高中数学(人教版必修5)配套练习:2.1 数列的概念与简单表示法
人教新课标版数学高二-数学必修5训练 2.1数列的概念与简单表示法
数学·必修5(人教A版)本章概述课标导读1.数列的概念和简单表示法通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊函数.2.等差数列、等比数列(1)通过实例,理解等差数列、等比数列的概念.(2)探索并掌握等差数列、等比数列的通项公式与前n项和的公式.(3)能在具体的问题情境中发现数列的等差关系或等比关系,并能用有关知识解决相应的问题.(4)体会等差数列、等比数列与一次函数、指数函数的关系.要点点击1.等差数列和等比数列有着广泛的应用,学习时应重视通过具体实例(如教育贷款、购房贷款、放射性物质的衰变、人口增长等)理解这两种数列模型的作用,培养我们从实际问题中抽象出数列模型的能力.2.在数列的学习中,应保证基本技能的训练,通过必要的练习,掌握数列中各量之间的基本关系,但训练要控制难度和复杂程度.网络构建2.1数列的概念与简单表示法►基础达标1.数列1,3,7,15,31,…的一个通项公式为()A.a n=2n B.a n=2n+1C.a n=2n-1 D.a n=2n-1解析:代入检验,选C,另法:将数列的每一项都加1,得到的数列是2,4,8,16,32,…,通项为2n.故原数列的通项为2n-1.答案:C2.某种细菌在培养过程中,每20分钟分裂一次(1个分裂为2个).经过3小时,这种细菌由1个可繁殖成()A.511个B.512个C.1 023个D.1 024个解析:3小时含9个20分钟,分裂9次后细菌个数为29=512.答案:B3.下列数列中,既是递增数列又是无穷数列的是()A.1,12,13,14,…B.-1,-2,-3,-4,…C.-1,-12,-14,-18,…D.1,2,3,…n 答案:C4.已知数列{a n }中,a 1=1,a 2=3,a n +2=a n +1+1a n,则a 5=________.解析:a 3=a 2+1a 1=4,a 4=a 3+1a 2=133,a 5=a 4+1a 3=5512.答案:55125.数列{a n }的通项公式是a n =2n +1(n ∈N *),则37是这个数列的第 __________项.解析:由2n +1=37⇒n =18. 答案:186.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)15,110,115,120; (2)-12,14,-18,116;(3)1-12,12-13,13-14,14-15.解析:(1)a n =15n (2)a n =(-1)n 12n (3)a n =1n -1n +1►巩固提高7.已知数列{a n }满足a 1=0,a n +1=1+a n3-a n.写出若干项,并归纳出通项公式a n =________.解析:a 2=1+a 13-a 1=13,a 3=1+133-13=24,a 4=1+243-24=35,a 5=46,猜想:a n =n -1n +1.答案:n -1n +18.已知数列{}a n 满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *, 则a 2 010=________;a 2 011=________.解析:本题主要考查周期数列等基础知识.属于创新题型. 依题意,得a 2010=a 2×1005=a 1005=a 4×252-3=1. a 2 011=a 4×503-1=0. 答案:1 09.已知数列a n =⎩⎪⎨⎪⎧n -1, n 为奇数,n , n 为偶数.则a 1+a 100=__________,a 1+a 2+a 3+…+a 100=________.解析:a 1=0,a 100=100,∴a 1+a 100=100; 又a 1=0,a 3=2,a 5=4,…,a 99=98,而a 2=2,a 4=4,a 6=6,…,a 98=98,a 100=100.∴a 1+a 2+a 3+…+a 100=2×(2+4+…+98)+100=4 900+100=5 000.答案:100 5 00010.(1)设数列{an }满足⎩⎨⎧a 1=1,an =1+1an -1(n >1).写出这个数列的前5项.(2)求数列{-2n 2+9n +3}(n ∈N *)的最大项.解析:(1)由题意可知: a 1=1, a 2=1+11a=1+11=2, a 3=1+21a =1+12=32,a 4=1+31a =1+23=53, a 5=1+41a=1+35=85. (2)令a n =-2n 2+9n +3,所以a n 与n 构成二次函数关系.因为a n =-2n 2+9n +3=-22⎛⎫-⎪⎝⎭9n 4+1058,且n 为正整数,所以当n 取2时,a n 取到最大值13,所以数列{-2n 2+9n +3}的最大项为13.1.数列的通项公式不唯一.例如:a n =⎩⎨⎧-1(n =2k -1,k ∈N *),1(n =2k ,k ∈N *),与a n =(-1)n 表示同一个数列;另外,有些数列可能没有通项公式,如2011年9月1日24时整点时广东平均气温就是一个数列,但它不能用通项公式表示.2.已知通项公式可写出数列的任一项,因此通项公式十分重要. 3.注意用观察法求数列通项的一些技巧.如:平方数数列、自然数数列、偶数列、奇数列等要记清.另对分式数列,注意分式分子或分母是否有规律,再看分子与分母是否有联系.4.注意通项公式的反用,如知项求项数问题或判断一个具体数是不是该数列中的项.5.注意用函数观点看数列,如求数列最大(小)项及判断数列是否有单调性等.。
高中数学第二章数列2.1数列的概念与简单表示法第1课时数列的概念与简单表示优化练习新人教A版必修5
2017-2018学年高中数学第二章数列2.1 数列的概念与简单表示法第1课时数列的概念与简单表示优化练习新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第二章数列2.1 数列的概念与简单表示法第1课时数列的概念与简单表示优化练习新人教A版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第二章数列2.1 数列的概念与简单表示法第1课时数列的概念与简单表示优化练习新人教A版必修5的全部内容。
第1课时数列的概念与简单表示[课时作业][A组基础巩固]1.数列1,0,1,0,1,0,1,0…的一个通项公式是()A.a n=1--1n+12B.a n=错误!C.a n=错误!D.a n=错误!解析:n=1时验证知B正确.答案:B2.下列数列中,既是递增数列又是无穷数列的是( )A.1,错误!,错误!,错误!,…B.-1,-2,-3,-4,…C.-1,-错误!,-错误!,-错误!,…D。
错误!,错误!,错误!,…,错误!解析:对于A,它是无穷递减数列;对于B,它也是无穷递减数列;D是有穷数列;对于C,既是递增数列又是无穷数列,故C符合题意.答案:C3.数列错误!,错误!,错误!,错误!,…的一个通项公式是( )A.a n=错误!B.a n=错误!C.a n=错误!D.a n=错误!解析:观察前4项的特点易知a n=错误!。
答案:C4.已知a n=n(n+1),以下四个数中,是数列{a n}中的一项的是()A.18 B.21C.25 D.30解析:依次令n(n+1)=18,21,25和30检验,有正整数解的为数列{a n}中的一项,知选D。
人教新课标版数学高一- 数学必修五练习第二章 2.1数列的概念与简单表示法(二)
§2.1 数列的概念与简单表示法(二)一、基础过关1.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是( )A .1B.12C.34D.582.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于 ( ) A.259B.2516C.6116D.3115 3.若a 1=1,a n +1=a n3a n +1,则给出的数列{a n }的第7项是( )A.116B.117C.119D.1254.由1,3,5,…,2n -1,…构成数列{a n },数列{b n }满足b 1=2,当n ≥2时,b n =ab n -1,则b 6的值是( )A .9B .17C .33D .655.已知数列{a n }满足:a 1=a 2=1,a n +2=a n +1+a n ,n ∈N *,则使a n >100的n 的最小值是________.6.已知数列{a n }满足a 1=-1,a n +1=a n +1n (n +1),n ∈N *,则通项公式a n =________.7.根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有多少个点.8.已知函数f (x )=2x -2-x ,数列{a n }满足f (log 2a n )=-2n . (1)求数列{a n }的通项公式; (2)证明:数列{a n }是递减数列. 二、能力提升9.已知数列{a n }满足a n +1=⎩⎨⎧2a n ⎝⎛⎭⎫0≤a n <12,2a n-1 ⎝⎛⎭⎫12≤a n<1.若a 1=67,则a 2 012的值为( )A.67B.57C.37D.1710.已知a n =n -98n -99,则这个数列的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C.a10,a9D.a10,a3011.已知数列{a n}满足:a n≤a n+1,a n=n2+λn,n∈N*,则实数λ的最小值是________.12.已知数列{a n}满足a1=12,a n a n-1=a n-1-a n,求数列{a n}的通项公式.三、探究与拓展13.设{a n}是首项为1的正项数列,且(n+1)a2n+1-na2n+a n+1a n=0(n=1,2,3,…),求{a n}的通项公式.答案1.B 2.C 3.C 4.C 5.12 6.-1n7.解 图(1)只有1个点,无分支;图(2)除中间1个点外,有两个分支,每个分支有1个点;图(3)除中间1个点外,有三个分支,每个分支有2个点;图(4)除中间1个点外,有四个分支,每个分支有3个点;…;猜测第n 个图中除中间一个点外,有n 个分支,每个分支有(n -1)个点,故第n 个图中点的个数为1+n (n -1)=n 2-n +1. 8.(1)解 因为f (x )=2x -2-x ,f (log 2a n )=-2n , 所以2log 2 a n -2-log 2a n =-2n ,a n -1a n=-2n ,所以a 2n +2na n -1=0,解得a n =-n ±n 2+1.因为a n >0,所以a n =n 2+1-n .(2)证明 a n +1a n=(n +1)2+1-(n +1)n 2+1-n=n 2+1+n(n +1)2+1+(n +1)<1.又因为a n >0,所以a n +1<a n , 所以数列{a n }是递减数列. 9.B 10.C 11.-312.解 ∵a n a n -1=a n -1-a n , ∴1a n -1a n -1=1. ∴1a n =1a 1+⎝⎛⎭⎫1a 2-1a 1+⎝⎛⎭⎫1a 3-1a 2+…+⎝⎛⎭⎪⎫1a n -1a n -1=2+ 1111个n +++=n +1. ∴1a n =n +1,∴a n =1n +1. 13.解 ∵(n +1)a 2n +1-na 2n +a n a n +1=0,∴[(n +1)a n +1-na n ]·(a n +1+a n )=0, ∵a n >0,∴a n +a n +1>0, ∴(n +1)a n +1-na n =0. (n +1)a n +1-na n =0,∴na n =(n -1)a n -1=…=1×a 1=1, ∴na n =1,a n =1n .。
人教A版高中数学必修五练习数列的概念与简单表示法
第二章数列2.1 数列的概念与简单表示法第1课时 数列的概念与简单表示法课后篇巩固提升1.有下列命题:①数列23,34,45,56,…的一个通项公式是a n =n n+1;②数列的图象是一群孤立的点;③数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列;④数列12,14,…,12n 是递增数列.其中正确命题的个数为( )A.1B.2C.3D.0a 1=12,故①不正确;易知②正确;由于两数列中数的排列次序不同,因此不是同一数列,故③不正确;④中的数列为递减数列,所以④不正确.2.已知数列-1,14,-19,…,(-1)n 1n 2,…,它的第5项的值为( )A.15 B.-15C.125D.-1255项为(-1)5×152=-125.3.已知数列的通项公式a n ={3n +1,n 为奇数,2n -2,n 为偶数,则a 2a 3等于( ) A.70 B.28 C.20 D.8a n ={3n +1,n 为奇数,2n -2,n 为偶数, 得a 2a 3=2×10=20.故选C .4.已知数列的通项公式为a n =n 2-8n+15,则3( )A.不是数列{a n }中的项B.只是数列{a n }中的第2项C.只是数列{a n }中的第6项D.是数列{a n }中的第2项和第6项n 2-8n+15=3,解得n=2或n=6,因此3是数列{a n }中的第2项和第6项.5.下面四个数列中,既是无穷数列又是递增数列的是( ) A .1,12,13,14,…B .sin π7,sin 2π7,sin 3π7,…C .-1,-12,-14,-18,…D .1,√2,√3,…,√21中数列是递减数列,B 中数列不是单调数列,D 中数列是有穷数列,C 中数列符合条件.6.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是( )A.(-1)n +12B.cos nπ2C.cos (n+1)π2D.cos (n+2)π2n=1时,C 不成立;当n=2时,B 不成立;当n=4时,A 不成立.故选D .7.数列√5,√10,√17,√b ,√37,…中,有序数对(a ,b )可以是 .,各项可写为√3+21×3,√8+22×4,√15+2a ,√b 4×6,√35+25×7,…, 可得a=3×5=15,b=24+2=26,故数对(a ,b )为(15,26).8.数列-1,1,-2,2,-3,3,…的一个通项公式为 .a n ={-n+12,n 为奇数,n 2,n 为偶数.n ={-n+12,n 为奇数,n 2,n 为偶数 9.写出以下各数列的一个通项公式.(1)1,-12,14,-18,…;(2)10,9,8,7,6,…;(3)2,5,10,17,26,…;(4)12,16,112,120,130,…; (5)3,33,333,3 333,….a n =(-1)n+112n -1;(2)a n =11-n ;(3)a n =n 2+1;(4)a n =1n (n+1); (5)a n =13(10n -1).10.已知数列{a n },a n =n 2-pn+q ,且a 1=0,a 2=-4.(1)求a 5;(2)判断150是不是该数列中的项?若是,是第几项?由已知,得{1-p +q =0,4-2p +q =-4,解得{p =7,q =6,所以a n =n 2-7n+6, 所以a 5=52-7×5+6=-4.(2)令a n =n 2-7n+6=150,解得n=16(n=-9舍去),所以150是该数列中的项,并且是第16项.11.在数列{a n }中,a n =n 2n 2+1. (1)求数列的第7项; (2)求证:此数列的各项都在区间(0,1)内;(3)区间(13,23)内有没有数列中的项?若有,有几项?7=7272+1=4950.a n =n 2n 2+1=1-1n 2+1, ∴0<a n <1,故数列的各项都在区间(0,1)内. 令13<n 2n 2+1<23,则12<n 2<2,n ∈N *,故n=1,即在区间(13,23)内有且只有1项a 1.。
人教A版数学必修五2.1 数列的概念与简单表示法-数列的通项公式(二)——利用Sn与an关系求通项公
1.已知数列{an}的前 n 项和 Sn 2n2 n 1,求 an 2.已知数列{an}的前 n 项和 Sn 1 3n ,求 an
