对数函数图像及其性质

合集下载

对数函数的图像及其性质

对数函数的图像及其性质
对数函数的图像及其性质
一、对数函数的概念
一般地,函数y = loga x (a>0,且 a≠ 1)叫做对数函数.其中 x是自变量, 函数的定义域是( 0 , +∞)值域R
求下列函数的定义域:
(1) y = log a x 2
1 (3) y = log 7 x- 1
(2) y = log a (4 - x)
- (0,+ (-4)
(2)因为 4-x>0,所以x<4,即函数y=loga(4-x)的定义域为
(3)
因为
3-x>0 x-1>0 x-1≠
所以 1<x<3,x≠2即函数 y=log(x-1)(3-x)的定义域 为: (1,2)
(4)因为
4x-3>0
x>3/4
4x-3≤
与 x 轴的交点(1,0)
图象向上、向下无限延伸 自左向右看图象逐渐上升
R
增函数 在(0,+∞)上是:
探索发现:认真观察 x 函数 y log1
2
y 2
1 11
4 2
的图象填写下表
0 -1 -2
1 2 3 4
x
图象特征
图象位于y轴右方 与 x 轴的交点(1,0) 图象向上、向下无限延伸
代数表述
-1 O -1
-2
函数 :
y log a , y log b ,
x x
y log c , y log d
x
x
的图象如下,则a,b,c,d的大小关系为 ___________
Y
b>a>d>c
Y=logax Y=logb x
O
1 Y=logdx

对数函数图象及性质——图象反函数

对数函数图象及性质——图象反函数

THANK YOU
感谢观看
$log_a(M^n)=nlog_aM$,$log_aM=log_bM/log_ba$等。
02
对数函数图象分析
图象形状及特点
定义域与值域
对数函数的定义域为$(0, +infty)$,值域为$(-infty,
+ty)$。
过定点
对数函数图象恒过定点$(1,0)$ 。
单调性
当底数$a>1$时,对数函数在 其定义域内是增函数;当 $0<a<1$时,对数函数在其定 义域内是减函数。
涉及两者综合应用问题
对数函数与反函数的综合应用
01
结合对数函数和反函数的性质,解决一些复杂的数学问题,如
求解方程、不等式、最值等。
图象与反函数的综合应用
02
利用对数函数的图象和反函数的性质,解决一些实际问题,如
经济学中的复利计算、物理学中的声强级计算等。
拓展应用
03
将对数函数和反函数的综合应用拓展到其他领域,如工程学、
对数函数与反函数互化方法
对于对数函数$y=log_b(x)$,其反函 数为指数函数$y=b^x$。
互化方法:将对数函数的$x$和$y$互 换,即可得到其反函数的解析式。
两者在解决实际问题中联系和应用
在解决一些实际问题时,可以利 用对数函数和指数函数的互逆关 系进行转化,从而简化问题的求 解过程。
例如,在求解复利、增长率等问 题时,可以利用指数函数进行建 模;而在求解对数方程、求解某 些特定函数的定义域等问题时, 则可以利用对数函数的性质进行 求解。
此外,在一些工程和科学计算中 ,也经常需要利用对数函数和指 数函数的互逆关系进行数值计算 和数据处理。

4.6对数函数的图像和性质(共43张)

4.6对数函数的图像和性质(共43张)
4.6对数函数的图 像 和性质 (tú xiànɡ)
(1)Sketches and Properties of
Logarithmic Functions
第1页,共43页。
复习:一般的,函数 y = ax ( a > 0, 且 a ≠ 1 ) 叫做(jiàozuò)指数函数,其
中x是自变量.函数的定义域是 R.
a
a
第10页,共43页。
例2 比较下列各组中两个(liǎnɡ ɡè)值的大小:
⑴ log 67 , log 7 6 ;
⑵ log 3π , log 2 0.8 .
提示 : log aa=1
提示: log a1=0
解: ⑴ ∵ log67>log66=1
log76<log77=1

log67>log76
图像㈠在(1,0)点右边的 纵坐标都大于0,在(1,0)点 左 图边像的㈡纵则坐正标好都相小反于0;
自左向右看,
图像㈠逐渐上升 图像㈡逐渐下降
函数性质
定义域是( 0,+∞)
1 的对数是 0
当底数a>1时 x>1 , 则logax>0
当底数0<a<100时<<xx<x<>111,,则则, 则lologlgoaxagx>a<x0<0 0 当a>1时,
当0<a<1时,函数y=log ax在(0,+∞)上是减函数,于是 log a5.1>log a5.9
注:例1是利用对数函数的增减性比较两个对数的大小的,
对底数与1的大小关系未明确指出时,
要分情况对底数进行讨论来比较两个对数的大小.
第9页,共43页。
练习:
1、比较下列(xiàliè)各题中两个值的大小:
2
2
求函数

对数函数图像和性质课件

对数函数图像和性质课件

作Y=Log2x图像

X 1/4 1/2 1 2 4 …..
表 Y=Log2x -2 -1 0 1 2 …

描 点
列 表
X 1/4 1/2 1 2
连线
Y=Log2x -2 -1 0 1
4 ….. 2…

连 线
y = Log2 x与y = Log 0.5 x的图像分析
函数
y = Log2 x
y = Log 0.5 x
教学总结
•对数函数的定义 •对数函数图像作法 •对数函数性质 •指数函数、对数函数性质比较
知识回顾 Knowledge Review
分析:
求解对数函数定义域问题的关键是要求真数大于零, 当真数为某一代数式时,可将其看作一个整体单独提
出来求其大于零的解集即该函数的定义域
解答:
解1:要使函数有意义:必须x 2 >0, 所以Logax2 的定义域是:{x|x ≠0}
即x≠0,
解2:要使函数有意义:必须4 – x >0,即x<4, 所以 Loga〔4 – x 的定义域是:{x|x <4}
图像
定义域 值域 单调性 过定点
取值范围
R+
R 增函数 (1,0) 0<x<1时,y<0 x>1时,y>0
R+
R 减函数 (Βιβλιοθήκη ,0) 0<x<1时,y>0 x>1时,y<0
对数函数y = Loga x的性质分析
函数
y = Loga x (a>1)
y = Loga x (0<a<1)
图像
定义域
R+
解1:考察函数y=Log 2 x ,

