2.3.1平面向量基本定理教案(人教A必修4)
新人教A版必修4高中数学2.3.1 平面向量基本定理学案
高中数学 2.3.1 平面向量基本定理学案新人教A版必修4【学习目标】1知识与技能(1)了解平面向量基本定理及其意义,会利用向量基本定理解决简单问题;(2)培养学生分析、抽象、概括的推理能力。
2过程与方法(1)通过平面向量基本定理的得出过程,体会由特殊到一般的思维方法;(2)通过本节学习,体会用基底表示平面内任一向量的方法。
3情感.态度与价值观(1)通过本节学习,培养学生的理性思维,培养学生独立思考及勇于探求、敢于创新的精神、培养主动学习的意识;(2)通过平面向量基本定理的探求过程,培养学生观察能力、抽象概括能力、独立思考的能力,激发学生学习数学的兴趣。
【重点难点】重点:平面向量基本定理的应用难点:对平面向量基本定理的发现和形成过程,数学思想的渗透。
【学习内容】一【知识链接】1. 向量加法与减法有哪几种几何运算法则?2.怎样理解向量的数乘运算λa? (1)模:|λa|=|λ||a|;(2)方向:λ>0时λa 与a方向相同;λ<0时λa与a方向相反;λ=0时λa=03. 向量共线定理 :向量b 与非零向量a共线则:有且只有一个非零实数λ,使b =λa.二【新课导入】情景展示:在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,就会形成一个新的数学理论. 三、小组合作、自主探究 探究(一):平面向量的基本定理探究1:给定平面内任意两个不共线的非零向量1e 、2e ,请你作出向量b =31e +22e 、c =1e -22e .探究2:由探究1可知可以用平面内任意两个不共线的非零向量1e 、2e 来表示向量b ,c 那么平面内的任一向量是否都可以用形如λ11e +λ22e 的向量表示呢?【定理解读】1 、1e 、2e 必须是平面向量的基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ11e +λ22e .2、λ1,λ2是被a,1e ,2e 的数量 3、基底不唯一,关键是不共线;4、由定理可将任一向量a 在给出基底1e 、2e 的条件下进行分解;5、基底给定时,分解形式唯一.6、λ 1 =0时 ; λ2=0时 ;λ1=0、λ2=0时 。
人教版高中数学必修4第二章平面向量-《2.3.1平面向量基本定理》教案(4)
《平面向量基本定理》的教学设计一 教学目的:1 了解平面向量基本定理及其意义;2 理解平面上任意一个向量都可以由这个平面内两个不共线的向量21,e e 线性表示,初步掌握应用向量解决实际问题的重要思想方法;3 通过作图体会基底的不唯一性;二 教学重点与难点1 重点:平面内的任意向量可以由两个不共线的向量表示2 难点:平面向量基本定理的理解3 教学方法:教师主要引导、学生主体思维为主线,学生动手操作。
4 教学手段:使用多媒体辅助教学,使书本的图形“动”起来,加强了教学的直观性。
使用方格纸让学生画图,使学生能更加直观的理解平面向量的基本定理。
三 教学过程1 复习以提问的方式复习旧知:求向量和的方法,向量的数乘运算;设计意图:让学生思考并回答这两个问题,为这节课的内容做准备。
2 新课引入在学生复述了上述知识之后,让学生在方格纸上画出212,3e e ,并画出2123e e +; 设计意图:让学生通过自己动手做图,再对向量的求和和数乘进行复习,加强学生对旧知的巩固;教师活动:动画演示刚刚所做的图,设计意图:从动画演示上可以让学生从直观上对利用平行四边形法则来求向量的和有了更加直观的印象和理解,同时,利用平行四边形法则来求两个向量的和向量也是这节课在解决问题的主要方法之一。
教师活动:提出问题:“既然我们给定了212,3e e,那么很容易就可以画出1232e e a +=,如果我们给出a ,能否用21,e e 表示a 呢?”3 新课讲解教师活动:让学生在所给的方格上画出,a b ,,c d ,,f g ,并分别用21,e e 来表示,为了方便起见21,e e 是两个互相垂直的向量。
学生活动:分小组来讨论并画出所给向量。
设计意图:让学生初步体会到平面内的任意向量都可以分解成两个向量的和向量。
教师活动:在幻灯片上打出两个不共线的向量21,e e ,和第三个向量a,让学生讨论怎样由21,e e 来表示向量a 。
2.3.1平面向量基本定理二教案(人教A必修4).doc
2. 3. 1平面向量基本定理()学习目标H.掌握平面向量的正交分解及其坐标表示;12.会用坐标表示平面向量的加、减与数乘运算.13.会用坐标表示平面向量共线的条件,进而解决一些相关问题.14.了解平面向量的基本定理及其意义.22.通过探究学生体会正交分解定理的形成过程,培养学生观察,类比联想等发现规律的一般方法,培养学生提出问题,分析问题和解决问题的能力.23.使学生逐步养成独立思考与互助学习的素养,激发学生的学习兴趣和钻研精神. ()重点难点I.重点是让学生掌握平面向量正交分解下的坐标表示及其应用2.难点是平面向量的基本定理及其意义.()教学过程教学内容师生互动设计意图复习引入前面对轴上向量通过单位向量可以建立与实数的•对应,从而给出了轴上向量的坐标表示. 从而对平面上的任…方向的向量,都可以用相应的轴给出坐标表示,那么能否仅仅使用两条互相垂直的轴数量化表示平面上所有向量呢?这种表示唯一吗?让学生回忆轴上向量及其坐标表示相关的概念及思想方法从一维向二维,从已知到未知,引入新课题新课探究借助已经学过的平面直角坐标系.(1)分别确认x轴和y轴上的单位向量ei、◎那么这两条轴上的向量都可以用相应的坐标表示,不同轴上的向量坐标意义不同•例如横轴、纵轴上的向量坐标3分别表示3 6、Ze2(2)与轴不平行的平面向量,可以分解为两个轴上的向量之和.(从而表示成两个基向量的线性组合。
即:a=xei+ye2)(3)取平面上两条互相垂直的单位向量那么对该平面內的任意向量a,都存在唯一的一对实数x、y,使a=xei+ye2<,例如课本103页练习A第一题证明课本96页,97页(4)这里{e“ e2}叫做这一平面内所有向量的一组正交基底;叫做a关于基底{ei, e2}的分解式;(x, y)叫做a关于基底{ei, e2}下的坐标,即a= (x, y);是向量a在横(纵)轴上的正投影向量的在(横纵)轴上的坐标。
显然0=(0, 0), &=(1, 0),砌=(0, 1)(5)平面直角坐标系中有序实数对(x,y)就有了双重意义,既表示^(x,y),又可以表示同量师生共同探究,对平面上向量的正交分解的存在唯一性,有所感受.确认坐标表示向量的可行性,及其具体表示方法这里给出了课本97页的两个概念,学生知道这些名词就可以了感受正交分解产生的合理性•使学生容易接受平面向量的坐标表示,使部分学生感受数学证明的严谨性和必要性.(X,刃,叙述中应在前面注明。
人教版高中数学必修4第二章平面向量-《2.3.1平面向量基本定理》教案(2)
《平面向量基本定理》的教学设计(新)一、教学课题:普通高中课程标准实验教科书必修4、§2.3.1平面向量基本定理、第一课时。
二、教学目标:1知识与技能(1) 了解平面向量基本定理及其意义,会利用向量基本定理解决简单问题; (2) 培养学生分析、抽象、概括的推理能力。
2过程与方法(1) 通过平面向量基本定理的得出过程,体会由特殊到一般的思维方法; (2) 通过本节学习,体会用基底表示平面内任一向量的方法。
3情感.态度与价值观(1)通过本节学习,培养学生的理性思维,培养学生独立思考及勇于探求、敢于创新的精神、培养主动学习的意识;(2)通过平面向量基本定理的探求过程,培养学生观察能力、抽象概括能力、独立思考的能力,激发学生学习数学的兴趣。
三、教学重点、难点重点:平面向量基本定理的应用难点:对平面向量基本定理的发现和形成过程,数学思想的渗透。
四、教学方法与手段探求式教学法、多媒体手段 五、教学过程 1、创设情景以媒体展示常娥一号的成功升空,引出火箭的发射运动过程中,始终能分解为两个方向上的运动(两个不共线向量的线性组合)切入主题 2、数学探究探究一 给定一个向量是否一定可以用“一个”已知非零向量表示? (复习向量共线定理)探究二 平面内给定一个向量是否一定可以用“两个”已知不共线向量表示??aB NCOA =1e OM =1a 1eOB =2e ON =2a 2eOC =a =OM +ON =1a 1e +2a 2e 再问::一对实数1a 、2a 是否惟一?(学生讨论并回答)点评:由作图中分解结果的惟一,决定了两个分解向量的惟一。
由平行向量基本定理,有且只有一个实数1a ,使得OM =1a 1e 成立,同理2a 也惟一,即一组数1a 、2a 惟一确定。
学生进一步尝试概括定理:如果1e 和2e 是平面内的两个不平行的向量,那么对于该平面内的给定向量a 存在惟一的一对实数1a 、2a ,使a =1a 1e +2a 2e平面向量基本定理:如果1e 和2e 是一平面内的两个不共线的向量,那么该平面内的任一向量a ,存在惟一的一对实数1a 、2a ,使a =1a 1e +2a 2e说明:1、我们把不共线向量1e 、2e 叫做表示这一平面内所有向量的一组基底。
高中数学第二章平面向量2.3.1平面向量基本定理学案(含解析)新人教A版必修4
2.3.1 平面向量基本定理考试标准学法指导1.平面向量基本定理既是本节的重点,也是本节的难点.2.为了更好地理解平面向量基本定理,可以通过改变向量的方向及模的大小作图观察λ1,λ2取不同值时的图形特征,得到平面上任一向量都可以由这个平面内两个不共线的向量e 1,e 2表示出来.3.在△ABC 中,明确AC →与AB →的夹角与CA →与AB →的夹角互补.1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底.状元随笔 平面向量基本定理的理解(1)e →1,e →2是同一平面内的两个不共线的向量,e →1,e →2的选取不唯一,即一个平面可以有多组的基底.(2)平面内的任一向量a →都可以沿基底进行分解. (3)基底e →1,e →2确定后,实数λ1、λ2是唯一确定的. 2.关于两向量的夹角(1)两向量夹角的概念:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ,叫作向量a 与b 的夹角.①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向.(2)垂直:如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 状元随笔 两向量夹角概念的正确理解(1)由于零向量的方向是任意的,因此,零向量可以与任一向量平行,零向量也可以与任一向量垂直.(2)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与向量AB →的夹角,∠BAD 才是向量CA →与向量AB →的夹角.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底.( ) (2)若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内所有向量.( )(3) 若a e 1+b e 2=c e 1+d e 2(a ,b ,c ,d ∈R ),则a =c ,b =d .