知识图谱 梳理
以通俗易懂的方式来讲解知识图谱相关的知识
以通俗易懂的方式来讲解知识图谱相关的知识导读:从一开始的Google搜索,到现在的聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,无一不跟知识图谱相关。
它在技术领域的热度也在逐年上升。
本文以通俗易懂的方式来讲解知识图谱相关的知识、尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了比较详细的解释。
对于读者,我们不要求有任何AI相关的背景知识。
1. 概论随着移动互联网的发展,万物互联成为了可能,这种互联所产生的数据也在爆发式地增长,而且这些数据恰好可以作为分析关系的有效原料。
如果说以往的智能分析专注在每一个个体上,在移动互联网时代则除了个体,这种个体之间的关系也必然成为我们需要深入分析的很重要一部分。
在一项任务中,只要有关系分析的需求,知识图谱就“有可能”派的上用场。
2. 什么是知识图谱?知识图谱是由Google公司在2012年提出来的一个新的概念。
从学术的角度,我们可以对知识图谱给一个这样的定义:“知识图谱本质上是语义网络(Semantic Network)的知识库”。
但这有点抽象,所以换个角度,从实际应用的角度出发其实可以简单地把知识图谱理解成多关系图(Multi-relational Graph)。
那什么叫多关系图呢?学过数据结构的都应该知道什么是图(Graph)。
图是由节点(Vertex)和边(Edge)来构成,但这些图通常只包含一种类型的节点和边。
但相反,多关系图一般包含多种类型的节点和多种类型的边。
比如左下图表示一个经典的图结构,右边的图则表示多关系图,因为图里包含了多种类型的节点和边。
这些类型由不同的颜色来标记。
在知识图谱里,我们通常用“实体(Entity)”来表达图里的节点、用“关系(Relation)”来表达图里的“边”。
实体指的是现实世界中的事物比如人、地名、概念、药物、公司等,关系则用来表达不同实体之间的某种联系,比如人-“居住在”-北京、张三和李四是“朋友”、逻辑回归是深度学习的“先导知识”等等。
人工智能之知识图谱
人工智能之知识图谱Research Report of Knowledge Graph目录图表目录 (4)摘要 (6)1.概念篇 (7)1.1.知识图谱概念和分类 (7)1.1.1.知识图谱的概念 (7)1.1.2.知识图谱的分类 (3)1.2.知识工程发展历程 (3)1.3.知识图谱的知识图谱 (6)2.技术人才篇 (10)2.1.知识表示与建模 (11)2.1.1.知识表示模型 (11)2.1.2.知识表示学习 (12)2.1.3.知识表示与建模人才介绍 (12)2.2.知识获取 (19)2.2.1.实体识别与链接 (19)2.2.2.实体关系学习 (20)2.2.3.事件知识学习 (21)2.2.4.知识获取人才介绍 (22)2.3.知识融合 (29)2.3.1.本体匹配 (30)2.3.2.实例匹配 (30)2.3.3.知识融合人才介绍 (30)2.4.知识图谱查询和推理计算 (36)2.4.1.知识推理 (36)2.4.2.知识存储和查询 (37)2.4.3.知识查询与推理人才介绍 (38)2.5.知识应用 (44)2.5.1.典型应用 (44)2.5.2.通用和领域知识图谱 (45)2.5.3.知识应用人才介绍 (46)2.6.高引学者及论文介绍 (51)2.6.1.高引学者介绍 (51)2.6.2.高引论文介绍 (56)2.7.会议奖项介绍 (57)3.应用篇 (67)3.1.通用知识图谱应用 (67)3.2.3.企业商业 (70)3.2.4.创业投资 (71)3.2.5.生物医疗 (72)4.趋势篇 (73)参考文献 (76)附录 (78)图表目录图 1 知识工程发展历程 (3)图 2 Knowledge Graph 知识图谱 (9)图 3 知识图谱细分领域学者选取流程图 (10)图 4 基于离散符号的知识表示与基于连续向量的知识表示 (11)图 5 知识表示与建模领域全球知名学者分布图 (13)图 6 知识表示与建模领域全球知名学者国家分布统计 (13)图7 知识表示与建模领域中国知名学者分布图 (14)图8 知识表示与建模领域各国知名学者迁徙图 (14)图9 知识表示与建模领域全球知名学者h-index 分布图 (15)图10 知识获取领域全球知名学者分布图 (23)图11 知识获取领域全球知名学者分布统计 (23)图12 知识获取领域中国知名学者分布图 (23)图13 知识获取领域各国知名学者迁徙图 (24)图14 