ASTM D256-05塑料及电绝缘材料的抗冲击性的测试方法

合集下载

ASTM D256-97塑料冲击试验方法(中文版)

ASTM D256-97塑料冲击试验方法(中文版)
C 的台钳、试样、冲击边的相互关系
图 2 悬臂梁试验方法 E 的台钳、试样、冲击边的相互关系 于 IZOD 冲击强度小于 27J/m(0.5 英尺·磅/英寸)的材料(见附录×5)。用试验方法 C 所获得的抛掷修正只是对抛掷误差的一个大致估计,这是由于在再抛掷试样过程中,转 速与线速不可能与原来的抛掷相同以及试样中贮存的应力在试样断裂过程中会作为动 能释放出来的原因。
3 术语
3.1 定义:与塑料有关的定义见术语 D883。 3.2 本标准的特定术语的定义 3.2.1 悬臂:一条仅固定一端的突出梁。 3.2.2 V 型口敏感性: 一种评定 V 型缺口半径的作用影响而造成冲击能量差别的 测量方法。
4 试验种类
4.1 本试验方法中共有 4 个相似方法(见注 5)。所有方法使用相同的试验和样品 尺寸。从不同试验方法得到结果不具有相关性。
ASTM D256-1997
塑料的悬臂梁冲击性能检测的标准试验方法
本标准以固定编号 D256 出版,紧接在编号后的数字表示本方法当次被采用的年份,或在修订情况下表示最近 一次修订的年份。括号内的数字表示最近一次批准的年份。右上角希腊字母表示从最近一次修订或批准后的编辑改 变。
1 适用范围
1.1 本测试方法适用于塑料耐挠曲冲击破损性的测定,用安装在“标准化”仪器中 的“标准化”(注 1)摆锤作一次摆动,使标准试样断裂,试样所吸收的能量来表示。本 测试方法的标准试验要求试样有一道铣成的缺口(注 2)。在试验方法 A、C 和 D 中, 缺口处的强度集中从而导致脆性而非韧性断裂。在试验方法 E 中,通过将有缺口的试样 180°反向固定在台钳中,可得冲击强度。所有试验结果按每单位试样宽度或切口处的 面积所吸收的能量报出。
1
所有安全问题。使用者有必要制定适当的安全和健康条例,并在使用前确定规章制度的

塑料冲击强度测试标准

塑料冲击强度测试标准

塑料冲击强度测试标准塑料制品在日常生活和工业生产中广泛应用,其冲击强度是一个重要的性能指标。

塑料冲击强度测试标准旨在确保塑料制品在使用过程中能够承受一定的冲击力而不会破裂或变形,从而保障其安全可靠性。

本文将介绍塑料冲击强度测试的标准及相关内容。

首先,塑料冲击强度测试标准包括了测试方法、设备要求、试样制备、试验过程、数据处理等内容。

测试方法通常采用冲击试验机进行,根据不同的塑料类型和应用领域,可以选择不同的测试方法,如缺口冲击试验、冲击弯曲试验等。

设备要求包括冲击试验机的选择和校准,确保测试结果的准确性和可靠性。

试样制备是测试的前提,要求试样的制备符合标准规定,以保证测试结果的可比性和代表性。

试验过程包括试样安装、试验条件设定、冲击试验等环节,要求操作规范,确保测试结果的可靠性和重复性。

数据处理是测试的最后一步,要对测试数据进行准确的处理和分析,得出准确的冲击强度值。

其次,塑料冲击强度测试标准的制定和执行对于塑料制品的生产和应用具有重要意义。

通过遵循相关的测试标准,可以确保塑料制品的质量稳定和可靠,提高其在使用过程中的安全性和耐久性。

同时,对于塑料制品的生产企业和用户来说,也能够提供准确可靠的性能指标,为产品设计和选型提供参考依据。

此外,塑料冲击强度测试标准的制定还能够促进行业间的技术交流和经验分享,推动塑料制品行业的发展和进步。

最后,塑料冲击强度测试标准的执行和监督是保障塑料制品质量和安全的重要手段。

生产企业应当严格按照相关的测试标准进行产品质量控制和检测,确保产品符合国家和行业标准的要求。

监管部门和第三方检测机构应当加强对塑料制品的质量监督和抽检,对不符合标准要求的产品进行处置和追溯,维护市场秩序和消费者权益。

综上所述,塑料冲击强度测试标准对于塑料制品的质量控制和安全保障具有重要意义。

相关部门和企业应当重视塑料冲击强度测试标准的制定和执行,共同推动塑料制品行业的健康发展和进步。

同时,消费者也应当关注产品的质量标准,选择符合标准要求的塑料制品,保障自身的安全和权益。

etl认证塑胶件冲击测试标准

etl认证塑胶件冲击测试标准

etl认证塑胶件冲击测试标准ETL(Electrical Testing Laboratories)并非特定于塑胶件冲击测试的认证机构,而是一个提供电气产品安全认证服务的组织。

对于塑胶件冲击测试的标准,你可能需要参考相关的材料或产品测试标准。

常见用于评估塑胶件冲击性能的标准之一是ASTM(美国材料与试验协会)发布的标准。

以下是可能与塑胶件冲击测试相关的一些ASTM 标准:1.ASTM D256 - Standard Test Methods for Determining theIzod Pendulum Impact Resistance of Plastics:•这个标准规定了一种测定塑料冲击强度的方法,使用Izod 摆锤进行测试。

2.ASTM D4812 - Standard Test Method for UnnotchedCantilever Beam Impact Resistance of Plastics:•该标准涉及使用悬臂梁测试塑料的冲击抗性,测试不包括缺口的塑料。

3.ASTM D4226 - Standard Test Methods for Impact Resistanceof Rigid Poly(Vinyl Chloride) (PVC) Building Products:•该标准涉及测试刚性聚氯乙烯(PVC)建筑产品的冲击抗性。

4.ASTM D5628 - Standard Test Method for Impact Resistanceof Flat, Rigid Plastic Specimen by Means of a Striker Impacted by a Falling Weight (Gardner Impact):•该标准规定了一种使用Gardner冲击法测试平坦、刚性塑料试样的冲击抗性的方法。

请注意,具体的测试标准可能取决于你所涉及的塑胶材料类型、产品用途等因素。

ASTM D类最新标准目录(一)

ASTM D类最新标准目录(一)

