大学物理-12章:光的干涉

合集下载

《大学物理》光的干涉知识点

《大学物理》光的干涉知识点

《大学物理》光的干涉知识点咱们来聊聊大学物理里超有意思的光的干涉!先说说啥是光的干涉啊。

简单说,就是两束或者多束光相遇的时候,它们会相互影响,产生一些特别有趣的现象。

这就好比两个人在舞台上跳舞,配合好了就能跳出精彩的舞步。

比如说杨氏双缝干涉实验,这可是光的干涉里的经典。

托马斯·杨当年做这个实验的时候,那可是打开了新世界的大门。

想象一下,一束光通过两条窄缝,然后在后面的屏幕上就出现了明暗相间的条纹。

这就像是光在跟我们玩捉迷藏,一会儿亮,一会儿暗。

那为啥会出现这种现象呢?这就得从光的波动性说起啦。

光啊,它可不是简单的直线跑的小粒子,而是像波浪一样传播的。

当两束光的波峰和波峰相遇,或者波谷和波谷相遇,就会变得更亮,这叫加强;要是波峰和波谷相遇,那就会变暗,这叫减弱。

我记得有一次在实验室里,自己动手做杨氏双缝干涉实验。

那时候紧张又兴奋,小心翼翼地调整着仪器,眼睛紧紧盯着屏幕,就盼着能看到那神奇的条纹。

当终于看到那清晰的明暗相间的条纹时,心里那种激动和惊喜,简直没法形容!感觉自己像是揭开了大自然的一个小秘密。

还有薄膜干涉,这在生活中也很常见。

比如夏天马路上的油膜,在阳光下会呈现出五彩斑斓的颜色,这就是薄膜干涉的杰作。

还有相机镜头上的镀膜,也是利用了薄膜干涉的原理来减少反射,提高成像质量。

光的干涉在现代科技中的应用那可多了去了。

比如在光学检测中,通过干涉条纹的变化可以检测出物体表面的微小缺陷。

还有干涉仪,可以用来测量长度、角度等物理量,精度高得吓人。

总之,光的干涉这个知识点,看似神秘,其实就在我们身边。

只要我们用心去观察、去探索,就能发现它的无穷魅力。

希望通过我这一番不太专业但充满热情的讲解,能让您对光的干涉有了更清楚的认识。

下次您再看到那些奇妙的光学现象,就知道背后的原理啦!。

《大学物理》第十二章 光学

《大学物理》第十二章  光学
位置 (提示:作为洛埃镜干涉分析)
h
结束 返回
解:
=a
acos2
+
2
=
2asin2
=
2
asin =h
sin =4h
a 2
h
结束 返回
12-5 一平面单色光波垂直照射在厚度 均匀的薄油膜上,油 膜 覆盖在玻璃板上, 所用 单色光的波长可以连续变化,观察到 500nm与700nm这两个波长的光在反射 中消失,油的折射率为 1.30,玻璃的折射 率为1.50。试求油膜的厚度 。
第二级明纹的宽度为
Δx
´=
Δx 2
=2.73 (mm)
结束 返回
12-15 一单色平行光束垂直照射在宽 为 1.0mm 的单缝上,在缝后放一焦距为 20m的会其透镜,已知位于透镜焦面处的 屏幕上的中央明条纹宽度为2.5mm。求入 射光波长。
结束 返回
解:
=
aΔx 2D
=
1.0×2.5 2×2.0×103
sinj
=
k (a+b)
sin =0.1786k-0.5000
在 -900 < j < 900 间,
对应的光强极大的角位置列表如下:
k
sinj j
k
sinj j
0
-0.500 -300
1
2
-0.3232 -0.1464
-18051’ -8025’
3
4
0.0304 0.2072
1045’ 11057’
结束 返回
12-22 一光栅,宽为2.0cm,共有
6000条缝。如用钠光(589.3nm)垂直入射,
中央明纹的位置? 共有几级?如钠光与光

大学物理实验光的干涉

大学物理实验光的干涉
大学物理实验光的干涉
目录
• 光的干涉概述 • 实验原理 • 实验步骤与操作 • 实验结果与分析 • 结论与总结
01 光的干涉概述
光的干涉现象
01
光的干涉是指两束或多束相干光 波在空间某些区域相遇叠加,形 成光强分布的周期性变化现象。
02
在干涉区域,光强增强或减弱, 形成明暗相间的干涉条纹。
干涉的形成条件
相干光源
干涉现象要求光源具有 相干性,即光源发出的 光波具有确定的相位关
系。
频率相同
参与干涉的两束光波的 频率必须相同。
振动方向相同
参与干涉的两束光波的 振动方向必须相同。
恒定的相位差
两束光波在相遇点必须 具有恒定的相位差。
干涉的应用
01
02
03
04
干涉测量
利用光的干涉现象测量长度、 厚度、表面粗糙度等物理量。
调整激光器
确保激光束垂直照射到双缝上 。
观察干涉图样
调整屏幕位置,观察到明暗交 替的干涉条纹。
测量条纹间距
使用测量尺测量相邻亮条纹或 暗条纹之间的距离。
薄膜干涉实验步骤
准备实验器材
包括单色光源、薄膜、屏幕和测量尺。
观察干涉图样
调整屏幕位置,观察到明暗交替的干涉图样。
调整光源和薄膜
确保单色光垂直照射到Байду номын сангаас膜上。
解释
干涉现象的产生是由于波的振动方向相同使得波峰与波峰或波谷与波谷叠加,使振幅增强 ;而振动方向相反时则会使振幅相互抵消。干涉现象是光的波动性质的重要体现之一。
应用
干涉现象在光学、声学、电子等领域有广泛应用,如光学干涉仪、声呐、电子显微镜等。
03 实验步骤与操作

大学物理光学光的干涉教案

大学物理光学光的干涉教案

一、教学目标1. 理解光的干涉现象及其产生条件。

2. 掌握光的干涉现象的实验原理和实验方法。

3. 能够分析光的干涉条纹的分布规律。

4. 培养学生的观察能力、实验操作能力和科学思维方法。

二、教学内容1. 光的干涉现象及其产生条件。

2. 光的干涉实验原理和实验方法。

3. 光的干涉条纹的分布规律。

4. 光的干涉现象在光学中的应用。

三、教学重点1. 光的干涉现象及其产生条件。

2. 光的干涉实验原理和实验方法。

3. 光的干涉条纹的分布规律。

四、教学难点1. 光的干涉现象及其产生条件。

2. 光的干涉条纹的分布规律。

五、教学方法1. 讲授法:系统讲解光的干涉现象、产生条件、实验原理和实验方法。

2. 实验法:通过实验观察光的干涉现象,验证理论,加深理解。

3. 案例分析法:分析光的干涉现象在实际光学中的应用,提高学生的应用能力。

六、教学过程(一)导入1. 回顾光的波动性及其基本概念。

2. 提出问题:什么是光的干涉现象?干涉现象产生的原因是什么?(二)讲解光的干涉现象及其产生条件1. 解释光的干涉现象:频率相同、振动方向一致、相差恒定的两列光波在相遇区域出现稳定相间的加强区域和减弱区域的现象。

2. 讲解干涉现象产生条件:两列光波频率相同、振动方向一致、相差恒定。

(三)讲解光的干涉实验原理和实验方法1. 介绍杨氏双缝干涉实验:利用双缝将光束分成两束,产生相干光,观察干涉条纹。

2. 讲解实验步骤:搭建实验装置、调整实验参数、观察干涉条纹。

(四)讲解光的干涉条纹的分布规律1. 介绍干涉条纹的分布规律:明暗相间的条纹,亮纹间距与暗纹间距相等。

2. 分析干涉条纹间距与实验参数的关系:条纹间距与光波波长、双缝间距、双缝到屏的距离有关。

(五)案例分析1. 分析光的干涉现象在光学中的应用,如:光谱分析、光学仪器校准等。

2. 鼓励学生思考光的干涉现象在其他领域的应用。

(六)实验演示1. 演示杨氏双缝干涉实验,让学生观察干涉条纹。

2. 讲解实验过程中应注意的问题,如:实验参数的调整、实验现象的观察等。

光学中的光的干涉定律

光学中的光的干涉定律

光学中的光的干涉定律光的干涉是指两束或多束光波相互叠加产生干涉图样的现象。

干涉定律则描述了光的干涉图样的特性和规律。

在本文中,我们将探讨光学中的光的干涉定律及其应用。

一、光的干涉定律的基本原理在介绍光的干涉定律之前,我们首先需要了解光的干涉产生的基本原理。

当两束或多束光波相互叠加时,它们的波动性会导致干涉效应。

在干涉图样中,我们通常能观察到明暗相间的条纹,这是由于光波的叠加导致相位的差异。

根据光的波动性质,我们可以得到光的干涉定律的基本表达式:干涉条纹的位置可以由干涉光程差决定,即:Δr = mλ其中,Δr表示两束光的干涉光程差,m为整数,λ为光的波长。

