2007年第五届五年级希望杯第1试及答案
(完整)最新五年级希望杯近几年试题
(完整)最新五年级希望杯近⼏年试题2010年第⼋届⼩学“希望杯”全国数学邀请赛五年级第1试试题1、计算 10.37×3.4+1.7×19.26=。
2、已知1.08÷1.2÷2.3=10.8÷□,其中□表⽰的数是。
3、计算:1.825gg-0.8g=。
(8、5、8的上⾯有循环点)4、有三个⾃然数a ,b ,c ,已知b 除以a ,得商3余3;c 除以a ,得商9余11。
则c b ,得到的余数是。
5、已知300=2×2×3×5×5,则300⼀共有不同的约数。
6、在99个连续的⾃然数中,最⼤的数是最⼩的数的25.5倍,那么这99个⾃然数的平均数是。
7、要往码头运28个同样⼤⼩的集装箱,每个集装箱的质量是1560千克。
现安排⼀辆载重6吨的卡车运送这些集装箱,卡车车厢的⼤⼩最多可以容纳5个集装箱,则这辆卡车⾄少需往返趟。
8、⼩晴做道菜:“⾹葱炒蛋”,需7道⼯序,时间如下:洗葱,切葱花打蛋搅拌蛋液和葱花洗锅烧热锅烧热油烧菜1分钟半分钟 1分钟半分钟半分钟半分钟 2分钟做好这道菜⾄少要分钟。
9、⼀项特殊的⼯作必须⽇夜有⼈看守,如果安排8⼈轮流值班,当值⼈员为3⼈,那么,平均每⼈每天⼯作⼩时。
10、甲、⼄两商店中某商品的定价相同。
甲商店按定价销售这种商品,销售额是7200元;⼄商店按定价的⼋折销售,⽐甲商店多售出15件,销售额与甲商店相同。
则甲商店售出件这种商品。
11、夜⾥下了⼀场⼤雪,早上,⼩龙和爸爸⼀起步测花园⾥⼀条环形⼩路的长度,他们从同⼀点同向⾏⾛。
⼩龙每步长54厘⽶,爸爸每步长72厘⽶,两⼈各⾛完⼀圈后⼜都回到出发点,这时雪地上只留下60个脚印。
那么这条⼩路长⽶。
12、⼀艘客轮在静⽔中的航⾏速度是26千⽶/时,往返于A 、B 两港之间,河⽔的流速是6千⽶/时。
如果客轮在河中往返4趟公⽤13⼩时,那么A 、B 两港之间相距千⽶。
(完整word版)第五届希望杯六年级一试试题+答案详解
第五届小学“希望杯”全国数学邀请赛六年级 第1试2007年3月18日 上午8:30至10:00亲爱的小朋友们,欢迎你参加第五届小学“希望杯”全国数学邀请赛!你将进入一个新颖、有趣、有挑战性的数字天地,将会留个一个难忘的经历,好,我们开始前进吧!……以下每题6分,共120分。
1. 已知31::1.2,:0.75:,:____.(22a b b c c a ===那么写成最简单的整数比) 2. 11111111(1)(1)(1)(1)(1)(1)(1)(1)23456789_____.0.10.20.30.40.50.60.70.80.9--------=++++++++ 3. 在下面的算式□中填入四个运算符号+、-、⨯、÷、(每个符号只填一次),则计算结果最大是_______.1□2□3□4□54. 在图1所示的和方格表中填入合适的数,使用权每行、每列以及每条对角线上的三个数的和相等。
那么标有“★”的方格内应填入的数是_______.5. 过年时,某商品打八折销售,过完年,此商品提价________%可恢复原来的价格。
6.如图2是2003年以来我国日石油需求量和石油供应量的统计图。
由图可知, 我国日石油需求量和日石油需求量增长更______(填“大”或“小”),可见我国对进口石油的依赖程度不断定_______(填“增加”或“减小”)。
7.小红和小明帮刘老师修补一批破损图书。
根据图3中信息计算,小红和小时一共修补图书______本。