ASTM D类最新标准目录( 一)D4-86(2004) 沥青含量试验方法D5-06e1 沥青材料的渗透性试验方法D6-95(2000)e1 油及沥青混合物加热损失试验方法D8-02 与道路和路面材料相关的术语D9-05 与木材相关的术语D12-88(1998) 未加工的桐油D13-02 松节油规范D16-03 与涂料、清漆、亮漆和有关产品相关的术语D20-03 路面焦油的蒸馏试验方法D25-99(2005) 圆木桩D29-98 虫胶树脂的抽样和试验方法D34-91(2003) 白颜料化学分析指南D36-95(2000)e1 沥青软化点试验方法(沥青软化点测定器)D38-94(2000)e1 木材防腐剂的抽样试验方法D41-05 铺屋面、防潮及防水用沥青底层D43-00 屋顶、防潮及防水材料用杂酚油底漆D49-83(2002) 铅丹的化学分析D50-90(2005) 含铁和锰的黄色、橙色、红色和褐色涂料的化学分析试验方法D56-05 泰格密闭闪点试验器测定闪点的试验方法D61-75(2004) 硬沥青的软化点的试验方法(水中方块试验法)D69-01 磨擦带的试验方法D70-03 半固态沥青材料的比重和密度的试验方法D71-94(2004) 固体硬沥青和地沥青的相对密度试验方法(变位法)D75-03 集料的抽样D76-99(2005) 纺织材料的抗拉试验机D79-86(2004) 氧化锌颜料D81-87(2003) 碱性碳酸盐铅白颜料D83-84(2002) 铅丹颜料D85-05 赭色颜料规范D86-05 大气压下石油产品蒸馏试验方法D87-04 石蜡熔点的试验方法(冷却曲线)D88-94(2005) 赛波特粘度的试验方法D91-02 润滑油的沉淀值试验方法D92-05a 用克利夫兰德开杯法测定石油产品的闪点和燃点的试验方法D93-02a 用潘斯基-马丁斯仪闭杯闪点测定器测定闪点的试验方法D94-02 石油产品的皂化值试验方法D95-05e1 蒸馏法测定石油产品及沥青材料中水的试验方法D97-05a 石油的倾点的试验方法D98-05 氯化钙D113-99 沥青材料的延展性的试验方法D115-02 电绝缘用含清漆试验溶剂的试验方法D116-86(2006) 电气设备用上釉陶瓷材料的试验D117-02 产自石油的电绝缘油的试验方法和规范导则D120-02a 橡胶绝缘手套D121-05 煤和焦炭术语D123-03 与纺织材料相关的术语D124-88(1998) 脱胶的豆油D126-87(2002) 含铬酸铅和氧化铬绿的黄、橙和绿色颜料的化学分析方法D127-05 石油蜡包括凡士林滴熔点的试验方法D128-98(2003)e1 润滑脂分析试验方法D129-00(2005) 石油产品中硫含量试验方法(通用氧弹法)D130-04e1 用铜条变色法检测石油产品对铜腐蚀性的测试方法D139-95(2001)e1 沥青材料浮选试验的检测方法D140-01 沥青材料的抽样D143-94(2000)e1 洁净木材小样品的试验D146-04 防水与屋面材料用沥青浸渍的油毡和编织物的抽样与试验方法D149-97a(2004) 固体电绝缘材料在工业电源频率下的介电击穿电压和介电强度的试验方法D150-98(2004) 固体电绝缘材料的(恒久电介质)的交流损耗特性和介电常数的测试方法D153-84(2003) 颜料比重测试方法D154-85(2001) 清漆试验D156-02e1 石油产品赛波特比测试方法(赛波特比色计法)D167-93(2004)e1 块焦比重和孔隙度的试验方法D168-94(2000) 杂酚油焦炭渣的测试方法D173-03 屋顶和防水材料用饱和沥青棉织物D176-00 电绝缘用固体充填化合物与浸渍剂的试验方法D178-01(2005) 橡胶绝缘垫子D185-84(1999 颜料,糊剂及涂料中粗颗粒的试验方法D187-94(2003)e1 煤油燃烧质量的测试方法D189-05 石油产品康拉孙残碳测试方法D197-87(2002) 粉煤的取样方法与细度试验方法D198-05a 结构尺寸木料静力试验法D202-97(2002)e1 电绝缘用未浸渍纸的抽样和试验方法D204-02 缝线的测试方法D209-81(2003) 灯黑颜料D210-05 骨炭颜料D211-67(2002) 铬黄和铬橙颜料D215-91(2002) 白色亚麻籽油涂料的化学分析D217-02 润滑剂针入度的测试方法D225-04 表面有矿物颗粒的沥青屋面板D226-06 铺顶和防水用沥青饱和有机毡D227-03 铺顶和防水用焦油沥青饱和有机毡D228-06 沥青屋面卷材,盖板和瓦的试验方法D229-01 电绝缘用硬质薄板及板材的试验方法D233-02 松脂的抽样和测试试验方法D234-82(1998) 生亚麻子油D235-02 矿物溶剂油(石油溶液油)(烃干洗溶液)规格D237-57(1997) 橙色紫胶和其他虫胶D240-02 弹式量热器测定液烃燃料燃烧热的试验方法D242-04 沥青铺路混合料用矿物填料D243-02 规定残渣渗透性测试方法D244-04 乳化沥青的测试方法D245-06 制定目测分等木材的结构等级及有关允许性能的规程D246-04 杂酚油和杂酚油-煤焦油溶液的蒸馏试验方法D256-06 塑料及电绝缘材料的抗冲击性的测试方法D257-99(2005) 绝缘材料的直流电阻或电导的试验方法D260-86(2001) 熟亚麻籽油D261-75(1999) 铁蓝颜料D262-81(1999) 群青蓝颜料D263-05 氧化铬绿颜料D267-82(2003) 黄青铜粉规格D268-01 涂料及其相关涂层和原料用挥发性溶剂及化学中间体的抽样和测试D269-97(2002) 松香和松香衍生物中不溶物的试验方法D276-00a 纺织品中纤维的鉴定方法(AATCC方法20)D279-02 颜料渗出的试验方法D280-01 颜料吸收的水份(及试验条件下挥发的其他物质)的测试方法D281-95(2002) 用刮刀磨损法测定颜料油吸附性的试验方法D283-84(1999) 一氧化铜和铜涂料化学分析试验方法D287-92(2006) 原油和石油产品API比重的试验方法(液体比重计法)D291-86(2002) 烟煤立方英尺重量的试验方法D293-93(2004) 焦炭筛析分析试验方法D295-99(2004) 电绝缘用棉质漆布的试验方法D297-93(2002)e2 橡胶制品的测试方法.化学方法D299-04e1 石棉纱的标准规范D301-95(2004) 可溶性硝化纤维素的试验方法D304-05 n-丁醇(丁醇)D305-84(2003) 黑色涂料中的溶剂萃取材料的试验方法D312-00 屋顶用沥青D315-95(2004)e1 机织石棉带的标准规范D319-04 合成的戊醇D322-97(2002)e1 蒸馏法测定汽油发动机废机油中汽油稀释剂的试验方法D323-99a 石油产品蒸气压力的测试方法D329-02 丙酮D330-93(2001) 2-丁氧基乙醇D331-05 2-乙氧基乙醇D332-87(2004) 白色颜料着色力的试验方法D333-01 透明漆和着色漆的试验方法D341-03 液体石油产品粘度-温度关系曲线图D344-97(2004) 用擦试外规评定法对涂料相对遮盖力的测试方法D345-02 道路和结构用氯化钙的抽样和试验方法D346-04e1 实验室分析用焦炭试样的收集和制备D347-97 杂酚油和煤焦油的体积和比重修正表D348-00 电绝缘用刚性管的测试方法D349-99(2004) 电绝缘用层压圆棒的试验方法D350-01 电绝缘用经处理软套管的试验方法D351-97(2003) 天然白云母块及薄片目检质量分级D352-97(2003) 电绝缘用涂浆云母的试验方法D358-98 涂料耐大气老试验用木片规格D360-89(2001) 紫胶清漆规范D363-90(2000) 磷酸三甲苯酯规格D365-01(2005) 可溶性硝酸纤维素基溶液的试验方法D367-94(2000)e1 杂酚油中苯不溶物的测试方法D368-89(2002) 杂酚油及油质防腐剂比重的试验方法D369-84(2002) 杂酚油馏份与残渣比重的测试方法D370-02e1 油质防腐剂脱水作用的试验方法D372-00(2006) 电绝缘用经处理的软套管规格D374-99(2004) 固体电绝缘厚度的测试方法D374M-99(2005) 固体电绝缘厚度的标准测试方法(米制)D375-95(2004)e1 石棉粗砂的标准规范D378-00 平型橡胶传送带的测试方法D380-94(2006) 橡胶软管的测试方法D381-04 用喷射蒸发法测定燃烧中原在胶的测试方法D387-00 使用机械研磨机测定有色颜料主色和着力色的试验方法D388-05 用排列法测定煤的分类D390-92(1999) 海上,陆地及淡水中用木桩,电杆和木材的防腐处理用煤柏油杂酚油规程D391-94(2000)e1 杂酚油-煤焦油溶液D395-03 橡胶压缩永久变形特性的试验方法D396-05 燃料油规范D402-02 稀释沥青产品蒸馏的测试方法 Standard Test Method for Distillationof Cut-Back Asphalt ic (Bituminous) ProductsD409-02 粉碎机法测定煤炭可磨性的试验方法 Standard Test Method for Grindabilityof Coal by t he Hardgrove-Machine MethodD411-98(2003) 电绝缘用紫胶片试验方法 Standard Test Methods for ShellacUsed for Electrical I nsulationD412-98a(2002)e1 硫化橡胶、热塑橡胶和热塑合成橡胶的拉伸试验方法 Standard Test Methods f or VulcanizedRubber and Thermoplastic Elastomers—TensionD413-98(2002)e1 橡胶特性-与软质基底粘附性的试验方法 Standard Test Methods for RubberPro perty—Adhesion to Flexible SubstrateD420-98(2003) 土壤粒度分析的测试方法 Standard Guide to SiteCharacterization for Engineering, Design, and ConstructionPurposesD421-85(2002) 土壤粒度分析试验方法 Standard Practice for Dry Preparationof Soil Samples for Particle-Size Analysis and Determination ofSoil ConstantsD422-63(2002)e1 土壤粒度分析试验方法 Standard Test Method forParticle-Size Analysis of Soils D425-88(2001) 土壤离心湿度当量试验方法 Standard Test Method for CentrifugeMoisture Equiva lent of SoilsD427-04 用水银法测量土壤收缩系数的测试方法 Test Method for Shrinkage Factors ofSoils by t he Mercury MethodD429-03e1 橡胶特性与硬质基底粘附性的试验方法 Standard Test Methods for RubberProperty—Adhesion to Rigid SubstratesD430-06 橡胶变质的动态疲劳试验方法 Standard Test Methods for RubberDeterioration-Dynamic FatigueD434-95 Standard Test Method for Resistance toSlippage of Yarns in Woven Fabrics Using a St andard SeamD440-86(2002) 煤的跌落粉碎试验 Standard Test Method of Drop ShatterTest for CoalD441-86(2002) 煤的滚筒试验 Standard Test Method of Tumbler Test for CoalD444-88(2003) 锌黄颜料(铬酸锌黄)的化学分析方法 Standard Test Methods for Chemical Analysis of Zinc YellowPigment (Zinc Chromate Yellow)D445-06 透明和不透明液体运动粘度的测试方法.(包括动态粘度的计算) Standard Test Method for Kinematic Viscosity ofTransparent and Opaque Liquids (and the Calculation of DynamicViscosity)D446-06 玻璃毛细管运动粘度计操作说明书和规范 Standard Specifications and OperatingInstructi ons for Glass Capillary Kinematic ViscometersD448-03a 道路和桥梁建筑的集料尺寸分类 Standard Classification for Sizes ofAggregate for Roa d and Bridge ConstructionD449-03 防潮和防水用沥青规范 Standard Specification for AsphaltUsed in Dampproofing and WaterproofingD450-96(2006) 铺屋面,防潮与防水用硬煤沥青 Standard Specification for Coal-TarPitch Used in Roofing, Dampproofing, and WaterproofingD451-91(2002) 沥青屋顶制品用粒状矿物铺面材料筛分分析试验方法 Standard Test Method for Si eveAnalysis of Granular Mineral Surfacing For Asphalt RoofingProductsD452-91(2002) 沥青层面制品表面修整用非粒状矿物的筛分试验方法 Standard Test Method for Si eveAnalysis of Surfacing for Asphalt Roofing ProductsD453-94(2000)e1 杂酚油-煤焦油溶液中焦油酸含量的测试方法 Standard Test Method for Tar Aci ds inCreosote-Coal Tar SolutionsD454-04 用加热及空气压力测定橡胶变质的试验方法 Standard Test Method for RubberDeteriorat ion by Heat and Air PressureD459-00 肥皂和其它洗涤剂的术语规范 Standard Terminology Relating toSoaps and Other Deter gentsD460-91(2005) 肥皂和其它洗涤剂粒度的试验方法 Standard Test Methods for Samplingand Che mical Analysis of Soaps and Soap ProductsD464-05 松脂油产品包括妥尔油和其他相关产品的皂化值的试验方法 Standard Test Methods for Saponification Number of Naval Store Products Including Tall Oil and Other Related ProductsD465-05 松脂制品包括妥尔油及其它相关产品酸值的试验方法 Standard Test Methods for Acid N umberof Naval Stores Products Including Tall Oil and Other RelatedProductsD470-05 电线和电缆用交联绝缘与套管的测试方法 Standard Test Methods for CrosslinkedInsulati ons and Jackets for Wire and CableD471-98e2 液体对橡胶性能影响的测试方法 Standard Test Method for RubberProperty-Effect of LiquidsD473-02 萃取法测定原油和燃料油中沉积物的试验方法 Standard Test Method for Sediment inCr ude Oils and Fuel Oils by the Extraction MethodD476-00(2005) 二氧化钛颜料规范 Standard Classification for DryPigmentary