太阳电池阵列间距的设计计算:
太阳电池方阵前后间距的设计
太阳电池方阵前后间距的设计当光伏电站功率较大时,需要前后排布太阳电池方阵,有时太阳电池方阵附近有高达建筑物或树木。
这种情况下,需要计算建筑物或前排方阵的阴影,以确定方阵间的距离或太阳电池方阵与建筑物的距离。
一般确定原则为冬至当地平太阳时当天早9:00至下午3:00 太阳电池方阵不应被遮挡。
下图太阳电池方阵前后间距的计算参考图:图F2-1 太阳电池方阵前后间距的计算参考图计算太阳电池方阵间距D,可以从下面4个公式求得:D = L⨯cosβL = H/tanαα = arcsin(sinφ sinδ+cos φ cosδcosω)β = arcsin(cosδ sin ω/cosα)首先计算冬至上午9:00太阳高度角和太阳方位角,冬至时的赤纬角δ是-23.45度,上午9:00的时角ω是45度,于是有:α = arcsin (0.648 cos φ - 0.399sinφ)β = arcsin(0.917⨯ 0.707/cos α)求出太阳高度角α后和太阳方位角后,即可求出太阳光在遮挡物后面的投影长度L,再将L折算到前后两排方阵之间的垂直距离D:D = L ⨯cosβ = H ⨯cosβ / tanα【举例】北京地区纬度φ = 39.8度,太阳电池方阵高2米,求太阳电池的方阵间距:取δ = -23.45, ω = 45, 有:α = arcsin (0.648 cos φ - 0.399sinφ) = arcsin(0.498 – 0.255) = 14.04β = arcsin(cos δ sin ω/cos α)= arcsin(0.917⨯ 0.707/0.97)= 42.0D = H ⨯ cosβ / tanα= 2 ⨯ 0.743 / 0.25= 5.94米参数定义:D:太阳电池方阵间距L:太阳光在遮挡物后面的投影长度H:前面遮挡物最高点与后面方阵底部的高度差α:太阳高度角β:太阳方位角,西向为正,东向为负;φ:当地纬度δ:太阳赤纬角ω:时角,每隔1小时为15°,中午12:00为0°;上午正,下午为负。
光伏电站光伏阵列间距计算方法
计 算 光 伏 阵 列 『H】距 一 般 选 择 以 冬 至 日光 伏 阵 列 有
效 发 电 时 间 (9时 一 15时 )内 不 发 生 遮 挡 为 准 。 原 因 是 冬 至 日太 阳 高 度 角 最 小 ,光 伏 阵 列 阴 影 最 大 ,在 冬 至 日 光 伏 阵 列 不 发 生 前 后 排 遮 挡 ,则 全 年 其 他 日期 都 小 会 发 生 遮 挡 。 冬 至 日赤 纬 角 为 一23。26 。时 角 选 择 45。或 一 45。,即 9时 或 15时 时 不 发 生 遮 挡 。
式 中 — — 太 阳 高 度 角 ; — — 地 纬 度 ;
6— — 赤 乡 角 ; f— — 州。角 (4)太 阳 方 位 角 阳 方 位 角 是 指 太 阳 光 线 在 地 平 面 的 投 影 与 地 午 线 的 夹 角 ,可 近 似 看 作 是 竖 立 在 地 面 上 的 直 线 太 阳 光 的 影 与 正 南 方 的 夹 角 。 太 阳 方 化 角 的 计 算 公 式 为
各类光伏电站光伏阵列间距设计方法汇总
各类光伏电站阵列间距设计方法汇总1)太阳位置太阳的位置在地平坐标系中,通常有太阳高度角、方位角表示,计算方法如下:arcsin(sin sin cos cos cos )αϕδϕδω=+arcsin(cos sin /cos )βδωα=为α太阳高度角;β为太阳方位角,ϕ为当地纬度;δ为太阳赤纬角;ω为时角。
图1 北京市太阳轨迹图冬至日真太阳时09:00(或15:00)时太阳高度角和方位角是计算光伏阵列间距的基础数据。