8.一项工程,甲单独完成需要10天,乙单独完成需要15天,丙单独完成需20天,古代合作3天后,甲有其它任务而退出,剩下乙、丙继续工作直至完工。
完成这项工程共用______天。
9.甲、乙两车分别从A 、B 两地同时相向开出,甲车的速度是50千米/时,乙车的速度是40千米/时,当甲车驶过A 、B 距离的13多50千米时,与乙车相遇.A 、B 两地相距______千米。
希望杯奥赛-小学五年级
第四届小学“希望杯”全国数学邀请赛五年级 第1试2006年3月19日 上午8:30至10:00 得分以下每题5分,共120分1.2006+200.6+20.06+2.006+994+99.4+9.94+0.994=_________.2.2006×2008×112006200720072008⎛⎫+ ⎪⨯⨯⎝⎭=_________. 3. ..0.30.80.2÷+=____________.(结果写成分数形式)4.规定:A*B=3A+2B,如4*5=3×4+2×5,那么,B*A=_________.5.如果a=20052006,b=20062007,那么a,b 中较大的数是__________. 6.1+2+3+…+2006被7除,余数是___________.7.□、○分别代表两个数,并且□-○=10,2-=-- ,那么□=__________. 8.某品牌的家用电冰箱的冷冻室的温度是零下18°C,冷藏室比冷冻室的温度高22°C,则冷藏室的温度是________°C.9.如果某商品涨价20%,销售量将减少16,那么涨价后的销售金额和涨价前的销售金额相比较,_________.(填“变得大了”、“变得小了”或“没有变化”)10.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
11.和为15的两个非零自然数共有_______对。
12.大小两个数的和是2026.06,将较小数的小数点向右移动两位恰好是大数,则大数减小数等于____________。
13.用10根火柴棒首尾顺次连接成一个三角形,能接成不同的三角形有__________个。
14.如图1,三个图形的周长相等,则a :b :c=__________。
2007第五届希望杯-五年级100题
行。当小圆上的蚂蚁爬了
圈 时 ,两 只 蚂 蚁 第 一
次相距最远。
图 17
44.通 讯 兵 骑 一 辆 摩 托 车 行 驶 3000 千 米 ,除 了 车
上 的 2 只 轮 胎 外 还 有 一 只 备 用 胎 ,要 使 3 个 轮 胎 磨 损 程 度 相 同 ,应
有规 律 地 把 3 只 轮 胎 轮 换 使 用,则 到 达 终 点 时,每 只 轮 胎 行 驶
通告
本 资 料 供 参 加 第 五 届 小 学 “希 望 杯 ”全 国 数学邀请赛的五年级师生作为赛前练习及赛 后教 学 参 考 之 用,是 由 “希 望 杯”全 国 数 学 邀 请 赛 组 委 会 和《数 理 天 地 》杂 志 社 共 同 出 资 编 印并免费发至参加本届邀请赛的每位师生。
本资料 为 非 卖 品,任 何 单 位 和 个 人 均 不 得翻印或 销 售 此 资 料,也 不 得 以 任 何 形 式(包 括 网 络 )转 载 。
始,每个数都是它前面两个数的平均数,则第 2007 个 数 的 整 数 部
分是
。
13.把1,2,3,4,……,198这 198 个 自 然 数 平 均 分 成 三 组,使
得 这 三 组 的 平 均 数 相 等 ,那 么 这 三 个 平 均 数 的 和 是
.
