信号与系统课后习题与解答第三章
信号与系统习题答案第三章
第三章习题基础题3.1 证明cos t , cos(2)t , …, cos()nt (n 为正整数),在区间(0,2)π的正交集。
它是否是完备集?解:(积分???)此含数集在(0,2)π为正交集。
又有sin()nt 不属于此含数集02sin()cos()0nt mt dt π=⎰,对于所有的m 和n 。
由完备正交函数定义所以此函数集不完备。
3.2 上题的含数集在(0,)π是否为正交集?解:由此可知此含数集在区间(0,)π内是正交的。
3.3实周期信号()f t 在区间(,)22T T-内的能量定义为222()TT E f t dt -=⎰。
如有和信号12()()f t f t +(1)若1()f t 与2()f t 在区间(,)22T T-内相互正交,证明和信号的总能量等于各信号的能量之和;(2)若1()f t 与2()f t 不是相互正交的,求和信号的总能量。
解:(1)和信号f(t)的能量为[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2)由1()f t 与2()f t 在区间内正交可得2122()()0T T f t f t dt -=⎰则有 22221222()()T T T T E f t dt f t dt --=+⎰⎰即此时和信号的总能量等于各信号的能量之和。
和信号的能量为(2)[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2吧?)由1()f t 与2()f t 在区间(,)22T T-内不正交可得2122()()0T T f t f t dt K -=≠⎰则有2222222212122222()()()()T T T T T T T T E f t dt f t dt K f t dt f t dt ----=++≠+⎰⎰⎰⎰即此时和信号的总能量不等于各信号的能量之和。
西交版信号与系统习题答案-第三章
第三章习题答案3.1 计算下列各对信号的卷积积分()()()y t x t h t =*:(a)()()()()t t x t e u t h t e u t αβ==(对αβ≠和αβ=两种情况都做)。
(b)2()()2(2)(5)()t x t u t u t u t h t e =--+-=(c)()3()()()1t x t e u t h t u t -==-(d)5,0()()()(1),0t t te t x t h t u t u t e e t -⎧<⎪==--⎨->⎪⎩(e)[]()sin ()(2)()(2)x t t u t u t h t u t π=--=--(f)()x t 和()h t 如图P3.1(a)所示。
(g)()x t 和()h t 如图P3.1(b)所示。
图P3.1解:(a)()()0()()()(0)t ttt y t x t h t e ed e e d t βτατβαβτττ------=*==>⎰⎰当αβ≠时,()1()()t te y t e u t αβββα----=-当αβ=时,()()t y t te u t α-=(b) 由图PS3.1(a)知,当1t ≤时,252()2()22(2)2(5)021()22t t tt t y t e d e d e e e ττττ----⎡⎤=-=-+⎣⎦⎰⎰当13t ≤≤时,252()2()22(2)2(5)121()22t t t t t y t ed e d e e e ττττ-----⎡⎤=-=-+⎣⎦⎰⎰ 当36t ≤≤时,52()2(5)211()2t t t y t e d e e ττ---⎡⎤=-=-⎣⎦⎰ 当6t >时,()0y t =(c) 由图PS3.1(b)知,当1t ≤时,()0y t =当1t >时,133(1)1()13t t y t e d e ττ----⎡⎤==-⎣⎦⎰3(1)1()1(1)3t y t e u t --⎡⎤∴=--⎣⎦(d) 由图PS3.1(d)知:当0t ≤时,11()tt t t y t e d e e ττ--==-⎰当01t <≤时,055(1)1014()(2)255t t t t t y t e d e e d e e e τττττ-----=+-=+--⎰⎰当1t >时,555(1)(1)111()(2)2255t t t t t t y t e e d e e e e τττ------=-=-+-⎰ (e) 如下图所示:(f) 令()11()(2)3h t h t t δ⎡⎤=+--⎢⎥⎣⎦,则11()()()(2)3y t x t h t x t =*--由图PS3.1(h)知,11424()()()()(21)333tt y t x t h t a b d a t b ττ-=*=+=-+⎰2411()(21)(2)()3333a y t tb a t b a t b x t ∴=-+---=+= (g)()x t 是周期信号,由此可推知()()()y t x t h t =*也是周期的,且周期也为2。
《信号与系统》第三章习题解答
Chapter 3 3.15
Problem Solution
1 ω ≤ 100 H ( jω ) = 0 ω > 100
x(t ) , T = π/ 6 S y (t ) = x(t ) →
For what values of k is guaranteed that ak = 0 ?
