空间向量专题讲解
高中数学必修知识点空间向量知识点
高中数学必修知识点空间向量知识点高中数学必修知识点:空间向量知识点一、空间向量的概念与表示空间向量是指具有大小、方向和作用线的量,可以用一个有向线段来表示。
设 A、B 是空间中的两点,用线段 AB 表示的向量称为向量AB,记作⃗AB 或 AB。
二、向量的加法与减法1. 向量的加法:设向量⃗AB 与向量⃗BC 共线,则向量⃗AC 称为向量⃗AB 和向量⃗BC 的和,记作⃗AB + ⃗BC = ⃗AC。
2. 向量的减法:设向量⃗AB 与向量⃗BC 共线,则向量⃗AC 称为向量⃗AB 和向量⃗BC 的差,记作⃗AB - ⃗BC = ⃗AC。
三、数量积与向量积1. 数量积的定义:设向量⃗a = (x₁, y₁, z₁) 与向量 ⃗b = (x₂, y₂, z₂),则向量⃗a 和向量⃗b 的数量积为 a·b = x₁x₂ + y₁y₂ + z₁z₂。
2. 数量积的性质:- 交换律:⃗a·⃗b = ⃗b·⃗a- 结合律:(k⃗a)·⃗b = k(⃗a·⃗b) = ⃗a·(k⃗b) (k 为常数)- 分配律:⃗a·(⃗b + ⃗c) = ⃗a·⃗b + ⃗a·⃗c- ⃗a·⃗a ≥ 0,当且仅当⃗a = ⃗0 时,⃗a·⃗a = 03. 向量积的定义:设向量⃗a = (x₁, y₁, z₁) 与向量⃗b = (x₂, y₂,z₂),则向量⃗a 和向量⃗b 的向量积为⃗a × ⃗b = (y₁z₂ - z₁y₂, z₁x₂ - x₁z₂, x₁y₂ - y₁x₂)。
4. 向量积的性质:- ⃗a × ⃗b = -⃗b × ⃗a- (k⃗a) × ⃗b = ⃗a × (k⃗b) = k(⃗a × ⃗b) (k 为常数)- ⃗a × ⃗b = ⃗0,当且仅当⃗a 与 ⃗b 共线或其中一个为⃗0 时,⃗a × ⃗b = ⃗0四、平面与空间向量的关系1. 平面方程的向量表示:设平面过点 A(x₁, y₁, z₁),且法向量为 ⃗n = (A, B, C),则平面上任意一点 M(x, y, z) 满足向量⃗AM·⃗n = 0。
空间向量知识点总结题型
空间向量知识点总结题型一、基本概念1. 空间中的向量空间中的向量是指具有大小和方向的量,在数学中以有向线段的形式表示,通常用字母加上一个箭头来表示向量,如a→。
2. 向量的运算空间中的向量可以进行加法、减法、数乘等运算。
加法运算是将两个向量的对应分量相加;减法运算是将两个向量的对应分量相减;数乘运算是将一个向量的每个分量都乘以一个实数。
3. 向量的模向量的模是指向量的大小,用||a||来表示,其计算公式为:||a|| = √(a1^2 + a2^2 + a3^2)。
二、向量的表示1. 分量表示空间中的向量可以用分量表示法来表示,即将向量投影到坐标轴上,得到三个分量。
例如,向量a可以表示为a = (a1, a2, a3)。
2. 向量的坐标向量的坐标通常用方向余弦来表示,即向量与坐标轴的夹角的余弦值。
向量a的坐标可表示为cosα,cosβ,cosγ。
三、向量的数量积和向量积1. 向量的数量积向量的数量积也称为点积,表示为a·b,其计算公式为a·b = a1b1 + a2b2 + a3b3。
其几何意义为:a·b = ||a|| ||b|| cosθ,其中θ为a与b之间的夹角。
2. 向量的向量积向量的向量积也称为叉积,表示为a×b,其计算公式为a×b = (a2b3 - a3b2, a3b1 - a1b3,a1b2 - a2b1)。
其几何意义为:a×b的大小为平行四边形的面积,方向垂直于平行四边形,满足右手定则。
四、空间中的直线和平面1. 空间中的直线空间中的直线可以用点和方向向量来表示,通常表示为l:r = a + λb,其中a为直线上的一个点,b为直线的方向向量,λ为参数。
2. 空间中的平面空间中的平面可以用一个点和法向量来表示,通常表示为Ax + By + Cz + D = 0,其中A、B、C为法向量的分量,D为平面到原点的距离。
五、空间向量的应用空间向量在物理、工程、计算机图形学等领域有广泛的应用,如力的合成、三维坐标系的运动、三维图形的计算等。
空间向量应用知识点总结
空间向量应用知识点总结一、空间向量的定义和性质1. 空间向量的定义:空间中的向量是指具有大小和方向的物理量,可以在空间中表示为一个由起点和终点确定的有向线段。
2. 空间向量的几何意义:空间向量的几何意义是指用有向线段来表示向量,其方向由箭头表示,长度由线段的长度表示。
3. 空间向量的性质:空间向量与平面向量相似,具有平行、共线、相等、相反等性质,还有长度相等、共线向量的倍数、共面向量的叉乘等性质。
二、空间向量的运算1. 空间向量的加法:空间向量的加法是指两个向量相加后得到一个新的向量,其结果向量的大小和方向由两个向量的大小和方向决定。
2. 空间向量的减法:空间向量的减法是指一个向量减去另一个向量得到一个新的向量,其结果向量的大小和方向由两个向量的大小和方向决定。
3. 空间向量的数量积:空间向量的数量积是指两个向量相乘后得到一个数量,其结果是一个标量,其大小等于两个向量的模的乘积,其方向由两个向量的夹角决定。
4. 空间向量的叉积:空间向量的叉积是指两个向量相乘后得到一个新的向量,其结果向量的大小等于两个向量构成的平行四边形的面积,其方向垂直于两个向量构成的平面。
5. 空间向量的混合积:空间向量的混合积是指三个向量相乘后得到一个数量,其结果是一个标量,其大小等于三个向量构成的平行六面体的体积。
三、空间向量在物理学中的应用1. 力的合成:在物体受到多个力的作用时,可以利用空间向量的加法和减法原理,将所有的力向量进行合成或分解,从而求出合力或分力的大小和方向。
2. 力的平衡:当一个物体处于受力平衡状态时,可以利用空间向量的数量积或叉积原理,求出合力或力矩为零的条件,从而判断物体是否处于平衡状态。
3. 力的做功:当一个物体受到外力作用而发生位移时,可以利用空间向量的数量积原理,求出外力做功的大小和方向,从而判断外力对物体的能量变化情况。
4. 力的矢量描述:在分析物体的运动和力的作用时,可以通过空间向量的描述方法,将力的大小和方向用向量来表示,从而对物体的运动和受力情况进行分析。
空间向量的知识点总结
空间向量的知识点总结空间向量是指空间中的一条具有方向和大小的有向线段,在数学上通常表示为箭头上有一个加粗的字母来表示。
一、空间向量的概念空间向量是指具有方向和大小的有向线段,它是向量的一种特殊形式。
它与平面向量类似,但是空间向量不仅有大小和方向,而且还有位置。
空间向量可以用某个点P到另一个点Q的有向线段来表示,表示为PQ→。
空间向量的大小可以通过计算两点之间的距离来得到,而它的方向可以通过计算两个点之间的夹角来得到。
二、空间向量的基本运算1、空间向量的加法设空间向量a=(x1,y1,z1)和 b=(x2,y2,z2),那么 a+b = (x1+x2, y1+y2, z1+z2)。
这表示a+b等于a与b的x、y、z分量分别相加得到的结果。
2、空间向量的数乘设空间向量a=(x,y,z),k为实数,则ka=(kx,ky,kz)。
这表示空间向量a的每个分量都乘以k得到的结果。
3、空间向量的减法空间向量的减法定义为a-b=a+(-b),即对b取反再进行加法操作。
4、空间向量的数量积设空间向量a=(x1,y1,z1)和 b=(x2,y2,z2),则a·b = x1x2+y1y2+z1z2。
这表示a·b等于a与b的x、y、z分量分别相乘并求和的结果。
5、空间向量的向量积设空间向量a=(x1,y1,z1)和 b=(x2,y2,z2),则a×b = (y1z2-z1y2, z1x2-x1z2, x1y2-y1x2)。
这表示a×b等于a与b按照右手定则进行叉乘得到的结果。
三、空间向量的坐标表示空间向量可以用坐标表示。
设点A(a1,a2,a3)和点B(b1,b2,b3),则AB向量可以表示为AB=(b1-a1,b2-a2,b3-a3)。
四、空间向量的运算律1、给定三个空间向量a,b,c,则有以下运算律:(1)加法交换律:a+b = b+a(2)加法结合律:(a+b)+c = a+(b+c)(3)数乘结合律:k(la) = (kl)a(4)分配律:k(a+b) = ka+kb2、空间向量的数量积定理给定三个空间向量a,b,c以及实数k,则有以下数量积定理:(1)数量积交换律:a·b = b·a(2)数量积结合律:a·(b+c) = a·b+a·c(3)数量积与数乘结合律:k(a·b) = (ka)·b = a·(kb)(4)对于a≠0,b≠0,有a·b=|a|·|b|·cosθ,其中|a|表示a的大小,θ表示a与b的夹角。
直击2024年高考——高三数学空间向量考点精讲(全国版)
空间向量考点精讲1.空间向量的线性运算已知空间向量,a b ,我们可以把它们移到同一个平面α内,以任意点O 为起点,作向量OA AB ==,a b .类似于平面向量,定义空间向量的加法、减法以及数乘运算: ① OA AB OB +=+=a b ;② OA OC CA −=−=a b ;③ 当0λ>时,λa 与向量a 方向相同;当0λ<时,λa 与向量a 方向相反;当0λ=时,λ0a =;λa 的长度是a 的长度的λ倍.2.空间向量线性运算的运算律交换律:+=+a b b a ;结合律:()()++=++a b c a b c ,()()λμλμ=a a ;分配律:()λμλμ+=+a a a ,()λλλ+=+a b a b 。
3.空间向量的数量积运算已知两个非零向量,a b ,则cos ,a b a b 叫做,a b 的数量积,记作⋅a b .即cos ⋅=,a b a b a b .特别地,零向量与任何向量的数量积为0.由向量的数量积定义,可以得到:=0⊥⇔⋅a b a b ;2cos ⋅==,a a a a a a a .4.空间向量数量积的运算律()()λλ⋅=⋅a b a b ;⋅=⋅a b b a (交换律);()+⋅=⋅+⋅a b c a c b c (分配律).5.空间向量基本定理如果三个向量,,a b c 不共面,那么对任意一个空间向量p ,存在唯一的有序实数组{}x y z ,,,使得x y z =++p a b c .由此可知,如果三个向量,,a b c 不共面,那么所有空间向量组成的集合就是{}x y z x y z =++∈R ,,,p p a b c .这个集合可看作是由向量,,a b c 生成的,把{},,a b c 叫做空间的一个基底,,,a b c 都叫做基向量.空间任何三个不共面的向量都可构成空间的一个基底.6.空间向量的坐标运算设123123()()a a a b b b ==,,,,,a b ,则 ①112233()a b a b a b +=+++,,a b .②112233()a b a b a b −=−−−,,a b .③123()a a a λλλλ=,,a .④112233a b a b a b ⋅=++a b .⑤112233()a b a b a b λλλλλ⇔=⇔===∈≠R 0∥,,,a b a b b . ⑥11223300a b a b a b ⊥⇔⋅=⇔++=a b a b .⑦==a ⑧cos ⋅==,a b a b a b ⑨设11112222()()P x y z P x y z ,,,,,是空间中任意两点,则 1212(PP PP x ==.7.