅰ卷文数】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量 [)00.1,[)0.10.2, [)0.20.3, [)0.30.4, [)0.40.5, [)0.50.6, [)0.60.7,频数13249265使用了节水龙头50天的日用水量频数分布表日用水量 [)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,频数151310165(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)47.45m.【答案】(1)见解析;(2)0.48;(3)3【解析】(1)频率分布直方图如下:(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m 3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为11(0.0510.1530.2520.3540.4590.55260.655)0.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为21(0.0510.1550.25130.35100.45160.555)0.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水3(0.480.35)36547.45(m )-⨯=.8.【2018年高考全国Ⅲ卷文数】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()0.0500.0100.0013.8416.63510.828P K k k ≥.【答案】(1)第二种生产方式的效率更高,理由见解析;(2)列联表见解析;(3)有99%的把握认为两种生产方式的效率有差异.【解析】(1)第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知7981802m+==.列联表如下:超过m不超过m第一种生产方式15 5第二种生产方式 5 15(3)由于2240(151555)10 6.63520202020K⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.9.【2018年高考北京卷文数】电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数140 50 300 200 800 510好评率0.4 0.2 0.15 0.25 0.2 0.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案】(1)0.025;(2)0.814;(3)增加第五类电影的好评率,减少第二类电影的好评率.【解析】(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,故所求概率为500.025 2000=.(2)方法1:由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51=372.故所求概率估计为37210.8142000-=.方法2:设“随机选取1部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得16280.8142)00(P B==.(3)增加第五类电影的好评率,减少第二类电影的好评率.10.【2018年高考天津卷文数】已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【答案】(1)分别抽取3人,2人,2人;(2)(i)见解析,(ii)521.【分析】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.(ii )由(1),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为 {A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种. 所以,事件M 发生的概率为P (M )=521. 11.【2017年高考全国Ⅱ卷文数】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50 kg箱产量≥50 kg旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较. 附: P () 0.050 0.010 0.001 k3.841 6.635 10.82822()()()()()n ad bc K a b c d a c b d -=++++.【答案】(1)0.62;(2)列联表见解析,有99%的把握认为箱产量与养殖方法有关;(3)新养殖法优于旧养殖法.【分析】(1)根据频率分布直方图中小长方形面积等于对应概率,计算A 的概率;(2)将数据填入对应表格,代入卡方公式,计算215.705K ≈,对照参考数据可作出判断;(3)先从均值(或中位数)比较大小,越大越好,再从数据分布情况看稳定性,越集中越好,综上可得新养殖法优于旧养殖法. 【解析】(1)旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62. 因此,事件A 的概率估计值为0.62. (2)根据箱产量的频率分布直方图得列联表箱产量<50 kg箱产量≥50 kg旧养殖法 62 38 新养殖法3466K 2=22006266343815.70510010096104⨯⨯-⨯⨯⨯⨯()≈.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.【名师点睛】(1)频率分布直方图中小长方形面积等于对应概率,所有小长方形面积之和为1. (2)频率分布直方图中均值等于组中值与对应概率乘积的和. (3)均值大小代表水平高低,方差大小代表稳定性.12.【2017年高考全国Ⅰ卷文数】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序 1 2 3 4 5 6 7 8 零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 抽取次序 9 10 11 12 13 14 15 16 零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,1621(8.5)18.439i i =-≈∑,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数12211()()()()niii n niii i x x y y r x x y y ===--=--∑∑∑,0.0080.09≈.【答案】(1)18.0-≈r ,可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小;(2)(ⅰ)需对当天的生产过程进行检查;(ⅱ)均值与标准差的估计值分别为10.02,0.09. 【分析】(1)依公式求r ;(2)(i )由9.97,0.212x s =≈,得抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查;(ii )剔除第13个数据,则均值的估计值为10.02,方差为0.09.【解析】(1)由样本数据得(,)(1,2,,16)i x i i =L 的相关系数为16116162211()(8.5)2.780.180.2121618.439()(8.5)ii ii i x x i r x x i ===---==≈-⨯⨯--∑∑∑.由于||0.25r <,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小. (2)(i )由于9.97,0.212x s =≈,由样本数据可以看出抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查.(ii )剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.22)10.0215⨯-=, 这条生产线当天生产的零件尺寸的均值的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除第13个数据,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈, 这条生产线当天生产的零件尺寸的标准差的估计值为0.0080.09≈.【名师点睛】解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.13.【2017年高考全国Ⅲ卷文数】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温 [10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.【答案】(1)0.6;(2)Y 的所有可能值为900,300,-100,Y 大于零的概率为0.8.【分析】(1)先确定需求量不超过300瓶的天数为2163654++=,再根据古典概型的概率计算公式求概率;(2)先分别求出最高气温不低于25(36天),最高气温位于区间[20,25)(36天),以及最高气温低于20(18天)对应的利润分别为900,300,100-,所以Y 大于零的概率估计为3625740.890+++=.【解析】(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6450-4450=900;若最高气温位于区间[20,25),则Y=6300+2(450-300)-4450=300;若最高气温低于20,则Y=6200+2(450-200)-4450=-100.所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为,因此Y大于零的概率的估计值为0.8.【名师点睛】古典概型中基本事件数的探求方法:(1)列举法;(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.14.【2017年高考北京卷文数】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30],[30,40],L,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【答案】(1)0.4;(2)20;(3):32.【分析】(1)根据频率分布直方图,表示分数大于等于70的概率,就求最后两个矩形的面积;(2)根据公式:频数=总数⨯频率进行求解;(3)首先计算分数大于等于70的总人数,根据样本中分数不小于70的男女生人数相等再计算所有的男生人数,100−男生人数就是女生人数.【解析】(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.020.04)100.6+⨯=, 所以样本中分数小于70的频率为10.60.4-=.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.010.020.040.02)100.9+++⨯=, 分数在区间[40,50)内的人数为1001000.955-⨯-=. 所以总体中分数在区间[40,50)内的人数估计为540020100⨯=. (3)由题意可知,样本中分数不小于70的学生人数为(0.020.04)1010060+⨯⨯=, 所以样本中分数不小于70的男生人数为160302⨯=. 所以样本中的男生人数为30260⨯=,女生人数为1006040-=, 男生和女生人数的比例为::604032=.所以根据分层抽样原理,总体中男生和女生人数的比例估计为:32.【名师点睛】(1)用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,而直方图比较直观.(2)频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.。