Titanium Dioxide P roductsD478-02 锌黄(铬酸锌)颜料 Standard Specificationfor Zinc Yellow (Zinc Chromate) PigmentsD480-88(2003) 铝粉和铝粉浆的抽样和试验方法 Standard Test Methods for Samplingand Testin g of Flaked Aluminum Powders and PastesD482-03 石油产品灰分的测试方法 Standard Test Method for Ash fromPetroleum ProductsD483-04 石油制植物喷洒油不磺化残渣的试验方法 Standard Test Method for UnsulfonatedResidu e of Petroleum Plant Spray OilsD490-92(2005) 道路柏油 Standard Specification for Road TarD494-04 Standard Test Method for Acetone Extraction ofPhenolic Molded or Laminated Products Standard TestMethod for Acetone Extraction of Phenolic Molded or LaminatedProductsD495-99(2004) 固体电绝缘材料的耐高压低电流干电弧性能的测试方法 Standard Test Method for High-Voltage, Low-Current, Dry Arc Resistance of Solid ElectricalInsulationD500-95(2003) 磺化油和硫化油的化学分析和试验方法D501-03 碱性洗涤剂的抽样和化学分析试验方法D502-89(2003) 肥皂和其它洗涤剂粒度的试验方法D509-05 松香分级和抽样试验方法D511-03 水中钙镁离子的测试方法D512-04 测定水中氯离子含量的试验方法D513-02 水中二氧化碳溶解量和总量的试验方法D516-02 水中硫酸铁的试验方法D517-98(2003) 沥青厚板材D518-99 橡胶变质表面龟裂的试验方法D519-04 羊毛条中纤维长度的试验方法D520-00(2005) 锌粉颜料规范D521-02 锌粉(金属锌粉)的化学分析试验方法D522-93a(2001) 用锥形心轴仪测定涂覆有机涂层延伸率的试验方法D523-89(1999) 镜面光泽的试验方法D524-04 石油产品中兰氏残炭的试验方向D525-05 汽油氧化稳定性的试验方法(诱导期方法)D528-97(2002) 纸和纸板的机器定向试验方向D529-04 沥青材料的加速风化试验条件和程序的测试方法(碳弧法)D531-00(2005) 普西和琼斯橡胶压缩试验方法D542-00 透明有机塑料的折射指数的试验方法D543-06 塑料耐化学试剂性能的试验方法D545-99(2005) 混凝土用预制伸缩缝纫填料的试验方法(非挤压和弹性型)D546-05 道路和铺砌材料用矿物填料筛分的测试方法D548-97(2002) 纸张水溶解酸碱度的试验方法D555-84(1998) 干性油试验D558-04 土壤水泥混合物的水分与密度关系的试验方法D559-03 压实的掺土水泥混合物的湿润与干燥的试验方法D560-03 压实的掺土水泥混合物的冻融试验方法D561-82(2003) 涂料用炭黑颜料D562-01(2005) 斯氏粘度计测定涂料稠度的试验方法D563-88(1996)e1 醇酸树脂和树脂溶液中苯酐含量的试验方法D564-87(2002) 液体涂料催干剂的试验方法D565-99(2005) 白色矿物油中可碳化物质的试验方法D566-02 润滑脂滴点的试验方法D570-98(2005) 塑料吸水率的试验方法D572-04 用加热法和氧化法进行的橡胶变质的试验方法D573-04 在空气烤炉中作橡胶变质的试验方法D575-91(2001) 橡胶压缩特性的试验方法D578-05 玻璃纤维丝D579-04 原织物玻璃纤维D580-04 机织玻璃纤维带D581-99 机织玻璃纤维套管的编织D584-96(2005) 原毛中羊毛含量实验室测试方法D585-97(2002) 纸张、纸板、纤维板和相关产品的单批取样和验收方法D586-97(2002) 纸中灰分含量的试验方法D589-97(2002) 纸的不透明度的测试方法D590-93(2002) 纸中石油蜡的测试方法D596-01 水分析结果的报告D600-90(2001) 液体涂料催干剂D601-87(1998) 奥气油(永久液体)D602-81(2003) 硫酸钡颜料规范D605-82(2003) 硅酸镁颜料(滑石)D607-82(2003) 湿磨云母颜料D608-05 邻苯二甲酸二丁酯D609-00 涂料、油漆以及改性涂料与相关涂料产品的测试用冷轧钢板的制备D610-01 涂漆钢表面锈蚀程度评价的试验方法D611-04 石油产品和烃类溶剂苯胺点和混合苯胺点的试验方法D612-88(2004) 石蜡中可碳化物质的试验方法D613-05 十六烷法测定柴油燃料燃烧质量的试验方法D618-05 塑料及电绝缘材料的调理方法D619-99(2004) 电绝缘用硫化纤维的测试方法D622-99(2005) 汽车空气制动和真空制动系统用橡胶软管试验方法D623-99e1 橡胶特性-压缩中热的产生及挠曲疲劳的试验方法D624-00e1 橡胶的热塑性弹性的耐老化性的抗撕裂强度的试验方法D628-95(2004)e1 石棉套管的标准规范D629-99 纺织品定量分析试验方法D632-01 氯化钠D633-97(2005) 道路柏油的体积修正表D635-06 自承塑料在水平状态时的燃烧速率或者燃烧蔓延程度及燃烧时间的试验方法D638-03 塑料拉伸性能的试验方法D642-00(2005) 船用集装箱、组合件和单体加载的抗压缩能力的测试方法D643-97(2002) 用厦泊测试仪测试纸的折痕持久性的标准试验方法D644-99(2002) 用烘干法测定纸和纸板中水分的测试方法D645/D645M-97(2002) 纸和纸板厚度的测试方法D646-96(2001) 纸张及纸板的基本重量的试验方法(单位面积的重量)D648-06 在挠曲负荷下塑料的挠曲温度的试验方法D653-05 土壤、岩石和其内部所含液体的相关术语D660-93(2005) 外用漆龟裂程度评价方法D661-93(2005) 外用漆破裂程度评价的试验方法D662-93(2005) 外用漆侵蚀程度评价的试验方法D664-06 电位滴定法测定石油产品酸值的试验方法D665-06 水存在下抑制的矿物油防锈特性的试验方法D668-99(2004) 电绝缘用硬条和硬管尺度测量的测试方法D669-03 层压薄板与层压板的平行于层片的耗散系数和介电常数的试验方法D685-93(2002) 检测调理纸和纸制品D686-93(2002) 纸中矿物填料和矿物涂料的定性测试方法D689-03 纸张的内部耐撕裂的试验方法D692-00(2004) 沥青铺路砌混合用粗集料D693-03a 碎石路面用压碎集料D695-02a 硬质塑料抗压特性的试验方法D696-03 从-30摄氏度到30摄氏度的塑料线性热膨胀系数的试验方法D698-00ae1 实验室中用12000ft-lbt/ft(600KN-m/m)作用力测定土壤压力特性的试验方法D704-99(2004) 三氯氰胺甲醛模制化合物D705-99(2004) 脲甲醛模制化合物D706-05 乙酸纤维素模制和挤压化合物D707-05 醋酸丁酸纤维素模制与挤压料规格D709-01 层压热固材料D710-97(2002) 电绝缘用硫化纤维薄板、条和管D711-89(2004) 路标漆不粘着时间的试验方法D713-90(2004) 路标漆进行路面使用的试验方法D714-02e1 涂料起泡程度的试验方法D715-86(2003) 硫酸钡颜料分析的标准试验方法D716-86(2003) 评定云母颜料的标准试验方法D717-86(2003) 硅酸镁颜料分析的标准试验方法D718-86(2003) 硅酸铝颜料的分析标准试验方法D720-91(2004)e1 煤自由膨胀指数的试验方法D721-05 石油蜡含油量的试验方法D722-93(2002) 纸的抗油脂性标准试验方法D724-99(2003) 纸表面可湿性的测试方法(接触角法)D726-94(2003) 空气中无孔纸的透气性的测试方法D727-96(2001) 真空方法测定屋顶和地板油毡煤油值的试验方法D731-95(1999) 热固模塑料粉末的模塑指数的试验方法D732-02 用穿孔工具测量塑料剪切强度的测试方法D737-04 纺织纤维透气率的试验方法D740-05 丁酮规范D746-04 用冲击法测定塑料及弹性材料的脆化温度的试验方法D747-02 用悬臂梁法对塑料表观弯曲系数的测试方法D748-00(2005)e1 固定式云母介电电容器用天然云母块和云母薄片D750-00 用碳弧型装置和风化装置对橡胶变质的测试方法D751-06 涂层织物的测试方法D763-01 未加工棕土和焙烧棕土颜料D765-87(2003) 未加工黄土和焙烧黄土颜料技术规范D768-01 黄色氧化铁的水合物D769-01 黑色合成氧化铁D770-05 异丙醇规范D772-86(2005) 外部涂料剂落程度评价的试验方法D774/D774M-97(2002) 纸张抗破碎强度的测试方法D776-92(2001) 干热对纸和纸板特性的影响的试验方法D777-97(2002) 经过处理的纸和纸板易燃性的标准试验方法D778-97(2002) 纸萃液(热萃取和冷萃取法)氢离子浓度(pH)的标准试验方法D779-03 纸、纸板和其他印刷材料用干烧指示器法测试耐水性的测试方法D780-95(2003) 纸印刷油墨渗透性的测试方法(蓖麻油试验)D784-03 电绝缘材料用橙色紫胶和其他印度虫胶D785-03 塑料和电绝缘材料的洛氏硬度的测试方法D787-96(2003) 乙基纤维模制和挤压化合物D788-05 甲基丙烯酸酯模制和挤压化合物的分类系统D789-06 聚酰胺相对粘度,熔点和含水量的测试方法D790-03 未增强和增强塑料及电绝缘材料的挠曲性的试验方法D792-00 用位移法测定塑料密度和比重(相对密度)的标准试验方法D800-05 工业用金属除垢剂化学分析试验方法D801-02 二聚戊烯抽样和测试的试验方法D802-02 松油抽样和测试的试验方法D803-03 妥儿油的测试试验方法D804-02 松脂制品包括妥儿油及相关产品的术语D806-00(2006) 掺土水泥混合物中水泥含量的试验方法D807-05 工业锅炉用水引起脆裂倾向的评价方法(美国矿业局的脆变检查器方法)D808-05 新的和使用过的石油产品中氯含量的试验方法(氧弹法)D813-06 测定橡胶龟裂扩展的试验方法D814-95(2005) 橡胶特性挥发性液体蒸汽渗透性的试验方法D816-06 橡胶胶水的试验方法D817-96(2004) 乙酸丙酸纤维素和醋酸丁酸纤维素的试验方法D820-93(2003) 含合成洗涤剂肥皂的化学分析试验方法D822-01 用经过过滤明光碳弧灯和水中曝光装置对涂料及相关涂层和材料上做的导电试验D823-95(2001) 色漆,清漆,喷漆及有关产品制成厚度均匀漆膜试片的方法D824-94(2002) 用皱文纸测定吸水率的测试方法D828-97(2002) 纸和纸板拉力破坏强度的测试方法D829-97(2002) 纸和纸制品湿抗拉断裂强度的标准试验方法D831-94(2004) 电缆及电容器油的气体含量的测试方法D832-92(2001)e1 低温状态下的橡胶试验D841-02 甲苯的硝化定级D843-06 硝化二甲苯D847-04 苯,甲苯,二甲苯,溶剂石脑油和类似的工业芳烃酸度的试验方法D848-03 工业芳烃的酸洗颜色的标准试验方法D849-05 工业芳烃对铜条腐蚀的标准试验方法D850-03 工业芳轻及相关物质的蒸溜法D852-02 苯凝固点的试验方法D853-04 工业芳烃中硫化氢和二氧化硫含量(定性)的标准试验方法D854-06 土壤比重的试验方法D857-02 水中铝含量的测试方法D858-02 水中锰含量的试验方法D859-05 水中二氧化硅的测试方法D861-01a 用特克斯制命名纤维,纱的半制品,纱和其它纺织品线度D865-99(2005) 橡胶的空气中加热变质试验方法(试管法)D866-99(2004) 电线及电缆用丁苯合成橡胶套D868-85(2003) 路标漆渗色程度评价的试验方法D869-85(2004) 涂漆沉降程度评价试验方法D870-02 水浸渍法涂层耐水试验D871-96(2004) 测试乙酸纤维素的试验方法D873-02 航空燃料的氧化稳定性的测试方法D874-06 润滑油和添加剂中硫酸盐类灰分的测试方法D876-00 电绝缘用刚性氧化乙烯聚合物管的测试方法D877-02e1 用圆盘电极测定电绝缘液体介电击穿电压的试验方法D878-01e1 绝缘油中无机氯化物和硫酸盐的测试方法D880-92(2002) 船用集装箱的冲击试验的试验方法D882-02 塑料薄板材抗拉特性的试验方法D883-00 塑料相关术语D885-06 由人造有机纤维制成的轮胎帘子线,轮胎帘布和工业长纱线的测试D887-82(2003)e1 水沉积物抽样D888-05 水中溶解氧的试验方法D889-99(2004) 松香中油挥发性的试验方法D890-98(2003) 液体松脂中水含量的试验方法D891-95(2004) 液态工业化合物的比重,表观比重的测试方法D892-05 润滑油发泡特性的标准试验方法D893-05a 用过的润滑油中不溶物的试验方法D896-04 胶粘剂耐化学试剂粘法的试验方法D897-01e1 胶粘剂粘结力的抗拉性的测试方法D898-05 胶粘剂固体单位面积涂用重量的试验方法D899-00 单位面积涂用液体胶粘剂的重量的测试方法D902-00 电绝缘用挠性涂树脂玻璃布和玻璃布带的测试方法D903-98(2004) 胶粘剂粘结抗剥落或爆皮强度的试验方法D904-99(2005) 人造光(碳弧型)和自然光对胶粘剂试样的曝光D905-03 用压缩荷载法测定胶粘剂的抗剪切强度性能的试验方法D906-98(2004) 用拉力负荷法测定胶合板结构中胶粘剂剪切强度特性的试验方法D907-05e1 胶粘剂术语D909-01e1 增压进料法测定航空汽油抗震性的试验方法(联邦试验方法No.791b) D910-04a 航空汽油技术规范D912-81(1999) 防污涂料用氧化亚铜D913-03e1 路标漆耐磨程度的评价方法D914-00(2006) 乙基纤维的试验方法D918-99(2003) 纸和纸板的抗粘结性试验方法D919-97(2002) 纸和纸板的铜值测试方法D922-00a(2006) 非硬质聚氯乙烯管D923-97 电绝缘液体的抽样方法D924-04 电绝缘液体的损耗因数(或功率因数)和介电常数(电容率)的测试方法D925-06 橡胶特性.表面着色(接触、色移和扩散)的试验方法D926-04 用平行板法测量橡胶的塑性和弹性D928-03 碳酸氢钠D932-85(2002) 水和水沉积物中嗜铁细菌含量试验方法D933-84(2003) 水沉积物的检验和分析结果的报告方法D934-80(2003) 用X射线衍射法作水沉积物中结晶化合物的识别方法D937-04 石油脂的针入度试验方法D938-05 石油蜡(包括凡士林)凝固点的测试方法D942-02 氧弹法测定润滑脂氧化稳定性的试验方法D943-04a 防腐蚀矿物油氧化特性的试验方法D945-06 用机械示波器测定在压缩应力和剪切应力下橡胶特性的试验方法D946-82(2005) 路面建造用按贯入度级配的沥青膏D950-03 胶粘剂抗冲击强度的试验方法D951-99(2004) 用喷射法测定船运集装箱的耐水性的试验方法D952-02 薄板塑料和电绝缘材料粘结强度的试验方法D953-02 塑料支承强度的测试方法D955-00 模制塑料模型尺寸收缩率的测量方法D957-95(2006)e1 塑料生产用模型表面温度的测定D960-02a 生蓖麻油D961-86(2001) 脱水蓖麻油D962-81(2003) 涂料用铝粉和铝浆颜料D964-03 防污漆用铜粉D968-05 用落沙磨蚀法测定有机涂层耐磨性的试验方法D969-85(2003) 路标漆渗色程度的实验室试验方法D971-99a(2004) 环法测定油水界面张力的试验方法D972-02 润滑脂和润滑油蒸发损失的测试方法D974-04 用颜色指示剂滴定法测定酸碱值的标准试验方法D975-06 柴油技术规范D976-04be1 馏分燃料正十六烷指数的计算方法D977-05 乳化沥青D979-01(2006)e1 沥青铺面混合料的取样方法D982-05 Standard Test Method for Organic Nitrogen in Paper andPaperboard D984-97(2002)。

