海瑞克盾构机液压系统说明(附电路图)
盾构机刀盘驱动系统液压故障案例分析
盾构机刀盘驱动系统液压故障案例分析一、海瑞克盾构刀盘驱动液压系统的故障分析及处理1.液压系统深圳某地铁项目使用的德国海瑞克盾构机,其刀盘驱动系统为泵、液压马达闭式回路,由3台并联的斜盘式轴向柱塞变量泵和8台并联的轴向柱塞液压马达组成。
系统附带补油液压泵、控制泵等元件。
整个系统为电比例调速,恒功率保护方式。
泵采用带有补油冲洗阀的双向变量泵。
2.故障及原因分析(1)故障现象盾构在掘进时,三个刀盘泵突然出现故障无法重新起动。
主控室显示补油液压泵压力不足,达不到设计要求的最低补油压力,此时补油液压泵压力显示为1.8MPa,而设定值为2.7MPa左右。
(2)原因分析1)检查油箱液位,液位常,可以排除吸油不足的因素。
2)检查补油液压泵溢流阀。
怀疑溢流阀被卡,造成卸荷。
清洗溢流阀后再装回原来位置仍不能建立正常压力,由此判断溢流阀无故障。
3)补油液压泵为螺杆泵,自身抗污染能力很强,由于补油液压泵自身原件损坏造成压力不足的可能性很小,而且在关闭补油液压泵出口球阀的情况下,调节补油液压泵溢流阀,压力显示与新泵相同,可以排除补油液压泵自身的问题。
至此可以判断补油液压泵压力不足是由于部分流量从某个地方非正常流走造成的。
4)补油液压泵除对闭式回路进行补油和对3台主泵进行壳体冷却外,还为螺旋输送机的减速器进行壳体冷却,在补油主管路上还装有蓄能器。
检查蓄能器回油管,没有油液流出;关闭通往螺旋输送机减速器管路上的球阀,补油压力还是达不到设计要求。
由此可以判断三个刀盘泵内部泄漏是造成补油压力不足的主要原因。
5)在观察三个刀盘泵泄漏油管时发现,3号刀盘泵泄漏油管有大量油液流动的迹象,同时发现斜盘没有归零,卡在5°左右的位置。
随即打开3号刀盘泵泄漏油口,发现有铜屑杂质,接着在冷却循环过滤器也发现了大量铜屑。
随即将3号刀盘泵送生产厂家拆检,发现泵的内部已严重损坏。
如滑靴磨损严重,其中的两个已碎裂成多块,固定回程盘的8颗螺栓也全部剪切断裂,且回程盘已断裂成三部分。
盾构机液压系统说明(一)
盾构机液压系统说明(一)引言概述:盾构机液压系统是盾构机的核心组成部分,它通过液压动力来驱动盾构机的推进、转向和起重等运动,具有重要的作用。
本文将详细介绍盾构机液压系统的组成、工作原理及其在盾构机运行中的应用。
正文内容:一、液压系统的组成1. 液压泵2. 液压缸3. 油箱4. 过滤器5. 电控元件6. 油液供给系统7. 管路和接头二、液压系统的工作原理1. 系统的工作原理概述2. 液压泵的工作原理3. 液压缸的工作原理4. 油液的循环和压力控制5. 电控元件的信号传输和控制原理三、液压系统在盾构机运行过程中的应用1. 推进系统的应用a. 推进装置的工作流程b. 推进过程中液压系统的控制方法c. 推力、推进速度和推进力的调节d. 推进系统的故障处理2. 转向系统的应用a. 转向装置的工作流程b. 转向过程中液压系统的控制方法c. 转向角度、转向速度和转向力的调节d. 转向系统的故障处理3. 起重系统的应用a. 起重装置的工作流程b. 起重过程中液压系统的控制方法c. 起重力、起重速度和起重高度的调节d. 起重系统的故障处理4. 安全系统的应用a. 切割装置的工作流程b. 安全阀和保护装置的作用c. 紧急停机和紧急救援措施d. 安全系统的故障处理5. 其他应用领域a. 盾构机的液压机械传动b. 液压系统的节能措施c. 盾构机液压系统的维护保养d. 盾构机液压系统的发展趋势总结:本文详细介绍了盾构机液压系统的组成、工作原理及其在盾构机运行中的应用。
了解和掌握盾构机液压系统的工作原理和操作方法,对于提高盾构机的运行效率和安全性具有重要意义。
随着科技的不断进步,盾构机液压系统不断更新升级,为盾构工程的顺利实施提供了强大的技术支持。
(完整版)海瑞克盾构机技术说明
(完整版)海瑞克盾构机技术说明⽬录隧道掘进机的技术说明5.1 概述 (3)5.2 功能(EPB盾构) (4)5.2.1 ⼟料挖掘 / 推进 (5)5.2.2 控制 (6)5.2.3 管环拼装周期 (7)5.3 技术数据/总览 (8)5.4 操作步骤 (16)5.4.1 进⼊开挖室 (16)5.4.2 ⼈⾏⽓闸 (19)准备和注意事项 (19)加压 (21)加压步骤 (22)加压图 (24)通过通道室加压(加压附加⼈员) (26)附加⼈员加压图 (27)卸压 (28)卸压步骤: (29)卸压图 (31)对⼀个⼈员的紧急卸压图 (33)紧急情况下,通道室和主室内应分别采取的措施 (36)紧急情况卡卡样 (37)5.4.3 将开挖⼯具送⼊压⼒室 (38)5.4.4 拼装管环 (39)5.4.5 回填 (41)通过尾部机壳进⾏回填 (41)灌浆泵的⼯作原理 (42)5.4.6 压缩空⽓供给 (44)⼯业⽤空⽓ (44)压缩空⽓调节 (45)5.4.7 发泡设备说明 (46)安装设计 (46)设备功能 (47)⾼压聚合物系统 (47)5.5 隧道掘进机各部件 (48)5.5.1 盾构 (49)概述 (49)前部盾构 (49)中间盾构 (50)尾部机壳 (50)推⼒缸 (50)盾构关节油缸 (51)5.5.2 ⼈⾏⽓闸 (52)5.5.3 ⼑盘驱动装置 (54)原理 (54)旋转⼯作机构系统,主轴承 (54)齿轮润滑 (54)密封系统 (55)5.5.4 拼装机 (56)技术说明 (56)⽀架梁 (56)⾏⾛机架 (57)旋转机架 (57)带抓取头的横向⾏⾛装置 (58)旋转机架的动⼒提供 (59)安全设备 (59)5.5.5 螺旋输送机 (60)⼀般说明 (60)伸缩缸 (60)前部闸阀 (60)前部闸阀 (61)驱动装置 / 密封系统 (62)安全装置 (62)5.5.6 后援装置 (63)⼀般说明 (63)桥 (64)龙门架1 (65)龙门架2 (66)龙门架3 (68)龙门架4 (69)龙门架5 (71)5.1 概述该设备是⼀种液压挖掘盾构机,采⽤⼟压⽀护隧道开挖⾯。
海瑞克S673盾构机刀盘驱动液压系统分析
关 键词 : 盾构 机 电 、 液 压控 制 系统 刀 盘
… … … 一 …
一
、
系统构成
三 台 各 由3 1 5 K W 电机 驱 动 的
2 . 2刀盘 的转 向和 转 速远 程控 制
I 2补 油 回 路
因 主工作 回路是 闭 式 回路 , 故设 置补 油 回路 对其 进 行补 油 和 散热 。为增
出 的油经 两个 滤 清器 进 入 3 个 主泵 的E口( 补 油 口) 对 泵进 行 补油 , 并通 过 两个 单 向 阀分别 对 闭 式 回路 的低 压 端 进行 补 油 ; 同时 , 还有 一 路油 进 入 3 个 主泵 U 口对 泵进 行 冲洗 。补油 回路 压力 设 定为 1 7 …3 0 b a r , 补油 压力 低 于 1 7 b a r , 系统 不能 启 动 ; 补 油 压力 高 于 3 0 b a r , 系统 报 警并 延 时停 止 ; 补油 回路 中并 联 的 1 0 L
蓄能 器 用 以保 持该 油路 的油压 稳定 。
榘维 l
7 5 0 e / U 3 O o / 3 o 0 b a r
3 2 * 3
1 P O O 1 / 1 P O O 2 t l P O 0 3 1 P O O 1 / 1 P O O 2 / 1 P O 0 3 8
主泵 出 口压 力 ( 或 马 达进 口压 力 ) [ 压力 】 和主 泵X口压力 f 流量] 分 别 反 馈 为功率 阀v 5 的P H D 和P S T , 通过对功率 阀v 5 的设定 , 使【 压力] 和[ 流量] 的乘积 不 超过 设 定值 , 实现 对 主泵 限制 功率 控制 。 压 力P H D 还 通过 手动 两 位 四通 阀 V 4 作 用 于溢 流 阀v 7 或v 8 。在 正常 掘 进 的情况 下 , 回路 的最 大工 作 压力 是 2 2 5 b a r ( V 7 ) ; 盾构 机 堵转 或 需要 脱 困 时 , 手 动切换 V 4 使 油路 至v8 ( 只 能短 时 间使用 ) , 此 时 系统 压力 可达 2 7 5 b  ̄。
盾构机推进系统液压故障案例分析
盾构机推进系统液压故障案例分析推进系统受到的制约条件很多,在盾构机掘进中推进系统有时无法推进,故障也很难排除。
一、海瑞克S266型土压平衡盾构机推进系统的故障排除以下以海瑞克S266型土压平衡盾构机用于在某市地铁四号线仑大盾构区间和地铁五号线杨珠盾构区间施工为例分析故障排除过程。
1.盾构机推进系统的工作原理图1-6所示为S266型盾构机推进液压系统A组原理及液压缸布置图。
在图1-6中推进液压缸Z1~Z30,共有30个,其中Z4、Z11、Z19、Z26是带有行程测量系统的液压缸,通过这4个液压缸可以在盾构机的操作室中显示各自代表组的液压缸行程(0~2000mm)。
液压缸按单缸和双缸间隔均匀布置,被分配以20个不同的编号(1~20),按上下左右分为4组,A组包括圆周上方的液压缸1、2、18、19和20,图1-6给出了A组推进液压缸控制阀和18号液压缸的回路,B、C、D组液压缸的回路与A组相同,盾构机的推进系统由75kW的电动机驱动推进液压泵9向各推进液压缸提供液压油。
盾构机的推进系统有两种工作模式:一种是掘进模式,另一种是管片拼装模式。