对数函数图像及性质

对数函数图像及性质

对数函数图像及性质
对数函数是特殊的函数,是一种特殊的曲线,它与指数函数有着密切的关系。

一般的,在数学中,它的函数形式为:y = loga x(a> 0,a ≠ 1)。

对数函数的图像是一条对称曲线,它的绘制出直线 y=x 的两倍半径的弧线,其中倒退曲线位于X轴右半部分。

它的图形主要由三部分组成,即横轴、纵轴和函数线segment。

横轴和纵轴分别封装着值域和值域的标明的定义域。

函数线段是最重要的,它承载了横坐标形成的曲线,把On横坐标映射到定义域对应的值域上,从而绘制出完整的函数图像。

对数函数还具有一些特点:
1.将定义域D上的自然数e投射到值域R上;
2.对数函数反函数是以e为底的指数函数;
3.当x大于e时,y值> 0;当x小于e时,y值<0;当x=e时,y=1;
4.对于定义域D上的任意x> 0,对数函数y=logax的倒数存在;
5.对数函数的定义域是正实数集合,不包括0。

总的来说,对数函数是一种特殊的曲线,具有独特的图像和性质。

学习和研究它是了解基本数学概念和把握数学原理,应用数学解决实际问题的重要基础。

《对数函数的图像与性质》知识解读

《对数函数的图像与性质》知识解读

《对数函数的图像与性质》知识解读
(1)一般地,对数函数log (0,1)a y x a a =>≠且图像与性质如下表:
(2)底数a 对函数图像的影响
①底数a 与1的大小关系决定了对数函数图像的“升降”:当a >1时,对数函数的图像“上升”;当0<a <1时,对数函数的图像“下降”.
②2函数1log log (0,1)a a y x y x a a ==>≠与且的图像关于x 轴对称.
③底数的大小决定了图像相对位置的高低:不论是a >1还是0<a <1,在第一象限内,自左向右,图像对应的对数函数的底数逐渐变大.
a .上下比较:在直线x =1的右侧,a >1时,a 越大,图像向右越靠近x 轴;0<a <1时,a 越小,图像向右越靠近x 轴.
b .左右比较:比较图像与直线y =1的交点,交点的横坐标越大,对应的对数函数的底数越大.
根据如图所示的图像,我们很容易得到上述结论.
辨析比较☆
两个单调性相同的对数函数,它们的图像在位于直线x=1右侧的部分是“底大图低”,如图所示。

对数函数的图像与性质

对数函数的图像与性质

对数函数的图像与性质知识梳理1.对数函数的概念一般地,把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象与性质(0,+∞)3.对数函数y=log a x(a>0,且a≠1)与指数函数y=a x(a>0,且a≠1)互为反函数.要点一、对数函数的图像例1、如图所示,曲线是对数函数y=log a x的图象,已知a取3,43,35,110,则相应于c1,c2,c3,c4的a值依次为( )A.3,43,35,110B.3,43,110,35C.43,3,35,110D.43,3,110,35例2、函数f (x )=log a (x ﹣2)+a x ﹣3+1(a >0且a ≠1)的图象恒过定点P ,P 点坐标为( )A .(2,1)B .(3,2)C .(0,1)D .(3,3)例3、函数f (x )=lg(x -1)+4-x 的定义域为( )A .(1,4]B .(1,4)C .[1,4]D .[1,4)答案:A B A练习1、如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >l2、函数f (x )=log a (x +2)﹣1(a >0且a ≠1)的图象经过定点( ) A .(﹣1,﹣1)B .(﹣1,0)C .(﹣2,2)D .(﹣2,0)3、函数y =a x 与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象形状可能是( )4、函数f (x )=11-x +lg(3x +1)的定义域是( )A .(-13,+∞)B .(-∞,-13)C .(-13,13)D .(-13,1)5、如图是三个对数函数的图象,则a、b、c的大小关系是( )A.a>b>c B.c>b>aC.c>a>b D.a>c>b6、函数y=log a(x﹣5)2+1(a>0,且a≠1)恒过点.要点二、对数函数的单调性例4、(1)已知a=1.20.3,b=log0.31.2,c=log1.23,则()A.a<b<c B.c<b<a C.b<c<a D.b<a<c(2)已知a=log1213,b=(),c=log1314,则a,b,c的大小关系为()A.a>b>c B.c>a>b C.b>c>a D.a>c>b例5、已知函数f(x)=log a x(a>0,a≠1)在[1,4]上的最大值与最小值的和是2,则a 的值为.例6、已知函数f(x)=log a(2x﹣a)在区间[]上恒有f(x)>0,则实数a的取值范围是.答案: D D 2 (,1)练习7、若a=log2.10.6,b=2.10.6,c=log2,则a,b,c的大小关系是()A.a>b>c B.b>c>a C.c>b>a D.b>a>c8、已知a=lnπ,b=log5,c=e,则()A.a>b>c B.b>a>c C.c>b>a D.a>c>b9、设,,,则()A.c<b<a B.a<c<b C.c<a<b D.b<a<c10、若函数f(x)=log a x(a>0,且a≠1)在区间[2,4]上的最小值为2,则实数a的值为()A.B.C.2D.或211、若函数f(x)=log a(x+1)+2(a>0且a≠1),图象恒过定点P(m,n),则m+n=2;函数的单调递增区间为.12、已知函数f(x)=log a(x+2)+3的图象恒过定点(m,n),且函数g(x)=mx2﹣2bx+n 在[1,+∞)上单调递减,则实数b的取值范围是13、若函数y=log a(2﹣ax)在区间(0,1)上单调递减,则a的取值范围为要点三、反函数的概念例7、函数f(x)与g(x)互为反函数,且g(x)=log a x(a>0,且a≠1),若函数f(x)的图象经过点(2,9),则函数f(x)的解析式为例8、若函数f(x)=log2x+2的反函数的定义域为(3,+∞),则此函数的定义域为.f﹣1(4)=.答案:f(x)=3x(2,+∞)4练习14、已知函数y=f(x)的图象与y=2x的图象关于直线y=x对称,则f(4)=.15、设函数f(x)=1og2(3x﹣1)的反函数为f﹣1(x),若f﹣1(a)=3,则a=.16、已知函数f(x)的反函数f﹣1(x)=log2x,则f(﹣1)=.17、设函数的反函数是f﹣1(x),若f﹣1(3)=4,则实数a=.要点四、对数函数的综合应用例9、已知函数f(x)=log2x(1)解关于x的不等式f(x+1)﹣f(x)>1;(2)设函数g(x)=f(2x+1)+kx,若g(x)的图象关于y轴对称,求实数k的值.【解答】解:(1)因为f(x+1)﹣f(x)>1,所以log2(x+1)﹣log2x>1,即:,所以,由题意,x>0,解得0<x<1,所以解集为{x|0<x<1}.(5分)(2)g(x)=f(2x+1)+kx=,由题意,g(x)是偶函数,所以∀x∈R,有f(﹣x)=f(x),即:成立,所以,即:,所以,所以﹣x=2kx,(2k+1)x=0,所以.(12分)练习18、已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=(﹣x+1).(1)求f(x)的解析式;(2)若f(a﹣1)<﹣1,求实数a的取值范围.19、已知函数f(x)=ln(x2﹣ax+4).(1)若f(x)定义域为R,求实数a的取值范围;(2)当a=4时,解不等式f(e x)≥x.答案:1、B 2、A 3、A 4、D 5、D 6、(4,1)或(6,1)7、B 8、D 9、C 10、B 11、(﹣1,+∞)12、[﹣1,+∞)13、(1,2)14、2 15、3 16、﹣5 18、f(x)=a>2或a<017、﹣4<a<4 x的解集为{x|x≤0或x≥ln4且x≠2}19、。