( ) 答案:(1)× (2)√ (3)×2.设O 是平行四边形ABCD 两对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为这个平行四边形所在平面的一组基底的是( )A .①②B .①③C .①④ D.③④解析:①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA →与DC →不共线;④OD →=-OB →,则OD →与OB →共线.由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.答案:B3.在△ABC 中,向量AB →,BC →的夹角是指( )A .∠CAB B .∠ABC C .∠BCAD .以上都不是解析:由两向量夹角的定义知,AB →与BC →的夹角应是∠ABC 的补角,故选D. 答案:D4.如图所示,向量OA →可用向量e 1,e 2表示为________.解析:由图可知,OA →=4e 1+3e 2. 答案:OA →=4e 1+3e 2类型一 平面向量基本定理的理解例1 设e 1,e 2是不共线的两个向量,给出下列四组向量: ①e 1与e 1+e 2; ②e 1-2e 2与e 2-2e 1; ③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧λ=1,1=0,无解,∴e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎪⎨⎪⎧1+2λ=0,2+λ=0,无解,∴e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底. ③∵e 1-2e 2=-12(4e 2-2e 1),∴e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎪⎨⎪⎧1-λ=0,1+λ=0,无解,∴e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③由基底的定义知,平面α内两个不共线的向量e →1、e →2叫做表示这一平面内所有向量的一组基底,要判断所给的两个向量能否构成基底,只要看这两个向量是否共线即可.方法归纳对基底的理解(1)两个向量能否作为一组基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以由这组基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则{ x 1=x 2,y 1=y 2.提醒:一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.跟踪训练1 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底; ②一个平面内有无数多对不共线向量可作为该平面所有向量的基底; ③零向量不可以作为基底中的向量.其中正确的说法是( )A.①② B .②③ C .①③ D .①②③解析:平面内向量的基底是不唯一的,在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;零向量可看成与任何向量平行,故零向量不可以作为基底中的向量,故B 项正确.答案:B平面内任意一对不共线的向量都可以作为该平面内所有向量的基底,一定要注意“不共线”这一条件,在做题时容易忽略此条件而导致错误,同时还要注意零向量不能作基底.类型二 用基底表示平面向量例2 如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE 与BF 交于点G ,若AB →=a ,AD →=b ,试用a ,b 表示向量DE →,BF →.【解析】 DE →=DA →+AB →+BE →=-AD →+AB →+12BC →=-AD →+AB →+12AD →=a -12b .BF →=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .解决此类问题的关键在于以一组不共线的向量为基底,通过向量的加、减、数乘以及向量共线的结论,把其他相关的向量用这一组基底表示出来.方法归纳用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.跟踪训练2 (1)本例条件不变,试用基底a ,b 表示AG →;(2)若本例中的基向量“AB →,AD →”换为“CE →,CF →”即若CE →=a ,CF →=b ,试用a ,b 表示向量DE →,BF →.解析:(1)由平面几何知识知BG =23BF ,故AG →=AB →+BG →=AB →+23BF →=a +23⎝ ⎛⎭⎪⎫b -12a =a +23b-13a =23a +23b . (2)DE →=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF →=BC →+CF →=2EC →+CF →=-2CE →+CF →=-2a +b .用基底表示平面向量,要充分利用向量加法、减法的三角形法则或平行四边形法则. 类型三 向量的夹角例3 已知|a |=|b |,且a 与b 的夹角为120°,求a +b 与a 的夹角及a -b 与a 的夹角.【解析】 如图,作OA →=a ,OB →=b ,∠AOB =120°,以OA →,OB →为邻边作平行四边形OACB ,则OC →=a +b ,BA →=a -b .因为|a |=|b |,所以平行四边形OACB 为菱形. 所以OC →与OA →的夹角∠AOC =60°,BA →与OA →的夹角即为BA →与BC →的夹角∠ABC =30°.所以a +b 与a 的夹角为60°,a -b 与a 的夹角为30°.作图,由图中找到a →-b →与a →的夹角,利用三角形、四边形的知识求角. 方法归纳两个向量夹角的实质及求解的关键(1)实质:两个向量的夹角,实质上是从同一起点出发的两个非零向量构成的角. (2)关键:求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,然后按照“一作二证三算”的步骤,并结合平面几何知识求出两个向量的夹角.跟踪训练3 已知|a |=|b |=2,且a 与b 的夹角为60°,求a +b 与a 的夹角,a -b 与a 的夹角.解析:如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作▱OACB , 则OC →=OA →+OB →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形. 所以∠OAB =60°=∠ABC . 即a -b 与a 的夹角为60°. 因为|a |=|b |,所以▱OACB 为菱形.所以OC ⊥AB ,所以∠COA =90°-60°=30°. 即a +b 与a 的夹角为30°.作出向量a →,b →,a →+b →,a →-b →,利用平面几何知识求解. 2.3.1[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( )A .不共线B .共线C .相等D .不确定 解析:∵a +b =3e 1-e 2,∴c =2(a +b ).∴a +b 与c 共线. 答案:B2.当向量a 与b 共线时,则这两个向量的夹角θ为( ) A .0° B.90°C .180°D .0°或180°解析:当向量a 与b 共线,即两向量同向时夹角θ=0°,反向时夹角θ=180°. 答案:D3.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a解析:如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD →-AB →=2b -a .答案:B4.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 解析:如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 答案:D5.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( )55C.85D.45解析:∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.答案:C二、填空题(每小题5分,共15分)6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.解析:因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.答案:37.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.解析:AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b .答案:2a -b8.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.解析:BE →=BC →+CE →=AD →-12AB →=b -12a .2三、解答题(每小题10分,共20分)9.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .解析:因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .10.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB→=a ,AC →=b ,试用a ,b 将MN →、NP →、PM →表示出来.解析:NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).[能力提升](20分钟,40分)11.设非零向量a ,b ,c 满足|a |=|b |=|c |,a +b =c ,则向量a ,b 的夹角为( ) A .150° B.120° C .60° D.30°解析:设向量a ,b 的夹角为θ,作BC →=a ,CA →=b ,则c =a +b =BA →(图略),a ,b 的夹角为180°-∠C .∵|a |=|b |=|c |,∴∠C =60°,∴θ=120°.答案:B 12.如图,在△ABC 中,已知AB =2,BC =3,∠ABC =60°,AH ⊥BC 于H ,M 为AH 的中点,若AM →=λAB →+μBC →,则λ+μ=________.解析:因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1,又M 为AH 的中点,BC =3,所以AM →=12AH →=12(AB →+BH →)=12(AB →+13BC →)=12AB →+16BC →,所以λ+μ=23. 答案:2313.