答案 第1题
4 n 1 an 4n 1 n 2
第2题
an 2 3n1, n N
隐藏 Sn ,求 an
【例 2】已知数列{an}中, a1 2a2 2n1an n2 n ,求 an
(2)由(1)
1 Sn
2n ,
Sn
1 2n
,nN
(又回到了类型一)
①当
n
1 时,
a1
S1
1 2
②当 n 2 时, an Sn Sn1
人教A版数学必修五2.1 数列的概念与简单表示法-数列的 通项公 式(二 )—— 利用Sn 与an关 系求通 项公式 课件【精品】
1 1 2n 2n 2
1 2n2 2n
n2 n (n 1)2 (n 1) 2n 对于 bn 2n ,当 n 1 时, b1 2
所以: bn 2n, n N
又 bn 2n1 an , 则2n1 an 2n
所以: an
n 2n2
,n N
处理方法
换元转换为类型一
3. 已知数列{an}中, a1 3a2 (2n 1)an n(n 1)(n 2) ,求 an
(1)求 an :与类型一的处理方法一样,消去 Sn ,
得到 an 与 an1 的递推关系,再求 an
(2)求 Sn :消去 an ,得到 Sn 与 Sn1 的递推关系,
进而求出 Sn
人教A版数学必修五2.1 数列的概念与简单表示法-数列的 通项公 式(二 )—— 利用Sn 与an关 系求通 项公式 课件【精品】
1 1 2 0即 1 1 2
精品高二数学必修5课时练:数列的概念与简单表示法(一)
第二章数列§2.1数列的概念与简单表示法(一)课时目标1.理解数列及其有关概念;2.理解数列的通项公式,并会用通项公式写出数列的任意一项;3.对于比较简单的数列,会根据其前n项写出它的通项公式.1.按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项.2.数列的一般形式可以写成a 1,a 2,…,a n ,…,简记为{a n }.3.项数有限的数列称有穷数列,项数无限的数列叫做无穷数列.4.如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.一、选择题1.数列2,3,4,5,…的一个通项公式为( )A .a n =nB .a n =n +1C .a n =n +2D .a n =2n答案 B2.已知数列{a n }的通项公式为a n =1+(-1)n +12,则该数列的前4项依次为( ) A .1,0,1,0 B .0,1,0,1C.12,0,12,0 D .2,0,2,0 答案 A3.若数列的前4项为1,0,1,0,则这个数列的通项公式不可能是( )A .a n =12[1+(-1)n -1] B .a n =12[1-cos(n ·180°)] C .a n =sin 2(n ·90°)D .a n =(n -1)(n -2)+12[1+(-1)n -1] 答案 D解析 令n =1,2,3,4代入验证即可.4.已知数列{a n }的通项公式为a n =n 2-n -50,则-8是该数列的( )A .第5项B .第6项C .第7项D .非任何一项答案 C解析 n 2-n -50=-8,得n =7或n =-6(舍去).5.数列1,3,6,10,…的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n 2+1 答案 C解析 令n =1,2,3,4,代入A 、B 、C 、D 检验即可.排除A 、B 、D ,从而选C.6.设a n =1n +1+1n +2+1n +3+…+12n (n ∈N *),那么a n +1-a n 等于( ) A.12n +1 B.12n +2C.12n +1+12n +2D.12n +1-12n +2答案 D解析 ∵a n =1n +1+1n +2+1n +3+…+12n ∴a n +1=1n +2+1n +3+…+12n +12n +1+12n +2, ∴a n +1-a n =12n +1+12n +2-1n +1=12n +1-12n +2. 二、填空题7.已知数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧3n +1(n 为正奇数)4n -1(n 为正偶数).则它的前4项依次为____________.答案 4,7,10,158.已知数列{a n }的通项公式为a n =1n (n +2)(n ∈N *),那么1120是这个数列的第______项. 答案 10解析 ∵1n (n +2)=1120, ∴n (n +2)=10×12,∴n =10.9.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数a n 与所搭三角形的个数n 之间的关系式可以是______________.答案 a n =2n +1解析 a 1=3,a 2=3+2=5,a 3=3+2+2=7,a 4=3+2+2+2=9,…,∴a n =2n +1.10.传说古希腊毕达哥拉斯(Pythagoras ,约公元前570年—公元前500年)学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.比如,他们将石子摆成如图所示的三角形状,就将其所对应石子个数称为三角形数,则第10个三角形数是______.答案 55解析 三角形数依次为:1,3,6,10,15,…,第10个三角形数为:1+2+3+4+…+10=55.三、解答题11.根据数列的前几项,写出下列各数列的一个通项公式:(1)-1,7,-13,19,…(2)0.8,0.88,0.888,…(3)12,14,-58,1316,-2932,6164,… (4)32,1,710,917,…(5)0,1,0,1,…解 (1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n (6n -5)(n ∈N *).(2)数列变形为89(1-0.1),89(1-0.01), 89(1-0.001),…,∴a n =89⎝⎛⎭⎫1-110n (n ∈N *). (3)各项的分母分别为21,22,23,24,…易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32,因此原数列可化为-21-321,22-322,-23-323,24-324,…, ∴a n =(-1)n ·2n -32n (n ∈N *). (4)将数列统一为32,55,710,917,…对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…联想到数列1,4,9,16…即数列{n 2},可得分母的通项公式为c n =n 2+1,∴可得它的一个通项公式为a n =2n +1n 2+1(n ∈N *). (5)a n =⎩⎪⎨⎪⎧0 (n 为奇数)1 (n 为偶数)或a n =1+(-1)n 2(n ∈N *) 或a n =1+cos n π2(n ∈N *). 12.已知数列⎩⎨⎧⎭⎬⎫9n 2-9n +29n 2-1; (1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间⎝⎛⎭⎫13,23内有、无数列中的项?若有,有几项?若没有,说明理由.(1)解 设f (n )=9n 2-9n +29n 2-1=(3n -1)(3n -2)(3n -1)(3n +1)=3n -23n +1. 令n =10,得第10项a 10=f (10)=2831. (2)解 令3n -23n +1=98101,得9n =300. 此方程无正整数解,所以98101不是该数列中的项. (3)证明 ∵a n =3n -23n +1=3n +1-33n +1=1-33n +1, 又n ∈N *,∴0<33n +1<1,∴0<a n <1. ∴数列中的各项都在区间(0,1)内.(4)解 令13<a n =3n -23n +1<23,则⎩⎪⎨⎪⎧3n +1<9n -69n -6<6n +2,即⎩⎨⎧ n >76n <83.∴76<n <83. 又∵n ∈N *,∴当且仅当n =2时,上式成立,故区间⎝⎛⎭⎫13,23上有数列中的项,且只有一项为a 2=47. 能力提升13.数列a ,b ,a ,b ,…的一个通项公式是______________________.答案 a n =a +b 2+(-1)n +1⎝⎛⎭⎫a -b 2解析 a =a +b 2+a -b 2,b =a +b 2-a -b 2, 故a n =a +b 2+(-1)n +1⎝⎛⎭⎫a -b 2.14.根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有多少个点.解 图(1)只有1个点,无分支;图(2)除中间1个点外,有两个分支,每个分支有1个点;图(3)除中间1个点外,有三个分支,每个分支有2个点;图(4)除中间1个点外,有四个分支,每个分支有3个点;…;猜测第n 个图中除中间一个点外,有n 个分支,每个分支有(n -1)个点,故第n 个图中点的个数为1+n (n -1)=n 2-n +1.1.与集合中元素的性质相比较,数列中的项也有三个性质:(1)确定性:一个数在不在数列中,即一个数是不是数列中的项是确定的.(2)可重复性:数列中的数可以重复.(3)有序性:一个数列不仅与构成数列的“数”有关,而且与这些数的排列次序也有关.2.并非所有的数列都能写出它的通项公式.例如,π的不同近似值,依据精确的程度可形成一个数列3,3.1,3.14,3.141,…,它没有通项公式.3.如果一个数列有通项公式,则它的通项公式可以有多种形式.例如:数列-1,1,-1,1,-1,1,…的通项公式可写成a n =(-1)n ,也可以写成a n =(-1)n +2,还可以写成a n =⎩⎪⎨⎪⎧-1 (n =2k -1),1 (n =2k ),其中k ∈N *.。
2019高中数学人教a版必修5讲义:第二章 2.1 数列的概念与简单表示法 含答案
数列的概念与简单表示法第一课时数列的概念与简单表示法(1)什么是数列?什么叫数列的通项公式?1.数列的概念(1)定义:按照一定顺序排列的一列数称为数列.(2)项:数列中的每一个数叫做这个数列的项.a1称为数列{an}的第1项(或称为首项),a2称为第2项,…,an称为第n项.(3)数列的表示:数列的一般形式可以写成a1,a2,a3,…,an,…,简记为{an}.[点睛] (1)数列中的数是按一定顺序排列的.因此,如果组成两个数列的数相同而排列顺序不同,那么它们就是不同的数列.例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4是不同的数列.(2)在数列的定义中,并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.例如:1,-1,1,-1,1,…;2,2,2,….2.数列的分类如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.[点睛] (1)数列的通项公式实际上是一个以正整数集N*或它的有限子集{1,2,3,…,n}为定义域的函数解析式.(2)同所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)数列1,1,1,…是无穷数列( )(2)数列1,2,3,4和数列1,2,4,3是同一个数列( )(3)有些数列没有通项公式( )解析:(1)正确.每项都为1的常数列,有无穷多项.(2)错误,虽然都是由1,2,3,4四个数构成的数列,但是两个数列中后两个数顺序不同,不是同一个数列.(3)正确,某些数列的第n项an和n之间可以建立一个函数关系式,这个数列就有通项公式,否则,不能建立一个函数关系式,这个数列就没有通项公式.答案:(1)√(2)×(3)√2.在数列-1,0,19,18,…,n-2n2,…中,0.08是它的( )A.第100项B.第12项C.第10项D.第8项解析:选C ∵an =n-2n2,令n-2n2=0.08,解得n=10或n=52(舍去).3.数列的通项公式为an =⎩⎨⎧3n+1,n为奇数,2n-2,n为偶数,则a2·a3等于( )A.70 B.28C .20D .8解析:选C 由a n =⎩⎨⎧3n +1,n 为奇数,2n -2,n 为偶数,得a 2=2,a 3=10,所以a 2·a 3=20.4.在数列1,1,2,3,5,8,x,21,34,55,…中,x =________.解析:通过观察数列各项的大小关系,发现从第三项起,每项的值都等于前两项值之和,因此x =5+8=13.答案:13数列的概念及分 [典例] ) A .1,13,132,133,…B .sinπ13,sin 2π13,sin 3π13,sin 4π13,… C .-1,-12,-13,-14,…D .1,2,3,4,…,30[解析] 数列1,13,132,133,…是无穷数列,但它不是递增数列,而是递减数列;数列sinπ13,sin 2π13,sin 3π13,sin 4π13,…是无穷数列,但它既不是递增数列,又不是递减数列;数列-1,-12,-13,-14,…是无穷数列,也是递增数列;数列1,2,3,4,…,30是递增数列,但不是无穷数列.[答案] C。
人教A版高中数学必修五同步练测:2.1数列的概念与简单表示法(含答案解析).docx
高中数学学习材料马鸣风萧萧 *整理制作2.1 数列的概念与简单表示法 ( 人教 A 版必修 5)建议用时 实际用时满分 实际得分45 分钟一、选择题 (每小题 5 分,共 30 分)1. 若某数列的前 4 项为 1,0,1,0, 则这个数列的通项公式不可能是 ()A. a n = 1[1+(-1)n -1 ]2B. a n = 1[1- cos(n 180 )]2C. a n = sin 2 (n 90 )D. a n =(n -1)( n -2)+ 1[1+ (-1)n- 1] 22. 已知数列 { a n } 的通项公式a n = 1[1+( 1)n 1] ,2 则该数列的前 4 项依次是 ( )A . 1,0,1,0B . 0,1,0,111100 分C. 1D.1 1001045. 已知 a n =3 ( n N * ), 记数列 a n 2n 11 为 S n , 则使 S n > 0 的 n 的最小值为 ( ) A.10 B.11 C.12D.136. 已知非零数列 { a n } 的递推公式为a n =( n > 1) ,则 a 4 = ()A .3a 1B. 2 a 1C .4 a 1D. 1的前 n 项和n ·a n 1n 1C.2,0, 2,0 D. 2,0,2,03. 设 a n1 1 1 1( nN * ), 那么n 1 n 2 n 32n a n +1- a n 等于 ( )A.1 B. 12n 12n2C.1 1D.112n 1 2n 22n 1 2n 24. 若 a 1 = 1, a n + 1 =a n, 给出的数列 a n的第 34项3a n1是 ( )34A.103B.100二、填空题 (每小题 4 分,共 16 分)7. 传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研究数学问题 , 他们在沙滩上画点或用小石子来表示数 . 比如 , 他们将石子摆成如图所示的 三角形状 , 就将其所对应石子个数称为 三角形数 , 则第 10 个三角形数是 ______ .8. 数列 a,b,a,b, 的 一个通项公式是 ______ .9. 已知数列 { a n } 的通项公式 a n = 19 - 2 n ,则使a n 0 成立的最大正整数 n 的值为 ________.10. 已知数列 a n 满足 a 1 = 0, a n + 1=a n +n , 则 a 2 013三、解答题(共54分)11.( 12 分)根据下列 5 个图形及相应圆圈的个数的变化规律 , 试猜测第 n 个图中有多少个圆圈?12. ( 14 分)数列a n 1对所有的n≥ 2, 都有中 , a= 1,a1a2 a3 a n= n2.(1)求 a3+a5;256(2)探究225是否为此数列中的项;(3)试比较 a n与 a n+1( n≥2)的大小.13. ( 14 分)已知函数x -x, 数列 a n 满足f ( x)=2 -2f (log 2a n ) =-2n .