高三物理 连接体专题复习
(高三物理一轮复习)连接体问题
牛顿第二定律的应用―――连接体问题学习目标:1.知道什么是连接体与隔离体。
2.知道什么是内力和外力。
3.学会连接体问题的分析方法,并用来解决简单问题。
基础知识回顾:一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为。
如果把其中某个物体隔离出来,该物体即为。
连接体连接方式,一般是通过细绳、杆等物体来实现的。
常见连接方式如下图:二、外力和内力如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的力,而系统内各物体间的相互作用力为。
应用牛顿第二定律列方程不考虑力。
如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的力。
三、连接体问题的分析方法1.整体法:连接体中的各物体如果,求加速度时可以把连接体作为一个整体。
运用列方程求解。
2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法。
3.整体法与隔离法是相对统一,相辅相成的。
本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。
如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用法求出,再用法求。
典型例题:1、如图所示,小车质量均为M,光滑小球P的质量为m,绳的质量不计,水平地面光滑。
要使小球P随车一起匀加速运动(相对位置如图所示),则施于小车的水平拉力F各是多少?(θ已知)球刚好离开斜面F= F=2、如图所示,A、B质量分别为m1,m2,它们在水平力F的作用下均一起加速运动,左图中水平面光滑,两物体间动摩擦因数为μ,右图中水平面光滑, 求A、B间的摩擦力和弹力。
f= F AB=3.如图所示,光滑水平面上放置质量分别为m、2m的A、B两个物体,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使AB以同一加速度运动,则拉力F的最大值为()A.μmgB.2μmgC.3μmgD.4μmg4.如图所示,一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套有一个环,箱和杆的总质量为M,环的质量为m。
连接体模型(牛顿第二定律)-2024年高考物理一轮复习考点通关卷(解析版)
考点巩固卷连接体模型(牛顿第二定律)建议用时:50分钟考点序号考点题型分布考点1轻绳或轻弹簧连接的连接体模型5单选+1多选考点2整体法或隔离法解决连接体模型2单选+3多选考点3速度不同的连接体模型2单选+1多选考点01:轻绳或轻弹簧连接的连接体模型(10单选)一、单选题1(2023·北京·统考高考真题)如图所示,在光滑水平地面上,两相同物块用细线相连,两物块质量均为1kg,细线能承受的最大拉力为2N。
若在水平拉力F作用下,两物块一起向右做匀加速直线运动。
则F的最大值为()A.1NB.2NC.4ND.5N【答案】C【详解】对两物块整体做受力分析有F=2ma再对于后面的物块有F T max=maF T max=2N联立解得F=4N故选C。
2(2023·江苏镇江·统考三模)如图所示,轻质弹簧一端连接在固定斜面底端的挡板上,另一端与物块A连接,物块A静止在斜面上,弹簧恰好处于原长,A与斜面间动摩擦因数μ=tanθ,t=0时刻给A 一沿斜面向下的瞬时冲量,物块A在运动过程中,加速度a、动能E k、弹性势能E p与路程s及运动时间t的变化关系可能正确的是()A. B.C. D.【答案】B【详解】以弹簧恰好处于原长的位置为坐标原点且取向下为正,则记物块A 运动的位移为x ,则滑块A 下滑过程中有x =s ,上滑过程中s =2s 0-x ,故加速度a 、动能E k 、弹性势能E p 与路程s 的关系图线与关于位移x 的关系图线形状相同。
AB .由于刚开始时物块A 静止在斜面上,弹簧恰好处于原长,A 与斜面间动摩擦因数μ=tan θ,则物块A 下滑过程中有kx =ma则物块A 下滑过程中a -x 图线是一条过原点的直线,当A 下滑的到最低点后上滑过程中有kx -2mg sin θ=ma则A 上滑过程中a -x 图线应是一条下倾的直线,且最大加速度要比上滑的最大加速度要小,但物块A 不是做匀变速直线运动,则a 与t 的关系不可能是直线,A 错误、B 正确;C .根据以上分析可知,滑块下滑过程中重力和摩擦力抵消,则滑块的合外力为弹力,根据动能定理有12kx 2=E k 0-E k 则下滑过程中E k -x 图线应该是一条开口向下的抛物线,当滑块上滑过程有12ks 20-12kx 2-2mg sin θ⋅x =E k 则上滑过程中E k -x 图线也应该是一条开口向下的抛物线,但根据牛顿第二定律可知上滑过程中在到达x =0(即路程2s 0)前某位置有A 的合外力为零,此位置动能最大,此后A 就开始做减速运动,动能将减小,C 错误;D .物体A 下滑过程中E p 与下滑位移x 的关系为E p =12kx 2则物块A 下滑过程中E p -x 图线应该是一条开口向上的抛物线,当滑块上滑过程有E p =12ks 20-12kx 2则物块A 上滑过程中E p -x 图线应该是一条开口向下的抛物线,D 错误。
专题16 连接体问题 2022届高中物理常考点归纳
专题16 连接体问题常考点连接体问题分类及解题方法分析【典例1】如图所示,光滑水平桌面上的物体B质量为m2,系一细绳,细绳跨过桌沿的定滑轮后悬挂质量为m1的物体A,先用手使B静止(细绳质量及滑轮摩擦均不计)。
(1)求放手后A、B一起运动中绳上的张力F T。
(2)若在B上再叠放一个与B质量相等的物体C,绳上张力就增大到F T,求m1:m2。
解:(1)对A有:m1g﹣F T=m1a1对B有:F T=m2a1则F T=g(2)对A有:m1g﹣F T2=m1a2对B+C有:F T2=2m2a2则F T2=g由F T2=F T得:g=所以m1:m2=2:1答:(1)放手后A、B一起运动中绳上的张力为g(2)两物体的质量之比为2:1。