冬至日太阳在北回归线,δ为-23.45°,09:00时的ω为-45°(下午为正),此时的太阳高度角和太阳方位角可有下式表示:arcsin(0.648cos 0.399sin )αϕϕ=-, )cos /648.0sin(arc αβ-= 。
由太阳的方位角、高度角和建筑物高度可以确定影子的长度。
假设一根细棒高度为单位高度,将影子分为南北和东西两个分量,即得出影子南北方向和东西方向的阴影系数。
αβR tan cos S -N = αβR E-W tan sin = 2)混凝土平整屋面光伏阵列间距设计《光伏发电站设计规范》中给出平整场地光伏阵列不被遮挡的阵列中心间距计算公式:φφθθtan 4338.0707.04338.0tan 707.0sin cos D -++=L L式中:L 为阵列斜面长度,θ为组件倾角,φ为项目所在地纬度。
光伏阵列中心间距为阵列斜面投影1D 与间距2D 之和,221D cos D D D +=+=θL ,阵列间距示意图如图3。
间距2D 可用阴影系数表示,h αβh R D N-S ⨯=⨯=tan cos 2。
图1 光伏阵列间距示意图3)平铺屋面光伏阵列间距当彩钢瓦屋面、陶瓷瓦屋面的光伏组件采用沿屋面自然坡度平铺的安装方式,前后排组件不存在阴影遮挡,因此无需考虑阴影遮挡问题,可适当设置500-600mm宽的检修通道方便维护。
4)南北坡屋面光伏阵列间距类型一:当建筑坐北朝南,屋脊为正东西走向,建筑的方位角为0°。
光伏组件阵列间距参照表
光伏组件阵列间距参照表光伏组件阵列是太阳能发电系统中的重要组成部分,它由多个光伏组件按照一定的布局方式组成。
光伏组件的间距布局直接影响到系统的发电效率和经济效益。
本文将为您介绍光伏组件阵列间距参照表,并详细解释不同间距对发电系统的影响。
一、间距参照表的基本要素光伏组件阵列间距参照表通常包括以下基本要素:组件排列方式:包括横向排列和纵向排列两种方式。
组件间距:指组件之间的横向和纵向间距。
纬度和季节:由于太阳高度角和方位角在不同纬度和季节下有所不同,因此参照表需要考虑不同地区和时间的特点。
二、横向排列间距参照表横向排列是指光伏组件按照东西方向排列的方式。
在确定横向排列间距时,需要考虑组件之间的阴影覆盖情况以及系统的发电效率。
以下是一个横向排列间距参照表的示例:三、纵向排列间距参照表纵向排列是指光伏组件按照南北方向排列的方式。
在选择纵向排列间距时,需要考虑组件与地面的倾斜角度、地面的反射率以及阴影效应等因素。
以下是一个纵向排列间距参照表的示例:四、间距对系统发电效果的影响合理的光伏组件阵列间距可以有效提高系统的发电效率。
如果间距过小,组件之间会互相遮挡产生阴影,导致系统发电效率下降;如果间距过大,可能浪费光能资源。
因此,根据实际情况和系统要求,选择合适的间距是非常重要的。
除了发电效率,间距还会对系统的经济效益产生一定的影响。
通过合理的间距布局,可以充分利用可利用空间,提高系统发电量,降低发电成本。
总而言之,光伏组件阵列的间距布局需要结合实际情况和系统要求进行选择。
参照表提供了初步的参考,但具体的间距还需要综合考虑光照条件、纬度、季节、阴影效应等因素。
通过科学的设计和合理的布局,可以最大限度地提高光伏发电系统的效率和经济效益。
方阵前后间距计算公式
在太阳能光伏设计中,电池阵列的布置非常重要。
阵列件的距离对电站的输出功率和转换效率非常重要,错误的安装会导致后排的太阳光被前排遮挡。
一般确定原则为冬至当天的9:00至下午3:00,太阳能方阵不应被遮挡。
图1所示为太阳能电池方阵前后间距的计算参考。