(1)求数列 a n的通项公式;(2)证明 : 数列 a n是递减数列 .14.( 14 分)数列 { a } 的通项公式为 a = 30 n n2 .n n(1)问- 60 是不是数列 { a n } 中的项?(2) 当n分别取何值时,a n=0? a n>0? a n<0?2.1 数列的概念与简单表示法( 人教 A 版必修 5) 答题纸得分:一、选择题题号 1 2 3 4 5 6答案二、填空题7. 8. 9. 10.三、解答题11.12.13.14.2.1数列的概念与简单表示法 (人教 A 版必修 5) 答案一、选择题1.D解析: 令 n = 1,2,3,4 代入验证即可 .2.A3.D解析: ∵ a n11 11,∴ a n +1 =1 1 11 1 ,n 1 n 2 n 32nn 2 n 32n 2n 1 2n 2∴ a n + 1 -a n11111.2n 1 2n 2 n 1 2n 1 2n 2114.C解析: a 2 = a 1= 1 1, a 3 = a 2 =41a 4 a 3 =71, 猜想 a n =1,3+ 1 = 3a 23= , =3 =103a 1 1 41 73a 313(n 1)14+ 17+111∴a34= 3× (34 -1) + 1=100.5.B解析: ∵ -a 1=a 10 ,-a 2=a 9,- a 3=a 8 ,-a 4= a 7 ,-a 5=a 6 , ∴S 11 > 0.∴ 当 n ≥11 时 , S n > 0, 故 n 的最小值为 11.6. C解析: 依次对递推公式中的 n 赋值,当 n = 2 时, a = 2 a ;当 n = 3 时, a 3 =3 a = 3 a ;当 n =4 时,2122 14a 4 = 3 a 3 =4 a 1 .二、填空题7.55 解析:三 角形数依次为 1,3,6,10,15,, 由此可得第 10 个三角形数为 1+2+3+4+ +10=55.8. a n =a b( 1)n 1 a b解析: a =ab a b , b = aba b , 故 a n =ab ( 1)n 1a b.222 2 2222解析: 由 a n = 19- 2 n 0,得 n 19n N*,∴ n ≤ 9.9. 9. ∵210.2 025 078 解析: 由 a 1 = 0, a n +1= a n +n ,得a n =a n -1+ n -1, a n -1=a n - 2+n -2 ,?a 2=a 1+1 ,a 1 = 0.累加,得 a n = 0+ 1+ 2+ + n - 1=n(n 1),2 013 2 012= 2 025 078. 2∴ a 2 013 =2三、解答题11. 解:图 (1) 只有 1 个圆圈 , 无分支;图 (2) 除中间 1 个圆圈外 , 有两个分支 , 每个分支有 1个圆圈;图 (3) 除中间1 个圆圈外 , 有三个分支 , 每个分支有2 个圆圈;图 (4) 除中间 1 个圆圈外 , 有四个分支 , 每个分支有3 个圆圈; ;猜测第 n 个图中除中间 一个圆圈外 , 有 n 个分支 , 每个分支有 ( n -1) 个圆圈 , 故第 n 个图中圆圈的个数 为 1 n(n1) n 2 n1 .12. 解: 由题意知 a n =n 2(n 2 ( n ≥2).1)9 2561(1) a 3+a 5 = + = .4 16 16256 16 2 256(2)∵225=152=a16 ,∴225为数列中的项.(3) n ≥2时 , a n -a n +1 =n 2(n 1)2n 4 (n 2 1)2a n +1.2-2=222>0, ∴ a n13.(1) 解: ∵= x - - x , f (log =- 2n , f ( x) 2 2 2 a n )∴ 2log 2 an -2-log2 an =-2n , 即 a n - 1= -2n ,a n∴ a n 2+2na n - 1= 0. 解得 a n =- n n 21 .∵ a n0 , ∴ a n = n 2 1 - n .(2) 证明:a n1=(n 1)2 1 ( n 1) =n 2 1 n < 1.a nn 2 1 n(n 1)21 (n 1)∵a n0 , ∴ n +1n , ∴ 数列a是递减数列.a an14. 解: (1) 假设- 60 是数列 { a n } 中的项,则- 60= 30n n 2 . 解得 n = 10 或 n =- 9( 舍去 ) .∴ - 60 是数列 { a n } 中的第 10 项.(2) 令 30n n 2 = 0,解得 n =6 或 n =- 5( 舍去 ) ;令 30 令 30n n 2> 0,由于n n 2< 0,由于n N * ,所以解得 0< n < 6;n N * ,所以解得 n > 6.即当 n = 6 时, a n = 0; 当 0< n < 6 时, a n > 0;当 n > 6 时, a n < 0.。
2020-2021学年人教A版数学必修5配套学案:2.1第1课时 数列的概念与简单表示法
2.1数列的概念与简单表示法第1课时数列的概念与简单表示法内容标准学科素养1.了解数列的概念和顺序性,学会用列表法、图象法、通项公式法来表示数列.2.理解数列是一种特殊的函数.3.掌握数列的通项公式,会求数列的通项公式.发展逻辑推理提升数学运算授课提示:对应学生用书第17页[基础认识]知识点一数列及相关概念预习教材P28-29,思考并完成以下问题古希腊毕达哥拉斯在沙滩上用小石子来表示数:(1)三角形数其数字为13610____提示:15.(2)正方形数其数字为14916____提示:25.(3)1,3,10,6,15与1,3,6,10,15是相同的数列吗?提示:不是.知识梳理(1)数列:按照一定顺序排列的一列数.(2)项:数列中的每一个数,第1项通常也叫做首项,排在第n位的数称为这个数列的第n项,记为a n.(3)表示:数列的一般形式可以写成a1,a2,a3,…,a n,…,简记为{a n}.知识点二数列的分类思考并完成以下问题(1)自然数列:0,1,2,3,…有多少项?各项的大小变化如何?提示:无穷项,依次变大.(2)从周一到周日每日上午12:00时气温组成一个数列,有多少个项,各项大小如何变化?提示:有7项,各项大小变化不定.(3)数列分类常见的有哪些分类标准?如何分类?提示:按项的个数多少,按项的变化趋势.知识梳理提示:无穷递增(2)举一个常数列的例子:________.提示:0,0,0,0,…(答案不唯一)知识点三数列的通项公式思考并完成以下问题正奇数组成的数列1,3,5,7,…,第n项可否用公式来表示?提示:a n=2n-1,n∈N*.知识梳理(1)如果数列{a n}的第n项与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(2)数列除了可以用通项公式来表示外,还可以通过图象或列表来表示.思考并完成以下问题(1)任何数列都有通项公式吗?举例说明?提示:不是,有的数列没有通项公式,如某次考试数学成绩按学号1,2,3…排列的数列,无通项公式.(2)数列的图象是怎样的? 提示:一群孤立的点.(3)数列的通项公式与函数有什么关系?提示:数列的通项公式实际上是一个以正整数集N *或它的有限子集为定义域的函数表达式,即a n =f (n ).[自我检测]1.下列数列中,既是无穷数列又是递增数列的是( ) A .1,13,132,133,…B .sinπ13,sin 2π13,sin 3π13,sin 4π13,… C .-1,-12,-13,-14,…D .1,2,3,4,…,30 答案:C2.下列说法正确的是( ) A .数列1,2,3,5,7可表示为{1,2,3,5,7}B .数列1,0,-1,-2与数列-2,-1,0,1是相同的数列C .数列⎩⎨⎧⎭⎬⎫n +1n 的第k 项是1+1k D .数列0,2,4,6,8,…可记为{2n } 答案:C授课提示:对应学生用书第18页探究一 已知数列的前n 项求通项公式[阅读教材P 29-30]方法步骤:(1)有+、-相互间隔的,用(-1)n 或(-1)n+1来调节符号.(2)奇、偶项分别相等的用(-1)n 及“+、-”法运算来表示. [例1] 教材P 29例1(2):2,0,2,0,…还可以用其他的通项公式表示吗?[解析] 可表示为a n =⎩⎪⎨⎪⎧2 n 为奇数0 n 为偶数,还可表示为a n =2|sinn π2|,n ∈N *. [例2] 写出下列数列的一个通项公式,使它的前4项分别是下列各数:(1)12,2,92,8; (2)9,99,999,9 999. [解析] (1)a n =n 22,n ∈N *.(2)a n =10n -1,n ∈N *.延伸探究 1.将本例(1)改为22-12,32-13,42-14,52-15,求通项公式.解析:a n =(n +1)2-1n +1,n ∈N *.2.将本例(2)改为7,77,777,7 777,求通项公式. 解析:a n =79(10n -1),n ∈N *.方法技巧 根据数列的前几项求通项公式的解题思路 (1)先统一项的结构,如都化成分数、根式等.(2)分析结构中变化的部分与不变的部分,探索变化部分的规律与对应序号间的函数解析式.(3)对于周期数列,可考虑拆成几个简单数列之和的形式,或者利用周期函数,如三角函数等.探究二 数列的通项公式的应用[阅读教材P 33习题A 组第2题]根据数列的通项公式,写出它的前5项: a n =(-1)n +1(n 2+1).解析:a 1=2,a 2=-5,a 3=10,a 4=-17,a 5=26. [例3] 数列{a n }的通项公式为a n =1n +n +1,则3-22是此数列的第________项.[解析] a n =1n +1+n=n +1-n(n +1+n )(n +1-n )=n +1-n ,因为3-22=8+1-8. 所以3-22是该数列的第8项. [答案] 8[例4] 已知数列{a n }的通项公式为a n =4n 2+3n .(1)写出数列的第4项和第6项;(2)试问110是该数列的项吗?若是,是第几项?若不是,请说明理由.[解析] (1)因为a n =4n 2+3n ,所以a 4=442+3×4=17,a 6=462+3×6=227.(2)令4n 2+3n =110,则n 2+3n -40=0,解得n =5或n =-8,注意到n ∈N *,故将n =-8舍去,所以110是该数列的第5项.延伸探究 3.例4中,数列{a n }是递增数列还是递减数列?解析:n 2+3n =⎝⎛⎭⎫n +322-94,随着n 的增大,分母变大,故数列的项减小,故数列{a n }是递减数列.4.若将例4(2)中的“110”变为“1627”,其他条件不变,结果如何?解析:令4n 2+3n =1627,则4n 2+12n -27=0,解得n =32或n =-92,注意到n ∈N *,所以1627不是此数列中的项.方法技巧 数列通项公式的两类应用(1)求数列的项或项数:代入n 值到通项公式中求项;通过解方程求项数,注意项数为正的自然数.(2)判断数列的增减性:一是通过观察项随着n 的增加的变化,数列项的增减;二是通过已知的函数的单调性判断.跟踪探究 已知数列{a n }的通项公式为a n =1n (n +2)(n ∈N *),则(1)计算a 3+a 4的值;(2)1120是不是该数列中的项?若是,应为第几项?若不是,说明理由. 解析:(1)∵a n =1n (n +2),∴a 3=13×5=115,a 4=14×6=124,∴a 3+a 4=115+124=13120.(2)若1120为数列{a n }中的项,则1n (n +2)=1120, ∴n (n +2)=120∴n 2+2n -120=0,∴n =10或n =-12(舍), 即1120是数列{a n }的第10项.授课提示:对应学生用书第19页[课后小结](1)与集合中元素的性质相比较,数列中的项也有三个性质:①确定性:一个数在不在数列中,即一个数是不是数列中的项是确定的. ②可重复性:数列中的数可以重复.③有序性:一个数列不仅与构成数列的“数”有关,而且与这些数的排列次序也有关. (2)利用数列的通项公式求某项的方法数列的通项公式给出了第n 项a n 与它的位置序号n 之间的关系,只要用序号代替公式中的n ,就可以求出数列的相应项.(3)判断某数值是否为该数列的项的方法先假定它是数列中的第n 项,然后列出关于n 的方程.若方程解为正整数,则是数列的一项;若方程无解或解不是正整数,则不是该数列的一项.[素养培优]1.对数列概念的理解不清致误写出由集合{x |x ∈N *,且x ≤4}中的所有元素构成的数列(要求首项为1,且集合中的元素只出现一次).易错分析 集合中的元素用列举法表示为{1,2,3,4},所以所求数列为1,2,3,4.混淆数列与集合的概念.自我纠正 集合可表示为{1,2,3,4}.由集合中的元素组成的数列要求首项为1,且集合中的元素只出现一次,故所求数列有6个,分别是1,2,3,4;1,3,2,4;1,2,4,3;1,3,4,2;1,4,2,3;1,4,3,2.2.忽视数列与函数的区别数列{a n }的通项公式a n =2n 2-10n +3,则数列{a n }的最小项等于________.易错分析 本题出错的根本原因是忽视了数列项数取值应该为正整数,取不到52,只能取2或3.自我纠正 因为a n =2n 2-10n +3=2⎝⎛⎭⎫n -522-192, 因为n ∈N *,所以n =2或3时,a n 为最小项,最小项a 2=2×4-20+3=-9. 答案:-9。
人教A版高中数学必修五同步练测:2.1+数列的概念与简单表示法.docx
2.1 数列的概念与简单表示法(人教A 版必修5)建议用时 实际用时满分 实际得分45分钟100分一、选择题(每小题5分,共30分)1.若某数列的前4项为1,0,1,0,则这个数列的通项公式不可能是( )A.11=[1(1)]2n n a -+-B.1[1cos(180)]2n a n ⋅︒=-C.2sin (90)n a n ⋅︒=D.11(1)(2)[1(1)]2n n a n n -=--++-2.已知数列{}n a 的通项公式为250n a n n =--,则-8是该数列的( )A.第5项B.第6项C.第7项D.非任何一项3.设11111232n a n n n n=+++++++L (n ∈*N ),那么1n n a a +-等于( )A.121n + B.122n + C.112122n n +++ D.112122n n -++ 4.若1a =1,1n a +=31nn a a +,给出的数列{}n a 的第34项是( ) A.34103 B.100 C.1100 D.11045.已知n a =3211n -(n ∈*N ),记数列{}n a 的前n 项和为n S ,则使n S >0的n 的最小值为( )A.10B.11C.12D.136.已知数列{}n a 满足1n a -=120,21211.2n n n n a a a a ⎧⎛⎫≤< ⎪⎪⎪⎝⎭⎨⎛⎫⎪-≤< ⎪⎪⎝⎭⎩若1a =67,则 2 013a 的值为( ) A.67 B.57 C.37 D.17 二、填空题(每小题4分,共16分)7.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.比如,他们将石子摆成如图所示的三角形状,就将其所对应石子个数称为三角形数,则第10个三角形数是______.8.数列,,,,a b a b …的一个通项公式是______.9.设21011n a n n =-++,若数列{}n a 从首项到第m 的和最大,则m 的值是______.10.已知数列{}n a 满足1a =0,1n n a a n +=+,则 2 013a _____ _.三、解答题(共54分)11.(12分)根据下列5个图形及相应圆圈的个数的变化规律,试猜测第n 个图中有多少个圆圈?12.(14分)数列{}n a 中,1a =1,对所有的n ≥2,都有2123n a a a a n L =. (1)求35a a +;(2)探究256225是否为此数列中的项; (3)试比较n a 与1n a +(n ≥2)的大小. 13.(14分)已知函数()22x x f x -=-,数列{}n a 满足2(log )n f a 2n =-.(1)求数列{}n a 的通项公式; (2)证明:数列{}n a 是递减数列.14.