14.某个五位数与 20 万的和的 3 倍,与这 个 五 位 数 的 右 端 添
序走(要求 只 能 沿 着 水 平 或 竖 直 方 向 走 ),一 共 有
种不同的走法。
29.如图4,一个长方形 ABCD 被 一 条 线
段DE 分成一个三角形和一个梯形,它们的面
积相 差 21 平 方 厘 米,则 梯 形 的 上 底 长 是
厘米。
历届(第1-23届)希望杯数学竞赛初一七年级真题及答案
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题......................003-0052.希望杯第一届(1990年)初中一年级第二试试题......................010-0123.希望杯第二届(1991年)初中一年级第一试试题...... 0错误!未定义书签。
-0204.希望杯第二届(1991年)初中一年级第二试试题...... 0错误!未定义书签。
-0265.希望杯第三届(1992年)初中一年级第一试试题...... 0错误!未定义书签。
-0326.希望杯第三届(1992年)初中一年级第二试试题...... 0错误!未定义书签。
-0407.希望杯第四届(1993年)初中一年级第一试试题...... 0错误!未定义书签。
-0508.希望杯第四届(1993年)初中一年级第二试试题...... 0错误!未定义书签。
-0589.希望杯第五届(1994年)初中一年级第一试试题...... 0错误!未定义书签。
-06610.希望杯第五届(1994年)初中一年级第二试试题..... 0错误!未定义书签。
-07311.希望杯第六届(1995年)初中一年级第一试试题..... 0错误!未定义书签。
-080 12希望杯第六届(1995年)初中一年级第二试试题..... 0错误!未定义书签。
-08713.希望杯第七届(1996年)初中一年级第一试试题..... 0错误!未定义书签。
-09814.希望杯第七届(1996年)初中一年级第二试试题....... 错误!未定义书签。
-10515.希望杯第八届(1997年)初中一年级第一试试题....... 错误!未定义书签。
-11316.希望杯第八届(1997年)初中一年级第二试试题....... 错误!未定义书签。
-12017.希望杯第九届(1998年)初中一年级第一试试题....... 错误!未定义书签。
希望杯第一届至第十届五年级试题与答案
10.三个武术队进行擂台赛,每队派 6 名选手,先由两队各出 1 名选手上擂台比武,负者下台,不再上 台,胜者继续同其它队的一位选手比武,负者下台,和胜者不同队的双一位选手上台……继续下去。当有 两个队的选手全部被击败时,余下的队即获胜。这时最少要进行_____场比武。
1 6
11.两种饮水器若干个,一种容量 12 升水,另一种容量 15 升水。153 升水恰好装满这些饮水器,其中 15 升容量的_____个。
14.小光前天登录到数理天地网站 ,他在首页看到"您是通过什么方式知道本网站的?" 调查,他查看了投票结果,发现投票总人数是 500 人,"杂志"项的投票率是 68%。当他昨天再次登录数理 天地网站时,发现"杂志"项的投票率上升到 72%,则当时的投票总人数至少是_____ 。
的四位数是
。
8. a , b , c 都是质数,并且 a + b =33, b + c =44, c + d =66,那么 d =
,
BA
9.如果A◆B= A B ,那么1◆2-2◆3-3◆4-…-2002◆2003-2003◆2004=
。
10.用1-8这八个自然数中的四个组成四位数,从个位到千位的的数字依次增大,且任意两个数字的
1.计算
_______ 。
2.将 1、2、3、4、5、6 分别填在右图中的每个方格内,使折叠成的正方体中对面数字的 和相等。
3.在纸上画 5 条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:
景区
千岛湖 张家界 庐山 三亚 丽江 大理 九寨沟 鼓浪屿
气温(℃) 11/1
算英语,平均分是91分。小永三门功课的平均成绩是
“希望杯”全国数学大赛小学五年级模拟试卷附答案[B]
“希望杯”全国数学大赛决赛模拟试卷附答案(小五) (时间:90分钟 满分:120分)一、填空题。
(每题6分,共72分。
) 1.计算:1+12 +22 +12 +13 +23 +33 +23 +13 +…+12006 +22006 +…+20062006 +…+22006 +12006=____________。
2.8+88+888+…+88…8的和的个位上的数字是____________。
3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。
4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。
最后橘子分完了,苹果还剩下12个。
那么一共分给了____________名小朋友。
5.有这样一种算式:三个不同的自然数相乘,积是100。
这样的算式有____________种。
(交换因数位置的算同一种。
)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。
7.一天,小慧和刘老师一起谈心。
小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。
”刘老师今年的年龄是____________岁。
8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。
他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。
9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。
已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。