在掘进模式下,PLC控制系统根据盾构机操作人员的操作指令,通过调节电磁比例控制阀2和阀3输出的电信号来控制盾构机的掘进,通过阀2可以控制该组液压缸的流量,通过阀3可以控制该组液压缸的工作压力。
在盾构机需要调节方向时,控制阀2在保证该组液压缸流量充足的条件下调节阀3增加或减小该组液压缸的液压油压力,从而实现盾构机调节方向;在管片拼装模式下,PLC控制系统根据设定值向控制阀3、阀6和阀10输出电信号,通过阀6增大该组液压缸的流量,通过阀3控制该组液压缸的工作压力,通过阀10控制推进液压泵的工作压力。
在拼装模式下,阀3和阀10控制的工作压力值基本是相同的。
拼装模式下伸液压缸时通过控制阀5阀芯在右侧实现液压缸伸出,拼装模式下缩液压缸时阀7先打开约2s将液压缸无杆腔的高压油卸压后,阀1和阀5再同时动作,实现液压缸的缩回,这样可以减小液压缸的冲击。
盾构机液压系统说明(二)2024
盾构机液压系统说明(二)引言概述:盾构机是一种用于地下隧道施工的工程机械设备,在其施工过程中,液压系统起着关键的作用。
本文将对盾构机液压系统进行详细的说明,包括其组成部分、工作原理以及维护保养等方面。
正文:一、液压系统的组成1. 油箱:盾构机液压系统的重要组成部分,用于储存液压油和平衡系统压力。
2. 液压泵:将机械能转换为液压能的装置,驱动液压系统的工作。
3. 液压油过滤器:确保液压油的纯净度,防止污染物进入液压系统。
4. 管路系统:将液压油传输到各液压元件,并实现控制与调节功能。
5. 液压元件:包括液压缸、液压马达、液压阀等,用于执行液压系统的工作任务。
二、液压系统的工作原理1. 压力控制:通过调节液压泵的输出压力,控制液压系统的工作压力。
2. 流量控制:通过调节液压泵的输出流量,并通过液压阀控制流量的分配,实现对液压缸与液压马达的控制。
3. 方向控制:通过液压阀的控制,改变液压流向,实现液压系统的正反转与停止。
4. 力矩控制:通过控制液压马达的输出转矩,实现盾构机工作的力矩调节。
5. 温度控制:通过散热装置、温度传感器等控制装置,对液压油进行冷却或加热,保持液压系统的正常工作温度。
三、液压系统的维护保养1. 定期更换液压油:根据制造商的要求,按时更换液压油,并确保使用合格的液压油。
2. 定期清洗油箱:清洗油箱内的沉淀物与污垢,避免其对液压油的污染。
3. 检查液压管路:定期检查液压管路是否有损坏、松动或泄漏现象,并进行及时修复。
4. 检查液压元件:定期检查液压缸、液压马达、液压阀等元件的工作状态,如有异常应及时更换或维修。
5. 清洗液压过滤器:定期清洗或更换液压过滤器,保持其良好的过滤效果。
结论:盾构机液压系统是盾构施工过程中至关重要的组成部分,其稳定的工作状态对提高施工效率和产品质量具有重要意义。
因此,正确使用和维护液压系统是确保盾构机正常工作的关键。
以上所述的液压系统组成、工作原理与维护保养方法,可供操作人员参考,以确保盾构机液压系统的稳定运行。
海瑞克盾构机液压系统说明
一、液压系统元件1液压泵液压泵是液压系统的动力元件,按结构可以分为柱塞泵、齿轮泵、叶片泵,按排量可以分为定量泵、变量泵,按输出出口方向又可以分为单向泵、双向泵。
泵都是由电动机或其他原动机带动旋转,通过这种往复的旋转将油不断地输送到管路中,通过各种阀的作用,控制着执行元件的运行。
在大连地铁盾构机中,螺旋输送机使用一个双向变量泵和一个定量泵,推进系统中使用一个大排量的单向变量泵,管片安装机种使用两个单向变量泵,注浆系统中使用一个单向变量泵,辅助系统使用一个单向变量泵。
1a.定量齿轮泵注:右侧油液进入泵内,齿轮旋转带动油液从左侧出口流出,排量是一定的2c.定量叶片泵注:转子转动,带动叶片推动油液1、2进油,3、4出油,排量一定d.斜盘式柱塞泵3注:斜盘由联轴器带动转动,往复吸油、压油,斜盘角度是可以调控的2液压阀液压阀根据作用可以分为压力控制阀、流量控制阀、方向控制阀。
压力控制阀可以控制液压回路的压力,如当液压回路中压力过大时,溢流阀或卸荷阀打开泄压。
流量控制阀可以控制液压回路中的流量大小,根据流量的不同可以控制执行元件的速度。
方向控制阀主要控制液压回路中液压油的流动方向,由此可以改变液压油缸的伸缩。
各种阀一般安装在靠近泵的油液管路中,相对来说比较集中,便于检查和维修。
4a.单向阀注:油液从P1口进入,克服弹簧力推开单向阀的阀芯,经孔隙从p2口流出,油液只能从p1流向p25b.溢流阀注:油从压力口进入,通过阻尼孔进入后腔,克服弹簧压力,推开阀芯,油液从溢流口6c.液控单向阀注:x口接压力油时,阀芯将a与b口堵死,当x口接油箱时,若Pa大于Pb,则从a口进油,打开阀芯,流向b口,若Pb大于Pa时,则油液从b 口流向a口,7d.插装阀8注:控制油路克服弹簧力,接通进出口,该阀一般用于主油路e.减压阀注:主要用于控制出口压力93液压马达液压马达属于液压系统的执行元件,与液压泵的工作原理相反,液压泵是将其他形式的能(如电能、风能)转化为液压油的动能,而液压马达是将液压油的动能转化为机械能,从而实现马达的旋转带动执行元件的转动。