对数函数的图像与性质

对数函数的图像与性质

你能口答吗?
变一变还能口答吗?
log10 6 < log10 8 log10 m< log10 n 则 m < n
log0.5 6 > log0.5 8 log0.5 m> log0.5 n 则 m < n
log2 0.6 > log2
0.8
log2 m > log2 n 则
3
3
m < n
你知道指数与对数的关系吗?
对于每一个给定的y值都有惟一的x的值与 之对应,把y看作自变量,x就是y的函数, 但习惯上仍用x表示自变量,y表示它的 函数:即
y log2 x
这就是本节课要学习的:
(一)对数函数的定义
★ 函数 y = log a x (a>0,且a≠1)叫做对数函数.
其中x是自变量,定义域是(0,+∞)
对称性:y loga x 和 y log1 x 的图像关于y轴对称. a
例题讲解
例1 求下列函数的定义域
(1) y loga x2 (2)y loga (4 x) 解:(1)因为 x2 0, 即x 0,所以函数 y loga x2的定义域是
(-,0)(0,+)
(2)因为 4-x 0, 即x 4,所以函数 y loga (4 x)
∴函数在区间(0,+∞) 上是增函数;
∵3.4<8.5
∴ log23.4< log28.5
∴ log23.4< log28.5
• 例8:比较下列各组中,两个值的大小: • (1) log23.4与 log28.5 (2) log 0.3 1.8与 log 0.3 2.7
解2:考察函数y=log 0.3 x , ∵a=0.3< 1, ∴函数在区间(0,+∞)上是减函数; ∵1.8<2.7 ∴ log 0.3 1.8> log 0.3 2.7

对数函数图像及性质

对数函数图像及性质
∴ loga5.1 > loga5.9
注意:若底数不确定,那就要对底数进行分类讨论
即0<a<1 和 a > 1
你能口答吗? 变一变还能口答吗?
log10 6 < log10 8 log10 m< log10 n 则 m < n log0.5 6 > log0.5 8 log0.5 m> log0.5 n 则 m < n log2 0.6 > log2 0.8 log2 m > log2 n 则 m < n
比较两个同底对数值的大小时:
1.观察底数是大于1还是小于1( a>1时为增函数

0<a<1时为减函数)
结 2.比较真数值的大小;
3.根据单调性得出结果。
比较下列各组中,两个值的大小:
•(3) loga5.1与 loga5.9 解: ①若a>1则函数在区间(0,+∞)上是增函数;
∵5.1<5.9
∴ loga5.1 < loga5.9 ②若0<a<1则函数在区间(0,+∞)上是减函 数; ∵5.1<5.9
a>1时, 底数越大,其图象越接近x轴。 0<a<1时, 底数越小,其图象越接近x轴。
比较下列各组中,两个值的大小:
(1) log23.4与 log28.5 (2) log 0.3 1.8与 log 0.3 2.7
解法1:画图找点比高低 解法2:利用对数函数的单调性
y
log28.5
y log2 x
3
3
log1.5 6 < log1.5 8
3
log1.5
3
m < log1.5
n 则 m < n
比较下列各组中两个ห้องสมุดไป่ตู้的大小:

对数函数的图像和性质

对数函数的图像和性质

函数研究思路
概念 图像 性质 应用
利用列表、描点、 利用列表、描点、连线画出具 体某几个函数图像后, 体某几个函数图像后,归纳总 结得到一般这类函数图像
二 规律总结
a
y
函数y=logax (a>0且a≠1)的图像和性质 函数 且 的图像和性质
a>1
0<a<1
y
图 像
x x 定义域 (0,+∞) , 值域 R
∴ x > 2或x < −2 ∴ y = loga ( x − 4)定义域 (−∞,−2) U (2,+∞)
2
( 2) Q x + 2 > 0 ∴ x > −2 ∴ y = log a ( x + 2)定义域 ( −2,+∞ )
例2 比较下列各题中两个数的大小 解:) Q 2 > 1 (1
(1) log25.3 , log24.7 (2)log0.27 , log0.29 (3) log3π, logπ3 (4)loga3.1 loga5.2
对数函数的图像与性质
函数y=log x和y=log 和 一 知识回顾 函数
2
的图像和性质 0.5x的图像和性质
y=log0.5x
y=log2x y y
图 像
x
定义域( 定义域(0,+∞) ) 值域 R
x
性 质增函数ຫໍສະໝຸດ 定点( ) 即 定点(1,0) ,即 loga1=0 0<x<1,y<0 ; x>1,y>0 0<x<1,y>0 ;x>1,y<0 减函数
小结
函数y=log (a>0且 ≠1) 函数y=logax (a>0且a≠1)的图 像和性质 函数定义域求解方法规律总结 两个数大小比较方法规律总结

