第5章 点的一般运动和刚体的基本运动
理论力学05点的运动学和刚体的基本运动
例 5.7 如图圆盘 C 以匀角速度ω 绕倾斜轴 OB 转动,盘面与 转轴垂直,圆盘的半径为 r; 设 OB 轴在 平面Oyz内,盘面与 平面Oyz的交线为 CD,点A 为圆盘边缘上一个固连点。 求: CA 与CD 为任意角φ时
A 点的速度和加速度矢量。
解:以矢量思路考虑,有
vA w OA OB方向单位矢 :
引言
5-1 运动学的基本概念
①运动学 是研究物体在空间位置随时间变化的几何性质的科学。 (包括:轨迹,速度,加速度等)不考虑运动的原因。
②运动学研究的对象 ①建立机械运动的描述方法 ②建立运动量之间的关系
③运动学学习目的 为后续课打基础及直接运用于工程实际。
பைடு நூலகம்
④运动是相对的 ( relativity ):参考体(物);参考系;静系;动系。
arctg |a |
an
11
例 5.1 一绳AMC的一端系于固定点A,绳子穿过 滑块M上的小孔。绳的另一端系于滑块C上。滑块 M以已知等速v0运动。绳长为l,AE的距离为a且 垂直于DE。求滑块C的速度与距离AM = x之间的 关系。又当滑块M经过E点时,滑块C的速度为何 值?
vc v0
12
曲率半径与法 向加速度有关 先求速度和法 向加速度
(否则△ t 时间后,该直线将被弯曲或伸缩,这对刚体是不容许的)。
同理AB 线上各点的速度也必须是直线分布, 因为与 矢端的连线不平行于π平面,这条矢端连线一定会与π 平面相交,设交点为 C,其速度必为零,所以 OC 线上所有点 的速度为零(OC 线上所有点的速度也必须直线分布)
一.弧坐标,自然轴系
1.弧坐标的运动方程S=f (t)
补充:极坐标法(对平面曲线运动时可用) 同理可导出柱坐标下的点的运动方程
《理论力学》考试知识点.
《理论力学》考试知识点静力学第一章静力学基础1、掌握平衡、刚体、力的概念以及等效力系和平衡力系,静力学公理。
2、掌握柔性体约束、光滑接触面约束、光滑铰链约束、固定端约束和球铰链的性质。
3、熟练掌握如何计算力的投影和平面力对点的矩,掌握空间力对点的矩和力对轴之矩的计算方法,以及力对轴的矩与对该轴上任一点的矩之间的关系。
4、对简单的物体系统,熟练掌握取分离体并画出受力图。
第二章力系的简化1、掌握力偶和力偶矩矢的概念以及力偶的性质。
2、掌握汇交力系、平行力系、力偶系的简化方法和简化结果。
3、熟练掌握如何计算主矢和主矩;掌握力的平移定理和空间一般力系和平面力系的简化方法和简化结果。
4、掌握合力投影定理和合力矩定理。
5、掌握计算平行力系中心的方法以及利用分割法和负面积法计算物体重心。
第三章力系的平衡条件1、了解运用空间力系(包括空间汇交力系、空间平行力系和空间力偶系)的平衡条件求解单个物体和简单物体系的平衡问题。
2、熟练掌握平面力系(包括平面汇交力系、平面平行力系和平面力偶系)的平衡条件及其平面力系平衡方程的各种形式;熟练掌握利用平面力系平衡条件求解单个物体和物体系的平衡问题。
3、了解静定和静不定问题的概念。
4、掌握平面静定桁架计算内力的节点法和截面法,掌握判断零力杆的方法。
第四章摩擦1、掌握运用平衡条件求解平面物体系的考虑滑动摩擦的平衡问题。
2、了解极限摩擦定律、滑动摩擦系数、摩擦角、自锁现象、摩阻的概念。
运动学第五章点的运动1、掌握描述点的运动的矢量法、直角坐标法和弧坐标法,能求点的运动方程。
2、熟练掌握如何计算点的速度、加速度及其有关问题。
第六章刚体的基本运动1、掌握刚体平动和定轴转动的特征;掌握刚体定轴转动的转动方程、角速度和角加速度;掌握定轴转动刚体角速度矢量和角加速度矢量的概念以及刚体内各点的速度和加速度的矢积表达式。
2、熟练掌握如何计算定轴转动刚体的角速度和角加速度、刚体内各点的速度和加速度。
力学第5章刚体的转动
3 g sinθ
L
解二:
M = J
=M
=
mg
L
2
cosθ
J
1 3
mL2
θ
L2
mg L 2
=
3
g cosθ 2L
=
dω
dt
=
dω
dθ
dθ dt
=ω
dω
dθ
ωω
0
dω
=
θβ 0
dθ
= θ 3gcosθ
0 2L
dθ
ω
=
3 g sinθ L
例某冲床上飞轮的转动惯量4.00×103kg·m2.当
它的转速达到 30 r/min时,它的转动动能是多少?
T 1=
m
1(2
m
2
+
m
2
m 1+m 2 +
m
2
)g
T 2=
m
2(2
m
1
+
m
2
m 1+m 2
+
m
2
)g
mr
T1
T2
m1
m2
提问:
若将m2g换成外力 F,且F=m2g,左边的 四个量还是同样的结 果吗?
§4 定轴转动中的功能关系= Fds cos
= Frdθ sinφ
r
F2
r ×F1 只能引起轴的
变形,对转动无贡献。
在定轴动问题中,如不加说明,所指的力 矩是指力在转动平面内的分力对转轴的力矩
二、转动定律
0
Fi 外力, f i 内力 ω
对Δ m i 质点应用牛二律:
fi
ri θ i Δ mi
第5章 刚体定轴转动.
J过一端垂直于杆 13m L2
圆环: J对称轴mR2
圆盘:
J对称轴
1 2
mR2
薄球壳:
J直径
2 3
mR2
球体:
J 直径
2 5
mR2
例: 如图所示,刚体对经过
棒端且与棒垂直的轴的转动
mL
惯量如何计算?(棒长为L ,
球半径为R)
mO
刚体的转动定律
力矩质点系的角动量改变 任意质点系的角动量定理:
M
轴向总力矩: M z M iz riF isin i
i
i
§5-4 转动定Biblioteka 的应用规范的解题思路:认物体
分析题意,确定哪些物体是刚体, 哪些是质点,及其与问题关系。
看运动
分析刚体的转动和质点运动情况,
找出相关的线量( v,a ) 和角量(,),
确定它们之间的关系。
查受力
画隔离体受力分析图,确定对刚体 有力矩贡献的力和质点的受力及其关系。
列方程
选择坐标系和角量的参考方向,对 刚体列出转动定律方程,对质点列出牛 顿定律方程,并列出角量与线量的关系, 再求解。
[例]一圆盘绕过盘心且与盘面垂直的光滑固定轴O以
角速度ω按图示方向转动.若如图所示的情况那样, F
将两个大小相等方向相反但不在同一条直线的力F沿
F
O
盘面同时作用到圆盘上,则圆盘的角速度 [
时刻=0 ,代入方程= 0+at 得
0
O
an r
v
a
at
a0 50rad/2s
t
50
3.14rad/2s
从开始制动到静止,飞轮的角位移及转数N分别为
00t1 2a2t505 01 2520 125ra0d
第5章 刚体力学
F Fz F
z k Fz来自 F M z k r F M z rF sin
O
r
F
2)合力矩等于各分力矩的矢量和
大学物理讲义
M M1 M 2 M 3
3) 刚体内作用力和反作用力的力矩互相抵消
M ij
大学物理讲义
四
角量与线量的关系
d dt
d d 2 dt dt
2
a
an r
et v a
t
at r an r
2
大学物理讲义
5.2 转动定律 转动惯量 平行轴定理
一 力矩
刚体绕 O z 轴旋转 , 力 F
M
F
作用在刚体上点 P , 且在转动 平面内, 为由点O 到力的 作用点 P 的径矢 . Z 的力矩 F 对转轴
>0
z
z
<0
d dt
定轴转动(fixed-axis rotation)的特点 1) 每一质点均作圆周运动,圆面为转动平面;
2) 任一质点运动 , , 均相同,但 v, a 不同;
3) 运动描述仅需一个坐标变量 .