2019高考试题汇编文科数学---概率统计

2019高考试题汇编文科数学---概率统计
附: .
答案:
详看法析
解答:
(1)这种公司中产值增加率不低于40%的公司比率是 ,
这种公司中产值负增加的公司比率是 .
(2)这种公司产值增加率的均匀数是
这种公司产值增加率的方差是
所以这种公司产值增加率的标准差是 .
(2019全国3文)3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()
成绩宣布后,三人成绩互不同样且只有一个人展望正确,那么三人按成绩由高到低的序次为()
A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙
答案:A
解答:依据已知逻辑关系可知,甲的展望正确,乙丙的展望错误,从而可得结果.
(2019全国2文)14.我国高铁发展快速,技术先进.经统计,在经停某站的高铁列车中,有 个车次的正点率为 ,有 个车次的正点率为 ,有 个车次的正点率为 ,则经停该站的高铁列车全部车次的均匀正点率的预计值为.
【剖析】
研究方差随 变化的增大或减小规律,常用方法就是将方差用参数 表示,应用函数知识求解.此题依据方差与希望的关系,将方差表示为 的二次函数,二测函数的图象和性质解题.题目有必定综合性,着重重要知识、基础知识、运算求解能力的考察.
【详解】方法1:由散布列得 ,则
,则当 在 内增大时, 先减小后增大.
女顾客的的满意概率为
(2)有 的掌握以为男、女顾客对该商场服务的评论有差别.
解答:
(1)男顾客的的满意概率为
女顾客的的满意概率为 .
(2)
有 的掌握以为男、女顾客对该商场服务的评论有差别.
(2019全国2文)4.生物实验室有 只兔子,此中只有 只丈量过某项指标.若从这 只兔子中随机拿出 只,则恰有 只丈量过该指标的概率为()

2019年高考数学试题分项版—统计概率(原卷版)

2019年高考数学试题分项版—统计概率(原卷版)

2019年高考数学试题分项版——统计概率(原卷版)一、选择题1.(2019·全国Ⅰ文,6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生2.(2019·全国Ⅱ文,4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.3.(2019·全国Ⅱ文,5)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙4.(2019·全国Ⅲ文,3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B. C. D.5.(2019·全国Ⅲ文,4)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.86.(2019·浙江,7)设0<a<1.随机变量X的分布列是()则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大7.(2019·全国Ⅰ理,6)我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“——”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.8.(2019·全国Ⅱ理,5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差9.(2019·全国Ⅲ理,3)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.810.(2019·全国Ⅲ理,4)(1+2x2)(1+x)4的展开式中x3的系数为()A.12 B.16 C.20 D.24二、填空题1.(2019·全国Ⅱ文,14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.2.(2019·浙江,13)在二项式(+x)9的展开式中,常数项是________,系数为有理数的项的个数是________.3.(2019·江苏,5)已知一组数据6,7,8,8,9,10,则该组数据的方差是_____________.4.(2019·江苏,6)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.5.(2019·全国Ⅰ理,15)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.6.(2019·全国Ⅱ理,13)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.7.(2019·天津理,10)8的展开式中的常数项为________.三、解答题1.(2019·全国Ⅰ文,17)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2=.2.(2019·全国Ⅱ文,19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.3.(2019·全国Ⅲ文,17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).4.(2019·北京文,17)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生中上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生支付金额分布情况如下:(1)估计该校学生中上个月A,B两种支付方式都使用的人数;(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.5.(2019·天津文,15)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.6.(2019·江苏,22)(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2-3b2的值.7.(2019·江苏,23)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},C n={(0,2),(1,2),(2,2),…,(n,2)},n∈N*.令M n=A n∪B n∪C n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).8.(2019·全国Ⅰ理,21)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(ⅰ)证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;(ⅱ)求p4,并根据p4的值解释这种试验方案的合理性.9.(2019·全国Ⅱ理,18)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.10.(2019·全国Ⅲ理,17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).11.(2019·北京理,17)(13分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.12.(2019·天津理,16)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为,假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.。