(14分)在数列{}n a 中,1a =12,n a =1-11n a -(n ≥2,n ∈*N ).(1)求证:3n n a a +=;(2)求 2 013a .2.1 数列的概念与简单表示法(人教A版必修5)答题纸得分:一、选择题二、填空题7. 8. 9. 10.三、解答题11.12.13.14.2.1 数列的概念与简单表示法(人教A 版必修5)答案一、选择题1.D 解析:令n =1,2,3,4代入验证即可.2.C 解析:由250n n --=-8,得n =7或n =-6(舍去).3.D 解析:∵ 11111232n a n n n n =+++++++L ,∴ 1n a +=111112322122n n n n n +++++++++L ,∴ 1n a +-n a =11111212212122n n n n n +-=-+++++. 4.C 解析:2a =1131a a +=13+1=14,3a =2231a a +=1434+1=17,4a =3331a a +=1737+1=110,猜想n a =13(1)1n -+,∴ 34a =13×(34-1)+1=1100.5.B 解析:∵ 11029384756,,,,a a a a a a a a a a -=-=-=-=-=,∴ 11S >0. ∴ 当n ≥11时,n S >0,故n 最小为11.6.C 解析:计算得2a =57,3a =37,4a =67,故数列{}n a 是以3为周期的周期数列,又知2 013能被3整除,∴ 2 013a =3a =37.二、填空题7.55 解析:三角形数依次为1,3,6,10,15,…,由此可得第10个三角形数为1+2+3+4+…+10=55.8.n a =1(1)22n a b a b -+-⎛⎫+- ⎪⎝⎭ 解析:a =22a b a b +-+, b =22a b a b +--,故n a =1(1)22n a b a b -+-⎛⎫+- ⎪⎝⎭. 9.10或11 解析:令21011n a n n =-++≥0,则n ≤11,∴ 1a >0,2a >0,…, 10a >0, 11a =0,∴ 1011S S =且为n S 的最大值.10.2 025 078 解析:由1a =0,1n n a a n +=+,得11,n n a a n -=+- 122n n a a n --=+-,⋮211a a =+, 1a =0.累加,得n a =0+1+2+…+n -1=(1)2n n -, ∴ 2 013a =2 013 2 0122⨯=2 025 078.三、解答题11.解:图(1)只有1个圆圈,无分支;图(2)除中间1个圆圈外,有两个分支,每个分支有1个圆圈;图(3)除中间1个圆圈外,有三个分支,每个分支有2个圆圈;图(4)除中间1个圆圈外,有四个分支,每个分支有3个圆圈;….猜测第n 个图中除中间一个圆圈外,有n 个分支,每个分支有(n -1)个圆圈,故第n 个图中圆圈的个数为1(n n +-21)1n n =-+.12.解:由题意知n a =22(1)n n -(n ≥2).(1)35a a +=94+2516=6116.(2)∵ 256225=162152=16a ,∴ 256225为数列中的项.(3)n ≥2时,1n n a a +-=22(1)n n --22(1)n n +=422222(1)(1)n n n n --->0,∴1n n a a >+.13.(1)解:∵ 2()22,(log )2x x n f x f a n -=-=-,∴ 22log log 222n n a a n --=-,即n a -1na =2n -,∴22nn a na +-1=0.解得n a n ±=-.∵ 0n a >,∴ n an .(2)证明:1n n a a +<1.∵ 0n a >,∴ 1n n a a <+,∴ 数列{}n a 是递减数列. 14.(1)证明:3n a +=1-21n a +=1-1111n a +-=1-11111na --=1-1111n na a --=1-111n n a a --=1-111n n n a a a ---=1-111n a --=1-(1-n a )=n a , ∴ 3n a +=n a .(2)解:由(1)知数列{}n a 的周期T =3, ∵ 1a =12,∴ 2a =-1,3a =2.∴ 2 013a =3671a ⨯=3a =2.。
人教A版高中数学必修五2.1 数列的概念与简单表示法.doc
鑫达捷& 鑫达捷致力于精品文档 精心制作仅供参考 &鑫达捷2.1 数列的概念与简单表示法一、选择题 1.(3分)下列说法正确的是( ) A . 数列1,3,5,7可表示为{1,3,5,7} B . 数列1,0,﹣1,﹣2与数列﹣2,﹣1,0,1是相同的数列 C .数列{}的第k 项为1+ D . 数列0,2,4,6,…可记为{2n}2.(3分)已知数列{n 2+n},那么( ) A . 0是数列中的一项 B . 21是数列中的一项C . 702是数列中的一项D . 以上答案都不对 3.(3分)数列11,13,15,…,2n+1的项数是( ) A . n B . n ﹣3 C . n ﹣4D . n ﹣54.(3分)若,则a n 与a n+1的大小关系是( )A . a n >a n+1B . a n <a n+1C . a n =a n+1D . 不能确定 5.(3分)数列{a n }满足a n =4a n ﹣1+3,且a 1=0,则此数列的第5项是( )A . 15B . 255C . 16D . 366.(3分)已知数列1,,,,…,,…,则3是它的( )A . 第22项B . 第23项C . 第24项D . 第28项 7.(3分)数列1,0,1,0,1,…的一个通项公式是( ) A .B .C .D .8.(3分)在数列{a n }中,对所有的正整数n 都成立,且,则a 5=( )A . 0B . 1C . ﹣1D . 2 9.(3分)在数列1,1,2,3,5,8,x ,21,34,55中,x 等于( ) A . 11 B . 12 C . 13 D . 1410.(3分)在数列{a n }中,,则a 5=( )A .B .C .D .11.(3分)600是数列1×2,2×3,3×4,4×5,…的第( )项. A . 20 B . 24 C . 25 D . 3012.(3分)数列﹣1,,﹣,,…的一个通项公式是( )A .3(1)()21n n n n a n -+=+B .(1)(3)21n n n n a n -+=+C .2(1)[(1)1]21n n n a n -+-=-D .(1)(2)21n n n na n -+=+13.(3分)一个数列{a n },其中a 1=3,a 2=6,a n+2=a n+1﹣a n ,那么这个数列的第五项是( )A.6 B.﹣3 C.﹣12 D.﹣6 14.(3分)下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.an =n2﹣n+1 B.a n =C.a n =D.a n =15.(3分)已知数列,则是这个数列的()A.第六项B.第七项C.第八项D.第九项16.(3分)下面对数列的理解有四种:①数列可以看成一个定义在N*上的函数;②数列的项数是无限的;③数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式是唯一的.其中说法正确的序号是()A.①②③B.②③④C.①③D.①②③④二、填空题17.(3分)数列7,77,777,7777,77777,…的通项公式为_________ .18.(3分)数列{a n}中,,那么150是其第_________ 项.19.(3分)已知,则a5= _________ .20.(3分)在数列{a n}中,a1=a,以后各项由递推公式给出,写出这个数列的前4项:_________ 、_________ 、_________ 、_________ ,并由此写出一个通项公式a n=_________ .21.(3分)已知数列{a n}的通项公式,它的前8项依次为_________ 、_________ 、_________ 、_________ 、_________ 、_________ 、_________ 、_________ .22.(3分)已知f(1)=2,f(n+1)=(n∈N*),则f(4)= _________ .三、解答题23.数列{a n}中,已知a n=(﹣1)n n+a(a为常数),且a1+a4=3a2,求a100.24.已知数列{a n}的通项公式a n=5+3n,求:(1)a7等于多少;(2)81是否为数列{a n}中的项,若是,是第几项;若不是,说明理由.2.1 数列的概念与简单表示法一、选择题1.(3分)下列说法正确的是()A.数列1,3,5,7可表示为{1,3,5,7}B.数列1,0,﹣1,﹣2与数列﹣2,﹣1,0,1是相同的数列C.数列{}的第k项为1+D.数列0,2,4,6,…可记为{2n}考点:数列的概念及简单表示法.分析:本题考查的知识点是数列的概念胶简单表示法,根据数列的定义及表示方法对四个答案逐一进行分析即可得到答案.解答:解:由数列的定义可知A中{1,3,5,7}表示的是一个集合,而非数列,故A错误;B中,数列中各项之间是有序的,故数列1,0,﹣1,﹣2与数列﹣2,﹣1,0,1是不同的数列,故B错误;C中,数列{}的第k 项为=1+,故C正确;数列0,2,4,6,的通项公式为a n=2n﹣2,故D错.故选C.点评:在理解和掌握数列的概念及表示法的时候,要用类比的思想,注意区分数列与集合的关系,及数列的函数的关系.2.(3分)已知数列{n2+n},那么()A.0是数列中的一项B.21是数列中的一项C.702是数列中的一项D.以上答案都不对考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:已知数列{a}的通项公式为a n=n2+n,可以把a n=0,21,702代入进行求解,注意n是正整数.对四n个选项进行一一判断.解答:解:因为数列{a n}的通项公式为a n=n2+n,(n∈N*)∴当a n=0时,n2+n=0⇒n∈∅;当a n=21时,n2+n=21⇒n∈∅;当a n=702时,n2+n=702⇒n∈∅;以上答案都不对.故选D.点评:此题主要考查数列简单表示法,数列的概念及其应用,是一道基础题.3.(3分)数列11,13,15,…,2n+1的项数是()A.n B.n﹣3 C.n﹣4 D.n﹣5考点:数列的概念及简单表示法.专题:等差数列与等比数列.分析:由数列11,13,15,…,2n+1可知:该数列是一个首项为11,公差为2的等差数列,即可得到通项公式a n=11+(n﹣1)×2=2n+9.令2k+9=2n+1,解出即可.解答:解:由数列11,13,15,…,2n+1可知:该数列是一个首项为11,公差为2的等差数列,∴通项公式a n=11+(n﹣1)×2=2n+9.鑫达捷令2k+9=2n+1,解得k=n﹣4,(n≥5).故选C.点评:数列等差数列的通项公式是解题的关键.4.(3分)若,则a n与a n+1的大小关系是()A.a>a n+1B.a n<a n+1C.a n=a n+1D.不能确定n考点:数列的函数特性.专题:点列、递归数列与数学归纳法.分析:化简数列{a n}的通项公式为a n=1﹣,显然当n增大时,a n的值增大,故数列{a n}是递增数列,由此得到结论.解答:解:∵数列{a n}的通项公式是a n ===1﹣,(n∈N*),显然当n增大时,a n的值增大,故数列{a n}是递增数列,故有a n<a n+1,故选B.点评:本题主要考查数列的函数特性,化简数列{a n}的通项公式为a n=1﹣,是解题的关键,属于基础题.5.(3分)数列{a n}满足a n=4a n﹣1+3,且a1=0,则此数列的第5项是()A.15 B.255 C.16 D.36考点:数列递推式.专题:计算题.分析:分别令n=2,3,4,5代入递推公式计算即可.解答:解:a=4a1+3=32a3=4a2+3=4×3+3=15a4=4a3+3=4×15+3=63a5=4a4+3=4×63+3=255故选B.点评:本题考查数列递推公式简单直接应用,属于简单题.6.(3分)已知数列1,,,,…,,…,则3是它的()A.第22项B.第23项C.第24项D.第28项考点:数列的概念及简单表示法.专题:等差数列与等比数列.分析:先化简3=,进而利用通项即可求出答案.解答:解:∵3=,令45=2n﹣1,解得n=23.∴3是此数列的第23项.故选B.点评:理解数列的通项公式得意义是解题的关键.7.(3分)数列1,0,1,0,1,…的一个通项公式是()A.B.C.D.考点:数列的概念及简单表示法.专题:探究型.分析:由数列的项的变化规律可以看出,1,0交错出现,由此规律去对四个选项进行验证即可得出正确答案解答:解:A选项不正确,数列首项不是1;B选项正确,验证知恰好能表示这个数列;C选项不正确,其对应的首项是﹣1;D选项不正确,其对应的首项为0,不合题意.故选B点评:本题考查数列的概念及数列表示法,求解的关键是从数列的前几项中发现数列各项变化的规律,利用此规律去验证四个选项.8.(3分)在数列{a n}中,对所有的正整数n 都成立,且,则a5=()A.0 B.1 C.﹣1 D.2考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:由数列{a n}中,对所有的正整数n都成立,令n=6得,把a7代入即可解得a6,依此类推解得a5.解答:解:∵数列{a n}中,对所有的正整数n都成立,∴令n=6得,∵,∴,解得a6=.令n=5,得,∴,解得a5=1.故选B.点评:正确理解数列的递推公式和递推关系是解题的关键.9.(3分)在数列1,1,2,3,5,8,x,21,34,55中,x等于()A.11 B.12 C.13 D.14考点:数列的概念及简单表示法.专题:计算题.分析:从已知数列观察出特点:从第三项开始每一项是前两项的和即可求解解答:解:∵数列1,1,2,3,5,8,x,21,34,55 设数列为{a}n∴a n=a n﹣1+a n﹣2(n>3)∴x=a7=a5+a6=5+8=13故选C点评:本题考查了数列的概念及简单表示法,是斐波那契数列,属于基础题.10.(3分)在数列{a n}中,,则a5=()A.B.C.D.考点:数列的概念及简单表示法.专题:计算题.分析:利用递推关系式依次直接求出数列的第五项即可.鑫达捷解答:解:在数列{a n}中,,所以a2=,a3=,,.故选A.点评:本题是基础题,考查数列的递推关系式的应用,考查计算能力.11.(3分)600是数列1×2,2×3,3×4,4×5,…的第()项.A.20 B.24 C.25 D.30考点:数列的概念及简单表示法.专题:等差数列与等比数列.分析:由数列1×2,2×3,3×4,4×5,…通过观察可得通项公式an=n(n+1),令n(n+1)=600,解出即可.解答:解:由数列1×2,2×3,3×4,4×5,…可得通项公式an=n(n+1),令n(n+1)=600,∵24×25=600,∴n=24.故选B.点评:由数列1×2,2×3,3×4,4×5,…通过观察可得通项公式an=n(n+1)是解题的关键.12.(3分)数列﹣1,,﹣,,…的一个通项公式是()A.3 (1)()21nnn nan-+=+B.(1)(3)21nnn nan-+=+C.2(1)[(1)1]21nnnan-+-=-D.(1)(2)21nnn nan-+=+考点:数列递推式.专题:计算题.分析:采用特殊值法来求解.取n=1代入即可.解答:解:因为这是一道选择题,可以采用特殊值法来求解.取n=1代入,发现只有答案D成立,故选D.点评:由于选择题自身的特点是只要答案,不要过程,所以在做能用数代入的题目时,可以直接代入求解,把过程简单化.13.(3分)一个数列{a n},其中a1=3,a2=6,a n+2=a n+1﹣a n,那么这个数列的第五项是()A.6 B.﹣3 C.﹣12 D.﹣6考点:数列的概念及简单表示法.专题:计算题.分析:利用递推关系式,分别计算a3=3,a4=﹣3,a5=﹣6即可.解答:解:由题意,a3=6﹣3=3,a4=3﹣6=﹣3,a5=﹣3﹣3=﹣6,故选D.点评:本题主要考查递推关系式的运用,属于基础题.14.