无穷级数总结
无穷级数知识点总结考研
无穷级数知识点总结考研一、无穷级数的概念无穷级数是由无穷多个数的和组成,通常用符号∑表示。
其一般形式为:S = a_1 + a_2 + a_3 + ...... + a_n + ......其中a_n是一个数列,称为级数的通项。
无穷级数是由级数的部分和组成的序列,即S_n = a_1 + a_2 + ...... + a_n,所以求无穷级数的和,就是求该序列的极限,即lim(S_n)。
在实际运用中,我们通常是通过研究级数的部分和的性质,来求级数的和或证明级数的敛散性。
二、无穷级数的敛散性1. 收敛与发散的定义级数的和S = ∑a_n,如果级数的部分和S_n = a_1 + a_2 + ...... + a_n存在极限L,即lim(S_n) = L,那么称级数收敛,其和为L,记作∑a_n = L。
如果级数的部分和S_n的极限不存在,或者极限为无穷大,即lim(S_n) = ±∞,那么称级数发散。
2. 收敛级数的判定(1)正项级数收敛判定对于正项级数∑a_n,即a_n≥0,根据级数的部分和单调递增有界的结论,若存在常数M,使得对一切n始终成立S_n ≤ M,那么级数收敛;如果对于任意的M > 0,总存在n_0,使得对一切n > n_0有S_n > M,那么级数发散。
(2)比较判别法若对于所有的n,总有0 ≤ a_n ≤ b_n,且∑b_n收敛,那么∑a_n也收敛;若对于所有的n,总有a_n ≥ b_n ≥ 0,且∑b_n发散,那么∑a_n也发散;若∑b_n发散,且对于足够大的n,总有a_n>b_n,则∑a_n发散。
(3)比值判别法若存在常数0 < q < 1及整数n_0,使得当n > n_0时,有a_n_+1/a_n ≤ q,那么级数收敛;若a_n_+1/a_n≥1,那么级数发散;若a_n_+1/a_n不满足以上两个条件,那么比值判别法无法判断级数的敛散性。
无穷级数总结范文
无穷级数总结范文无穷级数是数列求和的一种方式,在数学中有重要的地位和应用。
无穷级数的概念最早由数学家Gottfried Leibniz引入,之后被广泛研究和应用。
在本文中,我们将总结无穷级数的基本概念、性质和常见的应用领域,以便读者更好地理解和应用无穷级数。
一、无穷级数的基本概念无穷级数是指由无穷多个数相加得到的和。
一般地,一个无穷级数可以写成以下形式:S=a1+a2+a3+...其中,a1、a2、a3等为数列的各项。
我们可以通过求无穷级数的部分和来研究其性质。
对于一个无穷级数,其第n个部分和Sn定义为:Sn = a1 + a2 + a3 + ... + an二、无穷级数的收敛和发散无穷级数可能收敛(即有限)也可能发散(即无限)。
为了研究无穷级数的收敛性,我们引入了极限的概念。
当部分和的数列{Sn}存在有限极限s时,即lim(n->∞)Sn = s,我们称该无穷级数收敛,并且其和为s。
我们用∑表示无穷级数。
如果部分和的数列{Sn}不存在有限极限,即lim(n->∞)Sn不存在,或者lim(n->∞),Sn, = ∞,我们称该无穷级数发散。
无穷级数的收敛性与其各项的大小和取值有关,我们将在下一章节中讨论。
三、无穷级数的性质1.部分和的性质:对于一个无穷级数,其部分和的性质对于判断其收敛性起到重要的作用。
如果一个无穷级数的部分和数列收敛,则该无穷级数收敛;如果一个无穷级数的部分和数列发散,则该无穷级数发散。
2.数项级数的性质:对于一个收敛的无穷级数,其数项级数的性质也是重要的。
数项级数是指将无穷级数中的各项重新排列后所得到的级数。
对于一个收敛的无穷级数,其数项级数的和与原级数的和相同。
3.加法运算:如果两个无穷级数都收敛,则它们的和也收敛,并且和的值等于各级数的和的和。
4.数乘运算:如果一个无穷级数收敛,则对该级数的每一项乘以同一个常数后所得到的级数也收敛,并且和的值等于常数与原级数的和的乘积。
无穷极知识点总结
无穷极知识点总结一、无穷极简介无穷极,是数学中的一个重要概念,用来描述在某个数轴上某个方向上的无限延伸的概念。
在数学中,无穷极可以分为两种:正无穷大和负无穷大。
正无穷大通常表示为∞,负无穷大通常表示为-∞。
无穷极在数学中有着广泛的应用,涉及到极限、无穷级数、无穷积分等方面的知识。
在实际问题中,无穷极也有着重要的应用价值。
二、无穷极的定义在数学中,对于函数f(x),当x趋于无穷大时,如果f(x)的值也无限趋近于某个值L,则称f(x)有一个极限L,称x趋于无穷大时的极限为无穷极限。
数学中通常用符号lim x→∞f(x) = L表示。
三、无穷极的性质1. 无穷极与有界性的关系:对于函数f(x),如果lim x→∞ f(x) = L,则f(x)在x趋于无穷大时有界。
反之,若f(x)在x趋于无穷大时有界,但lim x→∞ f(x)不存在,则并不能说明f(x)在x趋于无穷大时存在极限。
2. 无穷极与函数的关系:对于函数f(x),如果lim x→∞ f(x) = L,则称L是f(x)的水平渐近线;反之,若f(x)在x趋于无穷大时没有水平渐近线,则不能说明lim x→∞ f(x)不存在。
3. 无穷极的四则运算性质:对于函数f(x)和g(x),如果lim x→∞ f(x) = L,lim x→∞ g(x) = M,则有以下性质:(1)lim x→∞[f(x) ± g(x)] = L ± M(2)lim x→∞[f(x) * g(x)] = L * M(3)lim x→∞[f(x) / g(x)] = L / M(如果M≠0的话)4. 无穷极的夹逼定理:对于函数f(x)、g(x)和h(x),如果在某个区间上f(x)≤g(x)≤h(x),而lim x→∞ f(x) = limx→∞ h(x) = L,则有lim x→∞ g(x) = L。
四、无穷极的应用1. 极限问题中的应用:在求解极限问题时,经常需要考虑函数在x趋于无穷大时的极限,从而得到函数的渐近线、渐近值等特性。
高等数学无穷级数知识点总结
高等数学无穷级数知识点总结
无穷级数是高等数学中的一个重要内容,它涉及到很多重要的概念和定理。
以下是一些高等数学无穷级数的知识点总结:
1. 无穷级数的基本概念:无穷级数是指一个数列的项按一定规律相加而成的数列。
其中,无穷级数的定义域可以是实数集或复数集。
2. 无穷级数的分类:无穷级数可以分为数项级数和函数项级数两大类。
数项级数是指以常数项级数的形式表示的无穷级数,而函数项级数则是以函数项的形式表示的无穷级数。
3. 无穷级数的敛散性:无穷级数的敛散性是指级数是否收敛或发散。
如果一个无穷级数收敛,则称其为收敛级数,反之则称为发散级数。
4. 无穷级数的判别法:无穷级数的判别法是指判断一个无穷级数是否收敛的方法。
常用的判别法包括比较判别法、比值判别法、根值判别法和莱布尼兹判别法等。
5. 无穷级数的和应用:无穷级数在数学中有着广泛的应用,例如求和、积分、微积分等。
在实际应用中,无穷级数往往被用来求解各种问题。
6. 无穷级数的和函数:无穷级数的和函数是指级数的每一项相加得到的总和。
无穷级数的和函数具有很多重要的性质,例如连续性、可导性等。
7. 无穷级数的广义性质:无穷级数的广义性质是指关于无穷级数的一些扩展概念和定理。
例如,无穷级数的前 n 项和的广义性质、
无穷级数的广义收敛性等。
以上是高等数学无穷级数的一些重要知识点总结。
希望能对读者有所帮助。
无穷级数的概念与性质
无穷级数的概念与性质无穷级数(Infinite series)是数学中一个非常重要的概念,它是由无限多个数相加或相减得到的数列。
在数学中,我们经常会遇到各种各样的无穷级数,它们具有丰富的性质和应用。
本文将介绍无穷级数的基本概念,并探讨其性质及应用。
一、无穷级数的概念无穷级数指的是无限多个数按照一定的规律连加(或连减)得到的数列。
一般可以表示为下面的形式:S = a₁ + a₂ + a₃ + ...其中,a₁、a₂、a₃是无穷级数的通项,S是无穷级数的和。
无穷级数的和并不一定存在,它可能是一个有限数值,也可能是无穷大或不存在。
二、常见的无穷级数1.等差数列等差数列是最简单的无穷级数之一。
它的通项公式为:aₙ = a₁ + (n-1)d其中,a₁是首项,d是公差,n表示项数。
等差数列的无穷级数可以通过求和公式来计算:S = a₁ + (a₁+d) + (a₁+2d) + ...通过对等差数列求和,我们可以得到如下公式:S = (a₁ + aₙ) * n / 22.等比数列等比数列也是常见的无穷级数之一,它的通项公式为:aₙ = a₁ * q^(n-1)其中,a₁为首项,q为公比,n表示项数。
等比数列的无穷级数可以通过求和公式来计算:S = a₁ / (1-q)其中,当0<q<1时,S存在且为有限值,当q≥1时,S不存在。