2019年高考数学(文) 统计与概率21 含答案

2019年高考数学(文) 统计与概率21 含答案

专题对点练216.1~6.2组合练(限时90分钟,满分100分)一、选择题(共9小题,满分45分)1.某高校共有学生3 000人,新进大一学生有800人.现对大学生社团活动情况进行抽样调查,用分层抽样方法在全校抽取300人,则应在大一抽取的人数为()A.200B.100C.80D.752.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5B.5,5C.3,7D.5,73.已知在数轴上0和3之间任取一个实数x,则使“log2x<1”的概率为()A.B.C.D.4.为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验,根据四个实验室得到的列联表画出如下四个等高条形图,最能体现该药物对预防禽流感有效果的图形是()5.在区间[-3,3]内随机取出一个数a,使得1∈{x|2x2+ax-a2>0}的概率为()A.B.C.D.6.现采用随机模拟的方法估计某运动员射击4次至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1,2表示没有击中目标,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数: 75270293714098570347437386366947141746980371623326168045 601136619597742476104281根据以上数据估计该射击运动员射击4次至少击中3次的概率为()A.0.55B.0.6C.0.65D.0.77.设样本数据x1,x2,…,x10的平均值和方差分别为1和4,若y i=x i+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的平均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a8.(2018广东深圳调研)某食品研究部门为了解一种酒品的储藏年份与芳香度之间的相关关系,在市场由最小二乘法得到回归方程=1.03x+1.13,但不小心在检测后滴到表格上一滴检测液,污损了一个数据,请你推断该数据为()A.6.1B.6.28C.6.5D.6.89.已知半径为r的圆内切于某等边三角形,若在该三角形内任取一点,则该点到圆心的距离大于半径r 的概率为()A.B.1-C.D.1-二、填空题(共3小题,满分15分)10.(2018江苏,3)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为.11.(2018上海,9)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是.(结果用最简分数表示)12.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请200名同学每人随机写下一个都小于1的正实数对(x,y);再统计两数能与1构成钝角三角形三边的数对(x,y)的个数m;最后再根据统计数m来估计π的值.假如统计结果是m=56,那么可以估计π≈.(用分数表示)三、解答题(共3个题,满分分别为13分,13分,14分)13.如图所示,茎叶图记录了甲、乙两组5名工人制造某种零件的个数.(1)求甲组工人制造零件的平均数和方差;(2)分别从甲、乙两组中随机选取一名工人,求这两名工人制造的零件总数不超过20的概率.14.全世界人们越来越关注环境保护问题,某监测站点于2018年8月某日起连续n天监测空气质量指(1)根据所给统计表和频率分布直方图中的信息求出n,m的值,并完成频率分布直方图;(2)由频率分布直方图求该组数据的平均数与中位数;(3)在空气质量指数分别属于[50,100)和[150,200)的监测数据中,用分层抽样的方法抽取5天,再从中任意选取2天,求事件A“两天空气都为良”发生的概率.15.某种新产品投放市场一段时间后,经过调研获得了时间x(单位:天)与销售单价y(单位:元)的一组数据,(x i-)2(w i-)2(x i-)(y i-) (w i-)·(y i-)表中w i=w i.(1)根据散点图判断x与哪一个更适宜作价格y关于时间x的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立y关于x的回归方程.(3)若该产品的日销售量g(x)(单位:件)与时间x的函数关系为g(x)=+120(x∈N*),求该产品投放市场第几天的销售额最高?最高为多少元?附:对于一组数据(u1,v1),(u2,v2),(u3,v3),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为.专题对点练21答案1.C解析设大一抽取的人数为x,则用分层抽样的方法可得,解得x=80.故选C.2.A解析甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.若两组数据的中位数相等,则65=60+y,所以y=5.又两组数据的平均值相等,所以56+62+65+70+x+74=59+61+67+65+78,解得x=3.3.C解析由log2x<1,得0<x<2,区间长度为2,区间[0,3]长度为3,所以所求概率为.故选C.4.D解析根据四个列联表中的等高条形图知,图形D中不服药与服药时患禽流感的差异最大,它最能体现该药物对预防禽流感有效果.故选D.5.D解析由1∈{x|2x2+ax-a2>0},得2+a-a2>0,解得-1<a<2.由几何概型的知识知,总的测度区间[-3,3]的长度为6,随机地取出一个数a,使得1∈{x|2x2+ax-a2>0}这个事件的测度为3,故区间[-3,3]内随机地取出一个数a,使得1∈{x|2x2+ax-a2>0}的概率为,故选D.6.B解析由题意知模拟射击4次的结果,经随机模拟产生了20组随机数,在20组随机数中表示射击4次至少击中3次的有:7527,9857,0347,4373,8636,6947,4698,6233,8045,3661,9597,7424,共12组随机数,故所求概率P≈=0.6.故选B.7.A解析由题意知y i=x i+a(i=1,2,…,10),则(x1+x2+…+x10+10a)=(x1+x2+…+x10)+a=+a=1+a,方差s2=[(x1+a--a)2+(x2+a--a)2+…+(x10+a--a)2]=[(x1-)2+(x2-)2+…+(x10-)2]=s2=4.故选A.8.A解析=4,因为样本中心点在回归直线=1.03x+1.13上,所以将x=4代入回归方程=1.03x+1.13,可得=5.25.设该数据的值为m,由5.25=,解得m=6.1,即该数据为6.1.故选A.9.B解析已知半径为r的圆内切于某等边三角形,则等边三角形的边长为2r,故该点到圆心的距离大于半径r的概率为1-=1-.10.90解析由题中茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为=90.11.解析从编号互不相同的五个砝码中随机选取三个,总的结果数为10,其中选取的三个砝码的总质量为9克的有两种,所以所求概率为.12.解析由题意,得200对都小于1的正实数对(x,y),对应区域的面积为1,两个数能与1构成钝角三角形三边的数对(x,y),满足x2+y2<1且x,y都小于1,x+y>1,面积为.因为统计两数能与1构成钝角三角形三边的数对(x,y)的个数m=56,所以,所以π≈.故答案为.13.解(1)甲组工人制造零件数为9,9,10,10,12,故甲组工人制造零件的平均数(9+9+10+10+12)=10,方差为s2= [(9-10)2+(9-10)2+(10-10)2+(10-10)2+(12-10)2]=.(2)由题意,得甲、乙两组工人制造零件的个数分别是:甲:9,9,10,10,12;乙:8,9,9,10,11,甲组中5名工人分别记为a,b,c,d,e,乙组中5名工人分别记为A,B,C,D,E,分别从甲、乙两组中随机选取1名工人,共有25种方法,制造零件总数超过20的有:eB,eC,eD,eE,dE,cE,共6种,故这两名工人制造的零件总数不超过20的概率P=1-.14.解(1)0.004×50=,解得n=100.20+40+m+10+5=100,解得m=25,=0.008,=0.005,=0.002,=0.001.完成频率分布直方图如下图:(2)由频率分布直方图知该组数据的平均数为=25×0.004×50+75×0.008×50+125×0.005×50+175×0.002×50+225×0.001×50=95.∵[0,50)的频率为0.004×50=0.2,[50,100)的频率为0.008×50=0.4,∴该组数据的中位数为50+×50=87.5.(3)在空气质量指数为[50,100)和[150,200)的监测天数中分布抽取4天和1天,在所抽取的5天中,将空气质量指数为[50,100)的4天分别记为a,b,c,d,将空气质量指数为[150,200)的1天记为e.从中任取2天的基本事件分别为:(a,b),(a,c),(a,d),(a,e),(b, c),(b,d),(b,e),(c,d),(c,e),(d,e),共10个,其中事件A“两天空气都为良”包含的基本事件为:(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共6个,∴事件A“两天空气都为良”发生的概率P(A)=.15.解(1)由散点图可以判断适合作价格y关于时间x的回归方程类型.(2)令w=,先建立y关于w的线性回归方程.∵=20,∴=37.8-20×0.89=20,∴y关于w的线性方程为=20+20w,∴y关于x的线性方程为=20+.(3)日销售额h(x)=g(x)=-200=-2 000,故x=10时,h(x)有最大值2 420元,即该产品投放市场第10天的销售额最高,最高为2 420元.。

2019年高考数学真题专题15 概率与统计(解答题)