知识获取领域全球知名学者h-index 分布图 (24)图15 语义集成的常见流程 (29)图16 知识融合领域全球知名学者分布图 (31)图17 知识融合领域全球知名学者分布统计 (31)图18 知识融合领域中国知名学者分布图 (31)图19 知识融合领域各国知名学者迁徙图 (32)图20 知识融合领域全球知名学者h-index 分布图 (32)图21 知识查询与推理领域全球知名学者分布图 (39)图22 知识查询与推理领域全球知名学者分布统计 (39)图23 知识查询与推理领域中国知名学者分布图 (39)图24 知识表示与推理领域各国知名学者迁徙图 (40)图25 知识查询与推理领域全球知名学者h-index 分布图 (40)图26 知识应用领域全球知名学者分布图 (46)图27 知识应用领域全球知名学者分布统计 (46)图28 知识应用领域中国知名学者分布图 (47)图29 知识应用领域各国知名学者迁徙图 (47)图30 知识应用领域全球知名学者h-index 分布图 (48)图31 行业知识图谱应用 (68)图32 电商图谱Schema (69)图33 大英博物院语义搜索 (70)图34 异常关联挖掘 (70)图35 最终控制人分析 (71)图36 企业社交图谱 (71)图37 智能问答 (72)图38 生物医疗 (72)图39 知识图谱领域近期热度 (75)图40 知识图谱领域全局热度 (75)表1 知识图谱领域顶级学术会议列表 (10)表2 知识图谱引用量前十论文 (56)表3 常识知识库型指示图 (67)摘要知识图谱(Knowledge Graph)是人工智能重要分支知识工程在大数据环境中的成功应用,知识图谱与大数据和深度学习一起,成为推动互联网和人工智能发展的核心驱动力之一。
一文打尽知识图谱(超级干货,建议收藏!)
⼀⽂打尽知识图谱(超级⼲货,建议收藏!)©原创作者 | 朱林01 序⾔知识是⼈类在实践中认识客观世界的结晶。
知识图谱(Knowledge Graph, KG)是知识⼯程的重要分⽀之⼀,它以符号形式结构化地描述了物理世界中的概念及其相互关系。
知识图谱的基本组成形式为<实体,关系,实体>的三元组,实体间通过关系相互联结,构成了复杂的⽹状知识结构。
图1 知识图谱组成复杂的⽹状知识结构知识图谱从萌芽思想的提出到如今已经发展了六⼗多年,衍⽣出了许多独⽴的研究⽅向,并在众多实际⼯程项⽬和⼤型系统中发挥着不可替代的重要作⽤。
如今,知识图谱已经成为认知和⼈⼯智能⽇益流⾏的研究⽅向,受到学术界和⼯业界的⾼度重视。
本⽂对知识图谱的历史、定义、研究⽅向、未来发展、数据集和开源库进⾏了全⾯的梳理总结,值得收藏。
02 简史图2 知识库简史图2展⽰了知识图谱及其相关概念和系统的历史沿⾰,其在逻辑和⼈⼯智能领域经历了漫长的发展历程。
图形化知识表征(Knowledge Representation)的思想最早可以追溯到1956年,由Richens⾸先提出了语义⽹(Semantic Net)的概念。
逻辑符号的知识表⽰形式可以追溯到1959年的通⽤问题求解器(General Problem Solver, GPS)。
20世纪70年代,专家系统⼀度成为研究热点,基于知识推理和问题求解器的MYCIN系统是当时最著名的基于规则的医学诊断专家系统之⼀,该专家系统知识库拥有约600条医学规则。
此后,20世纪80年代早期,知识表征经历了Frame-based Languages、KL-ONE Frame Language的混合发展时期。
⼤约在这个时期结束时的1984年,Cyc项⽬出现了,该项⽬最开始的⽬标是将上百万条知识编码成机器可⽤的形式,⽤以表⽰⼈类常识,为此专门设计了专⽤的知识表⽰语⾔CycL,这种知识表⽰语⾔是基于⼀阶关系的。
知识图谱技术原理介绍
知识图谱技术原理介绍知识图谱技术是一种以图结构表示和存储知识,并通过图分析和推理等方法进行知识挖掘和知识应用的技术。
它通过构建实体、属性和关系之间的关联关系,将各种有关系的知识点连接起来,形成一个具有丰富语义关联的知识网络。
知识图谱技术在信息检索、智能问答、推荐系统等领域有着广泛的应用。
1.知识表示知识图谱的基本单位是实体、属性和关系。
实体可以是具体的事物,如人、地点、组织等,也可以是抽象的概念,如学科、概念等。
属性是实体的特征或属性,如人的年龄、地点的经纬度等。
关系则表示实体与实体之间的关联关系,如人与人之间的亲属关系、地点与地点之间的距离关系等。
知识表示可以采用三元组的方式,即通过主体、谓词和宾语来表示实体、属性和关系之间的关系。
2.知识抽取和融合知识抽取是从结构化和非结构化的数据中提取出实体、属性和关系的过程。