3.调和级数调和级数是指无穷级数的通项是倒数的情况,它的通项公式为:aₙ = 1/n调和级数可以表示为:S = 1/1 + 1/2 + 1/3 + ...调和级数是一个特殊的无穷级数,它的和可以无限增大。
例如,前n项和可以表示为:Sₙ = 1/1 + 1/2 + ... + 1/n当n趋向于无穷大时,Sₙ趋向于无穷大。
三、无穷级数的性质1.收敛与发散无穷级数的和可能是有限的,也可能是无穷大,也有可能不存在。
如果一个无穷级数的和存在并且有限,我们称该级数是收敛的;反之,如果一个无穷级数的和不存在或者无穷大,我们称该级数是发散的。
无穷级数知识点总结专升本
无穷级数知识点总结专升本一、概念无穷级数是由无限多个项组成的级数,其中每个项都是一个数字或者变量的表达式。
无穷级数通常用符号∑表示,其中∑表示总和,表示对所有项进行求和。
无穷级数可以是收敛的,也可以是发散的。
对于收敛的无穷级数,其和可以用极限来表示;对于发散的无穷级数,其和不存在。
二、级数的性质1.级数的部分和级数的部分和是指级数前n项的和,用Sn表示。
当n趋向无穷大时,级数的部分和就是级数的和。
当级数的部分和的极限存在时,级数收敛;当级数的部分和的极限不存在时,级数发散。
2.级数的收敛与发散级数的收敛指的是级数的部分和的极限存在,也就是级数的和存在;级数的发散指的是级数的部分和的极限不存在,也就是级数的和不存在。
3.级数的敛散性级数敛散性指的是级数的收敛性或发散性。
级数的敛散性可以通过级数的部分和的极限是否存在来判断。
4.级数的比较性级数的比较性是指通过级数的部分和与其他级数的部分和进行比较来判断级数的敛散性。
可以通过比较原则、比值原则、根值原则等方法来比较级数的敛散性。
5.级数的运算性质级数满足加法、数乘、绝对收敛、收敛性与级数重新排列等运算性质。
三、收敛级数1.正项级数对于所有项均为非负数的级数,称为正项级数。
正项级数通常采用单调有界数列的性质来判断是否收敛。
2.幂级数幂级数是形式为∑an*x^n的无穷级数,其中an为常数系数,x为自变量。
幂级数通常需要通过收敛半径来判断其收敛性。
3.级数的收敛判别法级数的收敛判别法是用来判断级数是否收敛的方法,包括比较法、审敛法、根值法、比值法、积分法等。
4.级数收敛性的应用无穷级数的收敛性可以应用于数学和物理等领域,如泰勒级数、傅立叶级数等。
四、发散级数1.发散级数的定义对于发散级数而言,其和不存在,无法通过有限项之和来表示。
发散级数可能是几何级数、调和级数、交错级数等。
2.级数的发散判别法级数的发散判别法是用来判断级数是否发散的方法,例如:项数发散法、数值发散法、微分法等。
无穷级数总结
无穷级数总结无穷级数是数学中的重要概念,常出现在分析学、代数学、数论等领域。
它的形式为一列数相加的无穷和。
无穷级数的研究对于了解数学的发展历程和数学的基本思想方法具有重要意义。
本文将对无穷级数的定义、性质、收敛与发散的判定方法以及一些典型的无穷级数进行介绍和总结。
无穷级数的定义意味着\[S_n=a_1+a_2+...+a_n\]\[S=a_1+a_2+a_3+...\]其中,$S_n$表示级数的前n项和,S表示整个级数的和,$a_n$表示级数的第n项。
我们称一个无穷级数收敛或发散取决于它的部分和序列。
具体来说,如果存在一个有限的实数 S,使得对于任意给定的正数 $\varepsilon $,当 n 大于一些自然数 N 时,总有\[ ,S-S_n,< \varepsilon \]那么我们说该级数是收敛的,并把这个实数S叫做级数的和,记做\[ S=\sum_{n=1}^{+ \infty } a_n\]如果上述性质不成立,即对于任意给定的正数S,当n大于一些自然数N时,总存在\[ ,S-S_n, \geq \varepsilon \]那么我们说该级数是发散的。
在判断无穷级数是否收敛时,可以运用收敛的充分条件。
其中,比较判别法、比值判别法、根值判别法是最常用的方法之一1.比较判别法:如果存在一个收敛的级数 $\sum b_n$,使得对于所有的正整数 n,有 $,a_n, \leq b_n$,那么级数 $\sum a_n$ 收敛。
反之,如果级数$\sum a_n$ 发散,那么对于所有的正整数 n,必有 $,a_n, \geqb_n$ 对一些发散的正项级数 $\sum b_n$ 成立。
2.比值判别法:对于正项级数 $\sum a_n$,如果存在一个常数 L,使得当 n 大于一些正整数 N 时,总有 $\frac{a_{n+1}}{a_n} \leq L < 1$,那么级数$\sum a_n$ 收敛。
高数无穷级数总结
高数无穷级数总结高等数学中,无穷级数是一个重要的概念和工具。
无穷级数可以理解为由无限多个数相加得到的结果。
在无穷级数的研究中,主要考虑级数的收敛性、发散性以及求和的方法等问题。
在这篇文章中,我将总结无穷级数的定义、收敛性和发散性以及几种常见的求和方法。
首先,我们来回顾一下无穷级数的定义。
一个无穷级数可以表示为:S = a1 + a2 + a3 + ... + an + ...其中,a1、a2、a3等为数列中的元素,n为数列中的项数。
当n趋向无穷大时,无穷级数的求和结果就是S。
接下来,我们来探讨无穷级数的收敛性和发散性。
一个无穷级数可能是收敛的,也可能是发散的。
如果一个无穷级数的部分和逐渐趋于一个有限的数S,那么我们说这个无穷级数是收敛的,并且收敛于S。
如果一个无穷级数的部分和没有趋于一个有限的数,那么我们说这个无穷级数是发散的。
收敛的无穷级数是非常重要的,因为它们在实际应用中经常出现。
我们可以通过几种方法来判断一个无穷级数的收敛性。
其中,比较判别法、比值判别法和积分判别法是最常用的三种判别法。
比较判别法是通过将无穷级数与一个已知的收敛级数或发散级数进行比较来判断收敛性。
比值判别法是通过计算无穷级数的相邻项比值的极限来判断收敛性。
积分判别法是通过将无穷级数中的项与函数进行比较来判断收敛性。
除了收敛性判别外,我们还有几种常见的方法来求解收敛的无穷级数的和。
其中,部分和法、数学归纳法、特殊级数和特殊函数是常用的求和方法。
部分和法是通过计算无穷级数的前n 项和来逼近无穷级数的和。
数学归纳法是通过递归地将级数的前n项和与第n+1项进行比较来求和。
特殊级数是一类特殊形式的无穷级数,常见的有几何级数、调和级数和幂级数等。
特殊函数是一类与无穷级数有密切关系的函数,例如指数函数、对数函数和三角函数等。
在实际应用中,无穷级数有着广泛的应用。
例如,泰勒级数是一种常见的无穷级数,它可以将一个函数表示为无穷项多项式的形式,从而在计算和研究函数时提供了便利。
大一高数无穷级数知识点
大一高数无穷级数知识点在大一高等数学课程中,无穷级数是一个重要的内容,具有广泛的应用。
了解无穷级数的概念、性质和收敛条件等知识点对于学好这门课程是至关重要的。
本文将介绍大一高数无穷级数的基本知识点,并对其应用进行简要探讨。
一、无穷级数的概念无穷级数是由一系列数的和构成的数列。
设a₁、a₂、a₃、⋯、aₙ、⋯是一列实数,将它们相加所得的数列称为无穷级数,表示为:S = a₁ + a₂ + a₃ + ⋯ + aₙ + ⋯二、无穷级数的收敛和发散1. 收敛的定义:若一个无穷级数的部分和数列{Sₙ}收敛于某个实数S,即lim(n→∞)Sₙ = S,则称该无穷级数收敛,否则称为发散。
2. 收敛的必要条件:无穷级数收敛的必要条件是它的通项数列趋于零,即lim(n→∞)aₙ = 0。
3. 通项数列趋于零的充分条件:若无穷级数的通项数列满足aₙ≤aₙ₊₁(n≥N,N为某个自然数),则该无穷级数收敛。
三、常见的无穷级数1. 等差数列的无穷级数:若等差数列a₁、a₂、a₃、⋯、aₙ、⋯的公差不为零,即aₙ₊₁ - aₙ = d ≠ 0,则其部分和数列为等差数列,即Sₙ = (n/2)(2a₁ + (n-1)d)。
若d>0并且|a₁|/(|a₁ + d| < 1,则该无穷级数收敛,反之发散。
2. 等比数列的无穷级数:若等比数列a₁、a₂、a₃、⋯、aₙ、⋯的公比不为零,即aₙ₊₁/aₙ = q ≠ 0,则其部分和数列为等比数列,即Sₙ = a₁(1-qⁿ)/(1-q)。
当|q|<1时,该无穷级数收敛,否则发散。
四、收敛级数的运算性质1. 收敛级数的有界性:收敛级数的部分和数列有界。
2. 收敛级数的加法性:有限个收敛级数的和仍然是收敛级数。
3. 收敛级数的乘法性:若级数{aₙ}收敛,级数{bₙ}绝对收敛,则乘积级数{aₙbₙ}收敛。
五、收敛级数的应用无穷级数在数学和实际问题中有广泛的应用,以下介绍两个常见的应用:1. 泰勒级数:泰勒级数是一种无穷级数展开式,用于将函数表示成无穷级数的形式。
无穷级数知识点总结简短
无穷级数知识点总结简短
1. 无穷级数的定义
无穷级数是指由无限个数相加而成的级数,通常表示为:
S = a1 + a2 + a3 + ...