盾构机液压系统说明
盾构机液压系统说明盾构机液压系统说明1、系统概述1.1 功能描述本文档旨在对盾构机液压系统进行详细说明,包括系统的功能、工作原理、组成部分以及操作维护等内容。
1.2 适用范围本文档适用于所有型号和规格的盾构机液压系统。
2、工作原理2.1 液压传动原理盾构机液压系统采用液压传动原理,通过液压油泵提供的高压油液,驱动液压缸、液压马达等液压元件完成各项工作。
2.2 工作过程盾构机液压系统工作过程包括起始阶段、推进阶段、注浆阶段和停机阶段。
在每个阶段,液压系统根据具体的工作要求,调节油液流量、压力等参数。
3、组成部分3.1 液压油泵盾构机液压系统中的液压油泵负责提供高压油液,通常采用可调节排量液压泵。
3.2 液压油箱液压油箱用于存放液压油液,并通过滤油器过滤油液,保证其清洁。
3.3 液压缸液压系统中的液压缸负责产生推力,推动盾构机前进。
液压缸根据具体的工作需求,可分为主推力液压缸和辅助液压缸。
3.4 液压马达液压马达负责驱动其他工作装置的旋转运动,如刀盘的旋转。
3.5 液压阀盾构机液压系统中的液压阀负责控制油液的流量和压力,保证系统正常工作。
4、操作维护4.1 操作说明在操作盾构机液压系统前,需要对系统进行操作前的准备工作,包括检查油液、检查液压元件等。
4.2 维护保养盾构机液压系统需要定期进行维护保养工作,包括更换液压油、清洗液压元件、检查液压管路等。
5、附件本文档涉及的附件包括液压系统结构图、液压系统工作流程图以及液压系统维护记录表。
6、法律名词及注释6.1 液压传动原理:指利用液力传动作用,通过流体的流动和压力变化来实现能量传递和控制的原理。
6.2 液压油泵:指将液体能量,即流体动能和压力能转化为机械能的液压元件。
6.3 液压缸:指转化液压能量为机械能,产生线性运动的装置。
(完整版)海瑞克盾构机技术说明
目录隧道掘进机的技术说明5.1 概述 (3)5.2 功能(EPB盾构) (4)5.2.1 土料挖掘 / 推进 (5)5.2.2 控制 (6)5.2.3 管环拼装周期 (7)5.3 技术数据/总览 (8)5.4 操作步骤 (16)5.4.1 进入开挖室 (16)5.4.2 人行气闸 (19)准备和注意事项 (19)加压 (21)加压步骤 (22)加压图 (24)通过通道室加压(加压附加人员) (26)附加人员加压图 (27)卸压 (28)卸压步骤: (29)卸压图 (31)对一个人员的紧急卸压图 (33)紧急情况下,通道室和主室内应分别采取的措施 (36)紧急情况卡卡样 (37)5.4.3 将开挖工具送入压力室 (38)5.4.4 拼装管环 (39)5.4.5 回填 (41)通过尾部机壳进行回填 (41)灌浆泵的工作原理 (42)5.4.6 压缩空气供给 (44)工业用空气 (44)压缩空气调节 (45)5.4.7 发泡设备说明 (46)安装设计 (46)设备功能 (47)高压聚合物系统 (47)5.5 隧道掘进机各部件 (48)5.5.1 盾构 (49)概述 (49)前部盾构 (49)中间盾构 (50)尾部机壳 (50)推力缸 (50)盾构关节油缸 (51)5.5.2 人行气闸 (52)5.5.3 刀盘驱动装置 (54)原理 (54)旋转工作机构系统,主轴承 (54)齿轮润滑 (54)密封系统 (55)5.5.4 拼装机 (56)技术说明 (56)支架梁 (56)行走机架 (57)旋转机架 (57)带抓取头的横向行走装置 (58)旋转机架的动力提供 (59)安全设备 (59)5.5.5 螺旋输送机 (60)一般说明 (60)伸缩缸 (60)前部闸阀 (60)前部闸阀 (61)驱动装置 / 密封系统 (62)安全装置 (62)5.5.6 后援装置 (63)一般说明 (63)桥 (64)龙门架1 (65)龙门架2 (66)龙门架3 (68)龙门架4 (69)龙门架5 (71)5.1 概述该设备是一种液压挖掘盾构机,采用土压支护隧道开挖面。
盾构机液压原理ppt课件
录
1、盾构机液压推进 2、铰接系统 3、刀盘切割旋转液压系统 4、管片拼装机液压系统 5、管片小车及辅助液压系统* 6、螺旋输送机液压系统* 7、液压油主油箱及冷却过滤系统 8、同步注浆泵液压系统 9、超挖刀液压系统*
一、盾构机液压推进
功能:。提供盾构机前进的推力 。控制盾构机前进速度 。盾构机转向及纠偏
盾构机液压系统