太阳能电池方阵间距D,可以从面4个公式求得:D=LcosβL=H/tanαα=arcsin(sinΦsinδ+cosΦcosδcosω)β=arcsin(cosδsinω/cosα)首先计算冬至上午9:00太阳角度和太阳方位角。
冬至时纬度角δ是-23.45°,上午9:00的时角ω是45°,于是有:α=arcsin(0.648cosΦ+0.399sinΦ)β=arcsin(0.917×0.707/cosα)求出太阳高度角α后和太阳方位角后,即可求出太阳光在方针后面的投影长度L,再将L 折算到前后两排方阵之间的垂直距离D:D=Lcosβ=Hcosβ/tanα例如:北京地区纬度Φ=39.8°,太阳能电池方阵高2m,则太阳能电池方阵的间距为(取δ=-23.45°,ω=45°)α=arcsin(0.648 cosΦ+0.399sinΦ)=arcsin(0.498-0.255)=14.04°β=arcsin(0.917×0.707/cosα)=42.0°D=Hcosβ/tanα=2×0.743/0.25=5.94m计算太阳电池方阵间距D 可以从下面4个公式求得 D = L cosβ L = H/tan = arcsin(sin sin +cos cos cos ) β = arcsin(cos sin /cos ) 首先计算冬至上午9:00太阳高度角和太阳方位角 冬至时的赤纬角 是-23.45度 上午9:00的时角 是45度 于是有 = arcsin (0.648 cos - 0.399sin ) β = arcsin 0.9170.707/cos 求出太阳高度角 后和太阳方位角后 即可求出太阳光在遮挡物后面的投影长度L 再将L折算到前后两排方阵之间的垂直距离D D = L cosβ = H cosβ / tan【举例】北京地区纬度 = 39.8度 太阳电池方阵高2米 求太阳电池的方阵间距 取= -23.45, = 45, 有 = arcsin (0.648 cos - 0.399sin ) = arcsin(0.498 – 0.255) = 14.04 β = arcsin cos sin /cos = arcsin 0.917 0.707/0.97 = 42.0 D = H cosβ / tan = 2 0.743 / 0.25= 5.94米参数定义 D 太阳电池方阵间距L 太阳光在遮挡物后面的投影长度H 前面遮挡物最高点与后面方阵底部的高度差 太阳高度角β 太阳方位角 西向为正 东向为负 当地纬度 太阳赤纬角 时角 每隔1小时为15° 中午12:00为0° 上午正 下午为负。
太阳能阵列间距计算小工具
计算太阳电池方阵的最小间距
甘肃自然能源研究所 李世民 lishimina@ 一般确定原则:冬至当天早9:00至下午3:00太阳电池方阵不应被遮挡。
计算公式如下:
度32δ
角(冬至:-23.5°)
β阵列倾角(度)ω时角: 15°/小时 (9:00AM-3:00PM 45°)
γn阵列朝向(正南=0,向东为负,向东为正)
α太阳高度角
γs太阳方位角(正南=0,向东为负,向东为正)
L 阵列斜长(米)
0.808H 光伏方阵阵列的高度
0.140
光伏方阵阵列间距计算结果 (米):Φ为纬度(在北半球为正、南半球为负),武威是37º 56’;
()[]
ωδφδφγ
ββcos cos cos sin sin arcsin tan cos sin cos ++=L L D
光伏方阵阵列间距计算结果 (米):
占地比(组件面积:占地面积)
占地面积
光伏电池阵列面积
光伏电池阵列总长度
分0
0.0
32.0-23.5
10.0
45.0
0.0
19.8
43.6
0.1400
D1D2
折合
0.800.28 1.1
1.33
44456平方米
33333平方米
41254.1米。
太阳能电池阵列设计步骤
