信号与系统试卷及参考答案

合集下载

信号与系统期末试卷-含答案全

信号与系统期末试卷-含答案全

一.填空题(本大题共10空,每空2分,共20分。

) 1.()*(2)k k εδ-= (2)k ε- 。

2.sin()()2td πτδττ-∞+=⎰()u t 。

3. 已知信号的拉普拉斯变换为1s a-,若实数a a >0 或 大于零 ,则信号的傅里叶变换不存在.4. ()()()t h t f t y *=,则()=t y 2 ()()t h t f 222* .5. 根据Parseval 能量守恒定律,计算⎰∞∞-=dt t t 2)sin (π 。

注解: 由于)(sin 2ωπg t t⇔,根据Parseval 能量守恒定律,可得πωππωωππ===⎪⎭⎫⎝⎛⎰⎰⎰-∞∞-∞∞-d d g dt t t 11222221)(21sin6. 若)(t f 最高角频率为m ω,则对)2()4()(tf t f t y =取样,其频谱不混迭的最大间隔是 m T ωπωπ34max max ==注解:信号)(t f 的最高角频率为m ω,根据傅立叶变换的展缩特性可得信号)4/(t f 的最高角 频率为4/m ω,信号)2/(t f 的最高角频率为2/m ω。

根据傅立叶变换的乘积特性,两信号时域相乘,其频谱为该两信号频谱的卷积,故)2/()4/(t f t f 的最高角频率为m mmωωωω4324max =+=根据时域抽样定理可知,对信号)2/()4/(t f t f 取样时,其频谱不混迭的最大抽样间隔m axT 为mT ωπωπ34max max ==7. 某因果线性非时变(LTI )系统,输入)()(t t f ε=时,输出为:)1()()(t t e t y t--+=-εε;则)2()1()(---=t t t f εε时,输出)(t y f =)1()2()()1()2()1(t t e t t e t t -----+-----εεεε。

8. 已知某因果连续LTI 系统)(s H 全部极点均位于s 左半平面,则∞→t t h )(的值为0 。

信号及系统期末考试试题及答案

信号及系统期末考试试题及答案

信号及系统期末考试试题及答案一、选择题(每题2分,共20分)1. 信号x(t)=3cos(2π(5t+π/4))是一个:A. 周期信号B. 非周期信号C. 随机信号D. 确定性信号2. 系统分析中,若系统对单位阶跃函数的响应为u(t)+2,则该系统为:A. 线性时不变系统B. 线性时变系统C. 非线性时不变系统D. 非线性时变系统3. 下列哪个是连续时间信号的傅里叶变换:A. X(k)B. X(n)C. X(f)D. X(z)4. 信号通过线性时不变系统后,其频谱:A. 仅发生相位变化B. 仅发生幅度变化C. 发生幅度和相位变化D. 不发生变化5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. e^(-st)D. 1/s二、简答题(每题5分,共10分)1. 解释什么是卷积,并给出卷积的数学表达式。

2. 说明傅里叶变换与拉普拉斯变换的区别。

三、计算题(每题15分,共30分)1. 给定连续时间信号x(t)=e^(-t)u(t),求其傅里叶变换X(f)。

2. 给定离散时间信号x[n]=u[n]-u[n-3],求其z变换X(z)。

四、分析题(每题15分,共30分)1. 分析信号x(t)=cos(ωt)+2cos(2ωt)通过理想低通滤波器后输出信号的表达式,其中滤波器的截止频率为ω/2。

2. 讨论线性时不变系统的稳定性,并给出判断系统稳定性的条件。

五、论述题(每题10分,共10分)1. 论述信号的采样定理及其在数字信号处理中的应用。

参考答案一、选择题1. A2. A3. C4. C5. A二、简答题1. 卷积是信号处理中的一种运算,它描述了信号x(t)通过系统h(t)时,输出信号y(t)的计算过程。