其中,a1, a2, a3...表示级数的每一项。
2. 无穷级数的收敛与发散
无穷级数可能收敛也可能发散。
如果无穷级数的部分和S_n在n趋向无穷时收敛于某一有
限数,即lim(S_n) = S,则称该无穷级数收敛;如果无穷级数的部分和S_n在n趋向无穷
时发散至无穷大或者发散至负无穷大,即lim(S_n) = ±∞,则称该无穷级数发散。
3. 无穷级数的收敛性判别法
无穷级数的收敛性判别法有很多种,包括比较判别法、比值判别法、根值判别法、积分判
别法等。
这些判别法可以用来判断无穷级数的收敛性,并且在实际问题中有很多应用。
4. 无穷级数的性质
无穷级数有许多重要的性质,包括级数的线性性质、级数的绝对收敛性、级数的收敛域等。
这些性质在研究无穷级数的收敛性和计算级数的和时非常重要。
5. 无穷级数的应用
无穷级数在物理、工程、计算机科学等领域都有重要的应用。
例如,在物理学中,泰勒级
数可用于近似计算非线性函数的值;在工程学中,级数可以用来描述振动、波动等现象;
在计算机科学中,级数在算法复杂性分析和数值计算中也有广泛的应用。
总之,无穷级数是数学中一个重要的概念,它涉及到收敛与发散、收敛性判别法、性质和
应用等方面,对于理解和应用级数有着重要的意义。
无穷极数知识点总结
无穷极数知识点总结1. 无穷级数的定义无穷级数是指由无穷多个项组成的级数,通常表示为a1 + a2 + a3 + ... + an + ...,其中每一项an是一个实数或复数。
无穷级数可以是收敛的,即其和是一个有限的值,也可以是发散的,即其和不存在或为无穷大。
2. 无穷级数的收敛无穷级数收敛的概念是指无穷级数的和在某个范围内趋于一个有限的值。
收敛的无穷级数在数学分析和实际应用中有着广泛的应用,例如在泰勒级数展开、微积分中的积分计算等方面。
无穷级数的收敛有多种判别法,如比较判别法、根值判别法、积分判别法等。
3. 无穷级数的发散无穷级数发散的概念是指无穷级数的和无法趋向于一个有限的值,而是趋向于无穷大或者根本无法定义。
无穷级数的发散也有多种判别法,例如奇偶项判别法、柯西收敛准则等。
4. 绝对收敛与条件收敛无穷级数的收敛有两种情况,一种是绝对收敛,即该级数每一项的绝对值级数收敛;另一种是条件收敛,即该级数每一项的绝对值级数发散,但级数本身却收敛。
绝对收敛级数在某种程度上更容易处理和计算,而条件收敛级数的性质相对更为复杂,也更有意思。
5. 级数收敛的充分条件对于实数级数来说,级数部分和序列的收敛性与级数本身的收敛性之间是十分紧密的,因此研究级数部分和序列的收敛性可以得到级数收敛的充分条件。
比如级数收敛的柯西准则、级数收敛的柯西——施瓦茨准则、莱布尼茨级数收敛准则等。
6. 无穷级数的运算无穷级数也可以进行加减乘除等运算,不过进行这些运算时需要满足一定的条件,比如级数收敛、级数部分和序列的收敛性等。
无穷级数的运算规则也有许多特殊的性质,如级数的收敛性与绝对收敛性的性质、级数的乘法运算性质、级数的幂级数展开等。
7. 级数收敛的应用无穷级数的研究在数学中有着广泛的应用,比如在分析学中的泰勒级数展开、微积分中的求和、微分方程的求解、数论中的级数和等方面都有不同程度的应用。
无穷级数也在物理学、工程学、经济学等应用领域中有着很多重要的应用。
无穷级数知识点总结公式
无穷级数知识点总结公式无穷级数的定义:无穷级数的一般形式可以表示为:\[ \sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \ldots + a_n + \ldots \]其中,\( a_n \) 是级数的第 n 个项。
级数的和通常记为 \( S \),即\[ S = a_1 + a_2 + a_3 + \ldots + a_n + \ldots \]当级数的和存在有限值时,称级数收敛;当级数的和不存在有限值时,称级数发散。
无穷级数的性质:1. 无穷级数的和与项的次序无关级数的项次序可以进行重新排列,其和仍然相同。
2. 收敛级数的任意项的和都趋于零对于收敛级数,其各项的和对应的部分和序列的极限为级数的和。
3. 收敛级数的每一项都可以表示为部分和序列的差对于收敛级数,其每一项都可以表示为相邻两个部分和之差。
无穷级数的收敛性:在讨论无穷级数时,我们关心的一个重要问题是该级数是否收敛。
无穷级数的收敛性可以通过不同的收敛判别法来进行判断。
1. 正项级数收敛判别法对于正项级数 \(\sum_{n=1}^{\infty} a_n\):- 若 \( \lim_{n \to \infty} a_n = 0 \) 且 \( a_n \) 单调递减(即 \( a_{n+1} \leq a_n \)),则级数收敛;- 若 \( a_n \) 单调递减且有界,则级数收敛;- 若 \( \lim_{n \to \infty} a_n \) 不存在或 \( \lim_{n \to \infty} a_n \neq 0 \) ,则级数发散。
2. 比较判别法设 \( \sum_{n=1}^{\infty} a_n \) 和 \( \sum_{n=1}^{\infty} b_n \) 为两个级数,若存在正常数 \( C \),当 \( n \) 充分大时有 \( 0 \leq a_n \leq Cb_n \),则级数\( \sum_{n=1}^{\infty} b_n \) 收敛时级数 \( \sum_{n=1}^{\infty} a_n \) 收敛,级数\( \sum_{n=1}^{\infty} b_n \) 发散时级数 \( \sum_{n=1}^{\infty} a_n \) 发散。
无穷级数重要知识点总结
无穷级数重要知识点总结一、无穷级数的定义1.1 无穷级数的概念无穷级数是一种特殊的数列求和形式。
它由一个无穷数列的项之和构成,通常表示为a1 + a2 + a3 + ... + an + ...,其中a1, a2, a3, ...是数列的项。
无穷级数的和是用极限的概念来定义的,即当n趋向无穷时,无穷级数的前n项和趋于一个确定的数。
1.2 无穷级数的收敛和发散无穷级数有两种基本的收敛性质:收敛和发散。
当无穷级数的和存在时,我们称这个级数是收敛的;当无穷级数的和不存在时,我们称这个级数是发散的。
1.3 无穷级数的通项无穷级数的通项是指级数中每一项的公式表示。
通项的形式多种多样,可以是一个简单的代数式,也可以是一个复杂的函数表达式。
通项的形式对于判断无穷级数的收敛性有着重要的作用。
二、无穷级数的性质2.1 无穷级数的加法性质如果无穷级数a1 + a2 + a3 + ... + an + ...和无穷级数b1 + b2 + b3 + ... + bn + ...都存在,那么它们的和也存在,并且等于这两个级数的和的和。
即∑(ai + bi) = ∑ai + ∑bi。
2.2 无穷级数的乘法性质如果无穷级数a1 + a2 + a3 + ... + an + ...和无穷级数b1 + b2 + b3 + ... + bn + ...都存在,那么它们的乘积也存在,并且等于这两个级数的乘积的和。
即(∑ai) * (∑bi) = ∑(ai * bi)。
2.3 无穷级数的极限性质当n趋向无穷时,无穷级数的前n项和会趋于一个确定的数。
这个极限的存在性和确定性是无穷级数的一个重要性质。
2.4 无穷级数的收敛性质对于一个给定的无穷级数,我们需要研究它的收敛性质,即它是否收敛、以及收敛到哪个数。
无穷级数的收敛性质对于很多数学问题有着深远的影响。
2.5 无穷级数的发散性质发散是无穷级数的另一个重要性质,它表示无穷级数的和不存在。
大一下高数知识点无穷级数
大一下高数知识点无穷级数大一下高数知识点:无穷级数在大一下的高等数学课程中,无穷级数是一个重要的知识点。
无穷级数是由无穷多个数相加(或相减)所得的结果,它在数学和其它科学领域中都有广泛的应用。
本文将着重介绍无穷级数的定义、性质和一些重要的收敛准则。
一、无穷级数的定义无穷级数可以写作以下形式:S = a₁ + a₂ + a₃ + ... + aₙ + ...其中,a₁、a₂、a₃等为级数的各项。
二、常见的无穷级数1. 等差级数等差级数是最常见的一类无穷级数。
它的通项公式一般为:aₙ = a₁ + (n-1)d其中,a₁为首项,d为公差。
例如,等差级数的前5项可以表示为:S₅ = a₁ + (a₁ + d) + (a₁ + 2d) + (a₁ + 3d) + (a₁ + 4d)2. 等比级数等比级数的通项公式一般为:aₙ = a₁ * r^(n-1)其中,a₁为首项,r为公比。
例如,等比级数的前5项可以表示为:S₅ = a₁ + a₁r + a₁r² + a₁r³ + a₁r⁴三、无穷级数的性质1. 部分和在无穷级数中,我们通常用部分和来近似计算级数的和。
部分和Sn定义为:Sₙ = a₁ + a₂ + a₃ + ... + aₙ其中,n为正整数。
2. 收敛和发散对于无穷级数,如果其部分和Sn在n趋向于无穷大时有极限S,则称该级数收敛,否则称该级数发散。