大学物理讲义
三
匀变速转动公式
大学物理讲义
质点运动
转动(rotation):刚体中所有的点都绕同一直线 做圆周运动. 转动又分定轴转动和非定轴转动
刚体的一般运动 质心的平动
+
绕质心的转动
大学物理讲义
二 刚体转动的角速度和角加速度
角坐标 (t ) 约定 沿逆时针方向转动 r 角位移
第五章刚体的运动
ω θ
=[3gsinθ/(2l)]dθ
θ
p O N
ωdω= 0 [3gsinθ/(2l)]dθ 0 ω=[3g(1–cosθ)/l]1/2
例题 一根轻绳跨过一个半径为r,质量为M的 定滑轮,绳的两端分别系有质量为m1和m2的物 体 ,如图所示。假设绳不能伸长,并忽略轴的 摩擦,绳与滑轮也无相对滑动。求:定滑轮转 动的角加速度和绳的张力。
L
O
·
*质点作匀速率圆周运动时, 对圆心的角动量的大小为 v R L Rmv m 方向圆平面不变。
*同一质点的同一运动,如果选取的固定点不同, 其角动量也会不同。
锥摆
O
L 0 ro m m v
Lo ' r mv
L 0 lm v
方向变化
L o ' lm v sin
②积分形式:
其中:
t2 t1
t2 t1
M d t L 2 L1
M d t 称冲量矩
—力矩对时间的积累作用
例题 锥摆的角动量
r ①对O点: om T 0 rom m g l sin ( mg )
锥摆
O
T l
m
v mg
解: m1, m2 及定滑轮切向受力如 图, 以运动方向为坐标正向. T1–m1g=m1a1 m2g–T2=m2a2
T1 m1 T1
T2
T2 m2
T2R2–T1R1=Jβ
β=a1/R1=a2/R2 J=M1R1
2/2+M 2R2 2/2
m1g
m2g
2(m2R2–m1R1)g 解得 β= 2m1R12+2m2R22+M1R12+M2R22
理论力学第五章——点的运动
'
当Δt 0, Δv/Δt的极限称为点在瞬时t的加速度:
v dv d 2 x a lim 2 x t 0 t dt dt
5.1 点的直线运动
已知加速度或速度方程, 采用积分法 求运动方程 ,积 分常数由运动初始条件决定。 dv a dv adt dt v t dv adt
由于
dτ dτ ds dτ ds v n dt dt ds ds dt
所以
dv v a τ n dt
2
5.4 自然法
4 点的切向加速度和法向加速度
dv v a τ n dt
上式表明加速度矢量a是由两个分矢量组成:分矢量at 的方向永远沿轨迹的切线方向,称为切向加速度,它 表明速度代数值随时间的变化率;分矢量 an的方向永 远沿主法线的方向,称为法向加速度,它表明速度方 向随时间的变化率。
2 t 2
2
at tan | | 0.25 an
2
5.4 自然法
全加速度为aτ和an的矢量和
a at an
全加速度的大小和方向由下列二式决Leabharlann : 大小:a at an
2
2
方向:
at an cos(a ,t ) , cos(a ,n ) a a
5.4 自然法
如果动点的切向加速度的代数值保持不变,则动 点的运动称为匀变速曲线运动。现在来求它的运动规 律。 at c
dτ τ j 1 lim lim n n ds s 0 s s 0 s
t"
5.4 自然法
3 点的速度
r s ds v lim lim t 0 t t 0 t dt
刚体的基本运动
三、刚体平面运动的运动方程 刚 体 平 面 运 动 建立如图的静坐标系, 建立如图的静坐标系, 基点。 点称为基点 将 O′点称为基点。 当刚体作平面运动时, 当刚体作平面运动时, xO′,yO′ 和 均随时间连续变 化,它们均为时间的单值连 续函数, 续函数,即 x = f (t ) (t
1 O′ yO′ = f 2 (t ) = f 3 (t )
O
vO
O
ω
A B
O
ω
O1
二、刚体平面运动的简化 刚 体 平 面 运 动 如图所示, 如图所示,刚体作平面 运动时, 运动时,刚体上所有与空间 某固定平面距离相等的点所 构成的平面图形就保持在它 自身所在的平面内运动。 自身所在的平面内运动。
A1
π
A
S
经分析可得如下结 论:
π0
A2
刚体的平面运动可以简化为平面图形S 刚体的平面运动可以简化为平面图形 在其自身所在的平面内运动。 在其自身所在的平面内运动。
静 平 面 动
z
= (t )
平 面
这就是刚体的转动方程。 开门 这就是刚体的转动方程。(开门 转动方程 开门)
刚体上任意一点的轨迹都为圆。
O
二、角速度、角加速度 角速度、
刚体绕定轴转动的角速度等于其位置角对时 8.2 间的一阶导数,用ω 表示,即 间的一阶导数, 表示,
刚 体 的 定
d ω= = dt
绝对运动中,动点的速度与加速度称为绝对速度 va 与绝对加速度
aa
相对运动中,动点的速度和加速度称为相对速度 vr 与相对加速度 ar 牵连运动中,牵连点的速度和加速度称为牵连速度 ve与牵连加速度 ae
牵连点:在任意瞬时,动坐标系中与动点相重合的点,也就是 牵连点 设想将该动点固结在动坐标系上,而随着动坐标系一起运动时 该点叫牵连点。 四.动点的选择原则: 动点的选择原则: 一般选择主动件与从动件的连接点,它是对两个坐标系都有 运动的点。 五.动系的选择原则: 动系的选择原则 动点对动系有相对运动,且相对运动的轨迹是已知的, 或者能直接看出的。
点的一般运动与刚体的基本运动
05 点与刚体的相互作用
与力矩作用在刚体上
力是改变物体运动状态的原因,力的大小、方向和作用点决定了力的效果。
力矩是力和力臂的乘积,用来描述力对物体转动效果的量,其方向垂直于 力和转动轴所在的平面。
在刚体上施加力或力矩,会导致刚体产生平动或转动加速度,进而改变其 运动状态。
旋转矩阵描述
旋转矩阵是一个3x3的实数矩阵,用 于描述刚体在三维空间中的旋转。
旋转矩阵描述的优点是数学表达严谨, 适用于进行复杂的坐标变换和组合旋 转。
通过给定绕着三个坐标轴的旋转角度, 可以计算出一个唯一的旋转矩阵。
四元数描述
四元数是复数的一种扩展,用于描述三维空间中 的旋转和方向。
四元数由一个实部和三个虚部组成,可以表示为 一个有序实数四元组。
2. 可描述性
点的运动可以通过数学方程进 行描述,如运动方程和轨迹方
程。
3. 受约束性
点在运动过程中可能受到某些 约束,如固定点、运动范围等
。
运动方程与轨迹
运动方程
描述点在空间中的位置随时间变化的数学表达式。
轨迹
点在空间中移动时所形成的路径。
速度与加速度分析
速度
描述点在空间中移动的快慢程度,由 方向和大小组成。
课程目标
理解点的一般运动和平动、转动的关系。 掌握刚体运动的基本定理和定理的应用。
掌握刚体的基本运动和平动、旋转、平移的关系。 了解刚体运动的实例和应用。
02 点的一般运动
定义与特性
01
02
03
04
定义
点的一般运动是指一个点在三 维空间中按照一定的规律和轨
第五章刚体的基本运动PPT课件
第一节 刚体的平动
第二节 刚体绕定轴转动
第三节 轮系的传动比
本章重点:
1、平动刚体上点的速度、加速度的计算;
2、定轴转动刚体角速度、角加速度的计算;
3、转动刚体上点的速度、加速度的计算。
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
7
三、刚体绕定轴转动运动描述 1. 刚体的转动方程
过轴z作固定平面A、与刚体固连的转动平面B,两平面间的夹角用 表示,称为刚体的转角。当刚体转动时,随时间 t 变化, f(t) ,
该方程称为刚体的转动方程。
:
转角的符号规定:迎z 轴的正向看, 逆时针转向为正,反之为负;或用右手 法则确定。
8
2. 角速度和角加速度
角速度
单位为rad/s(弧度/秒)。
角加速 单位为rad/s2(弧度/秒2)。
角速度、角加速度都是代数量,符号规定和转角一致。当角速度、角加 速度同号时,刚体作加速转动,否则作减速转动。
用转速n(每分钟内的转数,以r/min为单位)来表示转动的快慢,
角速度与转速之间的关系是:
2πn πn
(2) 0,等于常量,0 t
12
例5-2 杆AB以匀速v运动,通过套筒A带动OC杆绕定轴转动。