k =−∞
分别如图2和图3 两个子系统的频率响应 H1 ( jω)和 H2 ( jω)分别如图2和图3 所示。 所示。试求该系统的输出信号 y ( t ) 。
x( t )
1
0
H1 ( jω)
+
−
H1 ( jω)
H2 ( jω)
y( t )
ω
H1 ( jω)
2
图1
H2 ( jω)
0 −1
ω
图2
+π / 2
Chapter 3 3.13 Consider a continuous-time LTI system
Problem Solution
H ( jω ) =
sin (4ω )
ω
1 0 ≤ t < 4 x(t ) = −1 4 ≤ t < 8
T =8
y (t ) =
k = −∞
∑
∞
ak H ( jkω 0 )e jkω 0t = 0
+∞
sin πt πt
n = −∞
∑ x (t − 3n )
1
Suppose we are given
1 -1 < t < 1 x1 (t ) = 0 others
2π 2 sin 2 3 cos 2π t y (t ) = + π 3 3
信号与系统课后习题与解答第三章
3-1 求图3-1所示对称周期矩形信号的傅利叶级数〔三角形式和指数形式〕。
图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数〔FS 〕为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数〔FS 〕的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为T e jE e jE e jE e jE t f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。
假设:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20=幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。
解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数〔FS 〕的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n那么的指数形式的傅利叶级数〔FS 〕为∑∑∞-∞=∞-∞=⎪⎭⎫⎝⎛==n tjn n tjn ne n Sa TE eF t f 112)(1ωωτωτ 其直流分量为T E n Sa T E F n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω 将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 假设周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:〔1〕)(1t f 的谱线间隔和带宽〔第一零点位置〕,频率单位以kHz 表示; 〔2〕)(2t f 的谱线间隔和带宽; 〔3〕)(1t f 与)(2t f 的基波幅度之比; 〔4〕)(1t f 基波与)(2t f 三次谐波幅度之比。
信号与系统第三章习题答案
=2 T
T +t0 t0
f
t
cos nω0tdt
∫ ( ) bn
=
2 T
T+t0 t0
f
t
sin
nω0 tdt
n = 1,2,L n = 1,2,L
信号指数型为:
∞
∑ ( ) f t =
F e jnω0t n
n= −∞
Fn = Fn e jϕ n
96
∫ ( ) Fn
=
1 T
f t0 +T
+L
∑ =
a0 2
+
∞
(an
n=1
cos nω 0t
+ bn
sin
nω 0t)
式中 a0 , an , bn 称为傅里叶系数,分别代表了信号 f (t ) 的直流分量,余弦分量和正经弦分量的振荡幅度,
其值分别由下式确定:
∫ ( ) a0
=
2 T
f T + t0
t0
t dt
∫ ( ) an
4 T
π
2 cos t cos ntdt
0
=
2 T
π
∫2
0
[cos(n
+ 1)t
+
cos(n
− 1)t ]dt
( ) =
2 T
n
1 +
1
sin
π
2(n +
1)
+
1 sin n −1
π
2(n −
1)
=
−
n2
2 −1π
cos
nπ 2
该信号的三角傅里叶级数为
信号与线性系统题解第三章
第三章习题答案da3.1 计算下列各对信号的卷积积分()()()y t x t h t =*:(a) ()()()()t tx t e u t h t e u t αβ==(对αβ≠和αβ=两种情况都做)。
(b) 2()()2(2)(5)()tx t u t u t u t h t e =--+-=(c) ()3()()()1tx t eu t h t u t -==-(d) 5,0()()()(1),0tt t e t x t h t u t u t e e t -⎧<⎪==--⎨->⎪⎩(e) []()sin ()(2)()(2)x t t u t u t h t u t π=--=--(f) ()x t 和()h t 如图P3.1(a)所示。