这个公式表明,当两束光的干涉光程差满足上述关系时,光的干涉图样形成明暗相间的条纹。

二、Young双缝干涉实验Young双缝干涉实验是展示光的干涉现象的经典实验之一。

该实验由英国物理学家托马斯·杨于1801年首次进行。

在Young双缝干涉实验中,光源发出的光经过一个狭缝,然后通过两个紧邻的小孔(双缝)形成两个光源。

这两束光波相互叠加,并在屏幕上形成干涉图样。

干涉图样的特点是一系列明暗相间的条纹。

根据光的干涉定律,我们可以得知在该实验中干涉条纹的位置取决于干涉光程差。

当干涉光程差为整数倍的光波长时,条纹呈现明亮;当干涉光程差为半波长的奇数倍时,条纹呈现暗影。

通过Young双缝干涉实验,我们可以更好地理解光的波动性质和干涉现象。

三、干涉定律的应用干涉定律在光学领域有着广泛的应用。

下面我们将介绍一些常见的应用。

1. 干涉测量:干涉定律可用于测量光的波长、厚度等物理量。

例如,通过测量干涉图样中的条纹间距,可以计算出光的波长。

同时,干涉定律还可以用于测量薄膜的厚度或透明度。

2. 干涉仪器:许多仪器和装置都是基于光的干涉原理来设计的。

例如,干涉显微镜可以提高显微图像的清晰度和分辨率;干涉光谱仪则可以用于分析光的频谱成分。

3. 干涉涂层:利用干涉定律,我们可以设计出具有特定功能的干涉涂层。

物理知识点光的干涉

物理知识点光的干涉

物理知识点光的干涉光的干涉是光学中的重要概念之一,它揭示了光波的波动性质及其产生的干涉现象。

本文将依据物理知识点,对光的干涉进行详细论述。

一、干涉现象的基本原理光的干涉是指两个或多个光波相互叠加所形成的干涉图案。

干涉现象的产生需要满足两个基本条件:光源是相干光源,波长相同。

当光波经过不同路径传播后再次相遇时,它们会相互干涉,产生增强或减弱的干涉效应。

二、双缝干涉1. 双缝干涉的实验装置双缝干涉实验一般采用光源、狭缝、透镜和屏幕等组成。

光源发出的光经狭缝后,形成一个光源光斑,通过透镜聚焦后照射到屏幕上。

2. 双缝干涉的光程差当光波通过两个缝隙后再次相遇时,其传播路径的长度差称为光程差。

光的干涉现象取决于光程差的大小。

3. 双缝干涉的干涉图案双缝干涉的干涉图案呈现出一系列明暗相间的条纹,称为干涉条纹。

该条纹呈现出一定的规律性,可通过干涉公式和级差条件进行分析和计算。

三、杨氏双缝干涉实验1. 杨氏双缝干涉实验的装置杨氏双缝干涉实验是一种经典的干涉实验方法。

实验装置由一束狭缝光源、双缝、透镜和幕板等组成。

2. 杨氏双缝干涉的干涉条纹杨氏干涉条纹呈现出一系列黑白相间的圆环或直线条纹。

根据实验条件和光波的干涉效应,可以通过杨氏双缝干涉公式进行计算。

四、单缝干涉1. 单缝干涉的实验装置单缝干涉实验通常采用单缝光源、单缝和屏幕等组成。

单缝光源发出的光波通过单缝后形成一个光斑,映射到屏幕上形成单缝干涉图样。

2. 单缝干涉的干涉条纹单缝干涉的干涉条纹呈现出明暗相间且中央最亮的中央极大和两侧较暗的暗条纹分布。

单缝干涉的干涉效应可由单缝干涉公式和级差条件加以说明。

五、干涉现象的应用光的干涉在科学研究和实际应用中有着重要的意义。

1. 干涉仪干涉仪是一种基于光的干涉原理设计的精密仪器,常用于光学测量、干涉剖析和光学检测等领域。

2. 光纤通信光纤通信是一种基于光的传输技术。

光波经光纤传输时,可能会产生干涉现象,影响信号传输质量,因此需要进行干涉相关的优化和控制。

光的干涉-精品文档

光的干涉-精品文档

02
光的干涉条件
相干光条件
同一波源
01
干涉光必须来自同一波源,这样波源的相干性会影响干涉条纹
的质量。
频率相同
02
来自同一波源的光线必须具有相同的频率,否则它们将无法产
生干涉。
相位差恒定
03
来自同一波源的光线必须具有恒定的相位差,这意味着它们的
振动方向必须相同。
干涉条纹条件
稳定的干涉条纹
为了获得清晰的干涉条纹,需要 确保光线经过的路程差是恒定的 ,这意味着需要使用稳定的实验 装置和精确的控制光源。
相间的干涉条纹。
应用
分振幅干涉在光学实验、光学测 量等领域也有着广泛的应用,如 测量光学表面的形状、光学元件
的精度等。
迈克尔逊干涉仪
01
定义
迈克尔逊干涉仪是一种利用分振幅干涉原理测量光学表面形状和光学元
件精度的干涉仪。
02 03
原理
迈克尔逊干涉仪通过将一束光波分成两束相干光波,分别经过反射镜后 再次相遇,形成明暗相间的干涉条纹。通过测量干涉条纹的变化,可以 推算出光学表面的形状和光学元件的精度。
光线的平行性
为了使干涉条纹更加明显,需要确 保光线具有平行性,这可以通过使 用聚焦透镜或高亮度的光源来实现 。
03
光的干涉类型
分波面干涉
定义
应用
分波面干涉是指两束或多束相干光波 在空间某一点叠加时,形成明暗相间 的干涉条纹的现象。
分波面干涉在光学实验、光学测量等 领域有着广泛的应用,如测量光学表 面的形状、光学元件的精度等。
全息干涉实验
实验原理
全息干涉实验是一种利用全息技术实现的干涉实验,通过 将一束光分成两束相干光波,然后在全息底片上记录它们 之间的干涉图样。

大学物理光的干涉

大学物理光的干涉

干涉在光谱分析中的应用
干涉滤光片
利用光的干涉原理,设计出具有特定光谱透过率 的滤光片,用于光谱分析和图像增强。
傅里叶变换光谱仪
通过干涉原理,将复杂的光谱分解为简单的干涉 图样,便于分析物质的成分和结构。
原子干涉仪
利用原子在空间中的干涉现象,测量原子波长和 原子能级,用于原子结构和量子力学的研究。
干涉在全息摄影中的应用
大学物理光的干涉
目录
CONTENTS
• 光的干涉基本理论 • 干涉现象的实验验证 • 光的干涉的应用 • 光的干涉的深入研究
01 光的干涉基本理论
CHAPTER
光的波动性
01
光的波动性描述了光在空间中传播的方式,类似于水波在液体 中的传播。
02
光的波动性表现为光在传播过程中产生的振动和波动,这些振
动和波动具有特定的频率和波长。
光的波动性是理解光的干涉、衍射等光学现象的基础。
03
波的干涉
波的干涉是指两个或多个波在空间中相遇时,它们相互叠加产生新的波动现象。
当两个波的相位相同,即它们的振动方向一致时,它们会产生相长干涉,导致波峰 叠加和波谷叠加。
当两个波的相位相反,即它们的振动方向相反时,它们会产生相消干涉,导致波峰 抵消和波谷抵消。
量子通信、量子计算等领域。
03
量子纠缠的实验验证
科学家们通过实验验证了光子纠缠现象的存在,如著02
03
光的相干性
光的偏振
干涉现象的产生是由于两束光的 波前相干,即它们的相位差恒定。
光波的电场和磁场在垂直于传播 方向上的振动方向称为光的偏振 态。
光子纠缠现象
01
光子纠缠
当两个或多个光子相互作用后,它们的状态变得相互关联,即一个光子