如果收敛,其收敛值S即为无穷级数的和。
3. 收敛性质无穷级数有以下重要的收敛性质:(1)若级数Sn收敛,则其任意子级数也收敛。
(2)若级数Sn发散,则其任意超级数也发散。
(3)若级数Sn和级数Tn都是收敛的,则它们的和级数Sn + Tn也是收敛的。
4. 绝对收敛和条件收敛若级数的所有项的绝对值构成的级数收敛,则称原级数绝对收敛。
否则,若级数本身收敛但其对应的绝对值级数发散,则称原级数条件收敛。
四、无穷级数的收敛准则在判断无穷级数的收敛性时,有一些常用的收敛准则:1. 正项级数判别法如果级数的所有项都是非负数,并且后一项总是比前一项大或相等,则该级数收敛。
(完整版)无穷级数总结
n1、概念与性质1. 定义:对数列5,氏丄,U n L ,U n 称为无穷级数,U n 称为一般项;若部分和n1数列{S n }有极限S ,即lim S n S ,称级数收敛,否则称为发散• n2. 性质① 设常数 c 0 ,则 U n 与 cU n 有相同的敛散性;n1n1② 设有两个级数 U n 与v n,若 U n s ,v n,则(U n v n )s ;n1n1n1n1n1若 U n 收敛,v n 发散,则(U n v n ) 发散;n1n1n1若 U n , v n 均发散,则(U n v n ) 敛散性不确定;n1n1n1③ 添加或去掉有限项不影响一个级数的敛散性;④ 设级数 U n 收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和.n1注:①一个级数加括号后所得新级数发散,则原级数发散;② 一个级数加括号后收敛,原级数敛散性不确定. ⑤ 级数 U n 收敛的必要条件: lim U n 0 ;n1n注:①级数收敛的必要条件,常用判别级数发散;③若 U n 发散,则 lim U n 0 未必成立. n1 n 二、常数项级数审敛法 1. 正项级数及其审敛法① 定义:若 U n 0 ,则 U n 称为正项级数 .n1② 审敛法:U n 收敛的充分必要条件是其部分和数列有界无穷级数总结②若 lim U n n0 ,则 U n 未必收敛;n1充要条件:正项级数(ii ) 比较审敛法:设U n①与V n②都是正项级数,且U n %(n 1,2丄),n 1 n 1则若②收敛则①收敛;若①发散则②发散•A.若②收敛,且存在自然数N,使得当n N时有U n kvjk 0)成立,则①收敛;若②发散,且存在自然数N,使得当n N时有U n kv n(k 0)成立,则①发散;B.设U n为正项级数,若有p 1使得u n2(n 1,2,L ),贝U U n收敛;若n 1 n n 11U n (n 1,2,L ),贝U U n 发散•n n 1C.极限形式:设U n①与V n②都是正项级数,若limb |(0 | ),则n 1 n 1 n V nU n与V n有相同的敛散性.n 1 n 1注:常用的比较级数:a 1 1 .①几何级数:ar n 1 1 r r 1•n 1发散r 1②p级数:[收敛P1时.n p发冃攵P1时,n r③调和级数:1111发散.n 1 n2n(iii)比值判别法(达郎贝尔判别法)设a n是正项级数,若n 1①lim r 1,则a n收敛;②lim r 1,则发散.n a n n 1 n a n n 1注:若lim 1,或lim a n1,推不出级数的敛散.例丄与厶,虽然n a n n n 1 n n 1 n lim 1,|im n a n1,但 -发散,而 & 收敛•n a n n■n 1 n n 1 n(iv)根值判别法(柯西判别法)设a n是正项级数,lim、, a n,若1,n 1 n级数收敛,若1则级数发散.(v)极限审敛法:设U n 0,且lim n P U n l,则①lim n p U n l 0且p 1,则级n n数U n发散;②如果p 1,而lim n p U n l(0 l ),则其收n 1 n敛.(书上P317-2- (1))注:凡涉及证明的命题,一般不用比值法与根值法,一般会使用比较判别法•正项级数的比(根)值判别法不能当作收敛与发散的充要条件,是充分非必要条件.2.交错级数及其审敛法①定义:设U n 0(n 1,2丄),则(1)n 1U n称为交错级数•n 1②审敛法:莱布尼兹定理:对交错级数(1)n 1U n,若U n U n 1且lim U n0,‘n贝u ( 1)n u收敛•n 1注:比较U n与U n 1的大小的方法有三种:①比值法,即考察也1是否小于1;U n②差值法,即考察U n U n 1是否大于0;③由U n找出一个连续可导函数f(x),使U n f(n) ,(n 1,2,)考察f (x)是否小于0.3.一般项级数的判别法:①若U n绝对收敛,则U n收敛.n 1 n 1②若用比值法或根值法判定|U n |发散,则U n必发散.n 1 n 1三、幕级数1.定义:a n x n称为幕级数.n 02.收敛性①阿贝尔定理:设幕级数a n X n在X0 0处收敛,则其在满足X I X0的所n 0xx 0有x 处绝对收敛.反之,若幕级数 a n x n 在X 1处发散,则其在满足x X i n 0 的所有X 处发散. ②收敛半径(i )定义:若幕级数在X X o 点收敛,但不是在整个实轴上收敛,则必存在一个正数R ,使得①当X X o R 时,幕级数收敛;②当x X o R 时,幕级数发散;R称为幕级数的收敛半径•(ii )求法:设幕级数 a n X n的收敛半径为R ,其系数满足条件limn 0n或n lim 器丙I ,则当0 1 时,R 1 ;当10时,R , 当I 时,R 0 .注:求收敛半径的方法却有很大的差异.前一个可直接用公式,后一个则须分奇、 偶项(有时会出现更复杂的情况)分别来求.在分成奇偶项之后,由于通项中出 现缺项,由此仍不能用求半径的公式直接求,须用求函数项级数收敛性的方法.(iii )收敛半径的类型 A. R 0,此时收敛域仅为一点; B. R,此时收敛域为(C.R =某定常数,此时收敛域为一个有限区间. 3. 幕级数的运算(略) 4. 幕级数的性质a n 1a n①若幕级数的收敛半径R则和函数 S(x)a n X n 在收敛区间(R, R )内连续.②若幕级数的收敛半径R 则和函数 S(x)a n X n 在收敛区间(R, R )内可导,且可逐项求导,即S (x )n \a n X )(a n Xna n X n 1,收敛半径不变.n 1③若幕级数的收敛半径R0,则和函数 S(x)na n X在收敛区间(R, R )内可积,x且可逐项积分,即S (t )dta n t n dt(x ( R, R)),收敛半径不nx / ,x ( n!出其假设和函数s(x)与其导数s(x)的关系),从而得到新级数的和函数; 注:系数为若干项代数和的幕级数,求和函数时应先将级数写成各个幕级数的代 数和,然后分别求出它们的和函数,最后对和函数求代数和,即得所求级数 的和函数. ②数项级数求和nU n U k .根据S n 的求法又可分为:直接法、拆项法、递推法.变.5.函数展开成幕级数①若f(x)在含有点X 0的某个区间I 内有任意阶导数, f (X0) 、2(X X o )2!f (n 1)()- --(X X 0)(n 1}(n 1)!(n 1)!I 内能展开成为泰勒级数的充要条件为为 f (x) f (X 0)f (X 0)(X X o )f(n 1)(-)(X X 0)(n 1),记 R n (x)f (x)在X 。
高数大一知识点无穷级数
高数大一知识点无穷级数高数大一知识点:无穷级数无穷级数是数学分析中一个重要的概念,指的是一个由无穷多个数相加或相乘而得到的数列或数列的和。
在大一的高等数学课程中,无穷级数是一个重要的知识点,本文将介绍无穷级数的定义、性质以及一些常见的无穷级数。
1. 无穷级数的定义在数学中,无穷级数的定义如下:设给定一个数列{an},则称S = a1 + a2 + a3 + ... + an + ...为该数列的无穷级数。
其中,ai为无穷级数的通项。
2. 无穷级数的性质无穷级数具有以下几个性质:2.1 收敛性:如果无穷级数的部分和数列{Sn}存在有限极限s,即lim(n→∞)Sn = s,则称该无穷级数收敛,s为该无穷级数的和。
2.2 敛散性:如果无穷级数的部分和数列{Sn}不存在有限极限,即lim(n→∞)Sn不存在或为无穷大,则称该无穷级数发散。
2.3 绝对收敛性:如果无穷级数的绝对值级数收敛,则称该无穷级数绝对收敛。
2.4 条件收敛性:如果无穷级数收敛但绝对值级数发散,则称该无穷级数条件收敛。
3. 常见的无穷级数3.1 等差数列的无穷级数等差数列的无穷级数是一类常见的无穷级数。
它的通项可以表示为an = a + (n-1)d,其中a为首项,d为公差。
等差数列的无穷级数可以用以下公式进行求和:Sn = n(a + a + (n-1)d)/23.2 等比数列的无穷级数等比数列的无穷级数也是常见的无穷级数类型。