2019年高考数学真题专题15  概率与统计(解答题)

专题15 概率与统计(解答题)1.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.【答案】(1)男、女顾客对该商场服务满意的概率的估计值分别为0.8,0.6;(2)有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.8 50=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.6 50=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)由题可得22100(40203010)4.76250507030K⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.2.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 附:748.602≈.【答案】(1)产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)这类企业产值增长率的平均数与标准差的估计值分别为30%,17%. 【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i ii s n y y ==-∑ 222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.02960.02740.17s ==⨯≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.3.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)0.35a =,0.10b =;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.700.200.15a =++,故0.35a =.10.050.150.700.10b =---=.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.4.【2019年高考天津卷文数】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为, , , , , A B C D E F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率. 【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i )见解析,(ii )1115. 【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(i)从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },A B A C A D A E A F B C{, },{, },{, },{, {,}},,B D B E B FCD C E{,},C F {,},{,},{,}D E D F E F,共15种.(ii)由表格知,符合题意的所有可能结果为{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,},}A B A D A E A F B D B CE BF E C F D F E F,共11种.所以,事件M发生的概率11 ()15P M=.5.【2019年高考北京卷文数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)估计该校学生中上个月A,B两种支付方式都使用的人数;(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.【答案】(1)该校学生中上个月A,B两种支付方式都使用的人数约为400;(2)0.04;(3)见解析.【解析】(1)由题知,样本中仅使用A的学生有27+3=30人,仅使用B的学生有24+1=25人,A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100–30–25–5=40人.估计该校学生中上个月A,B两种支付方式都使用的人数为401000400 100⨯=.(2)记事件C 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”, 则1()0.0425P C ==. (3)记事件E 为“从样本仅使用B 的学生中随机抽查1人,该学生本月的支付金额大于2 000元”. 假设样本仅使用B 的学生中,本月支付金额大于2 000元的人数没有变化, 则由(2)知,4(0)0.P E =.答案示例1:可以认为有变化.理由如下:()P E 比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化, 所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E 是随机事件,()P E 比较小,一般不容易发生,但还是有可能发生的, 所以无法确定有没有变化.6.【2018年高考全国Ⅱ卷文数】下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)模型①:226.1亿元,模型②:256.5亿元;(2)模型②得到的预测值更可靠,理由见解析.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.7.【2018年高考全国Ⅰ卷文数】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)47.45m.【答案】(1)见解析;(2)0.48;(3)3【解析】(1)频率分布直方图如下:(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m 3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为11(0.0510.1530.2520.3540.4590.55260.655)0.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为21(0.0510.1550.25130.35100.45160.555)0.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水3(0.480.35)36547.45(m )-⨯=.8.【2018年高考全国Ⅲ卷文数】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()0.0500.0100.0013.8416.63510.828P K k k ≥.【答案】(1)第二种生产方式的效率更高,理由见解析;(2)列联表见解析;(3)有99%的把握认为两种生产方式的效率有差异.【解析】(1)第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知7981802m+==.列联表如下:(3)由于2240(151555)10 6.63520202020K⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.9.【2018年高考北京卷文数】电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案】(1)0.025;(2)0.814;(3)增加第五类电影的好评率,减少第二类电影的好评率.【解析】(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,故所求概率为500.025 2000=.(2)方法1:由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51=372.故所求概率估计为37210.8142000-=.方法2:设“随机选取1部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得16280.8142)00(P B==.(3)增加第五类电影的好评率,减少第二类电影的好评率.10.【2018年高考天津卷文数】已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【答案】(1)分别抽取3人,2人,2人;(2)(i)见解析,(ii)521.【分析】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.(ii )由(1),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为 {A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种. 所以,事件M 发生的概率为P (M )=521. 11.【2017年高考全国Ⅱ卷文数】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50 kg箱产量≥50 kg旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较. 附: P () 0.050 0.010 0.001 k3.841 6.635 10.82822()()()()()n ad bc K a b c d a c b d -=++++.【答案】(1)0.62;(2)列联表见解析,有99%的把握认为箱产量与养殖方法有关;(3)新养殖法优于旧养殖法.【分析】(1)根据频率分布直方图中小长方形面积等于对应概率,计算A 的概率;(2)将数据填入对应表格,代入卡方公式,计算215.705K ≈,对照参考数据可作出判断;(3)先从均值(或中位数)比较大小,越大越好,再从数据分布情况看稳定性,越集中越好,综上可得新养殖法优于旧养殖法. 【解析】(1)旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62. 因此,事件A 的概率估计值为0.62. (2)根据箱产量的频率分布直方图得列联表K 2=22006266343815.70510010096104⨯⨯-⨯⨯⨯⨯()≈.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.【名师点睛】(1)频率分布直方图中小长方形面积等于对应概率,所有小长方形面积之和为1. (2)频率分布直方图中均值等于组中值与对应概率乘积的和. (3)均值大小代表水平高低,方差大小代表稳定性.12.【2017年高考全国Ⅰ卷文数】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑0.09≈.【答案】(1)18.0-≈r ,可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小;(2)(ⅰ)需对当天的生产过程进行检查;(ⅱ)均值与标准差的估计值分别为10.02,0.09. 【分析】(1)依公式求r ;(2)(i )由9.97,0.212x s =≈,得抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查;(ii )剔除第13个数据,则均值的估计值为10.02,方差为0.09.【解析】(1)由样本数据得(,)(1,2,,16)i x i i =的相关系数为16()(8.5)0.18ix x i r --==≈-∑.由于||0.25r <,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小. (2)(i )由于9.97,0.212x s =≈,由样本数据可以看出抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查.(ii )剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.22)10.0215⨯-=, 这条生产线当天生产的零件尺寸的均值的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除第13个数据,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈,0.09≈.【名师点睛】解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.13.【2017年高考全国Ⅲ卷文数】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.【答案】(1)0.6;(2)Y 的所有可能值为900,300,-100,Y 大于零的概率为0.8.【分析】(1)先确定需求量不超过300瓶的天数为2163654++=,再根据古典概型的概率计算公式求概率;(2)先分别求出最高气温不低于25(36天),最高气温位于区间[20,25)(36天),以及最高气温低于20(18天)对应的利润分别为900,300,100-,所以Y 大于零的概率估计为3625740.890+++=.【解析】(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6450-4450=900;若最高气温位于区间[20,25),则Y=6300+2(450-300)-4450=300;若最高气温低于20,则Y=6200+2(450-200)-4450=-100.所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为,因此Y大于零的概率的估计值为0.8.【名师点睛】古典概型中基本事件数的探求方法:(1)列举法;(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.14.【2017年高考北京卷文数】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30],[30,40],,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【答案】(1)0.4;(2)20;(3):32.【分析】(1)根据频率分布直方图,表示分数大于等于70的概率,就求最后两个矩形的面积;(2)根据公式:频数=总数⨯频率进行求解;(3)首先计算分数大于等于70的总人数,根据样本中分数不小于70的男女生人数相等再计算所有的男生人数,100−男生人数就是女生人数.【解析】(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.020.04)100.6+⨯=, 所以样本中分数小于70的频率为10.60.4-=.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.010.020.040.02)100.9+++⨯=, 分数在区间[40,50)内的人数为1001000.955-⨯-=. 所以总体中分数在区间[40,50)内的人数估计为540020100⨯=. (3)由题意可知,样本中分数不小于70的学生人数为(0.020.04)1010060+⨯⨯=, 所以样本中分数不小于70的男生人数为160302⨯=. 所以样本中的男生人数为30260⨯=,女生人数为1006040-=, 男生和女生人数的比例为::604032=.所以根据分层抽样原理,总体中男生和女生人数的比例估计为:32.【名师点睛】(1)用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,而直方图比较直观.(2)频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.。