空间向量解平行垂直问题设直线l m ,的方向向量分别为,a b ,平面αβ,的法向量分别为,u v ,则(1)l m k k ⇔⇔=∈R ∥∥,a b a b ;(2)0l m ⊥⇔⊥⇔⋅=a b a b ;(3)0l α⇔⊥⇔⋅=∥a u a u ;(4)l k k α⊥⇔⇔=∈R ∥,a u a u ;(5)k k αβ⇔⇔=∈R ∥∥,u v u v ;(6)0αβ⊥⇔⊥⇔⋅=u v u v .8.空间向量解距离夹角问题(1)点到直线的距离已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点,向量AP 在直线l 上的投影向量为AQ . 设AP =a ,则点P 到直线l 的距离为 22PQ AP AQ =−=a (2)点到平面的距离已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点. 过点P 作平面α的垂线l ,交平面α于点Q ,则点P 到平面α的距离为 AP AP PQ AP ⋅⋅=⋅==n n n n n n.(3)异面直线所成角若异面直线12l l ,所成的角为θ,其方向向量分别是,u v ,则cos cos θ⋅==,u v u v u v .(1)直线与平面所成角 设直线l 的方向向量为u ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin cos θ⋅==,u n u n u n .(4)两平面间的夹角平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角。
空间向量相关知识点总结
空间向量相关知识点总结一、空间向量的定义和基本概念1. 空间向量的定义空间向量是指在三维空间中的一种特殊的向量,它可以用有向线段表示,也可以用坐标表示。
空间向量具有大小和方向,是空间中的一个几何概念。
2. 空间向量的基本概念(1)长度:空间向量的长度也称为模,它表示向量的大小,一般用|AB|表示,其中A和B分别表示向量的起点和终点。
(2)方向:空间向量的方向是指向量的指向,可以用一组坐标表示,也可以用夹角表示。
(3)共线:如果两个向量的方向相同或者相反,则它们是共线的。
(4)共面:如果三个向量在同一个平面内,则它们是共面的。
二、空间向量的运算1. 空间向量的加减法(1)几何法:向量的加法就是将两个向量的起点相接,然后将两个向量的终点相连,新的向量就是两个向量的和向量;向量的减法就是将减数的起点和被减数的终点相接,然后将减数的终点和被减数的起点相连,新的向量就是两个向量的差向量。
(2)坐标法:向量的加减法也可以用坐标表示,对应坐标相加或者相减即可。
2. 数乘向量的数乘即将向量与一个常数相乘,结果是一个新的向量,其大小是原向量的模与常数的乘积,方向与原向量的方向一致(如果是负数,则方向相反)。
3. 空间向量的数量积和向量积(1)数量积:也称为点积或内积,即将两个向量的对应坐标相乘再相加,结果是一个标量。
(2)向量积:也称为叉积或外积,即将两个向量的叉乘结果是一个新的向量,其大小是原向量所构成的平行四边形的面积,方向垂直于原向量所构成的平面。
三、空间向量的几何应用1. 向量的方向余弦(1)定义:设向量a=(x, y, z),则a的方向余弦分别为l=x/|a|,m=y/|a|,n=z/|a|,它们互为方向余弦。
(2)性质:方向余弦l、m、n满足l²+m²+n²=1。
(3)应用:方向余弦可用于求向量的夹角、判断向量的共线性等。
2. 向量的投影(1)定义:设向量a和b不共线,a在b上的投影为向量a在b方向上的分量,记为prj_b a。
高中数学必修知识点空间向量知识点
高中数学必修知识点空间向量知识点在高中数学的学习中,空间向量是一个重要的知识点,它为我们解决空间几何问题提供了全新的思路和方法。
接下来,就让我们一起深入了解一下空间向量的相关知识。
一、空间向量的基本概念空间向量是指具有大小和方向的量。
它与平面向量类似,但存在于三维空间中。
一个空间向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
空间向量的坐标表示:在空间直角坐标系中,若向量的起点坐标为\((x_1,y_1,z_1)\),终点坐标为\((x_2,y_2,z_2)\),则该向量的坐标为\((x_2 x_1, y_2 y_1, z_2 z_1)\)。
零向量:长度为\(0\)的向量,其方向任意。
单位向量:长度为\(1\)的向量。
二、空间向量的运算1、加法和减法空间向量的加法和减法运算遵循三角形法则和平行四边形法则。
若\(\overrightarrow{a} =(x_1,y_1,z_1)\),\(\overrightarrow{b} =(x_2,y_2,z_2)\),则\(\overrightarrow{a} +\overrightarrow{b} =(x_1 + x_2, y_1 + y_2, z_1 + z_2)\),\(\overrightarrow{a} \overrightarrow{b} =(x_1 x_2, y_1 y_2, z_1z_2)\)2、数乘运算若\(\lambda\)为实数,\(\overrightarrow{a} =(x,y,z)\),则\(\lambda\overrightarrow{a} =(\lambda x, \lambda y, \lambda z)\)数乘运算的规律:\(\lambda (\overrightarrow{a} +\overrightarrow{b})=\lambda\overrightarrow{a} +\lambda\overrightarrow{b}\)3、数量积空间向量的数量积\(\overrightarrow{a} \cdot \overrightarrow{b} =|\overrightarrow{a}||\overrightarrow{b}|\cos <\overrightarrow{a},\overrightarrow{b}>\)若\(\overrightarrow{a} =(x_1,y_1,z_1)\),\(\overrightarrow{b} =(x_2,y_2,z_2)\),则\(\overrightarrow{a} \cdot \overrightarrow{b} = x_1x_2 + y_1y_2 + z_1z_2\)数量积的性质:\(\overrightarrow{a} \perp \overrightarrow{b} \Leftrightarrow \overrightarrow{a} \cdot \overrightarrow{b} = 0\)\(\overrightarrow{a} \cdot \overrightarrow{a} =|\overrightarrow{a}|^2\)4、向量积空间向量的向量积\(\overrightarrow{a} \times \overrightarrow{b}\)是一个向量,其模长为\(|\overrightarrow{a}||\overrightarrow{b}|\sin <\overrightarrow{a},\overrightarrow{b}>\),方向垂直于\(\overrightarrow{a}\)和\(\overrightarrow{b}\)所确定的平面,遵循右手定则。
专题01 空间向量及其运算(知识梳理+专题过关)(原卷版)
专题01空间向量及其运算【知识梳理】1、空间向量的概念:(1)在空间,具有大小和方向的量称为空间向量.(2)向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.(3)向量AB 的大小称为向量的模(或长度),记作A B uuu r.(4)模(或长度)为0的向量称为零向量;模为1的向量称为单位向量.(5)与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -.(6)方向相同且模相等的向量称为相等向量.2、空间向量的加法和减法:(1)求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.(2)求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.3、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.4、设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.5、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.6、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,a //b 的充要条件是存在实数λ,使a b λ=.7、平行于同一个平面的向量称为共面向量.8、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP AB A =+;或对空间任一定点O ,有x y C OP OA AB A =++;或若四点P ,A ,B ,C共面,则()1x y z C x y z OP OA OB O =++++=.9、已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则AOB ∠称为向量a ,b 的夹角,记作a,b 〈〉.两个向量夹角的取值范围是:[]0a,b ,π〈〉∈.10、对于两个非零向量a 和b ,若2a,b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.11、已知两个非零向量a 和b ,则a b cos a,b 〈〉称为a ,b 的数量积,记作a b ⋅.即a b a b cos a,b ⋅=〈〉.零向量与任何向量的数量积为0.12、a b ⋅等于a 的长度a 与b 在a 的方向上的投影b cos a,b 〈〉的乘积.13、若a ,b 为非零向量,e 为单位向量,则有()1e a a e a cos a,e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a =;()4a b cos a,b a b⋅〈〉=;()5a b a b ⋅≤.14、数量乘积的运算律:()1a b b a ⋅=⋅;()2()()()a b a b a b λλλ⋅=⋅=⋅;()3()a b c a c b c +⋅=⋅+⋅.15、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{}x,y,z ,使得p xa yb zc =++.16、三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{}p p xa yb zc,x,y,z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{}a,b ,c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.17、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量OP p =.