开始时 0 ,试求 时,(1)摇杆OC的角速度、角加速度。 4
(2)设杆OC长d,杆端C点的速度和加速度。
解:(1)求角速度、角加速度
由几何关系可得:tan vt
l
等号两边同时对时间 t 求导, sec2d v
tana
第五章刚体的转动
34 第五章 刚体的转动§5-1、刚体定轴转动定律【基本内容】一、刚体的运动1、平动刚体平动的特征:刚体中的任一条直线,在刚体运动过程中始终保持平行。
刚体平动的研究方法:刚体作平动时,刚体各质点的运动情况相同,视为质点处理。
2、定轴转动刚体转动的特征:刚体上各点都绕同一固定的直线作半径不同的圆周运动,该直线称为刚体的转轴。
描述刚体转动的物理量角位移θ∆角速度ω角加速度β刚体匀变速转动公式βθωωβωωβωθ221202020=-+=+=tt t 二、刚体所受的力矩力矩是描述力对物体作用时产生转动效应和改变转动状态的物理量。
F r M ⨯= 式中F为力在转动平面的投影,r为轴指向力的作用点。
结论1 力矩是矢量,对于定轴,力矩的方向在转轴上; 结论2 力经过转轴和力平行于转轴,则力对此轴的力矩为0。
三、刚体定轴转动定律定轴转动的刚体,所受的合外力矩等于刚体的转动惯量与角加速度的乘积,即βJ M =四、转动惯量35定义:对于质点系∑=iii rm J 2对于刚体⎰=dm r J 2线分布:λλ,dx dm =是质量线密度。
面分布:σσ,dS dm =是质量面密度。
体分布:ρρ,dV dm =是质量体密度。
决定转动惯量的三个因素:刚体的质量、质量分布及转轴的位置。
【典型题例】【例5-1】 一轻绳跨过一定滑轮,滑轮可视为匀质圆盘,质量为m ,半径为r 。
绳的两端分别悬挂质量为m 1和m 2的物体,m 1<m 2,如图例2-4所示。
设滑轮轴所受的摩擦力矩为Mr ,绳与滑轮之间无相对滑动,试求运动物体的加速度和绳中的张力。
【解】 依题意,滑轮应视为一个有转动惯性的转动刚体,因此,在加速转动过程中,在图上必有T 2′>T 1′,而且,由于绳的质量可以忽略不计,还应有T 1=T 1′,T2=T 2′。
T 1、T 1′和T 2、T 2′都是绳中的张力。
绳与滑轮无相对滑动的条件,在绳不能伸长的情况下表示m 1与m 2有大小相同的加速度a ,且都等于滑轮边缘的切向加速度。
点的一般运动和刚体的基本运动
t 时间间隔内矢径旳变化 量 r(t)= r (t + t )- r(t)
点在 t 瞬时旳速度
v lim r d r r t0 t dt
动点旳速度等于它旳矢径对时间旳一阶导数。
7
v lim r dr t0 t dt
速 度 —— 描述点在 t 时刻运动快慢和运 动方向旳力学量。速度旳方向沿着运动 轨迹旳切线;指向与点旳运动方向一致; 速度大小等于矢量旳模。
❖ 加速度 —— 描述点在 t 时刻速度大小和方 向旳变化率旳力学量。 加速度旳方向为 v旳 极限方向 加速度大小等于矢量a旳模。
10
2、点旳运动旳直角坐标表达法
运动方程 速度 加速度
11
➢运动方程
不受约束旳点在空间有 3个自由度,在直角 坐标系中,点在空间旳位置由3个方程拟定:
x = x(t) y = y(t)
运动方程 速度 加速度
5
运动方程
运动方程 用点在任意瞬时t旳位置矢量r(t)
表达。 r(t)简称为位矢。
z
M
M´
M
r = r (t)
y
x
动点M在空间运动时,矢径r旳末端将描绘出一条
连续曲线,称为矢径端图,它就是动点运动旳轨迹。 6
速 度
t 时刻: 矢径 r(t)
t+ t 时刻: 矢径r (t + t )
2
学习运动学旳意义
➢它为学习动力学,即全方面地分析研 究物体旳机械运动作准备; ➢运动学旳理论能够独立地应用到工程实 际中去。
3
第五章 点旳一般运动和刚体旳基本运动
第一节 点旳运动旳表达法
矢径表达法
直角坐标表达法
弧坐标表达法
第二节 刚体旳基本运动
§5.1 刚体和刚体的基本运动
小球自由度数
i=2
§5.1 刚体和自由度的概念 及其基本运动
(形状和体积不变化) 一. 刚体
刚体内的所有质点间的距离始终保持不变
二. 自由度
自由度数:确定物体位置所需的 独立坐标数目
i=3
例
小球坐标 坐标关系 独立坐标数目
x
y
z
y2 z2 1
3 –1 = 2 i=2 i=1 i=2
小球自由度数
v0
v0
纯滚动 v0 = r
观览轮盘: 轮盘和吊箱的运动各有什么样的特点?
四. 描述 刚体绕定轴转动的角量
刚体各点绕同一直线作圆周运动
角位移 角速度
d lim t 0 t dt
d d 2 2 dt dt
A
r
角加速度
刚体各点有相同的角速度、角加速度
z
力学 力学
y x A (绕 x 转900) z
力学 力 学
y
B (绕 y 转900) z A+ B B +A
y
x B (绕 y 转900)
x A (绕 x 转900)
rA
v A vB
r r lim A lim B t 0 t t 0 t
rA rB
A
B
rB
a A aB
v = 2v0 瞬时转轴
结论:刚体内所有质点的速度相同,加速度相同。 2.转动 瞬时转轴
r
r v=0
固定不动 — 定轴转动
独立坐标数目 = 坐标数 - 关系式数
二. 自由度
自由运动刚体自由度 z
质心坐标 质心轴方向 x y z
大学物理教程第五章刚体的转动
⼤学物理教程第五章刚体的转动第五章刚体的转动§5-1 刚体的平动、转动和定轴转动⼀、刚体在外⼒作⽤下形状和⼤⼩都不变化的物体称为刚体.和这定义等价的另⼀定义是:如果物体在外⼒作⽤下它的任意两点之间的距离保持不变,则这物体称为刚体.刚体是⼀种理想模型,在⾃然界中是找不到的.实际上任何物体在外⼒作⽤下,它的形状和⼤⼩都或多或少要发⽣变化.但有许多物体,如果外⼒不甚⼤的话,它的形状和⼤⼩的改变不显著,这样的物体和刚体很接近,刚体⼒学中的结论对于这样的物体⼤致与经验符合.因此在实际问题中这样的物体可以当刚体来处理.⼆、平动和转动刚体的最简单的运动是平动和转动.在§1-3中关于参考系的平动的定义对刚体也适⽤.即如果刚体运动时,它⾥⾯任⼀直线的⽅位始终保持不变,则其运动称为平动.平动的特点是,任⼀时刻刚体中各点的速度和加速度都相等,任⼀点的运动都可以代表整个刚体的运动.刚体运动时,如果刚体中所有质点都绕着⼀条直线作圆周运动(如图5-1),则这刚体的运动称为转动,这条直线称为转轴.座钟的指针、CD 光碟、涡轮发电机的叶⽚和车辆的轮⼦的运动都是转动.转动刚体的转轴可以是固定的(例如涡轮叶⽚的转轴),也可以是运动的(例如车轮的转轴).转轴固定的转动称为定轴转动.可以证明,刚体的⼀般运动可以当作是由⼀平动和⼀绕瞬时轴的转动组合⽽成.例如车轮在地⾯上滚动(图5-2a),可以看成是由车轮随轮轴的平动以及车轮绕轮轴的转动组合⽽成.车轮上任⼀点P 的瞬时速度v ,等于轮轴的瞬时速度v 0与由于该点随车轮绕轮轴转动所具有的速度v r 的⽮量和,如图5-2(b)所⽰.三、定轴转动如图5-1,P 为刚体中⼀质点,当刚体绕定轴转动时,P 作圆周运动,圆⼼O 为转轴与圆平⾯的交点.由于刚体中任意两点之间的距离是固定不变的,刚体中各质点在同⼀时间Δt 内具有相同的⾓位移Δθ,因此在任⼀时刻各质点具有相同的⾓速度ω和⾓加速度α.所以我们可以⽤Δθ、ω和α作为描写刚体绕定轴转动的物理量,称为刚体的⾓位移、⾓速度和⾓加速度.我们在§1-4中讲过的⾓位移、⾓速度和⾓加速度等概念都适⽤于刚体的定轴转动.如果将⾓位移Δθ图5-1图5-2改为θ,则§1-4中公式θ = ωt ,ω = ω0 + αt 及θ = ω0t +21αt 2对刚体的定轴转动亦适⽤.⾄于刚体内各质点的速度和加速度则由于各质点到转轴的距离不同⽽各不相同,但这些线量与⾓量之间的关系仍然由(1-49)式、(1-51)式及(1-52)式表⽰.例题5-1 ⼀转速为1.80×103 r/min 的飞轮,因受制动⽽均匀地减速,经20.0s 停⽌转动.(1) 求⾓加速度和从制动开始到停⽌转动飞轮转过的转数;(2) 求制动开始后t = 10.0s 时飞轮的⾓速度;(3) 设飞轮半径为0.500m ,求在t = 10.0s 时飞轮边缘上⼀点的线速度和切向与法向加速度.