2019高考全国各地数学卷文科解答题分类汇编-概率与统计

2019高考全国各地数学卷文科解答题分类汇编-概率与统计

2019高考全国各地数学卷文科解答题分类汇编-概率与统计1、〔天津文〕15、〔本小题总分值13分〕编号为1216,,,A A A ⋅⋅⋅的16名篮球运动员在某次训练比赛中的得分记录如下:〔Ⅰ〕将得分在对应区间内的人数填入相应的空格;〔Ⅱ〕从得分在区间[)20,30内的运动员中随机抽取2人,〔i 〕用运动员的编号列出所有可能的抽取结果;〔ii 〕求这2人得分之和大于50的概率、【解析】〔15〕本小题主要考查用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式的等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力,总分值13分。

〔Ⅰ〕解:4,6,6〔Ⅱ〕〔i 〕解:得分在区间[20,30)内的运动员编号为345101113,,,,,.A A A A A A 从中随机抽取2人,所有可能的抽取结果有:343531*********{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A 410{,}A A ,411413510511513101110131113{,},{,},{,},{,},{,},{,},{,},{,}A A A A A A A A A A A A A A A A ,共15种。

〔ii 〕解:“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”〔记为事件B 〕的所有可能结果有:454104115101011{,},{,},{,},{,},{,}A A A A A A A A A A ,共5种。

所以51().153P B ==2.〔北京文〕16、〔本小题共13分〕以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.〔1〕如果X=8,求乙组同学植树棵树的平均数和方差;〔2〕如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. 〔注:方差],)()()[(1222212x x x ns n -+-+-= 其中为nx x x ,,,21 的平均数〕 【解析】〔16〕〔共13分〕解〔1〕当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为;435410988=+++=方差为.1611])43510()4359()4358[(412222=-+-+-=s 〔Ⅱ〕记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:〔A 1,B 1〕,〔A 1,B 2〕,〔A 1,B 3〕,〔A 1,B 4〕, 〔A 2,B 1〕,〔A 2,B 2〕,〔A 2,B 3〕,〔A 2,B 4〕, 〔A 3,B 1〕,〔A 2,B 2〕,〔A 3,B 3〕,〔A 1,B 4〕, 〔A 4,B 1〕,〔A 4,B 2〕,〔A 4,B 3〕,〔A 4,B 4〕,用C 表示:“选出的两名同学的植树总棵数为19”这一事件,那么C 中的结果有4个,它们是:〔A 1,B 4〕,〔A 2,B 4〕,〔A 3,B 2〕,〔A 4,B 2〕,故所求概率为.41164)(==C P3.〔全国新文〕19、〔本小题总分值12分〕 某种产品的质量以其质量指标值衡量,质量指标越大说明质量越好,且质量指标值大于或等于102的产品为优质品、现用两种新配方〔分别称为A 配方和B 配方〕做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表〔I 〕分别估计用A 配方,B 配方生产的产品的优质品率;〔II 〕用B 配方生产的一种产品利润y 〔单位:元〕与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润、 【解析】〔19〕解〔Ⅰ〕由试验结果知,用A 配方生产的产品中优质的频率为228=0.3100+,所以用A 配方生产的产品的优质品率的估计值为0.3。

2019年高考试题分类汇编(统计与概率)

2019年高考试题分类汇编(统计与概率)