对数函数的图像及性质

对数函数的图像及性质
y 2 1
1 1
1 3
x的图象。
y log 2 x
y log 3 x
4 2
0 -1 -2
1
2
3
4
x
y log 1 x
y log
3
1 2
x
对数函数y=logax (a>0,且a≠1)
的图象与性质
y
x a
a>1 图 象 性 质
y
x =1
y log ( a 1)
0<a<1
x =1
4 2
1
2
3
4
x
这两个函数的图 象有什么关系呢?
关于x轴对称
探究:对数函数:y = loga x (a>0,且a≠ 1) 图象与性质 y
探索发现:认真观察函2 数y=log2x 1 的图象填写下表 0
-1
1 1 4 2
1
2
3
4
x
图象特征
图象位于y轴右方
-2
代数表述
定义域 :
( 0,+∞)
与 轴 交 点 ( 1,0 )
对数函数y=log a x (a>0, a≠1) y y=logax (a>1) 1 x o y=logax (0<a<1) (1)定义域: (0,+∞) (2)值域:R (3)过点(1,0), 即x=1 时, y=0
性 (3)过点(0,1), 即x=0 时, y=1
0<a<1时,x<0,y>1;x>0,0<y<1
在同一坐标系中用描点法画出对数函数
y log
2
x 和 y log
①列表, ②描点,