那么前3名同学的总分比后3名同学的总分多____________分。
10.在右图中,已知正方形ABCD 的面积是正方形EFGH 面积的4倍,正方形AMEN 的周长是4厘米,那么正方形ABCD 的周长是____________厘米。
希望杯试题分析
从上表可以看出, 题型主要以计算, 行程工程问题, 基本应用题, 几何等基本问题为主,
并没有太多复杂的问题,可见,希望杯是非常重视基础内容的。
一、希望杯必考专题之一--------计算问题
1、 计算题的概述: 计算题是考察学生的计算能力的技巧,如考察使用乘法分配律的应用、分数的拆分、分组巧 算、高斯求和公式等。 2、 真题回放: (1)2008×2006+2007×2005-2007×2006-2008×2005=______。(2007 四年级邀请赛 第 1 试) 分析:此题考察学生的分组巧算和乘法结合律的应用。 解:原式=2008×2006-2007×2006+2007×2005-2008×2005 =(2008-2007)×2006+(2007-2008)×2005 =(2008-2007)×2006-(2008-2007)×2005 =(2008-2007)×(2006-2005) =1×1 =1 (2) ( 2005 + 2006 + 2007 + 2008 + 2009 + 2010 + 2011) ÷ 2008 = ____(2008 年四年级 邀请赛第 l 试) 分析:此题考察了学生的公式应用,可用等差数列求和公式或者中项定理都可以求出
• •
循环节的数位有 6 位,首位是 0,末尾是 9 方法二:令 M= 0. 2 4 ,N= 2. 814 ,则可以看出 M 是两位循环节,N 是三位循环节,所以可以 因[2, 3]=6 可取 12 位循环部分找规律, M=0.2424242424242424……, N=2.184184184184…… 则 A=3.057239057239……所以每个循环节的数位有 6 位,首位是 0,末尾是 9
希望杯数学竞赛第一届至十历届四年级全部试题与答案(打印版)
球的正上方悬挂有相同的灯泡。A 灯泡位置比 B 灯泡位置低。当灯泡点亮时,受
光照部分更多的是
球。
18.用 20 厘米长的铜丝弯成边长是整数的长方形,这样的长方形不只一种。 其中,面积最小的,长______ 厘米,宽______ 厘米;面积最大的长方形的长 ______ 厘米,宽______ 厘米。
千米。
13.甲、乙、丙三人中只有 1 人会开汽车。甲说:“我会开。”乙说:“我
不会开。”丙说:“甲不会开。”三人的话只有一句是真话。会开车的是
。
14.为了支援西部,1 班班长小明和 2 班班长小光带了同样多的钱买了同一
种书 44 本,钱全部用完,小明要了 26 本书,小光要了 18 本书。回校后,小明
第一届小学“希望杯”全国数学邀请赛(第 1 试)
四年级 第 1 试
1.下边三个图中都有一些三角形,在图 A 中,有
在图 C 中,有
个。
个;在图 B 中,有
个;
2.写出下面等式右边空白处的数,使等式能够成立:
0.6+0.06+0.006+…=2002÷
。
3.观察 1,2,3,6,12,23,44,x,164 的规律,可知 x =
目录
1. 第一届小学“希望杯”全国数学邀请赛(第 1 试) ........................................2 2. 第一届小学“希望杯”全国数学邀请赛(第 2 试) ........................................5 3. 第二届小学“希望杯”全国数学邀请赛(第 1 试) ........................................7 4. 第二届小学“希望杯”全国数学邀请赛(第 2 试) ......................................10 5. 第三届小学“希望杯”全国数学邀请赛(第 1 试) ......................................13 6. 第三届小学“希望杯”全国数学邀请赛(第 2 试) ......................................16 7. 第四届小学“希望杯”全国数学邀请赛(第 1 试) ......................................18 8. 第四届小学“希望杯”全国数学邀请赛(第 2 试) ......................................21 9. 第五届小学“希望杯”全国数学邀请赛(第 1 试) ......................................23 10. 第五届小学“希望杯”全国数学邀请赛(第 2 试) ......................................26 11. 第六届小学“希望杯”全国数学邀请赛(第 1 试) ......................................28 12. 第六届小学“希望杯”全国数学邀请赛(第 2 试) ......................................30 13. 第七届小学“希望杯”全国数学邀请赛(第 1 试) ......................................32 14. 第七届小学“希望杯”全国数学邀请赛(第 2 试) ......................................36 15. 第八届小学“希望杯”全国数学邀请赛(第 1 试) ......................................39 16. 第八届小学“希望杯”全国数学邀请赛(第 2 试) ......................................41 17. 第九届小学“希望杯”全国数学邀请赛(第 1 试) ......................................44 18. 第九届小学“希望杯”全国数学邀请赛(第 2 试) ......................................46 19. 第十届小学“希望杯”全国数学邀请赛(第 1 试) ......................................48 20. 第十届小学“希望杯”全国数学邀请赛(第 2 试) ......................................50 21. 第一届---第八届“希望杯”全国数学邀请赛参考答案………………………53