(g) ()x t 和()h t 如图P3.1(b)所示。
图P3.1 解:(a) ()()0()()()(0)t ttty t x t h t eed eed t βτατβαβτττ------=*==>⎰⎰当αβ≠时,()1()()ttey t e u t αβββα----=-当αβ=时,()()t y t te u t α-=(b) 由图PS3.1(a)知, 当1t ≤时,252()2()22(2)2(5)021()22t t t t t y t ed ed e e e ττττ----⎡⎤=-=-+⎣⎦⎰⎰ 当13t ≤≤时,252()2()22(2)2(5)121()22t t t t t y t ed ed e e e ττττ-----⎡⎤=-=-+⎣⎦⎰⎰ 当36t ≤≤时,52()2(5)211()2t t t y t ed e e ττ---⎡⎤=-=-⎣⎦⎰ 当6t >时,()0y t =(c) 由图PS3.1(b)知,当1t ≤时,()0y t = 当1t >时,133(1)01()13t t y t ed e ττ----⎡⎤==-⎣⎦⎰3(1)1()1(1)3t y t e u t --⎡⎤∴=--⎣⎦(d) 由图PS3.1(d)知: 当0t ≤时,11()tt t t y t e d e eττ--==-⎰当01t <≤时,055(1)1014()(2)255t ttt t y t e d e e d e eeτττττ-----=+-=+--⎰⎰当1t >时,555(1)(1)111()(2)2255t tt tt t y t e ed eeeeτττ------=-=-+-⎰(e) 如下图所示:(f) 令()11()(2)3h t h t t δ⎡⎤=+--⎢⎥⎣⎦,则11()()()(2)3y t x t h t x t =*-- 由图PS3.1(h)知,11424()()()()(21)333t t y t x t h t a b d a t b ττ-=*=+=-+⎰2411()(21)(2)()3333a y t tb a t b a t b x t ∴=-+---=+= (g) ()x t 是周期信号,由此可推知()()()y t x t h t =*也是周期的,且周期也为2。
【信号与系统(郑君里)课后答案】第三章习题解答
【信号与系统(郑君⾥)课后答案】第三章习题解答3-1 解题过程:(1)三⾓形式的傅⽴叶级数(Fourier Series ,以下简称 FS )f ( t ) = a ++∞cos ( n ω t) + b sin ( n ω t ) a 0 ∑ n 1n 1 n =1式中ω1 =2π,n 为正整数,T 1 为信号周期T 11 t +T(a )直流分量a 0 = 0 ∫ 1 f ( t ) dtT1 t2 t +T(b )余弦分量的幅度a n = 0∫ 1f ( t ) cos ( n ω1t ) dtT1 t 02 t +T(c )正弦分量的幅度b n = 0 ∫ 1f ( t ) sin ( n ω1t ) dtT 1 t(2)指数形式的傅⽴叶级数+∞f ( t ) = ∑ F ( n ω1 )e jn ω1tn == F ( n ω1 ) = 1 ∫t 0 +T 1f ( t ) e ? jn ω1t dt T 1 t 0F n =1( a n ? jb n ) F ? n = 1 ( a n + jb n ) 2 2由图 3-1 可知, f ( t ) 为奇函数,因⽽a 0 = a n = 0 4 Tb n = T ∫02= 2Eπ n4TE2EEf (t ) sin ( n ω t ) dt =sin ( n ω t ) dt = cos ( n ω t = 1 ? cos ( n π2T 1 ∫0 2 1 n t 1 n ) 1n = 2, 4,n = 1, 3,所以,三⾓形式的 FS 为2 E1 12π f ( t ) =sin ( ω1t ) +sin ( 3ω1t ) +sin ( 5ω1t ) +ω1 =π 3 5Tn = 0, ±2, ±4,F n = ? jb n jE=2 n = 0,± 1, ±3,n π1所以,指数形式的 FS 为f ( t ) = ? jE π ej ω1t+ πjE e ? j ω1t ? 3jE π e j 3ω1t + 3jEπ e ? j 3ω1t +3-15 分析:半波余弦脉冲的表达式 f ( t ) =πτ E cos t u t+ τ 2求 f ( t ) 的傅⽴叶变换有如下两种⽅法。
推荐-信号与系统第三版第三章课后答案 2 精品
流及 cosnt分量
当该周期函数为奇函数时,a0=an=0,展开式只
会含 sin nt分量
3.2.2 指数形式傅立叶级数分解
1.复指数函数集
fT t
e jnt n 0, 1, 2...