数学表达式为:y(t) = (x * h)(t) = ∫x(τ)h(t-τ)dτ。

2. 傅里叶变换用于连续时间信号的频域分析,而拉普拉斯变换则适用于连续时间信号,并且可以处理有初始条件的系统。

三、计算题1. X(f) = 3[δ(f-5) + δ(f+5)]。

(完整版)信号与系统练习及答案

(完整版)信号与系统练习及答案

信号与系统练习及答案一、单项选择题1.已知信号f (t )的波形如题1图所示,则f (t )的表达式为( )A .tu(t)B .(t-1)u(t-1)C .tu(t-1)D .2(t-1)u(t-1)2.积分式⎰-δ+δ++4422)]dt -(t 2(t))[23(t t 的积分结果是( ) A .14 B .24 C .26 D .283.已知f(t)的波形如题3(a )图所示,则f (5-2t)的波形为( )4.周期矩形脉冲的谱线间隔与( )A .脉冲幅度有关B .脉冲宽度有关C .脉冲周期有关D .周期和脉冲宽度有关 5.若矩形脉冲信号的宽度加宽,则它的频谱带宽( ) A .不变 B .变窄 C .变宽D .与脉冲宽度无关 6.如果两个信号分别通过系统函数为H (j ω)的系统后,得到相同的响应,那么这两个信号()A .一定相同 B .一定不同 C .只能为零 D .可以不同7.f(t)=)(t u e t 的拉氏变换为F (s )=11-s ,且收敛域为( ) A .Re[s]>0B .Re[s]<0C .Re[s]>1D .Re[s]<1 8.函数⎰-∞-δ=2t dx )x ()t (f 的单边拉氏变换F (s )等于( ) A .1 B .s 1 C .e -2s D .s1e -2s 9.单边拉氏变换F (s )=22++-s e )s (的原函数f(t)等于( ) A .e -2t u(t-1) B .e -2(t-1)u(t-1) C .e -2t u(t-2)D .e -2(t-2)u(t-2)答案: BCCCBDCDA二.填空题1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。

2.已知x(t)的傅里叶变换为X (j ω),那么x (t-t 0)的傅里叶变换为_________________。

3.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为_________________。

信号与系统期末考试试卷(有详细答案)

信号与系统期末考试试卷(有详细答案)

《信号与系统》考试试卷(时间120分钟)院/系专业姓名学号题号一二三四五六七总分得分一、填空题(每小题2分,共20分)得分1.系统的激励是e(t),响应为r(t),若满足de(t)r(t),则该系统为线性、时不变、因果。

dt(是否线性、时不变、因果?)2的值为5。

2.求积分(t1)(t2)dt3.当信号是脉冲信号f(t)时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。

4.若信号f(t)的最高频率是2kHz,则f(2t)的乃奎斯特抽样频率为8kHz。

5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为一常数相频特性为_一过原点的直线(群时延)。

6.系统阶跃响应的上升时间和系统的截止频率成反比。

7.若信号的F(s)=3s(s+4)(s+2) ,求该信号的F(j)j3(j+4)(j+2)。

8.为使LTI连续系统是稳定的,其系统函数H(s)的极点必须在S平面的左半平面。

19.已知信号的频谱函数是0)()F((,则其时间信号f(t)为0j)sin(t)j。

10.若信号f(t)的s1F(s),则其初始值f(0)1。

2(s1)得分二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)《信号与系统》试卷第1页共7页1.单位冲激函数总是满足(t)(t)(√)2.满足绝对可积条件f(t)dt的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

(×)3.非周期信号的脉冲宽度越小,其频带宽度越宽。

(√)4.连续LTI系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

(√)5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

(×)得分三、计算分析题(1、3、4、5题每题10分,2题5分,6题15分,共60分)t 1.信号f(t)2eu(t)1,信号10t1,f,试求f1(t)*f2(t)。

(完整word版)信号与系统考试试题及答案,推荐文档

(完整word版)信号与系统考试试题及答案,推荐文档

长沙理工大学拟题纸课程编号 1拟题教研室(或老师)签名 教研室主任签名 符号说明:)sgn(t 为符号函数,)(t δ为单位冲击信号,)(k δ为单位脉冲序列,)(t ε为单位阶跃信号,)(k ε为单位阶跃序列。

一、填空(共30分,每小题3分)1. 已知)()4()(2t t t f ε+=,求_______)("=t f 。

)('4)(2)("t t t f δε+2. 已知}4,2,4,3{)(},1,2,2,1{)(=-=k h k f ,求______)()(=*k h k f 。

}4,6,8,3,4,10,3{)()(-=*k h k f3. 信号通过系统不失真的条件为系统函数_______)(=ωj H 。

0)(t j Kej H ωω-=4. 若)(t f 最高角频率为m ω,则对)4(t f 取样的最大间隔是______。

m T ωπωπ4max max ==5. 信号t t t f ππ30cos 220cos 4)(+=的平均功率为______。

101122222=+++==∑∞-∞=n n F P6. 已知一系统的输入输出关系为)3()(t f t y =,试判断该系统是否为线性时不变系统______。