塑料冲击强度测试方法

塑料冲击强度测试方法

塑料冲击强度测试方法塑料冲击强度测试方法可是个很有趣的话题呢!那咱们先来说说这测试方法的步骤。

一般来说呀,得先准备好合适的冲击试验机。

就好像给即将上战场的士兵准备好武器一样。

把塑料试样按照规定的尺寸准确地制备好,这尺寸可不能马虎,就像盖房子的砖头大小得合适一样。

然后把试样稳稳地固定在试验机的夹具上,可不能让它在测试的时候乱动,就像把调皮的小宠物拴好了再做检查。

接下来呢,设定好试验机的冲击能量、速度等参数,然后让冲击锤去撞击试样。

这过程有点像拿小锤子去敲一个神秘的盒子,看看它有多结实。

在这个过程中,安全性可太重要啦!这冲击试验机就像一头有点野性的小怪兽,操作的时候得小心翼翼的。

在测试的时候,周围一定要保持安全距离,谁也不想被那冲击锤或者飞溅出来的塑料碎片伤到吧,哎呀,那可就糟糕透顶了!稳定性呢,也不能忽视。

如果试验机本身不稳定,就像一个站不稳的醉汉,那测试结果肯定不准啊。

试样的固定要是不牢固,那测试就像在沙地上盖房子,根本不靠谱。

那这个测试方法都用在哪些场景呢?哇,可多啦!在塑料制品的生产行业,这就像是一个超级侦探。

比如说生产塑料容器的时候,通过冲击强度测试就能知道这个容器是不是够结实,能不能经得住运输过程中的磕磕碰碰。

如果是生产塑料玩具,那更是要确保孩子们玩的时候,这玩具不会轻易被摔坏呀,不然孩子们得多伤心啊。

它的优势也是显而易见的。

就像给塑料制品的质量上了一道保险锁,能保证产品在使用过程中的可靠性。

而且,它能帮助企业改进生产工艺,提高产品质量,这难道不是一件很棒的事情吗?咱们再来看个实际案例吧。

有一家生产塑料安全帽的企业。

他们在生产过程中就用到了冲击强度测试方法。

如果安全帽的冲击强度不够,那工人戴着就像头上顶了个纸糊的帽子,这多危险啊!通过严格的冲击强度测试,他们能确保生产出来的安全帽能够承受一定的冲击力,真的能在关键时刻保护工人的头部安全。

这就说明这个测试方法在实际应用中效果非常好。

我觉得呀,塑料冲击强度测试方法是塑料制品质量保障的一个非常重要的手段。

塑料的冲击强度与硬度的检测方法以及影响因素

塑料的冲击强度与硬度的检测方法以及影响因素

塑料的冲击强度与硬度的检测方法以及影响因素1、冲击性能冲击试验是用来评价材料在高速载荷状态下的韧性或对断裂的抵抗能力的试验。

塑料材料的冲击强度在工程应用上是一项重要的性能指标,它反映不同材料抵抗高速冲击而致破坏的能力。

冲击试验可分为摆锤式(包括简支梁和悬臂梁式)、落球(落锤)式和高速拉伸冲击试验等。

不同材料、不同用途制品可选择不同的试验方法。

摆锤式冲击试验包括简支梁型和悬臂梁型。

这两种方法都是将试样放在冲击机上规定位置,然后使摆锤自由落下,使试样受到冲击弯曲力而断裂,试样断裂时单位面积或单位宽度所消耗的冲击功即冲击强度。

简支梁冲击试验是摆锤打击简支梁试验的中央;悬臂梁则是用摆锤打击有缺口的悬臂梁的自由端。

影响因素:(1)试样制备每种制样过程都要符合相关标准,不同制样方法不具有可比性。

(2)试样尺寸规格要一致。

不同加工方式加工的试样,其测值不具可比性。

(3)试验环境冲击强度值均随温度的降低而降低。

湿度对某些塑料冲击强度有影响。

(4)操作过程如冲击速度,冲击摆锤刀口与试样打击面吻合。

简支梁冲击试验中,如果试样与支架没有贴紧,则容易产生多次冲击使测试结果不准确。

(5)数据处理数据处理与试验结果的精确度有着密切关系。

2、硬度试验测定硬度的方法主要有三种类型:(1)测定材料耐顶针压入能力的试验,如邵氏硬度(肖式硬度)、球压痕硬度试验等;(2)测定材料对尖头或其它材料的耐划痕硬度试验,如莫氏硬度(Mobs)等;(3)测定材料回弹性的硬度试验,如洛氏硬度,邵氏反弹硬度试验等。

邵氏A型适用于软质塑料及橡胶;邵氏C型和邵氏D型适用于较硬或硬质塑料和硫化橡胶。

球压痕硬度实验适用于柔软的弹性体到较硬的塑料。

洛氏硬度实验主要用于刚硬的工程塑料的硬度评价。

【邵氏硬度】:将规定形状的压针,在标准的弹簧压力下和规定的时间内,把压针压入试样的深度转换为硬度值,表示该试样材料的邵氏硬度等级。

影响因素:(1)试样厚度:试样过薄,将使测定的硬度值偏大。

塑料的抗冲击性与强度比较

塑料的抗冲击性与强度比较

塑料的抗冲击性与强度比较塑料是一种常见的材料,有着广泛的应用领域。

在工程领域中,塑料的抗冲击性与强度是评估其质量的重要指标。

本文将探讨不同类型塑料的抗冲击性与强度,并进行比较。

一、抗冲击性的评估塑料的抗冲击性指材料在受到外界冲击或撞击时,能够承受压力的能力。

常见的塑料抗冲击性评估方法包括冲击试验和弯曲试验。

1. 冲击试验冲击试验是通过对材料进行冲击,测量其断裂能量来评估抗冲击性。

冲击试验中常用的方法有冲击强度试验(IZOD)和夏比瑞冲击强度试验(Charpy)。

(此处省略冲击试验实验条件和结果,可根据实际情况补充)2. 弯曲试验弯曲试验是通过施加外力使材料发生弯曲变形,并测量其变形程度和抗冲击能力。

常用的弯曲试验方法有二点弯曲试验和三点弯曲试验。

(此处省略弯曲试验实验条件和结果,可根据实际情况补充)二、强度的评估塑料的强度指材料在外力作用下抵抗断裂和变形的能力。

常见的塑料强度评估方法包括拉伸试验和压缩试验。

1. 拉伸试验拉伸试验是通过对材料施加拉伸力,测量其断裂点和变形程度来评估强度。

拉伸试验中常用的方法有拉伸强度试验和屈服强度试验。

(此处省略拉伸试验实验条件和结果,可根据实际情况补充)2. 压缩试验压缩试验是通过对材料施加压缩力,测量其抵抗断裂和变形的能力来评估强度。

常见的压缩试验方法有平行板压缩试验和环切试验。

(此处省略压缩试验实验条件和结果,可根据实际情况补充)三、塑料抗冲击性与强度的比较根据以上评估方法,我们可以对不同类型塑料的抗冲击性与强度进行比较。

(此处可以列举各种类型塑料的抗冲击性和强度数据,并进行分析和比较)综合比较各种塑料的抗冲击性与强度后,可以得出结论:不同类型的塑料在抗冲击性和强度方面存在差异。

例如,聚丙烯的抗冲击性相对较差,但强度较高,适用于要求强度的应用领域;聚碳酸酯具有较好的抗冲击性和强度,适用于要求高抗冲击性的领域。

结论本文通过对塑料抗冲击性与强度的评估和比较,得出了不同塑料在这两个方面的特点。

标准试件的冲击韧性测试方法

标准试件的冲击韧性测试方法

冲击强度impact strength(1)冲击强度用于评价材料的抗冲击能力或判断材料的脆性和韧性程度,因此冲击强度也称冲击韧性。

(2)冲击强度是试样在冲击破坏过程中所吸收的能量与原始横截面积之比。

(3)冲击强度根据试验设备不同可分为简支梁冲击强度、悬臂梁冲击强度.(4) 冲击强度的测量标准主要有ISO国际标准(GB参照ISO)及美国材料ATSM 标准,GB为1943-2007为最新标准,ATSM 标准为D-256标准,具体区分如下:GB: 是试件在一次冲击实验时,单位横截面积(m2)上所消耗的冲击功(J),其单位为MJ/m2。

ATSM:它反映了材料抵抗裂纹扩展和抗脆断的能力,单位宽度所消耗的功,单位为J/m。

(5)设备区分:悬臂梁冲击方向中间有撞针,简支梁冲击方向垂直面有凹块,正面形状为一凹形摆锤。

(6)缺口区分:缺口一般分为四种,有V型口和U型口两种,每种根据简短圆弧半径又分为两种。

(7)样条区分:GB:一般为80*10mm 样条以及63.5*10mm 样条缺口为2mm,也有63.8*12.7mm样条ATSM:一般为63.5*12.7mm 缺口剩余宽度为10.16mm (国内有用80*10样条)(8)测试公式:GB: a=W / (h*d) 单位KJ/m ATSM: a= W /d 单位:J/ma:冲击强度W :冲击损失能量h:缺口剩余宽度d:样条厚度因此,GB与ATSM之间不可以等同测量,但从测量公式可总结经验公式:GB 数值*10.16或8(错误样条)=ATSM数值,也可以由实际测量来总结比值。

