2013-2014学年第一学期《概率论与数理统计》模拟试题答案

合集下载

东北林业大学2013-2014学年第1学期阶段2《概率论与数理统计》考试试题及答案

东北林业大学2013-2014学年第1学期阶段2《概率论与数理统计》考试试题及答案

东北林业大学2013-2014学年第1学期阶段2考试试题考试科目:概率论与数理统计试卷总分:100分考试时间:_90分钟占总评比例:20%题号一二三卷面分得分评卷教师一、填空题(本大题共5小题,每小题3分,总计15分)1、在10次独立重复的射击中,每次命中的概率为0.4,则命中次数平方的期望是____;2、设ξ服从1=λ的指数分布,又2ξη=,令),(y x F 为),(ηξ的分布函数,则=)4,1(F _____;3、随机变量)2,1(~N ξ,)6,0(~U η且相互独立,则)23(ηξ-D =_____________;4、设)2(~P ξ,由切比雪夫不等式)3|2(|≥-ξP _____________________________;5、设),0(~2σξN i ,10,,2,1 =i ,且相互独立,则随机变量~1062512∑∑==j ji iξξ_____________。

二、选择题(本大题共5小题,每小题3分,总计15分)1、随机变量ξ与η相互独立同分布且有则【】A)5.0)(==ηξP B)1)(==ηξP C)25.0)0(==+ηξP D)25.0)1(==ξηP 2、设二元函数x y x f cos ),(=,则当自变量在下述哪个区域上取值时,其才可作为连续型二维随机变量的联合概率密度函数。

【】A)[][]1,0,5.0,5.0∈-∈y x ππB)[][]5.0,0,5.0,5.0∈-∈y x ππC)[][]1,0,,0∈∈y x πD)[][]5.0,0,,0∈∈y x π3、随机变量ξ的均值存在且a E =ξ,b E =2ξ,则对任意实数c ,=)(ξc D 【】A))(2b ac -B))(2a b c -C))(22a b c -D))(22b a c -4、若任意非零的实数a ,b 使得1)(=+=ξηb a P 且ξD 存在,则ηξρ,的取值【】得分得分ξ-11P0.50.5A)等于1B)等于-1C)等于||b b D)1||,<ηξρ5、对任意实数0x ,下列成立的是【】A)()()220ξξξE E x E -=-B)()()220ξξξE E x E -≥-C)()()220ξξξE E x E -<-D)()020=-x E ξ三、计算题(本大题共4小题14问,每问5分,总计70分)1、离散型二维随机变量),(ηξ的联合概率分布律见右表:求(1)边缘分布;(2))1|(=⋅ηP (3)),max(ηξς=的分布;(4)),(ηξCov ;(5)ξ与η是否独立?得分ξη-111200.250.250.52、连续型二维随机变量),(ηξ的联合概率密度函数如下:⎩⎨⎧<<<<--=其他,010,10,),(y x y x a y x f 求:(1)未知常数a ;(2))2(ηξ>P ;(3)分量ξ的概率密度函数)(1x f ;(4)ηξς+=的概率密度函数;(5))(ηξ+E3、三个球随机放入三个盒子,ξ与η分别表示放入第一个与第二个盒子球的个数。

概率论与数理统计模拟试题

概率论与数理统计模拟试题

一.选择题1.设,为两个分布函数,其相应的概率密度,是连续函数,则必为概率密度的是(D ) A B 2C D2.设随机变量X~N (0,1),Y~N (1,4)且相关系数=1,则(D )A P(Y=-2X-1)=1B P(Y=2X-1)=1C P(Y=-2X+1)=1D P(Y=2X+1)=1 3. "已知概率论的期末考试成绩服从正态分布,从这个总体中随机抽取n=36的样本,并计算得其平均分为79,标准差为9,那么下列成绩不在这次考试中全体考生成绩均值μ的的置信区间之内的有( ),并且当置信度增大时,置信区间长度( )。

645.105.0=Z 已知:,减小 ,减小 ,增大 ,增大 答案:D解析:由题知,σ=9,n=36,X =79 当α=时,1-2α= 所以 2αZ =05.0Z =5325.76645.1369792/=⨯-=-ασz nX4675.81645.1369792/=⨯+=+ασz nX|即μ的的置信区间为(,)且当μ的置信度1-α增大时,置信区间的长度也增大。

故,答案为D. 4.下列选项中可以正确表示为分布函数F(x)或连续性随机变量的概率密度函数f(x)的是( )。

A.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=5,152,4320,310,0)(x x x x x F B.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=1,114,40,sin 0,0)(x x x x x x x F ππC.0,0,021)(22>⎪⎩⎪⎨⎧≤=-x x e x f x πD.⎪⎩⎪⎨⎧≤≤=其它,023,sin )(ππx x x f答案:B.解析:考点1.分布函数要满足右连续。