T 2
该函数集在(t0,t0+T)上为周期信号的完备正交函数集。
2.正交展开: 将任一周期信号展开为
fT (t) ci gi (t) Fne jnt
Fn
t0 T t0
fT (t)gi*(t)dt
t0 T t0
gi (t) 2 dt
t0 T t0
fT (t)e jntdt
t0 T
e jnt
2
dt
1 T
t0
n
t0 T t0
fT (t)e jntdt
一矢量V都可表示为V1和V2的线性组合 (如上图)。即:
V=C1V1+C2 V2。式中V1、V2为单位矢量,且V1·V2=0。其
中:
c1V 1
V
c
os
1,
c 1
V
c os 1
V1
V V1 V 1 V 1
cV 2
2
V
c
os
2,
c 2
V
cos 2
V2
V V 2 V 2 V 2
同样,对于一个三维的空间矢量,要精
确地表示它,就必须用一个三维的正交
矢量集。如左图,三维矢量空间可精确
地表示为:V=c1V1+c2V2+c3V3
推广到n维空间,则有
其中,Ci = V·Vi/Vi ·Vi
V c1V 1 c2V 2 cnVn
信号与系统课后答案第三章作业答案
初始为 0, C2 -4
y f (t) -4e3tu(t) 4e2tu(t)
全响应= yx (t)+y f (t) 4e2tu(t)-2e3tu(t)
3-2 描述某 LTI 系统的微分方程为
d2 y(t) dt 2
3dy(t) dt来自2y(t)
df (t) dt
6
1
1
(2e1 e1 et ) u(t)
e1(2 et ) u(t)
(2)
f
(t)
a[u(t
s) 2
u(t
2)]
h(t) b[u(t 2) u(t 3)]
f
(t)
h(t)
ab[(t
1 2
)
u(t
1 2
)
(t
1 2
)
u(t
1) 2
tu(t)
1 4
(et
e3t
)u(t)
1 2
t
e3tu(t)
[
1 4
et
(
1 2
t
1 4
)e3t
]u
(t)
3-19 一 个 LTI 系 统 , 初 始 状 态 不 祥 。 当 激 励 为 f (t) 时 其 全 响 应 为
(2e3t sin 2t)u(t) ;当激励为 2 f (t) 时其全响应为 (e3t 2sin 2t)u(t) 。求
(1) 初始状态不变,当激励为 f (t 1) 时的全响应,并求出零输入相应、
零状态响应; (2) 初始状态是原来的两倍、激励为 2 f (t) 时系统的全响应。
信号与系统第三章习题课3
(1) ℱ[ ]=
(2) ℱ[ ]-2ℱ[ ]
(3) ℱ[ ]-2ℱ[ ]
(4)
14.求图3-9所示梯形脉冲的傅里叶变换,并大致画出 情况下该脉冲的频谱图。
解:①利用线性性质
ℱ[ ]-ℱ[ ]
②利用时域卷积定理
令 , ,其中
则
ℱ[ ]ℱ[ ]
③利用时域积分性质
令 则
另外,求得一阶导数后,也可直接利用积分性质求解:
(4)
(5)因为
8.试分别利用下列几种方法证明 。
(1)利用符号函数 ;
(2)利用矩形脉冲取极限 ;
(3)利用积分定理 ;
(4)利用单边指数函数取极限 。
证明:(1)略
(2)
(3)略
(4)
9.若 的傅里叶变换为
,如图3-7所示,求 并画图。
解:
10.已知信号 , 的波形如图3-8(a)所示,若有信号 的波形如图3-8(b)所示。求 。
,
④当 时,
15.已知阶跃函数的傅里叶变换为 ;正弦、余弦函数的傅里叶变换为 ; 。求单边正弦 和单边余弦 的傅里叶变换。
解:同Biblioteka 可求:16.求 的傅里叶逆变换。
解: ,
另一种解法:
17.求信号 的傅氏变换。
解:信号周期为:
则 ,
18.信号 ,若对其进行冲激取样,求使频谱不发生混叠的最低取样频率 。
第三章习题
1.图3-1给出冲激序列 。求 的指数傅里叶级数和三角傅里叶级数。
解:
, ,因为偶函数
,上述
2.利用1题的结果求图3-2所示三角波 的三角傅里叶级数。
解:
①利用1题的结果求解:
令
则
,所以
信号与系统第三章习题答案
d (t - 1) « e- jw
\ e-2( t -1)d (t - 1) « e- jw
(8) U (t ) - U (t - 3) Q 根据傅里叶变换的线性性质可得: 1 U (t ) « p d (w ) + jw 1 U (t - 3) « e - j 3w (p d (w ) + ) jw \ U (t ) - U (t - 3) « ( 1- e - j 3w )(p d (w ) + 1 ) jw
U (t - 1) « e - jw (pd (w ) +
t 1 U ( - 1) « 2e - j 2w (pd (2w ) + ) 2 j 2w Q d (aw ) = 1 d (w ) a
\ 2e- j 2wpd (2w ) = 2pd (2w )w =0 = pd (w ) \ 2e - j 2w (pd (2w ) +
e - jtd (t - 2 ) « e - j 2(w +1)
(6) e -2( t -1)d (t - 1) Q 根据傅里叶变换的性质 f (t ± t0 ) « e ± jwt0 F ( jw ) 可得: e -2( t -1)d (t - 1) = d (t - 1) d (t ) « 1 (t = 1)
d F ( jw ) - 2 F ( jw ) dw