【典例2】(多选)如图,倾角为θ的斜面体固定在水平地面上,现有一带支架的滑块正沿斜面加速下滑。
支架上用细线悬挂质量为m的小球,当小球与滑块相对静止后,细线方向与竖直方向的夹角为α,重力加速度为g,则()A.若α=θ,小球受到的拉力为mgcosθB.若α=θ,滑块的加速度为gtanθC.若α>θ,则斜面粗糙D.若α=θ,则斜面光滑【解析】A、若α=θ,则细线与斜面垂直,小球受到的重力和细线拉力的合力沿斜面向下,如图所示,沿细线方向根据平衡条件可得小球受到的拉力为F=mgcosθ,故A正确;B、若α=θ,滑块的加速度与小球的加速度相同,对小球根据牛顿第二定律可得:mgsinθ=ma,解得:a=gsinθ,故B错误;CD、根据B选项可知,若α=θ,整体的加速度为a=gsinθ;以整体为研究对象,沿斜面方向根据牛顿第二定律可得:Mgsinθ﹣f=Ma,解得:f=0;若斜面粗糙,则整体的加速度减小,则α<θ。
【典例3】在光滑的水平地面上有两个A完全相同的滑块A、B,两滑块之间用原长为l0的轻质弹簧相连,在外力F1、F2的作用下运动,且F1>F.以A、B为一个系统,如图甲所示,F1、F向相反方向拉A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0+△l1),系统的加速度大小为a1;如图乙所示,F1、F2相向推A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0﹣△l2),系统的加速度大小为a2.则下列关系式正确的是()A.△l1=△l2,a1=a2B.△l1>△l2,a1=a2C.△l1=△l2,a1>a2D.△l1<△l2,a1<a2【解析】A、B完全相同,设它们的质量都是m,由牛顿第二定律得:对A、B系统:F1﹣F2=2ma1,F1﹣F2=2ma2,对A:F1﹣k△l1=ma1,F1﹣k△l2=ma2,解得:a1=a2,△l1=△l2。
高三物理高考一轮第三讲:连接体问题
3.如图,质量m=5 kg的木块置于倾角=37、质量M=10 kg的粗糙斜面上,用一平行于斜面、大小为50 N的力F推 物体,使木块静止在斜面上,求地面对斜面的支持力和静 摩擦力。
m F
M
FN=(M+m)g-Fsin370=120N
Ff=Fcos370=40N
4.如图所示,倾角为θ的三角滑块及其斜面 上的物块静止在粗糙水平地面上.现用力F 垂直作用在物块上,物块及滑块均未被推动, C 则滑块受到地面的静摩擦力大小为 ( )
3、变式训练:如图,在光滑的水平桌面上有一物体A,通过绳
子与物体B相连,假设绳子的质量以及绳子与定滑轮之间的摩擦力 都可以忽略不计,绳子不可伸长。如果mB=3mA,则物体A的加速度 大小等于( )
A
A、3g B、g C、3g/4 D、g/2
[解析]由牛顿第二定律,隔离A有:T=mA a 隔离B有:mBg-T=mBa
(2)以1、2块砖为对象得:f1=0
(3)以第四块砖为对象得:f4=mg 方向向上
例3.如图所示,放置在水平地面上的斜面M上有一质 量为m的物体,若m在 沿斜面F的作用下向上匀速运 动,M仍保持静止,已知M倾角为θ。求地面对M的 支持力和摩擦力。
解:整体受力分析 建立直角坐标系如图 由平衡条件可得:
Fcosθ-Ff=0 Fsinθ+FN-(M+m)g=0
∴
Ff=Fcos θ FN=(M+m)g-Fsinθ
同类题练习
1.求下列情况下粗糙水平面对M的支持力和摩擦力
m匀速下滑 FN=(M+m)g Ff=0
M、m均静止 FN=(M+m)g Ff=F
M、m均静止,弹簧被伸长 FN=(M+m)g Ff=F弹
2023高考物理一轮复习讲义牛顿第二定律-连接体
整体与隔离1.动力学中的连接体问题连接体是指两个或两个以上物体组成的系统,比较常见的连接体模型有:4基本思路两个或两个以上的物体相互连接参与运动的系统称为连接体。
例题1.如图,两物块P、Q置于水平地面上,其质量分别为m、2m,两者之间用水平轻绳连接。
两物块与地面之间的动摩擦因数均为μ,重力加速度大小为g,现对Q施加一水平向右的拉力F,使两物块做匀加速直线运动,轻绳的张力大小为()A.F﹣2μmg B.F+μmg C.F﹣μmg D. F知识点要点一牛顿第二定律-连接体例题2.如图所示,物体A的质量是m1,放在光滑的水平桌面上,用轻绳拴绳子绕过桌边的定滑轮后,挂一质量为m2的物体B,滑轮的摩擦不计,则下列说法正确的是()A.A的加速度大小为 B.绳子对A的拉力大小为m2gC.绳子对A的拉力大小 D.当m1远大于m2时,绳子对A的拉力近似等于m2g例题3.如图所示,光滑水平面上有叠放在一起的长方形物体A和B,质量均为m,它们之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g。
现在物体A上施加一水平外力F,下列说法正确的是()A.B受到的摩擦力可能等于 B.B受到的摩擦力一定等于μmgC.当F=μmg时,A、B一定相对滑动 D.当F=μmg时,A、B一定相对滑动例题4.如图所示,光滑水平面上放置质量分别为m和2m的四个木块,其中两个质量为m的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg.现用水平拉力F拉其中一个质量为2m的木块,使四个木块以同一加速度运动,则轻绳对m的最大拉力为()A.B.C.D.3μmg例题5.如图所示,光滑水平面上放置质量分别为m、2m和3m的三个木块,其中质量为2m和3m的木块间用一轻弹簧相连,轻弹簧能承受的最大拉力为T.现用水平拉力F拉质量为3m的木块,使三个木块一起加速运动,则以下说法正确的是()A.质量为2m的木块受到四个力的作用B.当F逐渐增大到T时,轻弹簧刚好被拉断C.当F逐渐增大到1.5T时,轻弹簧还不会被拉断D.当F撤去瞬间,m所受摩擦力的大小和方向不变例题6.如图所示,小车上有一定滑轮,跨过定滑轮的轻绳上一端系球,另一端系在弹簧秤上,弹簧秤固定在小车上。
2020年高考物理专题复习:连接体问题的解题技巧