结构化数据指的是已经具有明确字段和关系的数据,如数据库中的表格数据;非结构化数据则指的是没有明确结构和关系的数据,如文本、图片、视频等。
知识抽取可以使用自然语言处理、图像处理等技术,将非结构化数据转化为结构化数据,并通过规则、模型等方法进行实体和关系的抽取。
知识融合是将来自不同源的知识进行整合,消除重复和冲突,形成完整的知识图谱。
3.知识推理和分析知识推理是知识图谱的重要功能之一,它利用已经建立的知识图谱进行逻辑推理和语义推理。
逻辑推理是基于逻辑规则进行的推理,如基于规则推理、基于逻辑公式推理等;语义推理则是基于知识图谱中的语义关系进行的推理,如通过实体之间的关联关系进行推理、通过属性之间的关系进行推理等。
知识推理可以帮助发现知识之间的隐藏关系和规律,从而进行更深层次的知识挖掘和分析。
4.知识应用知识图谱技术的最终目的是为了知识的应用。
知识图谱可以应用于信息检索、智能问答、推荐系统等领域。
在信息检索中,通过利用知识图谱中的语义关系进行语义,可以帮助用户更准确地获取所需的信息。
在智能问答中,通过将用户提问转化为知识图谱的查询,可以实现更智能、更准确的回答。
1.通俗易懂解释知识图谱(KnowledgeGraph)
1.通俗易懂解释知识图谱(KnowledgeGraph)1. 前⾔从⼀开始的Google搜索,到现在的聊天机器⼈、⼤数据风控、证券投资、智能医疗、⾃适应教育、推荐系统,⽆⼀不跟知识图谱相关。
它在技术领域的热度也在逐年上升。
本⽂以通俗易懂的⽅式来讲解知识图谱相关的知识、尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了⽐较详细的解释。
知识图谱( Knowledge Graph)的概念由⾕歌2012年正式提出,旨在实现更智能的搜索引擎,并且于2013年以后开始在学术界和业界普及。
⽬前,随着智能信息服务应⽤的不断发展,知识图谱已被⼴泛应⽤于智能搜索、智能问答、个性化推荐、情报分析、反欺诈等领域。
另外,通过知识图谱能够将Web上的信息、数据以及链接关系聚集为知识,使信息资源更易于计算、理解以及评价,并且形成⼀套Web语义知识库。
知识图谱以其强⼤的语义处理能⼒与开放互联能⼒,可为万维⽹上的知识互联奠定扎实的基础,使Web 3.0提出的“知识之⽹”愿景成为了可能。
2. 知识图谱定义知识图谱:是结构化的语义知识库,⽤于迅速描述物理世界中的概念及其相互关系。
知识图谱通过对错综复杂的⽂档的数据进⾏有效的加⼯、处理、整合,转化为简单、清晰的“实体,关系,实体”的三元组,最后聚合⼤量知识,从⽽实现知识的快速响应和推理。
知识图谱有⾃顶向下和⾃底向上两种构建⽅式。
所谓⾃顶向下构建是借助百科类⽹站等结构化数据源,从⾼质量数据中提取本体和模式信息,加⼊到知识库中;所谓⾃底向上构建,则是借助⼀定的技术⼿段,从公开采集的数据中提取出资源模式,选择其中置信度较⾼的新模式,经⼈⼯审核之后,加⼊到知识库中。
看⼀张简单的知识图谱:如图所⽰,你可以看到,如果两个节点之间存在关系,他们就会被⼀条⽆向边连接在⼀起,那么这个节点,我们就称为实体(Entity),它们之间的这条边,我们就称为关系(Relationship)。
知识图谱技术综述
知识图谱技术综述一、本文概述随着信息技术的飞速发展,大数据和已成为推动社会进步的重要驱动力。
在海量数据中,知识图谱作为一种结构化、语义化的知识表示方法,逐渐成为知识工程、自然语言处理、机器学习和数据挖掘等领域的研究热点。
本文旨在全面综述知识图谱技术的发展历程、现状及其在各领域的应用,探讨知识图谱的构建方法、关键技术和未来发展趋势。
通过对相关文献的梳理和分析,本文将为读者提供一个清晰、系统的知识图谱技术全貌,为相关领域的研究和实践提供有益的参考和启示。
二、知识图谱的构建知识图谱的构建是知识图谱技术的核心环节,其过程涵盖了数据的收集、预处理、实体识别、关系抽取、知识融合以及知识存储等多个步骤。
数据收集:知识图谱的构建首先需要大量的数据作为支撑,这些数据可以来源于公开的数据集,如Freebase、DBpedia等,也可以来源于特定领域的数据资源,如学术论文、新闻报道、社交媒体等。
数据收集阶段需要确定数据来源,并设计合理的数据抓取策略。
数据预处理:收集到的原始数据通常包含大量的噪声和冗余信息,因此需要进行预处理以提高数据质量。
预处理步骤包括数据清洗、文本分词、去除停用词、词干提取等。
还需要对文本数据进行归一化处理,如实体名称的规范化、拼写校正等。
实体识别:实体识别是知识图谱构建中的关键步骤,其目的是从文本数据中识别出具有实际意义的实体,如人名、地名、组织机构名等。