(3分)下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.an =n2﹣n+1 B.a n =C.a n =D.a n =考点:数列递推式.专题:规律型.分析:由图中所给的星星个数:1,1+2,1+2+3,…,1+2+3+…+n;得出数列第n项,即通项公式.解答:解析:从图中可观察星星的构成规律,n=1时,有1个;n=2时,有3个;n=3时,有6个;n=4时,有10个;∴a n=1+2+3+4+…+n=.答案:C点评:这是一个简单的自然数求和公式,由观察得出猜想,一般不需要证明.考查学生的观察猜想能力.15.(3分)已知数列,则是这个数列的()A.第六项B.第七项C.第八项D.第九项考点:等差数列与等比数列的综合;数列的概念及简单表示法.专题:规律型.分析:本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即an 2﹣an﹣12=3从而利用等差数列通项公式a n2=2+(n﹣1)×3=3n﹣1=20,得解,n=7解答:解:数列,各项的平方为:2,5,8,11,…∵5﹣2=11﹣8=3,即a n2﹣a n﹣12=3,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.点评:本题通过观察并利用构造法,构造了新数列{an2}为等差数列,从而得解,构造法在数列中经常出现,我们要熟练掌握.16.(3分)下面对数列的理解有四种:①数列可以看成一个定义在N*上的函数;②数列的项数是无限的;③数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式是唯一的.其中说法正确的序号是()A.①②③B.②③④C.①③D.①②③④考点:数列的概念及简单表示法.分析:①因为an=f(n)(n∈N*),所以数列可以看成一个定义在N*上的函数;②数列的项数可以是有限的,例如1,2,3这3个数组成一个数列;③由①可知:数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式不是唯一的,例如数列1,0,1,0,…,可用或,(n∈N*),两种形式表示.解答:解:①∵an=f(n)(n∈N*),∴数列可以看成一个定义在N*上的函数,故正确;②数列的项数可以是有限的,如1,2,3这3个数组成一个数列,故不正确;③∵a n=f(n)(n∈N*)或(n∈A⊆N*),∴数列若用图象表示,从图象上看都是一群孤立的点,正确;鑫达捷④数列的通项公式不是唯一的,如数列1,0,1,0,…,可用或,(n∈N*),故不正确.综上可知:只有①③正确.故选C.点评:正确理解数列的定义、数列与函数的关系是解题的关键.二、填空题17.(3分)数列7,77,777,7777,77777,…的通项公式为.考点:归纳推理;数列的概念及简单表示法.专题:探究型.分析:观察发现7=,77=,777=,…从而归纳出通式得到答案解答:解:由于7=,77=,777=,7777=,77777=…故数列7,77,777,7777,77777,…的通项公式为故答案为点评:本题考查归纳推理,解答的关键是对所给的项进行变形,从而归纳出通式,归纳推理是发现规律的一种常用的推理方式,要好好掌握18.(3分)数列{a n}中,,那么150是其第16 项.考点:函数的概念及其构成要素.专题:函数的性质及应用.分析:由数列的通项公式,令其等于150,可解n的值,即为第几项.解答:解:由数列的特点可知:通项公式,令n2﹣7n+6=150,可解得n=16或n=﹣9(舍去),故150是第16项,故答案为:16.点评:本题考查等差数列的通项公式,正确求解数列的通项公式是解决问题的关键,属基础题.19.(3分)已知,则a5= .考点:数列递推式.专题:计算题.分析:根据数列的递推依次求得a,a3,a4,则答案可求.2解答:解:依题意可知a=1+=2,a3=1+=,a4=1+=,a5=1+=2故答案为点评:本题主要考查了数列的递推式.属基础题.20.(3分)在数列{a n}中,a1=a ,以后各项由递推公式给出,写出这个数列的前4项: a 、、、,并由此写出一个通项公式a n= .考点:函数的概念及其构成要素.专题:规律型;函数的性质及应用.分析:可根据递推公式写出数列的前4项,然后分析每一项与该项的序号之间的关系,归纳概括出a与nn 之间的一般规律,从而作出猜想,写出满足前4项的该数列的一个通项公式.解答:解:∵a1=a,a n+1=,∴a2=,a3===,a4===.观察规律:a n=.故答案为:a,,,;.点评:从特殊的事例,通过分析、归纳、抽象总结出一般规律,再进行科学地证明,这是创新意识的具体体现,这种探索问题的方法,在解数列的有关问题中经常用到,应引起足够的重视.21.(3分)已知数列{a n}的通项公式,它的前8项依次为 1 、 3 、、7 、、11 、、15 .考点:数列的概念及简单表示法.专题:计算题;点列、递归数列与数学归纳法.分析:由题意,根据数列的通项公式依次对n赋值即可解出它的前八项解答:解:因为数列{a n}的通项公式,所以它的前8项依次为1、3、、7、、11、、15故答案为1、3、、7、、11、、15鑫达捷点评:本题考查数列的简单表示,对n赋值,代入相应的解析式进行求值是解答的关键22.(3分)已知f(1)=2,f(n+1)=(n∈N*),则f(4)= .考点:函数恒成立问题;函数的值.专题:计算题;函数的性质及应用.分析:由题设可看出,直接根据所给的恒成立的等式依次求出n=2,3,4时的函数值,即可得到正确答案解答:解:因为f(1)=2,f(n+1)=(n∈N*)恒成立,所以f(2)=,f(3)=,f(4)==故答案为点评:本题考查函数恒成立问题,列举法依次求出出n=2,3,4时的函数值是解答此类题的主要方式三、解答题23.数列{a n}中,已知a n=(﹣1)n n+a(a为常数),且a1+a4=3a2,求a100.考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:由已知a=(﹣1)n n+a(a为常数),可得a1,a2,a3,a4用a表示,再利用a1+a4=3a2,即可解得a,n从而得出a100.解答:解:由已知a=(﹣1)n n+a(a 为常数),可得a1=a ﹣1,a2=a+2,a3=a﹣3,a4=a+4.n∵a1+a4=3a2,∴a﹣1+a+4=3(a+2),解得a=﹣3.∴.∴.点评:利用已知关系式分别取n=1,2,3,4求出a是解题的关键.24.已知数列{a n}的通项公式a n=5+3n,求:(1)a7等于多少;(2)81是否为数列{a n}中的项,若是,是第几项;若不是,说明理由.考点:等差数列的性质.专题:等差数列与等比数列.分析:(1)直接将n=7代入即可;(2)利用通项公式解出n是否是正整数即可得到答案.解答:解:(1)∵数列{a}的通项公式a n=5+3nn∴a7=5+3×7=26(2)假设81是数列{a n}中的项,则81=5+3n∴n=∵n∈N*所以81不是数列{a n}中的项.点评:此题考查了等差数列的性质,属于基础性的题目.。
人教a版必修5学案:2.1数列的概念与简单表示法(2)(含答案)
2.1数列的概念与简单表示法(二)自主学习知识梳理1.数列可以看作是一个定义域为________________(或它的有限子集{1,2,3,…,n})的函数,当自变量按照从小到大的顺序依次取值时,对应的一列________.2.一般地,一个数列{a n},如果从________起,每一项都大于它的前一项,即____________,那么这个数列叫做递增数列.如果从________起,每一项都小于它的前一项,即____________,那么这个数列叫做递减数列.如果数列{a n}的各项________,那么这个数列叫做常数列.3.数列的最大、最小项问题,可以通过研究数列的单调性加以解决,若求最大项a n,n的值可通过解不等式组________________来确定;若求最小项a n,n的值可通过解不等式组________________来确定.自主探究已知数列{a n}中,a1=1,a2=2,a n+2=a n+1-a n,试写出a3,a4,a5,a6,a7,a8,你发现数列{a n}具有怎样的规律?你能否求出该数列中的第2 011项是多少?对点讲练知识点一利用函数的性质判断数列的单调性例1已知数列{a n}的通项公式为a n=n2n2+1.求证:数列{a n}为递增数列.总结数列是一种特殊的函数,因此可用研究函数单调性的方法来研究数列的单调性.变式训练1在数列{a n}中,a n=n3-an,若数列{a n}为递增数列,试确定实数a的取值范围.知识点二 求数列的最大最小项例2 已知a n =9n (n +1)10n (n ∈N *),试问数列{a n }中有没有最大项?如果有,求出这个最大项;如果没有,说明理由.总结 先考虑{a n }的单调性,再利用单调性求其最值.变式训练2 已知数列{a n }的通项公式为a n =n 2-5n +4 (n ∈N *),则(1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值.知识点三 由递推公式求通项公式例3 已知数列{a n }满足a 1=1,a n =a n -1+1n (n -1)(n ≥2),写出该数列的前五项及它的一个通项公式.总结 已知递推关系求通项公式这类问题要求不高,主要掌握由a 1和递推关系先求出前几项,再归纳、猜想a n 的方法,以及累加:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1;累乘:a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1等方法. 变式训练3 已知数列{a n }满足a 1=12,a n a n -1=a n -1-a n ,求数列{a n }的通项公式.函数与数列的联系与区别一方面,数列是一种特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,即用共性来解决特殊问题.另一方面,还要注意数列的特殊性(离散型),由于它的定义域是N *或它的子集{1,2,…,n },因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性,如研究单调性时,由数列的图象可知,只要这些点每个比它前面相邻的一个高(即a n >a n -1),则图象呈上升趋势,即数列递增,即{a n }递增⇔a n +1>a n 对任意的n (n ∈N *)都成立.类似地,有{a n }递减⇔a n +1<a n 对任意的n (n ∈N *)都成立.课时作业一、选择题1.已知a n +1-a n -3=0,则数列{a n }是( )A .递增数列B .递减数列C .常数项D .不能确定2.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列第4项是( ) A .1 B.12 C.34 D.583.若a 1=1,a n +1=a n 3a n +1,给出的数列{a n }的第34项是( ) A.34103 B .100 C.1100 D.11044.已知a n =32n -11(n ∈N *),记数列{a n }的前n 项和为S n ,则使S n >0的n 的最小值为( )A .10B .11C .12D .135.已知数列{a n }满足a n +1=⎩⎨⎧2a n ⎝⎛⎭⎫0≤a n <12,2a n -1 ⎝⎛⎭⎫12≤a n <1.若a 1=67,则a 2 010的值为( ) A.67 B.57C.37D.17题 号1 2 3 4 5 答 案二、填空题6.已知数列{a n }满足:a 1=a 2=1,a n +2=a n +1+a n ,(n ∈N *),则使a n >100的n 的最小值是________.7.设a n =-n 2+10n +11,则数列{a n }从首项到第m 项的和最大,则m 的值是________.8.已知数列{a n }满足a 1=0,a n +1=a n +n ,则a 2 009=________.三、解答题9.已知函数f (x )=2x -2-x ,数列{a n }满足f (log 2 a n )=-2n .(1)求数列{a n }的通项公式;(2)证明:数列{a n }是递减数列.10.在数列{a n }中,a 1=12,a n =1-1a n -1(n ≥2,n ∈N *). (1)求证:a n +3=a n ; (2)求a 2 010.§2.1 数列的概念与简单表示法(二)知识梳理1.正整数集N * 函数值2.第二项 a n +1>a n 第二项 a n +1<a n 都相同 3.⎩⎪⎨⎪⎧ a n ≥a n -1a n ≥a n +1 ⎩⎪⎨⎪⎧a n ≤a n -1a n ≤a n +1自主探究解 a 1=1,a 2=2,a 3=1,a 4=-1,a 5=-2, a 6=-1,a 7=1,a 8=2,….发现:a n +6=a n ,数列{a n }具有周期性,周期T =6, 证明如下:∵a n +2=a n +1-a n ,∴a n +3=a n +2-a n +1=(a n +1-a n )-a n +1=-a n .∴a n +6=-a n +3=-(-a n )=a n .∴数列{a n }是周期数列,且T =6.∴a 2 011=a 335×6+1=a 1=1.对点讲练例1 证明 ∵a n =n 2n 2+1=1-1n 2+1a n +1-a n =1n 2+1-1(n +1)2+1=[(n +1)2+1]-(n 2+1)(n 2+1)[(n +1)2+1]=2n +1(n 2+1)[(n +1)2+1]. 由n ∈N *,得a n +1-a n >0,即a n +1>a n .∴数列{a n }为递增数列.变式训练1 解 若{a n }为递增数列,则a n +1-a n ≥0.即(n +1)3-a (n +1)-n 3+an ≥0恒成立. 即a ≤(n +1)3-n 3=3n 2+3n +1恒成立, 即a ≤(3n 2+3n +1)min ,∵n ∈N *,∴3n 2+3n +1的最小值为7.∴a 的取值范围为a ≤7.例2 解 因为a n +1-a n =⎝⎛⎭⎫910n +1·(n +2)-⎝⎛⎭⎫910n ·(n +1)=⎝⎛⎭⎫910n +1·⎣⎡⎦⎤(n +2)-109(n +1) =⎝⎛⎭⎫910n +1·8-n 9,则当n ≤7时,⎝⎛⎭⎫910n +1·8-n 9>0,当n =8时,⎝⎛⎭⎫910n +1·8-n 9=0,当n ≥9时,⎝⎛⎭⎫910n +1·8-n 9<0,所以a 1<a 2<a 3<…<a 7<a 8=a 9>a 10>a 11>a 12>…,故数列{a n }存在最大项,最大项为a 8=a 9=99108. 变式训练2 解 (1)a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 当n =2,3时,a n <0.∴数列中有两项是负数.(2)∵a n =n 2-5n +4=⎝⎛⎭⎫n -522-94,可知对称轴方程为n =52=2.5. 又因n ∈N *,故n =2或3时,a n 有最小值,其最小值为-2.例3 解 由递推公式得a 1=1,a 2=1+12×1=32,a 3=32+13×2=53, a 4=53+14×3=74,a 5=74+15×4=95. 故数列的前五项分别为1,32,53,74,95. ∴通项公式为a n =2n -1n =2-1n(n ∈N *). 变式训练3 解 ∵a n a n -1=a n -1-a n , ∴1a n -1a n -1=1.∴1a n =1a 1+⎝⎛⎭⎫1a 2-1a 1+⎝⎛⎭⎫1a 3-1a 2+…+⎝⎛⎭⎫1a n -1a n -1=2+1+1+…+1(n -1)个1 =n +1. ∴1a n =n +1,∴a n =1n +1(n ∈N *). 课时作业1.A2.B [∵a 1=1,∴a 2=12+12=1,a 3=12+14=34,a 4=12×34+18=12.] 3.C [a 2=a 13a 1+1=13+1=14,a 3=a 23a 2+1=1434+1=17,a 4=a 33a 3+1=1737+1=110, 猜想a n =13(n -1)+1, ∴a 34=13×(34-1)+1=1100.] 4.B [∵-a 1=a 10,-a 2=a 9,-a 3=a 8,-a 4=a 7,-a 5=a 6, ∴S 11>0,则当n ≥11时,S n >0,故n 最小为11.]5.C [计算得a 2=57,a 3=37,a 4=67,故数列{a n }是以3为周期的周期数列, 又知2 010除以3能整除,所以a 2 010=a 3=37.] 6.127.10或11解析 令a n =-n 2+10n +11≥0,则n ≤11. ∴a 1>0,a 2>0,…,a 10>0,a 11=0.∴S 10=S 11且为S n 的最大值.8.2 017 036解析 由a 1=0,a n +1=a n +n 得a n =a n -1+n -1,a n -1=a n -2+n -2,⋮a 2=a 1+1,a 1=0,累加可得a n =0+1+2+…+n -1=n (n -1)2, ∴a 2 009=2 009×2 0082=2 017 036. 9.(1)解 因为f (x )=2x -2-x ,f (log 2 a n )=-2n ,所以2log 2 a n -2-log 2a n =-2n ,a n -1a n=-2n , 所以a 2n +2na n -1=0,解得a n =-n ±n 2+1.因为a n >0,所以a n =n 2+1-n .(2)证明 a n +1a n =(n +1)2+1-(n +1)n 2+1-n=n 2+1+n (n +1)2+1+(n +1)<1. 又因为a n >0,所以a n +1<a n ,所以数列{a n }是递减数列.10.(1)证明 a n +3=1-1a n +2=1-11-1a n +1=1-11-11-1a n =1-11-1a n -1a n=1-11-a n a n -1=1-1a n -1-a n a n -1=1-1-1a n -1=1-(1-a n )=a n .∴a n +3=a n .(2)解 由(1)知数列{a n }的周期T =3,a 1=12,a 2=-1,a 3=2. ∴a 2 010=a 3×670=a 3=2.。