1.计算负载24h消耗容量P。
P=H/V
V——负载额定电源
2.选定每天日照时数T(H)。
3.计算太阳能阵列工作电流。
IP=P(1+Q)/T
Q——按阴雨期富余系数,Q=0.21~1.00
4.确定蓄电池浮充电压VF。
镉镍(GN)和铅酸(CS)蓄电池的单体浮充电压分别为1.4~1.6V和2.2V。
5.太阳能电池温度补偿电压VT。
VT=2.1/430(T-25)VF
6.计算太阳能电池阵列工作电压VP。
VP=VF+VD+VT
其中VD=0.5~0.7
约等于VF
7.太阳电池阵列输出功率WP?平板式太阳能电板。
WP=IP×UP
8.根据VP、WP在硅电池平板组合系列表格,确定标准规格的串联块数和并联组数。
这第一段似乎是着重描摹春的美丽,可起首有“多事的东风”一句,暗示着有人恼春,于是有个人物忽悠地闪了一下,桃红“醉依在封姨的臂弯里”,一下子就不见了。
但“多事”里隐蕴着的愠意,因封姨的出现有了着落。
春天写足了,那位对春天怀着恨意的人物便在作者的笔下十分不情愿地亮相了。
“只有一个孤独的影子,她,倚在栏杆上,”这就是封姨了,她“才从青春之梦醒过来”,茫然不解这眼前发生的一切。
作者笔下的她原来是一个芳华已失的女人!眼前的春天只是她过去的影子。
太阳电池阵列间距的设计计算:
并网光伏发电系统方阵的最佳安装倾角采用专业系统设计软件进行优化设计来确定,它应是系统全年发电量最大时的倾角。
当倾角确定后我们要保证每个光伏阵列在冬至日上午九时到下午三时无阴影遮挡(北半球)。
太阳电池阵列间距的设计计算:在北半球,对应最大日照辐射接收量的平面为朝向正南,阵列倾角确定后,要注意南北向前后阵列间要留出合理的间距,以免前后出现阴影遮挡,前后间距为:冬至日(一年当中物体在太阳下阴影长度最长的一天)上午9:00到下午3:00,组件之间南北方向无阴影遮挡。
固定光伏组件方阵的支架系统安装的前后最小间距D,如下图所示:简化的计算公式如下:式中:φ为纬度(在北半球为正、南半球为负);H为光伏方阵阵列或遮挡物与可能被遮挡组件底边高度差。
同时在太阳能电池方阵排列布置还需要考虑地形,地貌的因素,要与当地自然环境有机的结合。
同时设计要规范,并兼顾光伏电站的景观效果,在整个方阵场设计中尽量节约土地。
太阳电池方阵的布置设计包括阵列倾角设计,方位角设计,阵列间距设计,需根据具体情况来进行计算。
关于跟踪系统阵列之间的间距计算相对复杂,由于跟踪支架系统的巡日条件和跟踪角度范围与其厂家产品有关,且每家不尽相同。
故对其计算无实际意义。
但有一点是一致的,就是我们都必须满足一天中不得小于6小时的照射时间窗口。
需要说明的是上述时间为地方时。
例如在计算中使用的太阳赤纬都是以天文年历为准的,而天文年历所给出的参数都是世界时0时的值,但时角又是以地方时为依据的,而日常的钟表所显示的时间都是北京时。
这里需要注意的是:北京时早8点时,乃是世界时0点,由于地球自西向东转动,所以,凡是在北京以东的地方,其地方时均比北京时要晚,即8点多,而北京以西的地方则尚未到8点。
经度订正是时间转换所必需的。
在我国明确规定,东经为正,西经为负;但在美国则刚好相反。
具体换算公式是:地方时(即太阳时)=北京时+E-4*(120-L)其中:E为地球绕日公转时进动和转速变化而产生的修正,单位为分;L为当地的经度。
【干货】光伏阵列间距计算原则
【干货】光伏阵列间距计算原则光伏电站技术讨论导语:光伏电站技术讨论根据(光伏发电站设计规范)(GB50797-2021),光伏阵列间距的计算以“保证光伏阵列冬至日日照时长6小时/天〞为目的。
(即保证冬至日6个小时日照,下文中:保证冬至日光伏阵列的日照时长简称为:日照时长)。