如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b ,试以a ,b 为基底表示OM →.解析:根据平面向量基本定理可设OM →=m a +n b (m ,n ∈R ),则AM →=OM →-OA →=(m -1)a +n b ,AD →=OD →-OA →=12b -a =-a +12b , ∵A 、M 、D 三点共线,∴AM →=λAD →(λ为实数),∴AM →=-λa +λ2b , ∴⎩⎪⎨⎪⎧ m -1=-λ,n =12λ,消去λ得m +2n =1.而CM →=OM →-OC →=⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b , ∵C 、M 、B 三点共线,∴CM →=μCB →(μ为实数),∴CM →=-μ4a +μb ,∴⎩⎪⎨⎪⎧ m -14=-14μ,n =μ,消去μ得4m +n =1.由⎩⎪⎨⎪⎧ m +2n =1,4m +n =1解得⎩⎪⎨⎪⎧ m =17,n =37,∴OM →=17a +37b . 14.在△ABC 中,AB =3,BC =1,AC =2,D 是AC 的中点.求:(1)AD →与BD →夹角的大小;(2)DC →与BD →夹角的大小.解析:(1)如图所示,在△ABC 中,AB =3,BC =1,AC =2,所以AB 2+BC 2=(3)2+1=22=AC 2,所以△ABC 为直角三角形.因为tan A =BC AB =13=33, 所以A =30°.又因为D 为AC 的中点,所以∠ABD =∠A =30°,AD →=DC →.在△ABD 中,∠BDA =180°-∠A -∠ABD =180°-30°-30°=120°,所以AD →与BD →的夹角为120°.(2)因为AD →=DC →,所以DC →与BD →的夹角也为120°.。
高中数学 第二章 平面向量 2.3.1 平面向量基本定理、正交分解与坐标表示教案 新人教A版必修4(
高中数学第二章平面向量2.3.1 平面向量基本定理、正交分解与坐标表示教案新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章平面向量2.3.1 平面向量基本定理、正交分解与坐标表示教案新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章平面向量2.3.1 平面向量基本定理、正交分解与坐标表示教案新人教A版必修4的全部内容。
2.3.1 平面向量基本定理2。
3.2平面向量的正交分解及坐标表示教材分析本节内容是数学必修 4 第二章第三节的第一课,平面向量基本定理揭示了平面向量的基本关系和基本结构,是进一步研究向量问题的基础;是进行向量运算的基本工具,是解决向量或利用向量解决问题的基本手段. 掌握了平面向量基本定理及坐标表示,可以使向量的运算完全代数化,将数与形紧密地结合起来,这样许多几何问题就转化为学生熟知的数量运算,这也是中学数学课中学习向量的目的之一,所以我认为对平面向量基本定理的应用是本节课的重点.另外对向量基本定理的理解这一点对于初学者来说有一定难度,所以是本节的难点.课时分配本节内容用1课时的时间完成,主要讲解平面向量基本定理、向量的坐标表示.教学目标1.了解平面向量的基本定理及其意义,理解掌握平面向量的的正交分解及其坐标表示。
2.经历平面向量基本定理的形成探究过程,掌握正交分解下向量的坐标表示,认识平面向量基本定理是实现向量由几何形式过渡到代数形式的桥梁。
3.通过本节课的学习,了解先关数学知识的来龙去脉,认识其作用和价值,培养学生的探索研究能力。
重点: 正交分解下向量的坐标表示.难点:平面向量的基本定理,正交分解下向量的坐标表示。
高中数学 2.3.1 平面向量基本定理教案 必修4
2.3.1 平面向量基本定理(教师用书独具)●三维目标1.知识与技能(1)掌握平面向量的基本定理,能用两个不共线向量表示一个向量或一个向量分解为两个向量.(2)能用平面向量的基本定理解决一些简单的几何问题.2.过程与方法由概念的形成过程和在解题中的作用,进一步体验数形结合思想的指导作用.3.情感、态度与价值观(1)通过学习平面向量基本定理和向量的坐标表示,实现几何与代数的完美结合,使学生明白知识与知识、事物之间的相互联系和相互转化.(2)通过例题及练习,体会向量语言及运算在解决数学问题和实际问题中的工具作用.●重点难点重点:平面向量基本定理及其意义.难点:平面向量基本定理的应用.(教师用书独具)●教学建议1.关于平面向量基本定理教学教学时,建议教师从学生熟知的力学知识出发,结合教材实例中有关力及速度的合成与分解,先让学生从感性上认识向量可分解性,在此基础上结合向量的平行四边形法则由学生自主总结出平面向量基本定理的内容,教师就定理的有关注意事项做适当补充,不必要求学生会证明该定理.2.关于应用平面向量基本定理的教学教学时,建议教师结合实例,让学生明确平面向量基本定理在解决实际问题中的作用.通过实例进一步理解平面向量基本定理的实质,为下一节坐标系的建立奠定基础.●教学流程创设问题情境,引入平面向量基本定理,并引导学生初步理解定理及其作用.⇒引导学生结合向量共线等知识,理解基底概念及向量的正交分解的概念.⇒通过例1及其变式训练,使学生进一步正确理解平面向量基本定理.⇒通过例2及其变式训练,使学生掌握用基底表示向量的方法.⇒通过例3及其变式训练,使学生掌握利用平面向量基本定理求参数的值及证明三点共线等问题的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.了解平面向量基本定理及其意义.(难点)2.了解基底的含义.3.会用任意一组基底表示指定的向量.4.能应用平面向量基本定理解决一些实际问题.(重点)平面向量基本定理【问题导思】已知▱ABCD 的对角线交点为O ,AB →=a ,AD →=b ,如何用a ,b 表示AO →? 【提示】 AO →=12AC →=12(AB →+AD →)=12(a +b)=12a +12b.(1)定理:如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e1+λ2e2.(2)基底:不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.平面向量的正交分解【问题导思】一个放在斜面上的物体所受的竖直向下的重力G ,可分解为使物体沿斜面下滑的力F1和使物体垂直作用于斜面的力F2.类比力的分解,平面内任一向量能否用互相垂直的两向量表示? 【提示】 能,互相垂直的两向量可以作为一组基底.一个平面向量用一组基底e1,e2表示成a =λ1e1+λ2e2的形式,我们称它为向量a 的分解.当e1,e2所在直线互相垂直时,这种分解也称为向量a 的正交分解.平面向量基本定理的理解如果e1,e2是平面α内所有向量的一组基底,λ,μ是实数,判断下列说法是否正确,并说明理由.(1)若λ,μ满足λe1+μe2=0,则λ=μ=0;(2)对于平面α内任意一个向量a ,使得a =λe1+λe2成立的实数λ,μ有无数对; (3)线性组合λe1+μe2可以表示平面α内的所有向量;(4)当λ,μ取不同的值时,向量λe1+μe2可能表示同一向量. 【思路探究】 运用基底概念与平面向量基本定理进行判断. 【自主解答】 (1)正确.若λ≠0,则e1=-μλe2,从而向量e1,e2共线,这与e1,e2不共线相矛盾,同理可说明μ=0.(2)不正确.由平面向量基本定理可知λ,μ惟一确定. (3)正确.平面α内的任一向量a 可表示成λe1+μe2的形式,反之也成立.(4)不正确.结合向量加法的平行四边形法则易知,只有当λ和μ确定后,其和向量λe1+μe2才惟一确定.1.对于平面内任何向量都可以用两个不共线的向量来表示;反之,平面内的任一向量也可以分解为两个不共线的向量的和的形式.2.向量的基底是指平面内不共线的向量,事实上若e1,e2是基底,则必有e1≠0,e2≠0,且e1与e2不共线,如0与e1,e1与2e1,e1+e2与2(e1+e2)等均不能构成基底.下列两个命题(1)若a e1+b e2=c e1+d e2(a ,b ,c ,d ∈R),则a =c ,b =d. (2)若e1和e2是表示平面内所有向量的一组基底,那么该平面内的任一向量可以用e1+e2,e1-e2表示出来.其中正确的是________.【解析】 (1)错,当e1与e2共线时,结论不一定成立. (2)正确,假设e1+e2与e1-e2共线,则存在实数λ,使e1+e2=λ(e1-e2),即(1-λ)e1=-(1+λ)e2.因为1-λ与1+λ不同时为0,所以e1与e2共线,这与e1与e2不共线矛盾.所以e1+e2与e1-e2不共线,因而它们可以作为一组基底,该平面内的任一向量可以用e1+e2,e1-e2表示出来. 【答案】 (2)用基底表示向量图2-3-1如图2-3-1所示,以向量OA →=a ,OB →=b 为邻边作▱AOBD ,又BM →=13BC →,CN →=13CD →,用a ,b 表示OM →,ON →,MN →.【思路探究】 OM →=OB →+BM →,ON →=OC →+CN →,MN →=ON →-OM →,再将各量转化为OA →,OB →. 【自主解答】 BA →=OA →-OB →=a -b. ∴OM →=OB →+BM →=OB →+13BC →=OB →+16BA →=16a +56b.又OD →=a +b ,ON →=OC →+CN →=12OD →+16OD →=23OD →=23a +23b , ∴MN →=ON →-OM →=23a +23b -16a -56b =12a -16b. 1.若题目中已给出了基底,求解此类问题时,常利用向量加法三角形法则或平行四边形法则,结合数乘运算,找到所求向量与基底的关系.2.若题目中没有给出基底,常结合已知条件先寻找一组从同一点出发的两不共线向量作为基底,而后用上述方法求解. 图2-3-2(2013·南通高一检测)如图2-3-2,梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b 表示DC →,BC →,MN →.【解】 如图所示,连结CN ,则四边形ANCD 是平行四边形,即DC →=AN →=12AB →=12a ,BC →=NC →-NB →=AD →-12AB →=b -12a ,MN →=CN →-CM →=-AD →-12CD →=-AD →-12(-12AB →)=14a -b.平面向量基本定理的应用图2-3-3如图2-3-3,已知在△OAB 中,延长BA 到C ,使AB =AC ,D 是将OB →分成2∶1的一个分点(靠近B 点),DC 和OA 交于点E ,设OA →=a ,OB →=b , (1)用a ,b 表示向量OC →,DC →; (2)若OE →=λOA →,求实数λ的值.【思路探究】 (1)由题意可知A 是BC 的中点,利用平行四边形法则求OC →,利用三角形法则求DC →;(2)利用C ,D ,E 三点共线,结合共线向量定理求解. 【自主解答】 (1)∵A 为BC 中点, ∴OA →=12(OB →+OC →),OC →=2a -b ;DC →=OC →-OD →=OC →-23OB →=2a -b -23b =2a -53b.