y ''(t ) + 4 y '(t ) + 3 y (t ) = f (t ) y ''(t ) + 5 y '(t ) + 6 y (t ) = f '(t ) + f (t )
(1) 求系统的频率响应 H(jw)和冲激响应 h(t) ; (2) 若激励 f (t ) = e-2tU (t ) ,求系统的零状态响应 y f (t ) 。 解: 方程 1:
信号与系统王明泉科学出版社第三章习题解答
左右对t求导,得:
显然, 的指数傅里叶级数为 (式中 )
3.9求题图3.9所示各信号的傅里叶变换。
题图3.9
解:根据定义
3.10计算下列每个信号的傅里叶变换。
(1) ;(2) ;
(3) ;(4)
(5) ;(6)
解: (1)
(2)
(3)由于
根据卷积乘积性质,得
(4)由于
所以
(5) ,设
第3章傅里叶变换与连续系统的频域分析
3.6本章习题全解
3.1证明函数集 在区间 内是正交函数集。
证明:对任意的自然数n,m (n m),有
=0
证毕
3.2一个由正弦信号合成的信号由下面的等式给出:
(1)画出这个信号的频谱图,表明每个频率成分的复数值。对于每个频率的复振幅,将其实部和虚部分开或者将其幅度和相位分开来画。
图3-19-3
3.21用傅里叶变换法求题图3.21所示周期信号 的傅里叶级数。
题图3.21
解:对x(t)一个周期信号x0(t)的傅里叶变换为
X0(j )=
=
傅里叶级数
3.22求题图3.22所示周期性冲激信号的频谱函数。
题图321-1
3.23已知 的幅频与相频特性如题图3.23所示,求其傅里叶逆变换 。
(a)(b)
题图3.12
解:令傅里叶变换对 ,
(1)根据已知图形可知:
,
已知有
所以
根据傅里叶变换的微积分性质
所以
即
(2) ,
根据(1)的结论得
根据傅里叶变换的微积分性质
所以
即
3.13利用傅里叶变换的对称性求下列信号的频谱函数。
(1) ;(2) ;
北邮信号与系统课后答案第3章部分1
为功率信号
(d) P lim 1 T0 u t 2 dt lim 1 T0 1dt 1
T0
2T0 T0
T0 2T0 0
2
为功率信号。
【知识点】能量信号、功率信号 3-3 对信号 f (t) 在数值和时间两方面进行运算变成 af (bt)
(1)如果在全部时间
t
内, f (t) 是具有能量为 W 的能量信号,
f1 t 1
f2 t 1
0
1
2
3t
0
1
2
3t
锯齿形脉冲
正弦脉冲
题 3-6 图
解:
3
0 f1 t f2 t d t
31 t sin
tdt
- t cos
t - 3 sin
3
t
03 3
3
2 30
3
3
sin
2
tdt
31 1 - cos 2 t d t 3
03
02
3
2
C12 2
t2
fe t
- sin t
3
3
3 t - 2 sin t sin tdt
sin 2
1t
4
3 cos 2 1 t 4
15 cos 4 1 t 4
...
2
A 1 T A
sin 2
1t
2
2A 3 cos 2 1t
2A 15 cos 4 1t 2 ...
AA
2A
2A
cos 2
1t
3 cos 2 1t
15 cos 4 1t
...
9
随着T , C12 ,当T
时使得 C12 0 。
信号与系统课程习题与解答
《信号与系统》课程习题与解答第三章习题(教材上册第三章p160-p172)3-1~3-3,3-5,3-9,3-12,3-13,3-15~3-17,3-19,3-22,3-24,3-25,3-29,3-32第三章习题解答3-2 周期矩形信号如题图3-2所示。
若:求直流分量大小以及基波、二次和三次谐波的有效值。
解:直流分量⎰⎰--=⨯==2222301105)(1ττv Edt dt t f T a TTf(t)为偶函数,∴0=n b)(2cos )(222T n Sa T E tdt n t f T a n πττωττ⎰-==)(21T n Sa T E a F n n πςτ== 基波 =1a )1.0s i n (20)(2πππττ=T Sa T E有效值 39.11.0sin 22021≈=ππa二次谐波有效值 32.122≈a三次谐波有效值 21.123≈a3-3 若周期矩形信号)(1t f 和 )(2t f 波形如题图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1=,E=1V ;)(2t f 的参数为s μτ5.1=,s T μ3=,E=3V ,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3) )(1t f 和 )(2t f 的基波幅度之比; (4) )(1t f 基波与)(2t f 三次谐波幅度之比。
解:(1))(1t f s μτ5.0= s T μ1= E=1V 谱线间隔:khZ T 10001==∆带宽:KHzB f 20001==τ(2) )(2t f s μτ5.1= s T μ3= E=3V间隔:khZ T 310001==∆谱线带宽:KHzB f 320001==τ(3) )(1t f 基波幅度:ππτ2)2cos(4201==⎰dt t T E T a )(2t f 基波幅度:ππτ6)2cos(4201==⎰dt t T E T a幅度比:1:3(4) )(2t f 三次谐波幅度:ππτ2)23cos(4203-=⨯=⎰dt t T E T a 幅度比:1:13-5 求题图3-5所示半波余弦信号的傅立叶级数。