人教A版高中数学必修五第二章2.1数列的概念与简单表示法练习【教师版】.docx
2.1.1数列的概念与简单表示法(教师版)一、选择题:1.下列说法中正确的是( )A .数列1,3,5,7可表示为{1,3,5,7}B .数列1,0,-1,-2与-2,-1,0,1是相同的数列C .数列⎩⎨⎧⎭⎬⎫n +1n 的第k 项为1+1k D .数列0,2,4,6,…可记为{2n } 【答案】C【解析】{1,3,5,7}是一个集合,故A 错;数虽相同,但顺序不同,不是相同的数列,故B 错;数列0,2,4,6,…可记为{2n -2},故D 错,故选C.2.若数列的前4项分别是12,-13,14,-15,则该数列的一个通项公式为( ) A .(-1)n +1n +1 B .(-1)n n +1 C .(-1)n n D .(-1)n -1n 【答案】A【解析】数列中项的符号是先正后负,故可用(-1)n +1或(-1)n -1表示,又每项分式的分母与项数n 之间的关系为n +1.故选A.3.已知数列{a n }的通项公式a n =n n +1,则a n ·a n +1·a n +2等于( ) A .n n +2 B .n n +3 C .n +1n +2 D .n +1n +3【答案】B【解析】 a n ·a n +1·a n +2=n n +1·n +1n +2·n +2n +3=n n +3. 故选B. 4.已知数列{n (n -2)},那么下列各数中是该数列项的是( )A .1B .36C .-48D .-1【答案】D【解析】令n (n -2)=-1,即n 2-2n +1=0,解得n =1,所以-1是该数列中的项,并且是第1项,故选D.二、填空题:5.数列3,33,333,3 333,…的一个通项公式是________.【答案】 a n =13(10n -1) 【解析】数列9,99,999,9 999,…的一个通项公式是a n =10n -1,因此3,33,333,3 333,…的一个通项公式是a n =13(10n -1). 6.已知数列{a n }的通项公式为a n =2n 2+n,那么110是它的第________项. 【答案】4【解析】 令2n 2+n =110,解得n =4(n =-5舍去),所以110是第4项. 三、解答题7.下列数列哪些是有穷数列?哪些是无穷数列?哪些是递增数列?哪些是递减数列?哪些是摆动数列?哪些是常数列?(1) 1,12,13, (1),…; (2) 1,3-1,3-2,…,3-63; (3) 1,-0.1,0.12,…,(-0.1)n -1,…; (4) 10,20,40,…,1 280; (5) -1,2,-1,2,…; (6) 6,6,6,….【答案】见解析【解析】(2),(4)是有穷数列,(1),(3),(5),(6)是无穷数列,(4)是递增数列,(1)(2)是递减数列,(3)(5)是摆动数列,(6)是常数列.8.写出下列数列的一个通项公式,使其前几项分别是下列各数:(1)-2,-4,-6,-8,…; (2)0,3,8,15,…;(3)1,23,35,47,…; (4)2,-2,2,-2,…. 【答案】 见解析【解析】(1)每一项都是负数,且每一项的绝对值恰好是项数的两倍,因此它的一个通项公式是a n =-2n .(2)将数列变形为1-1,4-1,9-1,16-1,…,亦即12-1,22-1,32-1,42-1,…,所以它的一个通项公式是a n =n 2-1.(3)将数列统一为11,23,35,47,…,分母恰好是正奇数数列,分子恰好是正整数数列, 因此它的一个通项公式为a n =n 2n -1. (4)这是一个摆动数列,符号可由(-1)n +1来调节,每一项的绝对值都等于2,故它的一个通项公式为a n =(-1)n +1·2. 9.数列{a n }的通项公式是a n =n 2-21n 2(n ∈N *). (1)0和1是不是数列{a n }中的项?如果是,那么是第几项?(2)数列{a n }中是否存在连续且相等的两项?若存在,分别是第几项?【答案】见解析【解析】 (1)令a n =0得n 2-21n =0,∴n =21或n =0(舍去).∴0是数列{a n }中的第21项.令a n =1得n 2-21n 2=1.而该方程无正整数解.∴1不是数列{a n }中的项. (2)假设存在连续且相等的两项为a n =a n +1. 则有n 2-21n 2=(n +1)2-21(n +1)2,解得n =10. ∴存在连续且相等的两项,它们分别是第10项和第11项.。
人教a版必修5学案:2.1数列的概念与简单表示法(含答案)
第二章 数 列§2.1 数列的概念与简单表示法材拓展1.从函数的观点看数列一方面,数列是一种特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,即用共性来解决特殊问题.例如,类比单调函数的定义得出单调数列的判断方法.即:数列{a n }单调递增⇔a n +1>a n 对任意n (n ∈N *)都成立;数列{a n }单调递减⇔a n +1<a n 对任意n (n ∈N *)都成立.另一方面,还要注意数列的特殊性(离散型),由于它的定义域是N *或它的子集{1,2,…,n },因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线.例如:已知a n =n -98n -99,则这个数列的前30项中最大项和最小项分别是( ) A .a 1,a 30 B .a 1,a 9C .a 10,a 9D .a 10,a 30解析 ∵a n =n -99+(99-98)n -99=99-98n -99+1 ∴点(n ,a n )在函数y =99-98x -99+1的图象上. 在直角坐标系中作出函数y =99-98x -99+1的图象.由图象易知当x ∈(0,99)时,函数单调递减.∴a 9<a 8<a 7<…<a 1<1,当x ∈(99,+∞)时,函数单调递减.∴a 10>a 11>…>a 30>1.所以,数列{a n }的前30项中最大的项是a 10,最小的项是a 9.答案 C2.了解一点周期数列的知识类比周期函数的概念可以得出周期数列的定义:对于数列{a n },若存在一个大于1的自然数T (T 为常数),使a n +T =a n ,对一切n ∈N *恒成立,则称数列{a n }为周期数列,T 就是它的一个周期.易知,若T 是{a n }的一个周期,则kT (k ∈N *)也是它的周期,周期最小的那个值叫最小正周期.例如:已知数列{a n }中,a 1=a (a 为正常数),a n +1=-1a n +1(n =1,2,3,…),则下列能使a n =a 的n 的数值是( )A .15B .16C .17D .18解析 a 1=a ,a 2=-1a +1, a 3=-1a 2+1=-1-1a +1+1=-a -1a , a 4=-1a 3+1=-1-a -1a+1=a , a 5=-1a 4+1=-1a +1,……. ∴a 4=a 1,a 5=a 2,…依次类推可得:a n +3=a n ,∴{a n }为周期数列,周期为3.∵a 1=a ,∴a 3k +1=a 1=a .答案 B3.数列的前n 项和S n 与a n 的关系对所有数列都有:S n =a 1+a 2+…+a n -1+a n ,S n -1=a 1+a 2+…+a n -1 (n ≥2).因此,当n ≥2时,有:a n =S n -S n -1.当n =1时,有:a 1=S 1.所以a n 与S n 的关系为:a n =⎩⎪⎨⎪⎧S 1, n =1S n -S n -1, n ≥2.注意这一关系适用于所有数列. 例如:已知数列{a n }的前n 项和S n =(n -1)·2n +1,则a n =________.解析 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=[(n -1)·2n +1]-[(n -2)·2n -1+1]=(n -1)·2n -(n -2)·2n -1=n ·2n -1.所以通项公式可以统一为a n =n ·2n -1.答案 n ·2n -14.由简单的递推公式求通项公式(1)形如a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求和,采用累加法求a n .即:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+…+f (n -1) =a 1+∑n -1i =1f (i ) (2)形如a n +1=f (n )·a n ,且f (1)·f (2)…f (n )可化简,采用累乘法求a n .即a n =a 1·a 2a 1·a 3a 2·…·a n a n -1=a 1·f (1)·f (2)·…·f (n -1)=a 1·Πn -1i =1f (i ) (注:∑为连加求和符号,Π为连乘求积符号)(3)形如a n +1=Aa n +B (AB ≠0且A ≠1).设a n +1-x =A (a n -x ),则:a n +1=Aa n +(1-A )x由(1-A )x =B ,∴x =B 1-A∴a n +1-B 1-A=A ⎝⎛⎭⎫a n -B 1-A ∴a n -B 1-A=A ⎝⎛⎭⎫a n -1-B 1-A =A 2⎝⎛⎭⎫a n -2-B 1-A =…=A n -1⎝⎛⎭⎫a 1-B 1-A ∴a n =B 1-A+A n -1⎝⎛⎭⎫a 1-B 1-A =(1-A n -1)·B 1-A+A n -1a 1.法突破一、观察法写数列的通项公式方法链接:根据数列前几项,要写出它的一个通项公式,其关键在于观察、分析数列的前几项的特征、特点,找到数列的一个构成规律.根据此规律便可写出一个相应的通项公式.注意以下几点:(1)为了突出显现数列的构成规律,可把序号1,2,3,…标在相应项上,这样便于突出第n 项a n 与项数n 的关系,即a n 如何用n 表示.(2)由于给出的数列的前几项是一些特殊值,必然进行了化简,因此我们要观察出它的构成规律,就必须要对它进行还原工作.如数列的前几项中均用分数表示,但其中有几项分子或分母相同,不妨把这几项的分子或分母都统一起来试一试.(3)当一个数列出现“+”、“-”相间时,应先把符号分离出来,即用(-1)n 或(-1)n -1表示,然后再考虑各项绝对值的规律.(4)熟记一些基本数列的前几项以及它们的变化规律(如增减速度),有利于我们写出它的通项公式.例1 根据数列的前几项,写出下列各数列的一个通项公式:(1)45,12,411,27,…; (2)12,2,92,8,252,…; (3)1,3,6,10,15,…; (4)7,77,777,…;(5)0,3,8,15,24,…; (6)1,13,17,113,121,…. 解 (1)注意前四项中有两项的分子为4,不妨把分子统一为4,即为45,48,411,414,…,于是它们的分母相差3,因而有a n =43n +2. (2)把分母统一为2,则有:12,42,92,162,252,…,因而有a n =n 22. (3)注意6=2×3,10=2×5,15=3×5,规律还不明显,再把各项的分子和分母都乘以2,即1×22,2×32,3×42,4×52,5×62,…,因而有a n =n (n +1)2. (4)把各项除以7,得1,11,111,…,再乘以9,得9,99,999,….因而有a n =79(10n -1). (5)观察数列递增速度较快,有点像成平方地递增,不妨用平方数列对照看一看,即1,22,32,42,52,…,则有a n =n 2-1.(6)显然各项的分子均为1,其关键在于分母,而分母的规律不是很明显,注意到分母组成的数列1,3,7,13,21,…,递增速度也有点像平方数列,不妨从每一项对应减去平方数列的项组成数列0,1,2,3,4,…,其规律也就明显了.故a n =1n 2-n +1. 二、数列的单调性及最值方法链接:数列是一种特殊的函数,因此可用函数的单调性的研究方法来研究数列的单调性.例2 在数列{a n }中,a n =(n +1)⎝⎛⎭⎫1011n (n ∈N *). 试问数列{a n }的最大项是第几项?解 方法一 ∵a n =(n +1)⎝⎛⎭⎫1011n (n ∈N *), ∴a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ·(9-n )11.当n ≤8时,a n <a n +1,{a n }递增,即a 1<a 2<…<a 8<a 9.当n =9时,a 9=a 10.当n ≥10时,a n >a n +1,{a n }递减,即a 10>a 11>a 12>….又a 9=a 10=1010119. ∴数列{a n }的最大项是第9项和第10项.方法二 令a n a n -1≥1 (n ≥2), 即(n +1)⎝⎛⎭⎫1011n n ⎝⎛⎭⎫1011n -1≥1. 整理得n +1n ≥1110.解得n ≤10. 令a n a n +1≥1, 即(n +1)⎝⎛⎭⎫1011n (n +2)⎝⎛⎭⎫1011n +1≥1. 整理得n +1n +2≥1011,解得n ≥9. 所以从第1项到第9项递增,从第10项起递减.因此数列{a n }先递增,后递减.∴a 1<a 2<…<a 9,a 10>a 11>a 12>…,且a 9=a 10=1010119. ∴数列{a n }中的最大项是第9项和第10项.三、数列的周期性及运用方法链接:通俗地讲,数列中的项按一定规律重复出现,这样的数列就应考虑是否具有周期性,其周期性往往隐藏于数列的递推公式中,解周期数列问题的关键在于利用递推公式算出前若干项或由递推公式发现规律,得出周期而获解.例3 已知数列{a n },a 1=1,a 2=3,a n =a n -1-a n -2 (n ≥3),那么a 2 010与S 2 009依次是( )A .1,3B .3,1C .-2,2D .2,-2解析 ∵a n =a n -1-a n -2,∴a n +1=a n -a n -1=(a n -1-a n -2)-a n -1=-a n -2.由a n +1=-a n -2,∴a n +3=-a n .∴a n +6=-a n +3=-(-a n )=a n .∴{a n }为周期数列,且周期T =6.