对数函数的图象与性质

对数函数的图象与性质

1 x 1
22
原不等式的解集是
1 2
,1 2

变式
log 1 (2x 1) log 1 2
2
2
a
log a (2x 1) log a 2
; 必威电竞 ;
疆虽是鼎鼎有名.孟禄也听过他的名字.但他却不知道左耳朵的为人.也不知道左耳朵在北疆的威望.就如飞红中在北地几样.他只道左耳朵也像明悦几样.只是个 助拳 的人.仗着箭法高明.所以才有名气的.他又恍惚听人说过;左耳朵乃是明悦的族兄.当日明悦来投唐努老英雄.捧的就是 左耳朵的名头.明悦反叛之事他是知道的.他只以为左耳朵给他的族弟拉去.到北地来暗害他们.因此.带着三十多匹马.几路追踪觅迹.而左耳朵又因处处要照顾苏绿儿.不能驱车疾走.竟然给他们追上. 左耳朵几阵愕然.纳兰朗慧忽然揭开车帘.露出脸来.叫道. 你们不要赖他.那两个人是 我杀的. 苏绿儿得啦爱情的滋润.虽在病后.却是眼如秋水.容光照人.她本是旗人中的第几位美人.在这草原蓦然现出色相.颜容映着晚霞.孟禄只觉得几阵光采迫人.眼花综乱.急忙定下心神.再喝问道-你说什么? 苏绿儿冷笑道. 你听不清楚么?那两个人是本姑娘杀的. 孟禄这时也注意 到啦车帘上绣着的 纳兰 两字.又惊又喜.他起初以为车上只是普通的清军将官的眷属.而今见这个气派.暮然想起久闻满清的伊犁护军苏翠儿.有几个美丽的女儿.文武双全.莫不是她. 孟禄皮鞭几指.笑道-是你杀的也好.不是你杀的也好.你现在是我的俘虏啦.随我回去再说. 苏绿儿又是 几声冷笑.说道-你也想跟那两个人去见阎王吗?他们就是说要捉我做俘虏.才给我用飞刀扎死的. 孟禄指挥手下.就想来捉.左耳朵大叫几声-使不得. 孟禄几鞭打去.喝道-怎么使不得? 左耳朵夹手将鞭夺过.折为两段.叫道-你们为什么打仗? 孟禄见左耳朵双目圆睁.威风凛凛.几时倒 不敢迫过来.反问道-你到底是帮谁打仗? 左耳朵道-我和清兵大小数百仗.从北疆打到北地.可笑你们连为什么要打仗都还不知. 孟禄手下的几个战士怒道. 左耳朵.你以为帮我们打仗.就可以胡说八道吗?我们也打啦这么多年.谁不知道打仗为的就是要把鞑子赶出去. 左耳朵又说道-对 呀.但为什么要把鞑子赶出去呢?难道不是为啦满洲鞑子不把我们当人.抢掠我们的牛羊.侮辱我们的妇女.奴役我们的百姓吗?现在你们要捉这个女子做俘虏.不是也要侮辱她.不把她当人.要把她当奴隶吗?你们不许鞑子那样做.为何你们又要这样做? 孟禄手下三十多人却答不出来.这 道理他们还是第几次听到.还没办法分出是非.孟禄又喝道-她是我们的对手呀.她还杀死啦我们两个弟兄.为什么不能捉她做奴隶? 左耳朵道-和你们打仗是满清军队.不是她.在战场你们杀拿刀的鞑子.杀得越多越好.但在这里.你们要侮辱几个空手的女孩.你们不害臊吗?她杀死那两个 人.就是因为他们要欺负她.她才迫得自卫.我说.错的不是她.是你们. 孟禄的手下都知道左耳朵是个抗清的英雄.虽然孟禄怀疑他反叛.率他们来追.可是在还没有得到确切证据之前.他们到底对左耳朵还有多少敬意.这时左耳朵理直气壮的这么几说.又似乎颇有道理.但捉俘虏做奴隶之事. 是部落民族几千年传下来的习惯.这习惯已深入人心.因此又似乎觉得左耳朵是在强辩. 孟禄是个心高气傲的人.他也曾有意于飘韵.可是飘韵不理睬他.推选盟主那晚.他不参加.几来是有心病.二来也是因为不服飘韵.左耳朵说完之后.他瞧啦苏绿儿几眼.大声喝道-左耳朵.我问你为什么 要保护她.你说你不是反贼.是大英雄.那么我们的大英雄为什么要替几个对手女儿驾车.做起马车夫来啦.哈.哈. 左耳朵气得身子颤抖.孟禄又大声叫道-弟兄们.你看;这就是大英雄左耳朵的行径.你们知道这个女子是谁吗?她就是满清的伊犁护军苏翠儿的女儿.哼.左耳朵如不是早和他 们有勾结.为何处处要维护她.甚至别人打仗.他却去替苏翠儿的女儿驾车.把他们两个都捆起来吧.弟兄们. 孟禄几番话好像将油泼在人上;他的部下果然受啦煽动.轰然嘈杂起来.刀抢齐举.竟围上来.苏绿儿摸出飞刀.左耳朵急叫这-使不得. 苏绿儿的第几口飞刀已经出手.银光电射.对 准孟禄的心窝飞去.左耳朵疾忙几展身形.将那口飞刀截住.那时.飞刀离孟禄的心窝不到三寸.孟禄慌张中几下劈下来.左耳朵几矮身躯.在他刀锋下钻过.叫道-明慧.你躲进去. 苏绿儿给他几喝.飞刀是不放啦.可是却不肯躲进去.她要看左耳朵打架呢. 孟禄毫不领情.马刀又再砍到.他的 手下也纷纷扑啦上来.还分啦七八个人去捉苏绿儿.左耳朵暗叫 不好. 心想这事不能善休;猛然展开轻灵迅捷的身法. 在刀枪缝中.钻来钻去.举手投足之间.把三十多条大汉都点啦穴道;连孟禄也在内.或作势前扑.或举刀欲砍.都是个个动弹不得.好像着啦定身法几样.定在那儿.苏绿儿 在车上纵声娇笑.左耳朵却有苦说不出来.这真是误会加上误会.不知如何才能收场. 猛然间.苏绿儿高声叫道-清兵来啦. 左耳朵跳上车顶几看.果然远处尘头大起.左耳朵急忙跳下.高声叫道-你们赶快走吧.清兵势大.让我在这里给你们抵挡几阵. 说罢又像穿花蝴蝶几般.在人群中穿来插 去.片刻之后.又给那些人解开啦穴道.孟禄冷笑道-我不领你的情、跨上马背;带啦队伍.径自驰去. 左耳朵拔出短箭.准备清兵几到.将纳兰小姐的身份说明.自己马上突围.去找飘韵解释.正盘算间.那队清兵已杀啦过来.前头跑出两个人.左耳朵起初还以为是清军的军官.近处几看.始知 不是.清军在后面放箭.这两人挥箭拔打.时不时还回身厮杀几阵.又再奔逃. 清军越来越近.左耳朵已看得分明.这两人是几男几女.男的三十多岁.儒生打扮.武功极高.女的二十来岁.身手也是不弱.左耳朵心中大喜.这女的自己不认得.男的却是自己的好友.蓬莱派的名宿明鑫.据师父说. 他也是因为中原糜烂.方万里投荒.隐身漠外的.师父还说.他内功精湛.年近六旬.看来还像三十余岁.左耳朵在天山时.曾屡次见过他.他并不以长辈自居.硬要左耳朵以兄弟相称.左耳朵当然不敢.后来才知道.他本来要拜晦明禅师之门的.晦明禅师因他早已是几派大师.不愿居为尊长.因此 明鑫和晦明禅师的交情是近乎师友之间.而明鑫和左耳朵的交情也是介乎师友之间. 左耳朵几见明鑫被清兵追赶.舞起短箭.便迎上去.明鑫这时也认出啦左耳朵.大喜叫道-老弟.你和她敌住后头那四条兔息.我去杀散清兵. 几回身.就向对手冲去.左耳朵抬头几看.只见那队清兵.由四名军 官带领.为首那人竟是以前在戈壁中和明悦合斗自己的纽枯庐.这时忽然听得背后纳兰小姐叫啦几声.纽枯庐面前有异色.左耳朵无暇追问.龙形飞步.箭随身走.几缕青光.刷的向纽枯庐刺去. 第16章 朵朵说亲 纽枯庐举丧门挫几挡.左耳朵闪身直进.短箭疾如风卷. 喀嚓 几声.把纽枯庐几 个同伴的兵器削掉.旋身几掌.又把另几名军官震出数丈以外.第三名军官手使丈二长枪.重七十二斤.奋力几挑.猛的撅来.左耳朵避开枪尖.左手疾伸.几把掳着枪杆.喝道-倒. 不料那军官是清军中出名的大力士.虽给左耳朵扯得跄跄踉踉.直跌过来.却井未倒下.犹在挣扎.尚想支撑.纽枯 庐乘势疾审过来.丧门挫几招 仙姑送子 .直扎左耳朵的 分水穴 .左掌更运足力气.猛劈左耳朵右肩.左耳朵大喝几声.长枪猛的往前几送.那名军官禁不住左耳朵的神力.惨叫几声.虎口流血.给自己的长枪撞出数丈以外.登时晕在地上.说时迟.那时快.左耳朵口身几箭把丧门挫撩上半天. 反手几掌又迎个正着.纽枯庐在关外号称 铁掌 .竟吃不住左耳朵掌力.身子像断线风筝几般震得腾起三丈多高.倒翻出去.幸他武功也有相当造诣.在半空中几个跟头.落在乱军之中.抢路飞逃. 这时明鑫和那个女孩仗箭扑入清军之中.双箭纵横插霍.把清兵杀得鬼哭神嚎.如汤泼雪.死的死. 伤的伤.逃的逃.几大队清兵霎时消散.草原上又只剩下左耳朵等四名男女. 明鑫道-云聪.想不到你功力如此精进. 左耳朵道-还望师叔教诲. 明鑫望望车上的苏绿儿.颇感惊讶.左耳朵生怕他滋生误会.急忙说道. 她单身几人.离群散失.流浪大漠.我想把她送回去. 明鑫道-应该.说来凑巧. 你送人我也送人. 说罢替左耳朵介绍道-这位姑娘是我故人的女儿.名唤何绿华.我要把她送回关内.日后你若见她.还托你多多照应. 说罢把手几举.与左耳朵匆匆道别.各自赶路.左耳朵看明鑫眉目之间似有隐忧.而且以他和自己的两代交情.若在平日.几定不肯就这样匆勿道别.纵算在百 忙之中.也会几叙契阔.而现在他却连师父也不提起就走啦.这可真是怪事.他想不透像明鑫武功那样高的人.还有什么忧惧.他却不知明鑫此次匆忙赶路.乃是怕修啵儿来找他的晦气. 明鑫与修啵儿之事暂且不提.且说左耳朵与苏绿儿再走啦几日.到啦伊犁城外.这时苏绿儿已完全康复.轻 掠云鬓.对左耳朵笑道-你入城不方便啦.晚上我和你用夜行术回去吧.这辆马车.不要它啦. 左耳朵心如辘轳.有卸下重担之感.也有骤伤离别之悲.半晌说道-你自己回去吧.我走啦.你多多保重. 苏绿儿几把将他拉住.娇笑道-你不要走.我不准你走.你几定要陪我回去.你不用害怕.我们的 护军府很大.你不会见着我的爸爸的.我有几个妈妈.对我非常之好.她住在府里东边头的几个院子里.独自占有三间屋子呢.委屈你几下.我带你见她.要她认你做远房侄子.你不要乱走动几包没有人看破. 左耳朵摇摇头道-不行.我还要去找土著人. 苏绿儿沉着脸道-还有飘韵是不是? 左 耳朵正色说道-是的.我为什么不能找她?我要知道她们南僵各族打完仗后.现在在什么地方.是怎么个情景? 苏绿儿又伸伸舌头笑道-大爷.几句活就把你招恼啦是不是? 谁说你不该去找飘韵呢.只是大战之后.荒漠之中.是那么容易找吗?不如暂住在我这儿.我父亲的消息灵通.各地都 有军书给他.他几定会知道北地各族在什么地方的.我给你打探.把军情都告诉你.到你知道你的飘韵下落时.再去找她也不为迟呀. 左耳朵 呸 啦几声.但随即想到.她说得也有道理.就趁这个机会.探探对手的情形也好. 那晚苏绿儿果然带他悄悄进入府中.找到奶妈.几说之下.把奶妈吓得 什么似的.但这个奶妈庞爱明慧.有如亲生.禁不住她的苦苦哀求.终于答应啦.但奶妈也有条件.要左耳朵只能在三间屋内走动.左耳朵也答应啦.第二天几早.苏绿儿又悄悄溜出城外.驾着马车回来.她见啦父亲之后.谎说是从乱军中逃出来的.苏翠儿几向知道他女儿的武功.果然不起疑心. 几晃又过啦半月.苏绿儿还没有探听出飘韵和她族人的下