信号与系统第3章习题和重点
ZB
3-26
已知 f (t) = f1(t) + f2(t)的频谱密度函数 F(ω) = 4Sa(ω) − j
4
ω
,
为偶函数, 为奇函数, 且 f1(t)为偶函数, f2(t)为奇函数,试求 f1(t)和 f2(t) 。 解:由题意知
f1(t) ↔4Sa(ω) = AτSa( 2 ∴f1(t) = 2g2(t)
F = n 1 T 1 T
∫ ∫
3T 4 T 4
f (t)e− jnω0tdt
L − 2 L 2 2 2 −2T −T 0 T 2T t
() 1
− jnω0 T 2 ) = 1 (1−e− jnπ )
−
=
T 1 δ (t) −δ (t − )e− jnω0tdt = (1−e T 2 T − 4
0
T
ZB
3-4 已知周期信号 f (t)的前四分之一周期的波形如图所 且其余每一段四分之一周期的波形要与之相同, 示,且其余每一段四分之一周期的波形要与之相同,试 整个周期的波形。 就下列情况分别画出 f (t)整个周期的波形。 为偶函数, 解:(1) f (t)为偶函数,且只含偶次谐波
f (t)
∞
F(ω) =
∫ = e e ∫
=
−∞ 0 2t − jωt
e2tε(−t)e− jωtdt dt
−∞ (2− jω)t 0 e
2 − jω −∞
ZB
1 = 2 − jω 《信号与系统》SIGNALS AND SYSTEMS
3-19 设 f (t) ↔F(ω) ,试证: 试证: (1) ∫ ∞ f (t)dt = F(0) ) −
解: (2) 为非周期信号 T →∞
信号与系统-第三章习题讲解
E
[Sa2 (
0
)e
j
( 0 2
)
Sa2 (
0
)e
j
( 0 2
)
]
4
4
4
3 39决 定 下 列 信 号 的 最 低 抽 样 频 率 与 奈 奎 斯 特 间 隔 : (1) : S a (1 0 0 t ); ( 2 ) : S a 2 (1 0 0 t ); (3 ) : S a (1 0 0 t ) S a (5 0 t ); ( 4 ) : S a (1 0 0 t ) S a 2 (6 0 t )
故 f ( t ) 2 E 1 s i n ( n t ) 2 E 1 s i n ( n 2 t )
n n 1 . 3 . 5 . . .
n n 1 . 3 . 5 . . .
T
= 2 E [sin ( t) 1 sin (3 t) 1 sin (5 t) ...]
1 2
[ (
0 ) (
0 )]* [
1 j
( )]
11
[
2 j( 0 )
j(
1
] 0)
2
[
(
0)
(
0 )]
j
2 0
2
2
[
(
0)
(
0 )]
单边正弦函数的傅立叶变换为:
F [sin( 0t)u (t)]
1 2
F T [sin( 0t)]* F T [u (t)]
1 2
0
b n
2 T1
T1 0
f
(t ) s in ( n 1t ) d t
2[
T 2
E
sin (n t)d t
[信号与系统作业解答]第三章
3-4 求下图所示周期三角信号的傅里叶级数(三角形式)。
解:从图中可知,周期信号的在[ T / 2,T / 2] 的表达式为
f (t)
2E T
t,
0
t
T /2
2E T
t
T /2 t 0
周期为T ,基频 0
2 T。
1)三角形式的傅里叶级数
f (t) a0
[an cos(n 0t) bn sin(n 0t)]
解:
f (t)cos( 0t)
F1( )
1 2
[F(
0) F(
0 )]
f (t)e j 0t F2( ) F(
0)
f (t)cos( 1t)
F3( )
1 2
[F(
1) F(
1)]
3-39 确定下列信号的最低抽样率与奈奎斯特间隔。
(1) Sa(100t )
(3)Sa(100t) Sa(50t)
解:(1)因为Sa(100t) 50G200( ) ,最高频率为 m 100 rad / s ,所以最低抽样
所以
F [fo(t)] 1 [F( ) 2
1 2F
[f (t)
F *( )]
f *( t)] j Im[F( )]
(2)因为 fr (t)
1 2
[f
(t)
f *(t)] ,
所以
F [fr (t)]
1 2F
[f (t)
f *(t)]
1 [F( ) F *( 2
)]
同样的, fi (t)
1 [f (t) 2j
1因为20010050sa最高频率为100所以最低抽样频率为2002又因为另一个分量1005025sa最高频率为100所以最低抽样频率为200341系统如图所示求最大抽样间隔max100020003000300030001000200010001000300010003000波形如下图所示可知的最高频率为3000要进行无失真的恢复则最低抽样频率为min6000对应的最大抽样间隔为maxmin波形如下图所示其中
信号与系统第三章习题部分参考答案
↔ 2π e−a⎜−ω⎜
(4)单边指数信号 ∵ e−atu(t) ↔ 1 a + jw
∴ 1 ↔ 2π e−a(−w)u(−w) a + jt
即 1 ↔ 2π eawu(−w) a + jt
3.20 求下列各傅里叶变换的原函数
(1) F (ω) = δ (ω − ω0 ) (2) F (ω) = u(ω + ω0 ) − u(ω − ω0 );