∴a 2 010=a 6=-a 3=a 1-a 2=-2.∴a 1+a 2+a 3+a 4+a 5+a 6=(a 1+a 4)+(a 2+a 5)+(a 3+a 6)=0+0+0=0,且2 010是6的倍数,∴S 2 010=0.∴S 2 009=S 2 010-a 2 010=0-a 2 010=0-(-2)=2.答案 C四、已知前n 项和S n ,求通项a n方法链接:已知数列{a n }的前n 项和S n ,求a n ,先由n =1时,a 1=S 1,求出a 1,再由a n =S n -S n -1 (n ≥2)求出a n ,最后验证a 1与a n 能否统一,若能统一要统一成一个代数式,否则分段表示.例4 已知下列各数列{a n }的前n 项和S n 的公式,求{a n }的通项公式.(1)S n =(-1)n +1 n ;(2)S n =3n -2.解 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(-1)n ·(-n )-(-1)n ·(n -1)=(-1)n ·(-2n +1).由于a 1也适合此等式,因此a n =(-1)n ·(-2n +1) (n ∈N *).(2)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=2·3n -1.所以a n =⎩⎪⎨⎪⎧1 (n =1),2·3n -1 (n ≥2). 五、由递推公式求通项a n方法链接:由递推公式求通项公式主要观察递推公式的特征,合理选择方法.需要理解一点,对a n -a n -1=n (n ≥2)不仅仅是一个式子而是对任意的n ≥2恒成立的无数个式子,正是因为这一点,在已知递推公式求通项公式的题目中如何将无数个式子转化为a n ,就是解题的关键所在.另外递推公式具有递推性,故由a 1再加上递推公式可以递推到a n .例5 由下列数列{a n }的递推公式求数列{a n }的通项公式:(1)a 1=1,a n -a n -1=n (n ≥2);(2)a 1=1,a n a n -1=n -1n (n ≥2). 解 (1)由题意得,当n ≥2时,a n -a n -1=n ,a n -1-a n -2=n -1,…,a 3-a 2=3,a 2-a 1=2.将上述各式累加得,a n -a 1=n +(n -1)+…+3+2,即a n =n +(n -1)+…+3+2+1=n (n +1)2, 由于a 1也适合此等式.故a n =n (n +1)2. (2)由题意得,当n ≥2时,a n a n -1=n -1n ,a n -1a n -2=n -2n -1,…,a 3a 2=23,a 2a 1=12, 将上述各式累乘得,a n a 1=1n ,即a n =1n. 由于a 1也适合此等式,故a n =1n. 六、数列在日常生活中的初步应用方法链接:数列知识在日常生活中有着广泛的应用.构建递推关系是其中重要的方法之一,利用递推方法解决实际问题常分为三个环节:(1)求初始值;(2)建立递推关系;(3)利用递推关系分析解决问题.其中构建递推关系是关键.例6 某商店的橱窗里按照下图的方式摆着第二十九届北京奥运会吉祥物“福娃迎迎”,如图(1)、(2)、(3)、(4)分别有1个、5个、13个、25个.如果按照同样的方式接着摆下去,记第n 个图需用f (n )个“福娃迎迎”,那么f (n +1)-f (n )=________;f (6)=________.解析 ∵f (1)=1,f (2)=5,f (3)=13,f (4)=25,…,∴f (2)-f (1)=4,f (3)-f (2)=8,f (4)-f (3)=12,…∴f (n +1)-f (n )=4n .∴f (6)=f (1)+[f (2)-f (1)]+[f (3)-f (2)]+[f (4)-f (3)]+[f (5)-f (4)]+[f (6)-f (5)]=1+4+8+12+16+20=61.答案 4n 61区突破1.对数列的概念理解不准而致错例1 已知数列{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________.[错解] 因为a n =n 2+λn 是关于n 的二次函数,且n ≥1,所以-λ2≤1,解得λ≥-2. [点拨] 数列是以正整数N *(或它的有限子集{1,2,…,n })为定义域的函数,因此它的图象只是一些孤立的点.[正解1] 因为a n =n 2+λn ,其图象的对称轴为n =-λ2,由数列{a n }是单调递增数列有-λ2≤1,得λ≥-2;如图所示,当2-⎝⎛⎭⎫-λ2>-λ2-1,即λ>-3时,数列{a n }也是单调递增的. 故λ的取值范围为{λ|λ≥-2}∪{λ|λ>-3}={λ|λ>-3}.即λ>-3为所求的范围.[正解2] 因为数列{a n }是单调递增数列,所以a n +1-a n >0 (n ∈N *)恒成立.又a n =n 2+λn (n ∈N *),所以(n +1)2+λ(n +1)-(n 2+λn )>0恒成立,即2n +1+λ>0.所以λ>-(2n +1) (n ∈N *)恒成立.而n ∈N *时,-(2n +1)的最大值为-3(n =1时),所以λ>-3即为所求的范围.2.对公式使用条件考虑不周而致错例2 已知数列{a n }的前n 项和为S n =3n +2n +1,求a n .[错解] a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2.[点拨] 公式a n =⎩⎪⎨⎪⎧ a 1 (n =1)S n -S n -1 (n ≥2)是分段的,因为n =1时,S n -1无意义.在上述解答中,应加上限制条件n ≥2,然后验证n =1时的值是否适合n ≥2时的表达式.[正解] a 1=S 1=6;n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2.由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6 (n =1)2·3n -1+2 (n ≥2).题多解 例 设{a n }是首项为1的正项数列且(n +1)a 2n +1-na 2n +a n +1·a n =0 (n ∈N *),求a n . 分析 先求出相邻两项a n +1与a n 的关系,再选择适当的方法求a n .解 方法一 (累乘法)由(n +1)a 2n +1-na 2n +a n +1a n =0.得(a n +1+a n )(na n +1-na n +a n +1)=0.由于a n +1+a n >0,∴(n +1)a n +1-na n =0.∴a n +1a n =n n +1. ∴a n =a 1·a 2a 1·a 3a 2·…·a n a n -1=1×12×23×34×…×n -1n =1n. 方法二 (换元法)由已知得(n +1)a n +1-na n =0,设b n =na n ,则b n +1-b n =0.∴{b n }是常数列.∴b n =b 1=1×a 1=1,即na n =1.∴a n =1n.题赏析1.(2009·北京)已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 009=______,a 2 014=______.解析 a 2 009=a 4×503-3=1,a 2 014=a 1 007=a 252×4-1=0.答案 1 0赏析 题目小而灵活,考查了充分利用所给条件灵活处理问题的能力.2.(2009·湖北八市调研)由1,3,5,…,2n -1,…构成数列{a n },数列{b n }满足b 1=2,当n ≥2时,b n =ab n -1,则b 6的值是( )A .9B .17C .33D .65解析 ∵b n =ab n -1,∴b 2=ab 1=a 2=3,b 3=ab 2=a 3=5,b 4=ab 3=a 5=9,b 5=ab 4=a 9=17,b 6=ab 5=a 17=33.答案 C 赏析 题目新颖别致,考查了对新情境题目的审题能力.。
人教A版高中数学必修五2.1 数列的概念与简单表示法.doc
2.1 数列的概念与简单表示法一、选择题1.(3分)下列说法正确的是()A.数列1,3,5,7可表示为{1,3,5,7}B.数列1,0,﹣1,﹣2与数列﹣2,﹣1,0,1是相同的数列C.数列{}的第k项为1+D.数列0,2,4,6,…可记为{2n}2.(3分)已知数列{n2+n},那么()A.0是数列中的一项B.21是数列中的一项C.702是数列中的一项D.以上答案都不对3.(3分)数列11,13,15,…,2n+1的项数是()A.n B.n﹣3 C.n﹣4 D.n﹣5 4.(3分)若,则a n与a n+1的大小关系是()A.a n>a n+1B.a n<a n+1C.a n=a n+1D.不能确定5.(3分)数列{a n}满足a n=4a n﹣1+3,且a1=0,则此数列的第5项是()A.15 B.255 C.16 D.36 6.(3分)已知数列1,,,,…,,…,则3是它的()A.第22项B.第23项C.第24项D.第28项7.(3分)数列1,0,1,0,1,…的一个通项公式是()A.B.C.D.8.(3分)在数列{a n}中,对所有的正整数n都成立,且,则a5=()A.0B.1C.﹣1 D.29.(3分)在数列1,1,2,3,5,8,x,21,34,55中,x等于()A.11 B.12 C.13 D.14 10.(3分)在数列{a n}中,,则a5=()A.B.C.D.11.(3分)600是数列1×2,2×3,3×4,4×5,…的第()项.A.20 B.24 C.25 D.30 12.(3分)数列﹣1,,﹣,,…的一个通项公式是()A.3(1)()21nnn nan-+=+B.(1)(3)21nnn nan-+=+C.2(1)[(1)1]21nnnan-+-=-D.(1)(2)21nnn nan-+=+13.(3分)一个数列{a n},其中a1=3,a2=6,a n+2=a n+1﹣a n,那么这个数列的第五项是()A.6B.﹣3 C.﹣12 D.﹣614.(3分)下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.a n=n2﹣n+1 B.a n=C.a n=D.a n=15.(3分)已知数列,则是这个数列的()A.第六项B.第七项C.第八项D.第九项16.(3分)下面对数列的理解有四种:①数列可以看成一个定义在N*上的函数;②数列的项数是无限的;③数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式是唯一的.其中说法正确的序号是()A.①②③B.②③④C.①③D.①②③④二、填空题17.(3分)数列7,77,777,7777,77777,…的通项公式为_________.18.(3分)数列{a n}中,,那么150是其第_________项.19.(3分)已知,则a5=_________.20.(3分)在数列{a n}中,a1=a,以后各项由递推公式给出,写出这个数列的前4项:_________、_________、_________、_________,并由此写出一个通项公式a n=_________.21.(3分)已知数列{a n}的通项公式,它的前8项依次为_________、_________、_________、_________、_________、_________、_________、_________.22.(3分)已知f(1)=2,f(n+1)=(n∈N*),则f(4)=_________.三、解答题23.数列{a n}中,已知a n=(﹣1)n n+a(a为常数),且a1+a4=3a2,求a100.24.已知数列{a n}的通项公式a n=5+3n,求:(1)a7等于多少;(2)81是否为数列{a n}中的项,若是,是第几项;若不是,说明理由.2.1 数列的概念与简单表示法一、选择题1.(3分)下列说法正确的是()A.数列1,3,5,7可表示为{1,3,5,7}B.数列1,0,﹣1,﹣2与数列﹣2,﹣1,0,1是相同的数列C.数列{}的第k项为1+D.数列0,2,4,6,…可记为{2n}考点:数列的概念及简单表示法.分析:本题考查的知识点是数列的概念胶简单表示法,根据数列的定义及表示方法对四个答案逐一进行分析即可得到答案.解答:解:由数列的定义可知A中{1,3,5,7}表示的是一个集合,而非数列,故A错误;B中,数列中各项之间是有序的,故数列1,0,﹣1,﹣2与数列﹣2,﹣1,0,1是不同的数列,故B错误;C中,数列{}的第k项为=1+,故C正确;数列0,2,4,6,的通项公式为a n=2n﹣2,故D错.故选C.点评:在理解和掌握数列的概念及表示法的时候,要用类比的思想,注意区分数列与集合的关系,及数列的函数的关系.2.(3分)已知数列{n2+n},那么()A.0是数列中的一项B.21是数列中的一项C.702是数列中的一项D.以上答案都不对考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:已知数列{a n}的通项公式为a n=n2+n,可以把a n=0,21,702代入进行求解,注意n是正整数.对四个选项进行一一判断.解答:解:因为数列{a n}的通项公式为a n=n2+n,(n∈N*)∴当a n=0时,n2+n=0⇒n∈∅;当a n=21时,n2+n=21⇒n∈∅;当a n=702时,n2+n=702⇒n∈∅;以上答案都不对.故选D.点评:此题主要考查数列简单表示法,数列的概念及其应用,是一道基础题.3.(3分)数列11,13,15,…,2n+1的项数是()A.n B.n﹣3 C.n﹣4 D.n﹣5考点:数列的概念及简单表示法.专题:等差数列与等比数列.分析:由数列11,13,15,…,2n+1可知:该数列是一个首项为11,公差为2的等差数列,即可得到通项公式a n=11+(n﹣1)×2=2n+9.令2k+9=2n+1,解出即可.解答:解:由数列11,13,15,…,2n+1可知:该数列是一个首项为11,公差为2的等差数列,∴通项公式a n=11+(n﹣1)×2=2n+9.令2k+9=2n+1,解得k=n﹣4,(n≥5).故选C.点评:数列等差数列的通项公式是解题的关键.4.(3分)若,则a n与a n+1的大小关系是()A.a n>a n+1B.a n<a n+1C.a n=a n+1D.不能确定考点:数列的函数特性.专题:点列、递归数列与数学归纳法.分析:化简数列{a n}的通项公式为a n=1﹣,显然当n增大时,a n的值增大,故数列{a n}是递增数列,由此得到结论.解答:解:∵数列{a n}的通项公式是a n===1﹣,(n∈N*),显然当n增大时,a n的值增大,故数列{a n}是递增数列,故有a n<a n+1,故选B.点评:本题主要考查数列的函数特性,化简数列{a n}的通项公式为a n=1﹣,是解题的关键,属于基础题.5.(3分)数列{a n}满足a n=4a n﹣1+3,且a1=0,则此数列的第5项是()A.15 B.255 C.16 D.36考点:数列递推式.专题:计算题.分析:分别令n=2,3,4,5代入递推公式计算即可.解答:解:a2=4a1+3=3a3=4a2+3=4×3+3=15a4=4a3+3=4×15+3=63a5=4a4+3=4×63+3=255故选B.点评:本题考查数列递推公式简单直接应用,属于简单题.6.(3分)已知数列1,,,,…,,…,则3是它的()A.第22项B.第23项C.第24项D.第28项考点:数列的概念及简单表示法.专题:等差数列与等比数列.分析:先化简3=,进而利用通项即可求出答案.解答:解:∵3=,令45=2n﹣1,解得n=23.∴3是此数列的第23项.故选B.点评:理解数列的通项公式得意义是解题的关键.7.(3分)数列1,0,1,0,1,…的一个通项公式是()A.B.C.D.考点:数列的概念及简单表示法.专题:探究型.分析:由数列的项的变化规律可以看出,1,0交错出现,由此规律去对四个选项进行验证即可得出正确答案解答:解:A选项不正确,数列首项不是1;B选项正确,验证知恰好能表示这个数列;C选项不正确,其对应的首项是﹣1;D选项不正确,其对应的首项为0,不合题意.故选B点评:本题考查数列的概念及数列表示法,求解的关键是从数列的前几项中发现数列各项变化的规律,利用此规律去验证四个选项.8.