A 不满足右连续 )考点2.连续性随机变量的概率密度函数的x 范围为()+∞∞-,,且在这个范围上积分和为.为,D 为(-1)。

故C ,D 错误 5.设随机变量Y X ,服从正态分布)2,1(),2,1(N N -,并且Y X ,不相关,Y aX +与bY X +亦不相关,则( ).(A )1=-b a (B )0=-b a (C )1=+b a (D )0=+b a应选(D ).解 X ~)2,1(-N ,Y ~)2,1(N ,于是()()2,2==Y D X D .又0),(,0),(=++=bY X Y aX Cov Y X Cov . 由协方差的性质有()()22),(),(),(),(),(=+=+=+++=++b a Y bD X aD Y Y bCov Y X abCov X Y Cov X X aCov aY X Y aX Cov?故0=+b a .故选(D ).6.设X 为离散性随机变量,且......)2,1](a [p ===i X P i i ,则X 的期望EX 存在的充分条件是( ) A.0lim =∞→n n p a n B.0lim2=∞→n n p a nC.∑∞=1n n n p a 收敛D.∑∞=12n n p a n 收敛 答案:D 解析:EX 存在⇔n np a∑∞=1n 收敛,所以是EX 存在的必要条件并不一定是充分条件,而B 不能保证收敛,因而正确选项是D期望和级数知识的综合考察。

概率论与数理统计试习题与答案

概率论与数理统计试习题与答案
七、(本题满分12分)
设 为来自总体 的一个样本, 服从指数分布,其密度函数为 ,其中 为未知参数,试求 的矩估计量和极大似然估计量。
八、(本题满分12分)
设某市青少年犯罪的年龄构成服从正态分布,今随机抽取9名罪犯,其年龄如下:22,17,19,25,25,18,16,23,24,试以95%的概率判断犯罪青少年的年龄是否为18岁。
概率论与数理统计试题与答案(2012-2013-1)
概率统计模拟题一
一、填空题(本题满分18分,每题3分)
1、设 则 =。
2、设随机变量 ,若 ,则 。
3、设 与 相互独立, ,则 。
4、设随机变量 的方差为2,则根据契比雪夫不等式有 。
5、设 为来自总体 的样本,则统计量 服从
分布。
6、设正态总体 , 未知,则 的置信度为 的置信区间的长度 。(按下侧分位数)
对 求导,得
五、(本题满分10分)解: ;
六、(本题满分13分)矩估计: ,
极大似然估计:似然函数 ,

七、(本题满分12分)解:欲检验假设
因 未知,故采用 检验,取检验统计量 ,今 , , , , ,拒绝域为 ,因 的观察值 ,未落入拒绝域内,故在 下接受原假设。
八、(本题满分8分)因 ,故
概率统计模拟题二
试求: (1)常数 ; (2) 落在 内的概率; (3) 的分布函数 。
五、(本题满分12分)
设随机变量 与 相互独立,下表给出了二维随机变量 的联合分布律及关于 和 边缘分布律中的某些数值,试将其余数值求出。
六、(本题满分10分)设一工厂生产某种设备,其寿命 (以年计)的概率密度函数为:
工厂规定,出售的设备若在售出一年之内损坏可予以调换。若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元,试求厂方出售一台设备净赢利的数学期望。

2013-2014概率统计本科模拟卷

2013-2014概率统计本科模拟卷

概率论与数理统计模拟卷注意:本卷可能用到以下分布函数值: ()7967.083.0=Φ,()8729.014.1=Φ,()9564.071.1=Φ一、填空题(本题满分32分,共8个小题,每小题4分)1、已知A ,B 为两个随机事件,()7.0=A P ,()3.0=-B A P ,则()=A B P 。