存在有序实数组{}x,y,z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作()p x,y,z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标()x,y,z .【专题过关】【考点目录】考点1:空间向量及其线性运算考点2:共线问题考点3:共面问题考点4:空间向量基本定理考点5:模长、数量积、夹角问题【典型例题】考点1:空间向量及其线性运算1.(2021·福建·浦城县教师进修学校高二期中)给出下列命题①空间中所有的单位向量都相等;②方向相反的两个向量是相反向量;③若,a b 满足a b >,且,a b 同向,则a b >;④零向量的方向是任意的;⑤对于任意向量,a b ,必有a b a b +≤+.其中正确命题的序号为()A .①②③B .⑤C .④⑤D .①⑤2.(2021·广东深圳·高二期中)在正方体1111ABCD A B C D -中,111AB D A D D --=()A .1AD B .1AC uuu rC .1ABD .1AA 3.(2022·福建龙岩·高二期中)如图,在三棱锥O ABC -中,E 为OA 的中点,点F 在BC 上,满足2BF FC =,记OA ,OB ,OC 分别为a ,b ,c ,则EF =()A .112233a b c-++B .121233a b c-++C .211322a b c-++D .211322a b c--4.(2021·安徽宿州·高二期中)如图所示,在平行六面体1111ABCD A B C D -中,E 为AC 与BD 的交点,则下列向量中与1D E 相等的向量是()A .111111122A B A D A A -+B .111111122A B A D A A ++C .111111122A B A D A A-++D .111111122A B A D A A --+5.(2021·河北省博野中学高二期中)在平行六面体1111ABCD A B C D -中,M 为AC 和BD 的交点11=A B a ,若11=A D b ,1=A A c ,则1=M B ()A .1122a b c-++B .111222a b ++C .1122-+a b cD .1122--+a b c6.(2021·云南·峨山彝族自治县第一中学高二期中)空间四边形ABCD 中,E 、F 分别是BC 、CD 的中点,则1122AB BC BD ++=()A .EFB .FAC .AFD .FE7.(2021·黑龙江·齐齐哈尔市第八中学校高二期中)如图所示空间四边形ABCD ,连接AC 、BD ,设M 、G 分别满足2BM MC =,2DG GC =,则MG AB AD -+等于()A .32DBB .4MGC .23GMD .23MG考点2:共线问题8.(2022·甘肃·高台县第一中学高二期中(理))对于空间任意一点O ,以下条件可以判定点P 、A 、B 共线的是___________(填序号).①(),0OP OA t AB t t =+∈≠R ;②5OP OA AB =+;③(),0OP OA t AB t t =-∈≠R ;④OP OA AB =-+.9.(2022·全国·高二课时练习)在正方体1111ABCD A B C D -中,点E 在对角线1D B 上,且113D E EB =,点F 在棱11D C 上,若A 、E 、F 三点共线,则1D F =________1FC .10.(多选题)(2021·全国·高二期中)下列命题中不正确的是()A .若a 与b 共线,b 与c 共线,则a 与c 共线B .向量a ,b ,c 共面,即它们所在的直线共面C .若两个非零空间向量AB ,CD ,满足0AB CD +=,则AB ∥CD D .若a ∥b ,则存在唯一的实数λ,使a =λb11.(2022·江西南昌·高二期中(理))已知非零向量324a m n p =--,(1)82b x m n y p =+++,且m 、n 、p 不共面.若//a b ,则x y +=().A .13-B .5-C .8D .1312.(2021·广东·兴宁市叶塘中学高二期中)如图,已知空间四边形ABCD ,点E ,H 分别是AB ,AD 的中点,点F ,G 分别是CB ,CD 上的点,且23CF CB =,23CG CD =.用向量法求证:四边形EFGH 是梯形.13.(2021·全国·高二课时练习)已知A 、B 、P 共线,O 为空间任意一点(O 、A 、B 不共线),且存在实数α、β,使OP OA OB αβ=+,求αβ+的值.14.(2021·重庆市第十一中学校高二期中)边长为4的正方体1111ABCD A B C D -内(包含表面和棱上)有一点P ,M ,N 分别为11A B ,1DD 中点,且(,)AP AM AN R λμλμ=+∈.若111()D P t D C t R =∈,则t =______;若11()A P k A C k R =∈,则三棱锥P ABC -体积为______.15.(2021·全国·高二课时练习)已知A ,B ,C 三点共线,则对空间任一点O ,若2OA OB OC μ=+,则μ=________;存在三个不为0的实数λ,m ,n ,使0OA mOB nOC λ++=,那么λ+m +n 的值为_______.考点3:共面问题16.(2022·上海市控江中学高二期中)下列条件中,一定使空间四点P 、A 、B 、C 共面的是()A .OA OB OC OP++=-uu r uu u r uuu r uu u rB .OA OB OC OP++=uu r uu u r uuu r uu u r C .2OA OB OC OP++=uu r uu u r uuu r uu u r D .3OA OB OC OP++=17.(2022·江苏连云港·高二期中)已知A ,B ,C 三点不共线,O 为平面ABC 外一点,下列条件中能确定P ,A ,B ,C 四点共面的是()A .OP OA OB OC =++B .2O P O A O B O C=--C .111532OP OA OB OC=++D .111333OP OA OB OC=++18.(2022·江苏常州·高二期中)对于空间任意一点O ,若111236OP OA OB OC =++,则A ,B ,C ,P 四点()A .一定不共面B .一定共面C .不一定共面D .与O 点位置有关19.(2021·河北保定·高二期中)若{},,a b c 构成空间的一组基底,则下列向量不共面的是()A .a b +,a b -,bB .a b -,a b c -+,c-C .2a b +,2a b -r r,a c+D .2a b -r r,42b a -,a c+20.(2022·江苏·高二期中)已知空间A 、B 、C 、D 四点共面,且其中任意三点均不共线,设P 为空间中任意一点,若54BD PA PB PC λ=-+,则λ=()A .2B .2-C .1D .1-21.(2021·四川凉山·高二期中(理))已知平面ABCD 外任意一点O 满足15133OA OB OC OD λλ=++-⎛⎫⎪⎝⎭,R λ∈.则λ取值是()A .12B .25C .13D .1622.(2019·四川省眉山第一中学高二期中(理))在下列命题中:①若向量,a b 共线,则,a b 所在的直线平行;②若向量,a b 所在的直线是异面直线,则向量,a b 一定不共面;③若三个向量,,a b c 两两共面,则三个向量,,a b c 一定也共面;④已知三个向量,,a b c ,则空间任意一个向量p 总可以表示为p xa yb zc =++.其中正确命题的个数为()A .0B .1C .2D .323.(2021·全国·高二期中)已知在正方体1111ABCD A B C D -中,P ,M 为空间任意两点,如果1111764PM PB BA AA A D =++-,那么点M 必()A .在平面1BAD 内B .在平面1BA D 内C .在平面11BAD 内D .在平面11AB C 内24.(2021·全国·高二期中)在四面体OABC 中,空间的一点OM 满足1126OM OA OB OC λ=++,若MA ,MB ,MC 共面,则λ=()A .12B .13C .512D .71225.(2022·江西南昌·高二期中(理))已知平行四边形ABCD ,从平面AC 外一点O 引向量OE kOA =,OF kOB =,OG kOC =,OH kOD =.(1)求证:E F G H ,,,四点共面;(2)平面AC ∥平面EG .26.(2021·福建·厦门市国祺中学高二期中)已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)用向量法证明E ,F ,G ,H 四点共面;(2)设M 是EG 和FH 的交点,求证:对空间任一点O ,有()14OM OA OB OC OD =+++.考点4:空间向量基本定理27.(2022·江苏·东海县教育局教研室高二期中)在四面体OABC 中,OA a =,OB b =,OC c =,点M 在OA 上,且2OM MA =,N 是BC 的中点,则MN =()A .121232a b c-+B .221332a b c+-r r rC .111222a b c+-D .211322a b c-++28.(2022·四川省绵阳南山中学高二期中(理))如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且13OG OG =,则()A .1OG OA OB OC =++B .1111333OG OA OB OC=++C .1111444OG OA OB OC =++D .1111999OG OA OB OC=++29.(2022·四川成都·高二期中(理))如图所示,在平行六面体1111ABCD A B C D -中,M 为11AC 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =()A .1122a b c-+B .1122a b c++C .1122a b c--+D .1122-++a b c30.(2022·江苏扬州·高二期中)如图,在正方体1111ABCD A B C D -中,AB a =,AD b =,1AA c =,若E 为1DD 的中点,F 在BD 上,且3BF FD =,则EF 等于()A .111332a b c--B .111442a b c--C .111442a b c-+D .111233a b c-+31.(2020·陕西·渭南高级中学高二期中(理))已知向量{},,a b c 是空间的一基底,向量{},,a b a b c +-是空间的另一基底,一向量p 在基底{},,a b c 下的坐标为()1,2,3,则向量p 在基底{},,a b a b c +-下的坐标为()A .13322⎛⎫⎪⎝⎭,B .31,,322⎛⎫- ⎪⎝⎭C .133,,22⎛⎫- ⎪⎝⎭D .13,,322⎛⎫- ⎪⎝⎭32.