解 (1) 设ω0为初⾓速度,由题意得rad/s π60rad/s 60101.80π2π230=??==n ω s 0.20 ,0==t ω因飞轮均匀减速,其转动为匀变速转动,由§1-4公式,⾓加速度为220rad/s π3rad/s 20.0π60-=-=-=t ωωα从开始制动到停⽌转动飞轮的⾓位移θ及转过的转数N 依次为rad π600rad 20.03π2120.0π6021220=??-=+=t t αωθ 300 2ππ600π2===θN (2) t = 10.0s 时飞轮的⾓速度为()rad/s π30rad/s 10.03ππ600=?-=+=t αωω(3) t = 10.0s 时,飞轮边缘上⼀点的线速度为m/s 1.47m/s 30π.5000=?==ωr v相应的切向加速度及法向加速度为22t m/s 71.4m/s 3π.5000-=?-==αr a()23222n m/s 1044.4m/s 30π.5000?=?==ωr a §5-2 ⼒矩转动定律转动惯量⼀、⼒对转轴的⼒矩根据经验,⼒可以使物体转动.但使物体转动的作⽤,不仅与⼒的⼤⼩有关,⽽且与⼒的⽅向以及⼒的作⽤线和转轴的距离有关.例如当我们⽤⼿关门时,⼒的作⽤线和门的转轴的距离越⼤,越容易把门关上.如果⼒的作⽤线通过门的转轴,或⼒的⽅向与转轴平⾏,则不论⽤多⼤的⼒也不能把门关上.⾸先讨论⼒在垂直于转轴的平⾯内的情形.图5-3为与转轴垂直的刚体的截⾯图,⼒F 在此平⾯内,⼒的作⽤线与转轴的距离为d ,d 称为⼒臂,⼒的⼤⼩F 与⼒臂d 的乘积称为⼒F 对转轴的⼒矩,⽤M 表⽰,则M = Fd (5-1)设r 为从转轴到⼒的作⽤点P 的径⽮,φ为r 与F 之间的夹⾓,由图5-3看出,d = r sin φ,故(5-1)式可写为r F Fr M ⊥==?sin (5—2)其中⊥F 为⼒F 在垂直于r ⽅向的分量.上式表⽰,只有⼒F 在垂直于r ⽅向的分量才对⼒矩有贡献.当φ = 0或φ =180°时M = 0,此时⼒的作⽤线通过转轴,0=⊥F ,d = 0.如果⼒F 不在垂直于转轴的平⾯内,则将F 分解为⼆分⼒F l 、F 2.F l 在垂直于转轴的平⾯内,F 2与转轴平⾏(图5-4).由于平⾏分⼒F 2对物体转动不起作⽤,可以不考虑,因此在⼒矩定义式(5-1)或式(5-2)中,F 应理解为外⼒在垂直于转轴的平⾯内的分⼒.⼒对定轴的⼒矩不但有⼤⼩,⽽且有转向.⼀般规定,如果⼒矩使刚体沿反时针⽅向转动,⼒矩为正;如果⼒矩使刚体沿顺时针⽅向转动,⼒矩为负.如果同时有⼏个⼒作⽤于刚体,则刚体所受的合⼒矩等于各个⼒对转轴的⼒矩的代数和.⼒对转轴的⼒矩与⼒对⼀点的⼒矩之间的关系如上所述,如果⼒F 与转轴不垂直,可将它分解为垂直于转轴的分⼒F l 和平⾏于转轴的分⼒F 2.设O 为通过⼒F 的作⽤点P ⽽垂直于转轴的平⾯与转轴的交点.r 为从O 点到P 点的径⽮(图5-4).则由(4-37)式得⼒F 对O 点的⼒矩为M = r × F = r × (F l + F 2) = r × F l + r × F 2将上式两边投影在转轴上.现在来看左右两边投影的意义.左边为⼒F 对O 点的⼒矩在转轴上的投影,右边r × F 2与转轴垂直,它在转轴上的投影为零.r × F l 与转轴平⾏,它在转轴上的投影等于F l r sin φ(图5-4).⽽后者等于⼒F 对转轴的⼒矩.故得结论:⼒F 对转轴的⼒矩等于⼒F 对O 点的⼒矩M 在转轴上的投影,其中O 为通过⼒F 的作⽤点P ⽽垂直于转轴的平⾯与转轴的交点.应当注意,⼒对⼀点的⼒矩是⽮量,⼒对转轴的⼒矩是标量.这是因为后者是前者的投影之故.⼆、转动定律刚体可看成是由⽆数质点组成,当刚体绕定轴转动时,各个质点都绕定轴作圆周运动,取质点P i 来考虑,设其质量为Δm i ,与转轴的距离为r i ,图5-5为经过P i ⽽垂直于转轴的刚体的截⾯图,作⽤于P i 的⼒有外⼒F i 及内⼒F ’i ,令F i t 及F ’i t 分别表⽰F i 及F ’i 沿切线⽅向的分量,则由切向运动⽅程得F i t + F ’i t = Δm i · r i α两边乘以r i :F i t r i + F ’i t r i = (Δm i r i 2)α将此式对刚体中⼀切质点求和得图5-3 图5-4∑∑∑='+ii i i ii i i i r m r F r F α)Δ(2t t (5-3) ∑'i ii r F t 为所有内⼒对转轴的⼒矩的代数和,即合内⼒矩.下⾯证明此合内⼒矩等于零.取刚体中两质点P i 及P j 来考虑.根据⽜顿第三定律,这两质点相互作⽤的⼒⼤⼩相等⽅向相反,且在同⼀直线上(图5-6),此⼆⼒有相同的⼒臂d ,但因⼆⼒⽅向相反,故其对转轴的合⼒矩为零.⼜因内⼒总是成对的,每⼀对内⼒的合⼒矩既然等于零,所以所有内⼒的合⼒矩亦必等于零,即0t ='∑iii r F 因此,(5-3)式化为∑∑=ii i i i i r m r F α)Δ(2t (5-4)∑iii r F t 为所有外⼒对转轴的⼒矩的代数和,即合外⼒矩,⽤M 表⽰,则上式化为∑=ii i r m M α)Δ(2 (5-5)对于⼀定刚体及⼀定转轴来说,上式中∑ii i r m 2Δ为⼀恒量,称为刚体对该转轴的转动惯量,⽤J 表⽰,即∑=ii i r m J 2Δ (5-6)这样(5-5)式便化为αJ M = (5-7)此式表⽰,刚体的⾓加速度与它所受的合外⼒矩成正⽐,与刚体的转动惯量成反⽐,这⼀关系称为转动定律.这是刚体绕定轴转动的基本定律.刚体绕定轴转动的其他定律都可以由这条定律导出.值得注意,这条定律是从⽜顿第⼆、第三定律推出的.三、转动惯量把转动定律αJ M =与⽜顿第⼆定律F = ma ⽐较,可以看出,这两个式⼦⼗分相似,M 对应于F ,α对应于a ,J 对应于m .我们知道,物体的质量m 是物体的平动惯性⼤⼩的量度,与此类似,物体的转动惯量J 是物体的转动惯性⼤⼩的量度.这可以从转动定律αJ M =看出.转动惯量不同的两个刚体,在相同的图5-5 图5-6外⼒矩作⽤下,转动惯量⼤的刚体⾓加速度⼩,就是它的⾓速度难于改变,也就是转动惯性⼤;反之,转动惯量⼩的刚体,它的转动惯性⼩.根据转动惯量定义:∑=ii i r m J 2Δ如果刚体是由若⼲个质量为m 1,m 2,m 3,…的质点组成,在(5-6)式中Δm i 应代以m i ,得+++=233222211r m r m r m J (5-8)如果刚体的质量连续分布在⼀体积内,(5-6)式中总和式应代以积分式,Δm 应代以d m (刚体中的质量元),得==VV V r m r J d d 22ρ(5-9)其中d V 为刚体的体积元,ρ为体积元d V 处的质量体密度,此积分遍及于刚体的整个体积V .(5-9)式可推求如下:将刚体划分为许许多多⼩部分,每⼀部分的线度极⼩,使它可以看成⼀质点.设各⼩部分的质量为Δm 1,Δm 2,…,Δm i ,…,与转轴的距离依次为r 1,r 2,…,r i ,…,按照(5-6)式,刚体的转动惯量J 近似地等于∑i i m r Δ2,即∑≈ii i m r J Δ2设λ为各⼩部分的线度的最⼤值,λ越⼩,每⼀⼩部分越接近于⼀质点,因此和数∑i i m r Δ2越接近于J ,所以当0→λ时,和数∑i i m r Δ2的极限值便完全等于J 了,即∑→=ii i m r J Δlim 20λ按照⾼等数学,上式中右式就是定积分?Vm r d 2,于是得 ??==VV V r m r J d d 22ρ这就是(5-9)式如果刚体的质量连续分布在⼀⾯上或⼀细线上,则需引⽤质量⾯密度或线密度概念,计算转动惯量公式与上式相同,只需将体密度换为⾯密度或线密度,将体积元换为⾯积元或线元即可.参看例题5-2及5-3.在国际单位制中转动惯量单位为千克平⽅⽶,符号为kg·m 2,转动惯量的量纲为ML 2.⼏何形状简单的刚体,其转动惯量可⽤积分法算出,见表5-1.