2020年高考物理专题复习:连接体问题的解题技巧考点精讲1. 连接体的分类根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。
(1)绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起;(2)弹簧连接:两个物体通过弹簧的作用连接在一起;(3)接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。
2. 连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等。
轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。
特别提醒:(1)“轻”——质量和重力均不计。
(2)在任何情况下,绳中张力的大小相等,绳、杆和弹簧两端受到的弹力大小也相等。
3. 连接体问题的分析方法(1)分析方法:整体法和隔离法。
(2)选用整体法和隔离法的策略:①当各物体的运动状态相同时,宜选用整体法;当各物体的运动状态不同时,宜选用隔离法;②对较复杂的问题,通常需要多次选取研究对象,交替应用整体法与隔离法才能求解。
典例精析例题1 质量为M、长为3L的杆水平放置,杆两端A、B系着长为3L的不可伸长且光滑的柔软轻绳,绳上套着一质量为m的小铁环。
已知重力加速度为g,不计空气影响。
(1)现让杆和环均静止悬挂在空中,如图甲,求绳中拉力的大小;(2)若杆与环保持相对静止,在空中沿AB方向水平向右做匀加速直线运动,此时环恰好悬于A端的正下方,如图乙所示。
①求此状态下杆的加速度大小a;②为保持这种状态需在杆上施加一个多大的外力,方向如何?【考点】牛顿第二定律、共点力平衡【思路分析】(1)如图甲,设平衡时,绳中拉力为T,有2T cos θ-mg =0 ① 由图中几何关系可知cos θ=36② 联立①②式解得T =46mg ③ (2)①此时,对小铁环的受力分析如图乙, 有T ′sin θ′=ma ④ T ′+T ′cos θ′-mg =0 ⑤ 由图中几何关系可知θ′=60°,代入④⑤式解得 a =33g ⑥②如图丙,设外力F 与水平方向成α角,将杆和小铁环当成一个整体,有丙F cos α=(M +m )a ⑦ F sin α-(M +m )g =0 ⑧联立⑥⑦⑧式,解得F =332 (M +m )g tan α=3(或α=60°) 【答案】(1)46mg (2)①33g ②外力大小为332 (M +m )g ,方向与水平方向成60°角斜向右上方【技巧点拨】如图所示,一夹子夹住木块,在力F 作用下向上提升。
专题17 动力学中的连接体问题、临界极值问题(解析版)
2023届高三物理一轮复习多维度导学与分层专练专题17 动力学中的连接体问题、临界极值问题导练目标导练内容目标1加速度相同的连接体问题目标2加速度不同的连接体问题目标3动力学中的临界极值问题一、动力学中的连接体问题1.处理连接体问题的方法(1)整体法的选取原则及解题步骤①当只涉及系统的受力和运动情况而不涉及系统内某些物体的受力和运动情况时,一般采用整体法。
②运用整体法解题的基本步骤:(2)隔离法的选取原则及解题步骤①当涉及系统(连接体)内某个物体的受力和运动情况时,一般采用隔离法。
②运用隔离法解题的基本步骤:第一步:明确研究对象或过程、状态。
第二步:将某个研究对象或某段运动过程、某个状态从系统或全过程中隔离出来。
第三步:画出某状态下的受力图或运动过程示意图。
第四步:选用适当的物理规律列方程求解。
2.加速度相同的连接体问题常见模型条件交叉内力公式模型一地面光滑,m1和m2具有共同加速度整体:()ammF211+=(F1为m1所受到的外力)隔离m2:m2和m1之间绳的拉力T(内力)大小:21212FT m ammm==+(注:分子是m2与作用在m1上的外力F1交叉相乘)模型二地面光滑,m1和m2具有共同加速度整体:()ammF212+=(F2为m2所受到的外力)隔离m1:m2和m1之间绳的拉力T(内力)大小:12112FT m ammm==+(注:分子是m1与作用在m2上的外力F2交叉相乘)模型三地面光滑,m1和m2具有共同加速度整体:()ammFF2121+=-(F2为m2所受到的外力,F1为m1所受到的外力)隔离m1:m2和m1之间绳的拉力T(内力)大小:11F T m a-=21122111F m F m T F m a m m +=-=+(注:分子是m 2与作用在m 1上的外力F 1交叉相乘“加上”m 1与作用在m 2上的外力F 2交叉相乘)模型四地面光滑,m 1和m 2具有共同加速度整体:()a m m F F 2121+=+隔离m 1:内力T :11F T m a-=22111112-F m F m T F m a m m =-=+(注:分子是m 2与作用在m 1上的外力F 1交叉相乘“减去”m 1与作用在m 2上的外力F 2交叉相乘)模型五地面不光滑,m 1和m 2具有共同加速度 类似于模型三:对m 1把(F 1-f 1)的合力记作F 1’;对m 2把(F 2+f 2)的合力记作F 2’,则有:整体:()a m m F F 2121+=-’’隔离m 1:12211112F m T m F F m a m m +=-=+’’’(注:F 1’和F 2’分别为两个物体除内力以外的各自所受所有外力的合力,等同于模型三中的F 1和F 2,公式形式相同)模型六地面不光滑,m 1和m 2具有共同加速度 类似于模型三:水平外力分别是m 1受到的F 1和m 2受到的摩擦力f 2,此种情况的水平内力为物体间的摩擦力F f 。
高三物理高考二轮复习专题课件:连接体问题
要点总结
• 整体法与隔离法在较为复杂的问题中常常需要有 机地结合起来联合、交叉运用,这将会更快捷有 效.
在选用整体法和隔离法时可依据所求进行 选择,若所求力为外力则应用整体法; 若所求力为内力则用隔离法,但在具体 应用时,绝大多数题目要求两种方法结 合应用,且应用顺序也较为固定,即求 外力时,先隔离后整体;求内力时,先 整体后隔离.先整体或先隔离的目的都 是为了求解共同的加速度.