故系统为线性时变系统。

7. 已知信号的拉式变换为)1)(1(1)(2-+=s s s F ,求该信号的傅立叶变换)(ωj F =______。

故傅立叶变换)(ωj F 不存在。

8. 已知一离散时间系统的系统函数2121)(---+=z z z H ,判断该系统是否稳定______。

故系统不稳定。

9. =+-+⎰∞∞-dt t t t )1()2(2δ______。

310. 已知一信号频谱可写为)(,)()(3ωωωωA e A j F j -=是一实偶函数,试问)(t f 有何种对称性______。

关于t=3的偶对称的实信号。

二、计算题(共50分,每小题10分)1. 已知连续时间系统的单位冲激响应)(t h 与激励信号)(t f 的波形如图A-1所示,试由时域求解该系 统的零状态响应)(t y ,画出)(t y 的波形。

信号与系统考试试题及答案

信号与系统考试试题及答案

长沙理工大学拟题纸课程编号 1 拟题教研室(或老师)签名 教研室主任签名 符号说明:)sgn(t 为符号函数,)(t δ为单位冲击信号,)(k δ为单位脉冲序列,)(t ε为单位阶跃信号,)(k ε为单位阶跃序列。

一、填空(共30分,每小题3分)1. 已知)()4()(2t t t f ε+=,求_______)("=t f 。

)('4)(2)("t t t f δε+2. 已知}4,2,4,3{)(},1,2,2,1{)(=-=k h k f ,求______)()(=*k h k f 。

}4,6,8,3,4,10,3{)()(-=*k h k f3. 信号通过系统不失真的条件为系统函数_______)(=ωj H 。

0)(t j Ke j H ωω-=4. 若)(t f 最高角频率为m ω,则对)4(t f 取样的最大间隔是______。

m T ωπωπ4max max == 5.信号t t t f ππ30cos 220cos 4)(+=的平均功率为___。

101122222=+++==∑∞-∞=n n F P6. 已知一系统的输入输出关系为)3()(t f t y =,试判断该系统是否为线性时不变系统 ______。

故系统为线性时变系统。

7. 已知信号的拉式变换为)1)(1(1)(2-+=s s s F ,求该信号的傅立叶变换)(ωj F =______。

故傅立叶变换)(ωj F 不存在。

8. 已知一离散时间系统的系统函数2121)(---+=z z z H ,判断该系统是否稳定______。

故系统不稳定。

9. =+-+⎰∞∞-dt t t t )1()2(2δ______。

310. 已知一信号频谱可写为)(,)()(3ωωωωA e A j F j -=是一实偶函数,试问)(t f 有何种对称性______。

关于t=3的偶对称的实信号。

二、计算题(共50分,每小题10分)1. 已知连续时间系统的单位冲激响应)(t h 与激励信号)(t f 的波形如图A-1所示,试由时域求解该系统的零状态响应)(t y ,画出)(t y 的波形。

信号与系统期末考试试卷(有详细答案).doc

信号与系统期末考试试卷(有详细答案).doc

格式《信号与系统》考试试卷(时间 120 分钟)院 / 系专业姓名学号题号一二三四五六七总分得分一、填空题(每小题 2 分,共 20 分)得分1.系统的激励是 e(t) ,响应为 r(t) ,若满足de(t)r ( t) ,则该系统为线性、时不变、因果。

dt(是否线性、时不变、因果?)2 的值为 5。

2.求积分 (t1)(t2)dt3.当信号是脉冲信号f(t)时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。

4.若信号f(t)的最高频率是2kHz,则 f(2t)的乃奎斯特抽样频率为8kHz。

5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为一常数相频特性为 _一过原点的直线(群时延)。

6.系统阶跃响应的上升时间和系统的截止频率成反比。

.若信号的F(s)=3s j37。

,求该信号的 F ( j)(s+4)(s+2) (j+4)(j+2)8.为使LTI 连续系统是稳定的,其系统函数H(s ) 的极点必须在S 平面的左半平面。

1。

9.已知信号的频谱函数是0)()F(( ,则其时间信号f(t)为0j)sin(t)js110.若信号 f(t)的F ( s ) ,则其初始值f(0)1。

2(s1 )得分二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题 2 分,共 10 分)《信号与系统》试卷第1页共 7页专业资料整理格式1.单位冲激函数总是满足 ( t )( t ) (√)2.满足绝对可积条件 f ( t ) dt 的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