表5-1 质量分布均匀的⼏种刚体的转动惯量a) 细棒(转轴通过中⼼与棒垂直) b) 细棒(转轴过棒的⼀端与棒垂直) 2121ml J = 231ml J =c) 圆柱体(转轴沿⼏何轴) d) 球体(转轴沿球的任⼀直径)221mR J = 252mR J =e) 薄圆筒(转轴沿⼏何轴) f ) 圆筒(转轴沿⼏何轴)2mR J = )(212221R R m J +=例题5-2 求质量为m 、板长为l 的均匀细棒对于通过棒的中点⽽与棒垂直的轴的转动惯量.解在棒上取与轴OO ’距离为x 、长为d x 的⼀⼩段来考虑(图5-7),这⼀⼩段的质量为d m = λd x .其中λ为棒的质量线密度.根据转动惯量定义,棒对轴OO ’的转动惯量为32222121d d l x x m x J l l -λλ===?? 棒的质量线密度lm =λ,代⼊上式得 2121ml J = 例题5-3 求质量为m 、半径为r 的匀质圆盘对于通过圆⼼⽽垂直于圆平⾯的轴的转动惯量.解在圆盘上取⼀半径为x ,宽为d x 的圆环来考虑(图5-8),这圆环的⾯积为2πx d x ,质量为d m = 2πσx d x ,其中σ为圆盘的质量⾯密度.根据转动惯量定义,圆盘对通过圆⼼O ⽽垂直圆平⾯的轴的转动惯量为4032π21d π2d r x x m x J r σσ===?? 圆盘的质量⾯密度2πrm =σ,代⼊上式得 221mr J = 上式对匀质圆柱体对于它的⼏何轴的转动惯量亦适⽤.决定刚体的转动惯量J 的⼤⼩因素有三:①刚体的质量;②刚体质量分布情况;③刚体的转轴的位置.例如质量均匀、⼤⼩相同的铅球和铜球,由于铅球质量较⼤,所以对于位置相同的轴来说,铅球的J 较⼤.⼜如有两个圆柱体,外径相等,质量也相等,但其中⼀个为实⼼,另⼀个为空⼼(质量分布不同),则对于它们的⼏何轴来说空⼼的圆柱体的J 较⼤.⼜如同⼀根棒对于通过棒的中⼼与棒垂直的轴与对于通过棒的⼀端与棒垂直的轴的J 不相同.例题 5-4 在半径分别为R 1、R 2的阶梯形滑轮上反向绕有两根轻绳,各悬挂质量为m 1、m 2的物体,如图5-9所⽰.若滑轮与轴间的摩擦忽略不计,滑轮的转动惯量为J ,求滑轮的⾓加速度α及各绳中张⼒F T1、F T2.解分析各物体的受⼒情况,如图5-9右图,对于滑轮,重⼒和轴的⽀承⼒通过轴⼼,其⼒矩为零.由于是轻绳,应有F T1 = F’T1,F T2 = F ’T2.先假设物体运动⽅向为:m 1的加速度a 1向下,m 2的加速度a 2向上,滑轮沿顺时针⽅向转动.选取物体运动⽅向为坐标轴正向,根据⽜顿第⼆定律和转动定律可得111T 1a m F g m =- 2222T a m g m F =- αJ R F R F =-22T 11T 滑轮边缘的切向加速度等于物体的加速度:αα2211 ,R a R a == 解以上各式得 g R m R m J R m R m 2222112211++-=α g m R m R m J R R m R m J R g m F 1222211212222111T )(???? ?++++=-=α图5-7 图5-8图5-9gm R m R m J R R m R m J R g m F 2222211211211222T )(???? ?++++=+=α讨论:1) 当m 1gR 1 > m 2gR 2 时,物体运动⽅向与原假定⽅向相同.2) 当m 1gR 1 = m 2gR 2 时,α = 0,滑轮作匀速转动或静⽌,运动状态或⽅向由初时刻条件决定.3) 当m 1gR 1 < m 2gR 2时,物体运动⽅向与原假定⽅向相反,即m 1向上,m 2向下,滑轮沿反时针⽅向转动.§5-3 转动动能⼒矩的功⼀、转动动能如图5-10,设刚体绕通过O 点⽽垂直于图平⾯的定轴转动,⾓速度为ω.当刚体转动时,刚体中各质点都绕定轴作圆周运动,因⽽都有动能.刚体的转动动能等于刚体中所有质点的动能之和.设各质点的质量为Δm 1,Δm 2,Δm 3,…,与转轴的距离为r 1,r 2,r 3,…,线速度为v 1 = r 1ω,v 2 = r 2ω,v 3 = r 3ω,…,则刚体的转动动能为22223322222211k Δ21 Δ21Δ21Δ21ωωωω??=+++=∑i i i r m r m r m r m E 但J r m ii i =∑2Δ为刚体的转动惯量,故E k ⼜可写为2k 21ωJ E =(5-10)即刚体的转动动能等于刚体的转动惯量与⾓速度的平⽅的乘积的⼀半,(5-10)式与平动动能公式2k 21v m E =形式相似,⽽且量纲也相同.⼆、⼒矩的功如图5-11,设绕定轴转动的刚体在外⼒F 作⽤下有⼀⾓位移d θ,⼒F 在垂直于转轴的平⾯上,从转轴到⼒的作⽤点的径⽮为r ,则⼒的作⽤点的位移d r 的⼤⼩为d s = r d θ.根据定义,⼒F 在位移d r 中的功为d W = F · d r = F cos α d s因α与φ互为余⾓,cos α = sin φ,故上式可写为d W = Fr sin φd θ⼜由(5-2)式Fr sin φ = M 为⼒F 对转轴的⼒矩,故⼜可写为图5-10 图5-11d W = M d θ(5-11)这就是⼒矩M 在微⼩⾓位移d θ中的功的公式.当刚体在⼒矩M 作⽤下产⽣⼀有限⾓位移θ时,⼒矩的功等于(5-11)式的积分:=θθ0d M W (5-12)如果⼒矩M 为常量,则θθθθθM M M W ===??00d d (5-13)如果刚体同时受到⼏个⼒作⽤,则(5-11)及(5-12)式中M 应理解为这⼏个⼒的合⼒矩.当外⼒矩对刚体作功时,刚体的转动动能就要变化,下⾯我们来求⼒矩的功与刚体转动动能的变化之间的关系.由转动定律tJ J M d d ωα== 其中M 为作⽤于刚体的合外⼒矩,在d t 时间内刚体的⾓位移为d θ = ωd t ,合外⼒矩的功为ωωωωθd d d d d d J t t J M W =??== 当刚体的⾓速度由ω1变为ω2时,合外⼒矩对刚体所作的功等于上式的积分,即21222121d 21ωωωωωωJ J J W -==? (5-14)上式指出,合外⼒矩对刚体所作的功等于刚体的转动动能的增量.例题5-5 ⼀长为l 质量为m 的均匀细长杆OA ,绕通过其⼀端点O 的⽔平轴在铅垂⾯内⾃由摆动.已知另⼀端点A 过最低点时的速率为v 0,杆对通过端点O ⽽垂直于杆长的轴的转动惯量231ml J =,若空⽓阻⼒及轴上的摩擦⼒都可以忽略不计,求杆摆动时A 点升⾼的最⼤⾼度h .解作⽤于杆的⼒有重⼒m g 及轴对杆的⽀承⼒F N ,⽀承⼒F N 通过O 点,其⼒矩为零.重⼒m g 作⽤于杆的质⼼C ,⼒矩为θsin 2l mg ,当杆沿升⾼⽅向有⾓位移d θ时,由于重⼒矩与⾓位移转向相反.其元功为θθd sin 2d l mg W -= 设θm 为杆的最⼤⾓位移,当杆从平衡位置转到最⼤⾓位移θm 位置时,重⼒矩所作的总功为)cos 1(2d sin 2d m 0m θθθθ--=-==??l mg l mg W W 由图5-12看出,h = l (1-cos θm ),代⼊上式得图5-12mgh W 21-= 杆在平衡位置时的⾓速度l00v =ω,在⾓位移最⼤时的⾓速度0m =ω.由于合外⼒矩的功等于转动动能的增量,故得 20220220613121 21021v v m l m l J m gh W -=??-=-=-=ω由此得 gh 320v = §5-4 绕定轴转动的刚体的⾓动量和⾓动量守恒定律当刚体以⾓速度ω绕定轴转动时,刚体中各质点都绕定轴作圆周运动.设质点P i 的质量为Δm i ,与轴的距离为r i ,线速度的⼤⼩为v i ,则质点P i 的动量的⼤⼩为Δm i v i (图5-13),P i 对转轴的⾓动量为Δm i v i r i .刚体中所有质点的⾓动量之和称为刚体对转轴的⾓动量,⽤L 表⽰,则ωωωJ r m r m r m L i i i i i i i i i i =??===∑∑∑22ΔΔΔv这样,刚体的转动定律可写为tL t J t JM d d d )d(d d ===ωω即 tJ t L M d )d(d d ω== (5-15)可以证明:(5-15)式不但适⽤于绕定轴转动的刚体,⽽且适⽤于绕定轴转动的任意物体或物体系.所不同的是,对于绕定轴转动的刚体来说,转动惯量J 是不变的,但对于绕定轴转动的任意物体或物体系来说,J 是可以变化的.