• (2009· 高考安徽理综)在2008年北京残奥会开幕式上运动员手 拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚韧 不拔的意志和自强不息的精神.为了探求上升过程中运动员与 绳索和吊椅间的作用,可将过程简化.一根不可伸缩的轻绳跨 过轻质的定滑轮,一端挂一吊椅,另一端被坐在吊椅上的运动
员拉住,如图所示.设运动员的质量为65kg,吊椅的质量为
课堂小结
本节课重点学习了连接体问题的解决对策——整体法和隔离法。 包括整体法和隔离法的选取原则、运用整体法和隔离法解题的基本步 骤、用整体法和隔离法解决连接体问题的注意事项。通过学习知道隔 离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转 化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对 的界限,必须具体分析,灵活运用.无论哪种方法均以尽可能避免或减少 非待求量(即中间未知量的出现,如非待求的力,非待求的中间状态或过 程等)的出现为原则。
展望高考
• 连接体问题在高考命题中由来已久,考查频率较高 ,考查要求为‖级,多以选择题的形式出现,着 重考查考生的综合分析能力,起初多是以平衡态下 的连接体问题呈现在卷面上,随着高考对考生能力 要求的不断提高,近几年加强了对非平衡态下连接 体的考查力度。
一、知识点回顾——连接体
2011——2012年高三物理二轮专题复习:专题 连接体问题
专题 连接体问题1、如图所示,表面粗糙的固定斜面顶端安有滑轮,两物块P 、Q 用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦),P 悬于空中,Q 放在斜面上,均处于静止状态。
当用水平向左的恒力推Q 时,P 、Q 仍静止不动,则( )DA.Q 受到的摩擦力一定变小B.Q 受到的摩擦力一定变大C.轻绳上拉力一定变小D.轻绳上拉力一定不变解析:拉力一定不变,摩擦力可能变大,也可能变小,还可能大小不变。
【变式训练1】如图所示,物块A 、B 叠放在水平桌面上,装砂的小桶C 通过细线牵引A 、B 一起在水平桌面上向右加速运动,设A 、B 间的摩擦力为F f1,B 与桌面间的摩擦力为F f2,若增大C 桶内砂的质量,而A 、B 仍一起向右运动,则摩擦力F f1和F f2的变化情况是( )BA .F f1不变,F f2变大B .F f1变大,F f2不变C .F f1和F f2都变大D .F f1和F f2不变【变式训练2】如图所示,长方体物块C 置于水平地面上,物块A 、B 用不可伸长的轻质细绳通过滑轮连接(不计滑轮与细绳之间的摩擦),A 物块与C 物块光滑接触,整个系统中的A 、B 、C 三个物块在水平恒定推力F 作用下从静止开始以相同的加速度一起向左运动.下列说法正确的是( )ADA .B 物块与C 物块之间的接触面可能是光滑的B .若推力F 增大,则细绳对B 物块的拉力必定增大C .若推力F 增大,则定滑轮所受压力必定增大D .若推力F 增大,则C 物块对A 物块的弹力必定增大P Q2、如图所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗口是光滑的。
一根细线跨在碗口上,线的两端分别系元质量为m 1和m 2的小球,当它们处于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°,两小球的质量比12m m 为( )A A. 33 B. 32 C. 23 D. 22解析:绳的拉力等于m 1的重力。
高三物理复习:连接体问题
一、知识点分析
(二)牛顿第二定律处理连接体问题分析 假设系统中有两个物体1和2,对1列牛顿第二定律可得:
F1合 F1外 +F21 m1a1
对2列牛顿第二定律可得: F2合 F2外 +F12 m2a2
将上面两式子相加(矢量和)可得:
F1外 +F2外 =m1a1 m2a2
一、知识点分析
(二)牛顿第二定律处理连接体问题分析
一、知识点分析
补充说明: 2. 轻杆可分为固定轻杆和有固定转轴(或铰
链)的轻杆,固定轻杆的弹力方向不一定沿杆, 弹力方向应根据物体的运动状态,由牛顿第二 定律分析判断;有固定转轴的轻杆只能起到“拉” 和“推”的作用.即受力方向一定与杆同线.
一、知识点分析
(五)关于瞬时加速度 分析物体在某一时刻的瞬时加速度,关键是
列出牛顿第二定律方程
整体法受力图
F f (m1 m2 )g sin (m1 m2 )a f =(m1 m2 )g cos
二、例题讲解【例题1】 总结与提高(2)
列出牛顿第二定律方程
隔离法受力图
kx f m2g sin m2a
f2 =m2g cos
x
m2 F (k m1 m2)
二、例题讲解
【例题2】如图甲所示,用大小为F的恒力沿 水平方向拉着a,使质量分别为m1、m2的a、b 一起沿光滑水平桌面做匀加速直线运动. 则撤 去F瞬间,两物体的加速度分别是多少?
二、例题讲解【例题2】
【解析】甲图,由整体法可得 F (m1 m2 )a0
隔离对b物体可得 kx m2a0
F 解得: a0 = m1 m2
F1外 +F2外 =m1a1 m2a2
1. 若系统各部分加速度都为零,则属于系统平衡问题. 2. 若系统各部分加速度不为零但它们大小方向都相同, 则可以用整体法快速处理.
高考物理总复习 第三单元 牛顿运动定律 第2讲 连接体问题(含解析)
第2讲连接体问题1 连接体的定义及分类(1)两个或两个以上的物体,以某种方式连接在一起运动,这样的物体系统就是连接体。
(2)根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。
①绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起;②弹簧连接:两个物体通过弹簧的作用连接在一起;③接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。
(3)连接体的运动特点①轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等的。
②轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而杆上各点的线速度与转动半径成正比。
③轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。
【易错警示】(1)“轻”——质量和重力均不计。
(2)在任何情况下,绳中张力的大小相等,绳、杆和弹簧两端受到的弹力大小也相等。
1.1(2018衡水中学高三10月考试)如图所示,质量为m0、倾角为θ的斜面体静止在水平地面上,一质量为m 的小物块放在斜面上,轻推一下小物块后,它沿斜面向下匀速运动。