(2021·安徽省六安中学高二期中(文))如图,已知空间四边形OABC ,其对角线为,OB AC ,,M N 分别为,OA BC 的中点,点G 在线段MN 上,3MG GN =,若OG xOA yOB zOC =++,则x y z ++=()A .118B .98C .78D .5833.(2022·福建龙岩·高二期中)在平行六面体1111ABCD A B C D -中,点E 是线段1CD 的中点,3AC AF =,设AB a =,AD b =,1AA c =,则EF =()A .521632a b c+-r r rB .121632a b c ---r r rC .121632a b c++r r rD .521632a b c --+r r r34.(2022·江苏·泰州中学高二期中)在四棱柱1111ABCD A B C D -中,1CM MD =,14CQ QA =,则()A .11122AM AB AD AA =++B .11122AQ AB AD AA =++C .1113444AQ AB AD AA =++D .1114555AQ AB AD AA =++35.(2021·天津市第五十五中学高二期中)如图,在空间四边形ABCD 中,2=-AB a c ,568=+-CD a b c ,棱AC ,BD ,BC 的中点分别为E ,F ,G ,若33=--+FE a b c λ,则λ=_____.36.(2022·上海市控江中学高二期中)如图,在四面体ABCD 中,E 是BC 的中点,设1AB e =,2AC e =,3AD e =uuu r u r ,请用1e 、2e 、3e 的线性组合表示DE =uuu r___________.37.(2022·江苏常州·高二期中)已知P 是ABC 所在平面外一点,2=PM MC ,且BM x AB y AC z AP =++,则实数x y z ++的值为____________.考点5:模长、数量积、夹角问题38.(2022·江苏常州·高二期中)如图,在平行六面体1111ABCD A B C D -中,底面是边长为1的正方形,若1160A AB A AD ∠=∠=︒,且12AA =,则1AC 的长为()AB .C D39.(2021·安徽·高二期中)正四面体ABCD 棱长为2,E ,F ,G 分别是AB ,AD ,CD 的中点,则GE GF ⋅的值为()A .12B .1C .2D .440.(2022·江苏·海安县实验中学高二期中)已知四面体ABCD ,所有棱长均为2,点E ,F 分别为棱AB ,CD 的中点,则AF CE ⋅=()A .1B .2C .-1D .-241.(2022·山东·东营市第一中学高二期中)已知a 、b 都是空间向量,且2,3a b π=,则2,3a b -=()A .3πB .6πC .23πD .56π42.(2021·广东·珠海市第二中学高二期中)如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,则()1,2,,8i AB AP i ⋅=的不同值的个数为().A .1B .2C .4D .843.(多选题)(2022·江苏省镇江中学高二期中)如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长都是1,且它们彼此的夹角都是60°,M 为11AC 与11B D 的交点,若1,,AB A b c a D AA ===,则下列正确的是()A .1122BM a c=-+B .1AC a b c =++C .1AC D .16cos ,3AB AC =44.(2022·江苏·常州市第一中学高二期中)已知四棱柱1111ABCD A B C D -的底面ABCD 是正方形,底面边长和侧棱长均为2,1160A AB A AD ∠=∠=︒,则对角线1AC 的长为________.45.(2019·上海市七宝中学高二期中)已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为______.46.(2022·四川省成都市新都一中高二期中(理))如图,在平行六面体中,2AB =,1AD =,14AA =,90DAB ∠=︒,1160DAA BAA ∠=∠=︒,点M 为棱1CC 的中点,则线段AM 的长为______.47.(2022·江苏·沛县教师发展中心高二期中)已知空间四边形ABCD 的每条边和对角线的长都等于1,点E ,F 分别是BC ,AD 的中点,则AE CF ⋅的值为_________.48.(2021·山东济宁·高二期中)已知平行六面体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,12AA =,1160A AB A AD ∠=∠=︒.(1)求1AD AC ⋅;(2)求1AC .49.(2021·湖北·高二期中)已知平行六面体1111ABCD A B C D -,底面ABCD 是正方形,1AD AB ==,12AA =,1160A AB DAA ∠=∠=︒,1113AC NC =,12D B MB =,设AB a =,AD b =,1AA c =.(1)试用a 、b 、c 表示AN ;(2)求MN 的长度.。
空间向量知识点归纳总结
空间向量知识点归纳总结空间向量是代数矢量的一种推广,它在三维空间中表示具有大小和方向的物理量。
在学习空间向量时,需要了解以下几个方面的内容:一、空间向量的表示1.平行四边形法则和三角形法则:空间向量可以用平行四边形法则或者三角形法则进行表示。
2.分解和合成:空间向量可以通过分解成两个或多个分量向量,或者合成两个或多个向量得到。
二、空间向量的基本运算1.加法:两个空间向量相加的结果是一个新的空间向量。
向量相加满足交换律和结合律。
2.减法:可以将减法转化为加法来处理。
即将减法转化为加上一个相反向量。
3.数乘:空间向量与一个实数相乘,结果是一个新的空间向量。
三、空间向量的数学性质1.零向量:长度为0的向量称为零向量。
零向量与其他向量的加法运算结果均为其本身。
2.负向量:与一个向量大小相等,方向相反的向量称为其负向量。
3.平行向量和共线向量:如果两个向量的方向相同或者相反,则称这两个向量平行。
如果两个向量共线,则它们是平行的特殊情况。
4.零向量的唯一性:零向量是唯一的,任何两个非零向量的和不可能是零向量。
5.向量共点的充分必要条件:三个向量共点的充分必要条件是其中两个向量的线性组合等于第三个向量。
四、空间向量的数量乘积1.内积(点积):两个向量的点积是一个实数,定义为两个向量的模的乘积与其夹角的余弦的乘积。
2.内积的性质:内积具有交换律、结合律、分配律等性质。
3.向量的模与内积之间的关系:向量的模可以通过内积来计算,即向量的模的平方等于它与自身的内积。
4.直角和斜角的判别定理:两个非零向量正交(垂直)的充分必要条件是它们的内积为零。
五、空间向量的向量乘积1.外积(叉积):两个向量的叉积是一个新的向量,其大小等于两个向量构成的平行四边形的面积,方向垂直于这个平行四边形。
2.外积的性质:外积具有反交换律和结合律,但不满足交换律和分配律。
3.向量乘积的模与夹角之间的关系:向量的模可以通过外积和向量夹角的正弦来计算。
高中空间向量知识点高三网
高中空间向量知识点高三网高中空间向量知识点一、基本概念空间向量是指具有大小和方向的量,在三维空间中可以用有序三元组表示。
常用的表示方法有点向式、坐标式和混合式。
二、向量运算1. 向量的加法向量的加法满足交换律和结合律,即A + B = B + A,(A + B) + C = A + (B + C)。
2. 向量的数乘向量的数乘即对向量的每个分量进行相同的乘法运算。
3. 向量的数量积(点乘)数量积的结果是标量,满足交换律和数量积的分配律。
4. 向量的向量积(叉乘)向量积的结果是向量,满足右手定则、分配律和反分配律。
三、空间向量的表示1. 点向式表示点向式表示是用空间中的两个点表示向量,如向量AB以A为始点,B为终点。
2. 坐标式表示坐标式表示是用坐标表示向量,如向量AB可以表示为(3, 2, -1)。
3. 混合式表示混合式表示是将坐标式和点向式结合起来表示向量,如向量AB可以表示为向量a,其中a的始点为原点,a的终点为点B。
四、空间向量的性质1. 共线性若两个非零向量共线,则存在一个实数k,使得两向量满足比例关系。
2. 共面性若三个非零向量共面,则可以由其中两个向量的线性组合表示第三个向量。
3. 垂直若两个向量的数量积为0,则两向量垂直。
五、空间直线与平面1. 空间直线的方程确定一条空间直线需要一点和一向量。
直线的方程有参数方程和一般方程两种形式。
2. 空间平面的方程确定一个平面需要平面上的一点和一个法向量。
平面的方程有点法式方程和一般方程两种形式。
六、空间向量的应用1. 几何问题的解法空间向量可以用来解决几何问题,如判断点是否在直线或平面上,计算线段的长度和夹角等。
2. 物理问题的计算空间向量在物理学中有广泛应用,如力的合成、速度的分解等。
七、习题1. 设直线l过点A(1, 2, 3),且与向量a(2, -1, -2)平行,求直线l的参数方程。
解:由于直线l与向量a平行,所以直线l的方向向量可以取为向量a。
空间向量高考知识点总结
空间向量高考知识点总结一、空间向量的定义与性质1. 空间向量的定义:空间中的向量是指有大小和方向的线段,可以用有向线段来表示,通常用小写字母表示。
2. 空间向量的性质:空间中的向量满足向量的相等、相反、共线和共面的性质。
3. 空间向量的运算:空间向量的加法、数量乘法、内积和叉乘等运算。
二、空间向量的坐标表示1. 空间向量的坐标表示:空间中的向量可以用坐标表示,一般用三元组表示。
2. 空间向量的坐标运算:空间向量的坐标运算包括向量相加、数量乘法和点积等运算。
三、空间向量的数量积1. 空间向量的数量积定义:两个向量的数量积又称内积,记作a·b,表示为|a||b|cosθ,其中θ为a、b之间的夹角。
2. 空间向量的数量积的性质:数量积具有对称性、分配律和数量乘法结合律等性质。
3. 空间向量的数量积的几何意义:数量积可以用来计算向量的夹角、向量的投影以及向量的长度等。
4. 空间向量的数量积的应用:数量积可以用来解决空间中的几何问题,如判断两个向量的方向、判断点的位置、计算三角形的面积等。
四、空间向量的叉积1. 空间向量的叉积定义:两个向量的叉积,记作a×b,是另一个向量c,其大小等于以a、b为邻边的平行四边形的面积,方向垂直于a和b所在的平面。
2. 空间向量的叉积的性质:叉积具有反对称性、分配律和数量乘法结合律等性质。
3. 空间向量的叉积的几何意义:叉积可以用来计算平行四边形的面积、判断向量的方向以及判断向量的共线性等。
4. 空间向量的叉积的应用:叉积可以用来计算平行四边形和平行六面体的体积、判断三角形的面积、判断四边形的面积等。
五、空间向量的应用1. 空间向量在几何中的应用:空间向量可以用来解决空间中的共线、共面、投影、距离、面积、体积等几何问题。
2. 空间向量在物理中的应用:空间向量可以用来描述力的合成、速度的方向、加速度的方向、质心的位置等物理问题。
3. 空间向量在工程中的应用:空间向量可以用来解决工程中的坐标系、平面构图、体积计算、力矩计算等问题。