冲击韧性实验大纲1.用摆锤冲击试验机,冲击简支梁受载条件下的低碳钢和铸铁试样,确定一次冲击负载作用下折断时的冲击韧性αku2.通过分析计算,观察断口,比较上述两种材料抵抗冲击载荷的能力冲击韧性实验指导书衡量材料抗冲击能力的指标用冲击韧度来表示。

冲击韧度是通过冲击实验来测定的。

这种实验在一次冲击载荷作用下显示试件缺口处的力学特性(韧性或脆性)。

热塑性塑料管材和管件耐冲击性能的测试

热塑性塑料管材和管件耐冲击性能的测试

热塑性塑料管材和管件耐冲击性能的测试方法(落锤法). 本标准适于用落锤冲击法测定热塑性塑料管材和管件的耐冲击性能。

1 原理和定义 1.1 原理在规定的冲击条件下,选择落锤质量(也可以选择一定冲击高度而变换落锤质量),提升机下降,通过电磁铁吸附锤体,牵引上升,到达预选高度后,释放落锤冲击试样。

在落锤第一次回弹时,捕捉装置将落锤捉住,测出热塑性塑料管材和管件冲击破坏所需的能量。

1.2 试样经冲击作用后管壁上出现用肉眼在自然光线下可见的裂纹、龟裂和破碎的现象称为破坏。

2 试验设备 2.1 落锤式冲击试验机 2.1.1 锤体自由下落冲击管材和管件试样,锤体下落能量损失小于5%。

2.1.2 落锤质量精度为±0.1%。

2.1.3 落锤冲头顶点位于试样轴线上方,与轴线偏差小于2mm。

2.1.4 冲击高度(锤头顶点到试样上方):误差不大于1%。

2.1.5 采用的高度增量为25、50、150mm。

2.2 落锤 2.2.1 冲头:落锤(冲头+锤体)上的冲头形状如下图所示。

用半径为10mm 的冲头时,指定用落锤A。

用半径为30mm 冲头时,指定用落锤B。

用半径为5mm 冲头时,指定用落锤C。

注:落锤推荐用耐刮痕钢制造,以减轻冲头的损伤。

严重伤痕的冲头会影响试验结果。

2.2.2 落锤质量为2、3、4、5、6、7、8、10、15kg。

2.3 落管2.3.1 落管右调高度为2000mm(条件允许情况下,落管长度可为4000mm)。

组装时,应保证纵方向垂直。

2.3.2 安装后应保证落锤能自由落下。

2.3.3 落管选用无剩磁材料。

注:只要能获得同样结果,落锤可不用落管或其它方式导向。

采用落管的目的在于消除落锤;回弹时对操作者可能带来的伤害,另外又能导引落锤中心准确地冲击试样顶端。

2.4 试验夹具,采用V 型托板和平行托板两种夹具。

V 型托板一般与落锤A和落锤 C 联合使用,平行托板常与落锤B 或检验管件时使用。

杜邦冲击测试标准

杜邦冲击测试标准

杜邦冲击测试标准
杜邦冲击测试标准是指杜邦公司开发和使用的用于评估材料抗冲击性能的测试方法和标准。

这些标准主要应用于杜邦公司所生产的高性能塑料材料(如聚酰胺、聚醚酮等)和其他工程材料。

其中,最常用的杜邦冲击测试标准包括:
1. Izod冲击测试(ASTM D256):这是一种单杠材料冲击测
试方法,通过测量试样在冲击下的断裂能量来评估材料的韧性。

2. Charpy冲击测试(ASTM D6110):这是一种悬臂梁材料冲击测试方法,通过测量试样在冲击下的弯曲断裂能量来评估材料的韧性。

3. Gardner冲击测试(ASTM D5420):这是一种用于涂层材
料的冲击测试方法,通过测量试样在冲击下的划伤尺寸来评估材料的耐冲击性能。

4. Falling Dart冲击测试(ASTM D1709):这是一种用于薄膜
材料的冲击测试方法,通过测量试样在冲击下的穿孔能量来评估材料的耐冲击性能。

这些标准可以帮助杜邦公司和其他企业评估材料的冲击性能,优化产品设计和选择适合的材料,以确保产品在使用过程中能够承受各种冲击和应力。

塑胶件冷热冲击试验方法

塑胶件冷热冲击试验方法

塑胶件冷热冲击试验方法Rubber and plastic parts are widely used in various industries, and itis crucial to ensure their quality and durability. One common test to evaluate the performance of plastic parts is the cold and hot impact test. 塑料和橡胶部件广泛应用于各个行业,确保其质量和耐用性至关重要。

评估塑料部件性能的一种常见测试是冷热冲击试验。

The cold and hot impact test is conducted to assess the ability of plastic parts to withstand sudden changes in temperature. This is important because plastic parts are often subjected to varying temperature conditions during their service life. 冷热冲击试验旨在评估塑料部件抵抗温度突变的能力。

这一点非常重要,因为塑料部件在使用寿命中经常会受到温度变化的影响。

During the cold and hot impact test, the plastic or rubber part is exposed to extreme temperatures, either by rapidly submerging it in cold liquid or heating it in a hot chamber. The sudden temperature change can cause the material to expand or contract, which simulates the real-world conditions the part may encounter. 在冷热冲击试验中,塑料或橡胶部件会暴露在极端温度下,要么是通过迅速浸泡在冷液体中,要么是在热箱中加热。