四年级计算页码问题学生版
页码问题页码问题主要是指一本书的页数与所有的数字之间的关系的一类应用题。
数字又称数码,它的个数是有限的。
在十进制中,有0、1、2、3、4、5、6、7、8、9共十个数字(数码)。
页码又称页数,它是由数字(数码)组成的,一个数字(数码)组成一位数、两个数字(数码)组成两位数、三个数字(数码)组成三位数⋯⋯,页码(页数)的个数是无限的。
在解决这类问题时,在审题、解题过程中要特别注意并加以区别。
一本书的页码有以下规律:1、同一张纸的正反面页码是先奇后偶的两个相邻自然数。
2、任意翻开的两页页码是先偶后奇的两个相邻自然数。
3、任意翻开的两页的页码和除以4 余1。
4、同一张纸的页码和除以4 余3 。
区分“数”和“数字(数码)” 同一张纸的正反面页码是先奇后偶的两个相邻自然数任意翻开的两页页码是先偶后奇的两个相邻自然数页码问题任意翻开的两页的页码和除以 4余 1同一张纸的页码和除以 4余 3 知道页数求页码数知道页码数求页数例 1】 ( 2007年第六届“小机灵杯”复赛 C 卷)小刚从一本书的 54页阅读到 67页,苏明从 95 页阅读 到 135页,小强从 180页阅读到 237 页,他们总共阅读了 页。
例 2】 柯南有一本旧书,正文 182页。
由于年代久远,书的 16 页至 27 页, 62页至 83页都被虫蛀了。
这 本书正文中没有被虫蛀的有多少页?例 3】 图书馆中有一本破旧不堪的书,共 208页。
书的 4页至 8页, 111页至 123页都因时间久远而被虫蛀掉了。
这本书一共被蛀了多少页纸?例 4】 (第 6届“小机灵杯”邀请赛第 5题 B 卷)一本书有 185页,编这本书的页码一共要用多少个数 字?例 5 】 一本科幻小说共 320页,请问编印这本科幻小说共用了多少个数字? 基础知识例 6】(2004年“均瑶杯”初赛)给一本书编页码一共用了_____________________ 666个数字,这本书一共页。
希望杯五年级奥数试卷【含答案】
希望杯五年级奥数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 27答案:B2. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 29B. 30C. 31D. 32答案:D3. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形答案:A4. 一个正方形的边长是4厘米,那么它的面积是多少平方厘米?A. 8B. 16C. 32D. 64答案:B5. 下列哪个数是偶数?A. 101B. 102C. 103D. 104答案:D二、判断题(每题1分,共5分)1. 2的倍数都是偶数。
(正确)2. 所有的等差数列都是递增的。
(错误)3. 两个奇数相加的和是偶数。
(正确)4. 任何数乘以0都等于0。
(正确)5. 所有的质数都是奇数。
(错误)三、填空题(每题1分,共5分)1. 1+2+3++100的和是______。
(5050)2. 一个等边三角形的周长是15厘米,那么它的边长是______厘米。
(5)3. 两个质数相乘得到的数是______数。
(合)4. 一个数的因数个数是______。
(有限的)5. 0的阶乘是______。
(1)四、简答题(每题2分,共10分)1. 请列举出前5个质数。
答案:2,3,5,7,112. 请写出等差数列的通项公式。
答案:an = a1 + (n 1)d3. 请解释什么是偶数。
答案:偶数是能被2整除的整数。
4. 请解释什么是因数。
答案:因数是能整除一个数的数。
5. 请解释什么是等边三角形。
答案:等边三角形是三边长度相等的三角形。
五、应用题(每题2分,共10分)1. 一个数列的前三项分别是2,4,6,那么第10项是多少?答案:第10项是20。
2. 一个正方形的边长是6厘米,那么它的面积是多少平方厘米?答案:36平方厘米。
3. 请列举出10以内的所有质数。
答案:2,3,5,7。
希望杯第4-11届小学六年级全国数学竞赛题及解答
2006年第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×()=________。
2.900000-9=________×99999。
3.=________。
4.如果a=,b=,c=,那么a,b,c中最大的是________,最小的是________。
5.将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了______%。
6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字之和的五分之三是____。
9.将一个数A的小数点向右移动两位,得到数B。
那么B+A是B-A的________倍。
(结果写成分数形式)10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l的小正方体。
则三个面涂漆的小正方体有________块。
13.如图,∠AOB的顶点0在直线l上,已知图中所有小于平角的角之和是400度,则∠AOB=________度。
14.如图,桌面上有A、B、C三个正方形,边长分别为6,8,10。
B的一个顶点在A的中心处,C的一个顶点在B的中心处,这三个正方形最多能盖住的面积是________。
三年级还原问题
仙摇摇头说: “你们算算吧! 把我的年龄加上 75,再除以 5,然后减去 15,再乘以 10,恰好是 2000
岁. ”小朋友,你知道这位神仙现在有多少岁吗?