进入旋转马达控制阀P 口的油经节流阀(M10)又 分两路,一路经减压阀、 两位四通电磁阀(B032) 到(H86)旋转马达控制马 达的高低速。另一路经减 压阀、两位四通阀(B033 )、单向节流阀去控制马 达(1A002)的刹车( 1G002)。在(1A002)马 达上装有旋转方向传感器 (1S026、B035)、马达高 低速传感器(1S025、B038 )和油温传感器(1S023、 B050)。在刹车回路中设 有蓄能器(2C002),与单 向节流阀一起保证了刹车 时的快杀慢放。
盾构机液压系统
外部控制油路
盾构机液压系统
• 外部控制油路
• 进入旋转主泵控制阀的油经节流和减压后在经电液比例溢 流阀(B006)向旋转主泵司服阀提供0-45bar的可变压 控制油压,以实现转速的无级调整。另外从主泵P口(H88) 和梭阀(V030、H92)反馈到控制阀(2C003)并汇集 到两组溢流阀和载荷感知阀,两组溢流阀由手动两位四通 阀转换,正常工作时使用左边溢流阀,增大扭矩时使用右 边溢流阀(只能短时间使用),手动阀自动回位。感知阀 是在扭矩突然增大时,反馈的油压将减低其溢流压力,使 控制主泵伺服的压力降低,从而减小主泵斜盘角降低刀盘 转速。
盾构机液压系统
当伺服阀X1端供油时,伺服阀移至右位,伺服缸有杆腔进油,无杆腔 回油至低压,伺服活塞右移泵斜盘角增大,A路为高压侧,当A路压力 超过调定值时,此时左边一个随动阀上移,控制油压与伺服油缸无杆 腔接通,因有杆腔和无杆腔的压差关系,使伺服活塞左移,泵斜盘角 减小,A路压力下降至回路压力调定值。当X2端供油时,伺服阀移至 左位,控制油经两个随动阀后进入伺服缸的无杆腔(有杆腔为常压 油),因压差关系,伺服活塞左移泵斜盘角反方向加大,B路为高压侧, 当压力超高时右边一个随动阀上移,伺服缸无杆腔与低压回路接通, 伺服活塞右移,泵斜盘角减小,B回路降至设定压力值。 控制回路:控制油由5.5KW控制泵提供,来至控制泵的控制油从控制 阀P口进入经溢流阀限压后,再由电磁比例调压阀调压,给油泵伺服阀 提供可变的压力油,来控制主泵的流量,从而达到无级控制马达转速 的目的。控制阀中还设有一载荷感知阀,回路中随载荷变化的压力经 梭阀(1V024)送到控制阀的RHD口调整感知阀上控制油的溢流压力, 当载荷增大时感知阀的溢流压力降低,从而使控制伺服阀的控制压力 经梭阀(1V019)至感知阀降低,随之减小斜盘角、流量、转速,使 载荷得到控制。
盾构机液压系统原理(海瑞克)
盾构机液压系统原理一.液压系统原理盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。
这些系统按其机构的工作性质可分为:1. 盾构机液压推进及铰接系统2. 刀盘切割旋转液压系统3. 管片拼装机液压系统4. 管片小车及辅助液压系统5. 螺旋输送机液压系统6. 液压油主油箱及冷却过滤系统7. 同步注浆泵液压系统8. 超挖刀液压系统以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。
有的系统还相互有联系。
下面就分别介绍一下以上8个液压系统的作用及工作原理。
(一)盾构机液压推进及铰接系统1. 盾构机液压推进(1)盾构机液压推进系统的组成盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及纠偏功能。
铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。
(2)推进系统液压泵站:推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。
恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调范围内变化时,调整后的泵供油压力保持恒定。
恒压整,流量在0-qm a x式变量泵常用于阀控系统的恒压油源以避免溢流损失。
由恒压变量泵输出的高压油分别送达A、B、C、D四组并联的推进方向控制阀组,经过阀组的流量、压力调整和换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向得到准确控制。
因每组油缸的控制原理都一样,下面就以B组中的第一个油缸控制为例,介绍其作用和工作原理。
盾构机液压系统原理
盾构机液压系统原理一.液压系统原理盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。