(2)设OE →=λOA →,则CE →=OE →-OC →=λOA →-OC →=λa-2a +b =(λ-2)a +b. ∵CE →与CD →共线,∴存在实数m ,使得CE →=mCD →,即(λ-2)a +b =m(-2a +53b),即(λ+2m -2)a +(1-53m)b=0.∵a ,b 不共线且为非零向量, ∴⎩⎪⎨⎪⎧λ+2m -2=0,1-53m =0,解得λ=45.1.此类问题要结合图形条件与所求证问题,寻求解题思路.本题充分利用三点共线,即共线向量定理,共面向量定理,建立方程组求解,同时要恰当选择基底简化运算.2.应用平面向量基本定理来证明平面几何问题的一般方法是:先选取一组基底,再根据几何图形的特征应用向量的有关知识解题. 图2-3-4如图2-3-4,已知▱ABCD 中M 为AB 的中点,N 在BD 上,3BN =BD.求证:M ,N ,C 三点共线.【证明】 ∵M 为AB 的中点,N 在BD 上,3BN =BD , ∴MB →=12AB →,BN →=13BD →,∴MN →=MB →+BN →=12AB →+13BD →=12AB →+13(AD →-AB →)=16AB →+13AD →,又MC →=MB →+BC →=12AB →+AD →=3(16AB →+13AD →)=3MN →,∴MN →∥MC →,又M 为公共点, ∴M ,N ,C 三点共线.用待定系数法确定向量的表示 图2-3-5(14分)如图2-3-5,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN 的值. 【思路点拨】 可先从已知图形中选出两个简单向量作为一组基底建立起数学模型,由图形特征可知选择BM →与CN →作为基向量较好. 【规范解答】 设BM →=e1,CN →=e2,则AM →=AC →+CM →=-3e2-e1,BN →=BC →+CN →=2e1+e2. 4分 ∵A ,P ,M 和B ,P ,N 分别共线,∴存在实数λ,μ使得AP →=λAM →=-λe1-3λe2, BP →=μBN →=2μe1+μe2. 故BA →=BP →+PA →=BP →-AP →=(λ+2μ)e1+(3λ+μ)e2. 8分 而BA →=BC →+CA →=2e1+3e2, 由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解得⎩⎪⎨⎪⎧λ=45,μ=35.∴AP →=45AM →,BP →=35BN →.即AP ∶PM =4∶1,BP ∶PN =3∶2. 14分基底建模是向量法解决几何图形有关证明和求解的重要方法,关键在于选取的基底是否合适,要注意与已知条件的联系.可用方程思想,利用待定系数法确定向量. 1.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是惟一的.(2)平面向量基本定理中,实数λ1、λ2的惟一性是相对于基底e1,e2而言的,平面内任意两个不共线的向量都可以作为基底,一旦选定一组基底,则给定向量沿着基底的分解是惟一的.2.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不惟一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件. (2)关于基底的一个结论设e1,e2是平面内的一组基底,当λ1e1+λ2e2=0时,恒有λ1=λ2=0. (3)零向量与任意向量共线,故不能作为基底.1.下列关于基底的说法正确的是________.(填序号) ①平面内不共线的任意两个向量都可以作为一组基底; ②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是惟一确定的. 【解析】 作为基底的两个向量不共线,故基底中的向量不能是零向量,②不正确,①③正确.【答案】 ①③2.已知向量e1,e2不共线,实数x ,y 满足(3x -4y)e1+(2x -3y)e2=6e1+3e2,则x -y 的值为________.【解析】 ∵(3x -4y)e1+(2x -3y)e2=6e1+3e2,且e1,e2不共线,∴⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3.∴x -y =6-3=3.【答案】 3 图2-3-63.在如图2-3-6所示的平行四边形ABCD 中,AB →=a ,AD →=b ,AN =3NC ,M 为BC 的中点,则MN →=________(用a ,b 表示).【解析】 MN →=MC →+CN →=12AD →-14AC →=12b -14(a +b)=-14a +14b.【答案】 -14a +14b4.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,求λ的值.【解】 在△ABC 中,已知D 是AB 边上一点, 若AD →=2DB →,CD →=13CA →+λCB →,则CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,∴λ=23.一、填空题1.若O 是▱ABCD 的两对角线的交点,下列向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是________. ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.【解析】 只要是平面上不共线的两个向量都可作为基底,AD →与AB →是有公共点的不共线向量,CA →与DC →也是有公共点的不共线向量.【答案】 ①③ 2.已知e1,e2是平面所有向量的一组基底,那么下列一组向量不能作为基底的是________. ①e1和e1+e2;②e1-2e2和e2-2e1;③e1-2e2和4e2-2e1;④e1+e2和e1-e2. 【解析】 因为4e1-2e1=-2(e1-2e2), 所以e1-2e2与4e2-2e1共线. 【答案】 ③ 图2-3-73.如图2-3-7,平行四边形ABCD 中,AB →=a ,AD →=b ,M 是DC 的中点,以a ,b 为基底表示向量AM →=________.【解析】 AM →=AD →+DM →=AD →+12DC →=AD →+12AB →=b +12a.【答案】 b +12a4.设e1,e2是不共线向量,e1+2e2与me1+ne2共线,则nm =________.【解析】 由e1+2e2=λ(me1+ne2),得mλ=1且nλ=2, ∴nm =2. 【答案】 25.设一直线上三点A ,B ,P 满足AP →=mPB →(m≠-1),O 是直线所在平面内一点,则OP →用OA →,OB →表示为________.【解析】 由AP →=mPB →得OP →-OA →=m(OB →-OP →), ∴OP →+mOP →=OA →+mOB →,∴OP →=OA →+mOB →1+m .【答案】 OP →=OA →+mOB→1+m6.如图2-3-8,在△ABC 中,D 是BC 的中点,E 是AD 的中点,若CE →=rAB →+sAC →,则r +s =________. 图2-3-8【解析】 由E 是AD 的中点,则CE →=12(CA →+CD →)=-12AC →+14CB →=-12AC →+14(AB →-AC →)=14AB →-34AC →,则r +s =-12.【答案】 -127.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 上的点,且BD →=DC →,AE →=2EC →,AF →=2FB →,则2AD →+3BF →+3CE →=________.【解析】 由BD →=DC →,易知AD →=12(AB →+AC →),所以2AD →=AB →+AC →,再由AE →=2EC →,AF →=2FB →,可知3BF →=BA →,3CE →=CA →,所以2AD →+3BF →+3CE →=0. 【答案】 08.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.【解析】 设BC →=b ,BA →=a ,则AF →=12b -a ,AE →=b -12a ,AC →=b -a ,代入AC →=λAE →+μAF →,得b -a =(λ+μ2)b -(λ2+μ)a,即⎩⎪⎨⎪⎧1=λ2+μ,1=λ+μ2,解得λ=μ=23,∴λ+μ=43.【答案】 43二、解答题9.(2013·保定高一检测)设e1,e2为两个不共线的向量,a =-e1+3e2,b =4e1+2e2,c =-3e1+12e2,试用b ,c 为基底表示向量a. 【解】 设a =λ1b+λ2c,λ1,λ2∈R 则, -e1+3e2=λ1(4e1+2e2)+λ2(-3e1+12e2), 即-e1+3e2=(4λ1-3λ2)e1+(2λ1+12λ2)e2,∴⎩⎪⎨⎪⎧4λ1-3λ2=-1,2λ1+12λ2=3,∴⎩⎪⎨⎪⎧λ1=-118,λ2=727,∴a =-118b +727c.10.平行四边形ABCD 中,M 为DC 的中点,N 为BC 的中点,设AB →=b ,AD →=d ,AM →=m ,AN →=n.(1)以b ,d 为基底,表示MN →; (2)以m ,n 为基底,表示AB →. 【解】 如图所示.(1)MN →=AN →-AM →=(AB →+BN →)-(AD →+DM →)=(b +12d)-(d +12b)=12b -12d.(2)m =AD →+DM →=d +12AB →,①n =AB →+BN →=AB →+12d ,所以2n =2AB →+d ,② 由①②消去d ,得AB →=43n -23m.图2-3-911.如图2-3-9所示,在△ABC 中,点M 是边BC 的中点,点N 在边AC 上,AN =2NC ,AM 与BN 相交于点P ,求证:AP →=4PM →.【证明】 记BM →=e1,CN →=e2,所以AC →=-3e2,CM →=-e1,则AM →=AC →+CM →=-3e2-e1,BN →=BC →+CN →=2e1+e2.因为A ,P ,M 共线,且B ,P ,N 共线,所以存在实数λ,μ,使AP →=λAM →=-3λe2-λe1,BP →=μBN →=2μe1+μe2, 所以BA →=BP →+PA →=2μe1+μe2+3λe2+λe1=(2μ+λ)e1+(μ+3λ)e2,又BA →=BC →+CA →=2e1+3e2,所以⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解之得⎩⎪⎨⎪⎧λ=45,μ=35.所以AP →=45AM →,所以AP ∶PM =4∶1,即AP →=4PM →.(教师用书独具)用向量法证明三角形的三条中线交于同一点.【思路探究】 令△ABC 的中线AD 与中线BE 交于点G1,中线AD 与CF 交于点G2,利用向量说明G1与G2重合,证得三条中线交于一点.【自主解答】 如图,AD ,BE ,CF 是△ABC 的三条中线.令AC →=a ,BC →=b ,则AB →=CB →-CA →=AC →-BC →=a -b ,AD →=AC →+CD →=a -12b ,BE →=BC →+CE →=-12a+b.令AD 与BE 交于点G1,并假设AG1→=λAD →,BG1→=μBE →,则有AG1→=λa-λ2b ,BG1→=-μ2a +μb.∴AG1→=AB →+BG1→=(1-μ2)a +(μ-1)b ,∴⎩⎪⎨⎪⎧λ=1-μ2,-λ2=μ-1.由此可得λ=μ=23,∴AG1→=23AD →.再令AD 与CF 相交于G2,同样的方法可得AG2→=23AD.∴G1与G2重合,即AD ,BE ,CF 相交于同一点. ∴三角形三条中线交于一点.向量方法证明三线共点的思路为:设三条直线l1,l2,l3中l1与l2的交点为G1,l2与l3的交点为G2,在图形中选择两个简单的不共线的向量作为基底,证明共起点的向量表示惟一,如证AG1→=AG2→,则得G1,G2重合.在△ABC 中,D ,F 分别是BC ,AC 的中点.AE →=23AD →,AB →=a ,AC →=b.求证:B ,E ,F 三点共线.【证明】 因为D 是BC 的中点,所以有AD →=12(a +b).又因为AE →=23AD →=13(a +b),AF →=12AC →=12b , 所以BE →=AE →-AB →=13(a +b)-a =13(b -2a), BF →=AF →-AB →=12b -a =12(b -2a). 所以BE →=23BF →. 又BE →,BF →有公共点B ,所以B ,E ,F 三点共线.。