塑料冲击强度测试标准

塑料冲击强度测试标准

塑料冲击强度测试标准
一般来说,塑料冲击强度测试主要包括冲击试样的制备、试样的测试装置和测试方法、测
试环境的条件等几个方面的内容。

各国和地区都有自己的塑料冲击强度测试标准,比如美
国ASTM标准、欧洲EN标准、中国GB标准等。

在进行塑料冲击强度测试时,需要首先准备好试样。

试样的制备要符合标准规定的尺寸和
形状,并且要保证试样的表面平整、无裂纹和缺陷。

接下来就是测试装置和测试方法的选择。

常见的测试方法有冲击试验机、落球试验机、冲击冲裂试验机等。

其中,冲击试验机
是最常用的测试设备之一,它可以模拟不同类型的冲击作用,如拉伸冲击、弯曲冲击等。

测试环境的条件也是塑料冲击强度测试的重要因素之一。

这包括温度、湿度、环境气压等
因素。

这些条件都会对塑料材料的冲击性能产生影响,因此在进行测试时需要对这些条件
进行控制和记录。

在进行测试时,需要按照标准规定的方法进行测试,并对结果进行合理的分析和判定。

同时,测试过程中还需要注意安全问题,确保测试操作人员的人身安全。

总之,塑料冲击强度测试标准的制定和遵守对于评定塑料材料的性能具有重要的意义。


有依据标准进行测试,才能得到准确、可靠的测试结果,为塑料材料的设计和选用提供科
学的依据。

因此,各个相关行业应该高度重视塑料冲击强度测试标准,不断完善标准体系,提高测试技术水平,确保测试结果的准确性和可信度。

ASTM D 256

ASTM D 256

Designation:D256–05Standard Test Methods forDetermining the Izod Pendulum Impact Resistance of Plastics1This standard is issued under thefixed designation D256;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.1.Scope*1.1These test methods cover the determination of the resistance of plastics to“standardized”(see Note1)pendulum-type hammers,mounted in“standardized”machines,in break-ing standard specimens with one pendulum swing(see Note2). The standard tests for these test methods require specimens made with a milled notch(see Note3).In Test Methods A,C, and D,the notch produces a stress concentration that increases the probability of a brittle,rather than a ductile,fracture.In Test Method E,the impact resistance is obtained breakage by flexural shock as indicated by the energy extracted from by reversing the notched specimen180°in the clamping vise.The results of all test methods are reported in terms of energy absorbed per unit of specimen width or per unit of cross-sectional area under the notch.(See Note4.)N OTE1—The machines with their pendulum-type hammers have been “standardized”in that they must comply with certain requirements, including afixed height of hammer fall that results in a substantiallyfixed velocity of the hammer at the moment of impact.However,hammers of different initial energies(produced by varying their effective weights)are recommended for use with specimens of different impact resistance. Moreover,manufacturers of the equipment are permitted to use different lengths and constructions of pendulums with possible differences in pendulum rigidities resulting.(See Section5.)Be aware that other differences in machine design may exist.The specimens are“standard-ized”in that they are required to have onefixed length,onefixed depth, and one particular design of milled notch.The width of the specimens is permitted to vary between limits.N OTE2—Results generated using pendulums that utilize a load cell to record the impact force and thus impact energy,may not be equivalent to results that are generated using manually or digitally encoded testers that measure the energy remaining in the pendulum after impact.N OTE3—The notch in the Izod specimen serves to concentrate the stress,minimize plastic deformation,and direct the fracture to the part of the specimen behind the notch.Scatter in energy-to-break is thus reduced. However,because of differences in the elastic and viscoelastic properties of plastics,response to a given notch varies among materials.A measure of a plastic’s“notch sensitivity”may be obtained with Test Method D by comparing the energies to break specimens having different radii at the base of the notch.N OTE4—Caution must be exercised in interpreting the results of these standard test methods.The following testing parameters may affect test results significantly:Method of fabrication,including but not limited to processingtechnology,molding conditions,mold design,and thermaltreatments;Method of notching;Speed of notching tool;Design of notching apparatus;Quality of the notch;Time between notching and test;Test specimen thickness,Test specimen width under notch,andEnvironmental conditioning.1.2The values stated in SI units are to be regarded as the standard.The values given in brackets are for information only.1.3This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.N OTE5—These test methods resemble ISO180:1993in regard to title only.The contents are significantly different.2.Referenced Documents2.1ASTM Standards:2D618Practice for Conditioning Plastics for TestingD883Terminology Relating to PlasticsD3641Practice for Injection Molding Test Specimens of Thermoplastics Molding Extrusion MaterialsD4000Classification System for Specifying Plastic Mate-rialsD4066Classification System for Nylon Injection and Ex-trusion MaterialsD4812Test Methods for Unnotched Cantilever Beam Im-pact Resistance of PlasticsD5947Test Methods for Physical Dimensions of Solid Plastic SpecimensE691Practice for Conducting an Interlaboratory Test Pro-gram to Determine the Precision of Test Methods2.2ISO Standard:1These test methods are under the jurisdiction of ASTM Committee D20onPlastics and are the direct responsibility of Subcommittee D20.10on Mechanical Properties.Current edition approved January1,2005.Published January2005.Originally approved st previous edition approved in2004as D256-04.2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.*A Summary of Changes section appears at the end of this standard. Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.--```,`,`,````,,`,,```,,,,`,``,-`-`,,`,,`,`,,`---ISO180:1993Plastics—Determination of Izod Impact Strength of Rigid Materials33.Terminology3.1Definitions—For definitions related to plastics see Terminology D883.3.2Definitions of Terms Specific to This Standard:3.2.1cantilever—a projecting beam clamped at only one end.3.2.2notch sensitivity—a measure of the variation of impact energy as a function of notch radius.4.Types of Tests4.1Four similar methods are presented in these test meth-ods.(See Note6.)All test methods use the same testing machine and specimen dimensions.There is no known means for correlating the results from the different test methods.N OTE6—Test Method B for Charpy has been removed and is being revised under a new standard.4.1.1In Test Method A,the specimen is held as a vertical cantilever beam and is broken by a single swing of thependulum.The line of initial contact is at afixed distance from the specimen clamp and from the centerline of the notch and on the same face as the notch.4.1.2Test Method C is similar to Test Method A,except for the addition of a procedure for determining the energy ex-pended in tossing a portion of the specimen.The value reported is called the“estimated net Izod impact resistance.”Test Method C is preferred over Test Method A for materials that have an Izod impact resistance of less than27J/m[0.5 ft·lbf/in.]under notch.(See Appendix X4for optional units.) The differences between Test Methods A and C become unimportant for materials that have an Izod impact resistance higher than this value.4.1.3Test Method D provides a measure of the notch sensitivity of a material.The stress-concentration at the notch increases with decreasing notch radius.4.1.3.1For a given system,greater stress concentration results in higher localized rates-of-strain.Since the effect of strain-rate on energy-to-break varies among materials,a mea-sure of this effect may be obtained by testing specimens with different notch radii.In the Izod-type test it has been demon-strated that the function,energy-to-break versus notch radius, is reasonably linear from a radius of0.03to2.5mm[0.001to 0.100in.],provided that all specimens have the same type of break.(See5.8and22.1.)4.1.3.2For the purpose of this test,the slope,b(see22.1), of the line between radii of0.25and1.0mm[0.010and0.040 in.]is used,unless tests with the1.0-mm radius give“non-break”results.In that case,0.25and0.50-mm[0.010and 0.020-in.]radii may be used.The effect of notch radius on the impact energy to break a specimen under the conditions of this test is measured by the value b.Materials with low values of b, whether high or low energy-to-break with the standard notch,are relatively insensitive to differences in notch radius;while the energy-to-break materials with high values of b is highly dependent on notch radius.The parameter b cannot be used in design calculations but may serve as a guide to the designer and in selection of materials.4.2Test Method E is similar to Test Method A,except that the specimen is reversed in the vise of the machine180°to the usual striking position,such that the striker of the apparatus impacts the specimen on the face opposite the notch.(See Fig. 1,Fig.2.)Test Method E is used to give an indication of the unnotched impact resistance of plastics;however,results ob-tained by the reversed notch method may not always agree with those obtained on a completely unnotched specimen.(See 28.1.)4,55.Significance and Use5.1Before proceeding with these test methods,reference should be made to the specification of the material being tested. Any test specimen preparation,conditioning,dimensions,and testing parameters covered in the materials specification shall take precedence over those mentioned in these test methods.If there is no material specification,then the default conditions apply.5.2The excess energy pendulum impact test indicates the energy to break standard test specimens of specified size under stipulated parameters of specimen mounting,notching,and pendulum velocity-at-impact.5.3The energy lost by the pendulum during the breakage of the specimen is the sum of the following:5.3.1Energy to initiate fracture of the specimen;5.3.2Energy to propagate the fracture across the specimen;3Available from American National Standards Institute(ANSI),25W.43rd St., 4th Floor,New York,NY10036.4Supporting data giving results of the interlaboratory tests are available from ASTM Headquarters.Request RR:D20-1021.5Supporting data giving results of the interlaboratory tests are available from ASTM Headquarters.Request RR:D20-1026.FIG.1Relationship of Vise,Specimen,and Striking Edge to Each Other for Izod Test Methods A andC --```,`,`,````,,`,,```,,,,`,``,-`-`,,`,,`,`,,`---5.3.3Energy to throw the free end (or ends)of the broken specimen (“toss correction”);5.3.4Energy to bend the specimen;5.3.5Energy to produce vibration in the pendulum arm;5.3.6Energy to produce vibration or horizontal movement of the machine frame or base;5.3.7Energy to overcome friction in the pendulum bearing and in the excess energy indicating mechanism,and to over-come windage (pendulum air drag);5.3.8Energy to indent or deform plastically the specimen at the line of impact;and5.3.9Energy to overcome the friction caused by the rubbing of the striker (or other part of the pendulum)over the face of the bent specimen.5.4For relatively brittle materials,for which fracture propa-gation energy is small in comparison with the fracture initiation energy,the indicated impact energy absorbed is,for all practical purposes,the sum of factors 5.3.1and 5.3.3.The toss correction (see 5.3.3)may represent a very large fraction of the total energy absorbed when testing relatively dense and brittle materials.Test Method C shall be used for materials that have an Izod impact resistance of less than 27J/m [0.5ft·lbf/in.].(See Appendix X4for optional units.)The toss correction obtained in Test Method C is only an approximation of the toss error,since the rotational and rectilinear velocities may not be the same during the re-toss of the specimen as for the original toss,and because stored stresses in the specimen may have been released as kinetic energy during the specimen fracture.5.5For tough,ductile,fiber filled,or cloth-laminated mate-rials,the fracture propagation energy (see 5.3.2)may be large compared to the fracture initiation energy (see 5.3.1).When testing these materials,factors (see 5.3.2,5.3.5,and 5.3.9)can become quite significant,even when the specimen is accurately machined and positioned and the machine is in good conditionwith adequate capacity.(See Note 7.)Bending (see 5.3.4)and indentation losses (see 5.3.8)may be appreciable when testing soft materials.N OTE 7—Although the frame and base of the machine should be sufficiently rigid and massive to handle the energies of tough specimens without motion or excessive vibration,the design must ensure that the center of percussion be at the center of strike.Locating the striker precisely at the center of percussion reduces vibration of the pendulum arm when used with brittle specimens.However,some losses due to pendulum arm vibration,the amount varying with the design of the pendulum,will occur with tough specimens,even when the striker is properly positioned.5.6In a well-designed machine of sufficient rigidity and mass,the losses due to factors 5.3.6and 5.3.7should be very small.Vibrational losses (see 5.3.6)can be quite large when wide specimens of tough materials are tested in machines of insufficient mass,not securely fastened to a heavy base.5.7With some materials,a critical width of specimen may be found below which specimens will appear ductile,as evidenced by considerable drawing or necking down in the region behind the notch and by a relatively high-energy absorption,and above which they will appear brittle as evidenced by little or no drawing down or necking and by a relatively low-energy absorption.Since these methods permit a variation in the width of the specimens,and since the width dictates,for many materials,whether a brittle,low-energy break or a ductile,high energy break will occur,it is necessary that the width be stated in the specification covering that material and that the width be reported along with the impact resistance.In view of the preceding,one should not make comparisons between data from specimens having widths that differ by more than a few mils.5.8The type of failure for each specimen shall be recorded as one of the four categories listed as follows:C Complete Break —A break where the specimen separates into two or more pieces.HHinge Break —An incomplete break,such that one part of the specimen cannot support itself above the horizontal when the other part is held vertically (less than 90°included angle).PPartial Break —An incomplete break that does not meet the definition for a hinge break but has frac-tured at least 90%of the distance between the vertex of the notch and the opposite side.NBNon-Break —An incomplete break where the frac-ture extends less than 90%of the distance be-tween the vertex of the notch and the opposite side.For tough materials,the pendulum may not have the energy necessary to complete the breaking of the extreme fibers and toss the broken piece or pieces.Results obtained from “non-break”specimens shall be considered a departure from stan-dard and shall not be reported as a standard result.Impact resistance cannot be directly compared for any two materials that experience different types of failure as defined in the test method by this code.Averages reported must likewise be derived from specimens contained within a single failure category.This letter code shall suffix the reported impact identifying the types of failure associated with the reported value.If more than one type of failure is observed for a sample material,then the report will indicate the average impactFIG.2Relationship of Vise,Specimen,and Striking Edge to EachOther for Test MethodE--```,`,`,````,,`,,```,,,,`,``,-`-`,,`,,`,`,,`---resistance for each type of failure,followed by the percent of the specimens failing in that manner and suffixed by the letter code.5.9The value of the impact methods lies mainly in the areas of quality control and materials specification.If two groups of specimens of supposedly the same material show significantly different energy absorptions,types of breaks,critical widths,or critical temperatures,it may be assumed that they were made of different materials or were exposed to different processing or conditioning environments.The fact that a material shows twice the energy absorption of another under these conditions of test does not indicate that this same relationship will exist under another set of test conditions.The order of toughness may even be reversed under different testing conditions.N OTE8—A documented discrepancy exists between manual and digital impact testers,primarily with thermoset materials,including phenolics, having an impact value of less than54J/m[1ft-lb/in.].Comparing data on the same material,tested on both manual and digital impact testers, may show the data from the digital tester to be significantly lower than data from a manual tester.In such cases a correlation study may be necessary to properly define the true relationship between the instruments.TEST METHOD A—CANTILEVER BEAM TEST6.Apparatus6.1The machine shall consist of a massive base on which is mounted a vise for holding the specimen and to which is connected,through a rigid frame and bearings,a pendulum-type hammer.(See 6.2.)The machine must also have a pendulum holding and releasing mechanism and a pointer and dial mechanism for indicating the excess energy remaining in the pendulum after breaking the specimen.Optionally,an electronic digital display or computer can be used in place of the dial and pointer to measure the energy loss and indicate the breaking energy of the specimen.6.2A jig for positioning the specimen in the vise and graphs or tables to aid in the calculation of the correction for friction and windage also should be included.One type of machine is shown in Fig.3.One design of specimen-positioning jig is illustrated in Fig.4.Detailed requirements are given in subsequent paragraphs.General test methods for checking and calibrating the machine are given in Appendix X1.Additional instructions for adjusting a particular machine should be supplied by the manufacturer.6.3The pendulum shall consist of a single or multi-membered arm with a bearing on one end and a head, containing the striker,on the other.The arm must be suffi-ciently rigid to maintain the proper clearances and geometricrelationships between the machine parts and the specimen and to minimize vibrational energy losses that are always included in the measured impact resistance.Both simple and compound pendulum designs may comply with this test method.6.4The striker of the pendulum shall be hardened steel and shall be a cylindrical surface having a radius of curvature of 0.8060.20mm[0.03160.008in.]with its axis horizontal and perpendicular to the plane of swing of the pendulum.The line of contact of the striker shall be located at the center of percussion of the pendulum within62.54mm[60.100in.] (See Note9.)Those portions of the pendulum adjacent to the cylindrical striking edge shall be recessed or inclined at a suitable angle so that there will be no chance for other than this cylindrical surface coming in contact with the specimen during the break.N OTE9—The distance from the axis of support to the center of percussion may be determined experimentally from the period of small amplitude oscillations of the pendulum by means of the following equation:L5~g/4p2!p2FIG.3Cantilever Beam(Izod-Type)ImpactMachine FIG.4Jig for Positioning Specimen forClamping --```,`,`,````,,`,,```,,,,`,``,-`-`,,`,,`,`,,`---where:L=distance from the axis of support to the center of percussion,m or[ft],g=local gravitational acceleration(known to an accuracy of one part in one thousand),m/s2or[ft/s2],p= 3.1416(4p2=39.48),andp=period,s,of a single complete swing(to and fro)determined by averaging at least20consecutive and uninterrupted swings.Theangle of swing shall be less than5°each side of center.6.5The position of the pendulum holding and releasing mechanism shall be such that the vertical height of fall of the striker shall be61062mm[24.060.1in.].This will produce a velocity of the striker at the moment of impact of approxi-mately3.5m[11.4ft]/s.(See Note10.)The mechanism shall be so constructed and operated that it will release the pendulum without imparting acceleration or vibration to it.N OTE10—V5~2gh!0.5where:V=velocity of the striker at the moment of impact(m/s),g=local gravitational acceleration(m/s2),andh=vertical height of fall of the striker(m).This assumes no windage or friction.6.6The effective length of the pendulum shall be between 0.33and0.40m[12.8and16.0in.]so that the required elevation of the striker may be obtained by raising the pendulum to an angle between60and30°above the horizontal.6.7The machine shall be provided with a basic pendulum capable of delivering an energy of2.760.14J[2.0060.10 ft·lbf].This pendulum shall be used with all specimens that extract less than85%of this energy.Heavier pendulums shall be provided for specimens that require more energy to break. These may be separate interchangeable pendulums or one basic pendulum to which extra pairs of equal calibrated weights may be rigidly attached to opposite sides of the pendulum.It is imperative that the extra weights shall not significantly change the position of the center of percussion or the free-hanging rest point of the pendulum(that would consequently take the machine outside of the allowable calibration tolerances).A range of pendulums having energies from2.7to21.7J[2to16 ft·lbf]has been found to be sufficient for use with most plastic specimens and may be used with most machines.A series of pendulums such that each has twice the energy of the next will be found convenient.Each pendulum shall have an energy within60.5%of its nominal capacity.6.8A vise shall be provided for clamping the specimen rigidly in position so that the long axis of the specimen is vertical and at right angles to the top plane of the vise.(See Fig.1.)This top plane shall bisect the angle of the notch with a tolerance of0.12mm[0.005in.].Correct positioning of the specimen is generally done with a jig furnished with the machine.The top edges of thefixed and moveable jaws shall have a radius of0.2560.12mm[0.01060.005in.].For specimens whose thickness approaches the lower limiting value of3.00mm[0.118in.],means shall be provided to prevent the lower half of the specimen from moving during the clamping or testing operations(see Fig.4and Note11.)N OTE11—Some plastics are sensitive to clamping pressure;therefore,cooperating laboratories should agree upon some means of standardizing the clamping force.One method is using a torque wrench on the screw of the specimen vise.If the faces of the vise or specimen are notflat and parallel,a greater sensitivity to clamping pressure may be evident.See the calibration procedure in Appendix X2for adjustment and correction instructions for faulty instruments.6.9When the pendulum is free hanging,the striking surface shall come within0.2%of scale of touching the front face of a standard specimen.During an actual swing this element shall make initial contact with the specimen on a line22.0060.05 mm[0.8760.002in.]above the top surface of the vise. 6.10Means shall be provided for determining energy re-maining in the pendulum after breaking the specimen.This may consist of a pointer and dial mechanism which indicate the height of rise of the pendulum beyond the point of impact in terms of energy removed from that specific pendulum.Since the indicated remaining energy must be corrected for pendulum-bearing friction,pointer friction,pointer inertia,and pendulum windage,instructions for making these corrections are included in10.3and Annex A1and Annex A2.Optionally, an electronic digital display or computer can be used in place of the dial and pointer to measure the energy loss and indicate the breaking energy of the specimen.If the electronic display does not automatically correct for windage and friction,it shall be incumbent for the operator to determine the energy loss manually.(See Note12.)N OTE12—Many digital indicating systems automatically correct for windage and friction.The equipment manufacturer may be consulted for details concerning how this is performed,or if it is necessary to determine the means for manually calculating the energy loss due to windage and friction.6.11The vise,pendulum,and frame shall be sufficiently rigid to maintain correct alignment of the hammer and speci-men,both at the moment of impact and during the propagation of the fracture,and to minimize energy losses due to vibration. The base shall be sufficiently massive that the impact will not cause it to move.The machine shall be so designed,con-structed,and maintained that energy losses due to pendulum air drag(windage),friction in the pendulum bearings,and friction and inertia in the excess energy-indicating mechanism are held to a minimum.6.12A check of the calibration of an impact machine is difficult to make under dynamic conditions.The basic param-eters are normally checked under static conditions;if the machine passes the static tests,then it is assumed to be accurate.The calibration procedure in Appendix X2should be used to establish the accuracy of the equipment.However,for some machine designs it might be necessary to change the recommended method of obtaining the required calibration measurements.Other methods of performing the required checks may be substituted,provided that they can be shown to result in an equivalent accuracy.Appendix X1also describes a dynamic test for checking certain features of the machine and specimen.6.13Micrometers—Apparatus for measurement of the width of the specimen shall comply with the requirements of Test Methods D5947.Apparatus for the measurement of the depth of plastic material remaining in the specimen under the notch shall comply with requirements of Test Methods D5947, --```,`,`,````,,`,,```,,,,`,``,-`-`,,`,,`,`,,`---provided however that the one anvil or presser foot shall be a tapered blade conforming to the dimensions given in Fig.5.The opposing anvil or presser foot shall be flat and conforming to Test Methods D 5947.7.Test Specimens7.1The test specimens shall conform to the dimensions and geometry of Fig.6,except as modified in accordance with 7.2,7.3,7.4,and 7.5.To ensure the correct contour and conditions of the specified notch,all specimens shall be notched as directed in Section 8.7.1.1Studies have shown that,for some materials,the location of the notch on the specimen and the length of the impacted end may have a slight effect on the measured impact resistance.Therefore,unless otherwise specified,care must be taken to ensure that the specimen conforms to the dimensions shown in Fig.6and that it is positioned as shown in Fig.1or Fig.2.7.2Molded specimens shall have a width between 3.0and 12.7mm [0.118and 0.500in.].Use the specimen width as specified in the material specification or as agreed upon between the supplier and the customer.All specimenshavingN OTE 1—These views not to scale.N OTE 2—Micrometer to be satin-chrome finished with friction thimble.N OTE 3—Special anvil for micrometer caliper 0to 25.4mm range (50.8mm frame)[0to 1in.range (2-in.frame)].N OTE 4—Anvil to be oriented with respect to frame as shown.N OTE 5—Anvil and spindle to have hardened surfaces.N OTE 6—Range:0to 25.4mm [0to 1in.in thousandths of an inch].N OTE 7—Adjustment must be at zero when spindle and anvil are in contact.FIG.5Early (ca.1970)Version of a Notch-DepthMicrometerone dimension less than 12.7mm [0.500in.]shall have the notch cut on the shorter side.Otherwise,all compression-molded specimens shall be notched on the side parallel to the direction of application of molding pressure.(See Fig.6.)N OTE 13—While subsection 7.5requires perpendicular pairs of plane parallel surfaces,the common practice has been to accept the non-parallel drafted surfaces formed when directly injection molding specimens for Izod ers must be aware that employing a trapezoidal section rather than a rectangular section may lead to data shifts and scatter.Unequal stress,created by clamping in the fracture region and dynamic twisting,caused by uneven striking of the specimen are prone to occur when the faces of the specimen are not parallel.Interlaboratory compari-sons must clearly spell out the specimen preparation conditions.7.2.1Extreme care must be used in handling specimens less than 6.35mm [0.250in.]wide.Such specimens must be accurately positioned and supported to prevent twist or lateral buckling during the test.Some materials,furthermore,are very sensitive to clamping pressure (see Note 11).7.2.2A critical investigation of the mechanics of impact testing has shown that tests made upon specimens under 6.35mm [0.250in.]wide absorb more energy due to crushing,bending,and twisting than do wider specimens.Therefore,specimens 6.35mm [0.250in.]or over in width are recom-mended.The responsibility for determining the minimum specimen width shall be the investigator’s,with due reference to the specification for that material.7.2.3Material specification should be consulted for pre-ferred molding conditions.The type of mold and molding machine used and the flow behavior in the mold cavity will influence the impact resistance obtained.A specimen taken from one end of a molded plaque may give different results than a specimen taken from the other end.Cooperating laboratories should therefore agree on standard molds con-forming to the material specification.Practice D 3641can be used as a guide for general molding tolerances,but refer to the material specification for specific molding conditions.7.2.4The impact resistance of a plastic material may be different if the notch is perpendicular to,rather than parallel to,the direction of molding.The same is true for specimens cut with or across the grain of an anisotropic sheet or plate.7.3For sheet materials,the specimens shall be cut from the sheet in both the lengthwise and crosswise directions unless otherwise specified.The width of the specimen shall be the thickness of the sheet if the sheet thickness is between 3.0and 12.7mm [0.118and 0.500in.].Sheet material thicker than 12.7mm shall be machined down to 12.7mm.Specimens with a 12.7-mm square cross section may be tested either edgewise or flatwise as cut from the sheet.When specimens are tested flatwise,the notch shall be made on the machined surface if the specimen is machined on one face only.When the specimen is cut from a thick sheet,notation shall be made of the portionofA 10.1660.050.40060.002B 31.861.0 1.2560.04C 63.562.0 2.5060.08D 0.25R 60.050.010R 60.002E 12.7060.200.50060.008FIG.6Dimensions of Izod-Type TestSpecimen--```,`,`,````,,`,,```,,,,`,``,-`-`,,`,,`,`,,`---。