2π
(2)[1 + mf (t)]cos(w0t) = cos(w0t) + mf (t) cos(w0 (t)
↔
π [δ
(w
+
w0
)
+
δ
(w
−
w0
)]
+
m 2
{F[
j(w
+
w0
)
+
F[
j(w
−
w0
)]}
(3) f (6 − 3t) = f [−3(t − 2)] ↔ 1 F (− 1 jw)e− j2w
−τ τ
w
方法二 利用时域微分性质
对 f(t)求一阶导数得到
f
′(t)
=
1 τ
G2τ
(t)
−
δ
(t
+
τ
)
−
δ
(t
−
δ
)
F1 (w) = 2sa(wτ ) − 2 cos(wτ )
F1 (0) = 0
F (w) =
F1 (w) jw
+
πF1
(0)δ
(w)
=
j
2 [cos(wτ ) − sa(wτ )] w
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3-1 求图3-1所示对称周期矩形信号的傅利叶级数(三角形式和指数形式)。
图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数(FS )为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数(FS )的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为Te jE e jE e jEe jEt f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。
若:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20= 幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。
解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数(FS )的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n则的指数形式的傅利叶级数(FS )为∑∑∞-∞=∞-∞=⎪⎭⎫⎝⎛==n tjn n tjn ne n Sa TE eF t f 112)(1ωωτωτ其直流分量为T E n Sa T E F n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω 将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 若周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3))(1t f 与)(2t f 的基波幅度之比; (4))(1t f 基波与)(2t f 三次谐波幅度之比。
解 由题3-2可知,图3-2所示周期矩形波形的傅利叶级数为T e n Sa TE t f tjn πωτωτω2,2)(111=⎪⎭⎫ ⎝⎛=∑∞∞- 且基波幅度为⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⋅T t E Eππτωπsin 22sin 21 三次谐波幅度为⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⋅T t E E ππτωπ3sin 3223sin 321 另外,周期信号的频谱是离散的,每两根相邻谱线间的间隔就是基频1ω。
周期矩形信号频谱的包络线是抽样函数,其第一个零点的位置为⎪⎭⎫ ⎝⎛=⇒==τπωπτωτπω2n 2n 211令。
注意,频谱还可以表示为频率f 的函数。
由f πω2=可知,若以f 为频谱图的横轴,则谱线间隔就为,第一个零点的位置就为τ1=f 。
依据以上结论,可得到题中个问题的答案如下: (1))(1t f 的谱线间隔kHz s T 1000111===μ 带宽(第一零点位置)kHz s20005.011===μτ(2))(2t f 的谱线间隔kHz s T 31031311⨯===μ 带宽kHz s 310325.111⨯===μτ(3))(1t f 的基波幅度πμμππ215.0sin 12=⎪⎪⎭⎫ ⎝⎛⨯⨯=s s )(2t f 的基波幅度πμμππ635.1sin 32=⎪⎪⎭⎫ ⎝⎛⨯⨯=s s 因此)(1t f 的基波幅度:)(2t f 基波幅度3:16:2=ππ(4))(2t f 的三次谐波幅度πμμππ235.13sin 332=⎪⎪⎭⎫ ⎝⎛⨯⨯=s s 因此)(1t f 基波幅度:)(2t f 三次谐波幅度1:12:2=ππ3-4 求图3-3所示周期三角信号的傅利叶级数并画出幅度谱。
图3-32T解 由图3-3可知,该周期三角信号是偶函数,因而0=n b 即)(t f 不包含正弦谐波分量。