它的通项可以表示为an = ar^(n-1),其中a为首项,r为公比(不等于0)。
等比数列的无穷级数可以用以下公式进行求和:S = a/(1-r),当|r|<1时3.3 调和级数调和级数是一类极其重要的无穷级数,它的通项可以表示为an = 1/n。
调和级数的部分和数列可以用以下公式表示:Sn = 1 + 1/2 + 1/3 + ... + 1/n4. 无穷级数的应用无穷级数在数学及其他领域中有广泛的应用。
无穷级数总结
无穷级数总结一、概念与性质1.定义:对数列U1,U2^|,U^| , U n称为无穷级数,U n 称为一般项;若部分和数列{S n}有极限S,即lim S n S,称级数收敛,否则称为发散•n2•性质①设常数C 0,贝U U n与CU n有相同的敛散性;n 1 n 1②设有两个级数U n与V n,若U n S,V* ,则(U n V n) S ;n 1 n 1 n 1 n 1 n 1若U n收敛,V n发散,则(片V n )发散;n 1 n 1 n 1若U n,V n均发散,则(U n冷)敛散性不确定;n 1 n 1 n 1③添加或去掉有限项不影响一个级数的敛散性;④设级数U n收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和.n 1注:①一个级数加括号后所得新级数发散,则原级数发散;②一个级数加括号后收敛,原级数敛散性不确定.⑤级数U n收敛的必要条件:lim U n 0 ;n 1 n注:①级数收敛的必要条件,常用判别级数发散;②若lim U n 0,则U n未必收敛;n n 1③若U n发散,则lim U n 0未必成立. nn 1二、常数项级数审敛法1.正项级数及其审敛法①定义:若U n 0,则U n称为正项级数•n 1②审敛法:(ii ) 比较审敛法:设 U n ①与 V n ②都是正项级数,且U n %(n 1,2,),n 1n 1川则若②收敛则①收敛;若①发散则②发散•A. 若②收敛,且存在自然数N ,使得当n N 时有U n k%(k 0)成立,则①收敛;若②发散,且存在自然数 N ,使得当n N 时有U n kv n (k 0)成立,则 ①发散;1B. 设 U n 为正项级数,若有 p 1使得U n 帀(n 1,2,川),则U n 收敛;若n 11( U n (n nC. 极限形式:U n 与 V n 有相同的敛散性.n 1n 1注:常用的比较级数:①几何级数:n 1 arr 1 1 r ・n 1发散r 1②p 级数:1收敛P 1时n 1n p发散P 1时, ③调和级数:11 1 1发散.n 1 n2n(iii )比值判别法(达郎贝尔判别法)设 a n 是正项级数,若n 11,或iim; a n 1,推不出级数的敛散.例丄与2,虽然nn 1 n n 1 n充要条件:正项级数U n 收敛的充分必要条件是其部分和数列有界),贝U Un 发散.n 11,2, U n ①与 V n ②都是正项级数,若lim 也1(0丨 ),则1 nV n①limna n 1 anr 1,则 a n 收敛;②lim 也 n 1nan r 1,则 a n 发散.n 1注:若limna n 1 anlim a n^ 1, lim n a n 1,但丄发散,而g收敛.n a n n■'n 1 n n 1 n2n ___(iv)根值判别法(柯西判别法)设a n是正项级数,』m ■, a n,若 1 ,n 1 n级数收敛,若1则级数发散.(v)极限审敛法:设u n o,且lim n p u n l,则①lim n p U n l 0且p 1,则级n n数U n发散;②如果p 1,而lim n p U n l(0 l ),则其收n 1 n敛.(书上P317-2- (1))注:凡涉及证明的命题,一般不用比值法与根值法,一般会使用比较判别法•正项级数的比(根)值判别法不能当作收敛与发散的充要条件,是充分非必要条件.2.交错级数及其审敛法①定义:设U n 0(n 1,2J||),则(1)n 1U n称为交错级数.n 1②审敛法:莱布尼兹定理:对交错级数(1)n 1u n,若u n u n 1且lim u n0,n 1 n贝U ( 1)n1u n收敛.n 1注:比较u n与u n 1的大小的方法有三种:①比值法,即考察也是否小于1;u n②差值法,即考察u n u n 1是否大于0;③由u n找出一个连续可导函数f(x),使u n f(n) ,(n 1,2,)考察f (x)是否小于0.3.一般项级数的判别法:①若u n绝对收敛,则u n收敛.n 1 n 1②若用比值法或根值法判定|u n |发散,则u n必发散.n 1 n 1、幕级数1. 定义: a n X n称为幕级数.n 02. 收敛性有X 处绝对收敛.反之,若幕级数 a n X n在X !处发散,则其在满足x X !n 0的所有X 处发散. ②收敛半径(i) 定义:若幕级数在X X 0点收敛,但不是在整个实轴上收敛,则必存在一个正数R ,使得①当X X 0 R 时,幕级数收敛;②当XX 。
大学数学易考知识点无穷级数与收敛性
大学数学易考知识点无穷级数与收敛性在大学数学中,无穷级数与收敛性是一个重要的知识点。
本文将介绍无穷级数的概念、收敛性的判定方法以及相关的应用。
一、无穷级数的概念无穷级数是一种特殊的数列求和形式,它是由无穷多个项相加而得到的结果。
一般来说,无穷级数可以写成如下形式:S = a₁ + a₂ + a₃ + ...其中,a₁、a₂、a₃等为级数的各项。
二、收敛性的判定方法判断一个无穷级数的收敛性是数学中常见的问题之一,下面将介绍几种常用的判定方法。
1. 级数收敛的必要条件如果一个无穷级数收敛,那么它的通项必须趋于零,即lim(n→∞)aₙ = 0。
2. 正项级数的收敛性判定如果无穷级数的所有项都是非负数,并且该级数的前n项和有上界(即求和式Sn有上确界),则该级数收敛;若前n项和没有上界(即求和式Sn没有上确界),则该级数发散。
3. 比值判别法设有一个正项级数Σaₙ,若lim(n→∞)aₙ₊₁/aₙ存在且小于1,则该级数收敛;若lim(n→∞)aₙ₊₁/aₙ存在且大于1,则该级数发散;若lim(n→∞)aₙ₊₁/aₙ等于1,则该判定法不起作用,需要使用其他方法进行判定。
4. 根值判别法设有一个正项级数Σaₙ,若lim(n→∞)√(aₙ)存在且小于1,则该级数收敛;若lim(n→∞)√(aₙ)存在且大于1,则该级数发散;若lim(n→∞)√(aₙ)等于1,则该判定法不起作用,需要使用其他方法进行判定。
5. 绝对收敛与条件收敛若一个级数及其绝对值级数都收敛,则称该级数为绝对收敛;若一个级数收敛但其绝对值级数发散,则称该级数为条件收敛。
三、收敛性的应用无穷级数的收敛性在数学和物理学等领域中有着广泛的应用。
1. 泰勒级数泰勒级数是无穷级数在微积分中的一种重要应用。
它可以将一个函数以无穷项的形式表示为一个级数,从而可以方便地进行近似计算和研究函数的性质。
2. 随机事件概率计算在概率论中,无穷级数的收敛性常用于计算随机事件的概率。
(完整版)无穷级数总结.docx
无穷级数总结一、概念与性质1.定义:对数列 u1, u2 ,L,u n L ,u n称为无穷级数, u n称为一般项;若部分和n 1数列 { S n} 有极限S,即lim S n S ,称级数收敛,否则称为发散 .n2.性质①设常数 c0 ,则u n与cu n有相同的敛散性;n 1n 1②设有两个级数u n与v n,若u n s ,v n,则(u n v n ) s;n1n 1n1n 1n 1若u n收敛,v n发散,则(u n v n ) 发散;n 1n 1n 1若u n,v n均发散,则(u n v n ) 敛散性不确定;n 1n 1n 1③添加或去掉有限项不影响一个级数的敛散性;④设级数u n收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和.n 1注:①一个级数加括号后所得新级数发散,则原级数发散;②一个级数加括号后收敛,原级数敛散性不确定.⑤级数u n收敛的必要条件: lim u n0 ;nn 1注:①级数收敛的必要条件,常用判别级数发散;②若 lim u n 0 ,则u n未必收敛;n n 1③若u n发散,则n 1二、常数项级数审敛法1.正项级数及其审敛法lim u n0 未必成立.n①定义:若 u n0 ,则u n称为正项级数.n 1② 审敛法:( i)充要条件:正项级数u n收敛的充分必要条件是其部分和数列有界.n 1( ii )比较审敛法:设 u n ①与v n ②都是正项级数, 且 u nv n (n1,2,L ) ,n 1n 1则若②收敛则①收敛;若①发散则②发散 .A. 若②收敛,且存在自然数 N ,使得当 nN 时有 u nkv n (k 0) 成立,则①收敛;若②发散,且存在自然数 N ,使得当 nN 时有 u n kv n (k0) 成立,则①发散;B. 