专题3 空间向量基本定理 讲义
专题1.3 空间向量基本定理知识点一 空间向量基本定理如果三个向量a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一的有序实数组(x ,y ,z),使得p =xa +yb +zc.我们把{a ,b ,c}叫做空间的一个基底,a ,b ,c 都叫做基向量.知识点二 空间向量的正交分解 1.单位正交基底如果空间的一个基底中的三个基向量两两垂直,且长度都是1,那么这个基底叫做单位正交基底 ,常用{i ,j ,k}表示.2.向量的正交分解由空间向量基本定理可知,对空间任一向量a ,均可以分解为三个向量xi ,yj ,zk 使得a =xi +yj +zk. 像这样把一个空间向量分解为三个两两垂直的向量,叫做把空间向量进行正交分解. 知识点三 证明平行、共线、共面问题(1) 对于空间任意两个向量a ,b(b≠0),a∥b 的充要条件是存在实数λ,使a =λb.(2) 如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y),使p =xa +yb.知识点四 求夹角、证明垂直问题 (1)θ为a ,b 的夹角,则cos θ=a·b|a||b|. (2)若a ,b 是非零向量,则a∥b ⇔a·b =0. 知识点五 求距离(长度)问题 ||a =a·a( ||AB →=AB →·AB → ).【题型1 空间向量基底的判断】【例1】(2020秋•嘉祥县校级期中)已知{a →,b →,c →}是空间向量的一个基底,则与向量p →=a →+b →,q →=a →−b →可构成空间向量基底的是( ) A .a →B .b →C .a →+2b →D .a →+2c →【变式1-1】(2020秋•桃城区校级期中)已知{e 1→,e 2→,e 3→}是空间的一个基底,下列四组向量中,能作为空间一个基底的是( )①e 1→,2e 2→,e 2→−e 3→②2e 2→,e 2→−e 1→,e 2→+2e 1→③2e 1→+e 2→,e 2→+e 3→,−e 1→+5e 3→ ④e 3→,e 1→+e 3→,e 1→+e 3→.A .①②B .②④C .③④D .①③【变式1-2】(2020秋•赤峰校级期末){a →,b →,c →}=是空间向量的一个基底,设p →=a →+b →,q →=b →+c →,r →=c →+a →,给出下列向量组:①{a →,b →,p →},②{b →,c →,r →},③{p →,q →,r →},④{p →,q →,a →+b →+c →},其中可以作为空间向量基底的向量组有( )组. A .1 B .2 C .3 D .4【变式1-3】已知{e 1→,e 2→,e 3→}为空间的一个基底,且OA→=e 1→+2e 2→−e 3→,OB→=−3e 1→+e 2→+2e 3→,OC→=e 1→+e 2→−e 3→,能否以{OA →,OB →,OC →}作为空间的一组基底?【题型2 空间向量基本定理的应用(表示向量)】【例2】(2020秋•南开区校级月考)在平行六面体ABCD ﹣A1B1C1D1中,AA 1→=c →,AB →=b →,AD →=a →,E 是BC 的中点,用a →,b →,c →表示A 1E →为( ) A .12a →+b →−c →B .a →+b →−c →C .12a →−b →−c →D .12a →−b →+c →【变式2-1】(2020秋•南阳期末)已知空间四边形OABC ,其对角线OB 、AC ,M 、N 分别是边OA 、CB 的中点,点G 在线段MN 上,且使MG =2GN ,用向量OA →,OB →,OC →,表示向量OG →是( )A .OG →=OA →+23OB →+23OC →B .OG →=12OA →+23OB →+23OC →C .OG →=16OA →+13OB →+13OC →D .OG →=16OA →+13OB →+23OC →【变式2-2】(2020秋•随州期末)已知在空间四边形OABC 中,OA →=a →,OB →=b →,OC →=c →,点M 在OA 上,且OM =3MA ,N 为BC 中点,用a →,b →,c →表示MN →,则MN →等于 .【变式2-3】(2020秋•珠海期末)四棱锥P ﹣ABCD 中,四边形ABCD 为平行四边形,AC 与BD 交于点O ,点G 为BD 上一点,BG =2GD ,PA →=a →,PB →=b →,PC →=c →,用基底{a →,b →,c →}表示向量BG →= .【题型3 空间向量基本定理的应用(求参数)】【例3】(2020秋•江苏期末)在三棱锥O ﹣ABC 中,AD →=DB →,CE →=2EB →,若DE →=xOA →+yOB →+zOC →,则( )A .x =12,y =−16,z =13 B .x =12,y =16,z =−13 C .x =−12,y =16,z =13 D .x =12,y =16,z =13【变式3-1】(2020秋•资阳期末)如图,M ,N 是分别是四面体O ﹣ABC 的棱OA ,BC 的中点,设OA →=a →,OB →=b →,OC →=c →,若MN →=x a →+y b →+z c →,则x ,y ,z 的值分别是( )A .12,12,12B .12,12,−12C .−12,12,−12D .−12,12,12【变式3-2】(2020秋•白水县期末)在四面体ABCD 中,E 、G 分别是CD 、BE 的中点,若AG →=xAB →+yAD →+zAC →,则x+y+z = .【变式3-3】(2020秋•番禺区期末)在平行六面体ABCD ﹣A1B1C1D1中,E ,F ,分别在棱B1B 和D1D 上,且BE =13BB 1,DF =23DD 1.若EF →=xAB →+yAD →+zAA 1→,则x+y+z = .【题型4 利用空间向量基本定理解决几何问题】【例4】如图,一个结晶体的形状为平行六面体 ABCD -A1B1C1D1 ,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60°,下列说法中正确的是________.(填序号)① (AA1—→+AB →+AD →)2=2(AC →)2 ; ②AC1—→·(AB →-AD →)=0 ;③向量B1C —→与AA1—→的夹角是60°; ④BD1与AC 所成角的余弦值为63.【变式4-1】如图,二面角α-l -β等于2π3,A ,B 是棱l 上两点, BD, AC 分别在平面α,β内,AC∥l ,BD∥l ,且 2AB =AC =BD =2,则CD 的长等于( )A .2 3 B.13 C .4 D .5【变式4-2】如图所示,在三棱锥 A -BCD 中,DA ,DB ,DC 两两垂直,且DB =DC =DA =2,E 为BC 的中点.(1)证明:AE∥BC ;(2)求直线AE 与DC 的夹角的余弦值.【变式4-3】如图,正方体ABCD -A1B1C1D1中,P 是DD1的中点,O 是底面ABCD 的中心.求证:B1O∥平面PAC.【课后检测】一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2020秋•烟台期中)下列说法正确的是( ) A .任何三个不共线的向量可构成空间向量的一个基底 B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .直线的方向向量有且仅有一个2.(3分)(2020秋•碑林区校级月考)若{a →、b →、c →}为空间的一组基底,则下列各项中,能构成基底的一组向量是( )A .{a →,a →+b →,a →−b →} B .{b →,a →+b →,a →−b →} C .{c →,a →+b →,a →−b →} D .{a →+b →,a →−b →,2a →+b →}3.(3分)(2020秋•枣庄期末)如图:在平行六面体ABCD ﹣A1B1C1D1中,M 为A1C1,B1D1的交点.若AB →=a →,AD →=b →,AA 1→=c →,则向量BM →=( )A .−12a →+12b →+c →B .12a →+12b →+c →C .−12a →−12b →+c →D .12a →−12b →+c →4.(3分)(2020秋•榆林期末)如图,在平行六面体ABCD ﹣A1B1C1D1中,M 为A1C1与B1D1的交点.若AB →=a →,AD →=b →,AA 1→=c →,则下列向量中与AM →相等的向量是( )A .−12a →+12b →+c →B .12a →+12b →+c →C .−12a →−12b →+c →D .12a →−12b →+c →5.(3分)(2020秋•安顺期末)如图,在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,则OG →等于( )A .13OA →+13OB →+13OC →B .12OA →+13OB →+14OC →C .12OA →+14OB →+14OC →D .14OA →+14OB →+16OC →6.(3分)(2020秋•新乡期末)如图,在长方体ABCD ﹣A1B1C1D1中,P 是线段D1B 上一点,且BP =2D1P ,若AP →=x AB →+y AD →+z AA 1→,则x+y+z =( )A .53B .23C .43D .17.(3分)(2020秋•皇姑区校级期末)若O 、A 、B 、C 为空间四点,且向量OA →,OB →,OC →不能构成空间的一个基底,则( )A .OA →,OB →,OC →共线 B .OA →,OB →共线 C .OB →,OC →共线 D .O ,A ,B ,C 四点共面8.(3分)(2020秋•吉林期末)在四面体OABC 中,点M ,N 分别为OA ,BC 的中点,若OG →=13OA →+xOB →+yOC →,且G ,M ,N 三点共线,则x+y =( ) A .−13 B .13 C .23 D .−23二.填空题(共4小题,满分16分,每小题4分)9.(4分)(2021春•徐汇区校级期中)在平行六面体ABCD ﹣A1B1C1D1中,设AB →=a →,AD →=b →,AA 1→=c →,用a →、b →、c →作为基底向量表示D 1B →= .10.(4分)(2020秋•沈阳期中)已知M ,N 分别是四面体OABC 的棱OA ,BC 的中点,点P 在线段MN 上,且MP =2PN ,设向量OA →=a →,OB →=b →,OC →=c →,则OP →= .(用{a →,b →,c →}表示)11.(4分)(2020秋•浙江月考)已知正方体ABCD ﹣A1B1C1D1中,A 1E →=13A 1C 1→,若AE →=xAA 1→+yAB →+zAD →,则x = ,y+z = .12.(4分)(2020•闵行区校级模拟)在正方体ABCD ﹣A1B1C1D1中,点M 和N 分别是矩形ABCD 和BB1C1C 的中心,若点P 满足DP →=m DA →+n DM →+k DN →,其中m 、n 、k∥R ,且m+n+k =1,则点P 可以是正方体表面上的点 .三.多选题(共4小题,满分16分,每小题4分)13.