在特殊情形下,如果作⽤于转动物体的合外⼒矩M = 0,则由(5-15)式,我们有L = J ω = 常量(5-16)即当物体所受的合外⼒矩等于零时,物体的⾓动量J ω保持不变,这⼀结论称为⾓动量守恒定律.⾓动量守恒有两种情形:① J 不变的情形,由(5-16)式得知ω亦不变,地球的⾃转差不多是这种情形;② J 是变化的情形,由(5-16)式得知,当J 减⼩时,ω增⼤;当J 增⼤时,ω减⼩.例如⼀⼈坐在可以绕铅直轴⾃由转动的凳⼦上,⼿中握着两个很重的哑铃.当他两臂伸开时,使凳⼦和⼈⼀起转动起来,假设轴承处的摩擦很⼩可以忽略不计,则凳⼦和⼈没有受到外⼒矩作⽤,其⾓动量J ω保持不变(图5-14a).当⼈把两臂收缩时,转动惯量J 减⼩,⾓速度ω就增⼤,即是说⽐两臂伸开时要转得快些(图5-14b).⼜如跳⽔运动员在空中翻筋⽃图5-13时,先把两臂伸直,当他从跳板跳起时使他⾃⼰以某⼀⾓速度绕通过腰部的⼀⽔平轴线转动,在空中时使臂和腿尽量蜷缩起来,以减⼩转动惯量,因⽽⾓速度增⼤,在空中迅速翻转,当他快要接近⽔⾯时,再伸直两臂和腿以增⼤转动惯量,减⼩⾓速度,以便竖直地进⼊⽔中.⾓动量守恒定律,与前⾯介绍过的动量守恒定律和能量守恒定律⼀样,是⾃然界中的普遍规律之⼀,不但适⽤于宏观物体的机械运动,也适⽤于原⼦、原⼦核和基本粒⼦等微观粒⼦的运动.例题5-6 ⼀⽔平放置的圆盘形转台.质量为m ’,半径为R ,可绕通过中⼼的竖直轴转动,摩擦阻⼒可以忽略不计.有⼀质量为m 的⼈站在台上距转轴为2R 处.起初⼈和转台⼀起以⾓速度ω1转动,当这⼈⾛到台边后,求⼈和转台⼀起转动的⾓速度ω2.解以⼈和转台为⼀系统,该系统没有受到外⼒矩作⽤,因此⾓动量守恒:J 1ω1 = J 2ω2 =常量即 22212221421ωω??? ??+'=???? ?+'mR R m R m R m 由此得 12422ωωmm m m +'+'= 思考题5-1 对于定轴转动刚体上的不同点来说,下⾯的物理量中哪些具有相同的值,哪些具有不同的值?线速度、法向加速度、切向加速度、⾓位移、⾓速度、⾓加速度.5-2 飞轮转动时,在任意选取的⾓位移间隔Δθ内,⾓速度的增量Δω相等,此飞轮是在作匀加速转动吗?5-3 作⽤在刚体上的合外⼒为F ,合外⼒矩为M ,举例说明在什么情况下(1) F ≠ 0⽽M = 0;(2) F = 0⽽M ≠ 0;(3) F = 0且M = 0.5-4 当刚体受到若⼲外⼒作⽤时,能否⽤平⾏四边形法先求它们的合⼒,再求合⼒的⼒矩?其结果是否等于各外⼒的⼒矩之和?5-5 在磁带录⾳机中,驱动装置将磁带匀速拉过读写磁头,于是磁带被拉出的⼀端卷带轴上剩余的磁带半径逐渐减⼩,作⽤在该卷带轴上的⼒矩随时间如何变化?该卷带轴的⾓速度随时间如何变化?5-6 如果要设计⼀个存储能量的飞盘,在质量和半径相同的情况下,应该选取质量均匀分布的圆盘形的还是质量集中在边缘的圆环形的呢?当⾓速度相同时,⼆者的转动动能之⽐为多少?图5-145-7 ⼏何形状完全相同的铁圆盘与铝圆盘,哪⼀个绕中⼼对称轴的转动惯量⼤?要使它们由静⽌开始绕轴转动并获得相同的⾓速度,对哪⼀个圆盘外⼒矩要作更多的功?5-8 恒星起源于缓慢旋转的⽓团,在重⼒作⽤下,这些⽓团的体积逐渐减⼩,在恒星尺度收缩的过程中,它的⾓速度如何变化?习题5-1 ⼀个螺丝每厘⽶长度上有20条螺纹,⽤电动螺丝起⼦驱动,在12.8s 内推进了1.37cm ,求螺丝的平均⾓速度.5-2 转盘半径为10.0cm ,以⾓加速度10.0 rad/s 2由静⽌开始转动,当t = 5.00s 时,求(1) 转盘的⾓速度;(2) 转盘边缘的切向加速度和法向加速度.5-3 ⼀个匀质圆盘由静⽌开始以恒定⾓加速度绕过中⼼⽽垂直于盘⾯的定轴转动.在某⼀时刻,转速为10.0 r/s ,再转60转后,转速变为15.0 r/s ,试计算:(1)⾓加速度;(2)由静⽌达到10.0 r/s 所需时间;(3)由静⽌到10.0 r/s 时圆盘所转的圈数.5-4 如图所⽰,半径r 1 = 30.0 cm 的A 轮通过⽪带被半径为r 2 = 75.0 cm 的B 轮带动,B 轮以π rad/s 的匀⾓加速度由静⽌起动,轮与⽪带间⽆滑动发⽣,试求A 轮⾓速度达到3.00×103 r/min 所需要的时间.5-5 在边长为b 的正⽅形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中⼀质点A ,平⾏于对⾓线BD 的转轴,如图所⽰.(2)通过A 垂直于质点所在平⾯的转轴.5-6 求半径为R ,质量为m 的均匀半圆环相对于图中所⽰轴线的转动惯量.5-7 代换汽车引擎盖密封垫时要求对螺栓的扭矩达到90.0N·m(扭矩过⼤会使密封垫失效),如果使⽤长度为45.0 cm 的扳⼿,如图所⽰,在垂直于扳⼿⼿柄⽅向⽤多⼤的作⽤⼒可以完成这⼀⼯作?5-8 ⽔井上提⽔的辘轳为圆柱形,半径为0.200m ,质量为5.00kg ,辘轳缠绕的轻绳上悬挂的⽔桶质量为3.00kg ,如图所⽰.辘轳失去控制使⽔桶⽆初速地下落,在2.00s 后达到井下⽔⾯,忽略辘轳轴上的摩擦阻⼒,求(1) ⽔桶下落的加速度;(2) 井⼝到⽔⾯的深度;(3) 辘轳的⾓加速度.题5-4图题5-5图题5-6图题5-7图5-9 圆盘形飞轮直径为1.25m ,质量为80.0kg ,飞轮上附着的滑轮半径为0.230m ,质量可以忽略,电动机通过环绕滑轮的⽪带驱动飞轮顺时针旋转,如图所⽰.当飞轮的⾓加速度为1.67rad/s 2时,上段⽪带中的张⼒为135N ,忽略轴上的摩擦阻⼒,求下段⽪带中的张⼒.5-10 制陶旋盘半径为0.500m ,转动惯量为12.0kg·m 2,以转速50.0r/min 旋转.陶⼯⽤湿抹布沿径向施加70.0N 的⼒按住旋盘的边缘,使之在6.00s 内制动,求旋盘的边缘和湿抹布之间的有效滑动摩擦系数.5-11 ⼀轻绳跨过滑轮悬有质量不等的⼆物体A 、B ,如图所⽰,滑轮半径为20.0 cm ,转动惯量等于50.0 kg·m 2,滑轮与轴间的摩擦⼒矩为98.1N·m ,绳与滑轮间⽆相对滑动,若滑轮的⾓加速度为2.36 rad/s 2,求滑轮两边绳中张⼒之差.5-12 如图所⽰的系统中,m 1 = 50.0 kg ,m 2 = 40.0 kg ,圆盘形滑轮质量m = 16.0 kg ,半径R = 0.100 m ,若斜⾯是光滑的,倾⾓为30°,绳与滑轮间⽆相对滑动,不计滑轮轴上的摩擦,(1)求绳中张⼒;(2)运动开始时,m 1距地⾯⾼度为1.00 m ,需多少时间m 1到达地⾯?5-13 飞轮质量为60.0 kg ,半径为0.250 m ,当转速为1.00×103 r/min 时,要在5.00 s 内令其制动,求制动⼒F ,设闸⽡与飞轮间摩擦系数µ = 0.400,飞轮的转动惯量可按匀质圆题5-8图题5-9图题5-11图题5-12图题5-13图题5-15图盘计算,闸杆尺⼨如图所⽰.5-14 ⼀个风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,⽌动前它转过了75转,在此过程中制动⼒作的功为44.4 J ,求风扇的转动惯量和摩擦⼒矩.5-15 如图所⽰,质量为24.0 kg 的⿎形轮,可绕⽔平轴转动,⼀绳缠绕于轮上,另⼀端通过质量为5.00 kg 的圆盘形滑轮悬有10.0 kg 的物体,当重物由静⽌开始下降了0.500 m 时,求:(1)物体的速度;(2)绳中张⼒.设绳与滑轮间⽆相对滑动.5-16 蒸汽机的圆盘形飞轮质量为200 kg ,半径为1.00 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5.00 min 内停下来,求在此期间飞轮轴上的平均摩擦⼒矩及此⼒矩所作的功.5-17 长为85.0 cm 的均匀细杆,放在倾⾓为45°的光滑斜⾯上,可以绕过上端点的轴在斜⾯上转动,如图所⽰,要使此杆实现绕轴转动⼀周,⾄少应给予它的下端多⼤的初速度? 5-18 如图所⽰,滑轮转动惯量为0.0100 kg·m 2,半径为7.00 cm ,物体质量为5.00 kg ,由⼀绳与劲度系数k = 200 N/m 的弹簧相连,若绳与滑轮间⽆相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧⽆伸长时,使物体由静⽌⽽下落的最⼤距离;(2)物体速度达最⼤值的位置及最⼤速率. 5-19 圆盘形飞轮A 质量为m ,半径为r ,最初以⾓速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静⽌,如图所⽰,两飞轮啮合后,以同⼀⾓速度ω转动,求ω及啮合过程中机械能的损失. 