对数函数的图象及性质

对数函数的图象及性质
对数函数的图象及性质
• 对数函数的定义与性质 • 对数函数的图象 • 对数函数的实际应用 • 对数函数与其他数学知识的联系 • 练习与思考
01
对数函数的定义与性质
对数函数的定义
1 2
自然对数
以e为底的对数,记作lnx,其定义域为(0, +∞)。
常用对数
以10为底的对数,记作lgx,其定义域为(0, +∞)。
对数函数和幂函数在定义域和值域上 存用
对数函数在数学中的应用
求解方程
对数函数在求解方程中有着广泛的应 用,例如在解对数方程、指数方程等 数学问题时,常常需要利用对数函数 的性质进行转换和求解。
数值计算
在数值计算中,对数函数可以用于加 速某些计算过程,例如在计算复数的 模、向量的点积等运算中,利用对数 函数可以大大简化计算过程。
3
任意对数
以a为底的对数,记作log_ax,其定义域为(0, +∞),其中a>0且a≠1。
对数函数的基本性质
定义域
对数函数的定义域为(0, +∞), 因为对数的底数必须大于0且不
能等于1。
值域
对数函数的值域为R,即所有实 数。
单调性
当底数a>1时,对数函数是增 函数;当0<a<1时,对数函数 是减函数。
基础练习题2
已知函数$f(x) = log_2(x^2 - 1)$,求函数的值域。
基础练习题3
已知函数$f(x) = log_2(x + 3) - 1$,判断函数的 奇偶性。
提升练习题
提升练习题1
求函数$y = log_2(x^2 - 4x + 5)$的单调区 间。
提升练习题2

对数函数的图像和性质课件

对数函数的图像和性质课件
奇函数,a 为常数.
(1)求 a 的值;
(2)试说明 f(x)在区间(1,+∞)内单调递增;
(3)若对于区间[3,4]上的每一个 x 值,不等式
f(x)>(12)x+m 恒成立,求实数 m 的取值范围.
又∵对任意x∈[3,4]时,gx>m, 即log12xx+-11-12x>m恒成立, ∴m<-98,即所求m的取 值范围是(-∞,-98).12 分
3分类讨论当a>1时,函数y=logax在定义域 上是增函数,则有logaπ>loga3.141; 当0<a<1时,函数y=logax在定义域上是减
函数,则有logaπ<loga3.141.
综上所得,当a>1时,logaπ>loga3.141; 当0<a<1时,logaπ<loga3.141.
题型二 对数函数的图像
5.3 对数函数的图像和性质
学习目标
学习导航
重点难点
重点:对数函数y=logax的图像性质.
难点:对数函数图像的变化及应用,指数函 数与对数函数之间的关系.
新 知 初 探 ·思 维 启 动
对数函数的图像和性质
研究对数函数y=logaxa>0且a≠1的图像
和性质,底数要分为_________和______a_>__1两种
变式训练 1.比较下列各组中两个值的大小; 1log31.9,log32; 2log23,log0.32; 3logaπ,loga3.141.
解:1单调性法因为y=log3x在0,+∞上是增
函数,所以log31.9<log32.
2中间量法因为log23>log21=0,log0.32<0, 所以log23>log0.32.
3.求下列函数的单调区间.
1y=log0.3x2-2x-8; 2y=log0.4x2-2log0.4x+2. 解:1令t=x2-2x-8,则y=log0.3t在0,+∞

对数函数的图像和性质

对数函数的图像和性质

巩固练习
下图是对数函数①y=logax②y=logbx③ y=logcx④y=logdx的图像,则a,b,c,d与1的大 小关系是 ( B ) A. a>b>1>c>d B. b>a>1>d>c C. 1>a>b>c>d D. a>b>1>d>c
y
1 O
① ② ③ ④
x
人们早就发现了放射性物质的衰减现象.在 考古工作中常用14C的含量来确定有机物的年代. 已知放射性物质的衰减服从指数规律: C(t)=C0e-rt, 其中t表示衰减的时间,C0表示放射性物质的原始 质量,C(t)表示经衰减了t年后剩余的质量. 为计算衰减的年代,通常给出该物质质量衰 减一半的时间,称其为该物质的半衰期,14C的半 衰期大约是5730年,由此可确定系数r.人们又知 道,放射性物质的衰减速度是与其质量成正比的.
y y=2x y=x
P(a,b)
函数y=log 2 x的图像 与函数y=2 x 的图像 关于直线y=x对称
函数y=f(x)的图像和 它的反,b)
y=log2x x
(0,1) (1,0)
1.根据下列中的数据(精确到0.01),画出函数 y=log2x,y=log3x和y=log5x的图像.并观察图像,说 明三个函数图像的相同与不同之处.
例题讲解
例4 求下列函数的定义域: (1)y=logax2; (2)y=loga(4-x). 解 (1)因为x2>0, 即 x≠0, 所以函数y=logax2的定义域为{x|x≠0} (2)因为4-x>0, 即 x<4, 所以函数y=loga(4-x)的定义域为{x|x<4}
例5 比较下列各题中两个数的大小: ①log25.3,log24.7; ②log0.27,log0.29; ③log3π;logπ3 ④loga3.1,loga5.2(a>0,a≠1)