【考点】计算中的还原问题
【难度】 2 星 【题型】解答
【关键词】可逆思想方法
【 解 析】 这 就是一个还原问题,可以用倒推法解决.从结果
“2000”逐步倒着推,没乘 10 时是多少?没减
⑷
现在的年龄加上 75 是 1075,如果不加 75,这个数是: 1075 75 1000
也就是神仙现在的年龄是 1000 岁.
验算:按原题顺序进行列式计算,看最后是否等于
2000 ,如果等于 2000,则解题正确.
1000 75 1075 , 1075 5 215 , 215 15 200 , 200 10 2000 .
【 巩 固】 假 设有一种计算器,它由 A、 B、 C、 D 四种装置组成,将一个数输入一种装置后会自动输出另一 个数。各装置的运算程序如下: 装置 A:将输入的数加上 6 之后输出;装置 B:将输入的数除以 2 之后输出;装置 C:将输入的数减去 5 之后输出;装置 D:将输入的数乘以 3 之后输出。这些 装置可以连接, 如在装置 A 后连接装置 B,就记作: A→B。例如:输人 1 后,经过 A→B,输出 3.5。 (1)若经过 A→B→C→D,输出 120,则输入的数是多少 ?(2)若经过 B→D→A→C,输出 13,则输入的 数是多少 ?
+3
某数
-5
×4
16,应用逆推法,由结果
÷6
16
综合算式为: 16 6 4 5 3 96 4 5 3 24 5 3 29 3 26 【答案】 26
Page 2 of 12
第5届希望杯1试答案
第五届小学“希望杯”全国数学邀请赛四年级第1试2007年3月18日上午8:30至10:00亲爱的小朋友们,欢迎你参加第五届小学“希望杯”全国数学邀请赛!你将进入一个新颖、有趣、有挑战性的数字天地,将会留个一个难忘的经历,好,我们开始前进吧!……以下每题6分,共120分1.1只青蛙1张嘴,2只眼睛4条腿;2只青蛙2张嘴,4只眼睛8条腿;……只青蛙张嘴,32只眼睛条腿。
2.在113379902,113379904,113379906,113379908这四个数中,恰好等于六个22的乘积的数是。
3.2008×2006+2007×2005-2007×2006-2008×2005=。
4.除法算式□÷□=20……8中,被除数最小等于。
5.用数字1,2,3可以组成6个没有重复数字的三位数,这6个数的和是。
6.图1中,不含“A”的正方形有个。
7.把0,1,2,3,4,5,6,7,8,这九个数字填入图2的九宫格中,把每行、每列以及没条对角线上的三个数相加,得到8个和,这8个和再相加所得到的和最大是。
8.如图3所示的除法算式中,每个□各代表一个数字,则被除数是。
学习改变命运,思考造就未来。
9.放寒假了,叔叔送给强强一本有许多个故事的书,强强计划每天看同样个数的故事,用20天可看完。
但强强在看书时发现故事很有趣,实际每天比原计划多看3个故事,结果提前4天看完了故事书。
这本故事书一共有个故事。
10.欢欢对乐乐说:“我比你大8岁,2年后,我的年龄是你的年龄的3倍。
”欢欢现在岁?11.琪琪画了一幅画,请爷爷、奶奶、爸爸和妈妈评分。
爷爷的平均分是94分,奶奶和爸爸评分的平均分是90分,爸爸和妈妈评分的平均分是92分,那么爷爷和妈妈评分的平均分是。
分?12.养牛场有2007头黄牛和水牛,其中母牛1105头,黄牛1506头,公水牛200头,那么母黄牛有头。
13.在一段时间里,时针、分钟、秒针转动的圈数之和恰好是1466圈,那么这段时间有= 秒。
希望杯2023数学竞赛五年级一试解析
希望杯2023数学竞赛五年级一试解析一、赛事背景希望杯数学竞赛是一项旨在提高学生数学素养和解决问题能力的竞赛活动,致力于促进学生对数学的兴趣和热爱。
每年都吸引了众多学生参与,展现出了良好的影响力和号召力。
二、目标对象本次解析主要针对参加希望杯数学竞赛的五年级学生,对于初步入门的数学知识和解题方法进行梳理和解析,帮助学生更好地应对竞赛。
三、试题解析1. 题目一:小亮的花园有10米长,6米宽,他要用0.5米宽的砖砌一圈,他需要多少砖?解析:首先计算出花园的周长,即2*(10+6)=32米,然后将周长除以砖的宽度,即32/0.5=64块砖。