若给小物块持续施加沿斜面向下的恒力F,斜面体始终静止,重力加速度大小为g。
施加恒力F后,下列说法正确的是()。
A.小物块沿斜面向下运动的加速度为B.斜面体对地面的压力大小等于(m+m0)g+F sin θC.地面对斜面体的摩擦力方向水平向左D.斜面体对小物块的作用力的大小和方向都变化【答案】A1.2(2019福建福州三十四中检测)如图所示,材料相同的P、Q两物块通过轻绳相连,并在拉力F作用下沿斜面向上运动,轻绳与拉力F的方向均平行于斜面。
当拉力F一定时,Q受到绳的拉力()。
A.与斜面倾角θ有关B.与动摩擦因数有关C.与系统运动状态有关D.仅与两物块质量有关【答案】D2 连接体的平衡(1)关于研究对象的选取①单个物体:将物体受到的各个力的作用点全部画到物体的几何中心上。
高三物理高考一轮第三讲:连接体问题共29页文档
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
高三物理高考一轮第三讲:连接体问 题
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变
高考物理一轮复习第三章专题连接体问题备考精炼
24 连接体问题[方法点拨] 整体法、隔离法交替运用的原则:若连接体内各物体具有相同的加速度,且要求物体之间的作用力,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.1.(多选)(2020·四川泸州一检)如图1所示,物块A、B质量相等,在水平恒力F作用下,在水平面上做匀加速直线运动,若水平面光滑,物块A的加速度大小为a1,物块A、B间的相互作用力大小为F N1;若水平面粗糙,且物块A、B与水平面间的动摩擦因数相同,物块B的加速度大小为a2,物块A、B间的相互作用力大小为F N2,则以下判断正确的是( )图1A.a1=a2B.a1>a2C.F N1=F N2D.F N1<F2.如图2所示,质量为M的框架放在水平地面上,一轻弹簧上端固定在框架上,下端连接一个质量为m的小球,小球上下振动时,框架始终没有跳起.当框架对地面压力为零瞬间,小球的加速度大小为( )图2A.g B.M-m mgC.0 D.M+m mg3.(多选)(2020·湖北武汉2月调考)一物块置于水平桌面上,一端系于物块的轻绳平行于桌面绕过光滑的轻质定滑轮,轻绳的另一端系一质量为M的杆,杆自然下垂,杆上穿有质量为m(m<M)的小环,如图3所示.重力加速度大小为g.当小环以加速度a沿杆加速下滑时,物块仍保持静止,则物块受到桌面的摩擦力可能为( )图3A.Mg B.(M+m)gC.(M+m)g-Ma D.(M+m)g-ma4.(2020·河北省五个一联盟二模)如图4所示,固定斜面CD段光滑,DE段粗糙,A、B两物体叠放在一起从C点由静止下滑,下滑过程中A、B保持相对静止,则( )图4A.在CD段时,A受三个力作用B.在DE段时,A可能受二个力作用C.在DE段时,A受到的摩擦力方向一定沿斜面向上D.整个下滑过程中,A、B均处于失重状态5.(多选)(2020·广东顺德一模)如图5所示,有五个完全相同、质量均为m的滑块(可视为质点)用长均为L的轻杆依次相连接,最右侧的第1个滑块刚好位于水平面的O点处,O点左侧水平面光滑、O点右侧水平面由长3L的粗糙面和长L的光滑面交替排列,且足够长,已知在水平恒力F的作用下,第3个滑块刚好进入O点右侧后,第4个滑块进入O点右侧之前,滑块恰好做匀速直线运动,则可判断(重力加速度为g)( )图5A.滑块与粗糙段间的动摩擦因数μ=F3mg B.第4个滑块进入O点后,滑块开始减速C.第5个滑块刚进入O点时的速度为2FL 5mD.轻杆对滑块始终有弹力作用6.(多选)(2020·湖北孝感一模)如图6甲所示,一根粗绳AB,其质量均匀分布,绳右端B置于光滑水平桌面边沿,现拉动粗绳右端B,使绳沿桌面边沿做加速运动,当B端向下运动x时,如图乙所示,距B端x处的张力F T与x的关系满足F T=5x-52x2,一切摩擦不计,下列说法中正确的是(g=10 m/s2)( )图6A.可求得粗绳的总质量B.不可求得粗绳的总质量C.可求得粗绳的总长度D.可求得当x=1 m时粗绳的加速度大小7.(2020·湖南长郡中学一模)如图7所示,截面为直角三角形的斜面体固定在水平地面上,两斜面光滑,斜面倾角分别为60°和30°,一条不可伸长的轻绳跨过固定在斜面顶端的光滑轻定滑轮连接着两个小物体,物体B的质量为m,起始距地面的高度均为h,重力加速度为g.图7(1)若A的质量也为m,由静止同时释放两物体,求当A刚到地面时的速度大小;(2)若斜面体不固定,当斜面体在外力作用下以大小为a的加速度水平向右做匀变速直线运动时,要使A、B两物体相对斜面都不动,分析物体A的质量和加速度a的关系.答案精析1.BCD2.D [以框架为研究对象进行受力分析可知,当框架对地面压力为零时,其重力与弹簧对其弹力平衡,即F =Mg ,故可知弹簧处于压缩状态,再以小球为研究对象分析受力可知F +mg =ma ,联立可解得,小球的加速度大小为a =M +m mg ,故选项D 正确.] 3.AD4.C [在CD 段,整体的加速度a =(m A +m B )gsin θm A +m B=gsin θ,对A 受力分析,有:m A gsin θ+F f =m A a ,解得F f =0,可知A 受重力和支持力两个力作用,故A 错误.设B 与斜面DE 段间的动摩擦因数为μ,在DE 段,整体的加速度a′=(m A +m B )gsin θ-μ(m A +m B )gcos θm A +m B=gsin θ-μgcos θ,对A 受力分析,有:m A gsin θ+F f ′=m A a′,解得F f ′=-μm A gcos θ,负号表示方向沿斜面向上.若匀速运动,A 受到的静摩擦力也是沿斜面向上,所以A 一定受三个力作用,故B 错误,C 正确.整体下滑的过程中,CD 段加速度沿斜面向下,A 、B 均处于失重状态.在DE 段,A 、B 可能做匀速直线运动,不处于失重状态,故D 错误.]5.AC [第3个滑块刚好进入O 点右侧后,第4个滑块进入O 点右侧之前,滑块恰好做匀速直线运动,则F -3μmg=0,解得μ=F 3mg,故A 正确;第4个滑块进入O 点后,第1个滑块滑出粗糙面,此时整体受到的摩擦力还是F f =3μmg=F ,还是做匀速运动,故B 错误;第5个滑块刚进入O 点时,根据动能定理可知F·4L-μmg·3L-μmg·3L-μmg·2L-μmg·L=12·5mv 2 ,解得v = 2FL 5m ,故C 正确;在匀速阶段,轻杆对第5个滑块无弹力作用,故D 错误.]6.ACD7.见解析解析 (1)设A 刚到地面时的速度为v ,由A 和B 整体运动过程中机械能守恒得,mgh =mgsin 30°·h sin 60°+12×2mv 2 v =(1-33)gh. (2)对两个物体分别进行受力分析,沿垂直斜面和平行斜面方向建立坐标系进行正交分解 .当斜面体向右做匀加速直线运动时,加速度方向水平向右:对A 物体, F T -m A gsin 60°=m A acos 60°对B 物体, mgsin 30°-F T =macos 30°解得m A =mg -3ma 3g +a可知加速度的大小应满足0<a<3 3g加速度a越大,A物体的质量越小,A物体质量应满足0<m A<33 m.当斜面体向右做匀减速直线运动时,加速度方向水平向左:对A物体, m A gsin 60°-F T=m A acos 60°对B物体,F T-mgsin 30°=macos 30°解得m A=mg+3ma3g-a可知加速度的大小满足0<a<3g加速度a越大,A物体的质量越大,A物体质量应满足m A>33 m.高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