光伏电站技术讨论根据(光伏发电站设计规范)(GB50797-2021),光伏阵列间距的计算以“保证光伏阵列冬至日日照时长6小时/天〞为目的。
(即保证冬至日6个小时日照,下文中:保证冬至日光伏阵列的日照时长简称为:日照时长)。
目前国内不同纬度建设的地面光伏电站,均根据该规范完成光伏阵列间距的计算,未考虑因纬度、日照时长的不同,光伏阵列距离变化所引起的辐射量及发电量折减;同时也未考虑该变化引起光伏电站占地面积、投资的差异。
本文将针对上述情况进行研究,并分析由此引起的发电量损失和投资变化之间的关系,提出不同纬度光伏电站建议采用的日照时长。
根据经典公式进行计算间距,下式:本文首先根据上式推算不同日照时长条件下全年逐天光伏阵列被遮挡的时段,可计算出全年逐天水平地面接受的辐射量。
进而得出光伏阵列倾斜面全年可利用辐射量率(即:可发电量率)。
同时,根据上式可得上述约束条件下的光伏阵列间距,进而得到光伏电站单位MWp占地面积。
因占地面积的变化将引起光伏电站部分材料投资变化(例如:电缆投资)、土地费用变化等。
为简化投资变化的计算,光伏电站造价取值原则如下:1)电站除因占地引起的设备、材料投资变化外,其它投资不变;2)光伏组件单价取4.5元/Wp、逆变器单价取0.5元/Wp。
其它材料价格均参考电力定额价格;3)不考虑因地形变化引起的投资变动;4)土地征占根据有偿、无偿两种方式分别计算,土地价格取0.5万元/亩。
固定光伏方阵不遮挡间距计算
-23.5度45度33.55度1640毫米2行30度600毫米
4834.079毫米太阳能电池方阵间距:冬至日太阳赤纬角:上午9:00太阳时角:当地纬度:单片组件高度:组件安装倾角说明:
1:当光伏电站功率较大时,需要前后排布置太阳能电池方阵,一般确定原则为冬至日当天早9:00至下午3:00太阳能电池方阵不应被遮挡。
2:本小工具根据理论计算固定光伏方阵保证前后排不遮挡所需的最小间距。
3:适用地点为北半球(冬至日太阳赤纬角、上午9:00太阳时角为默认值,无需更改)。
参数输入
计算结果
组件行数:组件前缘距地面高度:。
光伏阵列之间合理的距离计算公式
光伏阵列之间合理的距离
屋顶安装固定式光伏阵列,太阳能光伏阵列的安装支架必须考虑前后排间距,以防止在日出日落的时候前排光伏组件产生的阴影遮挡住后排的光伏组件而影响光伏方阵的输出功率,根据建设光伏发电系统的地区的地理位置、太阳运动情况、安装支架的高度等因素可以由下列公式计算出固定式支架前后排之间的距离:
上式中为安装光伏发电系统所在地区的纬度,H为前排最高点与后排组件最低点的高度差。
如下图所示:
太阳能高度角和方位角的计算公式
•对于某一倾角固定安装的光伏阵列,所接受的太阳辐射能与倾角有关,较简便的辐射量计算经验公式为:
•Rβ=S×[sin(α+β)/sinα]+D
式中:Rβ——倾斜光伏阵列面上的太阳能总辐射量
S ——水平面上太阳直接辐射量
D ——散射辐射量
α——中午时分的太阳高度角
β——光伏阵列倾角。
光伏阵列间距计算
填南北向前后阵列高差
南高北低,阵列间距至少加大距离 南低北高,阵列间距最多减小距离
7 sin(安装倾角)
0.573576436
8 南北向前后净距
5542.692868 mm
9 南北向前后桩中心距 10 高差与间距比
8747.215665 mm 0.404826872 mm
11 前后阵列高差 12 距离调整值 说明:本表只需要填红色区域的数值。
0 mm 0 mm
间距的计算
(0.648cosΦ-0.399sinΦ)] 说明
光伏阵列间距的计算
0.707H/tan[arcsin(0.648cosΦ-0.399sinΦ)]
有关参数
值
单位
1 项目当地纬度
37.18
度
2 组件安装倾角
35
度
3 单片组件长度或宽度1956mm源自4 南北向上下片数2