大学物理中的光的干涉与衍射问题

大学物理中的光的干涉与衍射问题

大学物理中的光的干涉与衍射问题在大学物理中,光的干涉与衍射是一个非常重要的课题。

干涉和衍射现象是光的波动性质所导致的,它们对于我们理解光的本质和物质的性质起到了关键的作用。

本文将详细介绍光的干涉与衍射问题,以及相关的实验和应用。

一、干涉现象干涉是指两束或多束光波相互叠加产生的明暗相间的干涉条纹的现象。

干涉现象的产生需要满足两个条件:一是光源是相干光源,二是光的传播路径存在差异。

1. 条纹的产生当两束相干光波相遇时,会在空间中形成干涉条纹。

这些干涉条纹的产生可以通过弗朗霍夫衍射公式来解释,该公式描述了光通过一个狭缝时的衍射现象。

2. 干涉条纹的特征干涉条纹具有明暗相间的特征,这是因为光波的干涉会导致光的增强和相消干涉。

光的增强会使得干涉条纹出现明亮区域,而光的相消干涉则会导致干涉条纹出现暗区。

二、衍射现象衍射是指光波传播时发生弯曲和障碍物附近出现干涉效应的现象。

衍射现象的产生需要满足光波传播经过障碍物或者经过狭缝。

1. 衍射的产生光的衍射现象可以由基尔霍夫衍射公式来解释,该公式描述了光波传播经过一个孔径时所发生的衍射现象。

2. 衍射的特征衍射现象会导致光波的扩散,使得光的传播区域扩大。

衍射还会导致光的强度分布不均匀,形成明暗相间的衍射图案,这一特征是衍射现象的重要标志。

三、实验与应用光的干涉与衍射是许多实验和应用领域的基础。

以下是一些与干涉与衍射相关的实验和应用:1. 杨氏干涉实验杨氏干涉实验是用来观察干涉现象的经典实验之一。

通过在两面平行的玻璃板之间引入光源和接收屏,可以观察到明暗相间的干涉条纹。

2. 双缝干涉实验双缝干涉实验是观察干涉现象的经典实验之一。

通过在光源前放置两个狭缝,可以观察到通过狭缝后形成的干涉条纹。

这个实验不仅可以用来验证光的波动性质,还可以用来测量光的波长等重要参数。

3. 衍射光栅衍射光栅是一种利用光的衍射现象来实现光谱分析和波长测量的装置。

它由许多平行的狭缝构成,通过光的衍射,可以将不同波长的光分散成明暗相间的衍射光谱。

大学物理光的干涉详解(二)

大学物理光的干涉详解(二)

大学物理光的干涉详解(二)引言:光的干涉是光学中一种重要的现象,它在许多领域都有广泛的应用。

本文将对大学物理光的干涉进行详细的解析,以帮助读者更好地理解和应用光的干涉现象。

正文:一、双缝干涉1. 构造双缝干涉实验装置的基本原理2. 双缝干涉的条件和特点3. 双缝干涉的干涉条纹及其解释4. 双缝干涉的应用:衍射光栅的原理和工作方式5. 双缝干涉实验的注意事项与常见误差分析二、单缝干涉1. 单缝干涉实验的基本原理2. 单缝干涉的条件和特点3. 单缝干涉的干涉条纹及其解释4. 单缝干涉的应用:干涉测量与像差的消除5. 单缝干涉实验的注意事项与常见误差分析三、牛顿环干涉1. 牛顿环干涉实验的基本原理2. 牛顿环干涉的条件和特点3. 牛顿环干涉的干涉条纹及其解释4. 牛顿环干涉的应用:薄膜的测量与分析5. 牛顿环干涉实验的注意事项与常见误差分析四、薄膜干涉1. 薄膜干涉实验的基本原理2. 薄膜干涉的条件和特点3. 薄膜干涉的干涉条纹及其解释4. 薄膜干涉的应用:反射镜、透射镜和干涉滤光片的工作原理5. 薄膜干涉实验的注意事项与常见误差分析五、光栅干涉1. 光栅干涉实验的基本原理2. 光栅干涉的条件和特点3. 光栅干涉的干涉条纹及其解释4. 光栅干涉的应用:光谱仪的工作原理与光谱分析5. 光栅干涉实验的注意事项与常见误差分析总结:通过对大学物理光的干涉的详细解析,我们深入理解了双缝干涉、单缝干涉、牛顿环干涉、薄膜干涉和光栅干涉的原理、特点、干涉条纹和应用。

这些知识对于我们理解光的行为、进行精确测量和应用于实际中都具有重要意义。

在进行干涉实验时,我们需要注意实验装置的搭建和调整,以及可能出现的误差来源,以确保准确的实验结果。

大学物理学-光的干涉教案

大学物理学-光的干涉教案

§12.2 杨氏双缝干涉杨氏双缝干涉实验是1801年,英国人托马斯⋅杨首次从实验上研究了光的干涉现象,也是首次把光的波动学说建立在坚实的实验基础之上。

一、实验装置:单色平行光通过狭缝s 形成一列柱面波。

此面波又透过狭缝s 1和s 2后形成两列柱面波。

由惠更斯原理知,s 1和s 2可以看成为此两列波的波源。

这两列波在空间发生重叠而产生干涉,即在屏幕上出现明暗相间的条纹(平行于缝s 1和s 2)。

二、干涉条纹的分析:1.明暗条纹的条件光源s 发出波长为 λ 的色光。

波场中场点的干涉情况决定于该处两分振动的位相差。

(屏幕上任一点P 的光的振动由s 1和s 2传来的光的合成。

) 由s 1和s 2 “发出”的光振动同相。

( s 与缝s 1和s 2等距,s 1和s 2处于同一波面上。

) P 点光振动的位相差由s 1和s 2 到该处的路程差决定。

路程差: 在2r 上截取1r QP =,则Q S r r 212=-.在d D >>近似条件下,有P S P S 12||和P S Q S 21⊥,从而对 2cos 4cos 222000p p I I I I ϕϕ∆=∆+=, 求平均后,得:000214I I I I +=⨯=。