(×)3.非周期信号的脉冲宽度越小,其频带宽度越宽。

(√)4.连续 LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

(√)5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

(×)得分三、计算分析题(1、 3、 4、 5 题每题 10 分, 2 题 5 分,6 题15 分,共 60 分)t 10t11.信号f(t)2eu(t) ,1,信号 f ,试求 f 1 (t)*f 2 (t)。

信号与系统试题及答案

信号与系统试题及答案

信号与系统试题1第一部分 选择题(共32分)一、单项选择题(本大题共16小题,每小题2分,共32分。

在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内)1.积分e d t --∞⎰2τδττ()等于( )A .δ()tB .ε()tC .2ε()tD .δε()()t t +2.已知系统微分方程为dy t dt y t f t ()()()+=2,若y f t t t (),()sin ()012+==ε,解得全响应为y t e t t ()sin()=+-︒-54242452,t ≥0。

全响应中24245sin()t -︒为( ) A .零输入响应分量 B .零状态响应分量C .自由响应分量D .稳态响应分量3.系统结构框图如图示,该系统的单位冲激响应h(t)满足的方程式为( )A .dy t dt y t x t ()()()+= B .h t x t y t ()()()=- C .dh t dt h t t ()()()+=δ D .h t t y t ()()()=-δ4.信号f t f t 12(),()波形如图所示,设f t f t f t ()()*()=12,则f()0为( )A .1B .2C .3D .45.已知信号f t ()的傅里叶变换F j ()()ωδωω=-0,则f t ()为( )A .120πωe j t B .120πωe j t - C .120πεωe t j t () D .120πεωe t j t -()6.已知信号f t ()如图所示,则其傅里叶变换为( )A .τωττωτ2422Sa Sa ()()+B .τωττωτSa Sa ()()422+ C .τωττωτ242Sa Sa ()()+ D .τωττωτSa Sa ()()42+7.信号f t 1()和f t 2()分别如图(a )和图(b)所示,已知 [()]()f t F j 11=ω,则f t 2()的 傅里叶变换为( )A .F j e j t 10()--ωωB .F j e j t 10()ωω-C .F j e j t 10()-ωωD .F j e j t 10()ωω8.有一因果线性时不变系统,其频率响应H j j ()ωω=+12,对于某一输入x(t)所得输出信号的傅里叶变换为Y j j j ()()()ωωω=++123,则该输入x(t)为( ) A .--e t t 3ε()B .e t t -3ε()C .-e t t 3ε()D .e t t 3ε()9.f t e t t ()()=2ε的拉氏变换及收敛域为( )A .122s s +>-,Re{} B .122s s +<-,Re{} C .122s s ->,Re{} D .122s s -<,Re{} 10.f t t t ()()()=--εε1的拉氏变换为( ) A .11s e s ()--B .11s e s ()-C .s e s ()1--D .s e s ()1-11.F s s s s s ()Re{}=+++>-25622的拉氏反变换为( )A .[]()e e t t t --+322εB .[]()e e t t t ---322εC .δε()()t e t t +-3D .e t t -3ε()12.图(a )中ab 段电路是某复杂电路的一部分,其中电感L 和电容C 都含有初始状态,请在图(b )中选出该电路的复频域模型。

大学考试试卷《信号与系统》及参考答案

大学考试试卷《信号与系统》及参考答案

信号与系统一、单项选择题(本大题共46分,共 10 小题,每小题 4.599999 分)1. 若一因果系统的系统函数为则有如下结论——————————() A. 若,则系统稳定 B. 若H(s)的所有极点均在左半s平面,则系统稳定 C. 若H(s)的所有极点均在s平面的单位圆内,则系统稳定。

2. 连续信号,该信号的拉普拉斯变换收敛域为()。

A.B.C.D.3. 连续信号与的乘积,即*=( )A.B.C.D.4. 已知f(t),为求f(t0−at) 应按下列哪种运算求得正确结果?(式中t,a都为正值) A. f(-at)左移t0 B. f(-at) 右移tC. f(at) 左移D. f(at)右移5. 已知 f(t),为求f(t0-at) 应按下列哪种运算求得正确结果?(式中t,a都为正值) A.B. f(at) 右移t0 C. f(at) 左移t/a D. f(-at) 右移t/a6. 系统函数H(s)与激励信号X(s)之间——() A. 是反比关系; B. 无关系; C. 线性关系; D. 不确定。