5-20 ⼀⼈站在⼀匀质圆板状⽔平转台的边缘,转台的轴承处的摩擦可忽略不计,⼈的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静⽌的,这⼈把⼀质量为m 的⽯⼦⽔平地沿转台的边缘的切线⽅向投出,⽯⼦的速率为v (相对于地⾯).求⽯⼦投出后转台的⾓速度与⼈的线速度.5-21 ⼀⼈站⽴在转台上,两臂平举,两⼿各握⼀个m = 4.00 kg 的哑铃,哑铃距转台轴r 0 = 0.800 m ,起初,转台以ω0 = 2π rad/s 的⾓速度转动,然后此⼈放下两臂,使哑铃与轴相距r = 0.200 m ,设⼈与转台的转动惯量不变,且J = 5.00 kg·m 2,转台与轴间摩擦忽略不计,求转台⾓速度变为多⼤?整个系统的动能改变了多少?5-22 证明刚体中任意两质点相互作⽤⼒所作之功的和为零.如果绕定轴转动的刚体除受到轴的⽀承⼒外仅受重⼒作⽤,试证明它的机械能守恒.5-23 ⼀块长L = 0.500 m ,质量为m =3.00 kg 的均匀薄⽊板竖直悬挂,可绕通过其上端的⽔平轴⽆摩擦地⾃由转动,质量m = 0.100 kg 的球以⽔平速度v 0 = 50.0 m/s 击中⽊板中题5-17图题5-18图题5-19图⼼后⼜以速度v = 10.0 m/s 反弹回去,求⽊板摆动可达到的最⼤⾓度.⽊板对于通过其上端轴的转动惯量为231L m J '= . 5-24 半径为R 质量为m '的匀质圆盘⽔平放置,可绕通过圆盘中⼼的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具⼩车分别沿⼆轨道反向运⾏,相对于圆盘的线速度值同为v .若圆盘最初静⽌,求⼆⼩车开始转动后圆盘的⾓速度.5-25 花样滑冰运动员起初伸展⼿臂以转速1.50r/s 旋转,然后他收拢⼿臂紧靠⾝体,使他的转动惯量减少到原来的3/4,求该运动员此时的转速.5-26 旋转⽊马转盘半径为2.00m ,质量为25.0kg ,假设可视为圆盘形刚体,转速为0.200r/ s ,⼀个质量为80.0kg 的⼈站在转盘边缘.当此⼈⾛到距转轴1.00m 处时,求转盘的⾓速度和⼈和转盘组成的系统转动动能的改变量.。
第5章 刚体力学基础
0
R 2λ d l
o
R
dm
质点作圆周运动、 质点作圆周运动、圆筒
例5-4(2)求质量为 、半径为 的均匀薄圆盘对中心轴的转 ( )求质量为m、半径为R 的均匀薄圆盘对中心轴的转 动惯量。 动惯量。 设面密度为σ 解:设面密度为 。 R r 宽为d 的薄圆环, 取半径为 r 宽为 r 的薄圆环
o
dr
5.2.2 转动惯量的计算: 转动惯量的计算:
描述刚体转动惯性大小的物理量。 描述刚体转动惯性大小的物理量。
1、定义:刚体对转轴的转动惯量: 、定义:刚体对转轴的转动惯量: 转轴的转动惯量
J = ∑ ∆m i ri
i =1
n
2
J = ∫ r2 dm
2、转动惯量的计算: 、转动惯量的计算: 若质量离散分布: 若质量离散分布:
舍去t t = 0 . 55 s ( 舍去 = 0 和 t = -0.55 ) 此时砂轮的角度: 此时砂轮的角度:
θ = ( 2 + 4 t 3 ) = 2 + 4 × 0.55 3 = 2.67 (rad)
一飞轮从静止开始加速, 补充例题 一飞轮从静止开始加速,在6s内其角速度均匀地 内其角速度均匀地 增加到200 rad/min,然后以这个速度匀速旋转一段时间,再予 增加到 ,然后以这个速度匀速旋转一段时间, 以制动,其角速度均匀减小。又过了5s后 飞轮停止了转动。 以制动,其角速度均匀减小。又过了 后,飞轮停止了转动。 若飞轮总共转了100转,求共运转了多少时间? 若飞轮总共转了 转 求共运转了多少时间? 解:整个过程分为三个阶段 ①加速阶段 ω 1 = β 1 t1 ②匀速阶段 θ 2 = ω 1 t 2
5.2 定轴转动刚体的功和能
第5章 刚体
5.3.1 力矩对时间的积累效应 角动量守恒定理
1. 刚体的角动量
L
对于定点转动而言:
Lrp
r mv
描述物体转动状态的量
r
O
r sin
p mv
m
对于绕固定轴Oz的转
动的质元
m而i 言:
Li ri mivi
miri2k
对于绕固定轴Oz 转动 的整个刚体而言:
z
L
vi
mi
O ri
L N miri2 J
m1
Mr r
F’T1 FT1
a m1
a
m2 G1
m2
F’T2 FT2
a
G2
因m2>m1,物体1向上运动,物体2向下运动,滑轮以顺 时针方向旋转,Mr的指向如图所示。可列出下列方程:
FT1 G1 m1a G2 FT2 m2a
FT2r FT1r M r J
式中是滑轮的角加速度,a是物体的加速度。滑轮
现在将这些方法用于刚体的研究。
第5章 刚体
5.1 刚体运动学 5.2 刚体定轴转动定律 转动惯量 5.3 力矩对时间和空间的累积效应
5.1 刚体运动学
刚体:在外力的作用下,大小和形状都不变的物体 ----物体内任意两点的距离不变。
刚体运动研究的基础:刚体是由无数个连续分布的 质点组成的质点系,每个质点称为刚体的一个质量 元dm。每个质点运动都服从质点力学规律。刚体的 运动是这些质量元运动的总和。
一般的力学分析方法可归纳为:
(1)突出主要矛盾,撇开次要因素,建立理想模型; (2)将质点系化整为零,以质点或质元为研究对象,
作为突破口; (3)根据受力情况,正确画出受力图; (4)根据已知条件或初始条件,选用所需的基本原
大学物理第5章刚体
B C
分析受力和力矩情况
第一篇 力 学
解:由ABC和绳子组成系统为研究对象,分析受力和力矩情况。
系统受到的合力矩: M m2 gr m3gr
对整个系统列出角动量定理积分形式
t
Mdt Lt L0
t0
分别计算,有 Mdt (m2gr m1gr)t
L0 0
0
L
LA
若质量连续分布 J r2dm
一维
二维
三维
dm
dl
线密度 dm dl
J r2dl
面密度 dm dS
J r2dS
体密度 dm dV
J r2dV
第一篇 力 学
例1.求长为L、质量为m的均匀细棒对图中不同轴的转动惯量。
解:取如图坐标,dm=dx
J A
L x2dx mL2 / 3
0
L
JC
2 L
x2dx
mL2
/12
2
A L
A
C
L/2
B X
B L/2 X
例2.求质量为m、半径为R的均匀圆环的转动惯量。轴与圆环平面垂
直并通过圆心。
解:
J R2dm R2 dm mR2
O
R
dm
第一篇 力 学
例3.求长求质量为m、半径为R均匀圆盘的转动惯量。轴与盘平面垂 直并通过盘心。
解:取半径为r宽为dr 的薄圆环
dm 2rdr
dJ r2dm 2r3dr
dr rR
J dJ R 2r3dr 1 R4
0
2
m
R 2
《理论力学》课件 第5章
因而 dBA/dt 0 ,于是得
vA vB
将上式再求一次导数,则得
aA aB
例5-1
如图5-4所示的曲柄滑道机构,当曲柄 OA 在平面上绕定轴 O 转动 时,通过滑槽连杆中的滑块 A 的带动,可使连杆在水平槽中沿直
线往复滑动。若曲柄 OA 的长为 r ,曲柄与 x 轴的夹角为 t,
其中 是常数,求此连杆在任一瞬时的速度及加速度。
根据上述结论,可作出截面上各点的加速度的分布图,在通过轴心的 直线上,各点的加速度按线性分布,将加速度矢的端点连成直线,此 直线通过轴心,如图5-10(b)所示。
(a)
图5-10
(b)
例5-3
如图5-11所示,一半径 R 0.2 m 的圆轮绕定轴O 的转动方程