四、其他分波面干涉装置1.Fresnel 双面镜实验2.装置 S 点光源(或线光源,与两镜交线平行) M 1和M 2:镀银反射镜,夹角β很小。

两反射镜把 S 发的光分成两部分,可以看作是两个虚光源S 1和S 2发出的光。

相位分析:同一光源,利用两反射镜改变波阵面方向、是分波面。

∴有固定的位相差。

从两虚光源看,位相差为()p S p S 212-λπ。

条纹位置:可直接利用Young 双缝干涉的结果, 作代换:ββR R d d 2sin 2≈=→,R D D +→1。

得明纹位置:λβR RD K x 21+±=; 条纹间距:λβ+=∆R RD x 21。

结果分析:R D +1和R 量级相同,λ又很小,为使∆y 较大, ∴ β必须小。

大学物理基础知识光的干涉与衍射现象

大学物理基础知识光的干涉与衍射现象

大学物理基础知识光的干涉与衍射现象光的干涉与衍射现象光的干涉和衍射现象是大学物理基础知识中的重要内容。

本文将介绍光的干涉和衍射的基本概念、原理以及实际应用。

一、光的干涉现象光的干涉是指两个或多个光波相遇时发生的现象。

干涉可以是构成性干涉(增强光强)或破坏性干涉(减弱或抵消光强)。

干涉现象可以通过光的波动性解释。

1. 干涉光的波动模型根据互相干涉的光波的波函数,可以使用叠加原理对光的干涉进行数学描述。

干涉是由于波峰与波峰相遇或波谷与波谷相遇而形成的,这种相遇会产生干涉图案。

2. 干涉的光程差干涉的关键参数是光程差,它是指两束相干光的传播路径的差值。

当光程差为整数倍的波长时,会出现构成性干涉;当光程差为半整数倍的波长时,会出现破坏性干涉。

3. 干涉的类型干涉现象可分为两种类型:薄膜干涉和双缝干涉。

薄膜干涉是指光线在介质的两个表面之间反射、透射产生的干涉现象;双缝干涉是指光通过两个相隔较近的缝隙后形成的干涉现象。

二、光的衍射现象光的衍射是指光线通过小孔或物体的边缘时发生的现象,光波会向周围扩散形成衍射图样。

衍射现象可以通过光的波动性解释。

1. 衍射光的波动模型光通过一个小孔或物体的边缘时,光波会发生弯曲,并在周围空间中形成散射波。

这些散射波的叠加就会形成衍射图样。

2. 衍射的特点衍射的特点是衍射波传播范围广,可以绕过物体的边缘,进入遮挡区域。

衍射图样的大小与孔径或物体边缘大小有关,小孔或细缝会产生较宽的衍射图样,大孔或宽缝会产生较窄的衍射图样。

3. 衍射的应用光的衍射现象在实际应用中具有广泛的意义,例如天文学中使用的干涉仪、显微镜的分辨率提升、光学存储器的读写操作等。

三、光的干涉与衍射的应用光的干涉与衍射现象不仅仅是基础学科的内容,也有着广泛的实际应用。

1. 干涉与衍射在光学仪器中的应用干涉仪是利用光的干涉现象进行测量和分析的仪器,如干涉计和迈克尔逊干涉仪等。

衍射仪是利用光的衍射现象进行实验和观测的仪器,如杨氏双缝干涉实验装置和夫琅禾费衍射装置等。

《大学物理》-光的干涉

《大学物理》-光的干涉
第22章
光的干涉
针孔的衍射
二、光的衍射现象的分类
单缝衍射
不同波长光的单缝衍射条纹照片
白光, a = 0.4 mm
方孔衍射
等厚干涉
双缝干涉
增透膜
网格衍射
一、光的本性
1、微粒说与波动说之争
牛顿的微粒说: 光是由光源发出的微粒流。
惠更斯的波动说: 光是一种波动。
2、 光的电磁本性
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
解: P 点为七级明纹位置
r2 r1 7
插入云母后,P点为零级明纹
r2 r1 d nd 0
d r1
s1
r2
s2
P 0
7 dn 1
d 7 7 55001010 6.6 106 m
n 1 1.58 1
三 薄膜干涉
1 等倾干涉
一、倾斜入射*
光程差:
n2 ( AB BC ) n1 AD n1
: :
c : 2
(b c)
(a d
2
b) :a
x1 x2
0.495cm 10mm
4.95mm
明纹的位置 d sin k
2
s1
s 2*
a
Mb
d xk k
abc 2
K=3, K=4, K=5,
x3=5.05mm x4=7.07mm x5=9.09mm

光的干涉-PPT

光的干涉-PPT

光的干涉
薄膜干涉
让一束光经薄膜的两个表面反射后,形成的两束 反射光产生的干涉现象叫薄膜干涉.
点 击 画 面 观 看 动 画
光的干涉
薄膜干涉
1、在薄膜干涉中,前、后表面反射光的路程差由膜 的厚度决定,所以薄膜干涉中同一明条纹(暗条纹)应 出现在膜的厚度相等的地方.由于光波波长极短,所以 微薄膜干涉时,介质膜应足够薄,才能观察到干涉条 纹.2、用手紧压两块玻璃板看到彩色条纹,阳光下的肥 皂泡和水面飘浮油膜出现彩色等都是薄膜干涉.
第1节 光的干涉
光到底是什么?……………
17世纪明确形成 了两大对立学说
由于波动说没有 数学基础以及牛 顿的威望使得微 粒说一直占上风
牛顿
19世纪初证明了 波动说的正确性
惠更斯
微粒说
19世纪末光电效应现象使得 爱因斯坦在20世纪初提出了 光子说:光具有粒子性
波动说
这里的光子完全不同于牛顿所说的“微粒”
光的干涉
干涉现象是波动独有的特征,如果光真的 是一种波,就必然会观察到光的干涉现象.
光的干涉 光的干涉
1801年,英国物理学家托马斯·杨(1773~1829) 在实验室里成功的观察到了光的干涉.
双缝干涉





屏上看到明暗相间的条纹 屏
光的干涉
S1 S2 d
双缝干涉
P2
P1
P
P
P1 P2
S1、S2
相干波源
P1S2-P1S1= d
光程差
P2S2-P2S1> d 距离屏幕的中心越远路程差越大
光的干涉
双缝干涉
1、两个独立的光源发出的光不是相干光,双缝干 涉的装置使一束光通过双缝后变为两束相干光,在光屏 上形成稳定的干涉条纹.