高中数学 2.3.1 平面向量基本定理教案 新人教A版必修4
课题 2.3.1 平面向量基本定理教学目标知识与技能理解平面向量基本定理的内容,了解向量一组基底的含义过程与方法在平面内,当一组基底选定后,会用这组基底来表示其他向量情感态度价值观启发引导,讲练结合重点会应用平面向量基本定理解决有关平面向量的综合问题难点同上教学设计教学内容教学环节与活动设计探究点一平面向量基本定理的提出(1)平面内的任何向量都能用这个平面内两个不共线的向量来表示.如图所示,e1,e2是两个不共线的向量,试用e1,e2表示向量AB→,CD→,EF→,GH→,HG→,a.通过观察,可得:AB→=_________,CD→=_________,EF→=_________,GH→=_____________,HG→=___________,a=______.(2)平面向量基本定理的内容是什么?什么叫基底?平面向量基本定理的证明(1)证明定理中λ1,λ2的存在性.如图,e1,e2是平面内两个不共线的向量,a是这一平面内任一向量,a能否表示成λ1e1+λ2e2的形式,请通过作图探究a与e1、e2之间的关系教学内容教学环节与活动设计(2)证明定理中λ1,λ2的唯一性.如果e 1、e 2是同一平面内的两个不共线的向量,a 是和e 1、e 2共面的任一向量,且存在实数λ1、λ2使a =λ1e 1+λ2e 2,证明λ1,λ2是唯一确定的.(提示:利用反证法)探究点三 向量的夹角(1)已知a 、b 是两个非零向量,过点O 作出它 们的夹角θ.(2)两个非零向量夹角的范围是怎样规定的?确定两个向量夹角时,要注意什么事项? (3)在等边三角形ABC 中,试写出下面向量的夹角:a .〈AB →,AC →〉= ;b .〈AB →,CA →〉= ;c .〈BA →,CA →〉= ;d .〈AB →,BA →〉= . 【典型例题】 例1 已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c . 解 ∵a ,b 不共线, ∴可设c =x a +y b ,则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2)=(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2.又∵e 1,e 2不共线, ∴⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4.解得x =1,y =-2,∴c =a -2b .跟踪训练1 如图所示,在平行四边形ABCD 中,M ,N分别为DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d表示AB →,AD →.选定基底之后,就要“咬定”基底不放,并围绕它做中心工作,千方百计用基底表示目标向量.这有时要利用平面几何知识.要注意将平面几何知识中的性质、结论与向量知识有机结合,具体问题具体分析解决教学设计教学内容教学环节与活动设计例2 如图,梯形ABCD中,AB∥CD,且AB=2CD,M、N分别是DC和AB的中点,若AB→=a,AD→=b,试用a、b表示DC→、BC→、MN→.解如图所示,连接CN,则四边形ANCD是平行四边形则DC→=AN→=12AB→=12a,BC→=NC→-NB→=AD→-12AB→=b-12a,MN→=CN→-CM→=-AD→-12CD→=-AD→-12⎝⎛⎭⎪⎫-12AB→=14a-b.例3 在△OAB中,OC→=14OA→,OD→=12OB→,AD与BC交于点M,设OA→=a,OB→=b,以a,b为基底表示OM→.用基底表示向量的关键是利用三角形或平行四边形将基底和所要表示的向量联系起来.解决此类题时,首先仔细观察所给图形.借助于平面几何知识和共线向量定理,结合平面向量基本定理解决.教学小结平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的课后反思精美句子1、善思则能“从无字句处读书”。
高中数学必修四《平面向量基本定理》优秀教学设计
《2.3.1平面向量基本定理》教学设计一、教学目标:1、知识与技能(1) 了解平面向量基本定理及其意义,会利用向量基本定理解决简单问题;(2) 培养学生分析、抽象、概括的推理能力。
2、过程与方法(1) 通过平面向量基本定理的得出过程,体会由特殊到一般的思维方法;(2) 通过本节学习,体会用基底表示平面内任一向量的方法。
3、情感.态度与价值观(1)通过本节学习,培养学生的理性思维,培养学生独立思考及勇于探求、敢于创新的精神、培养主动学习的意识;(2)通过平面向量基本定理的探求过程,培养学生观察能力、抽象概括能力、独立思考的能力,激发学生学习数学的兴趣。
二、教学重点、难点重点:平面向量基本定理的应用难点:对平面向量基本定理的发现和形成过程,数学思想的渗透。
三、教学方法与手段:探求式教学法、多媒体手段四、教学过程第一阶段:尝试发展阶段(一)课前准备(预习教材P 93~ P 94,找出疑惑之处并尝试解决下列问题)1、给定平面内两个向量1e ,2e ,请你作出31e +22e ;1e -22e1e ↖↗2e 2、如上给出的向量1e ,2e ,对于同一平面内的任一向量a ,是否都可以用形如1122e e λλ+ 的向量表示?(先尝试解决二、新知探究中的1——4,四个问题,再回答该问题)3、若给出的向量1e ,2e 是共线向量,那么a 能否用1e ,2e 表示出来?4、基底是否唯一?当基底给定后,向量a 的表达形式是否唯一?第二阶段:自主发展阶段(二)新知探究1、给定平面内两个向量1e ,2e (如下图),2、当向量a 与向量1e ,2e 中的一个 a 是否有形如1122e e λλ+的向量表示? 共线,是否也有1122e e λλ+的表示?1e ↖↗2e , ↑a →a , →1e ↗2e 只需:1λ 0或2λ 0(填 > ,< 或 =)3、当a 变为如下两种情况时,是否有4、当所给的向量1e ,2e ,a 是如下图情况, 形如1122e e λλ+的向量表示呢? 则a 是否也有形如1122e e λλ+的表示?1e ↖↗2e , →a 1e ↖↗2e ,↓a此时:1λ 0; 此时:1λ 0; 此时,1λ 0,且2λ 0. 2λ 02λ 0(1)平面向量基本定理:如果1e ,2e 是同一平面内的两个 向量,那么对于这一平面内的 向量a , 一对实数1λ,2λ,使a = ;(2)基底: 的向量1e ,2e 叫做表示这一平面内 的一组基底。
2020-2021学年数学人教A版必修4学案:2.3.1 平面向量基本定理
2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理[目标] 1.了解平面向量基本定理产生的过程和基底的含义,理解平面向量基本定理. 2.理解两个向量夹角的定义,两向量垂直的定义. 3.掌握平面向量基本定理并能熟练应用.[重点] 平面向量基本定理与向量夹角.[难点] 平面向量基本定理的应用.知识点一平面向量基本定理[填一填](1)定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.(2)我们把不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.[答一答]1.基底有什么特点?平面内基底唯一吗?提示:基底中的两向量e1,e2不共线,这是基底的最大特点.平面内的基底并不是唯一的,任意不共线的两个向量都可以作为基底.2.若向量a,b不共线,且c=2a-b,d=3a-2b,试判断c,d能否作为基底.提示:设存在实数λ使得c=λd,则2a-b=λ(3a-2b),即(2-3λ)a+(2λ-1)b=0.由于a,b不共线,从而2-3λ=2λ-1=0,这样的λ是不存在的,从而c,d不共线,故c,d能作为基底.知识点二向量的夹角[填一填](1)已知两个非零向量a和b,作=a,=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.(2)向量夹角θ的范围是0°≤θ≤180°;当a与b同向时,夹角θ=0°;当a与b反向时,夹角θ=180°.(3)如果向量a与b的夹角是90°,我们说a与b垂直,记作a⊥b.[答一答]3.零向量与向量a的夹角是多少呢?提示:向量的夹角是针对非零向量定义的,零向量与向量a 的夹角没有意义.4.等边三角形ABC中,向量与的夹角是60°吗?提示:不是,求两个向量的夹角时,两个向量的起点必须相同,所以等边三角形ABC中,向量与的夹角是120°而不是60°.类型一基底的概念[例1](1)设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是()A.e1+e2和e1-e2B.3e1-4e2和6e1-8e2C.e1+2e2和2e1+e2D.e1和e1+e2(2)设e1,e2是平面内一组基底,且a=e1+2e2,b=-e1+e2,则向量e1+e2可以表示为另一组基底a,b的线性组合,即e1+e2=________.[解析](1)在B中,因为6e1-8e2=2(3e1-4e2),所以(3e1-4e2)∥(6e1-8e2).所以3e1-4e2和6e1-8e2不能作为基底,其它三个选项中的两组向量都不平行,故都可以作为一组基底.(2)因为a=e1+2e2①,b=-e1+e2②,显然a与b不共线,①+②得a+b=3e2,所以e2=代入②得e1=e2-b=-b=a-b,故有e1+e2=a-b+a+b=a-b.[答案](1)B(2)a-b根据平面向量基底的定义知,此类问题可转化为判断两个向量是否共线的问题,若不共线,则它们可以作为一组基底;若共线,则它们不能作为一组基底.