(4分)(2020秋•淄博期末)已知空间向量i →,j →,k →都是单位向量,且两两垂直,则下列结论正确的是( )A .向量i →+j →+k →的模是3B .{i →+j →,i →−j →,k →}可以构成空间的一个基底C .向量i →+j →+k →和k →夹角的余弦值为√33 D .向量i →+j →与k →−j →共线14.(4分)(2020秋•荔湾区期末)在空间四边形OABC 中,E 、F 分别是OA 、BC 的中点,P 为线段EF 上一点,且PF =2EP ,设OA →=a →,OB →=b →,OC →=c →,则下列等式成立的是( ) A .OF →=12b →+12c →B .EP →=−16a →+16b →+16c →C .FP →=−13a →+13b →+13c →D .OP →=13a →+16b →+16c →15.(4分)(2020秋•山东月考)设{a →,b →,c →}是空间的一组基底,则下列结论正确的是( ) A .a →,b →,c →可以为任意向量B .对空间任一向量p →,存在唯一有序实数组(x ,y ,z ),使p →=x a →+y b →+z c →C .若a →⊥b →,b →⊥c →,则a →⊥c →D .{a →+2b →,b →+2c →,c →+2a →}可以作为构成空间的一组基底16.(4分)(2020秋•乳山市校级月考)给出下列命题,其中正确命题有( ) A .空间任意三个不共面的向量都可以作为一个基底B .已知向量a →∥b →,则存在向量可以与a →,b →构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,那么A ,B ,M ,N 共面 D .已知向量组{a →,b →,c →}是空间的一个基底,若m →=a →+c →,则{a →,b →,m →}也是空间的一个基底 四.解答题(共6小题,满分44分)17.(6分)已知{a →,b →,c →}是空间的一个基底,求证:{a →+b →,b →+c →,c →+a →}可以构成空间的一个基底. 18.(6分)(2020秋•乐山期中)如图,在平行六面体ABCD ﹣A'B'C'D'中,AB =4,AD =3,AA'=5,∠BAD =90°,∠BAA'=∠DAA'=60°,且点F 为BC'与B'C 的交点,点E 在线段AC'上,有AE =2EC'. (1)求AC'的长;(2)将EF →用基向量AB →,AD →,AA′→来进行表示.设EF →=x AB →+y AD →+z AA′→,求x ,y ,z 的值.19.(8分)(2020秋•兴庆区校级期中)如图所示,已知空间四边形ABCD 的每条边和对角线都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,设AB →=a →,AC →=b →,AD →=c →,a →,b →,c →为空间向量的一组基底, 计算: (1)EF →⋅BA →; (2)|EG|.20.(8分)(2020秋•成都期末)如图,已知平行六面体ABCD ﹣A1B1C1D1.(I )若G 为△ABC 的重心,A 1M →=3MG →,设AB →=a ,AD →=b ,AA 1→=c ,用向量a 、b 、c 表示向量A 1M →; (II )若平行六面体ABCD ﹣A1B1C1D1各棱长相等且AB ⊥平面BCC1B1,E 为CD 中点,AC1∩BD1=O ,求证:OE ⊥平面ABC1D1.21.(8分)已知在四面体P ﹣ABC 中,PA →=a →,PB →=b →,PC →=c →,G∥平面ABC . 证明:G 为△ABC 的重心的充要条件是PG →=13(a →+b →+c →)22.(8分)如图,在三棱锥P ﹣ABC 中,点G 为△ABC 的重心,点M 在PG 上,且PM =3MG ,过点M 任意作一个平面分别交线段PA ,PB ,PC 于点D ,E ,F ,若PD →=m PA →,PE →=n PB →,PF →=t PC →,求证:1m +1n +1t 为定值,并求出该定值.。
空间向量知识点总结讲解
空间向量知识点总结讲解一、向量的基本概念1. 向量的定义:在数学中,向量是具有大小和方向的量,通常表示为有向线段。
向量可以用坐标表示,也可以用行向量或列向量表示。
2. 向量的运算:向量的运算包括加法、数量乘法、点乘、叉乘等。
向量之间的加法和数量乘法可以直接进行,而点乘和叉乘需要通过向量的坐标或分量进行计算。
3. 向量的性质:向量具有大小和方向两个基本属性,同时还具有平行四边形法则,向量共线与共面的性质等。
二、空间向量的概念1. 空间向量的定义:在三维空间中,向量的坐标可以用三个实数表示,即(x, y, z),这就是空间向量。
空间向量通常表示为有向线段,具有大小和方向。
2. 空间向量的运算:空间向量的运算与平面向量相似,可以进行向量的加法、数量乘法、点乘、叉乘等运算。
叉乘是空间向量特有的一种运算,用来得到垂直于两向量所在平面的向量。
3. 空间向量的坐标表示:空间向量的坐标表示为(x, y, z),用来描述向量的起始点和终点在三维空间中的位置。
4. 空间向量的性质:空间向量具有大小和方向的性质,同时还具有与平面向量相似的性质,如共线、共面等。
三、空间向量的线性运算1. 空间向量的线性组合:空间向量的线性组合是指将若干个向量以一定的比例相加得到新的向量的过程。
线性组合在向量空间中有重要的应用,可以通过线性组合来表示向量的线性相关性和线性无关性。
2. 空间向量的线性相关性和线性无关性:当一组向量能够用线性组合的方式得到零向量时,这组向量就是线性相关的;当一组向量不能用线性组合的方式得到零向量时,这组向量就是线性无关的。
线性相关性和线性无关性是向量空间中的重要概念。
3. 空间向量的线性空间:线性空间是指满足一定条件的向量集合,具有向量加法、数量乘法、满足线性组合封闭性、交换性、结合律等性质。
空间向量是线性空间的一个典型例子。
四、空间向量的应用1. 空间向量在几何中的应用:在几何学中,空间向量可以用来描述点、直线、面等几何对象的位置和方向关系,还可以用来解决几何问题,如判定点、线、面的位置关系、计算距离、计算面积等。
空间向量关键知识点总结
空间向量关键知识点总结1. 空间向量的基本概念空间向量是用来表示空间中的位移、力、速度等物理量的,它由大小和方向两个要素组成。
空间向量可以看作是一个有序数对或是坐标形式的表示,通常表示为(a,b,c)。
其中,a、b、c分别代表向量在x轴、y轴和z轴上的投影。
2. 向量的加法和减法向量的加法和减法是指两个向量相加或相减的运算。
对于两个向量a=(a1, a2, a3)和b=(b1, b2, b3),它们的和c=a+b的表示为(c1, c2, c3)=(a1+b1, a2+b2, a3+b3),而它们的差d=a-b的表示为(d1, d2, d3)=(a1-b1, a2-b2, a3-b3)。
从几何上看,向量的加法和减法实际上就是平行四边形法则的应用,可以通过平移一个向量来得到另一个向量的和或差。
3. 向量的数乘运算向量的数乘运算指的是一个向量乘以一个标量。
设有向量a=(a1, a2, a3)和实数k,则它们的数乘ka=(ka1, ka2, ka3)。
这个运算实际上就是将向量a的大小变为原来的k倍,方向不变。
4. 向量的点乘向量的点乘也称为内积,它是两个向量的乘积,结果是一个标量。
设有向量a=(a1, a2, a3)和b=(b1, b2, b3),则它们的点乘运算表示为a·b=a1b1+a2b2+a3b3。
从几何上来看,两个向量的点乘等于它们的长度乘积与夹角的余弦值的乘积。
5. 向量的叉乘向量的叉乘也称为外积,它是两个向量的乘积,结果是一个向量。
设有向量a=(a1, a2, a3)和b=(b1, b2, b3),则它们的叉乘运算表示为a×b=(a2b3-a3b2, a3b1-a1b3, a1b2-a2b1)。
从几何上来看,两个向量的叉乘的方向垂直于这两个向量所张成的平面,并且大小等于这两个向量所张成的平行四边形的面积。
6. 空间向量的线性相关性和线性无关性在空间中,多个向量如果存在一组不全为零的标量使得它们的线性组合等于零向量,则称这些向量是线性相关的。
高中空间向量知识点
高中空间向量知识点在高中数学课程中,空间向量是一个重要的概念。
它广泛应用于几何学和物理学中,对于理解和解决空间中的问题具有重要意义。
本文将从基本定义、运算法则、线性相关性以及向量投影等方面,探讨高中空间向量的知识点。
一、基本定义空间向量是指具有大小和方向的量,用于表示空间中的位移或力量等物理量。
空间中的向量通常用有序三元组表示,即(x, y, z),对应于向量在x、y、z轴上的分量。
直观上,空间向量可以理解为从原点指向空间中任意一点的箭头。
二、运算法则空间向量的运算法则包括加法和数乘两种操作。
向量加法满足交换律和结合律,即A+B=B+A,(A+B)+C=A+(B+C);向量数乘满足分配律和结合律,即k(A+B)=kA+kB,(kl)A=k(lA)。
这些法则为解决空间向量相关问题提供了基础。
三、线性相关性空间向量的线性相关性是指存在非零常数使得向量之间可以通过线性组合得到零向量。
当且仅当向量之间存在线性相关关系时,它们在同一直线上。
如果一组向量中,存在一个向量不能被其他向量线性表示,该组向量就是线性无关的。
线性相关性和线性无关性在解决空间向量的线性方程组以及矩阵的秩等问题中起到关键作用。
四、向量投影向量投影是指将一个向量映射到另一个向量上的过程。
在空间向量的投影中,我们常常使用点积来计算。
点积是一种向量运算,它计算的是两个向量之间的夹角关系。
具体地,设有向量A和向量B,那么它们的点积AB=||A|| ||B|| cosθ,其中θ为A和B之间的夹角。
通过点积和向量的大小,可以计算出向量A在向量B上的投影长度,即投影向量。
五、解题策略在解决高中空间向量的问题时,我们可以采用以下策略:首先,读懂题目,明确问题的要求和限制条件。
其次,建立坐标系,确定向量的方向和大小。
然后,根据题目要求进行向量的计算和分析。
最后,验证解答的合理性,并进行进一步的推广和应用。
综上所述,高中空间向量是一个非常基础且重要的数学概念。
空间向量知识点总结
空间向量知识点总结空间向量是高中数学中的重要内容,它为解决立体几何问题提供了一种全新的思路和方法。
下面我们来对空间向量的相关知识点进行一个系统的总结。
一、空间向量的基本概念1、空间向量的定义在空间中,具有大小和方向的量称为空间向量。
2、空间向量的表示空间向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
向量通常用小写字母加箭头表示,如\(\vec{a}\)。
3、空间向量的模空间向量\(\vec{a}\)的模(长度)记作\(|\vec{a}|\),其计算公式为\(|\vec{a}|=\sqrt{a_1^2 + a_2^2 + a_3^2}\)(假设\(\vec{a} =(a_1, a_2, a_3)\))。
4、零向量长度为\(0\)的向量称为零向量,记作\(\vec{0}\),其方向是任意的。
5、单位向量模为\(1\)的向量称为单位向量。