2019年高考试题分类汇编(统计与概率)考点1 统计考法1 简单随机抽样1.(2019·全国卷Ⅰ·文科)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生 B.200号学生 C.616号学生 D.815号学生2.(2019·天津卷·文科)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A B C D E F.享受情况如右表,其中“”表示享受,“⨯”表示不享受.现从,,,,,(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.考法2数字特征1.(2019·全国卷Ⅱ·理科)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数 C.方差 D.极差2.(2019·全国卷Ⅱ·文理科)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经该站高铁列车所有车次的平均正点率的估计值为 .3.(2019·江苏卷)已知一组数据6,7,8,8,9,10,则该组数据的方差是 .4.(2019·全国卷Ⅰ·文理科)古希腊时期,人们认为最美人体的头顶至肚脐的0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165cmB .175cmC .185cmD .195cm9.(2019·全国卷Ⅱ·文科)某行业主管部门为了解本行业中小型企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表:(Ⅰ)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(Ⅱ)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.018.602≈考点2 概率考法1古典概型1.(2019·全国卷Ⅱ·文科)生物实验室有5只兔子,其中3只测量过某项指标,若从这5只兔子随机取出3只,则恰有2只测量过该项指标概率为A .23B .35C .25D .152.(2019·江苏卷)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .3.(2019·全国卷Ⅲ·文理科)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.84.(2019·全国卷Ⅰ·理科)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“—”和阴爻“--”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.1116考法2相互独立事件的概率1.(2019·全国卷Ⅰ·理科)甲、乙两队进行篮球决赛,采取七场四胜制(当一对赢得四场胜利时,该队获胜,决赛决赛).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果互相独立,则甲队以4:1获胜的概率为 .2.(2019·全国卷Ⅱ·理科)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(Ⅰ)求(2)P X=;(Ⅱ)事件“4X=且甲获胜”的概率.3.(2019·天津卷·理科)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.考法3 频率分布直方图1.(2019·全国卷Ⅲ·文理科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A 、B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每组小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C 的估计值为0.70.(Ⅰ)求乙离子残留百分比直方图中a ,b 的值;(Ⅱ)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).2.(2019·北京卷·文科)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本仅使用A 和仅使用B 的学生的支付金额分布(Ⅰ)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(Ⅱ)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中,随机抽查1人,发现他本月的支付金额大于2000元,结合(Ⅱ)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.甲离子残留百分比直方图 乙离子残留百分比直方图考点3 分布列1.(2019·北京卷·理科)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本仅使用A 和仅使用B 的学生的支付金额分布(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两个支付方式都使用的概率; (Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化,现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.则当a 在(0,1)内增大时, A .()D X 增大 B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大3.(2019·全国卷Ⅰ·理科)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮的试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别为α和β,一轮试验中甲药的得分记为X . (Ⅰ)求X 的的分布列;(Ⅱ)若甲药、乙药在试验开始时都赋予4分,i p (0,1,,8i =)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,1i i p ap -= 1i i bp cp +++(1,2,,7i =),其中(1)a p X ==-,(0)b p X ==,(1)c p X ==.假设0.5α=,0.8β=.①证明:1{}i i p p +-(1,2,,7i =)为等比数列;②求4p ,并根据4p 的值解释这种试验方案的合理性. 考点4 独立性检验1.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对(Ⅰ)分别估计男、女顾客对该商场服务满意的概率; (Ⅱ)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.。

2019年高考数学试题分类汇编概率附答案详解

2019年高考数学试题分类汇编概率附答案详解

2019年高考数学试题分类汇编概率一、选择题.1、(2019年高考全国I 卷文科6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生答案:C解析:组距为10,所以选出号码为等差数列,公差为10,故选C2、(2019年高考全国I 卷理科6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116答案:A解析:一共有6426=种可能,其中满足恰有3个阳爻的有2036=C 种,概率为1656420=故选A 3、(2019年高考全国II 卷文科4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35 C .25D .15答案:B解析:设5只兔子为A,B,C,D,E,其中A,B,C 为测量过指标的取出3只所有情况:ABC 、ABD 、ABE 、ACD 、ACE 、ADE 、BCD 、BCE 、BDE 、CDE 共10种满足条件的有6种:ABD 、ABE 、ACD 、ACE 、BCD 、BCE 故概率为53=p 故答案选B 4、(2019年高考全国II 卷理科5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差 答案:A解析:9个数的中位数与去掉两个数后的7个数的中位数相同.故答案选A5、(2019年高考全国III 卷文科3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12答案:D解析:两位男生和两位女生排成一列,共有44A 种站法,其中两位女生相邻的站法共有3322A A 种,所以两位女生相邻的概率是21123412312443322=⨯⨯⨯⨯⨯⨯⨯=A A A 。

2019年高考试题分类汇编(统计与概率)

2019年高考试题分类汇编(统计与概率)

2019年高考试题分类汇编(统计与概率)2019年高考试题分类汇编(统计与概率)考点1 统计考法1 简单随机抽样1.(2019·全国卷Ⅰ·文科)某学校为了解1000名新生的身体素质,将这些学生编号为1,2.1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验。

若46号学生被抽到,则下面4名学生中被抽到的是:A.8号学生 B.200号学生 C.616号学生 D.815号学生2.(2019·天津卷·文科)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除。

某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况。

Ⅰ)应从老、中、青员工中分别抽取多少人?Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F。

现从这6人中随机抽取2人接受采访。

i)试用所给字母列举出所有可能的抽取结果;ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率。

考法2 数字特征1.(2019·全国卷Ⅱ·理科)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分。

7个有效评分与9个原始评分相比,不变的数字特征是:A.中位数 B.平均数 C.方差 D.极差2.(2019·全国卷Ⅱ·文理科)我国高铁发展迅速,技术先进。

经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经该站高铁列车所有车次的平均正点率的估计值为。

1.已知一组数据为 6.7.8.8.9.10,则该组数据的方差为 1.2.2.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比约为 0.618,称为黄金分割比例。

2010-2019学年高考新课标全国I卷数学(文)真题分类汇编专题09 概率与统计(2)(原卷版)

2010-2019学年高考新课标全国I卷数学(文)真题分类汇编专题09 概率与统计(2)(原卷版)

专题09 概率与统计(2)概率与统计大题:10年10考,每年1题.第一小题多为统计问题,第二小题多为概率计算问题,特点:实际生活背景在加强,阅读量大.1.(2019年)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客40 10女顾客30 20(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2=()()()()()2n ad bca b c d a c b d-++++.P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.8282.(2018年)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7)频数 1 3 2 4 9 26 5使用了节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)频数 1 5 13 10 16 5(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35m 3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)3.(2017年)为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸: 抽取次序 1 2 3 4 5 6 7 8 零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 抽取次序 9 10 11 12 13 14 15 16 零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得 x =161116i i x =∑=9.97,s =()1621116ii x x =-∑=1622111616i i x x =⎛⎫- ⎪⎝⎭∑≈0.212,()16218.5i i =-∑,()()1618.5ii x x i =--∑=﹣2.78,其中x i为抽取的第i 个零件的尺寸,i =1,2,…,16.(1)求(x i ,i )(i =1,2,…,16)的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r |<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(x ﹣3s ,x +3s )之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(x ﹣3s ,x +3s )之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(x i ,y i )(i =1,2,…,n )的相关系数r =()()()()12211niii nniii i x x y y x x y y ===----∑∑∑,0.008≈0.09.4.(2016年)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (1)若n =19,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?5.(2015年)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2, (8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyω()821ii x x =-∑()821ii ωω=-∑()()81iii x x y y =--∑ ()()81iii y y ωω=--∑46.6 563 6.8 289.8 1.6 1469 108.8表中i i x ω=,8118i i ωω==∑.(1)根据散点图判断,y =a +bx 与y =c +d 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x 、y 的关系为z =0.2y ﹣x .根据(2)的结果回答下列问题: (i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2),…,(u n v n ),其回归线v =α+βu 的斜率和截距的最小二乘估计分别为:()()()121ˆnii i ni i uu v v u u β==--=-∑∑,ˆˆv u αβ=-. 6.(2014年)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表: 质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?7.(2013年)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A 药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?8.(2012年)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14 15 16 17 18 19 20频数10 20 16 16 15 13 10(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.9.(2011年)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110] 频数8 20 42 22 8B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110] 频数 4 12 42 32 10(1)分别估计用A配方,B配方生产的产品的优质品率;(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为2,942,941024,102ty tt-<⎧⎪=≤<⎨⎪≥⎩.估计用B配方生产的产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.10.(2010年)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女需要40 30不需要160 270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.050 0.010 0.0013.841 6.635 10.828附:K2=()()()()()2n ad bca b c d a c b d-++++.。