高考物理一轮复习专题三牛顿运动定律考点三连接体问题教学案(含解析)
考点三连接体问题基础点知识点1 连接体1.定义:多个相互关联的物体连接(叠放、并排或由绳子、细杆联系)在一起构成的物体系统称为连接体。
连接体一般具有相同的运动情况(速度、加速度)。
如下图所示:2.处理连接体问题的方法:整体法与隔离法,要么先整体后隔离,要么先隔离后整体。
(1)整体法是指系统内(即连接体内)物体间无相对运动时(具有相同加速度),可以把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,对整体列方程求解的方法。
整体法可以求系统的加速度或外界对系统的作用力。
(2)隔离法是指当我们所研究的问题涉及多个物体组成的系统时,需要求连接体内各部分间的相互作用力,从研究方便出发,把某个物体从系统中隔离出来,作为研究对象,分析其受力情况,再列方程求解的方法。
隔离法适合求系统内各物体间的相互作用力或各个物体的加速度。
3.整体法、隔离法的选取原则(1)整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量)。
(2)隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解。
(3)整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求出物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力。
即“先整体求加速度,后隔离求内力”。
知识点2 临界与极值1.临界问题物体由某种物理状态转变为另一种物理状态时,所要经历的一种特殊的转折状态,称为临界状态。
这种从一种状态变成另一种状态的分界点就是临界点,此时的条件就是临界条件。
在应用牛顿运动定律解决动力学的问题中,当物体的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”“最小”“刚好”“恰好出现”或“恰好不出现”等词语时,常常会涉及临界问题。
高中物理专题:连接体
专题:连接体问题一、考情链接:“连接体”问题一直是高中物理学习的一大难题,也是高考考察的重点内容。
二、知识对接:对接点一、牛顿运动定律牛顿第一定律(惯性定律):任何一个物体在不受外力或受平衡力的作用时,总是保持静止状态或匀速直线运动状态。
注意:各种状态的受力分析是解决连接体问题的前提。
牛顿第二定律:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
注意:①物体受力及加速度一定要一一对应,即相应的力除以相应的质量得到相应的加速度,切不可张冠李戴!②分析运动过程时要区分对地位移和相对位移。
牛顿第三定律:两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反。
注意:不要忽视牛顿第三定律的应用,尤其是在求“小球对轨道压力”时经常用到牛顿第三定律,且均在评分标准中占1-2分,一定不要忘记。
对接点二、功能关系与能量守恒(什么力做功改变什么能)1、合力做功量度了物体的动能变化W合=ΔE K2、重力做功量度了物体的重力势能的变化:W G=ΔE PG3、弹簧的弹力做功量度了弹性势能的变化:W弹=ΔE P弹4、除重力和弹簧的弹力以外的其他力做功量度了系统的机械能的变化:W其他=ΔE机5、系统内相互作用的摩擦力做功:A、系统内的一对静摩擦力做功:一对静摩擦力对系统做功的代数和为零,其作用是在系统内各物体间传递机械能。
B、系统内的一对滑动摩擦力做功:其作用是使系统部分机械能转化为系统的内能,Q= fs相对。
6、电场力做功量度了电势能的变化:W E=ΔE PE7、安培力做功量度了电能的变化:安培力做正功,电能转化为其他形式能;克服安培力做功,其他形式能转化为电能。
三、规律方法突破突破点一、整体法与隔离法的运用①解答问题时,不能把整体法和隔离法对立起来,而应该把这两种方法结合起来,从具体问题的实际出发,灵活选取研究对象,恰当使用隔离法和整体法。
②在选用整体法和隔离法时,要根据所求的力进行选择,若所求为外力,则应用整体法;若所求为内力,则用隔离法。
高三物理专题复习4连接体模型-难(教师版)
B.斜劈对的摩擦力一定增大D.斜劈对地面的压力一定减小如图所示,倾角为1整体受力分析,受重力、支持力、细线的拉力和地面的静摩擦竖直方向根据平衡条件,有:总总根据牛顿第三定律,压力也不变,故D错误;水平方向:,将固定点向右移动少许,则正确;B.对物体进行受力分析,受到重力、支持力、拉力和摩擦力,由于不知道拉力和重力的下滑分力的大小关系,故无法判断静摩擦力的方向,故不能判断静摩擦力的变化情况,故误;C.对滑轮和物体受力分析,受重力和两个拉力,如图所示:根据平衡条件,有:解得:将固定点故选A.2如图所示,斜面与足够长的水平横杆均固定,斜面与竖直方向的夹角为绳子左端连接,绳子跨过不计大小的定滑轮,其右端与滑块3如图所示,竖直固定的光滑杆上套有一个质量设物块的质量为,绳子拉力为,,联立解得:,故B选项:选取小球、及根据机械能守恒定律,则有:解得:,故B正确;4如图所示,在固定的光滑水平杆上,质量为仍静止,待系统稳定后,细线与竖直墙夹角变小仍静止,待系统稳定后,地面对摩擦力变大仍静止,待系统稳定后,细线与竖直墙夹角变大如图所示,质量为5点过程中,细线对拉力的功率一直增大点过程中,物块克服细线拉力做的功小于重力势能的减少如图所示,水平光滑长杆上套有小物块67如图所示,一根轻质细绳跨过定滑轮连接两个小球由几何知识得:,故杆的弹力则:故选BD .环受到的摩擦力受悬线的拉力如图所示,两个倾角相同的滑竿上分别套有吊两个质量均为的物体直,的悬线竖直向下.下列结论正确的是(8根据牛顿定律,有④由①②③④解得:故A正确,C正确;BD.对球受力分析,受重力和拉力,由于做直线运动,合力与速度在一条直线上,故合力为零,物体做匀速运动,细线拉力等于再对求受力分析,如图,受重力、拉力、支持力,由于做匀速运动,合力为零,故必有向后根据平衡条件,有故B错误,D正确.故选ACD.9两个可视为质点的小球所示,已知小球和的质量之比为与水平面的夹角是()D.的受力情况如图所示,其中球面对两球的弹即有,计算得出:即,即线交与点,设球面的半径为,由相似三角形可得:计算得出:,取及细杆组成的整体为研究对象,由平衡条件得:水平方向上有:10有一个固定的光滑直杆与水平面的夹角为,杆上套着一个质量为点)用不可伸长的轻绳将滑块与另一个质量为绳因悬挂而绷紧,此时滑轮左侧轻绳恰好水平,其长度(如图所示).现将滑块从图中点由静止释放,(整个运动过程中,).下列说法正确的是(。