若\(\vec{a}\)是非零向量,则与\(\vec{a}\)同向的单位向量为\(\frac{\vec{a}}{|\vec{a}|}\)。
6、相等向量长度相等且方向相同的向量称为相等向量。
7、相反向量长度相等但方向相反的向量称为相反向量。
二、空间向量的运算1、加法空间向量的加法满足三角形法则和平行四边形法则。
设\(\vec{a}\)、\(\vec{b}\)为两个空间向量,则它们的和向量\(\vec{c} =\vec{a} +\vec{b}\)。
2、减法空间向量的减法是加法的逆运算,\(\vec{a} \vec{b} =\vec{a} +(\vec{b})\)。
3、数乘运算实数\(\lambda\)与空间向量\(\vec{a}\)的乘积\(\lambda\vec{a}\)仍然是一个向量。
当\(\lambda > 0\)时,\(\lambda\vec{a}\)与\(\vec{a}\)同向;当\(\lambda < 0\)时,\(\lambda\vec{a}\)与\(\vec{a}\)反向;当\(\lambda =0\)时,\(\lambda\vec{a} =\vec{0}\)。
空间向量知识点总结图
空间向量知识点总结图一、空间向量的概念1.1 空间向量的定义空间中具有大小和方向的量称为空间向量,通常用有向线段表示。
1.2 空间向量的表示空间向量通常用坐标表示,如果空间中有两点A(X1, Y1, Z1)和B(X2, Y2, Z2),则向量AB 可以表示为AB = (X2 - X1, Y2 - Y1, Z2 - Z1)。
1.3 空间向量的运算空间向量之间可以进行加法和数量乘法运算。
1.3.1 加法两个空间向量A(x1, y1, z1)和B(x2, y2, z2)的和为A+B = (x1+x2, y1+y2, z1+z2)。
1.3.2 数量乘法一个空间向量A(x, y, z)和一个实数k的乘积为kA = (kx, ky, kz)。
二、空间向量的性质2.1 零向量的性质零向量是长度为0的向量,任何向量与零向量的和都是它自身。
2.2 相等向量的性质如果两个向量A(x1, y1, z1)和B(x2, y2, z2)的对应坐标相等,则它们是相等向量。
2.3 空间向量的线性运算性质空间向量的加法和数量乘法满足交换律、结合律和分配律。
2.4 向量共线的性质如果两个非零向量A和B共线,则存在一个非零实数k,使得A = kB。
2.5 向量共面的性质如果三个向量A、B、C共线,则它们共面。
三、空间向量的应用3.1 向量的数量积向量的数量积又称为点积,定义为A·B = |A| |B| cosθ,其中|A|和|B|分别为向量A和B的模,θ为向量A和B的夹角。
数量积的性质有交换律、分配律和数量积的几何意义。
3.2 向量的向量积向量的向量积又称为叉积,定义为A × B = |A| |B| sinθ n,其中|A|和|B|分别为向量A和B 的模,θ为向量A和B的夹角,n为垂直于A和B的单位向量。
向量积的性质有反交换律、分配律和向量积的几何意义。
3.3 应用举例空间向量在物理学、工程学和计算机图形学等领域有着广泛的应用,如力的合成、面积计算、三维坐标系中的投影等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量的概念解析例1、下列说法中正确的是( )A.若|a |=|b |,则a,b 的长度相同,方向相同或相反B.若向量a 是向量b 的相反向量,则|a |=|b |C.空间向量的减法满足结合律D.在四边形ABCD 中,一定有AB AD AC +=练习1、给出下列命题:①零向量没有方向;②若两个空间向量相等,则它们的起点相同,终点相同;③若空间向量a,b 满足|a |=|b |,则a=b ;④若空间向量m,n,p 满足m=n,n=p,则m=p ;⑤空间中任意两个单位向量必相等,其中正确命题的个数为( )A.4B.3C.2D.12、下列四个命题:(1)方向相反的两个向量是相反向量(2)若a,b 满足|a |>|b |,且a,b 同向,则a >b(3)不相等的两个空间向量的模必不相等(4)对于任何向量a,b ,必有|a+ b |≤|a |+|b |其中正确命题的序号为( )A.(1)(2)(3)B.(4)C.(3)(4)D.(1)(4)空间向量的线性运算例1、 已知长方体ABCD-A ’B ’C ’D ’,化简下列向量表达式,并标出化简结果的向量(1)AA CB '-(2)AB B C C D '''''++(3)111222AD AB A A '+- 练习1、如图所示,在正方体ABCD-A 1B 1C 1D 1中,下列各式中运算的结果为向量的共有( ) ①1()AB BC CC ++②11111()AA A D DC ++ ③111()AB BB BC ++④11111()AA A B BC ++A.1个B.2个C.3个D.4 个2、如图所示,在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11111,,A B a A D b A A c ===,则下列向量中与1B M 相等的向量是( ) A.1122a b c -++ B. 1122a b c ++ C. 1122a b c -+ D.1122a b c --+用已知向量表示未知向量例1、已知ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O ,Q 是CD 的中点,求下列各式中x,y 的值:(1)OQ PQ xPC yPA =++(2)PA xPO yPQ PD =++练习:1、本例中若PQ xBA yBC zBP =++,则x,y,z 为何值?2、如图所示,在平行六面体ABCD-A 1B 1C 1D 1中, 1,,AB a AD b AA c===M 是C 1D 1的中点,点N 是CA 1上的点,且CN:NA 1=4:1,用a, b, c 表示以下向量:(1)AM (2)AN共线向量定理例1、 如图所示,已知四边形ABCD,ABEF 都是平行四边形且不共面,M,N 分别是AC,BF 的中点,判断CE 与MN 是否共线练习: 1、已知空间向量a,b ,且2,56,72AB a b BC a b CD a b =+=-+=-,则一定共线的三点是( )A. A,B,DB.A,B,CC.B,C,DD.A,C,D2、已知四边形ABCD 是空间四边形,E,H 分别是边AB,AD 的中点,F,G 分别是边CB,CD 上的点,且22,33CF CB CG CD ==求证:四边形EFGH 是梯形共面向量定理例1、 对于任意空间四边形ABCD ,E,F 分别是AB,CD 的中点,试证:EF 与,BC AD 共面 _练习: 1、 在下列条件下,使M 与A,B,C 一定共面的是( )A. 32OM OA OB OC =--B. 0OM OA OB OC +++=C. 0MA MB MC ++=D. 1142OM OB OA OC =-+ 2、已知A,B,C 三点不共线,平面ABC 外一点M 满足111333OM OA OB OC =++ (1)判断,,MA MB MC 三个向量是否共面(2)判断M 是否在平面ABC 内基底的判断例1、若{a, b, c }是空间的一个基底,试判断{a+b,b+c,c+a }能否作为该空间的一个基底练习:1、设x=a+b,y=b+c,z=c+a,且{a, b, c }是空间的一个基底,给出下列向量组:①{a, b, x }, ②{x, y, z }, ③{b, c, z }, ④{x, y, a+b+c }其中可以作为空间的基底的向量组有______个2、已知{e 1, e 2, e 3}是空间的一个基底,且1231232,32OA e e e OB e e e =+-=-++123,OC e e e =+-,试判断{},,OA OB OC 能否作为空间的一个基底?空间向量分解定理及应用例1、空间四边形OABC 中,G,H 分别是△ABC ,△OBC 的重心,设,,OA a OB b OC c ===,试用向量a,b,c 表示向量OG GH 和练习1、本例题中条件不变,若E 为OA 的中点,试用a,b,c 表示DE EG 和2、四棱锥P-OABC 的底面为一矩形,PO ⊥平面OABC,设,,OA a OC b OP c ===,E,F 分别是PC 和PB 的中点,试用a,b,c 表示:,,,BF BE AE EF数量积的运算例1、如图所示,已知正四面体OABC 的棱长为1,点E,F 分别是OA,OC 的中点,求下列向量的数量积:(1)OA OB • (2)EF CB • (3)()()OA OB CA CB +•+练习1、如图,已知空间四边形每条边和对角线长都等于a,点E,F,G 分别是AB 、AD 、DC 的中点,则下列向量的数量积等于a 2的是( ).2.2.2.2A BA ACB AD BDC FG CAD EF CB••••2、已知长方体ABCD-A 1B 1C 1D 1中,AB=AA 1=2,AD=4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中心,求下列向量的数量积11(1);(2)BC ED BF AB ••用数量积求夹角例1、如图,在直三棱柱ABC-A 1B 1C 1中,∠ABC=90°,AB=BC=1,AA 1,求异面直角BA 1与AC 所成角的余弦值练习:1、已知a,b 是异面直线,A ∈a,B ∈a,C ∈b,D ∈b,AC ⊥b,BD ⊥b,且AB=2,CD=1,则a 与b 所成的角是( )A.30°B.45°C.60°D.90°2、已知空间四边形OABC 各边及对角线长相等,E 、F 分别为AB 、OC 的中点,求OE BF 与所成角的余弦值利用数量积求两点间距离例1、如图所示,平行六面体ABCD-A1B1C1D1中,从同一顶点出发的三条棱的长都等于1,且彼此的夹角都是60°,求对角线AC1和BD1的长练习:1、如图,已知PA⊥平面ABC,∠ABC=120°,PA=AB=BC=6,则PC等于()A.2、在平行四边形ABCD中,AB=AC=1,∠ACD=90°,将它沿对角线AC折起,使AB与CD成60°角,求B,D间的距离利用数量积证明垂直问题例1、已知空间四边形ABCD中,AB⊥CD,AC⊥BD,求证:AD⊥BC练习:1、已知向量a,b是平面α内两个不相等的非零向量,非零向量c在直线l 上,则==且是l⊥α的()c a c b0,0A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2、已知空间四边形OABC中,∠AOB=∠BOC=∠AOC,且OA=OB=OC,M,N分别是OA、BC的中点,G是M、N的中点,求证:OG⊥BC一、填空题(本大题共4小题,共20.0分)1.平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为 ______ .【答案】π3或2π3 【解析】解:设平面α的法向量为m⃗⃗⃗ =(1,0,-1),平面β的法向量为n ⃗ =(0,-1,1), 则cos <m⃗⃗⃗ ,n ⃗ >=√2⋅√2=-12, ∴<m⃗⃗⃗ ,n ⃗ >=2π3. ∵平面α与平面β所成的角与<m⃗⃗⃗ ,n ⃗ >相等或互补, ∴α与β所成的角为π3或2π3.故答案为:π3或2π3.