2)(2220E dt t f T a TT ==⎰-⎪⎩⎪⎨⎧=-==⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-⋅=====⎰⎰⎰- ,3,1,)(4,4,2,012cos )(8)sin()sin(18)cos(242,2)cos()(22121201201122011221n n E n T n T n E dt t n t n t n T E dtt n t TE T TE dt t n t f T a T T TTT n πωωωωωωπωω 从而T t t t E E t f πωωωωπ2,)5cos(51)3cos(31)cos(42)(1121212=⎥⎦⎤⎢⎣⎡+++-=幅度谱如图3-4所示。
图3-41113-5求图3-5所示半波余弦信号的傅利叶级数。
若V E 10=,kHz f 10=,大致画出幅度谱。
T图3-54T T -4T -解 由图可知,)(t f 为偶函数,因而0=n bππE dt t T E T dt t f T a TT T T =⎪⎭⎫ ⎝⎛==⎰⎰--442202cos 1)(1⎪⎪⎪⎩⎪⎪⎪⎨⎧=-===⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡+==⋅⎪⎭⎫ ⎝⎛==⎰⎰⎰- ,6,4,2,2cos )1(2,7,5,3,01,2121sin 121sin 2)1(cos 2)1(cos 22,)2cos(2cos 4)cos()(2240140221n n n E n n En n n n E dt t T n t T n T E T dt t T n t T E T dt t n t f T a TTTT n ππππππππωππω从而T t t t t t E E t E t E t E t Et E Et f πωωπωπωπωπωπωπωπωπωπωπ2,)8cos(634)6cos(354)4cos(154)2cos(34)cos(2)8cos(632)6cos(352)4cos(152)2cos(32)cos(2)(11111111111=⎥⎦⎤+-+-⎢⎣⎡++=+-+-++=若kHz f V E 10,10==,则幅度谱如图3-6所示。
kHz3-6求图3-7所示周期锯齿信号的指数形式的傅利叶级数,并大致画出频谱图。
图3-7解 图3-7所示周期锯齿信号指数形式的傅利叶级数(FS )的系数,2,1,22112,)(1012010111±±=-==⋅=⎪⎭⎫⎝⎛+-===---⎰⎰n n jE n j E te jn T E dt e E t T E T Tdt e t f T F T t jn T t jn T tjn n ππωπωωωω从而⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡+++=-+-+-=-- 22cos 212cos 2)2sin(21)sin(244222)(1111221111πωπωπωωπππππωωωωt t E E t t E E e jE e jE e jE e jE E t f tj t j t j t j幅度谱和相位谱分别如图3-8(a )、(b )所示。
图3-8(a)(b)3-7利用信号的对称性,定性判断图3-9中各周期信号的傅利叶级数中所含有的频率分量。
(a)图3-9(b)(c)(d)(e)(f)解(a)如图3-9(a)所示。
因为)(t f是偶函数,所以不含正弦波;又因为)(t f是奇谐函数,所以不含直流项和偶次余弦项。
综上,)(t f只含奇次余弦分量。
(b)如图3-9(b)所示。
因为)(t f是奇函数,所以不含正弦波;又因为)(t f是奇谐函数,所以不含偶次余弦项。
综上,)(t f只含奇次余弦分量。
(c )如图3-9(c )所示。
因为)(t f 是奇谱函数,所以只包含奇次谐波分量。
(d )如图3-9(d )所示。
因为)(t f 是奇函数,所以只包含正弦分量。
(e )如图3-9(e )所示。
因为)(t f 是偶函数,所以不含正弦项;又因为)(t f 是偶谐函数)(2t f T t f =⎪⎭⎫⎝⎛+即,所以不含奇次谐波分量。
综上,)(t f 只含有直流和偶次余弦分量。
(f)如图3-9(f )所示。
因为)(t f 是偶谐波函数,所以不包含奇次谐波分含量;又因为21)(-t f 是奇函数,所以21)(-t f 只包含正弦分量。
综上,)(t f 只包含直流和偶次谐波的正弦分量。
3-8 求图3-10中两种周期信号的傅利叶级数。
(a)图3-10(b)解 (a )如图3-10(a )所示。
此题中的)(t f 与题3-4中的信号(记为)(1t f )在图形上相同,只是平移了4T ,即⎪⎭⎫ ⎝⎛+=4)(1T t f t f由题3-4知,T t t t E E t f πωωωωπ2,)5cos(51)3cos(31)cos(42)(11212121=⎥⎦⎤⎢⎣⎡+++-=则T t t t t E E t t t t E E t t t E E T t T t T t E E t f πωωωωωπωωωωππωπωπωπωωωπ2,)7sin(71)5sin(51)3sin(31)sin(42)7sin(71)5sin(51)3sin(31)sin(4225cos 51233cos 312cos 4245cos 5143cos 314cos 42)(11212121212121212121212121212=⎥⎦⎤⎢⎣⎡-+-+=⎥⎦⎤⎢⎣⎡+-+--=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-=(b )如图3-10(b )所示。