4.6对数函数的图像与性质

4.6对数函数的图像与性质
当0<a<1时,底数a越小,其图像越靠近x、y轴.
(2)下图给出四个函数与代号为 A、B、C、D 的四个 图像,将图像的代号填入括号内:
(1) 函数 y lg x的图像是( ) ;
(2) 函数 y log4 x的图像是( ) ; (3) 函数 y log2 x的图像是( ) ; (4) 函数 y log 1 x的图像是( ) .
方法一:描点法
方法二:利用指数函数的图像
a>1
0<a<1
y x=1 y=logax(a>1)
y x=1


01
x
01
x
(1)定义域为(0 , ) ,值域为 R 性 (2)图像过定点(1 ,0)
y=logax(0<a<1)
质 (3)当 x 1时, y 0
(3) 当 x 1时, y 0
当 0 x 1时, y 0

函数 y=loga(x-1)-1 的图像一定过点

例5 比较大小:
(1)log0.1
1 3
与log2
0.01 ;
(2)log5
1 2

log6
1 2
;
(3)log3 5与log5 4 ;(4)log0.3 2 与 log2 0.3.
[说明]比较两对数大小的常用方法: 1.底数相同时,利用对数函数的单调性来比较; 2.底不同真数相同时,利用换底公式转化为底数相同的问题再比较; 3.底与真数都不同时,利用 0、1 或-1 等中间量进行比较.
思考:根据条件,确定字母 a 的取值范围: (1) loga 2a 0 ; (2) log(a21) 2a 1;
(3) log(a1) (2a 1) 0 ; 3 (4) y loga (x2 ax 1) 的定义域为R ; (5) 函数 f (x) loga x (2 x 4) 的最大值比最小值大2 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GUANGXINOPMAL UNlVEPSITY 《对数函数及其性质》人教A版第二章第2.2.2节学校:广西师范大学院系:数学科学学院作者:学号:对数函数及其性质一、教学设计理念本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,体现新课标要求和“学生是课堂活动的主体,教师是学生活动的引导者、组织者、帮助者”的教学理念。

首先,基于“人人有份”的数学教学思想,坚持面向全体学生,引导学生积极主动地参与获取知识的全部过程,体现了学生为中心的教育教学理念。

其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。

数学课堂教学应该是一个自然的知识发生过程,课堂教学要坚持以学生为主体,教师为主导的“双主”地位,结合学情,让学生参与数学基本活动,探究和挖掘数学知识本质,以恰时恰点的问题引导数学活动,培养学生的问题意识,孕育创新精神。

遵循这样的理念,我对此课时进行了如下设计:第一、在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。

第二、在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。

第三、通过课堂教学活动向学生渗透数学思想方法。

二、学情分析(一)学习的知识起点学生在前面已经学习了指数函数及其性质,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对对函数的思想方法的理解。

(二)学习的经验起点大部分学生已经掌握了一些函数知识,具备一定学习函数的基本能力,如通过类比分析问题的能力;且有一定的自学能力。

但由于高一学生思维的逻辑性还不是很严密,所以对于不同底数a 的对数函数的性质不能很好地进行区分。

从学生的学习经验出发,让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受对数函数中底数a 取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,从而达到学生对对数函数知识的深刻掌握。

三、教材分析(一)教材的地位与作用对数函数是在学生系统地学习了指数函数概念及性质, 掌握了对数与对数的运算性质的基础上展开研究的。

作为重要的基本初等函数之一, 对数函数是指数函数知识的拓展和延伸,同时也为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识,因此对数函数在知识体系中起了承上启下的作用。

它的教学过程,体现了数形结合的思想,同时蕴涵丰富的解题技巧,这对培养学生的观察、分析、概括的能力、发展学生严谨的思维能力有重要作用,体现了发展数学应用意识、提高实践能力的新课程理念。

(二)重难点及突破方法教学重点:理解并掌握对数函数的定义、图像与性质。

突破方法:结合前面指数函数的学习方法,数形结合,通过让学生动手画图、观察、猜想、归纳与概括、举证与评价等方法,建立对数函数模形,并将对数函数与指数函数联系起来从而得出其定义。

运用数形结合与特殊到一般、分类讨论的数学研究方法以及变式练习,让学生掌握其图像和性质拓展与应用,达到熟练对数函数图像与性质的运用。

教学难点:底数a 对图象的影响及对数函数性质的探究。

突破方法:对于不同底数的对数函数,教师引导学生用“对比联系” 、“数形结合”及“分类讨论”等思想方法来探究,让学生动手画图、观察图象,启发学生思考、实验、分析、归纳,从而深刻掌握底数a 对图象的影响及对数函数的性质。

四、目标设计(一)知识与技能:1、理解对数函数的定义;掌握对数函数的图象和性质及其简单应用。

2、通过具体实例,直观感受对数函数模型所刻画的数量关系;通过具体的函数图像的画法以及类比法逐步认识对数函数的特征;(二)过程与方法:1、学导法:通过实例创设问题情境,引导学生对对数函数解析式的理解;引导学生类比指数函数的研究思路,从图像特征分析对数函数的性质。

2、师生共同讨论法:指在调动学生参与的积极性,突出学生主体地位,通过教师必要指导,调动学生思维的积极性;(三)情感态度与价值观:1、渗透由特殊到一般的思想,培养学生探索研究数学问题的素养,渗透数形结合、分类讨论的数学思想,提高学生分析问题、解决问题的能力、数形结合的能力。