2. 题目二:甲、乙两人共有25张邮票,甲有乙的3/5,共有几张邮票?解析:设乙有x张邮票,则甲有3/5*x张邮票,根据题意得出3/5x+x=25,解得x=10,所以甲有15张,乙有10张。
3. 题目三:在1至100中,6的倍数之和与10的倍数之和之差是多少?解析:首先计算出1至100中6的倍数之和为6+12+……+96=6*(1+2+……+16)=6*51*8=2448,然后计算10的倍数之和为10+20+……+100=10*(1+2+……+10)=10*55*5=2750,最后计算差值为2750-2448=302。
四、解题技巧1. 充分利用图形和图表:对于与形状和数量相关的问题,可以绘制简单的图形或图表来帮助理解和解决问题。
2. 善于分析和转化:对于一些复杂的问题,可以尝试分析和转化问题,将大问题分解成小问题来解决。
3. 多做练习:数学是一个需要不断练习的学科,通过多做练习能够提高解题能力和速度。
五、总结希望杯数学竞赛五年级一试的试题涉及到了数学中的基础知识和解题方法,在解题过程中需要学生善于分析、转化问题,灵活运用所学的知识。
希望通过本次解析能够帮助学生更好地理解和应对数学竞赛中的问题,提高数学解题能力。
祝愿参加希望杯数学竞赛的小学生们取得优异的成绩,享受数学学习的乐趣。
小学奥数 数论 数的进制 进制的应用.题库版
1. 了解进制;2. 会对进制进行相应的转换;3. 能够运用进制进行解题一、数的进制1.十进制:我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
2.二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n ,我们有n 0=1。
3.k 进制:一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,22,,八进位制的计数单位是08,18,28,.4.k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a k a k a ---=⨯+⨯++⨯+()十进制表示形式:1010101010n n n n N a a a --=+++;二进制表示形式:1010222n n n n N a a a --=+++; 为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数.5.k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
知识点拨教学目标5-8-2.进制的应用二、进制间的转换:一般地,十进制整数化为k 进制数的方法是:除以k 取余数,一直除到被除数小于k 为止,余数由下到上按从左到右顺序排列即为k进制数.反过来,k 进制数化为十进制数的一般方法是:首先将k 进制数按k的次幂形式展开,然后按十进制数相加即可得结果.如右图所示:模块一、进制在生活中的运用【例 1】 有个吝啬的老财主,总是不想付钱给长工。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五届小学“希望杯”全国数学邀请赛
五年级第1试
2007年3月18日上午8:30至10:00 亲爱的小朋友们,欢迎你参加第五届小学“希望杯”全国数学邀请赛!你将进入一个新颖、有趣、有挑战性的数字天地,将会留个一个难忘的经历,好,我们开始前进吧!……
以下每题6分,共120分
1.2007÷20072007
2008
=。
2.对不为0的自然数a,b,c 规定新运算“☆”:☆(a,b,c)=a b c
a b c
-÷
+⨯
则☆(1,2,3)=。
3.判断:“小明同学把一张电影票夹在数学书的51页至52页之间”这句话是(填“正确”或“错误”)
4.已知a,b,c是三个连续自然数,其中a是偶数。
根据图1中的信息判断,小红和小明两人的说法中正确的是。
5.某个自然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最小是。