实体识别可以采用基于规则的方法、基于统计的方法或基于深度学习的方法。
实体识别结果的准确性将直接影响后续关系抽取和知识融合的效果。
关系抽取:关系抽取是指从文本数据中抽取出实体之间的关系,形成结构化的知识。
关系抽取的方法可以分为基于规则的方法、基于模板的方法、基于监督学习的方法和基于深度学习的方法等。
其中,基于深度学习的方法近年来取得了显著的进展,尤其是在处理大规模数据集时表现出了良好的性能。
知识融合:知识融合是将从不同来源抽取的知识进行合并和整合的过程。
图谱知识点总结
图谱知识点总结图谱是一种用于展示复杂信息关系的可视化工具,用于帮助人们更好地理解并处理大量数据。
图谱知识点是关于图谱概念、应用和技术的一系列重要内容。
本文将对图谱知识点进行总结,帮助读者更全面地了解图谱的相关知识。
一、图谱概念1. 图谱的定义图谱是一种用于表达实体之间关系的图形化工具,通常用于展示复杂信息网络中的实体和它们之间的关联。
2. 图谱的特点图谱具有以下特点:信息丰富、关系复杂、可视化直观、结构清晰。
3. 图谱的类型根据应用领域和数据类型的不同,图谱可以分为知识图谱、概念图谱、数据图谱等不同类型。
4. 图谱的应用图谱在知识管理、信息检索、数据分析、智能推荐等领域都有广泛的应用。
5. 图谱的优势图谱具有可视化、抽象、语义化等优势,能够帮助人们更好地理解和处理信息。
二、图谱构建与表示1. 图谱数据模型常用的图谱数据模型包括实体-关系模型、属性图模型、事件图模型等。
2. 图谱表示方法常用的图谱表示方法包括邻接表表示、邻接矩阵表示、三元组表示等多种方式。
3. 图谱构建技术图谱构建技术主要包括实体抽取、关系抽取、知识融合等多个方面的技术手段。
4. 图谱可视化技术图谱可视化技术是将图谱数据可视化展示的技术手段,常用的包括节点连线图、力导向图等多种方式。
5. 图谱查询技术图谱查询技术是对图谱数据进行查询和分析的技术手段,包括SPARQL、Cypher等查询语言。
三、知识图谱1. 知识图谱概述知识图谱是一种用于存储和表达知识的图谱,包括了领域知识、实体关系、属性特征等多种信息。
2. 知识图谱构建知识图谱的构建包括数据抽取、知识标注、知识融合等多个环节,通常需要借助自然语言处理和机器学习等技术手段。
3. 知识图谱应用知识图谱可以应用于智能问答、知识检索、推荐系统等多个领域,能够大大提高信息处理的效率和准确性。
4. 知识图谱技术知识图谱技术主要包括知识表示、实体关系抽取、知识推理等多个方面的关键技术。
四、概念图谱1. 概念图谱概述概念图谱是一种用于表达概念及其之间关联的图谱,通常用于语义分析、概念推理等领域。
知识图谱思维导图
知识图谱思维导图
前一段时间研究了下知识图谱,根据一些博客和技术分享,整理出思维导图,以供有需求时回顾。 主要分为三大模块:命名实体识别、实体关系预测以及Neo4J图数据库。 其中,命名实体识别主要包括实体库的构造和新实体的更新;实体关系预测是算法工程师的重点工作内容,包括实体关系获取(训练数据)和实体关系预测(分类等);Neo4J 则需要掌握增删改查操作等。 具体见下图所示(转载请注明出处和作者,感谢!):
知识点:知识图谱
知识点:知识图谱基本原理:知识图谱是一种基于图的知识表示方法,将实体、属性以及它们之间的关系表示为图中的节点和边。
知识图谱的构建需要通过对大量数据进行抽取、清洗、融合等过程,形成一个包含丰富知识信息的图谱数据库。
在知识图谱中,实体是现实世界中的对象或概念,例如人、物、事件等。
属性是描述实体特征的元数据,例如人的年龄、性别,物的颜色、形状等。
关系是实体之间的联系,包括语义关系、物理关系等。
知识图谱具有以下特点:1. 丰富的语义信息:知识图谱中的实体和关系具有丰富的语义信息,能够表达复杂的含义和上下文。
2. 多源异构数据融合:知识图谱可以融合来自不同数据源的数据,包括文本、图像、音频等,提供全面的信息。
3. 高效的查询和推理能力:基于图的数据结构使得知识图谱具有高效的查询和推理能力,可以快速地获取相关知识和信息。
4. 可视化分析和展示:知识图谱可以通过可视化技术进行直观的分析和展示,帮助用户更好地理解和应用知识。
考试例题:1. 单选题:以下哪个选项不属于知识图谱中的实体类型?A. 人B. 物C. 时间D. 情绪答案:D. 情绪。
情绪不是实体类型,而是属于属性类型。
2. 多选题:以下哪些是知识图谱的主要特点?A. 丰富的语义信息B. 多源异构数据融合C. 高效的查询和推理能力D. 可视化分析和展示E. 人工智能技术应用答案:A. 丰富的语义信息 B. 多源异构数据融合 C. 高效的查询和推理能力 D. 可视化分析和展示。