7. 下列论断正确的为()。

A. 两个周期信号之和必为周期信号; B. 非周期信号一定是能量信号; C. 能量信号一定是非周期信号; D. 两个功率信号之和仍为功率信号。

8. 的拉氏反变换为()A.B.C.D.9. 系统结构框图如下,该系统单位冲激响应h(t)的表达式为()A.B.C.D.10. 已知,可以求得—————()A.B.C.D.二、多项选择题(本大题共18分,共 3 小题,每小题 6 分)1. 线性系统响应满足以下规律————————————() A. 若起始状态为零,则零输入响应为零。

B. 若起始状态为零,则零状态响应为零。

C. 若系统的零状态响应为零,则强迫响应也为零。

D. 若激励信号为零,零输入响应就是自由响应。

2. 1.之间满足如下关系———————()A.B.C.D.3. 一线性时不变因果系统的系统函数为H(s),系统稳定的条件是——()A. H(s)的极点在s平面的单位圆内B. H(s)的极点的模值小于1C. H (s)的极点全部在s平面的左半平面D. H(s)为有理多项式。

信号与系统试题库史上最全(内含答案)

信号与系统试题库史上最全(内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。

[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。

[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。

[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。

[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。

[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。

[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。

其中:)()21()(k k g k ε=。

[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

信号与系统试题库及答案

信号与系统试题库及答案

信号与系统试题库及答案信号与系统试题库及答案,共22页1.下列信号的分类办法不正确的是(A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2.下列说法正确的是(D ):A 、两个周期信号x(t),y(t)的和x(t)+y(t)一定是周期信号。

B 、两个周期信号x(t),y(t)的周期分离为2和,则其和信号x(t)+y(t) 是周期信号。

C 、两个周期信号x(t),y(t)的周期分离为2和,其和信号x(t)+y(t)是周期信号。

D 、两个周期信号x(t),y(t)的周期分离为2和3,其和信号x(t)+y(t)是周期信号。

3.下列说法不正确的是(D )。

A 、普通周期信号为功率信号。

B 、时限信号(仅在有限时光区间不为零的非周期信号)为能量信号。

C 、ε(t)是功率信号;D 、et 为能量信号;一、填空(每空1分,共15分)1、离散信号基本运算有;;;四种。

2、拉氏变换中初值定理、终值定理分离表示为)(lim )0(S SF f S ∞→=,;)(l i m )(0S SF f S →=∞ 。

3、延续系统的分析办法有时域分析法;频域分析法和复频域分析法。

这三种分析办法,其输入与输出表达式分离是y(t)=h(t)*f(t); Y(jω)= H(jω)?. F(jω); Y(s)= H(s)?. F(s)集美高校2022—2022学年第2学期信号与系统试卷及答案一、推断题(共9分,每题1.5分,对的打“V ”,错的打“X ”)。

1、一个信号的脉冲持续时光越小,它的频带宽度也就越小。

(× )2、一个信号的脉冲幅度数值越大,它的频谱幅度也就越大。

(V )3、一个能量有限的延续时光信号,它一定是属于瞬态信号。

(V )4、一个功率有限的延续时光信号,它一定是属于周期信号。

(× )5、一个因果稳定的延续时光系统,它的零极点必定都位于S 左半平面。

信号与系统考试题及答案(共8套)

信号与系统考试题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。

3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。

6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。

7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。

8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。

9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。

信号与系统试题库史上最全(内含答案)

信号与系统试题库史上最全(内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。

[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。

[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。

[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。

[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。

[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。

[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。

其中:)()21()(k k g k ε=。

[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

信号与系统试题库史上最全(内含答案)

信号与系统试题库史上最全(内含答案)

信号与系统考试方式:闭卷考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率4.] 5.求67[8)()4t e t ε-,910其中:)()2()(k k g k ε=。

[答案:1111()()(1)(()((1)()((1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

[答案:3]12.描述某离散系统的差分方程为()()()122()y k y k y k f k +---=求该系统的单位序列响应()h k 。

[答案:21()[(2)()33kh k k ε=-+]13.已知函数()f t 的单边拉普拉斯变换为()1sF s s =+,求函数()()233ty t ef t -=的单边拉普拉斯变换。