设u n 为正项级数,若有p 1 使得 u1 (n 1,2,L ) ,则u n收敛;若n 1nnpn1u n1u n 发散 .(n 1,2,L ) ,则nn 1C. 极限形式:设u n ①与v n ②都是正项级数,若 limu nl (0 l) ,则n 1n 1nv nu n 与v n 有相同的敛散性 .n 1n 1注:常用的比较级数:ar n 1ar 1 ;①几何级数:1 rn 1发散r11收敛p时② p 级数:1 ;n 1 n p发散 p1时③ 调和级数:1111 发散.1n2nn( iii )比值判别法(达郎贝尔判别法)设a n 是正项级数,若n 1①注:若lima n 1r1,则 a n 收敛;② lima n 1r 1,则a n 发散.na nn 1na nn 1an 1n11lim1,或 lim a n1 ,推不出级数的敛散 .例与,虽然a nn 1n n 1n 2nnliman 11, lim n an 1 ,但1 发散,而 1 收敛 .na nnn 1nn 1n 2( iv )根值判别法(柯西判别法)设na n 是正项级数, lim an,若 1 ,n 1n级数收敛,若1则级数发散.( v)极限审敛法:设u n0 ,且lim n p u n l ,则①lim n p u n l0 且 p 1 ,则级n n数u n发散;②如果 p 1 ,而 lim n p u n l (0l) ,则其收n1n敛.(书上 P317-2-(1))注:凡涉及证明的命题,一般不用比值法与根值法,一般会使用比较判别法.正项级数的比(根)值判别法不能当作收敛与发散的充要条件,是充分非必要条件.2.交错级数及其审敛法①定义:设 u n 0(n 1,2,L ) ,则( 1)n 1u n称为交错级数.n 1②审敛法:莱布尼兹定理:对交错级数( 1)n 1u n,若 u n un 1且 lim u n0 ,n 1n则( 1)n 1 u n收敛.n 1注:比较 u n与 u n 1的大小的方法有三种:①比值法,即考察u n 1是否小于 1;u n②差值法,即考察 u n u n 1是否大于0;③由 u n找出一个连续可导函数 f ( x) ,使 u n f (n), (n 1,2, ) 考察 f ( x) 是否小于0.3.一般项级数的判别法:①若u n绝对收敛,则u n收敛 .n 1n1②若用比值法或根值法判定| u n |发散,则u n必发散.n1n1三、幂级数1.定义:a n x n称为幂级数.n 02.收敛性① 阿贝尔定理:设幂级数a n x n在 x00处收敛,则其在满足 x x0的所n 0有 x 处绝对收敛.反之,若幂级数 a n x n在 x1处发散,则其在满足 xx1n 0的所有 x 处发散.② 收敛半径(i)定义:若幂级数在x x0点收敛,但不是在整个实轴上收敛,则必存在一个正数 R ,使得①当x x0R 时,幂级数收敛;②当x x0R 时,幂级数发散;R称为幂级数的收敛半径.(ii )求法:设幂级数 a n x n的收敛半径为R,其系数满足条件 lim an 1l ,n 0n a n或 lim n a n l,则当 0 l时, R1;当 l 0 时, R,n l当l时,R 0.注:求收敛半径的方法却有很大的差异.前一个可直接用公式,后一个则须分奇、偶项(有时会出现更复杂的情况)分别来求.在分成奇偶项之后,由于通项中出现缺项,由此仍不能用求半径的公式直接求,须用求函数项级数收敛性的方法.(i ii )收敛半径的类型A.R 0 ,此时收敛域仅为一点;B.R,此时收敛域为( , );C. R =某定常数,此时收敛域为一个有限区间.3.幂级数的运算(略)4.幂级数的性质①若幂级数的收敛半径R 0 ,则和函数S( x) a n x nn 0②若幂级数的收敛半径R 0 ,则和函数S( x) a n x nn 0在收敛区间在收敛区间( R, R) 内连续.( R, R) 内可导,且可逐项求导,即 S ( x) (a n x n )(a n x n )na n x n 1,收敛半径不变.n 0n 0n 1③若幂级数的收敛半径 R 0 ,则和函数S( x) a n x n在收敛区间 ( R, R) 内可积,n0x xa n t n )dt x且可逐项积分,即S(t )dt(a n t n dt ( x ( R, R)) ,收敛半径不00n 0n 00变.5.函数展开成幂级数①若 f ( x) 在含有点 x 0 的某个区间 I 内有任意阶导数, f ( x) 在 x 0 点的 n 阶泰勒公式为 f ( x)f ( x 0 ) f (x 0 )( x x 0 )f (x 0 )2 f (n) ( x 0 )2! (x x 0 )( x x 0 )n!f (n1) ()( x x 0 )( n 1),记 R n ( x) f (n1) ()x 0) ( n 1) , 介于 x, x 0 之间,则 f ( x) 在 ( n 1)!(n 1)! ( xI 内能展开成为泰勒级数的充要条件为lim R n ( x) 0,x I .n②初等函数的泰勒级数 ( x 0 0)( i ) e xx n , x (,) ;n 0 n!( ii ) sin x(1) n 1 x 2n 1 , x( ,) ;n 1(2n 1)!( iii ) cos x( 1) nx 2n( ,) ;( 2n)! , xn 0( iv ) ln(1 x)( 1) n x n 1( 1, 1] ;n 1, xn 0( v ) (1 x)1(1) ( n 1) x n , x( 1, 1), (R) ;n 1n!( vi )1xx n , x1 ;1 x( 1) n x n , x 1.1 n 01 n 06.级数求和①幂级数求和函数解题程序( i )求出给定级数的收敛域;( ii )通过逐项积分或微分将给定的幂级数化为常见函数展开式的形式(或易看出其假设和函数 s( x) 与其导数 s ( x) 的关系),从而得到新级数的和函数;注:系数为若干项代数和的幂级数, 求和函数时应先将级数写成各个幂级数的代数和,然后分别求出它们的和函数, 最后对和函数求代数和, 即得所求级数的和函数.②数项级数求和( i )利用级数和的定义求和,即 lim S n s ,则u n s ,其中nn 1ns n u 1 u 2u nu k .根据 s n 的求法又可分为:直接法、拆项法、递k1推法.A. 直接法:适用于u k 为等差或等比数列或通过简单变换易化为这两种数列;k 1B.拆项法:把通项拆成两项差的形式,在求n 项和时,除首尾两项外其余各项对消掉.( ii )阿贝尔法(构造幂级数法)a nlima n x n ,其中幂级数a n x n ,可通n 0x 1 n 0n 0过逐项微分或积分求得和函数 S(x) .因此a nlim s(x) .n 0x 1四、傅里叶级数 1. 定义①定义 1:设 f (x) 是以 2为周期的函数,且在 [ , ] 或 [ 0, 2 ] 上可积,则11a nf ( x) cos nxdx11b nf ( x) sin nxdx2 0, 1, 2 ) ,f (x) cosnxdx, (n 02 1, 2, ) ,f (x) sin nxdx,( n 0称为函数 f (x) 的傅立叶系数.②定义 2:以 f (x) 的傅立叶系数为系数的三角级数1 a 0(a n cos nx b n sin nx) .2n 1称为函数 f ( x) 的傅立叶级数,表示为f ( x)~1a 0(a n cos nx b n sin nx) .2n 1③定义 3:设 f (x) 是以 2l 为周期的函数,且在 [l , l ] 上可积,则以1l f (x) cosn xdx, (n 0, 1, 2 ) ,a nll l1lf (x) sinnxdx, (n 1, 2) 为系数的三角级数 b nll l1a 0( a n cosnx b n sinnx)称为 f ( x) 的傅立叶级数,表示为2n 1llf ( x)~ 1a 0(a n cosnx b n sin nx) .2l ln 12. 收敛定理(狄里赫莱的充分条件)设函数f ( x) 在区间 [ , ] 上满足条件①除有限个第一类间断点外都是连续的;②只有有限个极值点,则 f ( x) 的傅立叶级数在 [ ,] 上收敛,且有f x ), x 是 f x 的连续点 ;( ( )1[ f ( x 0 0) f ( x 0 0)],a 02 .( a n cos nx b n sin nx)2x 是 f x 的第一类间断点 ;n 1( )1[ f (0)f (0)], x23. 函数展开成傅氏级数①周期函数( i )以 2 为周期的函数 f ( x) : f ( x)~ aa n cos nxb n sin nx2n 11f ( x) cos nxdx(n 0, 1, 2, ) , b n 1f ( x) sin nxdx(n1, 2,) ;a n注:①若 f ( x) 为奇函数,则 f ( x)~b n sin nx (正弦级数 ), a n 0 (n0, 1, 2, )n 1b n2f ( x)sin nxdx(n1, 2, ) ;②若 f ( x) 为偶函数,则f x ~a 0a n cos nx (余弦级数 ),( )2n 1a n2f ( x)cos nxdx (n0,1, 2, ) , b n 0(n 1, 2, ) .