大学物理光的干涉的教案

大学物理光的干涉的教案

教学对象:大学物理专业学生教学时间:2课时教学目标:1. 理解光的干涉现象,掌握干涉的基本原理。

2. 熟悉杨氏双缝干涉实验,理解其原理和操作步骤。

3. 掌握光程差的概念,理解其与干涉条纹的关系。

4. 了解等厚干涉和等倾干涉现象,并能分析其实验结果。

教学重点:1. 光的干涉现象和原理。

2. 杨氏双缝干涉实验的原理和操作步骤。

3. 光程差与干涉条纹的关系。

教学难点:1. 光程差的概念及其与干涉条纹的关系。

2. 等厚干涉和等倾干涉现象的分析。

教学过程:第一课时一、导入1. 复习光的波动性,介绍光的干涉现象。

2. 引出干涉现象的产生条件,如相干光源、稳定的相位差等。

二、讲解光的干涉原理1. 介绍干涉现象的基本原理,如相干光源、稳定的相位差、光程差等。

2. 讲解光程差的概念,包括光程和光程差的关系。

3. 分析光程差与干涉条纹的关系,如光程差等于零时出现亮条纹,光程差等于半个波长时出现暗条纹。

三、讲解杨氏双缝干涉实验1. 介绍杨氏双缝干涉实验的原理和操作步骤。

2. 分析实验中的关键参数,如双缝间距、屏幕与双缝的距离等。

3. 通过实验结果,理解光程差与干涉条纹的关系。

四、课堂小结1. 总结光的干涉现象和原理。

2. 强调光程差与干涉条纹的关系。

第二课时一、复习上节课内容1. 回顾光的干涉现象和原理。

2. 复习杨氏双缝干涉实验的原理和操作步骤。

二、讲解等厚干涉和等倾干涉现象1. 介绍等厚干涉和等倾干涉现象的定义。

2. 分析等厚干涉和等倾干涉的实验原理和操作步骤。

3. 通过实验结果,理解等厚干涉和等倾干涉现象的特点。

三、课堂讨论1. 学生分组讨论,分析实验结果,总结等厚干涉和等倾干涉现象的特点。

2. 教师引导学生分析实验结果,讲解等厚干涉和等倾干涉现象的原理。

四、课堂小结1. 总结等厚干涉和等倾干涉现象的特点。

2. 强调光的干涉现象在实际应用中的重要性。

五、布置作业1. 完成课后习题,巩固所学知识。

2. 查阅相关资料,了解光的干涉现象在科学技术中的应用。

大学物理第12章光的干涉测试题(附答案及知识点总结)培训讲学

大学物理第12章光的干涉测试题(附答案及知识点总结)培训讲学

大学物理第12章光的干涉测试题(附答案及知识点总结)第12章 习题精选试题中相关常数:m 10μm 16-=,m 10nm 19-=,可见光范围(400nm~760nm ) 1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为π3,则此路径AB 的光程为:(A )λ5.1. (B )n /5.1λ. (C )λn 5.1. (D )λ3.[ ]2、在相同的时间内,一束波长为λ的单色光在空气中与在玻璃中: (A )传播路程相等,走过光程相等. (B )传播路程相等,走过光程不相等.(C )传播路程不相等,走过光程相等.(D )传播路程不相等,走过光程不相等.[ ]3、如图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是:(A )e n 22. (B )2/22λ+e n .(C )λ+e n 22. (D ))2/(222n e n λ-.[ ]4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是:(A )使屏靠近双缝. (B )使两缝的间距变小.(C )把两个缝的宽度稍微调窄. (D )改用波长较小的单色光源.[ ]35、在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大λ5.2,则屏上原来的明纹处:(A )仍为明条纹. (B )变为暗条纹.(C )既非明纹也非暗纹. (D )无法确定是明纹,还是暗纹.[ ]6、如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹:(A )向右平移. (B )向中心收缩. (C )向外扩张. (D )向左平移.[ ]7、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃板在中心恰好接触,它们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径k r 的表达式为:(A )R k r λ=k . (B )n R k r /k λ=. (C )R kn r λ=k . (D ))/(k nR k r λ=.[ ]8、用波长为λ的单色光垂直照射置于空气中的厚度为e折射率为1.5的透明薄膜,两束反射光的光程差=δ_______________.9、单色平行光垂直入射到双缝上.观察屏上P 点到两缝的距离分别为1r 和2r .设双缝和屏之间充满折射率为n 的介质,则P 点处光线的光程差为___________.S S 110、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________. (2)________________________________________.11、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距_________;若使单色光波长减小,则干涉条纹间距_____________.12、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为D ,则屏上相邻明纹的间距为_______________.13、用波长为λ的单色光垂直照射如图所示的牛顿环装置,观察从空气膜上下表面反射的光形成的牛顿环.若使平凸透镜慢慢地垂直向上移动,从透镜顶点与平面玻璃接触至移动到两者距离为d 的过程中,移过视场中某固定观察点的条纹数目等于_______________.14、图a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长为λ的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图b 所示.则干涉条纹上A 点处所对应的空气薄膜厚度为=e _________________.15、用波长为λ的单色光垂直照射如图示的劈形膜(321n n n >>),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度=e _______________________.图b图an 1n 2 n 316、波长为λ的平行单色光垂直照射到劈形膜上,若劈尖角为θ以弧度计),劈形膜的折射率为n ,则反射光形成的干涉条纹中,相邻明条纹的间距为__________________.17、波长为λ的平行单色光垂直照射到折射率为n 的劈形膜上,相邻的两明纹所对应的薄膜厚度之差是____________________.18、在双缝干涉实验中,双缝与屏间的距离m 2.1=D ,双缝间距mm 45.0=d ,若测得屏上干涉条纹相邻明条纹间距为1.5mm ,求光源发出的单色光的波长λ.19、在杨氏双缝干涉实验中,用波长nm 1.546=λ的单色光照射,双缝与屏的距离mm 300=D .测得中央明条纹两侧的两个第5级明条纹的间距为12.2mm ,求双缝间的距离.20、在双缝干涉实验中,波长nm 550=λ的单色平行光垂直入射到缝间距m 1024-⨯=a 的双缝上,屏到双缝的距离m 2=D .求:(1)中央明纹两侧的两条第10级明纹中心的间距;(2)用一厚度为m 106.65-⨯=e 、折射率为58.1=n 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?21、用白光垂直照射置于空气中的厚度为μm 50.0的玻璃片.玻璃片的折射率为50.1=n .在可见光范围内哪些波长的反射光有最大限度的增强?22、波长nm 650=λ的红光垂直照射到劈形液膜上,膜的折射率33.1=n ,液面两侧是同一种介质.观察反射光的干涉条纹.(1)离开劈形膜棱边的第一条明条纹中心所对应的膜厚度是多少? (2)若相邻的明条纹间距mm 6=l ,上述第1条明纹中心到劈形膜棱边距离x 是多少?23、用波长为nm 600=λ的光垂直照射由两块平玻璃板构成的空气劈形膜,劈尖角rad 1024-⨯=θ.改变劈尖角,相邻两明条纹间距缩小了mm 0.1=∆l ,求劈尖角的改变量θ∆.24、曲率半径为R 的平凸透镜和平板玻璃之间形成空气薄层,如图所示.波长为λ的平行单色光垂直入射,观察反射光形成的牛顿环.设平凸透镜与平板玻璃在中心O 点恰好接触.求:(1)从中心向外数第k 个明环所对应的空气薄膜的厚度k e .(2)第k 个明环的半径用k r (用R 、波长λ和正整数k 表示,R 远大于上一问的k e .)25、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的R OλO 1曲率半径是cm 400=R .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30cm .(1)求入射光的波长.(2)设图中cm 00.1=OA ,求半径为OA 范围内可观察到的明环数目.26、用波长nm 500=λ的单色光作牛顿环实验,测得第k 个暗环半径mm 4k =r ,第10+k 个暗环半径mm 610k =+r ,求平凸透镜的凸面的曲率半径R .总体要求:理解产生相干光的三个条件和获得相干光的两种方法.了解分波阵面法和分振幅法干涉的典型实验;掌握光程的概念以及光程差和相位差的关系;掌握杨氏双缝干涉条纹及薄膜干涉条纹(尤其是劈尖和牛顿环)的分布规律,利用相关公式计算条纹分布.第12章 参考答案1、A2、C3、A4、B5、B6、B7、B8、23λ+e 或23λ-e 9、)(12r r n -10、(1)使两缝间距变小;(2)使屏与双缝之间的距离变大. 11、变小;变小 12、N D / 13、λ/2d 14、λ23 15、22n λ 16、θλn 2 17、n2λ18、解:nm 5.562/=∆=D x d λ. 19、解:mm 268.0/=∆==x D d λλ. 20、解:(1)m 11.0/20==∆a D x λ (2)零级明纹移到原第7级明纹处.21、解:nm 600=λ和nm 6.428=λ. 22、解:(1)λλk ne k =+2/2(明纹中心)现1=k ,1e e k =,则膜厚度mm 1022.1)4/(41-⨯==n e λ. (2)mm 32/==l x23、解:rad 100.442-⨯=-=∆θθθ.24、解:(1)第k 个明环,λλk e k =+212 4/)12(λ-=k e k .(2)λλk R r k =+21)2/(22,2/)12(λR k r k -= ,...2,1=k .25、解:(1)()cm 10512252×Rk r -=-=λ (或500 nm ).(2)λR r k 2212=-,对于cm 00.1=r ,5.505.02=+=λR r k .故在OA 范围内可观察到的明环数目为50个.26、解:()()m 410/2210=-=+λk k r r R .第12章 光的干涉一、基本内容1.单色光单色光是指具有单一频率的光波,单色光不是单种颜色的光.可见光的波长是(380~760)nm .虽然绝对单一频率的单色光不易得到,但可以通过各种方法获取谱线宽度很小的单色光.例如激光就可看作谱线宽度很小的单色光.2.相干光只有两列光波的振动频率相同、振动相位差恒定、振动方向相同时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光,相应的光源称为相干光源.3.半波损失光由光疏介质(即折射率相对小的介质)射到光密介质发生反射时,反射光的相位较入射光的相位发生π的突变,这一变化导致了反射光的光程在反射过程中增加了半个波长,通常称为“半波损失”.4.光程和光程差 (1)光程光波的频率v 是单色光的本质属性,与在何种介质中传播没有关系,而传播速度则与介质有关.在折射率为n 的介质中光速是真空中光速的n /1,由光速v u n n λ=可知,在折射率为n 的介质中,光波的波长n λ也是真空中波长的n /1.这样光在不同介质中经历同样的波数,但经历的几何路程却不同.所以有必要把光在折射率n 的介质中通过的几何路程折算到真空中所能传播的长度,只有这样才便于比较两束经过不同介质的光相位的变化.所以把光在折射率为n 的介质中通过的几何的路程r 乘以折射率n 折算成真空中所能传播的长度nr ,称nr 为光程.(2)光程差当采用了光程概念以后就可以把由相位差决定的干涉加强、减弱等情况用光程差来表示,为计算带来方便.即相位差π2λδϕ=∆(λ为真空中波长,δ为光程差),亦即λδϕπ2=∆.二、基本规律光程差(含半波损失)是半波长偶数倍时干涉加强,干涉相长,明条纹中心;是半波长奇数倍时,干涉相消,暗条纹中心.1.杨氏双缝干涉结果(分波阵面干涉),只讨论同一介质中传播:等间隔明暗相间条纹.光程差:Dx d=δ dD kx λ±=k ),2,1,0( =k 明条纹位置(k x —k 级干涉条纹位置,D —屏距,d —缝距)2)12(k λd D k x -±= ),2,1( =k 暗条纹位置 条纹中心间距:λdD x =∆ 2.薄膜干涉结果(分振幅干涉)薄膜干涉基础公式相同,考虑从1n 入射到2n (21n n <),i 为入射角,d —薄膜厚度,此时要考虑“半波损失”,故反射加强(上表面亮纹位置)为λλδk i n n d =+-=2sin 222122 ),2,1( =k反射减弱(上表面暗纹位置)为(注意此处k 可以取0,厚度为0处是暗纹)2)12(2sin 222122λλδ+=+-=k i n n d ),2,1,0( =k注意,一定要先分析反射光是否存在“半波损失”的情况,不能死搬硬套,一般介质折射率中间大两边小或中间小两边大都有半波损失,而三种介质折射率大小顺序排列无半波损失.薄膜干涉光程差是入射角和厚度的函数.等倾干涉:对于上两式,如果薄膜厚度不变,而光线倾角(入射角i )变化,入射角i 相同的位置光线光程差相同,条纹花样相同,叫做等倾干涉.精品资料仅供学习与交流,如有侵权请联系网站删除 谢谢11 等厚干涉:对于上两式,所有光线以同一入射角i 入射,而薄膜厚度变化,则厚度相同的位置光线光程差相同,条纹干涉花样相同,叫做等厚干涉.对空气劈尖(上玻璃板下表面和下玻璃板上表面两束光反射)两侧介质相同,由于存在“半波损失”,所以上两式适用于在空气劈尖的上表面干涉.一般取垂直入射,0=i ,则在劈尖上表面干涉,光程差满足λλδk nd =+=22 ),2,1( =k 明条纹2)12(22λλδ+=+=k nd ),2,1,0( =k 暗条纹n 代表劈尖内介质折射率. 劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差n d 2λ=∆,条纹线间距:θλn l 2=∆. 如果两侧介质不同,且满足折射率递增或递减顺序,则无半波损失,光程差满足λδk nd ==2 ),2,1,0( =k 明条纹2)12(2λδ-==k nd ),2,1( =k 暗条纹劈尖劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差和条纹线间距与有半波损失时相同.利用劈尖原理检测零件平整度,上表面放标准板,顶角在左侧,下板凹陷条纹向左弯,凸起向右弯.牛顿环的上表面干涉也是空气劈尖干涉,两侧介质相同,有半波损失,只不过牛顿环的空气厚度测量常转换成距透镜中心距离r 与透镜的曲率半径R 来表示牛顿环的明暗纹.2)12(k λR k r -= ),2,1( =k (明环) λkR r =k ),2,1,0( =k (暗环)。