专题04 连接体模型--2024版高三物理培优——模型与方法
2024版高三物理培优——模型与方法专题04连接体模型目录【模型一】平衡中的连接体模型 (1)1.轻杆连接体问题 (1)2.轻环穿杆问题 (2)【模型二】绳杆弹簧加速度问题模型 (8)1.悬绳加速度问题 (8)2.类悬绳加速度问题 (9)【模型三】轻绳相连加速度相同的连接体 (24)【模型四】板块加速度相同的连接体模型 (31)【模型五】轻绳绕滑轮加速度相等----“阿特伍德机”模型 (43)【模型六】弹簧木块分离问题模型 (54)【模型七】“关联速度与机械能守恒”连接体模型 (64)1.绳、杆末端速度分解四步 (64)2.绳杆末端速度分解的三种方法 (64)3.轻绳相连的物体系统机械能守恒模型 (65)方法二、力乘力臂法对m1、m2受力分析,三力平衡可构成矢量三角形,根据正弦定理以整体为研究对象,以圆心为转动轴,两圆弧的支持力的力臂均为零,以整体为研究对象,整体受重力和两圆弧的支持力,根据三力平衡必::根据等腰三角形有:θ1=θ2联立解得m1g sinα=m2g sinβ2=sinβ:sinα轻环穿杆问题F NA.9∶16B.C.3∶4D.根据杠杆原理,由平衡条件得A.需要知道刚性细杆的长度与球面半径的关系C.不需要其他条件,有12:F F=【答案】C分别对小球a 和b 受力分析有11sin sin F G β=根据几何关系有A .2cmB .【答案】C【详解】由于小环是轻质的,故弹簧必将与杆垂直,否则受力不平衡。
对小球受力分析如图所示将各力沿着杆分解,根据平衡条件有解得又弹簧的弹力等于轻绳的拉力,故由胡克定律可得A.定滑轮对钢索的支持力为B.AB段钢索所受到的拉力为C.右臂OB对钢索的支持力为故选A。
【模型演练5】如图所示,竖直放置的光滑圆环,顶端D分别为m1、m2的两小球A、B,两小球用轻绳绕过定滑轮相连,并处于静止状态,且与右侧绳的夹角为θ。
则A、B两小球的质量之比为(A.tanθB.tan【答案】B【解析】对两小球分别受力分析,作出力的矢量三角形,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连接体专题复习1. 连接体:多个相互关联的物体连接(叠放、并排或由弹簧、绳子、细杆联系)在一起构成的物体系统称为连接体。
连接体一般具有相同的运动情况(速度、加速度)。
2. 解决连接体问题的两种方法3. 整体法、隔离法应注意的问题(1)不涉及系统内力时,优先考虑应用整体法,即“能整体、不隔离”。
(2)同样应用“隔离法”,也要先隔离“简单”的物体,如待求量少、或受力少、或处于边缘处的物体。
(3)将“整体法”与“隔离法”有机结合、灵活应用。
(4)各“隔离体”间的关联力,表现为作用力与反作用力,对整体系统则是内力特别提醒 当系统内各物体的加速度不同时,一般不直接用整体法,要采用隔离法解题。
例1 如图所示,在建筑工地,民工兄弟用两手对称水平施力将两长方体水泥制品夹紧并以加速度a 竖直向上匀加速搬起,其中A 的质量为m ,B 的质量为2m ,水平作用力为F ,A 、B 之间的动摩擦因数为μ,在此过程中,A 、B 间的摩擦力为( ) A.μF B.12m (g +a )C.m (g +a )D.32m (g +a )例2 质量为2 kg 的木板B 静止在水平面上,可视为质点的物块A 从木板的左侧沿木板上表面水平冲上木板,如图甲所示。
A 和B 经过1 s 达到同一速度,之后共同减速直至静止,A 和B 的v -t 图象如图乙所示,重力加速度g =10 m/s 2,求:(1)A 与B 上表面之间的动摩擦因数μ1; (2)B 与水平面间的动摩擦因数μ2; (3)A 的质量。
例3如图所示,质量为m1和m2的两物块放在光滑的水平地面上。
用轻质弹簧将两物块连接在一起。
当用水平力F作用在m1上时,两物块均以加速度a做匀加速运动,此时,弹簧伸长量为x;若用水平力F′作用在m1上时,两物块均以加速度a′=2a做匀加速运动,此时弹簧伸长量为x′。
则下列关系正确的是() A.F′=2F B.x′>2xC.F′>2FD.x′<2x例4如图所示,质量分别为m、M的两物体P、Q保持相对静止,一起沿倾角为θ的固定光滑斜面下滑,Q的上表面水平,P、Q之间的动摩擦因数为μ,则下列说法正确的是()A. P处于超重状态B. P受到的摩擦力大小为μmg,方向水平向右C. P受到的摩擦力大小为mg sin θcos θ,方向水平向左D. P受到的支持力大小为mg sin 2θ例5(多选)如图所示,质量分别为m A、m B的A、B两物块用轻质弹簧连接放在倾角为θ的斜面上,用始终平行于斜面向上的拉力F拉B物块,使它们沿斜面匀加速上升,A、B与斜面间的动摩擦因数均为μ,为了减小弹簧的形变量,可行的办法是()A.减小A物块的质量B.增大B物块的质量C.增大倾角θD.增大动摩擦因数μ针对训练1.如图所示,在倾角为30°的光滑斜面上放置质量分别为m和2m的四个木块,其中两个质量为m的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是f m。
现用平行于斜面的拉力F拉其中一个质量为2m的木块,使四个木块沿斜面以同一加速度向下运动,则拉力F的最大值是()A.B.C.D.2.在两个足够长的固定的相同斜面体上(其斜面光滑),分别有如图甲、乙所示的两套装置,斜面体B的上表面水平且光滑,长方体D的上表面与斜面平行且光滑,p是固定在B、D上的小柱,完全相同的两只弹簧一端固定在p上,另一端分别连在A和C上,在A与B、C与D分别保持相对静止状态沿斜面自由下滑的过程中,下列说法正确的是()A.两弹簧都处于拉伸状态B.两弹簧都处于压缩状态C .弹簧L 1处于压缩状态,弹簧L 2处于原长D .弹簧L 1处于拉伸状态,弹簧L 2处于压缩状态3.光滑水平地面上有两个叠放在一起的斜面体A 、B ,两斜面体形状大小完全相同,质量分别为M 、m 。