塑料的抗冲击性与弯曲性能评估

塑料的抗冲击性与弯曲性能评估

塑料的抗冲击性与弯曲性能评估塑料是一种常见的材料,具有广泛的应用领域。

在工程设计和制造过程中,了解塑料的抗冲击性和弯曲性能是至关重要的。

本文将介绍如何评估塑料的抗冲击性和弯曲性能,并提供相应的测试方法和标准。

一、抗冲击性评估1. 厚度板法厚度板法是评估塑料抗冲击性能的常用方法之一。

首先我们需要准备一块具有代表性的塑料板材,该板材的尺寸通常为150mm×150mm。

然后,将板材装夹在夹具上,利用冲击测试仪以一定速度施加冲击载荷。

通过测量冲击前后板材的变形和破坏情况,评估塑料的抗冲击性能。

2. 弯曲缺口冲击试验弯曲缺口冲击试验是评估塑料抗冲击性能的另一种常用方法。

该方法在厚度板法的基础上引入了缺口,以模拟实际使用条件下的受力情况。

首先制备一块具有一定尺寸的塑料试样,然后在试样上制造一个标准化的缺口。

将缺口试样固定在夹具上,利用冲击测试仪施加冲击载荷,并记录试样的破坏形态和冲击能量。

3. 多重冲击试验多重冲击试验是评估塑料抗冲击性能的一种更加严格的方法。

该方法模拟了塑料在使用过程中可能遭受的多次冲击载荷。

在测试中,我们需要制备一系列塑料试样,并重复进行冲击载荷施加。

通过观察试样的变形和破坏情况,评估塑料的持久抗冲击性能。

二、弯曲性能评估1. 三点弯曲试验三点弯曲试验是评估塑料弯曲性能的一种常用方法。

在测试中,首先我们需要制备一根具有一定尺寸的塑料试杆,然后在试杆的两个支撑点之间施加一个标准化的弯曲载荷。

通过测量试杆在弯曲过程中的变形和应力分布,评估塑料的弯曲强度和弯曲模量。

2. 四点弯曲试验四点弯曲试验是评估塑料弯曲性能的另一种常用方法。

与三点弯曲试验相比,四点弯曲试验在试杆上增加了两个支撑点,可以更准确地评估材料的弯曲性能。

试验过程和参数设置与三点弯曲试验类似,通过测量试杆的弯曲变形和应力分布,评估塑料的弯曲强度和弯曲模量。

3. 热变形试验热变形试验是评估塑料弯曲性能的一种特殊方法。

该试验通过在高温条件下施加外力,观察塑料的变形情况,以评估塑料在高温环境下的弯曲性能。

塑料抗冲击试验方法

塑料抗冲击试验方法

塑料抗冲击试验方法抗冲强度(冲击强度)是材料突然受到冲击而断裂时,每单位横截面上材料可吸收的能量的量度。

它反映材料抗冲击作用的能力,是一个衡量材料韧性的指标。

冲击强度小,材料较脆。

一、目的要求1.掌握XCJ-50型冲击试验机的使用。

2.测定聚丙烯、聚氯乙烯型材的冲击强度。

二、实验原理国内对塑料冲击强度的测定一般采用简支梁式摆锤冲击实验机进行。

试样可分为无缺口和有缺口两种。

有缺口的抗冲击测定是模拟材料在恶劣环境下受冲击的情况。

冲击实验时,摆锤从垂直位置挂于机架扬臂上,把扬臂提升一扬角α,摆锤就获得了一定的位能。

释放摆锤,让其自由落下,将放于支架上的样条冲断,向反向回升时,推动指针,从刻度盘读数读出冲断试样所消耗的功A,就可计算出冲击强度:(公斤•厘米/厘米2)b、d分别为试样宽及厚,对有缺口试样,d为除去缺口部分所余的厚度。