这些系统按其机构的工作性质可分为:1. 盾构机液压推进及铰接系统2. 刀盘切割旋转液压系统3. 管片拼装机液压系统4. 管片小车及辅助液压系统5. 螺旋输送机液压系统6. 液压油主油箱及冷却过滤系统7. 同步注浆泵液压系统8. 超挖刀液压系统以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。
有的系统还相互有联系。
下面就分别介绍一下以上8个液压系统的作用及工作原理。
(一)盾构机液压推进及铰接系统1. 盾构机液压推进(1)盾构机液压推进系统的组成盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及纠偏功能。
铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。
(2)推进系统液压泵站:推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。
恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-q ma x范围内变化时,调整后的泵供油压力保持恒定。
恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。
由恒压变量泵输出的高压油分别送达A、B、C、D四组并联的推进方向控制阀组,经过阀组的流量、压力调整和换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向得到准确控制。
因每组油缸的控制原理都一样,下面就以B组中的第一个油缸控制为例,介绍其作用和工作原理。
海瑞克盾构机现场调试的步骤
浅析海瑞克盾构机现场调试的方法李剑祥(中铁六局集团有限公司盾构分公司广东深圳 518056)摘要:详细阐述盾构机现场调试的准备项目和具体步骤,避免常见的问题,并通过处理故障,优质高效的完成盾构机现场调试工作。
关键词:海瑞克盾构机调试盾构机是一种集机械、液压、电气和自动化控制于一体、专用于地下隧道工程开挖的技术密集型重大工程装备。
它具有开挖速度快、质量高、人员劳动强度小、安全性高、对地表沉降和环境影响小等优点。
但是其体积庞大、系统复杂,内部管路和线路纵横交错,自动化控制系统先进强大。
对于负责盾构设备的机电工程师来说,组装调试维护盾构机就必须具备机械液压电气等方面的基础知识,并且学习掌握其结构和原理,还需结合现场、不断总结和提高,才能真正管理和维护好盾构设备。
盾构机调试按地点分为工厂调试和现场调试,按阶段分为空载调试和负载调试。
盾构机工厂调试是设备在工厂车间进行的第一次调试。
在这里主要讨论现场调试的空载调试阶段。
盾构机现场调试作为盾构始发的一项重要工作,如何优质高效的完成,对机电人员是个大考验。
1 海瑞克盾构机简介本文介绍的调试对象是海瑞克S436盾构机。
S436为开挖直径6280mm土压平衡盾构机,由主机、连接桥和五节台车组成,总长78米。
主机分为刀盘、前盾、中盾和尾盾,内含主驱动、人闸、拼装机和螺旋机。
台车上布置了司机室、液压泵站、低压配电柜、变压器和循环水系统。
盾构机液压系统主要有刀盘驱动系统、推进和铰接系统、螺旋机系统、拼装机系统和注浆系统。
辅助系统有循环水系统、压缩空气系统、油脂系统、泡沫系统和膨润土系统。
电气系统分为高压系统、低压系统和控制系统。
其他辅助系统有双轨梁系统和皮带系统。
2 调试的准备工作在调试之前需要重点检查的部位有:23 具体调试步骤一般空载调试步骤如下:34负载调试阶段就是始发掘进阶段,处理一些在空载调试时没有出现的问题。
调试完毕后,测试其各系统各功能正常后,填写调试验收表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、液压系统元件1液压泵液压泵是液压系统的动力元件,按结构可以分为柱塞泵、齿轮泵、叶片泵,按排量可以分为定量泵、变量泵,按输出出口方向又可以分为单向泵、双向泵。
泵都是由电动机或其他原动机带动旋转,通过这种往复的旋转将油不断地输送到管路中,通过各种阀的作用,控制着执行元件的运行。
在大连地铁盾构机中,螺旋输送机使用一个双向变量泵和一个定量泵,推进系统中使用一个大排量的单向变量泵,管片安装机种使用两个单向变量泵,注浆系统中使用一个单向变量泵,辅助系统使用一个单向变量泵。
a.定量齿轮泵注:右侧油液进入泵内,齿轮旋转带动油液从左侧出口流出,排量是一定的c.定量叶片泵注:转子转动,带动叶片推动油液1、2进油,3、4出油,排量一定d.斜盘式柱塞泵注:斜盘由联轴器带动转动,往复吸油、压油,斜盘角度是可以调控的2液压阀液压阀根据作用可以分为压力控制阀、流量控制阀、方向控制阀。
压力控制阀可以控制液压回路的压力,如当液压回路中压力过大时,溢流阀或卸荷阀打开泄压。