如图甲、乙所示,对上面或下面的斜面体施加水平方向的恒力F 1、F 2,均可使两斜面体相对静止地做匀加速直线运动,已知两斜面体间的摩擦力为零,则F 1与F 2之比为( ) A .M ∶m B .m ∶M C .m ∶(M +m ) D .M ∶(M +m )4.(2018·林州一中质检)如图所示,在倾角θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m ,物块A 静止在轻弹簧上面,物块B 用细线与斜面顶端相连,A 、B 紧挨在一起,但A 、B 之间无弹力,已知重力加速度为g 。
某时刻将细线剪断,则剪断细线的瞬间,下列说法错误的是( ) A .B 的加速度为g 2B .A 、B 之间的弹力为mg3C .弹簧的弹力为mg2D .A 的加速度为g35.[多选](2019届高三·深圳调研)如图甲所示,质量m =1 kg 、初速度v 0=6 m/s 的物块受水平向左的恒力F 作用,在粗糙的水平地面上从O 点开始向右运动,O 点为坐标原点,整个运动过程中物块速率的平方随位置坐标变化的关系图像如图乙所示,取g =10 m/s 2,下列说法中正确的是( ) A .t =2 s 时物块速度为零 B .t =3 s 时物块回到O 点 C .恒力F 大小为2 ND .物块与水平面间的动摩擦因数为0.16.(多选)如图所示,物体A 与斜面B 保持相对静止并一起沿水平面向右做匀加速运动,当加速度a 增大时,下列说法可能正确的是( )A .B 对A 的弹力不变,B 对A 的摩擦力可能减小 B .B 对A 的弹力增大,B 对A 的摩擦力大小可能不变C .B 对A 的弹力增大,B 对A 的摩擦力一定增大D .B 对A 的弹力增大,B 对A 的摩擦力可能减小7.如图所示,在粗糙的水平面上,质量分别为m 和M (m ∶M =1∶2)的物块A 、B 用轻弹簧相连,两物块与水平面间的动摩擦因数相同,当用水平力F 作用于B 上且两物块共同向右加速运动时,弹簧的伸长量为x 1;当用同样大小的力作用于A 上且竖直加速提升两物块时,弹簧的伸长量为x 2,则x 1∶x 2等于( ) A.1∶1 B.1∶2 C.2∶1 D.2∶38.如图甲所示,光滑滑轮的质量不计,已知三个物体的质量关系是m 1=m 2+m 3,这时弹簧秤的读数为T.若把质量为m2的物体从右边移到左边的物体上,如图乙所示,弹簧秤的读数将() A.增大 B.减小C.不变D.无法确定9.如图所示,有材料相同的P、Q两物块通过轻绳相连,并在拉力F作用下沿斜面向上运动,轻绳与拉力F的方向均平行于斜面.当拉力F一定时,Q受到绳的拉力()A.与斜面倾角θ有关B.与动摩擦因数有关C.与系统运动状态有关D.仅与两物块质量有关机械能守恒定律理解的三种形式:1.守恒观点(1)表达式:E k1+E p1=E k2+E p2或E1=E2。
(2)意义:系统初状态的机械能等于末状态的机械能。
(3)注意:要先选取零势能参考平面,并且在整个过程中必须选取同一个零势能参考平面。
2.转化观点(1)表达式:ΔE k=-ΔE p。
(2)意义:系统的机械能守恒时,系统增加(或减少)的动能等于系统减少(或增加)的势能。
3.转移观点(1)表达式:ΔE A增=ΔE B减.(2)意义:若系统由A、B两部分组成,当系统的机械能守恒时,则A部分机械能的增加量等于B部分机械能的减少量。
专题训练类型一:速率相等的连接体模型1.如图所示的两物体组成的系统,当释放B而使A、B运动的过程中,A、B的速度均沿绳子方向,在相等时间内A、B运动的路程相等,则A、B的速率相等。
2.判断系统的机械能是否守恒不从做功角度判断,而从能量转化的角度判断,即:如果系统中只有动能和势能相互转化,系统的机械能守恒。
这类题目的典型特点是系统不受摩擦力作用。
例1 (多选)如图所示,倾角θ=30°的固定斜面上固定着挡板,轻弹簧下端与挡板相连,弹簧处于原长时上端位于D 点。
用一根不可伸长的轻绳通过轻质光滑定滑轮连接物体A 和B ,使滑轮左侧绳子始终与斜面平行,初始时A 位于斜面的C 点,C 、D 两点间的距离为L 。
现由静止同时释放A 、B ,物体A 沿斜面向下运动,将弹簧压缩到最短的位置E 点,D 、E 两点间的距离为L2。
若A 、B 的质量分别为4m 和m ,A 与斜面间的动摩擦因数μ=38,不计空气阻力,重力加速度为g ,整个过程中,轻绳始终处于伸直状态,则 ( ) A .A 在从C 至E 的过程中,先做匀加速运动,后做匀减速运动 B .A 在从C 至D 的过程中,加速度大小为120gC .弹簧的最大弹性势能为158mgLD .弹簧的最大弹性势能为38mgL类型二:角速度相等的连接体模型1.如图所示的两物体组成的系统,当释放后A 、B 在竖直平面内绕O 点的轴转动,在转动的过程中相等时间内A 、B 转过的角度相等,则A 、B 转动的角速度相等。
2.系统机械能守恒的特点(1)一个物体的机械能增加,另一个物体的机械能必然减少,机械能通过内力做功实现物体间的转移。
(2)内力对一个物体做正功,必然对另外一个物体做负功,且二者代数和为零。
例2 (多选)如图,质量分别为m 和2m 的两个小球A 和B ,中间用长为2L 的轻杆相连,在杆的中点O 处有一固定水平转动轴,把杆置于水平位置后由静止释放,在B 球顺时针转动到最低位置的过程中( ) A .A 、B 两球的角速度大小始终相等 B .重力对B 球做功的瞬时功率一直增大 C .B 球转动到最低位置时的速度大小为23gL D .杆对B 球做正功,B 球机械能不守恒 类型三:分速度相等的连接体模型1.如图所示两物体组成的系统,当释放后A 、B 运动的过程中,A 、B 的速度并非均沿绳子方向,在相等时间内A 、B 运动的路程不相等,则A 、B 的速度大小不相等,但二者在沿着绳子方向的分速度大小相等。
2.列系统机械能守恒的两种思路(1)系统动能的减少(增加)等于重力势能的增加(减少)。
(2)一个物体机械能的减少等于另一个物体机械能的增加。
例3 (多选)如图所示,在距水平地面高为0.4 m 处,水平固定一根长直光滑杆,在杆上P 点固定一定滑轮,滑轮可绕水平轴无摩擦转动,在P 点的右边,杆上套有一质量m =2 kg 的小球A 。
半径R =0.3 m 的光滑半圆形细轨道竖直地固定在地面上,其圆心O 在P 点的正下方,在轨道上套有一质量也为m =2 kg 的小球B 。
用一条不可伸长的柔软细绳,通过定滑轮将两小球连接起来。
杆和半圆形轨道在同一竖直面内,两小球均可看作质点,且不计滑轮大小的影响。
现给小球A 一个水平向右的恒力F =50 N 。
(取g =10 m/s 2)则( ) A .把小球B 从地面拉到P 的正下方C 处时力F 做功为20 J B .小球B 运动到C 处时的速度大小为0C .小球B 被拉到与小球A 速度大小相等时,sin ∠OPB =34D .把小球B 从地面拉到P 的正下方C 处时小球B 的机械能增加了6 J 针对训练1.(2016·江苏盐城一模)如图所示,B 物体的质量是A 物体质量的12,在不计摩擦阻力的情况下,A 物体自H高处由静止开始下落。