[变式训练1]设e1,e2是不共线的两个向量,给出下列四组向量:①e1与e1+e2;②e1-2e2与e2-2e1;③e1-2e2与4e2-2e1;④e1+e2与e1-e2.其中,不能作为平面内所有向量的一组基底的是③.解析:①中,设e1+e2=λe1,则无解.所以e1+e2与e1不共线,故e1与e1+e2可作为一组基底;同理,可得②④中的两个向量不共线,可作为一组基底;③中的两个向量共线,不可作为一组基底.类型二用基底表示向量[例2]如图所示,在△OAB中,=a,=b,M、N分别是边OA、OB上的点,且=a,=b,设与交于点P,用向量a、b表示.[分析]利用“表示方法的唯一性”确定参数,进而确定λ1,λ2.[解]∵=+,=+,设=m,=n,则=+m=a+m(b-a)=(1-m)a+m b,=+n=(1-n)b+n a.∵a与b不共线,∴∴n=.∴=a+b.将两个不共线的向量作为基底表示其他向量,基本方法有两种:一种是运用向量的线性运算法则对待求向量不断转化,直至用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解.[变式训练2]如图,已知梯形ABCD中,AB∥CD,AB=2CD,E,F分别是DC,AB的中点,设=a,=b,试用a,b表示,,.解:因为DC∥AB,AB=2DC,E,F分别是DC,AB的中点,所以==a,===b.=++=--+=-×b-a+b=b-a.类型三向量的夹角问题[例3]已知|a|=|b|=2,且a与b的夹角为60°,设a+b与a 的夹角为α,a-b与a的夹角是β.求α+β.[解]如图,作=a,=b,且∠AOB=60°,以OA、OB为邻边作▱OACB,则=a+b,=-=a-b,==a.因为|a|=|b|=2,所以△OAB为正三角形,所以∠OAB=60°=∠ABC,即a-b与a的夹角β=60°.因为|a|=|b|,所以平行四边形OACB为菱形,所以OC⊥AB.所以∠COA=90°-60°=30°,即a+b与a的夹角α=30°,∴α+β=90°.求两个向量的夹角关键是利用平移的方法使两个向量起点重合,作两个向量的夹角,按照“一作二证三算”的步骤求出.[变式训练3]在等边三角形ABC中,向量与向量的夹角为120°;E为BC的中点,则向量与的夹角为90°.解析:∵△ABC为等边三角形,∴∠ABC=60°,如图,延长边AB至点D,使BD=AB,∴=,∴∠DBC为向量与的夹角,且∠DBC=120°,又E为BC的中点,∴AE⊥BC.∴与的夹角为90°.1.下列说法中,正确说法的个数是(C)①在△ABC中,,可以作为基底;②能够表示一个平面内所有向量的基底是唯一的;③零向量不能作为基底.A.0B.1 C.2D.3解析:①③正确,②错误.2.已知平行四边形ABCD中,∠DAB=60°,则向量与的夹角是(C)A.30°B.60°C.120°D.150°解析:由图知向量与的夹角为∠BCD=60°的补角120°.3.已知向量e1,e2不共线,实数x,y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y=3.解析:∵e1,e2不共线,∴,解得∴x-y=3.4.如图所示,向量,,的长度分别是2,,1.∠AOB=120°,∠AOC=150°,则=-+-.解析:不妨设=m+n,则m<0,n<0.如图,构建▱OA′C′B′,其中=-,且=+,则∠A′OC′=30°,∠B′OC′=90°,于是||tan60°=||,||·sin60°=||,所以||=,||=,从而m=-,n=-.5.在平行四边形ABCD中,M为DC的中点,N为BC的中点,设=b,=d,=m,=n.(1)以b,d为基底,表示;(2)以m,n为基底,表示.解:如图所示.(1)=-=(+)-(+)=-=b-d.(2)∵m=+=d+,①n=+=+d,②∴由①②消去d,得=n-m.——本课须掌握的两大问题1.平面向量基本定理的作用(1)平面向量基本定理是建立在向量加法和数乘运算基础上的向量分解原理,同时又是下一节学习向量坐标表示的理论依据,是一个承前启后的重要知识点.(2)根据平面向量基本定理,任何一组基底都可以表示任意向量.用基底表示向量,实质上主要是利用三角形法则或平行四边形法则,进行向量的加减法运算.要注意适当选择向量所在的三角形或平行四边形,利用已知向量表示未知向量,或找到已知向量与未知向量的关系,用方程的观点求出未知向量.2.两向量夹角的实质和求解(1)明确两向量夹角的定义,实质是从同一起点出发的两个非零向量构成的不大于平角的角,结合平面几何知识加以解决.(2)求两个向量的夹角关键是利用平移的方法使两个向量起点重合,作出两个向量的夹角,按照“一作二证三算”的步骤求出.。
高中数学必修四教案-2.3.1 平面向量基本定理(1)-人教A版
平面向量基本定理教材分析:“平面向量的基本定理与坐标运算”是人教版高中数学必修4中第二章第三节的教学内容,共需2个课时。
在实际教学中,许多教师并未将平面向量基本定理的学习置于教学的中心,在对定理进行“平铺直叙”后,即将教学“重心”快速转向坐标的表示与运算。
究其原因,是教师认为坐标运算更为重要,对基本定理的理解不到位,对定理所蕴涵的思想内涵领悟不足,教学立意不高。
尤其是在解决平面向量的有关问题时,许多学生就会偏向于代数解决(坐标化),有时会由于代数推理能力的不足,半途而废。
而一旦问题偏离了习惯性的思维方向,需要通过几何构图来解决,则往往因无从下手而“望题兴叹”。
为此,对于“平面向量基本定理与坐标运算(第1课时)”的教学应特别关注如下两点。
首先,要理解“平面向量基本定理”之所以为“基本”的意义与作用,通过几何作图与归纳探究,经历定理的形成过程,在向量的形象化到数量化的转化过程中认识“平面向量基本定理”是实现向量由几何形式过渡到代数形式的重要桥梁。
其次,通过向量正交化、坐标化的探索,理解平面向量坐标的概念,激发学生探索、合作与交流的意识,进一步提高观察、联想、抽象思维与探索能力,逐步培养求简思维与模型化思想。
教学目标:知识与技能目标:掌握平面向量基本定理,理解平面向量基本定理的证明,能用基底进行向量的表示,理解平面向量基本定理中系数、系数和所对应的几何意义。
过程与方法:通过平面向量基本定理的证明,体验“一维”到“二维”的推理过程。
通过平面向量基本定理的应用,逐步培养“数”“形”结合的思想、模型化思想及求简思维。
情感态度价值观:通过平面向量基本定理的证明,激发学生探索、合作与交流的意识,进一步提高观察、联想、抽象思维与探索能力。
通过本节课的学习培养学生的理性思维能力。
教学重点:1、掌握平面向量基本定理2、掌握平面向量基本定理的“数”“形”的应用 教学难点1、平面向量基本定理的证明,需要说明选取向量的任意性2、平面向量基本定理中“数”“形”结合的理解 教学过程1、复习回顾、温故知新平面向量不同于物理中的矢量,它可以自由平移,是自由向量。
平面向量基本定理(教案)
《2。
3。
1 平面向量基本定理》教案【教材】人教版数学必修4(A版)第105—106页【课时安排】1个课时【教学对象】高一学生【授课教师】华南师范大学数学科学学院陈晓妹【教材分析】1.向量在数学中的地位向量是近代数学中重要的概念,它不仅是沟通代数与几何的桥梁,还是解决许多实际问题的重要工具,因此具有很高的教育价值.2.本节在教学中的地位平面向量基本定理是向量进行坐标表示,并由此进一步将向量运算转化为坐标运算的重要基础;该“定理"以二维向量空间为依托,可以推广到n维向量空间,是今后引出空间向量用三维坐标表示的基础.因此本节知识在本章中起承上启下的作用。
3.本节在教学思维方面的培养价值平面向量基本定理蕴含了转化的数学思想。
它是用基本要素用基本要素(基底、元)表达事物(向量空间、具有某种性质的对象的集合),并把对事物的研究转化为对事物基本要素研究的典型范例,这是人们认识事物的一种重要方法。
【目标分析】知识与技能1.理解平面向量的基底的意义与作用,学会选择恰当的基底,将简单图形中的任一向量表示为一组基底的线性组合;2.了解平面向量的基本定理,初步利用定理解决问题(如相交线交成线段比的问题等)。
过程与方法1.通过平面向量基本定理,认识平面向量的“二维”性,并由此进一步体会“某一方向上的向量的一维性”,培养“维数”的基本观念;2.通过对平面向量基本定理的探究过程,让学生体会数学定理的产生、形成过程,体验定理所蕴含的转化思想。
情感态度价值观1.培养学生主动探求知识、合作交流的意识,感受数学思维的全过程;2.与物理学科之间的渗透,改善数学学习信念,提高学生学习数学的兴趣。
【学情分析】有利因素1.学生在前面已经掌握了向量的基本概念和基本运算(特别是向量加法平行四边形法则和向量共线的充要条件)都为学生学习本节内容提供了知识准备;2.学生在物理学科的学习中已经清楚了力的合成和力的分解,同时作图习惯已经养成,这为我们学习向量分解提供了认知准备.不利因素1.学生对向量加减法及数乘运算的意义与作用认识不够,可能增加向量用基底表示时的难度;2.对于向量加减法及数乘运算停留在几何直观的理解上,缺乏从代数运算的角度理解向量运算特征的感受,容易将平面向量基本定理的作用仅仅理解为形式上的变换。
高中数学必修四《平面向量基本定理》教学设计
§2.3.1—1 平面向量基本定理一、教学目标1、知识与技能目标:⑴掌握平面向量基本定理.⑵理解如何用一组基底表示平面内的任意向量.⑶掌握向量夹角的概念与向量垂直.2、过程与方法目标:⑴能根据所学的知识探究平面向量基本定理.⑵体会如何用一组基底表示平面内的任意向量.3、情感、态度、价值观目标:⑴在轻松愉快的环境中学习数学.⑵在积极主动的氛围中学习数学.⑶能与同学交流、合作、探讨解决问题.二、教学重难点1、教学重点:⑴平面向量基本定理.2、教学难点:⑴理解平面向量基本定理:用一组基底表示平面的任意向量..三、教学方法与教具1、教学方法:讲练结合法.2、教具:几何画板课件.四、学情分析这一节内容是向量坐标的基础,也是我认为向量中最难理解的一个内容,其练习也是向量中比较难的。
学生们对于不共线两个向量能表示平面内所有向量这点感到十分头疼,在没有直观展示之前,大部分学生都是对概念得过且过,听不懂不要紧,会做题就行,针对这个难点,我专门制作了几何画板课件来展示两个不共线向量如何表示平面内所有向量,这种直观地展示应该能让学生易于接受和理解.教学过程<一> 平面向量基本定理<二> 基底与夹角<三> 课堂练习1、设O 点是平行四边形ABCD 两对角线的交点,下列向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是( )①与;②与BC ;③CA 与DC ;④OD 与OB . A.①② B.①③ C.①④ D.③④2、若向量a 与b 的夹角为 60,则向量a -与b -的夹角是 A. 60 B. 120 C. 30 D. 1503、已知M 、N 是ABC ∆的一边BC 上的两个三等分点,若a AB =,b AC =,则=MN4、已知向量1e 、2e 不共线,实数x 、y 满足212136)32()43(e e e y x e y x +=-+-,则y x -的值为<四> 课堂小结今天我们学习的内容有:1、平面向量基本定理,它告诉我们:一个平面内,给我两个不共线的向量1e 、2e ,两个系数1λ、2λ,那么这个平面内的任意向量,我都能用它们表示出来.2、基底:只要两个向量不共线,它们就能作为一组基底.3、夹角:注意夹角的形成,必须共起点,还要注意夹角的范围.<五> 课后作业测评:68页例1和活学活用;69页第5题<六> 教学反思本节课学生对于平面向量基本定理掌握得比较好,感觉绝大部分学生已经直观地看到并理解了平面内两个不共线的向量如何表示平面内的所有向量,唯一不足的是对于两个系数1λ、2λ的唯一性讲解得不是特别透彻,学生们还存在疑惑,这点有待改进.。