6.当p和3p+5都是质数时,5p+5=。
7.下列四个图形是由四个简单图形A、B、C、D(线段和正方形)组合(记为*)而成。
则图①—④中表示A*D的是。
(填序号)
8.下面四幅图形中不是轴对称图形的是。
(填序号)
(注:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
)
9.小华用相同的若干个小正方体摆成一个立体(如图2)。
从上体上面看这个立方体,看到的图形是图①~③中的。
(填序号)
图3 10.图3中内部有阴影的正方形共有个。
11.图4中的阴影部分BCGF是正方形,线段FH长18厘米,线段AC长24厘米,则长方形ADHE的周长是厘米。
12.图5中的熊猫图案的阴影部分的面积是平方厘米。
(注:阴影部分均由半圆和正方形组成,图中一个小正方形的面积是1平方厘米, 取3.14)
图3 图4 图5
13.小红看一本故事书,第一天看了这本书的一半又10页,第二天看了余下的一半又10页,第三天看了10页正好看完。
这本故事书共有页。
14.在一副扑克牌中(去掉大、小王),最少取张牌就可以保证其中有3张牌的点数相同。
15.如图6,摩托车里程表显示的数字表示摩托车已经行驶了24944千米,经过两小时后,
里程表上显示的数字从左到右与从右到左的读数相同,若摩托车的实速不超过90千米,
则摩托车在这两个小时内的平均速度是千米/时。
表显示:(24944)
图6
16.一名搬运工从批发部搬运500只瓷碗到商店,货主规定:运到一只完好的瓷碗得运费3角,打破一只瓷碗陪9角,结果他领到的运费136.80元,则在运输中搬运工打破了只瓷碗。
17.李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的倍。
(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)
18.将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有种不同的放
法。
19.在算式“1希+1望+1杯
=1”中,不同的汉字表示不同的自然数,则“希+望+杯”= 。
20.A 、B 两地相距203米,甲、乙、丙的速度分别是4米/、6米/分、5米/分。
如果甲、乙从A 地,丙从B 地同时出发相向而行,那么,在 分钟或 分钟后,丙与乙的距离是丙与甲距离的2倍。
第五届小学“希望杯”全国数学邀请赛答案
五年级 第1试 1.20072008
200720082007+⨯÷ =2007
2008200720082007+⨯⨯ =2009
2008 2.21
173161321321321==+-=⨯+÷- 3.错 51,52为一页 4.小红 (偶+1) (奇+2) (偶+3)=奇
5.41
6. P=2 ∴P 5=37
7.4
8.3,4 9.3 10.26 (个)
11.FH=BD=18(cm)
=BH+CD=18(cm)
AC=24(cm)
∴AC+CD+HD=24+18=42(cm)
42⨯2=84(cm)
12.50.09(略) 13.10+10=20(页) 20⨯2=40(页)
40+10=50(页)502⨯=100(页)
14.13⨯2+1=27(页)
15.根据题意,最贴近的数是25052
(25052-24944)÷2=54(千米/小时)
16.(150-136.8)÷(0.3+0.9)=11(只)
17.李经理提前的时间:7:30-7:00=30(分钟);
汽车单程所用的时间:5÷2=2.5(分钟)
李经理和汽车相遇时他走的时间:30-2.5=27.5
汽车速度是步行速度的倍数是:27.5÷2.5=11
18.10种
19.2+3+6=11
20.乙比甲速度快,故只能发生在乙丙相遇之后两种情况①甲比乙:2:3
A到甲:A到乙=6:9, 设为6a,9a
B到丙为7.5a
203×(13.5a÷14.5a) ÷9=21(分)
②
A到甲:A到乙=2:3,设为2a,3a
B到丙为2.5a
203×(4.5a÷3.5a) ÷9=29(分)。