[答案:()25Y s s s =++] 14.已知()()12f t f t 、的波形如下图,求()()()12f t f t f t =*(可直接画出图形)[0,≥t t π;[[答案:34231[9]()33t t t e e e t ε---=--]四、图示离散系统有三个子系统组成,已知)4c o s (2)(1πk k h =,)()(2k a k h k ε=,激励)1()()(--=k a k k f δδ,求:零状态响应)(k y f 。

信号与系统试题附答案

信号与系统试题附答案

信科0801《信号与系统》复习参考练习题一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是()15、已知信号)(tf如下图所示,其表达式是()16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是()A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是()19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差2A 、1-eB 、3eC 、3-eD 、127.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为() A 。

信号与系统考试题及答案

信号与系统考试题及答案

信号与系统考试题及答案# 信号与系统考试题及答案一、选择题(每题2分,共20分)1. 信号f(t)=3cos(2πt + π/3)的频率是:A. 1HzB. 2HzC. 3HzD. 4Hz答案:B2. 系统是线性时不变系统(LTI),如果满足以下条件:A. 系统对所有信号都有响应B. 系统对输入信号的线性组合有响应C. 系统对时间平移的输入信号有响应D. 系统对所有条件都有响应答案:B3. 如果一个信号是周期的,那么它的傅里叶级数表示中包含:A. 只有直流分量B. 只有有限个频率分量C. 无限多个频率分量D. 没有频率分量答案:B4. 拉普拉斯变换可以用来分析:A. 仅连续时间信号B. 仅离散时间信号C. 连续时间信号和离散时间信号D. 仅离散时间系统答案:C5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. 1/tD. e^(-st)答案:A6. 一个系统是因果系统,如果:A. 它的脉冲响应是零,对于所有t<0B. 它的输出总是零C. 它的输出在任何时候都不依赖于未来的输入D. 所有上述条件答案:A7. 傅里叶变换可以用来分析:A. 仅周期信号B. 非周期信号C. 周期信号和非周期信号D. 仅离散信号答案:B8. 一个信号x(t)通过一个线性时不变系统,输出y(t)是:A. x(t)的时移版本B. x(t)的反转版本C. x(t)的缩放版本D. x(t)的卷积答案:D9. 如果一个信号的傅里叶变换存在,那么它是:A. 周期的B. 非周期的C. 有限能量的D. 有限功率的答案:C10. 系统的频率响应H(jω)是输入信号X(jω)和输出信号Y(jω)的:A. 乘积B. 差C. 比值D. 和答案:C二、简答题(每题10分,共30分)1. 解释什么是卷积,并给出卷积的基本性质。

答案:卷积是信号处理中的一个重要概念,表示一个信号与另一个信号的加权叠加。

具体来说,如果有两个信号f(t)和g(t),它们的卷积定义为f(t)与g(-t)的乘积的积分,对所有时间t进行积分。

信号与系统试题信号与系统试题附答案

信号与系统试题信号与系统试题附答案

信号与系统试题信号与系统试题附答案信号与系统试题信号与系统试题附答案信号与系统复习参考练习题一、单项选择题:14、已知连续时间信号f (t ) =sin 50(t -2)100(t -2) , 则信号f (t ) ·cos 104t 所占有的频带宽度为()A .400rad /sB 。

200 rad/sC 。

100 rad/sD 。

50 rad/s15、已知信号f (t ) 如下图(a )所示,其反转右移的信号f 1(t) 是()16、已知信号f 1(t ) 如下图所示,其表达式是()A 、ε(t )+2ε(t-2) -ε(t-3)B 、ε(t-1) +ε(t-2) -2ε(t-3)C 、ε(t)+ε(t-2) -ε(t-3)D 、ε(t-1) +ε(t-2) -ε(t-3)17、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是()A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是()19。