人工智能技术应用不是知识图谱的主要特点,但可以辅助知识图谱的构建和应用。
3. 判断题:根据知识点原理的描述,知识图谱只包含一个单一的实体类型。
这个说法是否正确?答案:错误。
知识图谱包含多种实体类型,例如人、物、事件等,并且每个实体类型可以有不同的属性。
知识图谱-基础概念梳理
知识图谱-基础概念梳理计算机专业刚⼊坑知识图谱,我⼤概是这种状态:这⾥主要是为了开发时看懂需求,所以不做深⼊了解。
不过没办法- -从概念开始慢慢来吧。
1. 什么是知识图谱:知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显⽰知识发展进程与结构关系的⼀系列各种不同的图形,⽤可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显⽰知识及它们之间的相互联系。
个⼈理解就是展⽰复杂知识资源相互联系的⼀图形结构2. RDF:资源描述框架(Resource Description Framework)(知识表⽰的⼀种⽅式)知识图谱是展⽰资源相互联系的结构,所以⾸先要能描述资源,以及资源的联系。
然后通过各种处理来发现其中的直接关系(我们⽤RDF已经存储的)和可能的隐藏关系(推导出来的)。
最简单的应⽤:你淘宝搜个卫⽣⼱,然后淘宝知识图谱⾥:卫⽣⼱是⼤姨妈的 “需要” 属性之⼀,⼤姨妈的其他 “需要” 属性还包含了:绿⾖汤,卫⽣棉,热⽔壶。
然后你第⼆天就发现你的淘宝主页上各种暖⽔壶,卫⽣棉,绿⾖汤。
或者:特朗普是美国总统,特朗普是房地产商 -》美国总统是⼀个房地产商然后进⼀步推导出别的隐藏关系。
资源(Resource):所有以RDF表⽰法来描述的东西都叫做资源,它可能是⼀个⽹站,可能是⼀个⽹页,可能只是⽹页中的某个部分,甚⾄是不存在于⽹络的东西,如纸本⽂献、器物、⼈等。
在RDF中,资源是以统⼀资源标识(URI,Uniform Resource Indentifiers)来命名,统⼀资源定位器(URL,Uniform Resource Locators)、统⼀资源名称(URN,Uniform Resource Names)都是URI的⼦集。
属性(Properties):属性是⽤来描述资源的特定特征或关系,每⼀个属性都有特定的意义,⽤来定义它的属性值(Value)和它所描述的资源形态,以及和其它属性的关系。
知识图谱分析
知识图谱分析知识图谱分析是一种基于大数据和人工智能技术的知识管理和应用方法,通过将知识以图谱的形式进行表示和组织,能够更好地理解和利用知识。
知识图谱分析在各个领域的应用越来越广泛,包括自然语言处理、搜索引擎、推荐系统等。
知识图谱分析的核心是构建和维护知识图谱。
知识图谱是对现实世界的一个抽象模型,它通过实体、关系和属性之间的连接来描述现实世界中的事物和知识。
在构建知识图谱的过程中,需要从结构化和非结构化数据中提取和整理出实体、关系和属性,并通过自然语言处理、机器学习等技术进行实体链接和关系抽取。
在知识图谱分析中,实体是知识图谱的基本单元,可以是人、地点、机构、事件等。
关系是实体之间的联系,可以是人与人之间的关系、地点与地点之间的关系等。
属性是实体的特征和属性,可以是人的年龄、机构的地点等。
通过对实体、关系和属性之间的分析,可以深入了解知识的结构和内在联系,从而实现更精确的知识管理和应用。
知识图谱分析的应用非常广泛。
在自然语言处理中,知识图谱可以帮助机器理解句子和文本的语义,从而实现自动问答、机器翻译等任务。
在搜索引擎中,知识图谱可以提供更精确的搜索结果和相关推荐。
在推荐系统中,知识图谱可以根据用户的兴趣和偏好进行个性化推荐。
此外,知识图谱还可以应用于智能交通、医疗健康、金融风险控制等领域,提供智能化的决策支持和分析工具。
然而,知识图谱分析也面临一些挑战和问题。
首先,知识图谱分析需要大量的数据和计算资源,对数据质量和准确性要求较高。
其次,知识图谱的构建和维护是一个长期的过程,需要持续地进行数据更新和修正。
最后,知识图谱的应用需要解决数据安全和隐私保护等问题,确保数据的合法、安全和可靠使用。
综上所述,知识图谱分析是一种重要的知识管理和应用方法,能够帮助人们更好地理解和利用知识。
随着数据和人工智能技术的不断发展,知识图谱分析在各个领域的应用前景非常广阔。
然而,知识图谱分析仍然面临一些挑战和问题,需要在数据质量、数据更新和隐私保护等方面不断进行研究和改进。
第七章 知识图谱
之间的关系(实体的命名、称谓、英文 名等)以及词汇之间的关系(同义关系、 反义关系、缩略词关系、上下位词关系 等)。例如,(“Plato”,中文名,柏 拉图)、(赵匡胤,庙号,宋太祖)、 (妻子,同义,老婆)。