片
5 sin(当地纬度)
0.604321037
6 cos(当地纬度)
0.796740914
如何确定太阳能组件的间距
如何确定太阳能组件的间距呢?在太阳能光伏设计中,电池阵列的布置非常重要。
阵列件的距离对电站的输出功率和转换效率非常重要,错误的安装会导致后排的太阳光被前排遮挡。
一般确定原则为冬至当天的9:00至下...在太阳能光伏设计中,电池阵列的布置非常重要。
阵列件的距离对电站的输出功率和转换效率非常重要,错误的安装会导致后排的太阳光被前排遮挡。
一般确定原则为冬至当天的9:00至下午3:00,太阳能方阵不应被遮挡。
图1所示为太阳能电池方阵前后间距的计算参考。
太阳能电池方阵间距D,可以从面4个公式求得:D=LcosβL=H/tanαα=arcsin(sinΦsinδ+cosΦcosδcosω)β=arcsin(cosδsinω/cosα)首先计算冬至上午9:00太阳角度和太阳方位角。
冬至时纬度角δ是-23.45°,上午9:00的时角ω是45°,于是有:α=arcsin(0.648cosΦ+0.399sinΦ)β=arcsin(0.917×0.707/cosα)求出太阳高度角α后和太阳方位角后,即可求出太阳光在方针后面的投影长度L,再将L折算到前后两排方阵之间的垂直距离D:D=Lcosβ=Hcosβ/tanα例如:北京地区纬度Φ=39.8°,太阳能电池方阵高2m,则太阳能电池方阵的间距为(取δ=-23.45°,ω=45°)α=arcsin(0.648 cosΦ+0.399sinΦ)=arcsin(0.498-0.255)=14.04°β=arcsin(0.917×0.707/cosα)=42.0°D=Hcosβ/tanα=2×0.743/0.25=5.94m/geometric/2081.html天津红桥区经纬度经度117.15 纬度39.175度H=sin5°L=0.087 2=0.174 cos5 L=0.985 2=1.99α=arcsin(0.648cos39.17=0.775+0.399sin39.17=0.632)=arcsin(0.5022-0.252=0.25)=14.478°β=arcsin(0.917×0.707/cosα=0.968)=0.67=42.067°D=Hcosβ/tanα=0.174×0.743/0.26=0.497m10度H=sin10°L=0.174 2=0.347 cos10 L=0.985 2=1.97α=14.478β=42.067D=Hcosβ/tanα=0.347×0.743/0.26=0.992m15度H=sin15°L=0.259 2=0.518 cos15 L=0.966 2=1.93α=14.478β=42.067D=Hcosβ/tanα=0.518×0.743/0.26=1.48m20度H=sin20°L=0.342 2=0.684 cos20 L=0.940 2=1.89α=14.478β=42.067D=Hcosβ/tanα=0.684×0.743/0.26=1.95m25度H=sin25°L=0.423 2=0.845 cos25 L=0.906 2=1.81D=Hcosβ/tanα=0.845×0.743/0.26=2.41m。
各类光伏电站光伏阵列间距设计方法汇总
各类光伏电站阵列间距设计方法汇总1)太阳位置太阳的位置在地平坐标系中,通常有太阳高度角、方位角表示,计算方法如下:arcsin(sin sin cos cos cos )αϕδϕδω=+arcsin(cos sin /cos )βδωα=为α太阳高度角;β为太阳方位角,ϕ为当地纬度;δ为太阳赤纬角;ω为时角。