信号f (t ) =2cos π4(t -2) +3sin π4(t +2) 与冲激函数δ(t -2) 之积为()A 、2B 、2δ(t -2)C 、3δ(t -2)D 、5δ(t -2)20.已知LTI 系统的系统函数H (s ) =s +1, Re[s ]>-2,则该系统是() s 2+5s +6A 、因果不稳定系统B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是()A 、常数B 、实数C 、复数 D、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是()A 、阶跃信号B 、正弦信号C 、冲激信号 D、斜升信号∞23. 积分-∞?f (t ) δ(t ) dt 的结果为( )A f (0)B f (t ) C. f (t ) δ(t ) D. f (0) δ(t )24. 卷积δ(t ) *f (t ) *δ(t ) 的结果为( )A. δ(t )B. δ(2t )C. f (t )D. f (2t )25. 零输入响应是( )A. 全部自由响应B. 部分自由响应C. 部分零状态响应D. 全响应与强迫响应之差 2A 、eB 、eC 、eD 、127. 信号〔ε(t)-ε(t-2) 〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C. 全S 平面D. 不存在28.已知连续系统二阶微分方程的零输入响应y zi (t ) 的形式为Ae -t -13-3+Be -2t ,则其2个特征根为( )A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。

(8分)t-1 0 1 2 3(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。

(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h(t)(8分)(3). f(k)=1, k=0,1,2,3, h(k)=1, k=0,1,2,3,y(k)=f(k)*h(k) (8分)(4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分)(5)y’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=?(8分)(6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)=2,y(-2)= -1/2,试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t,求当激励f(t)=δ(t)时的响应)(t h 。

(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。

(10分)六某一连续非时变系统的传输函数为H(s)=Y(s)/X(s)=(2s2+6s+4)/(s3+5s2+8s+6) (1)出该系统的结构图;(2)判定该系统的稳定性(10分)信号与系统试卷(2)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页1 (每小题7分,共14分)绘出下列函数的图形(1)试概略画出信号y(t)=u(t2-4) 的波形图。

(2)一个线性连续时不变系统,输入为)(tut x 时)(tsin的零状态响应如下图所示,求该系统的冲击响应)(t h,并画出示意图。

0 1 2 t题1(2)图2. (每小题5分,共10分) 考虑具有下列输入输出关系的三个系统:系统1; ()()n f n y =系统2; ()()()()241121-+-+=n f n f n f n y 系统3; ()()n f n y 2=(1) 若按下图那样连接,求整个系统的输入输出关系。

(2) 整个系统是线性吗?是时不变的吗?()n f()n y 题2 图3. (本题共10分)已知系统的传输函数为H(s)=3422++s s s ,零输入响应)(t y x 的初始值2)0(',1)0(-==x x y y ,欲使系统的全响应为0,求输入激励)(t f 。

4. (每小题8分,共16分) 某一离散非时变系统的传输函数为H(z)=Y(z)/X(z)=(2z 2+6z+4)/(4z 4-4z 3+2z-1)(1) 画出该系统的结构图。

(2) 判定该系统的稳定性。

5.(本题共10分)已知),()1()()('t u e t t f t f t--=*试求信号)(t f 。

6.(每小题10分,共20分)已知线性连续系统的系统函数为 ,系统完全响应的初始条件为 , ,系统输入为阶跃函数)()(t u t f =,(1)求系统的冲激响应 ;(2)求系统的零输入响应 ,零状态响应 ,完全响应)(t y 。

7.(本题共10分)某线性连续系统的阶跃响应为)(t g ,已知输入为因果信号)(t f 时,系统零状态响应为 ,求系统输入)(t f 。

8.(本题共10分)已知一个LTI 离散系统的单位响应为⎩⎨⎧==为其它k k k h 03,2,11][,试求:(1)试求该系统的传输函数)(z H ;(2)当输入为⎩⎨⎧≥=为其它为偶数,且k k k k f 001][时的零状态响应][k yf 。

信号与系统试卷(3)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共3页一、计算以下各题:(每小题8分,共80分)1. 已知f(1-2t)的波形如图所示,试画出f(t)的波形并写出其表达式。

2. 图示电路,求u(t)对f(t)的传输算子H( p)及冲激响应h(t)。

2H3. 求图示系统的阶跃响应4. 求信号f(t)的频谱函数F(j ω)5.图示系统,已知)()(2t et f t j ε-=,t t x 20cos )(=,试求:)(ωj F 、)(ωj X 和)(ωj Y 。

6. 理想低通滤波器的)(ωj H 的图形如图所示,求其单位冲激响应h(t),并画出其波形。

7.图示系统由三个子系统组成,其中,1)(,21)(,1)(321+=+==-s e s H s s H s s H s求整个系统的冲激响应(t f )(t y t )h(t)。