高中数学第二章平面向量2.3.1平面向量基本定理学案新人教A版必修4(2021年整理)
(浙江专版)2017-2018学年高中数学第二章平面向量2.3.1 平面向量基本定理学案新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2017-2018学年高中数学第二章平面向量2.3.1 平面向量基本定理学案新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2017-2018学年高中数学第二章平面向量2.3.1 平面向量基本定理学案新人教A版必修4的全部内容。
2.3。
1 平面向量基本定理预习课本P93~94,思考并完成以下问题(1)平面向量基本定理的内容是什么?(2)如何定义平面向量基底?(3)两向量夹角的定义是什么?如何定义向量的垂直?错误!1.平面向量基本定理条件e1,e2是同一平面内的两个不共线向量结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底[12向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是唯一的;③基底不唯一,只要是同一平面内的两个不共线向量都可作为基底.2.向量的夹角条件两个非零向量a和b产生过程作向量OA=a,OB=b,则∠AOB叫做向量a与b的夹角范围0°≤θ≤180°特殊情况θ=0°a与b同向θ=90°a与b垂直,记作a⊥bθ=180°a与b反向[点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°。
数学必修4人教A教案导学案:平面向量基本定理
2. 3.1 平面向量基本定理学习目标1.通过探究活动,能推导并理解平面向量基本定理.2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.3.了解向量的夹角与垂直的概念。
重点难点教学重点:平面向量基本定理、向量的夹角与垂直的定义。
教学难点:平面向量基本定理的运用.教学过程引子:在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?问题:如图,设1e 、2e 是同一平面内两个不共线的向量,是这一平面内的任一向量,我们通过作图研究与1e 、2e 之间的关系.请完成:① 给定平面内任意两个不共线的非零向量1e 、2e ,请你作出向量=31e +22e 、=1e -22e . 1e2e② 由①可知可以用平面内任意两个不共线的非零向量1e 、2e 来表示向量,那么 平面内的任一向量是否都可以用形如λ11e +λ22e 的向量表示呢?【由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量1e 、2e 表示出来.当1e 、2e 确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.】由此可得:【平面向量基本定理】: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数λ1、λ2,使=λ11e +λ22e .【定理说明】:(1)我们把不共线向量1e 、2e 叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量在给出基底1e 、2e 的条件下进行分解;(4)基底给定时,分解形式唯一.提出问题① 平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?已知两个非零向量a 和b (如图),作OA =a ,OB =b ,则∠AOB=θ(0°≤θ≤180°)叫做向量a 与b 的夹角.显然,当θ=0°时, a 与b 同向;当θ=180°时, a 与b 反向.因此,两非零向量的夹角在区间[0°,180°]内.如果与的夹角是90°,我们说与垂直,记作⊥.②对平面中的任意一个向量能否用两个互相垂直的向量来表示?例1、已知向量1e 、2e (如图),求作向量-2.51e +32e练习:1.设1e 、2e 是同一平面内的两个向量,则有( ) A. 1e 、2e 一定平行 B . 1e 、2e 的模相等 C.同一平面内的任一向量a 都有a =λ1e +μ2e (λ、μ∈R )D.若1e 、2e 不共线,则同一平面内的任一向量都有=λ1e +u 2e (λ、u ∈R )2.已知向量 =1e -22e , =21e +2e ,其中1e 、2e 不共线,则+与 =61e -22e 的关系( )A.不共线 B .共线 C.相等 D.无法确定3.已知λ1>0,λ2>0,1e 、2e 是一组基底,且=λ11e +λ22e ,则与1e ,与2e .(填“共线”或“不共线”).4.下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( )A.①②B.②③C.①③D.①②③5.设1e 与2e 是两个不共线向量, =31e +42e ,=-21e +52e ,若实数λ、μ满足λ+μ=51e -2e ,求λ、μ的值.6.【能力提升题】已知G 为△ABC 的重心,设AB =a ,AC =b ,试用a 、b 表示向量AG .课堂小结1.回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,2.总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图.作业布置 已知向量1e 、2e (如图),求作向量(1)1e +22e (2)-1e +32e。
高中数学 第2章 平面向量 2.3.1 平面向量基本定理(教师用书)教案 新人教A版必修4-新人教A
2.3 平面向量的基本定理及坐标表示2.3.1 平面向量基本定理学 习 目 标核 心 素 养1.了解基底的含义,理解并掌握平面向量基本定理,会用基底表示平面内任一向量.(重点) 2.掌握两个向量夹角的定义以及两向量垂直的定义.(难点)3.两个向量的夹角与两条直线所成的角.(易混点)1.通过作图教学引导学生自主得出平面向量基本定理,培养学生的直观想象素养.2.通过向量夹角和基底的学习,培养学生的直观想象和逻辑推理素养.1.平面向量基本定理 条件 e 1,e 2是同一平面内的两个不共线向量结论 对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2 基底不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底思考:0能与另外一个向量a 构成基底吗? [提示] 不能,0不能作为基向量. 2.两向量夹角的概念两个非零向量a 和b ,作OA →=a ,OB →=b ,那么∠AOB =θ,叫做向量a 与b 的夹角.(1)X 围:向量a 与b 的夹角的X 围是0°≤θ≤180°. (2)当θ=0°时,a 与b 同向. (3)当θ=180°时,a 与b 反向. 3.垂直如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .1.假设e 1,e 2是平面内的一组基底,那么以下四组向量能作为平面向量的基底的是( ) A .e 1-e 2,e 2-e 1B .2e 1-e 2,e 1-12e 2C .2e 2-3e 1,6e 1-4e 2D .e 1+e 2,e 1-e 2D [A 、B 、C 中两个向量都满足a =λb ,应选D.] 2.给出以下三种说法:①一个平面内只有一组不共线的向量可作为表示该平面内所有向量的基底;②一个平面内有无数组不共线向量可作为表示该平面内所有向量的基底;③零向量不可作为基底中的向量.其中,说法正确的为( ) A .①② B .②③C .①③D .①②③B [根据基底的概念,可知②③正确.]3.假设△ABC 是等边三角形,那么AB →与BC →的夹角的大小为________. 120°[由向量夹角的定义知AB →与BC →的夹角与∠B 互补,大小为120°.] 4.如下图,向量OA →可用向量e 1,e 2表示为________.4e 1+3e 2[由图可知,OA →=4e 1+3e 2.]用基底表示向量【例1】 (1)D ,E ,F 分别为△ABC 的边BC ,CA ,AB 上的中点,且BC →=a ,CA →=b ,给出以下结论:①AD →=-12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④EF →=12a .其中正确结论的序号为________.(2)如下图,▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE 与BF 交于点G ,假设AB →=a ,AD →=b ,试用a ,b 表示向量DE →,BF →.思路点拨:用基底表示平面向量,要充分利用向量加减法的三角形法那么和平行四边形法那么.(1)①②③[如图,AD →=AC →+CD →=-b +12CB →=-b -12a ,①正确;BE →=BC →+CE →=a +12b ,②正确;AB →=AC →+CB →=-b -a ,CF →=CA →+12AB →=b +12(-b -a )=12b -12a ,③正确; ④EF →=12CB →=-12a ,④不正确.](2)DE →=DA →+AB →+BE →=-AD →+AB →+12BC →=-AD →+AB →+12AD →=a -12b .BF →=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .1.假设本例(2)中条件不变,试用a ,b 表示AG →. [解] 由平面几何的知识可知BG →=23BF →,故AG →=AB →+BG →=AB →+23BF →=a +23⎝⎛⎭⎫b -12a =a +23b -13a=23a +23b . 2.假设本例(2)中的基向量“AB →,AD →〞换为“CE →,CF →〞,即假设CE →=a ,CF →=b ,试用a ,b 表示向量DE →,BF →.[解] DE →=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF →=BC →+CF →=2EC →+CF →=-2CE →+CF →=-2a +b .用基底表示向量的三个依据和两个“模型〞(1)依据:①向量加法的三角形法那么和平行四边形法那么; ②向量减法的几何意义; ③数乘向量的几何意义. (2)模型:向量的夹角【例2】 (1)向量a ,b ,c 满足|a|=1,|b|=2,c =a +b ,c ⊥a ,那么a ,b 的夹角等于________. (2)假设a ≠0,b ≠0,且|a|=|b|=|a -b|,求a 与a +b 的夹角.