最新大学物理第12章光的干涉测试题(附答案及知识点总结)

最新大学物理第12章光的干涉测试题(附答案及知识点总结)

大学物理第12章光的干涉测试题(附答案及知识点总结)第12章 习题精选试题中相关常数:m 10μm 16-=,m 10nm 19-=,可见光范围(400nm~760nm ) 1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为π3,则此路径AB 的光程为:(A )λ5.1. (B )n /5.1λ. (C )λn 5.1. (D )λ3.[ ]2、在相同的时间内,一束波长为λ的单色光在空气中与在玻璃中: (A )传播路程相等,走过光程相等. (B )传播路程相等,走过光程不相等.(C )传播路程不相等,走过光程相等.(D )传播路程不相等,走过光程不相等.[ ]3、如图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是:(A )e n 22. (B )2/22λ+e n .(C )λ+e n 22. (D ))2/(222n e n λ-.[ ]4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是:(A )使屏靠近双缝. (B )使两缝的间距变小.(C )把两个缝的宽度稍微调窄. (D )改用波长较小的单色光源.[ ]35、在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大λ5.2,则屏上原来的明纹处:(A )仍为明条纹. (B )变为暗条纹.(C )既非明纹也非暗纹. (D )无法确定是明纹,还是暗纹.[ ]6、如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹:(A )向右平移. (B )向中心收缩. (C )向外扩张. (D )向左平移.[ ]7、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃板在中心恰好接触,它们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径k r 的表达式为:(A )R k r λ=k . (B )n R k r /k λ=. (C )R kn r λ=k . (D ))/(k nR k r λ=.[ ]8、用波长为λ的单色光垂直照射置于空气中的厚度为e折射率为1.5的透明薄膜,两束反射光的光程差=δ_______________.9、单色平行光垂直入射到双缝上.观察屏上P 点到两缝的距离分别为1r 和2r .设双缝和屏之间充满折射率为n 的介质,则P 点处光线的光程差为___________.S S 110、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________. (2)________________________________________.11、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距_________;若使单色光波长减小,则干涉条纹间距_____________.12、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为D ,则屏上相邻明纹的间距为_______________.13、用波长为λ的单色光垂直照射如图所示的牛顿环装置,观察从空气膜上下表面反射的光形成的牛顿环.若使平凸透镜慢慢地垂直向上移动,从透镜顶点与平面玻璃接触至移动到两者距离为d 的过程中,移过视场中某固定观察点的条纹数目等于_______________.14、图a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长为λ的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图b 所示.则干涉条纹上A 点处所对应的空气薄膜厚度为=e _________________.15、用波长为λ的单色光垂直照射如图示的劈形膜(321n n n >>),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度=e _______________________.图b图an 1n 2 n 316、波长为λ的平行单色光垂直照射到劈形膜上,若劈尖角为θ以弧度计),劈形膜的折射率为n ,则反射光形成的干涉条纹中,相邻明条纹的间距为__________________.17、波长为λ的平行单色光垂直照射到折射率为n 的劈形膜上,相邻的两明纹所对应的薄膜厚度之差是____________________.18、在双缝干涉实验中,双缝与屏间的距离m 2.1=D ,双缝间距m m 45.0=d ,若测得屏上干涉条纹相邻明条纹间距为1.5mm ,求光源发出的单色光的波长λ.19、在杨氏双缝干涉实验中,用波长nm 1.546=λ的单色光照射,双缝与屏的距离m m 300=D .测得中央明条纹两侧的两个第5级明条纹的间距为12.2mm ,求双缝间的距离.20、在双缝干涉实验中,波长nm 550=λ的单色平行光垂直入射到缝间距m 1024-⨯=a 的双缝上,屏到双缝的距离m 2=D .求:(1)中央明纹两侧的两条第10级明纹中心的间距;(2)用一厚度为m 106.65-⨯=e 、折射率为58.1=n 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?21、用白光垂直照射置于空气中的厚度为μm 50.0的玻璃片.玻璃片的折射率为50.1=n .在可见光范围内哪些波长的反射光有最大限度的增强?22、波长nm 650=λ的红光垂直照射到劈形液膜上,膜的折射率33.1=n ,液面两侧是同一种介质.观察反射光的干涉条纹.(1)离开劈形膜棱边的第一条明条纹中心所对应的膜厚度是多少? (2)若相邻的明条纹间距m m 6=l ,上述第1条明纹中心到劈形膜棱边距离x 是多少?23、用波长为nm 600=λ的光垂直照射由两块平玻璃板构成的空气劈形膜,劈尖角rad 1024-⨯=θ.改变劈尖角,相邻两明条纹间距缩小了mm 0.1=∆l ,求劈尖角的改变量θ∆.24、曲率半径为R 的平凸透镜和平板玻璃之间形成空气薄层,如图所示.波长为λ的平行单色光垂直入射,观察反射光形成的牛顿环.设平凸透镜与平板玻璃在中心O 点恰好接触.求:(1)从中心向外数第k 个明环所对应的空气薄膜的厚度k e .(2)第k 个明环的半径用k r (用R 、波长λ和正整数k 表示,R 远大于上一问的k e .)25、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的R OλO 1曲率半径是cm 400=R .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30cm .(1)求入射光的波长.(2)设图中cm 00.1=OA ,求半径为OA 范围内可观察到的明环数目.26、用波长nm 500=λ的单色光作牛顿环实验,测得第k 个暗环半径m m4k =r ,第10+k 个暗环半径m m 610k =+r ,求平凸透镜的凸面的曲率半径R .总体要求:理解产生相干光的三个条件和获得相干光的两种方法.了解分波阵面法和分振幅法干涉的典型实验;掌握光程的概念以及光程差和相位差的关系;掌握杨氏双缝干涉条纹及薄膜干涉条纹(尤其是劈尖和牛顿环)的分布规律,利用相关公式计算条纹分布.第12章 参考答案1、A2、C3、A4、B5、B6、B7、B8、23λ+e 或23λ-e 9、)(12r r n -10、(1)使两缝间距变小;(2)使屏与双缝之间的距离变大. 11、变小;变小 12、N D / 13、λ/2d 14、λ23 15、22n λ 16、θλn 2 17、n2λ18、解:nm 5.562/=∆=D x d λ. 19、解:m m 268.0/=∆==x D d λλ. 20、解:(1)m 11.0/20==∆a D x λ (2)零级明纹移到原第7级明纹处.21、解:nm 600=λ和nm 6.428=λ. 22、解:(1)λλk ne k =+2/2(明纹中心)现1=k ,1e e k=,则膜厚度m m1022.1)4/(41-⨯==n e λ.(2)m m 32/==l x23、解:rad 100.442-⨯=-=∆θθθ.24、解:(1)第k 个明环,λλk e k =+212 4/)12(λ-=k e k .(2)λλk R r k =+21)2/(22,2/)12(λR k r k -= ,...2,1=k .25、解:(1)()cm 10512252×Rk r -=-=λ (或500 nm ).(2)λR r k 2212=-,对于cm 00.1=r ,5.505.02=+=λR r k .故在OA 范围内可观察到的明环数目为50个.26、解:()()m 410/2210=-=+λk k r r R .第12章 光的干涉一、基本内容1.单色光单色光是指具有单一频率的光波,单色光不是单种颜色的光.可见光的波长是(380~760)nm .虽然绝对单一频率的单色光不易得到,但可以通过各种方法获取谱线宽度很小的单色光.例如激光就可看作谱线宽度很小的单色光.2.相干光只有两列光波的振动频率相同、振动相位差恒定、振动方向相同时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光,相应的光源称为相干光源.3.半波损失光由光疏介质(即折射率相对小的介质)射到光密介质发生反射时,反射光的相位较入射光的相位发生π的突变,这一变化导致了反射光的光程在反射过程中增加了半个波长,通常称为“半波损失”.4.光程和光程差 (1)光程光波的频率v 是单色光的本质属性,与在何种介质中传播没有关系,而传播速度则与介质有关.在折射率为n 的介质中光速是真空中光速的n /1,由光速v u n n λ=可知,在折射率为n 的介质中,光波的波长n λ也是真空中波长的n /1.这样光在不同介质中经历同样的波数,但经历的几何路程却不同.所以有必要把光在折射率n 的介质中通过的几何路程折算到真空中所能传播的长度,只有这样才便于比较两束经过不同介质的光相位的变化.所以把光在折射率为n 的介质中通过的几何的路程r 乘以折射率n 折算成真空中所能传播的长度nr ,称nr 为光程.(2)光程差当采用了光程概念以后就可以把由相位差决定的干涉加强、减弱等情况用光程差来表示,为计算带来方便.即相位差π2λδϕ=∆(λ为真空中波长,δ为光程差),亦即λδϕπ2=∆.二、基本规律光程差(含半波损失)是半波长偶数倍时干涉加强,干涉相长,明条纹中心;是半波长奇数倍时,干涉相消,暗条纹中心.1.杨氏双缝干涉结果(分波阵面干涉),只讨论同一介质中传播:等间隔明暗相间条纹.光程差:Dx d=δ dD kx λ±=k ),2,1,0( =k 明条纹位置(k x —k 级干涉条纹位置,D —屏距,d —缝距)2)12(k λd D k x -±= ),2,1( =k 暗条纹位置 条纹中心间距:λdD x =∆ 2.薄膜干涉结果(分振幅干涉)薄膜干涉基础公式相同,考虑从1n 入射到2n (21n n <),i 为入射角,d —薄膜厚度,此时要考虑“半波损失”,故反射加强(上表面亮纹位置)为λλδk i n n d =+-=2sin 222122 ),2,1( =k反射减弱(上表面暗纹位置)为(注意此处k 可以取0,厚度为0处是暗纹)2)12(2sin 222122λλδ+=+-=k i n n d ),2,1,0( =k注意,一定要先分析反射光是否存在“半波损失”的情况,不能死搬硬套,一般介质折射率中间大两边小或中间小两边大都有半波损失,而三种介质折射率大小顺序排列无半波损失.薄膜干涉光程差是入射角和厚度的函数.等倾干涉:对于上两式,如果薄膜厚度不变,而光线倾角(入射角i )变化,入射角i 相同的位置光线光程差相同,条纹花样相同,叫做等倾干涉.如有侵权请联系网站删除,仅供学习交流仅供学习交流 等厚干涉:对于上两式,所有光线以同一入射角i 入射,而薄膜厚度变化,则厚度相同的位置光线光程差相同,条纹干涉花样相同,叫做等厚干涉.对空气劈尖(上玻璃板下表面和下玻璃板上表面两束光反射)两侧介质相同,由于存在“半波损失”,所以上两式适用于在空气劈尖的上表面干涉.一般取垂直入射,0=i ,则在劈尖上表面干涉,光程差满足λλδk nd =+=22 ),2,1( =k 明条纹2)12(22λλδ+=+=k nd ),2,1,0( =k 暗条纹n 代表劈尖内介质折射率.劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差n d 2λ=∆,条纹线间距:θλn l 2=∆. 如果两侧介质不同,且满足折射率递增或递减顺序,则无半波损失,光程差满足λδk nd ==2 ),2,1,0( =k 明条纹2)12(2λδ-==k nd ),2,1( =k 暗条纹劈尖劈尖端点处是暗纹,相邻明纹(或暗纹)厚度差和条纹线间距与有半波损失时相同.利用劈尖原理检测零件平整度,上表面放标准板,顶角在左侧,下板凹陷条纹向左弯,凸起向右弯.牛顿环的上表面干涉也是空气劈尖干涉,两侧介质相同,有半波损失,只不过牛顿环的空气厚度测量常转换成距透镜中心距离r 与透镜的曲率半径R 来表示牛顿环的明暗纹.2)12(k λR k r -= ),2,1( =k (明环) λkR r =k ),2,1,0( =k (暗环)。