(4)常识知识
常识是人类通过身体与世界交互而积累
的经验与知识,是人们在交流时无须言明就 能理解的知识。例如,我们都知道鸟有翅膀、 鸟能飞等;又如,如果X 是一个人,则X要么 是男人要么是女人。常识知识的获取是构建 知识图谱时的一大难点。
知识表示学习主要是面向知识图谱中的
实体和关系进行表示学习,使用建模方法将 实体和向量表示在低维稠密向量空间中,然 后进行计算和推理。
知识是人类在认识和改造客观世界的过程 中总结出的客观事实、概念、定理和公理的 集合。知识具有不同的分类方式,例如,按 照知识的作用范围可分为常识性知识与领域 性知识。知识表示是将现实世界中存在的知 识转换成计算机可识别和处理的内容,是一 种描述知识的数据结构,用于对知识的描述 或约定。
实体抽取的方法主要有基于规则与词典的方法、 基于机器学习的方法以及面向开放域的抽取方法。
关系抽取
关系抽取的目标是抽取语料中命名实体的语义关 系。实体抽取技术会在原始的语料上标记一些命名 实体。为了形成知识结构,还需要从中抽取命名实 体间的关联信息,从而利用这些信息将离散的命名 实体连接起来,这就是关系抽取技术。
象看本质,准确地捕捉到用户的真实意图,并依此来进行搜索,从而更准确地向用户返回 最符合其需求的搜索结果。 (8)知识库问答系统在回答用户问题时,需要正确理解用户所提出的自然语言问题,抽取其 中的关键语义信息,然后在已有单个或多个知识库中通过检索、推理等手段获取答案并返 回给用户。
knowledge graph
knowledge graph
知识图谱(Knowledge Graph)是一种用于表示实体和实体之间关系的数据结构。
它是一种图形数据库,用于存储和管理实体和实体之间的关系。
知识图谱可以用来构建更加智能的搜索引擎,提供更加丰富的搜索结果,并且可以更好地理解用户的查询。
知识图谱的基本构成元素是实体和实体之间的关系。
实体可以是人、地点、事件或其他实体,而实体之间的关系可以是“父子”、“朋友”或“同乡”等。
知识图谱可以用来表示实体之间的复杂关系,从而更好地理解用户的查询。
知识图谱的应用非常广泛,可以用于搜索引擎、推荐系统、自然语言处理、机器学习等领域。
它可以帮助搜索引擎更好地理解用户的查询,提供更加丰富的搜索结果;可以帮助推荐系统更好地理解用户的兴趣,提供更加准确的推荐;可以帮助自然语言处理更好地理解语义,提供更加准确的结果;可以帮助机器学习更好地理解数据,提供更加准确的预测结果。
总之,知识图谱是一种用于表示实体和实体之间关系的数据结构,它可以用来构建更加智能的搜索引擎,提供更加丰富的搜索结果,并且可以更好地理解用户的查询。
它的应用非常广泛,可以用于搜索引擎、推荐系统、自然语言处理、机器学习等领域,为用户提供更加准确的结果。
【干货】最全知识图谱综述#1:概念以及构建技术
【干货】最全知识图谱综述#1:概念以及构建技术【导读】知识图谱技术是人工智能技术的组成部分,其强大的语义处理和互联组织能力,为智能化信息应用提供了基础。
我们专知的技术基石之一正是知识图谱-构建AI知识体系-专知主题知识树简介。
下面我们特别整理了关于知识图谱的技术全面综述,涵盖基本定义与架构、代表性知识图谱库、构建技术、开源库和典型应用。
主要基于的参考文献来自[22]和[40], 本人(Quan)做了部分修整。
引言随着互联网的发展,网络数据内容呈现爆炸式增长的态势。
由于互联网内容的大规模、异质多元、组织结构松散的特点,给人们有效获取信息和知识提出了挑战。
知识图谱(Knowledge Graph) 以其强大的语义处理能力和开放组织能力,为互联网时代的知识化组织和智能应用奠定了基础。
最近,大规模知识图谱库的研究和应用在学术界和工业界引起了足够的注意力[1-5]。
一个知识图谱旨在描述现实世界中存在的实体以及实体之间的关系。
知识图谱于2012年5月17日由[Google]正式提出[6],其初衷是为了提高搜索引擎的能力,改善用户的搜索质量以及搜索体验。
随着人工智能的技术发展和应用,知识图谱作为关键技术之一,已被广泛应用于智能搜索、智能问答、个性化推荐、内容分发等领域。
知识图谱的定义在维基百科的官方词条中:知识图谱是Google用于增强其搜索引擎功能的知识库。
本质上, 知识图谱旨在描述真实世界中存在的各种实体或概念及其关系,其构成一张巨大的语义网络图,节点表示实体或概念,边则由属性或关系构成。
现在的知识图谱已被用来泛指各种大规模的知识库。
在具体介绍知识图谱的定义,我们先来看下知识类型的定义:知识图谱中包含三种节点:•实体: 指的是具有可区别性且独立存在的某种事物。