思路点拨:可作出平面图形利用向量夹角定义及平面几何知识来解决.(1)120°[作BC →=a ,CA →=b ,那么c =a +b =BA →(如下图), 那么a ,b 夹角为180°-∠C . ∵|a|=1,|b|=2,c ⊥a , ∴∠C =60°, ∴a ,b 的夹角为120°.](2)[解] 由向量运算的几何意义知a +b ,a -b 是以a ,b 为邻边的平行四边形两条对角线.如图,∵|a |=|b |=|a -b |, ∴∠BOA =60°.又∵OC →=a +b ,且在菱形OACB 中,对角线OC 平分∠BOA , ∴a 与a +b 的夹角是30°.两向量夹角的实质与求解方法:(1)两向量夹角的实质:从同一起点出发的两个非零向量构成的不大于平角的角,结合平面几何知识加以解决.(2)求解方法:利用平移的方法使两个向量起点重合,作出两个向量的夹角,按照“一作二证三算〞的步骤求出.提醒:寻找两个向量的夹角时要紧扣定义中“共起点〞这一特征,避免出现错误.[跟进训练]如图,△ABC 是等边三角形.(1)求向量AB →与向量BC →的夹角;(2)假设E 为BC 的中点,求向量AE →与EC →的夹角. [解] (1)∵△ABC 为等边三角形, ∴∠ABC =60°.如图,延长AB 至点D ,使AB =BD ,那么AB →=BD →,∴∠DBC 为向量AB →与BC →的夹角. ∵∠DBC =120°,∴向量AB →与BC →的夹角为120°. (2)∵E 为BC 的中点,∴AE ⊥BC , ∴AE →与EC →的夹角为90°.平面向量基本定理的唯一性及其应用[假设存在实数λ1,λ2,μ1,μ2及不共线的向量e 1,e 2,使向量a =λ1e 1+λ2e 2,a =μ1e 1+μ2e 2,那么λ1,λ2,μ1,μ2有怎样的大小关系?提示:由题意λ1e 1+λ2e 2=μ1e 1+μ2e 2,即(λ1-μ1)e 1=(μ2-λ2)e 2,由于e 1,e 2不共线,故λ1=μ1,λ2=μ2.【例3】 如下图,在△OAB 中,OA →=a ,OB →=b ,点M 是AB 上靠近B 的一个三等分点,点N 是OA 上靠近A 的一个四等分点.假设OM 与BN 相交于点P ,求OP →.思路点拨:可利用OP →=tOM →及OP →=ON →+NP →=ON →+sNB →两种形式来表示OP →,并都转化为以a ,b 为基底的表达式.根据任一向量基底表示的唯一性求得s ,t ,进而得OP →.[解] OM →=OA →+AM →=OA →+23AB →=OA →+23(OB →-OA →)=13a +23b .因为OP →与OM →共线, 故可设OP →=tOM →=t3a +2t 3b .又NP →与NB →共线,可设NP →=sNB →,OP →=ON →+sNB →=34OA →+s (OB →-ON →)=34(1-s )a +s b ,所以⎩⎨⎧34(1-s )=t3,s =23t ,解得⎩⎨⎧t =910,s =35,所以OP →=310a +35b .1.将本例中“点M 是AB 上靠近B 的一个三等分点〞改为“点M 是AB 上靠近A 的一个三等分点〞,“点N 是OA 上靠近A 的一个四分点〞改为“点N 为OA 的中点〞,求BP ∶PN 的值.[解] BN →=ON →-OB →=12a -b ,OM →=OA →+AM →=OA →+13AB →=OA →+13(OB →-OA →)=23OA →+13OB →=23a +13b .因为O ,P ,M 和B ,P ,N 分别共线, 所以存在实数λ,μ使BP →=λBN →=λ2a -λb ,OP →=μOM →=2μ3a +μ3b ,所以OB →=OP →+PB →=OP →-BP →=⎝⎛⎭⎫2μ3-λ2a +⎝⎛⎭⎫μ3+λb ,又OB →=b ,所以⎩⎨⎧2μ3-λ2=0,μ3+λ=1,解得⎩⎨⎧λ=45,μ=35,所以BP →=45BN →,即BP ∶PN =4∶1.2.将本例中点M ,N 的位置改为“OM →=12MB →,N 为OA 的中点〞,其他条件不变,试用a ,b 表示OP →.[解] AM →=OM →-OA →=13OB →-OA →=13b -a ,BN →=ON →-OB →=12OA →-OB →=12a -b .因为A ,P ,M 三点共线,所以存在实数λ使得AP →=λAM →=λ3b -λa ,所以OP →=OA →+AP →=(1-λ)a +λ3b .因为B ,P ,N 三点共线,所以存在实数μ使得BP →=μBN →=μ2a -μb ,所以OP →=OB →+BP →=μ2a +(1-μ)b .即⎩⎨⎧1-λ=μ2,λ3=1-μ,解得⎩⎨⎧λ=35,μ=45,所以OP →=25a +15b .1.任意一向量基底表示的唯一性的理解: 条件一 平面内任一向量a 和同一平面内两个不共线向量e 1,e 2 条件二 a =λ1e 1+μ1e 2且a =λ2e 1+μ2e 2结论⎩⎪⎨⎪⎧λ1=λ2,μ1=μ22.任意一向量基底表示的唯一性的应用:平面向量基本定理指出了平面内任一向量都可以表示为同一平面内两个不共线向量e 1,e 2的线性组合λ1e 1+λ2e 2.在具体求λ1,λ2时有两种方法:(1)直接利用三角形法那么、平行四边形法那么及向量共线定理. (2)利用待定系数法,即利用定理中λ1,λ2的唯一性列方程组求解.1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件.(2)零向量与任意向量共线,故不能作为基底. 2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理表达了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.1.以下四种说法正确的个数为( )①平面内不共线的任意两个向量都可作为一组基底; ②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的; ④e 1,e 2是平面α内两个不共线向量,假设存在实数λ,μ使得λe 1+μe 2=0,那么λ=μ=0.( )A .1B .2C .3D .4C [零向量与任意向量共线,故零向量不能作为基底中的向量,故②错,根据平面向量基本定理可知①③④正确.]2.平行四边形ABCD ,那么以下各组向量中,是该平面内所有向量基底的是( ) A.AB →,DC →B.AD →,BC → C.BC →,CB →D.AB →,DA →D [由于AB →,DA →不共线,所以是一组基底.]3.假设a 与b 的夹角为45°,那么2a 与-3b 的夹角是________.135° [2a 与a 方向相同,-3b 与b 方向相反,所以2a 与-3b 的夹角为45°的补角135°.] 4.如图,△ABC 中,D 为BC 的中点,E ,F 为BC 的三等分点,假设AB →=a ,AC →=b ,用a ,b 表示AD →,AE →,AF →.[解] AD →=AB →+BD →=AB →+12BC →=a +12(b -a )=12a +12b ;wordAE →=AB →+BE →=AB →+13BC →=a +13(b -a )=23a +13b ; AF →=AB →+BF →=AB →+23BC →=a +23(b -a )=13a +23b .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3平面向量的基本定理及坐标表示
第4课时
§2.3.1 平面向量基本定理
教学目的:
(1)了解平面向量基本定理;
(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;
(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.
教学重点:平面向量基本定理.
教学难点:平面向量基本定理的理解与应用.
授课类型:新授课
教 具:多媒体、实物投影仪
教学过程:
一、 复习引入:
1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa
(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =0
2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb
3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =
λa .
二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a
=λ11e +λ22e .
探究:
(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2) 基底不惟一,关键是不共线;
(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;
(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量 三、讲解范例: 例1 已知向量1e ,2e 求作向量-2.51e +32e .
例 2 如图 ABCD 的两条对角线交于点M ,且AB =a
,AD =b ,用a ,b 表示MA ,MB ,MC 和MD 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任
意一点,求证:OA +OB +OC +OD =4OE
例4(1)如图,OA ,OB 不共线,AP =t AB (t ∈R)用OA ,
OB 表示OP .
(2)设OA 、
OB 不共线,点P 在O 、A 、B 所在的平面内,且(1)()OP t OA tOB t R =-+∈.求证:A 、B 、P 三点共线.
例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实
数,d a b λμλμ=+、使与c 共线.
四、课堂练习:
1.设e 1、e 2是同一平面内的两个向量,则有( )
A.e 1、e 2一定平行
B .e 1、e 2的模相等
C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )
D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R )
2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系
A.不共线 B .共线 C.相等 D.无法确定
3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( )
A.3 B .-3 C.0 D.2
4.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= .
5.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填
共线或不共线).
五、小结(略)
六、课后作业(略):
七、板书设计(略)
八、课后记:。