图1 北京市太阳轨迹图冬至日真太阳时09:00(或15:00)时太阳高度角和方位角是计算光伏阵列间距的基础数据。
冬至日太阳在北回归线,δ为-23.45°,09:00时的ω为-45°(下午为正),此时的太阳高度角和太阳方位角可有下式表示:arcsin(0.648cos 0.399sin )αϕϕ=-, )cos /648.0sin(arc αβ-= 。
由太阳的方位角、高度角和建筑物高度可以确定影子的长度。
假设一根细棒高度为单位高度,将影子分为南北和东西两个分量,即得出影子南北方向和东西方向的阴影系数。
αβR tan cos S -N = αβR E-W tan sin = 2)混凝土平整屋面光伏阵列间距设计《光伏发电站设计规范》中给出平整场地光伏阵列不被遮挡的阵列中心间距计算公式:φφθθtan 4338.0707.04338.0tan 707.0sin cos D -++=L L式中:L 为阵列斜面长度,θ为组件倾角,φ为项目所在地纬度。
光伏阵列中心间距为阵列斜面投影1D 与间距2D 之和,221D cos D D D +=+=θL ,阵列间距示意图如图3。
间距2D 可用阴影系数表示,h αβh R D N-S ⨯=⨯=tan cos 2。
图1 光伏阵列间距示意图3)平铺屋面光伏阵列间距当彩钢瓦屋面、陶瓷瓦屋面的光伏组件采用沿屋面自然坡度平铺的安装方式,前后排组件不存在阴影遮挡,因此无需考虑阴影遮挡问题,可适当设置500-600mm宽的检修通道方便维护。
4)南北坡屋面光伏阵列间距类型一:当建筑坐北朝南,屋脊为正东西走向,建筑的方位角为0°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并网光伏发电系统方阵的最佳安装倾角采用专业系统设计软件进行优化设计来确定,它应是系统全年发电量最大时的倾角。
当倾角确定后我们要保证每个光伏阵列在冬至日上午九时到下午三时无阴影遮挡(北半球)。
太阳电池阵列间距的设计计算:
在北半球,对应最大日照辐射接收量的平面为朝向正南,阵列倾角确定后,要注意南北向前后阵列间要留出合理的间距,以免前后出现阴影遮挡,前后间距为:冬至日(一年当中物体在太阳下阴影长度最长的一天)上午9:00到下午3:00,组件之间南北方向无阴影遮挡。
固定光伏组件方阵的支架系统安装的前后最小间距D,如下图所示:
简化的计算公式如下:
式中:φ为纬度(在北半球为正、南半球为负);H为光伏方阵阵列或遮挡物与可能被遮挡组件底边高度差。
同时在太阳能电池方阵排列布置还需要考虑地形,地貌的因素,要与当地自然环境有机的结合。
同时设计要规范,并兼顾光伏电站的景观效果,在整个方阵场设计中尽量节约土地。
太阳电池方阵的布置设计包括阵列倾角设计,方位角设计,阵列间距设计,需根据具体情况来进行计算。
关于跟踪系统阵列之间的间距计算相对复杂,由于跟踪支架系统的巡日条件和跟踪角度范围与其厂家产品有关,且每家不尽相同。
故对其计算无实际意义。
但有一点是一致的,就是我们都必须满足一天中不得小于6小时的照射时间窗口。
需要说明的是上述时间为地方时。
例如在计算中使用的太阳赤纬都是以天文年
历为准的,而天文年历所给出的参数都是世界时0时的值,但时角又是以地方时为依据的,而日常的钟表所显示的时间都是北京时。
这里需要注意的是:北京时早8点时,乃是世界时0点,由于地球自西向东转动,所以,凡是在北京以东的地方,其地方时均比北京时要晚,即8点多,而北京以西的地方则尚未到8点。
经度订正是时间转换所必需的。
在我国明确规定,东经为正,西经为负;但在美国则刚好相反。
具体换算公式是:地方时(即太阳时)=北京时+E-4*(120-L)其中:E为地球绕日公转时进动和转速变化而产生的修正,单位为分;L为当地的经度。