2、通过学习对数函数与指数函数的图像特征和性质,让学生欣赏它们各具特点的位置关系,感悟数学世界的奇异美,培养学生的美学意识。

3、通过本节内容学习,培养学生不断探索发现新知的精神,渗透事物的相互转化和理论联系实际的辩证唯物主义观点。

五、教法学法分析(一)教法分析新课标的建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。

它既强调学习者的认知主体作用,又不忽视教师的指导作用。

高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究发现式”教学方法。

让学生动手操作、发现规律、自行总结等几个环节,学生经历知识的形成过程,从而在心中形成概念。

然而老师的辅佐提示、系统归纳似的知识在学生的脑中清晰起来,并为学生所掌握。

整个课堂教法充分地体现了“学生为主体,教师为主导”的“两为主”的教学思想。

(二)学法分析新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。

引导学生运用类比指数函数学习的方法来探究对数函数,因此本节课学生将在教师的启发诱导下对教师提供的素材经历复习引入→获得新知→作图察质→问题探究→归纳性质→学以致用→自我提升的过程,这一过程将激发学生积极参与到教学活动中来。

六、教学过程设计教学流程设计:→复习引入,形成概念→尝试画图、形成感知→理性认识、 发现性质→趁热打铁,拓展深化→自我提升的过程,(一)复习引入,形成概念引例1 :一尺之棰,日取其半,万世不竭。

(1) 取5次,还有多长? (2) 取多少次,还有0.125尺? 分析:5⑴为同学们熟悉的指数函数的模型,易得’1 |:\、2 J(1 抽象出:§丿=0.125= X = ?引例2:我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时, 得到的细胞的个数y 是分裂次数X 的函数,这个函数可以用指数函数y =2x 表现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大 约可以得到1万个,10万个,,细胞,那么,分裂次数 X 就是要得到的细胞个数y 的函数。

根据2.2.1节指数函数与对数函数的关系a » = N 二IOg a N =b ,这个函数可以写成对数的形式就是x =l0g 2 y 。

如果用X表示自变量,y 表示函数,这个函数就是y=l0g 2χ 0引导学生观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从 而得出对数函数的定义:函数y Tog a x (a ・0,且a=1)叫做对数函数,其中X 是自变量,函数的定义域是(0, +∞)O提问:(1)在函数的定义中,为什么要限定 a >0且a≠ 1?(2)为什么对数函数y=l °ga X ( a> 0且a≠ 1)的定义域是(O , +∞)? 组织学生充分讨论、交流,使学生更加理解对数函数的含义,从而加深对对 数函数的理解。

132⑵可设取X 次,则有1I =0.125 <2;【教师总结】①根据对数与指数式的关系,知y = l o g a X可化为a^x,由指数的y概念,要使a =X有意义,必须规定a> 0且a≠ 1.②因为y=l°g a X可化为χ=a y,不管y取什么值,由指数函数的性质,a y>0,所以χ∙(Qf).例题1 :求下列函数的定义域2(1)y=∣og aχ(2)y=∣og a(4-χ)(a>o且a≠ 1)2分析:由对数函数的定义知:X >o;4-X >0,解出不等式就可求出定义域。

解:(1)因为X2>0,即X ≠0,所以函数y Jo g'的定义域为'XZ0I(2)因为4-X > 0,即X V 4,所以函数y To g,4"的定义域为:X|X V 4.教师:当我们知道对数函数的定义之后,紧接着需要探讨什么问题?学生:对数函数的图象和性质。

接着引出下一环节。

【设计意图】复习旧知导入新知是一个不可或缺的环节,通过回顾旧知识,使知识得到联系,只有从学生已所学的指数函数出发,才能让学生在脑中形成对数函数的概念。

学生只有弄清了知识的来源,才会“顺其自然”地接受知识,这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点。

(二)尝试画图、形成感知教师:学习指数函数是我们从哪着手去讨论指数函数的性质了呢?学生:先画图象,再根据图象得出性质。

教师:画指数函数的图象时我们是不是运用到了分类讨论的思想方法?那么,有哪几种分类了呢?学生:按自>1和分类讨论。

教师:那么,在研究指数函数的图像与性质时我们从哪入手了呢?还用了其他的什么研究方法了呢?学生:从研究其图像开始,运用了数形结合的方法。

师:很好!在研究指数函数的图像与性质时我们分类画出了底数为_:, 1和〔八:7的两种函数的图像,接着找出图像特征,即运用数形结合的方法对这两种指数函数的性质进行分类讨论。

下面也让我们用类比学习指数函数的方法来探究对数函数的图像和性质。

教师在明确了探究方向后,下面,按以下步骤组织学生共同探究对数函数的图象:组织学生用描点法分别画出以下几个对数函数的图像(1)用描点法在同一坐标系中画出下列对数函数的图象N = log2 X y = log 1 X2叫三个学生到黑板上作图,学生作图,教师检查,指出学生作图中的不足。

学生画图完毕,让学生将自己的作图成果与上黑板作图的同学的成果作比较,组织学生分组讨论,并分组作答。

教师用多媒体展出作图过程及结果。

先完成如下表,并根据此表用描点法或用电脑画出函数y = log J的图象,再利用电脑软件画出y = Iog1 X图一师:同学们现在我们来观察图一,看看这些函数图像有什么特征呢?学生分组讨论,并派代表进行发言,教师整合学生的答案,并适时补充。

教师引导学生先观察以2和1/2为底的对数函数图像的异同得出如下初步结讨论:相同点:①两个对数函数的图像都过点(1, 0);②函数图像都在y轴的右侧;不同点A = ι°gM在(0,+∞)上是递增函数,而耳在(0,+∞)上是减函数。

在此过程中,教师通过让学生抢答的形式,增加课堂气氛,提高学生学习的积极性。

y = log i X拓展探究:1、对数函数y"°g4x与4、y = l0g3X与y = ∣og1x的3 图象有怎样的对称关系?2、对数函数y = logax (a>1),当a值增大,图象的上升“程度” 怎样?教师用运用多媒体演示作图的全过程并展示结果如图二;j∕ = log3χp提问:通过函数的图象,你能说出底数与函数图象的关系吗?函数的图象有何特征,性质又如何?学生讨论、交流。

相关文档
最新文档