8、已知某系统的信号流图,试求解系统函数)(s H 。

9.已知系统函数的零、极点分布如图所示,试写出该系统的系统函数H(s),画出其幅频特性曲线并指明系统的特性。

10.两个有限长序列)(),(k h k f 如图所示,求其卷积和)()(k f k y =(s F )(s Y二、(10分) 图示系统,已知)(t f 的频谱函数)(ωj F 和)(ωj H 的波形。

试求:(1) 求解并画出)(1t y 的频谱)(1ωj Y ; (2) 画出)(2t y 的频谱)(2ωj Y ;(3) 求解并画出)(t y 的频谱)(ωj Y 。

三、(10分) 图示电路,f(t)为激励,u C (t)为响应。

(1) 求系统函数H(s),并画出其零、极点图;(2) 若f(t)=ε (t)A ,V ,2)0( A,1)0(==--C L u i 求零输入响应u C (t)。

信号与系统试卷(4)00u C (t )(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页一一线性非时变系统,具有一初始状态x(0),当激励为f(t)时,响应为y(t)=e-t+cosπtu(t);若初始状态不变,当激励为2f(t)时,响应为y(t)=2cosπtu(t);试求当初始状态不变,激励为3f(t)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。

(8分)t-1 0 1 2 3 (2). 试概略画出信号y(t)=u(t2-4) 的波形图。

(8分)三试计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2)+ 2δ(t+5))dt (4分)(2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h(t)(8分)(3). f(k)=1, k=0,1,2,3, h(k)=1, k=0,1,2,3,y(k)=f(k)*h(k) (8分)(4). 已知f(t)=e -2t u(t), 求y(t)=[cost f(2t)] 的富立叶变换(8分)(5) 试证 ⎰∞(sinx/x)dx=π/2 (8分) (6)y(k)-5y(k-1)+6y(k-2)= f(k) , 试求系统的单位抽样响应h(k)及零状态响应y f (k)=? (8分)四 2y”(t)+3/2 y’(t)+1/2 y(t)=x(t), y(0)=1,y’(0)=0, x(t)=5e -3t (t), 试求零输入响应,零状态响应,及全响应y(t)=? (10分)五 已知系统的传输函数为H(s)=3422++s s s ,零输入响应)(t y x 的初始值2)0(',1)0(-==x x y y ,欲使系统的全响应为0,求输入激励)(t f 。

(10分)六 某一离散非时变系统的传输函数为 (10分)H(z)=Y(z)/X(z)=(2z 2+6z+4)/(4z 4-4z 3+2z-1)(1)画出该系统的结构图;(2)判定该系统的稳定性信号与系统试卷(5)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共3页1(每小题8分,共16分)绘出下列函数的图形(1)已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。

2 3 t题1(1)图(2) 一个线性时不变系统的输入)(t f和冲击响应)(th如下图所示,试求系统的零状态响应,并画出波形。

)(t h 10 2 t 0 2 t题 1(2)图2. (每小题10分,共50分)计算题(1) 已知一个线性时不变系统的方程为)(2)()(3)(4)(22t f dt t df t y dt t dy dt t y d +=++ 试求其系统函数)(ωj H 和冲击响应)(t h 。

(2)如下图所示系统,其中:t t t h π2sin )(1=,tt t t t h πππsin 2sin 2)(2= 试求其系统的冲击响应)(t h 和幅频特性|)(|ωj H 、相频特性)(ωϕj 。

(20分))(t f )(t y f题 2(2)图(3)已知线性连续系统的初始状态一定。

当输入为 时,完全响应为 ;当输入为)()(2t u t f =时,完全响应为 ;若输入为)()(3t tu t f =时,求完全响应 。

(4)某线性连续系统的S 域框图如图所示,其中 , 。

欲使该系统为稳定系统,试确定K 值的取值范围。

题 2(4)图(5) 某线性连续系统的阶跃响应为g(t),已知输入为因果信号f(t)时,系统零状态响应为 ,求系统输入f(t)。

(10分)3(本题共14分) 设⎩⎨⎧==其它01,01][k k f ,试求其离散时间傅立叶变换)(ωj e F ;若将以][k f 为4周期进行周期延拓,形成周期序列,试求其离散傅立叶级数系数nF 和离散傅立叶变换DFT 。

相关文档
最新文档