流量控制阀可以控制液压回路中的流量大小,根据流量的不同可以控制执行元件的速度。
方向控制阀主要控制液压回路中液压油的流动方向,由此可以改变液压油缸的伸缩。
各种阀一般安装在靠近泵的油液管路中,相对来说比较集中,便于检查和维修。
a.单向阀注:油液从P1口进入,克服弹簧力推开单向阀的阀芯,经孔隙从p2口流出,油液只能从p1流向p2b.溢流阀注:油从压力口进入,通过阻尼孔进入后腔,克服弹簧压力,推开阀芯,油液从溢流口c.液控单向阀注:x口接压力油时,阀芯将a与b口堵死,当x口接油箱时,若Pa大于Pb,则从a口进油,打开阀芯,流向b口,若Pb大于Pa时,则油液从b 口流向a口,d.插装阀注:控制油路克服弹簧力,接通进出口,该阀一般用于主油路e.减压阀注:主要用于控制出口压力3液压马达液压马达属于液压系统的执行元件,与液压泵的工作原理相反,液压泵是将其他形式的能(如电能、风能)转化为液压油的动能,而液压马达是将液压油的动能转化为机械能,从而实现马达的旋转带动执行元件的转动。
盾构机中用到的马达主要是轴向柱塞变量马达,可实现无级调速。
4液压油缸液压油缸同样是液压系统中的执行元件,主要有伸出、收回、保持三个状态,一般是中间隔开分为两个工作腔即有杆腔和无杆腔。
最常见的是单活塞杆油缸,两个工作腔交替进行进油、回油来控制活塞杆的状态。
5液压辅助元件及工作介质液压回路中除了以上几大部分以外还有很多辅助元件,例如油箱、过滤器、传感器、蓄能器、密封装置、冷却器、液压管路和接头、温度计、液位计等。
液压的工作介质就是指液压油,中铁装备公司根据NAS清洁度选择液压油的粘度V=68mm²/s,主要使用壳牌或美孚液压油。
伸缩油缸换向回路示意图:油缸伸出为例,泵在电动机的带动下开始转动将油液输出,换向阀换到左位,进入液压油缸无杆腔,同时有杆腔的油液开始回油,经换向阀流入到油箱,1、2属溢流阀,当油路中压力较大时,溢流阀打开,油液直接回到油箱,防止压力过大时对系统造成冲击甚至破坏。
注:此图原理同上图,换向阀的关闭是通过手柄操作的二、盾构机液压系统根据液压油的走向,大致可以把整个液压系统的回路归结为:油箱→液压泵→液压控制阀→液压马达或者液压油缸→液压回油散热器→油箱。
1、螺旋输送机液压基本原理下图是大连地铁2号线201工程土压平衡式盾构机螺旋输送机旋转的液压系统图,以正转为例:首先,准备好盾构机启动条件,选定正转方向、按下螺旋输送机启动按钮后,电动机开始启动,带动左侧双向变量液压泵旋转,泵开始输出液压油,分出上下两路,上侧液压油途径压力表到达换向阀(此时换向阀已经换位到左位)处不通继续向上,到达五个旋转马达右侧,推动马达旋转,同时下侧液压油向上到达换向阀处,推开溢流阀,因节流口的原因只有部分油液流回油箱,其余部分油液继续向上到达五个马达左侧,因为左右两侧油液压力的关系,马达由右向左转动,从而实现螺旋输送机的正转。
2、推进系统液压基本原理下图是大连地铁2号线工程201标段盾构机推进系统的液压原理图,以A组推进为例:准备好启动条件,启动刀盘,再启动推进系统,首先电动机启动带动变量斜盘泵,泵将液压油从油箱中经过过滤器吸出再压出,流经带有开关和旁通单向阀的过滤器到达换向阀(换向阀在控制泵的调节下已换至右位),再经过单向阀到达液压油缸的后腔,同时,液压前腔的液压油经换向阀回油到油箱,从而实现液压油缸的伸出。
当液压油缸收回时,通过换向阀换位,液压油缸前腔进油,后腔出油,实现收回。
当需要加大或减小推进速度时,可通过可调节流口的开口大小调整。
管片拼装时,液压油缸后腔压力较大,回收较困难,可通过插装阀1直接回油。
推进系统液压总图:3、管片拼装机液压基本原理下图是大连地铁2号线工程201标段盾构机管片安装机液压系统原理图,液压泵是双变量斜盘泵,以旋转为例:准备好管片拼装条件,停止推进并启动管片拼装模式,电动机带动变量泵,泵将油从油箱经过滤器压入左右换向阀处,换向阀在控制阀的作用下已经换到图中的下位,油液经过换向阀与平衡阀到达单向定量液压马达,液压马达通过转动将液压能转换为机械能,从而实现带动拼装机旋转。
其中,平衡阀块中两个两位两通阀处于单向阀的状态,只能单向导通,当回油时,进油侧油压通过管路推动两位两通阀至双向联通状态,马达可以顺利回油。
阀块中还有两个溢流阀,当达到溢流阀的设定压力,阀门打开,进回油路联通,马达前后受力相等,停止旋转,实现了管片拼装机只能旋转±200°。
同理,通过换向阀的作用,可实现管片拼装机的其他五个自由度。
4、注浆系统液压基本原理下图是大连地铁2号线工程201标段盾构机注浆系统的液压原理图,以泥浆泵1工作为例:做好注浆的准备工作,启动注浆泵,泵将油液输出,经过滤器到达可调节流阀,再进入泥浆泵1,通过两处换向阀到达液压油缸,由于换向阀的换位作用,控制油路的进出,实现油缸的伸缩,通过油缸的伸缩将砂浆通过注浆管输送到盾体外。