( ii )以 2l 为周期的函数 f ( x) : f x ~aa nnn x)( )2 cosx + bn sinn 1l l1lnxdx(n0, 1, 2,1l n xdx(n 1, 2, ) ;a nf (x) cos) , b nf (x) sinllllll注:①若 f ( x) 为奇函数,则 f ( x)~b n sinn0 (n0,1, 2, )x (正弦级数 ), a nn 1l2 b nll 0f ( x)sin nxdx(n 1, 2, ) ;l②若 f ( x) 为偶函数,则f x ~aa nn ( )cosx , (余弦级数 )2n 1l2a nllf ( x)cos nxdx (n 0, 1, 2, ) , b n 0(n 1, 2, ) .l②非周期函数( i )奇延拓:f ( x), 0 x,则 F ( x) 除 x 0 外在A. f (x) 为 [0, ] 上的非周期函数,令 F ( x)x),xf ([, ] 上 为 奇 函 数 , f ( x)~ b n sin nx ( 正 弦 级 数 ) , b n2f (x)sin nxdxn 1(n1, 2, ) ;B.f (x), 0 x lf (x) 为 [0, l ] 上的非周期函数,则令 F (x)f ( x), l,则 F (x) 除 x 0 外x 0在 [,] 上为奇函数,~n2f ( x)b n sin x (正弦级数),b nn 1l l (n1, 2,) .lnf ( x)sin xdx l( ii )偶延拓:A. f (x)为[0,] 上的非周期函数,令 F ( x) f ( x),0x,f ( x),x0则 F (x) 除x0 外在[ ,] 上为偶函数, f (x)~a0a n cosnx (余2n 1弦级数 ),a n 20, 1, 2,) .f ( x)cos nxdx (nB. f (x)为[0, l ]上的非周期函数,令 F ( x) f ( x),0x l,则f ( x),l x0f ( x)~a0a n cosnx (余弦级数),a n22n 1l llf ( x)cosnxdx (n 0,1, 2, ).l注:解题步骤:①画出图形、验证狄氏条件.画图易于验证狄氏条件,易看出奇偶性;②求出傅氏系数;③写出傅氏级数,并注明它在何处收敛于 f ( x) .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无穷级数总结Document number:NOCG-YUNOO-BUYTT-UU986-1986UT无穷级数总结一、概念与性质 1. 定义:对数列12,,,nu u u ,1n n u ∞=∑称为无穷级数,n u 称为一般项;若部分和数列{}n S 有极限S ,即lim n n S S →∞=,称级数收敛,否则称为发散.2. 性质①设常数0≠c ,则∑∞=1n n u 与∑∞=1n n cu 有相同的敛散性;②设有两个级数∑∞=1n n u 与∑∞=1n n v ,若∑∞==1n n s u ,σ=∑∞=1n n v ,则∑∞=±=±1)(n n n s v u σ;若∑∞=1n n u 收敛,∑∞=1n n v 发散,则∑∞=±1)(n n n v u 发散;若∑∞=1n n u ,∑∞=1n n v 均发散,则∑∞=±1)(n n n v u 敛散性不确定;③添加或去掉有限项不影响一个级数的敛散性;④设级数∑∞=1n n u 收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和.注:①一个级数加括号后所得新级数发散,则原级数发散;②一个级数加括号后收敛,原级数敛散性不确定. ⑤级数∑∞=1n n u 收敛的必要条件:0lim =∞→n n u ;注:①级数收敛的必要条件,常用判别级数发散;②若0lim =∞→n n u ,则∑∞=1n n u 未必收敛;③若∑∞=1n n u 发散,则0lim =∞→n n u 未必成立.二、常数项级数审敛法 1. 正项级数及其审敛法① 定义:若0n u ≥,则∑∞=1n n u 称为正项级数.② 审敛法: (i )充要条件:正项级数∑∞=1n n u 收敛的充分必要条件是其部分和数列有界.(ii )比较审敛法:设∑∞=1n n u ①与∑∞=1n n v ②都是正项级数,且(1,2,)n n u v n ≤=,则若②收敛则①收敛;若①发散则②发散.A. 若②收敛,且存在自然数N ,使得当n N ≥时有(0)n n u kv k ≤>成立,则①收敛;若②发散,且存在自然数N ,使得当n N ≥时有(0)n n u kv k ≥>成立,则①发散;B. 设∑∞=1n n u 为正项级数,若有1p >使得1(1,2,)n p u n n ≤=,则∑∞=1n n u 收敛;若1(1,2,)n u n n ≥=,则∑∞=1n n u 发散.C. 极限形式:设∑∞=1n n u ①与∑∞=1n n v ②都是正项级数,若lim(0)nn nu l l v →∞=<<+∞,则 ∑∞=1n nu与∑∞=1n n v 有相同的敛散性.注:常用的比较级数: ①几何级数:∑∞=-⎪⎩⎪⎨⎧≥<-=11111n n r r r aar 发散;②-p 级数:∑∞=⎩⎨⎧≤>1111n p p p n 时发散时收敛;③ 调和级数:∑∞=++++=112111n nn 发散. (iii )比值判别法(达郎贝尔判别法)设∑+∞=1n n a 是正项级数,若①1lim 1<=++∞→r a a n n n ,则∑+∞=1n n a 收敛;②1lim 1>=++∞→r a a n n n ,则∑+∞=1n n a 发散. 注:若1lim 1=++∞→n n n a a,或lim 1n =,推不出级数的敛散.例∑+∞=11n n 与∑+∞=121n n ,虽然1lim 1=++∞→nn n a a,lim 1n =,但∑+∞=11n n 发散,而∑+∞=121n n 收敛. (iv )根值判别法(柯西判别法)设∑+∞=1n n a是正项级数,lim n ρ=,若1<ρ,级数收敛,若1>ρ则级数发散.(v )极限审敛法:设0n u ≥,且lim p n n n u l →∞=,则①0lim >=∞→l u n n p n 且1≤p ,则级数∑+∞=1n n u 发散;②如果1>p ,而)0(lim +∞<<=∞→l l u n n p n ,则其收敛.(书上P317-2-(1))注:凡涉及证明的命题,一般不用比值法与根值法,一般会使用比较判别法.正项级数的比(根)值判别法不能当作收敛与发散的充要条件,是充分非必要条件. 2.交错级数及其审敛法①定义:设0(1,2,)n u n ≥=,则11(1)n n n u ∞-=-∑称为交错级数.②审敛法:莱布尼兹定理:对交错级数11(1)n n n u ∞-=-∑,若1+≥n n u u 且0lim =∞→n n u ,则11(1)n n n u ∞-=-∑收敛.注:比较n u 与1+n u 的大小的方法有三种:①比值法,即考察nn u u 1+是否小于1; ②差值法,即考察1+-n n u u 是否大于0;③由n u 找出一个连续可导函数)(x f ,使),2,1(),( ==n n f u n 考察)(x f '是否小于0.3.一般项级数的判别法: ①若∑∞=1n n u 绝对收敛,则∑∞=1n n u 收敛.②若用比值法或根值法判定||1∑∞=n n u 发散,则∑∞=1n n u 必发散.三、幂级数1. 定义:n n n x a ∑∞=0称为幂级数.2. 收敛性① 阿贝尔定理:设幂级数∑+∞=0n n n x a 在00≠x 处收敛,则其在满足0x x <的所有x 处绝对收敛.反之,若幂级数∑+∞=0n n n x a 在1x 处发散,则其在满足1x x >的所有x 处发散.② 收敛半径(i )定义:若幂级数在0x x =点收敛,但不是在整个实轴上收敛,则必存在一个正数R ,使得①当R x x <-0时,幂级数收敛;②当R x x >-0时,幂级数发散;R 称为幂级数的收敛半径.(ii )求法:设幂级数∑+∞=0n n n x a 的收敛半径为R ,其系数满足条件l a a n n n =++∞→1lim,或l a n n n =+∞→lim ,则当+∞<<l 0时,lR 1=;当0=l 时,+∞=R ,当+∞=l 时,0=R .注:求收敛半径的方法却有很大的差异.前一个可直接用公式,后一个则须分奇、偶项(有时会出现更复杂的情况)分别来求.