(3分)在数列{a n}中,对所有的正整数n都成立,且,则a5=()A.0B.1C.﹣1 D.2考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:由数列{a n}中,对所有的正整数n都成立,令n=6得,把a7代入即可解得a6,依此类推解得a5.解答:解:∵数列{a n}中,对所有的正整数n都成立,∴令n=6得,∵,∴,解得a6=.令n=5,得,∴,解得a5=1.故选B.点评:正确理解数列的递推公式和递推关系是解题的关键.9.(3分)在数列1,1,2,3,5,8,x,21,34,55中,x等于()A.11 B.12 C.13 D.14考点:数列的概念及简单表示法.专题:计算题.分析:从已知数列观察出特点:从第三项开始每一项是前两项的和即可求解解答:解:∵数列1,1,2,3,5,8,x,21,34,55 设数列为{a n}∴a n=a n﹣1+a n﹣2(n>3)∴x=a7=a5+a6=5+8=13故选C点评:本题考查了数列的概念及简单表示法,是斐波那契数列,属于基础题.10.(3分)在数列{a n}中,,则a5=()A.B.C.D.考点:数列的概念及简单表示法.专题:计算题.分析:利用递推关系式依次直接求出数列的第五项即可.解答:解:在数列{a n}中,,所以a2=,a3=,,.故选A.点评:本题是基础题,考查数列的递推关系式的应用,考查计算能力.11.(3分)600是数列1×2,2×3,3×4,4×5,…的第()项.A.20 B.24 C.25 D.30考点:数列的概念及简单表示法.专题:等差数列与等比数列.分析:由数列1×2,2×3,3×4,4×5,…通过观察可得通项公式a n=n(n+1),令n(n+1)=600,解出即可.解答:解:由数列1×2,2×3,3×4,4×5,…可得通项公式a n=n(n+1),令n(n+1)=600,∵24×25=600,∴n=24.故选B.点评:由数列1×2,2×3,3×4,4×5,…通过观察可得通项公式a n=n(n+1)是解题的关键.12.(3分)数列﹣1,,﹣,,…的一个通项公式是()A.3(1)()21nnn nan-+=+B.(1)(3)21nnn nan-+=+C.2(1)[(1)1]21nnnan-+-=-D.(1)(2)21nnn nan-+=+考点:数列递推式.专题:计算题.分析:采用特殊值法来求解.取n=1代入即可.解答:解:因为这是一道选择题,可以采用特殊值法来求解.取n=1代入,发现只有答案D成立,故选D.点评:由于选择题自身的特点是只要答案,不要过程,所以在做能用数代入的题目时,可以直接代入求解,把过程简单化.13.(3分)一个数列{a n},其中a1=3,a2=6,a n+2=a n+1﹣a n,那么这个数列的第五项是()A.6B.﹣3 C.﹣12 D.﹣6考点:数列的概念及简单表示法.专题:计算题.分析:利用递推关系式,分别计算a3=3,a4=﹣3,a5=﹣6即可.解答:解:由题意,a3=6﹣3=3,a4=3﹣6=﹣3,a5=﹣3﹣3=﹣6,故选D.点评:本题主要考查递推关系式的运用,属于基础题.14.(3分)下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.a n=n2﹣n+1 B.a n=C.a n=D.a n=考点:数列递推式.专题:规律型.分析:由图中所给的星星个数:1,1+2,1+2+3,…,1+2+3+…+n;得出数列第n项,即通项公式.解答:解析:从图中可观察星星的构成规律,n=1时,有1个;n=2时,有3个;n=3时,有6个;n=4时,有10个;∴a n=1+2+3+4+…+n=.答案:C点评:这是一个简单的自然数求和公式,由观察得出猜想,一般不需要证明.考查学生的观察猜想能力.15.(3分)已知数列,则是这个数列的()A.第六项B.第七项C.第八项D.第九项考点:等差数列与等比数列的综合;数列的概念及简单表示法.专题:规律型.分析:本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式a n2=2+(n﹣1)×3=3n﹣1=20,得解,n=7解答:解:数列,各项的平方为:2,5,8,11,…∵5﹣2=11﹣8=3,即a n2﹣a n﹣12=3,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.点评:本题通过观察并利用构造法,构造了新数列{a n2}为等差数列,从而得解,构造法在数列中经常出现,我们要熟练掌握.16.(3分)下面对数列的理解有四种:①数列可以看成一个定义在N*上的函数;②数列的项数是无限的;③数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式是唯一的.其中说法正确的序号是()A.①②③B.②③④C.①③D.①②③④考点:数列的概念及简单表示法.分析:①因为a n=f(n)(n∈N*),所以数列可以看成一个定义在N*上的函数;②数列的项数可以是有限的,例如1,2,3这3个数组成一个数列;③由①可知:数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式不是唯一的,例如数列1,0,1,0,…,可用或,(n∈N*),两种形式表示.解答:解:①∵a n=f(n)(n∈N*),∴数列可以看成一个定义在N*上的函数,故正确;②数列的项数可以是有限的,如1,2,3这3个数组成一个数列,故不正确;③∵a n=f(n)(n∈N*)或(n∈A⊆N*),∴数列若用图象表示,从图象上看都是一群孤立的点,正确;④数列的通项公式不是唯一的,如数列1,0,1,0,…,可用或,(n∈N*),故不正确.综上可知:只有①③正确.故选C.点评:正确理解数列的定义、数列与函数的关系是解题的关键.二、填空题17.(3分)数列7,77,777,7777,77777,…的通项公式为.考点:归纳推理;数列的概念及简单表示法.专题:探究型.分析:观察发现7=,77=,777=,…从而归纳出通式得到答案解答:解:由于7=,77=,777=,7777=,77777=…故数列7,77,777,7777,77777,…的通项公式为故答案为点评:本题考查归纳推理,解答的关键是对所给的项进行变形,从而归纳出通式,归纳推理是发现规律的一种常用的推理方式,要好好掌握18.(3分)数列{a n}中,,那么150是其第16项.考点:函数的概念及其构成要素.专题:函数的性质及应用.分析:由数列的通项公式,令其等于150,可解n的值,即为第几项.解答:解:由数列的特点可知:通项公式,令n2﹣7n+6=150,可解得n=16或n=﹣9(舍去),故150是第16项,故答案为:16.点评:本题考查等差数列的通项公式,正确求解数列的通项公式是解决问题的关键,属基础题.19.(3分)已知,则a5=.考点:数列递推式.专题:计算题.分析:根据数列的递推依次求得a2,a3,a4,则答案可求.解答:解:依题意可知a2=1+=2,a3=1+=,a4=1+=,a5=1+=故答案为点评:本题主要考查了数列的递推式.属基础题.20.(3分)在数列{a n}中,a1=a,以后各项由递推公式给出,写出这个数列的前4项:a、、、,并由此写出一个通项公式a n=.考点:函数的概念及其构成要素.专题:规律型;函数的性质及应用.分析:可根据递推公式写出数列的前4项,然后分析每一项与该项的序号之间的关系,归纳概括出a n与n 之间的一般规律,从而作出猜想,写出满足前4项的该数列的一个通项公式.解答:解:∵a1=a,a n+1=,∴a2=,a3===,a4===.观察规律:a n=.故答案为:a,,,;.点评:从特殊的事例,通过分析、归纳、抽象总结出一般规律,再进行科学地证明,这是创新意识的具体体现,这种探索问题的方法,在解数列的有关问题中经常用到,应引起足够的重视.21.(3分)已知数列{a n}的通项公式,它的前8项依次为1、3、、7、、11、、15.考点:数列的概念及简单表示法.专题:计算题;点列、递归数列与数学归纳法.分析:由题意,根据数列的通项公式依次对n赋值即可解出它的前八项解答:解:因为数列{a n}的通项公式,所以它的前8项依次为1、3、、7、、11、、15故答案为1、3、、7、、11、、15点评:本题考查数列的简单表示,对n赋值,代入相应的解析式进行求值是解答的关键22.(3分)已知f(1)=2,f(n+1)=(n∈N*),则f(4)=.考点:函数恒成立问题;函数的值.专题:计算题;函数的性质及应用.分析:由题设可看出,直接根据所给的恒成立的等式依次求出n=2,3,4时的函数值,即可得到正确答案解答:解:因为f(1)=2,f(n+1)=(n∈N*)恒成立,所以f(2)=,f(3)=,f(4)==故答案为点评:本题考查函数恒成立问题,列举法依次求出出n=2,3,4时的函数值是解答此类题的主要方式三、解答题23.数列{a n}中,已知a n=(﹣1)n n+a(a为常数),且a1+a4=3a2,求a100.考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:由已知a n=(﹣1)n n+a(a为常数),可得a1,a2,a3,a4用a表示,再利用a1+a4=3a2,即可解得a,从而得出a100.解答:解:由已知a n=(﹣1)n n+a(a为常数),可得a1=a﹣1,a2=a+2,a3=a﹣3,a4=a+4.∵a1+a4=3a2,∴a﹣1+a+4=3(a+2),解得a=﹣3.∴.∴.点评:利用已知关系式分别取n=1,2,3,4求出a是解题的关键.24.已知数列{a n}的通项公式a n=5+3n,求:(1)a7等于多少;(2)81是否为数列{a n}中的项,若是,是第几项;若不是,说明理由.考点:等差数列的性质.专题:等差数列与等比数列.分析:(1)直接将n=7代入即可;(2)利用通项公式解出n是否是正整数即可得到答案.解答:解:(1)∵数列{a n}的通项公式a n=5+3n∴a7=5+3×7=26(2)假设81是数列{a n}中的项,则81=5+3n∴n=∵n∈N*所以81不是数列{a n}中的项.点评:此题考查了等差数列的性质,属于基础性的题目.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.下列有关数列的说法正确的是( )
①同一数列的任意两项均不可能相同;
②数列-1,0,1 与数列 1,0,-1 是同一个数列;
③数列中的每一项都与它的序号有关.
A.①②
B.①③
C.②③
D.③
[答案] D
[解析] ①是错误的,例如无穷个 3 构成的常数列 3,3,3,…的各项都是 3;②是错误的,
∴an=2n-1+1.
11
22
33
44
(3)a1=2=11+1,a2=5=22+1,a3=10=32+1,a4=17=42+1…,
n
∴an=n2+1.
2
4
8
16
(4)a1=1=2,a2=3,a3=2=4,a4= 5 …,
2n
∴an=n+1.
1
1
11
1
1
11
(5)a1=-3=-1 × 3,a2=8=2 × 4,a3=-15=-3 × 5,a4=24=4 × 6, 1
2n [答案] an=2n-12n+1
2 2 4 2 × 2 6 2 × 3 8 2 × 4 10 2 × 5 [解析] 3=1 × 3,15=3 × 5,35=5 × 7,63=7 × 9,99=9 × 11,…,∴an=
2n 2n-12n+1.
8.已知数列 3,7,11,15,19,…,那么 3 11是这个数列的第________项.
[答案] A [解析] 据题意,由关系式 an+1=f(an)得到的数列{an},满足 an+1>an,即该函数 y=f(x) 的图象上任一点(x,y)都满足 y>x,结合图象,只有 A 满足,故选 A. 3.若数列的前 4 项分别为 2,0,2,0,则这个数列的通项公式不能是( ) A.an=1+(-1)n+1 B.an=1-cosnπ
(2)2,3,5,9,17,33,…;
12 3 4 5 (3)2,5,10,17,26,…;
4 16 (4)1,3,2,5 ,…;
11 1 1 (5)-3,8,-15,24,…;
(6)2,6,12,20,30,….
1 [解析] (1)符号规律(-1)n,分子都是 1,分母是 n2+1,∴an=(-1)n·n2+1. (2)a1=2=1+1,a2=3=2+1,a3=5=22+1, a4=9=23+1,a5=17=24+1,a6=33=25+1,
A.第 6 项
B.第 7 项
C.第 10 项
D.第 11 项
[答案] B
[解析] 调整为: 2,5,8,11,可见每一项都含有根号.且被开方数后一项比前一项 多 3,又 2 5= 20,∴应是 11后的第 3 项,即第 7 项,选 B.
二、填空题
2 4 6 8 10 7.3,15,35,63,99,…的一个通项公式是________.
nπ C.an=2sin2 2 D.an=1+(-1)n-1+(n-1)(n-2) [答案] D
[解析] 当 n=1 时,D 不满足,故选 D.
4.函数 f(x)满足 f(1)=1,f(n+1)=f(n)+3 (n∈N*),则 f(n)是( )
A.递增数列
B.递减数列
一、选择题
1.数列{an}满足 a1=1,an+1=2an-1(n∈N*),则 a1000=( )
A.1
B.1999
C.0
D.-1
[答案] A
[解析] a1=1,a2=2×1-1=1,a3=2×1-1=1,a4=2×1-1=1,…,可知 an=1(n∈N*).
2.对任意的 a1∈(0,1),由关系式 an+1=f(an)得到的数列满足 an+1>an(n∈N*),则函数 y=f(x)的图象是( )
∴an=(-1)n·nn+2.
(6)
a1=2=1×2,a2=6=2×3,a3=12=3×4,a4=20=4×5,a5=30=5×6,∴an=n(n+1).
10.已知数列{an}中,a1=2,an+1=an+n,求 a5.
[解析] ∵a1=2,an+1=an+n, ∴当 n=1 时,a2=a1+1=2+1=3; 当 n=2 时,a3=a2+2=3+2=5; 当 n=3 时,a4=a3+3=5+3=8; 当 n=4 时,a5=a4+4=8+4=12,即 a5=12.
A.18
B.21
C.25
D.30
[答案] D
[解析] 依次令 n(n+1)=18,21,25 和 30 检验.有正整数解的便是,知选 D.
n-1
4.已知数列{an}的通项公式是 an=n+1,那么这个数列是( )
A.递增数列
B.递减数列
C.常数列
D.摆动数列
[答案] A
n-1
2
[解析] an=n+1=1-n+1,随着 n 的增大而增大.
5.数列 1,-3,5,-7,9,…的一个通项公式为( )
A.an=2n-1 C.an=(-1)n(2n-1)
B.an=(-1)n(1-2n) D.an=(-1)n(2n+1)
[答案] B
[解析] 当 n=1 时,a1=1 排除 C、D;当 n=2 时,a2=-3 排除 A,故选 B. 6.已知数列 2,5,2 2,11,…,则 2 5可能是这个数列的( )
[答案] 25
[解析] 观察可见,数列中的后一项被开方数比前一项大 4,a1= 3,a2= 3+4,a3= 3+4 × 2,a4= 3+4 × 3,∴an= 3+4n-1= 4n-1,
令 4n-1=3 11得 n=25,∴a25=3 11. 三、解答题
9.写出下列数列的一个通项公式.
11
11
(1)-1+1,4+1,-9+1,16+1,…;
数列-1,0,1 与数列 1,0,-1 各项的顺序不同,即表示不同的数列;③是正确的,故选 D.
2.下面四个结论:
①数列可以看作是一个定义在正整数集(或它的有限子集{1,2,3…,n})上的函数.
②数列若用图象表示,从图象上看都是一群孤立的点.
③数列的项数是无限的.
④数列通项的表示式是唯一的.
其中正确的是( )
A.①②
B.①②③
C.②③
D.①②③④
[答案] A
[解析] 数列的项数可以是有限的也可以是无限的.数列通项的表示式可以不唯一.例
nπ
n+3π
如数列 1,0,-1,0,1,0,-1,0,…的通项可以是 an=sin 2 ,也可以是 an=cos 2 等等.
3.已知 an=n(n+1),以下四个数中,哪个是数列{an}中的一项( )