从刻度盘上读出的数值,是冲击试样所消耗的功,这里面也包括了样品的"飞出功",以关系式表示为:W为摆锤重,L为摆锤摆长,α、β分别为摆锤冲击前后的扬角;A为冲击试样所耗功;Aα、Aβ分别为摆锤在α、β角度内克服空气阻力所消耗的功;为“飞出功”,一般认为后三项可以忽略不计,因而可以简写成:对于一固定仪器,α、W、L均为已知,因而可据β大小,绘制出读数盘,直接读出冲击试样所耗功。

实际上,飞出功部分因试样情况不同,试验仪器情况不同而有较大差别,有时甚至占读数A的50%。

脆性材料,飞出功往往很大,厚样品的飞出功亦比薄样大。

因而测试情况不同时,数值往往难以定量比较,只适宜同一材料,同一测定条件下的比较。

试样断裂所吸收的能量部分,表面上似乎是面积现象,实际上它涉及到参加吸收冲击能的体积有多大,是一种体积现象。

若某种材料在某一负荷下(屈服强度)产生链段运动,因而使参与承受外力的链段数增加,即参加吸收冲击能的体积增加,则它的冲击强度就大。

脆性材料一般多为劈面式断裂,而韧性材料多为不规整断裂,断口附近会发白,涉及的体积较大。

PC塑胶材料质量检验标准

PC塑胶材料质量检验标准

EVERGREEN-PLASTICPoly-Lite PC质量检验标准核准:审核:拟定:修订记录目录修订记录 (2)目录 (3)前言 (4)1.0 范围 (5)2.0 引用文件 (6)3.0 术语和定义 (6)4.0 质量要求 (7)5.0检测规则 (10)6.0标志、包装、贮存、运输 (12)前言连平长荣塑胶有限公司根据目前国际及国内电子、电器等尖端市场对光学薄膜的大量需求,引进国内外最先进的挤出成型设备再结合国内高端技术进行科学改进,专业生产聚碳酸酯薄膜(PC film)和片材(PC sheet)之质量已完全达到目前市场中的高品质产品,长荣公司可根据不同行业的使用要求生产不同品质等级之材料,满足不同客户群的使用。

因在PC挤出成型行业中目前国内及行业中尚未出台相关的国家标准及行业标准,为保证我司产品质量的可靠性及可验证性,特根据《中华人民共和国标准化法》制定本企业标准,以作为供需双方及相关使用行业的参考,当国家标准或行业标准颁布实施时,本标准将自行作废而依照其新标准。

本标准由连平长荣塑胶有限公司提出;本标准由连平长荣塑胶有限公司起草;本标准由连平长荣塑胶有限公司批准;本标准起草人:彭艾华1.0范围本标准规定了聚碳酸酯(PC)薄膜、片材的产品分类、技术要求、试验方法、检验规则、标志、标签、运输、贮存。

本标准适用于经挤出加工面成的聚碳酸酯(PC)薄膜、片材。

Poly-Lite PC产品有薄膜(PC film)和片材(PC sheet),厚度0.125mm-1.00mm产品代码:例:Poly-Lite PC- PL 101 (-1 W )①②③①等级:G 通用 FR 阻燃环保②品种:1本色透明、抛光,2哑光,3细砂,4中砂,5粗砂③颜色: W白色,BU兰色,T茶色,G绿色,R 红色,Y黄色,B黑色,O橙色薄膜为卷筒状,片材为长方形状。

光面产品为平整、光洁的;磨砂/哑光产品,磨砂面呈凹凸不平的砂粒状,哑光面为比较粗糙、不会有明显的反光。

ASTM D256-10 测定塑料悬臂梁冲击强度的标准试验方法(中文版)

ASTM D256-10 测定塑料悬臂梁冲击强度的标准试验方法(中文版)

名称:D256-10测定塑料悬臂梁冲击强度的标准试验方法本标准以固定名称D256 发布;紧随其后的数字表示最初采用的年份,如果是修订,则表示最后修订的年份。

括号中的数字表示上次重新批准的年份。

上标epsilon (´) 表示自上次修订或重新批准以来的编辑更改。

本标准已被国防部机构批准使用。

1. 范围*1.1 这些测试方法涵盖了塑料对“标准化”(见注1)摆锤的抵抗力的测定,安装在“标准化”机器中,用一个摆锤摆动(见注2)破坏标准样品。

这些测试的标准测试方法要求试样带有一个铣削的缺口(见注3)。

在测试方法A、C 和D 中,缺口产生的应力集中会增加脆性而不是延展性断裂的可能性。

在测试方法E 中,通过将带缺口的试样在夹具中翻转180° 来获得抗冲击性。

所有测试方法的结果均以单位试样宽度或缺口下每单位横截面积吸收的能量表示。

(见注4。

)注1——带有摆锤的机器已经“标准化”,因为它们必须符合某些要求,包括固定的锤下落高度,导致在撞击时刻锤的速度基本固定。

但是,建议将不同初始能量的锤子(通过改变其有效重量产生)用于不同抗冲击性的样品。

此外,允许设备制造商使用不同长度和结构的摆锤,从而导致摆锤刚度可能存在差异。

(见第 5 节。

)请注意,机器设计中可能存在其他差异。

试样是“标准化的”,要求它们具有一种固定长度、一种固定深度和一种特殊设计的铣削槽口。

试样的宽度允许在限值之间变化。

注2——使用称重传感器记录冲击力并因此记录冲击能量的摆锤产生的结果可能与使用手动或数字编码测试仪产生的结果不同,这些测试仪测量撞击后摆锤中剩余的能量。

注3——悬臂梁式试样中的缺口用于集中应力,最大限度地减少塑性变形,并将断裂指向缺口后面的试样部分。

因此减少了断裂能量的分散。

然而,由于塑料的弹性和粘弹性特性不同,对给定缺口的响应因材料而异。

塑料的“缺口敏感性”可以用测试方法D 通过比较在缺口底部具有不同半径的断裂试样的能量来获得。

塑料的冲击强度与硬度检测方法以及影响因素总结

塑料的冲击强度与硬度检测方法以及影响因素总结

塑料的冲击强度与硬度检测方法以及影响因素总结一、塑料冲击强度的检测方法:1.球根撞击法(IZOD冲击试验):将标准试样固定在夹具上,然后用标准冲击器撞击试样。

记录试样的破裂能量,以及试样断口的形态和长度等信息。

这种方法常用于脆性材料的冲击强度测试。

2. 搭铁撞击法(Charpy冲击试验):与IZOD冲击试验类似,只是试样固定在不同的夹具上,撞击方向也不同。

这种方法适用于各种材料的冲击强度测试。

3.自由落锤法:将标准试样固定在支撑台上,然后使用自由落锤撞击试样。

通过记录击破试样所需的能量,确定材料的冲击强度。

4.压缩拉伸法:通过对试样施加压力和拉力,观察试样的破裂情况,以及断口形态和长度等信息,确定材料的冲击强度。

这种方法适用于各种材料的冲击强度测试。

二、塑料硬度的检测方法:1.洛氏硬度法(LRH):将试样放在硬度计上,施加一个标准的压力,然后测量压入的深度来确定试样的硬度。

这种方法适用于薄板材料的硬度测试。

2.针刺法:用预先确定好的针头对试样进行穿刺,观察试样的负载、穿刺深度和形态等信息,确定材料的硬度。

3.巴氏硬度法(BRH):通过计算硬度计上载荷的变化和试样上卸载时的载荷变化,测量试样的硬度。

这种方法适用于材料的硬度测量,特别是硬度较高的材料。

三、塑料冲击强度和硬度的影响因素:1.材料组成和结构:不同种类的塑料以及不同结构的塑料在冲击强度和硬度上表现出不同的特点。

例如,聚丙烯脆性较强,聚乙烯硬度较低。

2.加工工艺:塑料的冲击强度和硬度还与加工工艺有关。

熔融温度、冷却速度、模具温度等因素都会对塑料的冲击强度和硬度产生影响。

3.温度:温度对塑料的冲击强度和硬度也有一定的影响。

一般来说,温度越高,塑料的冲击强度和硬度越低。

4.加工条件:例如塑料的注塑温度、注射速率、压力等因素也会对塑料的冲击强度和硬度产生影响。

综上所述,塑料的冲击强度和硬度是塑料材料性能的重要指标,可以通过一系列的试验方法来进行检测。

塑料应力测试方法及标准

塑料应力测试方法及标准

塑料应力测试方法及标准塑料材料的应力测试在材料科学和工程领域中具有重要意义,其测试方法主要分为两大类:机械性能测试和热性能测试。

下面将详细介绍各种测试方法及其标准。

1.拉伸强度测试拉伸强度是衡量塑料材料在拉伸过程中所能承受的最大负荷。

测试标准采用ASTM D638,样品通常为哑铃状,通过拉伸速度控制试样延伸,记录试样断裂时的最大负荷。

2.弯曲强度测试弯曲强度是衡量塑料材料在承受弯曲负荷时的能力。

测试标准采用ASTM D790,样品通常为矩形条,跨距在两支点之间,记录样品在弯曲断裂时的最大负荷。

3.压缩强度测试压缩强度是衡量塑料材料在承受压缩负荷时的能力。

测试标准采用ASTM D695,样品通常为圆柱形,在压力试验机上以一定的速度施加负荷,记录样品在压缩断裂时的最大负荷。

4.冲击强度测试冲击强度是衡量塑料材料在承受冲击负荷时的能力。

测试标准采用ASTM D256,样品通常为矩形条,通过摆锤冲击样品,记录样品在冲击断裂时的最大能量。

5.热变形温度测试热变形温度是衡量塑料材料在受热时保持原有形状的能力。

测试标准采用ASTM D648,样品通常为矩形条,通过逐渐加热并施加一定负荷,记录样品开始变形的温度。

6.维卡软化点温度测试维卡软化点温度是衡量塑料材料在受热时开始软化的温度。

测试标准采用ASTM D1525,样品通常为小圆柱形,通过逐渐加热并施加一定负荷,记录样品开始变形的温度。

7.邵氏硬度测试邵氏硬度是衡量塑料材料表面硬度的一种方法。

测试标准采用ASTM D2240,样品通常为矩形条或圆形片状,通过在样品表面施加一定负荷,测量样品表面形变的数值来表示硬度。

8.落锤冲击测试落锤冲击测试是评估塑料材料抗冲击能力的方法。

测试标准采用ASTM D3039,样品通常为矩形条或圆形片状,通过让一定质量的重锤从一定高度自由落体冲击样品,观察样品是否破裂或变形。

9.蠕变测试蠕变测试是评估塑料材料在长时间恒定负荷下的变形能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档