在分成奇偶项之后,由于通项中出现缺项,由此仍不能用求半径的公式直接求,须用求函数项级数收敛性的方法.(iii )收敛半径的类型 A.0=R ,此时收敛域仅为一点; B.+∞=R ,此时收敛域为),(∞+-∞;C.R =某定常数,此时收敛域为一个有限区间. 3.幂级数的运算(略) 4.幂级数的性质①若幂级数的收敛半径0>R ,则和函数∑+∞==0)(n n n x a x S 在收敛区间),(R R -内连续.②若幂级数的收敛半径0>R ,则和函数∑+∞==0)(n n n x a x S 在收敛区间),(R R -内可导,且可逐项求导,即∑∑∑+∞=+∞=-+∞=='='='0110)()()(n n n n nn n nn x na x a x a x S ,收敛半径不变.③若幂级数的收敛半径0>R ,则和函数∑+∞==0)(n n n x a x S 在收敛区间),(R R -内可积,且可逐项积分,即⎰⎰∑+∞===x xn nn dt t a dt t S 0)()(∑⎰+∞=-∈0)),((n xn n R R x dt t a ,收敛半径不变. 5.函数展开成幂级数①若)(x f 在含有点0x 的某个区间I 内有任意阶导数,)(x f 在0x 点的n 阶泰勒公式为+-++-''+-'+=)(!)()(!2)())(()()(00)(200000x x n x f x x x f x x x f x f x f n)1(0)1()()!1()(++-+n n x x n f ξ,记)1(0)1()()!1()()(++-+=n n n x x n f x R ξ,ξ介于0,x x 之间,则)(x f 在I 内能展开成为泰勒级数的充要条件为I x x R n n ∈∀=+∞→,0)(lim .②初等函数的泰勒级数)0(0=x (i )∑+∞=∞+-∞∈=0),(,!n nxx n x e ; (ii )∑+∞=--∞+-∞∈--=1121),(,)!12()1(sin n n n x n x x ; (iii )∑+∞=∞+-∞∈-=2),(,)!2()1(cos n nn x n x x ; (iv )∑+∞=+-∈+-=+01]1,1(,1)1()1ln(n n n x n x x ; (v )∑+∞=∈-∈+--+=+1)(),1,1(,!)1()1(1)1(n n R x x n n x ααααα;(vi )∑+∞=<=-01,11n nx x x ;∑+∞=<-=+01,)1(11n n n x x x . 6. 级数求和①幂级数求和函数解题程序 (i )求出给定级数的收敛域;(ii )通过逐项积分或微分将给定的幂级数化为常见函数展开式的形式(或易看出其假设和函数)(x s 与其导数)(x s '的关系),从而得到新级数的和函数;注:系数为若干项代数和的幂级数,求和函数时应先将级数写成各个幂级数的代数和,然后分别求出它们的和函数,最后对和函数求代数和,即得所求级数的和函数. ②数项级数求和(i )利用级数和的定义求和,即s S n n =∞→lim ,则∑∞==1n n s u ,其中∑==+++=nk kn n uu u u s 121 .根据n s 的求法又可分为:直接法、拆项法、递推法.A.直接法:适用于 ∑∞=1k k u 为等差或等比数列或通过简单变换易化为这两种数列;B.拆项法:把通项拆成两项差的形式,在求n 项和时,除首尾两项外其余各项对消掉.(ii )阿贝尔法(构造幂级数法)∑∑∞=-→∞==010lim n nn x n n x a a ,其中幂级数∑∞=0n n n x a ,可通过逐项微分或积分求得和函数)(x S .因此)(lim 10x s a x n n -→∞==∑.四、傅里叶级数 1. 定义①定义1:设)(x f 是以π2为周期的函数,且在],[ππ-或]2,0[π上可积,则)2,1,0(,cos )(1cos )(120===⎰⎰-n nxdx x f nxdx x f a n πππππ,),2,1(,sin )(1sin )(120===⎰⎰-n nxdx x f nxdx x f b n πππππ,称为函数)(x f 的傅立叶系数.②定义2:以)(x f 的傅立叶系数为系数的三角级数∑∞=++10)sin cos (21n n nnx b nx aa .称为函数)(x f 的傅立叶级数,表示为∑∞=++10)sin cos (21)(n n nnx b nx aa ~x f .③定义3:设)(x f 是以l 2为周期的函数,且在],[l l -上可积,则以 ⎰-==ll n n xdx ln x f la )2,1,0(,cos )(1 π, ⎰-==lln n xdx ln x f lb )2,1(,sin )(1π为系数的三角级数 ∑∞=++10)sin cos(21n n n x l n b x l n a a ππ 称为)(x f 的傅立叶级数,表示为 ∑∞=++10)sin cos(21)(n n nx ln b x l n aa ~x f ππ. 2.收敛定理(狄里赫莱的充分条件)设函数)(x f 在区间],[ππ-上满足条件①除有限个第一类间断点外都是连续的;②只有有限个极值点, 则)(x f 的傅立叶级数在],[ππ-上收敛,且有∑∞=++10)sin cos (2n n n nx b nx a a ⎪⎪⎪⎩⎪⎪⎪⎨⎧±=-++-++-=πππx f f ;x f x x f x f ;x f x x f )],0()0([21)()],0()0([21)(),(000的第一类间断点是的连续点是. 3.函数展开成傅氏级数 ①周期函数(i )以π2为周期的函数)(x f :∑∞=++10sin cos 2)(n n nnx b nx aa~x f⎰-=πππ)(1x f a n ),2,1,0(cos =n nxdx ,1()n b f x πππ-=⎰),2,1(sin =n nxdx ;注:①若)(x f 为奇函数,则∑∞=1sin )(n n nx b ~x f (正弦级数),0=n a ),2,1,0( =n2()sin n b f x nxdx ππ=⎰),2,1( =n ;②若)(x f 为偶函数,则∑∞=+10cos 2)(n nnx aa~x f (余弦级数),2()cos n a f x nxdx ππ=⎰),2,1,0( =n ,0=n b ),2,1( =n .(ii )以l 2为周期的函数)(x f :∑∞=+10cos2)(n nx l n aa~x f π+)sin x ln b n π ⎰-=ll n x f la )(1),2,1,0(cos =n xdx l n π,⎰-=l l n x f l b )(1),2,1(sin =n xdx ln π; 注:①若)(x f 为奇函数,则∑∞=1sin )(n n x l n b ~x f π(正弦级数),0=n a ),2,1,0( =n 02()sin l n n b f x xdx l lπ=⎰ ),2,1( =n ; ②若)(x f 为偶函数,则∑∞=+10cos2)(n n x ln a a~x f π,(余弦级数) 02()cos l n n a f x xdx l lπ=⎰),2,1,0( =n ,0=n b ),2,1( =n . ②非周期函数(i )奇延拓:A.)(x f 为],0[π上的非周期函数,令⎩⎨⎧<≤---≤≤=0),(0),()(x x f x x f x F ππ,则)(x F 除0=x 外在],[ππ-上为奇函数,∑∞=1sin )(n n nx b ~x f (正弦级数),02()sin n b f x nxdx ππ=⎰),2,1( =n ;B. )(x f 为],0[l 上的非周期函数,则令⎩⎨⎧<≤---≤≤=0),(0),()(x l x f lx x f x F ,则)(x F 除0=x 外在],[ππ-上为奇函数,∑∞=1sin)(n n x l n b ~x f π(正弦级数),02()sinl n n b f x xdx llπ=⎰),2,1( =n .(ii )偶延拓:A.)(x f 为],0[π上的非周期函数,令⎩⎨⎧<≤--≤≤=0),(0),()(x x f x x f x F ππ,则)(x F 除0=x 外在],[ππ-上为偶函数,∑∞=+10cos 2)(n nnx aa~x f (余弦级数),2()cos n a f x nxdx ππ=⎰),2,1,0( =n .B.)(x f 为],0[l 上的非周期函数,令⎩⎨⎧<≤--≤≤=0),(0),()(x l x f lx x f x F ,则∑∞=+10cos2)(n n x l n a a~x f π(余弦级数),02()cosl n n a f x xdx llπ=⎰),2,1,0( =n . 注:解题步骤:①画出图形、验证狄氏条件.画图易于验证狄氏条件,易看出奇偶性; ②求出傅氏系数;③写出傅氏级数,并注明它在何处收敛于)(x f .。