如某一个人、某一个城市、某一种植物等、某一种商品等等。
世界万物有具体事物组成,此指实体。
如图1的“中国”、“美国”、“日本”等。
,实体是知识图谱中的最基本元素,不同的实体间存在不同的关系。
知识图谱总结规律(热门4篇)
知识图谱总结规律(热门4篇)知识图谱总结规律第1篇构成知识图谱的核心是三元组:实体(Entity)、属性(Attribute)和关系(Relation),可以表示为 <实体1,关系,实体2> 或 <实体1,属性1,属性值1>,例如:;<人工智能公司,subclass,高料技公司>基于已有的知识图谱三元组,可以推导出新的关系。
例如:<翅膀 part-of 鸟>,<麻雀kind-of 鸟>,可以推导出<翅膀 part-of 麻雀>。
知识图谱的分类通用知识图谱实际上是谷歌或者百度这样的大型的互联网公司在构建的,它主最主要是用于它的搜索引擎,它面向的是通用领域,它的用户是全部的互联网的用户,它构建常识性的知识为主,包括结构化的百科知识,它强调的更多的是一种知识的广度,对知识的深度方面不做更多的要求,它的使用者也是普通的用户。
行业知识图谱面向一个特定的领域,它的数据来源是来源于特定行业的语料,它是基于行业的数据来构建,而且要有一定的行业的深度,它强调的是更多的是深度,而不是广度,能够解决行业人员的问题,它的使用者也是这个行业内的从业人员,或是这个领域里面的专业人员来使用。
通用知识图谱和行业知识图谱,个并不是说完全互相独立的,是具有互相互补性的关系。
一方面,通用知识图谱会不断的吸纳行业或者领域知识图谱的知识,来扩充它的知识面,然后增加它的知识的广度。
同时,我们在构建一个行业知识图谱或者领域知识图谱的时候,实际上也并不是说只局限在这个领域的基本的数据,我们同时还要去通用知识图谱里面去吸纳更多的常识性的知识来作为补充,只有这样才能构成一个非常完整的行业知识图谱。
知识图谱总结规律第2篇知识图谱:是一种结构化的语义知识库,用来所描述物理世界中的概念和物理关系。
“The world is not made of strings , but is made of things.”——辛格博士,from Google.辛格尔博士对知识图谱的介绍很简短:things,not string。
知识图谱技术体系总览
知识图谱技术体系总览本文主题为知识图谱技术体系,主要内容包括:1. 知识图谱体系架构2. 知识图谱构建技术3. 知识存储4. 知识图谱应用技术一、知识图谱体系架构首先来介绍一下整个知识图谱的体系架构。
知识图谱是现在非常热门的一个技术,也被认为是认知智能的核心内容。
知识图谱包含哪些内容呢?从知识的层面来看,知识图谱包括知识的生产,知识表示存储和知识应用等众多技术。
如上图所示,它包括了构建技术,存储技术,应用技术,以及其他相关的很多方面的技术。
从这张图中也可以看出,知识图谱包含了人工智能领域绝大多数细分领域的研究,还包括大量的大数据方面的技术,比如构建技术方面也有大数据相关的映射式构建技术,以及基于抽取式构建方面的自然语言处理和计算机视觉和声音处理技术等。
在知识图谱的存储方面,现在产业界中主流的是图数据库。
图数据库涉及到大量的大数据技术,比如分布式的图数据库会与 Hadoop、Spark 等分布式计算和分布式存储有很强的技术关联。
而一些比较新的技术,比如向量数据库也是比较前沿的一个研究领域。
在知识图谱的应用方面,也包括了比较多的内容,比如知识检索、知识探索,涉及到图数据库查询语言 Gremlin 和 Cypher 以及 SparQL。
知识搜索方面会用一些其他方法从图数据库或者其他存储方法里面获取所需要的知识。
在更多的应用里面,比如知识计算,知识推理等。
知识计算更多的是与图相关的计算,知识推理更多的是跟深度学习有关的,比如图神经网络。
还有很多面向具体的应用,比如问答、推荐、数据分析、知识溯源以及辅助决策等,这些都是与具体业务有直接关联的人工智能或知识图谱方面的应用。
二、知识图谱构建技术1. 知识图谱模式知识图谱在应用里面有两个方法:无模式的和模式受限的。
我们通常产业应用的知识图谱都是模式受限的。
这个模式就是指知识图谱模式,也称本体、类图谱或概念图谱等。
知识图谱模式定义了知识图谱需要包含哪些内容,或者说是对知识概念化的一种规范表达。
大数据-知识图谱概念介绍
知识图谱示例
三个类:person(人物)、band(乐队)、place(地点)
三种关系:memberOf(乐队成员)、bornIn(出生于)、foundedIn(创办于)
本体论
万维网
语义网
链接数据
知识图谱
知识图谱基本概念
处理对象:知识
组织方式:实体+链接
什么是知识?