为 t2 4t , 单位为rad, t单位为s。求 t 1 s 时,轮
*
t
当 t 趋近于零时,刚体转动的瞬时角加速度为
lim * lim d
t 0
t0 t dt
刚体绕定轴转动的角加速度等于角速度对于时间的一阶导数,
或等于转角对于时间的二阶导数。
角加速度与角速度一样都是代数量,它的单位是 rad/s2
若 与 的符号相同,则角速度的绝对值随时间而增加,这 时称为加速转动;反之,若 与 的符号相反,则角速度
例
设有平动的刚体,在刚体上任取两点 A 和 B ,并连成一直线如
图5-3所示。运动开始时 AB 线在 A0B0 的位置;经过极短时间间 隔 t 之后,移至 A1B1 ;依次再继续移至 A2B2 , ,AnBn 等。
首先证明这两个任意点的轨迹形状是完全 相同的,根据刚体的定义得知 A,B 两点间 的距离保持不变。 因此 AB A0B0 A1B1 A2B2 AnBn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 点的一般运动和刚体的基本运动
5-1 设点的直线运动方程为x =f (t ),试分析在下列情况下点作何种运动:
常数。
常数常数==≠==2222d d (e);0d d (d)d d (c);d d (b);0d d (a)t x t x t
x t x t x
5-2 切向加速度和法向加速度的物理意义有何不同?试分别求点作匀速直线运动与匀速曲线运动时的切向、法向加速度。
5-3 点作直线运动,某瞬时的速度为v =5 m/s 。
问这时的加速度是否为
0d d ==t v a
为什么?点作匀速曲线运动,是否加速度等于零? 5-4 题5-4图中所示两种半径为R 的圆形凸轮,设偏心距AO =e ,ϕ=ωt (ω=常量),讨论顶杆和滑块B 点的运动方程。
5-5 动点A 和B 在同一直角坐标系中的运动方程分别为
⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧==42222t y t x t y t x B B A A 其中x 、y 以cm 计t 以s 计,试求:(1)两点的运动轨迹;(2)两点相遇的时刻;(3)相遇
时A 、B 点的速度、加速度。
答:(1)2222112,2x y x y ==,(2)t =1 s ;(3)v A =4.13 cm/s ,v B =8.25 cm/s , a A =4 cm/s 2,a B =24.1 cm/s 2。
5-6 已知动点的运动方程为x =t 2–t ,y =2t ,求其轨迹及t =1 s 时的速度、加速度,并分别求切向、法向加速度及曲率半径。
x 及y 的单位为m ,t 的单位为s 。
答:24.2,0422==--v x y y m/s ,a =2 m/s 2;a τ=0.894 m/s 2,a n =1.79 m/s 2,ρ=2.8 m 。
题5-4图
5-7 题5-7图中OA 绕O 轴转动,ϕ=ωt ,同时轮绕A 转动,若使轮上任一直线AA '在空间的方位保持不变(平动),讨论轮子相对OA 杆的转动规律。
5-8 如图所示,摇杆机构的滑杆AB 以匀速u 向上运动,试建立摇杆OC 上点C 的运
动方程,并求此点在 4πϕ=的速度大小。
假定初始瞬时ϕ=0,摇杆长OC =a ,距离OD =l 。
答:
L ut a s l au v t u l aut y t u l al x C C C arctg ,,2/,/,/222222===+=+=ϕϕ。
5-9 曲柄OA 长r ,在平面内绕O 轴转动,如图所示。
杆AB 通过固定于点N 的套筒与曲柄OA 铰接于点A 。
设ϕ=ωt ,杆AB 长l =2r ,试求点B 的运动方程、速度和加速度。
答:2sin 4,2cos sin ,2sin cos 22
t rl l r v t l t r y t l t r x ωωωωωω-+=-=+=, 2sin 21622
2t rl l r a ωω-+=。
题5-9图 题5-10图 5-10 如图所示,OA 和O 1B 两杆分别绕O 和O 1轴转动,用十字形滑块D 将两杆连接。
在运动过程中,两杆保持相交成直角。
已知:OO 1=l ,∠AOO 1=ϕ=kt ,其中k 为常数。
求滑块D 的速度和相对于OA 的速度。
答:v =ak ,v r =-ak sin kt 。
5-11 刚体作平动时,刚体上的点是否一定作直线运动?试举例说明。
5-12 刚体作定轴转动时,转动轴是否一定通过物体本身?若一汽车由西开来,经过十字路口转弯向北开去如题5-12图所示,在转弯时由A 至B 这一段路程中,车厢的运动是平动还是转动?
题5-7图 题5-8图
题5-12图题5-13图
5-13一绳缠绕在鼓轮上,绳端系一重物M,M以速度v和加速度a向下运动如题5-13图所示。
问绳上两点A、D和轮缘上两点B、C的加速度是否相同?
5-14 已知刚体的角速度ω与角加速度ε如题5-14图所示,求A、M两点的速度、切向和法向加速度的大小,并图示方向。
题5-14图
5-15 物体作定轴转动的运动方程为ϕ=4t-3t2(ϕ以rad计,t以s计)。
试求此物体内,转动半径r=0.5 m的一点,在t0=0与t1=1 s的速度和加速度的大小,并问物体在哪一瞬时改变转向?
答:v0=2 m/s,a0=8 m/s2;v1=-24 m/s,a1=15.4 m/s;t=0.667 s。
5-16 搅拌机如图所示,已知O1A=O2B=R,O1O2=AB,杆O1A以不变转速n r/min。
试分析BAM构件上M点的轨迹、速度和加速度。
答:900
π
,
30
π2
2
Rn
a
Rn
v
M
M
=
=。
5-17某飞轮绕固定轴O转动的过程中,轮缘上任一点的全
加速度与其转动半径的夹角恒为α=60︒。
当运动开始时,其转角
ϕ0为零,角速度为ω0,求飞轮的转动方程及其角速度与转角间的
关系。
答:
ϕ
ω
ω
ω
ϕ3
e
,
3
1
1
ln
3
3
=
-
=
t。
5-18 当起动陀螺罗盘时,其转子的角加速度从零开始与时
间成正比地增大。
经过 5 min后,转子的角速度ω=600π rad/s。
试求转子在这段时间内转过多少转?
题5-16图
答:N =30 000转。
5-19 OA 杆长L =1m 。
在题5-19图所示瞬时杆端A 点的全加速度a 与杆成θ 角。
θ=60︒,a =20m/s 2。
求该瞬时OA 杆的角速度和角加速度。
答:s /110s /13102==ωε。
5-20 如图所示,曲柄CB 以匀角速度ω0绕C 轴转动,其转动方程为ϕ=ω0t ,通过滑块B 带动摇杆OA 绕O 转动,设OC =h ,CB =r ,求摇杆的转动方程。
答:
t r h t r A 00cos sin arctg ωωθ-=。
题5-19图 题5-20图 5-21 一木板放在两个半径r =0.25 m 的传输鼓轮上面。
在图示瞬时,木板具有不变的加速度a =0.5 m/s 2,方向向右;同时,鼓轮边缘上的点具有一大小为3 m/s 2的加速度。
如果木板在鼓轮上无滑动,试求此木板的速度。
答:v =0.86 m/s 。
5-22 一偏心圆盘凸轮机构如图示。
圆盘C 的半径为R ,偏心距为e 。
设凸轮以匀角速度ω绕O 轴转动,求导板AB 的速度和加速度。
答:θωθωsin ,cos 2e a e v AB AB -==。
题5-21图 题5-22图 5-23 图示仪表机构中,已知各齿轮的齿数为z 1=6,z 2=24,z 3=8,z 4=32,齿轮5的半径R =4 cm 。
如齿条BC 下移1 cm ,求指针OA 转过的角度ϕ。
答:ϕ=4 rad 。
5-24 摩擦传动机构的主动轮Ⅰ的转速为n =600 r/min ,它与轮Ⅱ的接触点按箭头所示的方向平移,距离d 按规律d =10-0.5t 变化,单位为厘米。
摩擦轮的半径r =5 cm 。
求:(1)以距离d 表示的Ⅱ的角加速度;(2)当d =r 时,轮Ⅱ边缘上一点的全加速度的大小。
答:(1)22π50d =εrad/s 2;(2)a =30π
1π400002+cm/s 2。
题5-23图
题5-24图。