5、辅助系统液压基本原理下图是大连地铁2号线工程201标段盾构机辅助系统液压原理图,以管片小车为例:达到启动条件后,开启辅助泵按钮,电机带动变量泵将油液输出,经过滤器到达换向阀,换向阀换位,再流经液控单向阀到达小车移动油缸,推动小车移动。
同样,泵输出的油液经过换向阀到达同步马达,带动油缸伸缩,小车实现举升。
同理,辅助泵也可实现稳定器、铰接油缸、螺旋输送机伸缩节的控制。
盾构机液压系统原理一.液压系统原理盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。
这些系统按其机构的工作性质可分为:1. 盾构机液压推进及铰接系统2. 刀盘切割旋转液压系统3. 管片拼装机液压系统4. 管片小车及辅助液压系统5. 螺旋输送机液压系统6. 液压油主油箱及冷却过滤系统7. 同步注浆泵液压系统8. 超挖刀液压系统以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。
有的系统还相互有联系。
下面就分别介绍一下以上8个液压系统的作用及工作原理。
(一)盾构机液压推进及铰接系统1. 盾构机液压推进(1)盾构机液压推进系统的组成盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及纠偏功能。
铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。
(2)推进系统液压泵站:推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。
恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-q max范围内变化时,调整后的泵供油压力保持恒定。
恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。
由恒压变量泵输出的高压油分别送达A、B、C、D四组并联的推进方向控制阀组,经过阀组的流量、压力调整和换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向得到准确控制。
因每组油缸的控制原理都一样,下面就以B组中的第一个油缸控制为例,介绍其作用和工作原理。
油泵输出的高压油经高压管路由B组的P口进入,一路径F1(过滤)→A111(流量调整)→A101(压力调整)→经电液换向阀进入推进油缸。
缸的快进快退,提高工作效率。
A783控制的插装阀。
A403为推进油缸底端预卸荷阀。
阀组中还有液控单向阀、载荷溢流阀,以及A256压力传感器和油缸行程传感器。
四组阀组中的电液换向阀的液控油由定量泵(1P002)经减压阀(1V034)提供。
2. 铰接装置工作模式分三种:铰接装置的动力来源于推进系统的液压泵站中的定量泵(1P002),铰接装置的加载和卸载由(A349)两位两通电液阀控制。
(1)铰接回收(PULL或RETRACTION)模式(减小铰接间隙),定量泵输送来的高压油从阀快(2C001)P口进入,此时(H001)不得电截止,(H002)得电导通,高压油进入铰接油缸的有杆腔使铰接油缸回收。
(2)铰接保持(HOLD或FREE)模式(浮动模式),该模式下(H001、H002)都不得电截止。
铰接油缸有杆腔的油被封闭,油量保持不变,被封闭的油在所有相互并联的有杆腔内互相补偿,直线推进时保持铰接间隙,转弯时处于浮动状态。
(3)铰接释放(RELEASE或LOOSE)模式(伸长模式),当(H001)得电导通,(H002)无电截止时,铰接油缸有杆腔的油接通低压,在盾构机推进时,因盾尾的阻力使铰接油缸被拉长,达到增大铰接间隙的目的。
该油路中还设有负载溢流阀(V2)、压力传感器(H005)及铰接间隙长度传感器。
另外可以通过(2V003、2V004、)的导通和截止达到铰接保持和铰接释放功能。
但当(2V003、2V004)两个阀的截止,在铰接油缸有杆腔的压力过高时(盾构机推进时,盾尾如果被卡住),因无压力传感器的压力显示和载荷溢流阀的溢流,可能会使铰接油缸损坏或油管爆裂。
(二)刀盘旋转液压系统刀盘旋转系统可分为补油回路、主工作回路、外部控制供油泵、主泵外部控制回路、马达外部控制回路。
刀盘旋转系统是为刀盘切割岩石或土壤时提供转速和扭矩,要求根据岩石地质的变化转速能够方便的调整。
为了得到较大的功率和扭矩,该系统采用3台315KW的双向变量液压泵并联,带动8台双向两速低速大扭矩液压马达。
下面分别介绍各回路的作用及工作原理。