2019年高考数学试题分项版—统计概率(解析版)

2019年高考数学试题分项版—统计概率(解析版)

2019年高考数学试题分项版——统计概率(解析版)一、选择题1.(2019·全国Ⅰ文,6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生答案 C解析根据题意,系统抽样是等距抽样,所以抽样间隔为=10.因为46除以10余6,所以抽到的号码都是除以10余6的数,结合选项知,616号学生被抽到.2.(2019·全国Ⅱ文,4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.答案 B解析设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.故恰有2只测量过该指标的概率为=.3.(2019·全国Ⅱ文,5)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案 A解析由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,再假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.4.(2019·全国Ⅲ文,3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B. C. D.答案 D解析设两位男同学分别为A,B,两位女同学分别为a,b,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为=.5.(2019·全国Ⅲ文,4)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.8答案 C解析根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7. 6.(2019·浙江,7)设0<a<1.随机变量X的分布列是()则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大答案 D解析由题意可知,E(X)=(a+1),所以D(X)=++==,所以当a在(0,1)内增大时,D(X)先减小后增大.7.(2019·全国Ⅰ理,6)我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“——”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.答案 A解析由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为==20.根据古典概型的概率计算公式得,所求概率P==.故选A. 8.(2019·全国Ⅱ理,5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差答案 A解析记9个原始评分分别为a,b,c,d,e,f,g,h,i(按从小到大的顺序排列),易知e 为7个有效评分与9个原始评分的中位数,故不变的数字特征是中位数,故选A. 9.(2019·全国Ⅲ理,3)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.8答案 C解析根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7. 10.(2019·全国Ⅲ理,4)(1+2x2)(1+x)4的展开式中x3的系数为()A.12 B.16 C.20 D.24答案 A解析展开式中含x3的项可以由“1与x3”和“2x2与x”的乘积组成,则x3的系数为+2=4+8=12.二、填空题1.(2019·全国Ⅱ文,14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98. 2.(2019·浙江,13)在二项式(+x)9的展开式中,常数项是________,系数为有理数的项的个数是________.答案16 5解析该二项展开式的第k+1项为T k+1=()9-k x k,当k=0时,第1项为常数项,所以常数项为()9=16;当k=1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.3.(2019·江苏,5)已知一组数据6,7,8,8,9,10,则该组数据的方差是_____________.答案解析数据6,7,8,8,9,10的平均数是=8,则方差是=. 4.(2019·江苏,6)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.答案解析记3名男同学为A,B,C,2名女同学为a,b,则从中任选2名同学的情况有(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b),共10种,其中至少有1名女同学的情况有(A,a),(A,b),(B,a),(B,b),(C,a),(C,b),(a,b),共7种,故所求概率为.5.(2019·全国Ⅰ理,15)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.答案0.18解析记事件M为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P(M)=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18.6.(2019·全国Ⅱ理,13)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98. 7.(2019·天津理,10)8的展开式中的常数项为________.答案28解析二项展开式的通项T r+1=(2x)8-r r=r·28-r x8-4r,令8-4r=0可得r=2,故常数项为2×26×=28.三、解答题1.(2019·全国Ⅰ文,17)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2=.解(1)由调查数据,男顾客中对该商场服务满意的频率为=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的频率为=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)K2的观测值k=≈4.762.由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.2.(2019·全国Ⅱ文,19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.解(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为=0.21.产值负增长的企业频率为=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)=×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s2=i(y i-)2=×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6,s==0.02×≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.3.(2019·全国Ⅲ文,17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.4.(2019·北京文,17)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生中上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生支付金额分布情况如下:(1)估计该校学生中上个月A,B两种支付方式都使用的人数;(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.解(1)由题意知,样本中仅使用A的学生有27+3=30(人),仅使用B的学生有24+1=25(人),A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100-30-25-5=40(人).估计该校学生中上个月A,B两种支付方式都使用的人数为×1 000=400.(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C)==0.04.(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E)=0.04.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.5.(2019·天津文,15)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以,事件M发生的概率P(M)=.6.(2019·江苏,22)(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2-3b2的值.解(1)因为(1+x)n=+x+x2+…+x n,n≥4,所以a2==,a3==,a4==.因为=2a2a4,所以2=2××.解得n=5.(2)由(1)知,n=5.(1+)n=(1+)5=++()2+()3+()4+()5=a+b.方法一因为a,b∈N*,所以a=+3+9=76,b=+3+9=44,从而a2-3b2=762-3×442=-32.方法二(1-)5=+(-)+(-)2+(-)3+(-)4+(-)5=-+()2-()3+()4-()5.因为a,b∈N*,所以(1-)5=a-b.因此a2-3b2=(a+b)(a-b)=(1+)5×(1-)5=(-2)5=-32.7.(2019·江苏,23)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},C n={(0,2),(1,2),(2,2),…,(n,2)},n∈N*.令M n=A n∪B n∪C n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).解(1)当n=1时,A1={(0,0),(1,0)},B1={(0,1),(1,1)},C1={(0,2),(1,2)},所以M1={(0,0),(1,0),(0,1),(1,1),(0,2),(1,2)}.所以X的所有可能取值是1,,2,.X的概率分布为P(X=1)==,P(X=)==,P(X=2)==,P(X=)==.(2)设A(a,b)和B(c,d)是从M n中取出的两个点.因为P(X≤n)=1-P(X>n),所以仅需考虑X>n的情况.①若b=d,则AB≤n,不存在X>n的取法;②若b=0,d=1,则AB=≤,所以当且仅当AB=时X>n,此时a=0,c=n或a=n,c=0,有2种取法;③若b=0,d=2,则AB=≤,因为当n≥3时,≤n,所以当且仅当AB=时X>n,此时a=0,c=n或a=n,c=0,有2种取法;④若b=1,d=2,则AB=≤,所以当且仅当AB=时X>n,此时a=0,c=n或a=n,c=0,有2种取法.综上,当X>n时,X的所有可能取值是和,且P(X=)=,P(X=)=.因此,P(X≤n)=1-P(X=)-P(X=)=1-.8.