大学物理12光的干涉

大学物理12光的干涉
第十二章 光的干涉
S1
Sd
S2
杨氏双缝实验
§12-1 光源 光的特性
2.分振幅法:利用光在两种介质分界面 上的反射光和透射光作为相干光
iD
n1
e
A
C n2 n1
B
n1
薄膜干涉
第十二章 光的干涉
§12-1 光源 光的特性
§12-2 双缝干涉
一、杨氏双缝实验 1.装置原理
S1
Sd
S2
第十二章 光的干涉
第十二章 光的干涉
§12-3 光程与光程差
三、反射光的相位突变和附加光程差
1、n1 n2 n3 或 n1 n2 n3 无附加光程差
12
i
n1
e
n2
n3
2、n1 n2 n3 或 n1 n2 n3 1’ 2’
有附加光程差 2
3、对于折射光,无任何相位突变
第十二章 光的干涉
§12-3 光程与光程差
§12-2 双缝干涉
2.干涉明暗条纹的位置
r1
S1
S d
r2
波程差
S2
r2 r1
D
P
x
0
r2
r1
d sin
d
tan
d
x D
第十二章 光的干涉
§12-2 双缝干涉
d
x D
k 极大
(2k 1) 极小
2
干涉明暗条纹的位置
d x
D
x
k
D
d
2k 1
D
2d
明纹 暗纹
其中 k 0, 1, 2, 3
实际中,i 0
2n2e '
明纹和暗纹条件
2n2e

《光的干涉》课件

《光的干涉》课件
实验原理:当光波入射到薄膜表面时 ,反射光和透射光会发生干涉,形成
特定的干涉条纹。
实验步骤
1. 制备不同厚度的薄膜样品。
2. 将光源对准薄膜,使光波入射到薄 膜表面。
3. 观察薄膜表面的干涉条纹,分析干 涉现象与薄膜厚度的关系。
迈克尔逊干涉仪
实验目的:利用迈克尔逊干涉仪观察不同波长的光的干 涉现象。 实验步骤
2. 将不同波长的光源依次对准迈克尔逊干涉仪。
实验原理:迈克尔逊干涉仪通过分束器将一束光分为两 束,分别经过反射镜后回到分束器,形成干涉。
1. 调整迈克尔逊干涉仪,确保光路正确。
3. 观察不同波长光的干涉条纹,分析干涉现象与波长 的关系。
04
光的干涉的应用
光学干涉测量技术
干涉仪的基本原理
干涉仪利用光的干涉现象来测量长度、角度、折射率等物理量。干涉仪的精度极高,可以达到纳米级 别。
光的波动性是指光以波的形式传播, 具有振幅、频率和相位等波动特征。
光的干涉是光波动性的具体表现之一 ,当两束或多束相干光波相遇时,它 们会相互叠加产生加强或减弱的现象 。
波的叠加原理
波的叠加原理是物理学中的基本原理之一,当两列波相遇时,它们会相互叠加, 形成新的波形。
在光的干涉中,当两束相干光波相遇时,它们的光程差决定了干涉加强或减弱的 位置。
多功能性
光学干涉技术将向多功能化发展,实现同时进行 多种参数的测量和多维度的信息获取。
光学干涉技术的挑战与机遇
挑战
光学干涉技术面临着测量精度、 稳定性、实时性等方面的挑战, 需要不断改进和完善技术方法。
机遇
随着科技的不断进步和应用需求 的增加,光学干涉技术在科学研 究、工业生产、医疗等领域的应 用前景将更加广阔。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