利用法向量的夹角与二面角的关系即可得出.本题考查了利用用法向量的夹角求二面角的方法,考查了计算能力,属于基础题.2.平面α经过三点A (-1,0,1),B (1,1,2),C (2,-1,0),则平面α的法向量u⃗ 可以是 ______ (写出一个即可) 【答案】(0,1,-1)【解析】解:AB ⃗⃗⃗⃗⃗ =(2,1,1),AC ⃗⃗⃗⃗⃗ =(3,-1,-1),设平面α的法向量u⃗ =(x ,y ,z ), 则{u ⃗ ⋅AB ⃗⃗⃗⃗⃗ =2x +y +z =0u⃗ ⋅AC ⃗⃗⃗⃗⃗ =3x −y −z =0,令z =-1,y =1,x =0. ∴u⃗ =(0,1,-1). 故答案为:(0,1,-1).设平面α的法向量u⃗ =(x ,y ,z ),则{u ⃗ ⋅AB ⃗⃗⃗⃗⃗ =2x +y +z =0u⃗ ⋅AC ⃗⃗⃗⃗⃗ =3x −y −z =0,解出即可. 本题考查了线面垂直与数量积的关系、平面的法向量,属于基础题.3.已知AB ⃗⃗⃗⃗⃗ =(1,0,2),AC ⃗⃗⃗⃗⃗ =(2,1,1),则平面ABC 的一个法向量为 ______ .【答案】(-2,3,1)【解析】解:AB ⃗⃗⃗⃗⃗ =(1,0,2),AC ⃗⃗⃗⃗⃗ =(2,1,1),设平面ABC 的法向量为n⃗ =(x ,y ,z ), 则{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AC ⃗⃗⃗⃗⃗ =0,即{x +2z =02x +y +z =0,取x =-2,则z =1,y =3. ∴n⃗ =(-2,3,1). 故答案为:(-2,3,1).设平面ABC 的法向量为n ⃗ =(x ,y ,z ),则{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AC ⃗⃗⃗⃗⃗ =0,解出即可. 本题考查了平面的法向量、线面垂直与数量积的关系,属于基础题.4.在三角形ABC 中,A (1,-2,-1),B (0,-3,1),C (2,-2,1),若向量n⃗ 与平面ABC 垂直,且|n⃗ |=√21,则n ⃗ 的坐标为 ______ . 【答案】(2,-4,-1)或(-2,4,1)【解析】解:设平面ABC 的法向量为m⃗⃗⃗ =(x ,y ,z ), 则m ⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,且m ⃗⃗⃗ •AC ⃗⃗⃗⃗⃗ =0,∵AB ⃗⃗⃗⃗⃗ =(-1,-1,2),AC ⃗⃗⃗⃗⃗ =(1,0,2),∴{−x −y +2z =0x +2z =0, 即{x =−2z y =4z ,令z =1,则x =-2,y =4,即m⃗⃗⃗ =(-2,4,1), 若向量n⃗ 与平面ABC 垂直, ∴向量n⃗ ∥m ⃗⃗⃗ , 设n⃗ =λm ⃗⃗⃗ =(-2λ,4λ,λ), ∵|n⃗ |=√21, ∴√21•|λ|=√21,即|λ|=1,解得λ=±1,∴n⃗ 的坐标为(2,-4,-1)或(-2,4,1), 故答案为:(2,-4,-1)或(-2,4,1)根据条件求出平面的法向量,结合向量的长度公式即可得到结论.本题主要考查空间向量坐标的计算,根据直线和平面垂直求出平面的法向量是解决本题的关键.二、解答题(本大题共3小题,共36.0分) 5.如图,在四棱锥P-ABCD 中,底面ABCD 为菱形,∠BAD=60°,Q 为AD 的中点.(1)若PA=PD ,求证:平面PQB ⊥平面PAD ;(2)点M 在线段PC 上,PM =13PC ,若平面PAD ⊥平面ABCD ,且PA=PD=AD=2,求二面角M-BQ-C 的大小.【答案】解:(1)证明:由题意知:PQ ⊥AD ,BQ ⊥AD ,PQ ∩BQ=Q ,∴AD ⊥平面PQB ,又∵AD ⊂平面PAD ,∴平面PQB ⊥平面PAD .(2)∵PA=PD=AD ,Q 为AD 的中点,∴PQ ⊥AD ,∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD=AD ,∴PQ ⊥平面ABCD ,以Q 这坐标原点,分别以QA ,QB ,QP 为x ,y ,z 轴,建立如图所求的空间直角坐标系,由题意知:Q (0,0,0),A (1,0,0),P (0,0,√3),B (0,√3,0),C (-2,√3,0)∴QM ⃗⃗⃗⃗⃗⃗⃗ =23QP ⃗⃗⃗⃗⃗ +13QC ⃗⃗⃗⃗⃗ =(-23,√33,2√33), 设n 1⃗⃗⃗⃗ 是平面MBQ 的一个法向量,则n 1⃗⃗⃗⃗ ⋅QM ⃗⃗⃗⃗⃗⃗⃗ =0,n 1⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗⃗ =0, ∴{√3y =0−23x+√33y+2√33z=0,∴n 1⃗⃗⃗⃗ =(√3,0,1),又∵n 2⃗⃗⃗⃗ =(0,0,1)平面BQC 的一个法向量, ∴cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=12,∴二面角M-BQ-C 的大小是60°.【解析】(1)由题设条件推导出PQ ⊥AD ,BQ ⊥AD ,从而得到AD ⊥平面PQB ,由此能够证明平面PQB ⊥平面PAD .(2)以Q 这坐标原点,分别以QA ,QB ,QP 为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出二面角M-BQ-C 的大小.本题考查平面与平面垂直的证明,考查二面角的大小的求法,解题时要认真审题,注意向量法的合理运用.6.如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC=2,点E 是PC 的中点,F 在直线PA 上.(1)若EF ⊥PA ,求PFPA 的值;(2)求二面角P-BD-E 的大小.【答案】解:(1)∵在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,∴以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴,建立空间直角坐标系,∵PD=DC=2,点E 是PC 的中点,F 在直线PA 上,∴P (0,0,2),A (2,0,0),C(0,2,0),E (0,1,1),设F (a ,0,c ),PF⃗⃗⃗⃗⃗ =λPA ⃗⃗⃗⃗⃗ ,则(a ,0,c -2)=λ(2,0,-2)=(2λ,0,-2λ),∴a =2λ,c =2-2λ,F (2λ,0,2-2λ),EF ⃗⃗⃗⃗⃗ =(2λ,-1,1-2λ),PA ⃗⃗⃗⃗⃗ =(2,0,-2),∵EF ⊥PA ,∴EF ⃗⃗⃗⃗⃗ ⋅PA ⃗⃗⃗⃗⃗ =4λ-2+4λ=0,解得λ=14, ∴PF PA =14.(2)P (0,0,2),B (2,2,0),D (0,0,0),E (0,1,1), DP ⃗⃗⃗⃗⃗ =(0,0,2),DB ⃗⃗⃗⃗⃗⃗ =(2,2,0),DE⃗⃗⃗⃗⃗⃗ =(0,1,1), 设平面BDP 的法向量n⃗ =(x ,y ,z ), 则{n ⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =2x +2y =0n⃗ ⋅DP ⃗⃗⃗⃗⃗ =2z =0,取x =1,得n ⃗ =(1,-1,0),则{m ⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =2x +2y =0m⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ =y +z =0,取x =1,得m ⃗⃗⃗ =(1,-1,1), 设二面角P-BD-E 的大小为θ,则cos θ=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ |⋅|n ⃗⃗ |=2√2⋅√3=√63. ∴二面角P-BD-E 的大小为arccos √63.【解析】(1)以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴,建立空间直角坐标系,利用向量法能求出PF PA 的值.(2)求出平面BDP 的法向量和设平面BDE 的法向量,由此能求出二面角P-BD-E 的大小.本题考查线段比值的求法,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.7.如图所示的几何体是由棱台ABC-A 1B 1C 1和棱锥D-AA 1C 1C 拼接而成的组合体,其底面四边形ABCD 是边长为2的菱形,且∠BAD=60°,BB 1⊥平面ABCD ,BB 1=2A 1B 1=2.(Ⅰ)求证:平面AB 1C ⊥平面BB 1D ;(Ⅱ)求二面角A 1-BD-C 1的余弦值.【答案】(Ⅰ)证明:∵BB 1⊥平面ABCD ,∴BB 1⊥AC ,∵ABCD 是菱形,∴BD ⊥AC ,又BD ∩BB 1=B ,∴AC ⊥平面BB 1D ,∵AC ⊂平面AB 1C ,∴平面AB 1C ⊥平面BB 1D ;(Ⅱ)设BD 、AC 交于点O ,以O 为坐标原点,以OA 为x 轴,以OD 为y 轴,建立如图所示空间直角坐标系.则B(0,−1,0),D(0,1,0),B 1(0,−1,2),A(√3,0,0),A 1(√32,−12,2),C 1(−√32,−12,2), ∴BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,12,2),BD ⃗⃗⃗⃗⃗⃗ =(0,2,0),BC 1⃗⃗⃗⃗⃗⃗⃗=(−√32,12,2).由{n ⃗ ⋅BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x +12y +2z =0n⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =2y =0,取z =√3,得n ⃗ =(−4,0,√3), 设平面DCF 的法向量m ⃗⃗⃗ =(x ,y ,z),由{m ⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =2y =0m⃗⃗⃗ ⋅BC 1⃗⃗⃗⃗⃗⃗⃗ =−√32x +12y +2=0,取z =√3,得m ⃗⃗⃗ =(4,0,√3). 设二面角A 1-BD-C 1为θ,则cosθ=|m ⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||m||n|=1319.【解析】(Ⅰ)由BB 1⊥平面ABCD ,得BB 1⊥AC ,再由ABCD 是菱形,得BD ⊥AC ,由线面垂直的判定可得AC ⊥平面BB 1D ,进一步得到平面AB 1C ⊥平面BB 1D ;(Ⅱ)设BD 、AC 交于点O ,以O 为坐标原点,以OA 为x 轴,以OD 为y 轴,建立如图所示空间直角坐标系.求出所用点的坐标,得到平面A 1BD 与平面DCF 的法向量,由两法向量所成角的余弦值可得二面角A 1-BD-C 1的余弦值.本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.。