人类的自然语言、创作的绘画和音乐、数学语言、物理模型、化学公式等都是人类知识的表示形式和传承方式。具有获取、表示和处理知识的能力是人类心智区别于其它物种心智的重要特征。
计算机如何认识知识?
知识表示(KR,Knowledge Representation):用易于计算机处理的方式来描述人脑的知识。
三个实例(图上称为实体):JohnLennon、Beatles、Liverpool
三条知识:JohnLennon-(memberOf)BeatlesJohnLennon-(bornIn) LiverpoolBeatles-(foundedIn) Liverpool
三元组<Subject,Predict,Object>
图数据库
去模板化—整体架构
搜索
用户搜索(Query)
关键词
自然语言
NER(命名实体识别)
自然语言处理搜索解析实体识别实体消解实体链接同义词集词向量
搜索转查询
查询重写
语义丰富
知识图谱
索引
结果排序
搜索结果
结果展示
搜索推荐
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识图谱架早期知识图谱架构• 知识图谱一般架构:[来源自百科]• 早期知识图谱架构
架构讨论
知识抽取
• 实体概念抽取 • 实体概念映射 • 关系抽取 • 质量评估
A sampler of research problems
• "Apple CEO Steve Jobs said.." => (SteveJobs, CEO, Apple) • "Steve Jobs said that Apple will.." => NIL
• Traditional relation extraction datasets
• ACE 2004 • MUC-7 • Biomedical datasets (e.g BioNLP clallenges)
2. Entity resolution
• Single entity methods • Relational methods
3. Link prediction
• Rule-based methods • Probabilistic models • Factorization methods
Not in this tutorial:
80
Relation Extraction
? playFor
Kobe Bryant
LA Lakers
“Kobe Bryant, “Kobe
“Kobe Bryant
the franchise player of once again saved man of the match for
the Lakers” his team” Los Angeles”
KDD 2014 Tutorial on Constructing and Mining Web-scale Knowledge Graphs, New York, August 24, 2014
82
Supervised relation extraction
• Sentence-level labels of relation mentions
KDD 2014 Tutorial on Constructing and Mining Web-scale Knowledge Graphs, New York, August 24, 2014
• Growth: knowledge graphs are incomplete! • Link prediction: add relations • Ontology matching: connect graphs • Knowledge extraction: extract new entities and relations from web/text
•
Learn classifiers from +/- e: context words + POS, dependency path between
entities, named entity tags, token/parse-path/entity distance
•
Intelligence: can AI emerge from knowledge graphs?
• Automatic reasoning and planning
• Generalization and abstraction
KDD 2014 Tutorial on Constructing and Mining Web-scale Knowledge Graphs, New York, August 24, 2014
9
关系抽取
• 定义: • 常见手段:
– 语义模式匹配[频繁模式抽取,基于密度聚类,基于语义相 似性]
– 层次主题模型[弱监督]
Methods and techniques
1. Relation extraction:
• Supervised models • Semi-supervised models • Distant supervision
• Extracting semantic relations between sets of [grounded] entities
• Numerous variants:
• Undefined vs pre-determined set of relations • Binary vs n-ary relations, facet discovery • Extracting temporal information • Supervision: {fully, un, semi, distant}-supervision • Cues used: only lexical vs full linguistic features
• Validation: knowledge graphs are not always correct! • Entity resolution: merge duplicate entities, split wrongly merged ones
• Error detection: remove false assertions
• Entity classification • Group/expert detection • Ontology alignment • Object ranking
• Embedding models
KDD 2014 Tutorial on Constructing and Mining Web-scale Knowledge Graphs, New York, August 24, 2014
•
Interface: how to make it easier to access knowledge?
• Semantic parsing: interpret the meaning of queries
• Question answering: compute answers using the knowledge graph