iD
n1
e
A
C n2 n1
B
n1
薄膜干涉
§4 分波面双光束干涉
一、杨氏双缝实验(1801)
装置: 稳定、明暗相间条纹
P
S1
Sd
r1
r2
y o
S2
D
物理分析:
d sin d tg yd
D
P
S1
d
r1
r2
y
o
S2 r2 r1
D
yd D
2k
2 (2k 1)
亮纹
暗纹
2
明、暗纹位置:
k 3, 2n1e / 3 368nm
讨论:
1 2k k 0,1, 2
I I1 I2 2 I1I2
if I1 I2 4I1
光的强度为最大值,干涉极大
I I1 I2 2 I1I2 cos
讨论:
2 (2k 1) k 0,1, 2
I I1 I2 2 I1I2
if I1 I2
0
光的强度为最小值,干涉极小
§3 两列单色波的干涉
2e
n22
n12
sin2
i
2
k
2ne 2 k
4ne 41.301.0107 5.20107
2k 1
2k 1
2k 1
k=1时: 5.20 107 m ----绿色光
k=2时: 1.733107 m
----紫外光,不可见
练习:一油轮漏油(n1=1.2)污染海面,在 海水(n2=1.3)表面形成一层薄油污。
随机变化
cos(2
1)
1
cos(2 1)dt 0
0
I I1 I2 非相干叠加加!
A2 A12 A22 2A1A2 cos(2 1)
2 对于相干光
cos(2
1)
1
cos(2 1)dt
0
cos() 恒定
干涉项
I I1 I 2 2 I1I 2 cos
I I1 I2 2 I1I2 cos
第12章 光的干涉
丰富多彩的干涉现象
水膜在白光下 白光下的肥皂膜
蝉翅在阳光下
蜻蜓翅膀在阳光下
白光下的油膜
肥皂泡玩过吗?
测油膜厚度
平晶间空气隙干涉条纹
等倾条纹
牛顿环(等厚条纹)
主要内容:
• 光波是电磁波 • 引起光效应的主要是电场强度 • 干涉现象及重要应用 • 获得清晰的干涉图样
§1 光的电磁理论
一 电磁波的传播速度和折射率
真空中 介质中
c 1
00
v 1
透明介质
n rr
二 光强度
起主要作用是电矢量 E 光的强度由能流密度的大小决定 能流密度:单位时间内通过与波的 传播方向垂直的单位面积的能量
I A2
三 电磁波谱
§2 光的相干性
一 普通光与单色光
1 普通光源
原子跃迁
~ 处于激发态的任一原子




反射
无半波损失
空气 水
折射光无半波损失
四、 菲涅耳双棱镜实验
例: 在杨氏双缝实验中,屏与双缝之间的距
离D=1m,用单色光源(=589.3nm),问 (1)d=2mm和(2)d=10mm两种情况下, 相邻明条纹间距各为多大?
解:相邻明条纹的间距 d=2mm时
y D
d
y
D
d
1
589.3 10 9 2 103
二、 菲涅耳双镜实验
线光源 s*

M1
s1 *
1
2
A
s2 *
C
1
α
M2 2
B
等价于杨氏双缝
三、 洛埃德镜实验
S1P S2P
P
S1
屏移动 S2
条纹变化
实验表明: P点出现暗纹
S1
S1P S2P
S2
0 亮纹
半 波 损
P失
光 疏
入射
光 密




反射
有半波损失
空气

光 密
入射
光 疏
干涉相长,亮纹
干涉相消,暗纹
2
k称为干涉级,一般从0取起。
由于S1、S2是点光源,可向任何方向传播。 强度相同的空间各点的几何位置,应当满
足: r2 r1 常量
这些点的轨迹是以S1、S2为轴线的双叶旋 转双曲面,S1、S2为双曲面的焦点。
三 相干光的获得
同一时刻,光源中不同原子发出的光 波的频率、振动方向、初位相均无任何 关系,是非相干光。
解: 需考虑半波损失,根据明纹条件
2e
n22
n12 sin2 i
2
2k
2
2e
n22
n12
sin2
i
2
k
e (2k 1) (2k 1) 4.8107
4 n2 sin2 i 4 1.32 0.52
(2k 1)1.0107 m
k=1时有
emin 1.0107 m
从法向观察,i=0:
同一原子不同时刻发出的不 同 的光波列也是非相干光。
因此,不同光源发出的光或同一光源 的两部分发出的光都不是相干光。
只有把光源的同一点发出的 光分成两束,这两束光才是 相干光。
分光法
•分波阵面法 •分振幅法
两束相同的激光是相干光
1 分波振面法
2 分振幅法:利用光在两种介质分界 面上的反射光和透射光作为相干光
解:该蓝绿光的波长范围为1---2
2 1 100nm
1 2
(1
2
)
490nm
所以:1 440nm
2 540nm
当1的第k+1级条纹位置低于2的第k级位 置时,第k级光谱和第k+1级光谱重叠,条
纹变得无法分辨
(k
1)
D d
1
k
D d
2
k 4.4
所以,从第5级开始,条纹变得无法分辨。
光的干涉核心问题:
2n1e tgr sin i
2
2n2ecosr
2
2e
n22
n12
sin2
i
2
明、暗条件:
2k
2
2k 1
——明纹k=1 ,2 ,… ——暗纹k=0 ,1 ,2 ,…
2
2e
n22
n12
sin2
i
2
3 等倾干涉的意义
S
薄膜厚度 e 不变, 随
ii
i 变化的干涉
i
i
i
屏幕
透镜 反射板
合成: E E0 cos t
E Acos t
A2 A12 A22 2A1A2 cos(2 1)
在观测的时间内:
光强
I
A2
1
A2dt
0
A12 A22 2A1A2 cos(2 1)
A2 A12 A22 2A1A2 cos(2 1)
1 对于非相干光
分子发光的 随机性
2 1
m
2.95
104
m
0.295mm
d=10mm时
y
1 589 .310 9 10 10 3
m
5.89
105
m
0.059mm
双缝间距较小时,条纹间距才比较大。
[例]在杨氏双缝实验中,用折射率 n=1.58的透明薄膜盖在上缝上,并用 λ=6.32810-7m的光照射,发现中央 明纹向上移动了5条,求薄膜厚度。
光谱曲线: 光的强度按波长分布曲 线。
Intesity (a.u.) Intensity (a.u.)
0.12 Xe灯光谱图
0.10
0.08
0.06
0.04
0.02
0.00 250 300 350 400 450 500 550 600
Wavelength (nm)
1000
530nm激光光谱图 532
x
S1
d
r1
P
r2
0
S2
解:
光程差每改变一个,条纹移动一条 中央变为第N条明纹
因r2光程未变,r1改变了(n-1)x
(n 1)x N
x
N
n1
5.46106 m
[例] 在杨氏双缝实验中,采用加有蓝 绿色滤光片的白光光源,其波长范围 为=100nm,平均波长为490nm。 试估算从第几级开始,条纹将变得无 法分辨?
ii
薄膜
等倾干涉 条纹
S
2e
n22
n12
sin2
i
2
k
4 等倾干涉条纹的特征
(a)为一系列明、暗相间的同心圆环;
(b)由 的表达式可知,i 越小, 越大,对应 的干涉级次 k 就越大。即:
圆环的级次是内大外小。
(c)等倾圆环内疏外密。
2e
n22
n12 sin2
i
2
k
(d)不同波长的光入射到薄膜上,若
e
5 薄膜干涉中的半波损失
iD
e Ar B
C
if n2 n1, n3
or n2 n1, n3
n1 n2
'
2
n3
2e n22 n12 sin2 i '
iD
e Ar B
C
if n1 n2 n3
n1 or n1 n2 n3
n2
' 0
n3
2e n22 n12 sin2 i '
(3)D、d一定,增大时,y也增大。
讨论:
y
yk 1
yk
D
相关文档
最新文档