(2019·全国Ⅰ理,21)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(ⅰ)证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;(ⅱ)求p4,并根据p4的值解释这种试验方案的合理性.(1)解X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β).所以X的分布列为(2)(ⅰ)证明由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1(p i+1-p i)=0.4(p i-p i-1),即p i+1-p i=4(p i-p i-1).又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.(ⅱ)解由(ⅰ)可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8-p7)+(p7-p6)+…+(p1-p0)=p1.由于p8=1,故p1=,所以p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)=p1=.p4表示题干中的实验方案最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=≈0.003 9,此时得出错误结论的概率非常小,说明这种试验方案合理.9.(2019·全国Ⅱ理,18)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.解(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为P=[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.10.(2019·全国Ⅲ理,17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.11.(2019·北京理,17)(13分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【思路分析】(Ⅰ)从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,从而A,B两种支付方式都使用的人数有40人,由此能求出从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率.(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,则X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望()E X.(Ⅲ)从样本仅使用A的学生有30人,其中27人月支付金额不大于2000元,有3人月支付金额大于2000元,随机抽查3人,发现他们本月的支付金额都大于2000元的概率为3 3 3 301 4060CpC==,不能认为认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化.【解析】:(Ⅰ)由题意得:从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,A∴,B两种支付方式都使用的人数有:1005302540---=,∴从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率400.4100p==.(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,则X的可能取值为0,1,2,样本仅使用A的学生有30人,其中支付金额在(0,1000]的有18人,超过1000元的有12人,样本仅使用B的学生有25人,其中支付金额在(0,1000]的有10人,超过1000元的有15人,18101806(0)302575025P X==⨯==,1815121039013(1)3025302575025P X==⨯+⨯==,12151806(2)302575025P X ==⨯==, X ∴的分布列为:数学期望()0121252525E X =⨯+⨯+⨯=. (Ⅲ)不能认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化, 理由如下:从样本仅使用A 的学生有30人,其中27人月支付金额不大于2000元,有3人月支付金额大于2000元,随机抽查3人,发现他们本月的支付金额都大于2000元的概率为3333014060C p C ==,虽然概率较小,但发生的可能性为14060. 故不能认为认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化. 【归纳与总结】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查古典概型、相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题.12.(2019·天津理,16)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为,假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.解 (1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为 ,故X ~B ,从而P (X =k )= k3-k ,k =0,1,2,3. 所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=3×=2. (2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则Y ~B,且M ={X =3,Y =1}∪{X =2,Y =0}.由题意知事件{X =3,Y =1}与{X =2,Y =0}互斥,且事件{X =3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P(M)=P({X=3,Y=1}∪{X=2,Y=0})=P({X=3,Y=1})+P({X=2,Y=0})=P({X=3})P({Y=1})+P({X=2})P({Y=0})=×+×=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:
1.为评估一种农作物的种植效果,选了n 块地作试验田,这n 块地的亩产量(单位:kg )分别为1x ,2x ,⋅⋅⋅,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )
A .1x ,2x ,⋅⋅⋅,n x 的平均数
B .1x ,2x ,⋅⋅⋅,n x 的标准差
C .1x ,2x ,⋅⋅⋅,n x 的最大值
D .1x ,2x ,⋅⋅⋅,n x 的中位数
2.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加
C .各年的月接待游客量高峰期大致在7,8月份
D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 3.如图所示的茎叶图记录了甲乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( ) A .3,5 B .5,5 C .3,7 D .5,7
4.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是( )
A .
14
B .
8
π C .
12
D .
4
π 5.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A .
45 B .35 C .25 D .15
6.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .
110 B .15 C .310 D .25
二、解答题:
7.(新课标1)为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:
经计算得16119.9716i i x x ===∑,16162
2211
11()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,16
2
1
(8.5)
18.439i i =-≈∑,16
1
()(8.5) 2.78i i x x i =--=-∑,
其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.
(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(i )从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ii )在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数1
2
2
1
1
()()
()()
n
i
i
i n n
i
i
i i x x y y r x x y y ===--=
--∑∑∑,
0.0080.09≈.
8.(新课标2)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:
(1)记A 表示事件“旧养殖法的箱产量低于50kg ”,估计A 的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较
2
2
()()()()()
n ad bc K a b c d a c b d -=++++
9.(新课标3)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:C ︒)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
以最高气温位于各区间的频率代替最高气温位于该区间的概率。

(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.
10.(北京)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:
(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.
11.(山东)某旅游爱好者计划从3个亚洲国家1A ,2A ,3A 和3个欧洲国家1B ,2B ,3B 中选择2个国家去旅游。

(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(2)若从亚洲国家和欧洲国家中个任选1个,求这2个国家包括1A 但不包括1B 的概率。

答案:BAA ;BCD 7.
8.(1)0.62;(2)根据箱产量的频率分布直方图得列联表
()2
22006266343815.705
10010096104
K ⨯⨯-⨯=
≈⨯⨯⨯
由于15.705 6.635>,故有99%的把握认为箱产量与养殖方法有关.
(3)箱产量的频率分布直方图平均值(或中位数)在45kg 到50kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.
9.(1)5
3;(2)
362574
0.890
+++=
10.(Ⅰ)0.4;(Ⅱ)5人;(Ⅲ)3
2
.
11.(1)15;(2)2
9。

相关文档
最新文档