2、随机抛掷两颗质地均匀的骰子,则掷得点数之和不小于7的概率 为 。

3、设()4.0=B P ,()3.0=-B A P ,若事件A 与B 相互独立,则()=A P 。

4、在区间()1,0内等可能地任取一点记为X ,则=⎭⎬⎫⎩⎨⎧≥+-081432X X P 。

5、已知随机变量()p B X ,3~,且{}27191=≥X P ,则=p 。

6、设两个相互独立的随机变量X 和Y 分别服从正态分布()2,1N 和()1,1N ,令Y X Z -=,则{}=≥0Z P 。

7、已知()3=X E ,()5=X D ,则()=+22X E 。

8、设随机变量X 和Y 的期望都是2,方差分别为1和4,相关系数为0.5,则根据切比雪夫不等式:{}≤≥-6Y X P 。

二、选择题(本题满分18分。

共6个小题,每小题3分。

在每个小题的选项中,只有一项符合要求,把所选项的字母填写在答题纸的相应栏上) 1、 设()0=AB P ,则下列说法正确..的是( ) A .A 和B 一定不相容 B .AB 是不可能事件 C .()0=A P 或()0=B P D .()()A P B A P =- 2、已知随机变量X 和Y 的分布律分别为则常数a 和b 的值分别为( )A .2.0=a ,4.0=bB .2.0=a ,3.0=bC .1.0=a ,3.0=bD .1.0=a ,4.0=b3、设随机变量X 和Y 相互独立且服从同一分布,已知X 的分布律为则下列式子正确..的是( ) A .Y X = B .{}0==Y X P C .{}21==Y X P D .{}1==Y X P 4、设随机变量X ,Y 相互独立,且12+-=Y X Z ,则()=Z D ( )A .()()Y D X D -4B .()()Y D X D +4C .()()12++YD X D D .()()14+-Y D X D5、由()()()Y D X D Y X D +=+可得( )A .X 与Y 不相关B .X 与Y 的联合分布函数()()()y F x F y x F =,C .X 与Y 相互独立D .1-=XY ρ6、设总体X 服从正态分布()2,σμN ,其中μ,2σ未知,n X X X ,,,21Λ是取自总体X 的简单随机样本,则下列样本函数不是统计量的是( )A .∑==ni i X n X 11B .i XC .()∑=--=ni i XX n S 12211 D .()∑=-n i i X n 121μ三、计算题(本题满分40分,共5个小题,每小题8分)1、某地区18岁女青年的血压(收缩压,以mmHg 记)服从()212,110N ,在该地区任选一18岁女青年,则她的血压在mmHg 100和mmHg 120之间的概率为多少。

概率论与数理统计模拟试卷和答案

概率论与数理统计模拟试卷和答案

北京语言大学网络教育学院《概率论与数理统计》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。

请监考老师负责监督。

2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。

3.本试卷满分100分,答题时间为90分钟。

4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。

一、【单项选择题】(本大题共5小题,每小题3分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。

1、设A,B是两个互不相容的事件,P(A)>0 ,P(B)>0,则()一定成立。

[A]P(A)=1-P(B)[B]P(A│B)=0[C]P(A│B)=1 [D]P(AB)=02、设A,B是两个事件,P(A)>0,P(B)>0,当下面条件()成立时,A 与B一定相互独立。

[A]P( AB)=P(A)P(B)[B]P(AB)=P(A)P(B)[C]P(A│B)=P(B)[D]P(A│B)=P(A)3、若A、B相互独立,则下列式子成立的为()。

[A] P(AB) P(A)P(B) [B] P(AB)0[C] P(AB) P(BA) [D]P(AB) P(B)4、下面的函数中,()可以是离散型随机变量的概率函数。

[A] P 1 k e1(k 0,1,2 ) k![B] P 2 k e1(k 1,2 )k![C]P 3 k 1(k0,1,2 ) 2k[D] P 4 k1(k 1, 2, 3) k25、设F1(x)与F2(x)分别为随机变量X1与X2的分布函数,为了使F(x) aF1(x)bF2(x)是某一随机变量的分布函数,则下列个组中应取()。

[A] a 1 3 [B] a2 2 ,b2,b3 2 3[C a 3,b 2[D a 1,b 3] ]5 5 2 2二、【判断题】(本大题共5小题,每小题3分,共15分)正确的填T,错误的填F,填在答题卷相应题号处。

《概率论与数理统计》题库及答案

《概率论与数理统计》题库及答案

《概率与数理统计》题库及答案一.填空题1. 设ξ具有概率密度⎩⎨⎧<<+=其他031)(x b ax x f ,又)21(2)32(<<=<<ξξP P ,则a =___,b =___.2.一批产品的废品率为0.2, 每次抽取1个, 观察后放回去, 下次再任取1个, 共取3次, 则3次中恰有 两次取到废品的概率为_________.3. 设),,(1n X X 为来自(0-1)分布的一个样本,P(ξ=1)=p ,P(ξ=0)=1-p ,则),,(1n X X 的概率分布为___,=X E ___,=X D ___.4. 将一枚均匀硬币掷四次,则四次中恰好出现两次正面朝上的概率为___.5. 两封信随机地投入四个邮筒, 则前两个邮筒没有信的概率为_______, 第一个邮筒只有一封信的概率为_________.6. 已知P (A )=0.4,P (B )=0.3, P (A +B )= 0.6,则P (AB )= ___, P(A -B)=___,=)|(A B P ___.7. 掷两颗均匀骰子,ξ与η分别表示第一和第二颗骰子所出现点,则P{ξ=η}=_______________。

8. 设ξ具有概率密度⎩⎨⎧<<=其他10)(x kx x p a,(k ,a >0)又知E ξ=0.75,则k =___,a =___.9. 设ξ在[0,1]上服从均匀分布,则ξ的概率分布函数F (x )= ___,P (ξ≤2)= ___.10.设ξ与η相互独立,已知ξ服从参数λ为2的指数分布,η服从二项分布b (k ,5,0.2),则 E ξη=___,D(3ξ-2η)= ___, cov (ξ,η)= ___.11.已知B A ⊂,P (A )=0.1,P (B )=0.5,则P (AB )= ___,P (A +B )= ___,()P A B = ___,P (A |B )= ___,=+)(B A P ___。

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。

大学概率论与数理统计试题库及答案

大学概率论与数理统计试题库及答案

大学概率论与数理统计试题库及答案a(总32页)-本页仅作为预览文档封面,使用时请删除本页-<概率论>试题一、填空题 1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B )A =3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为和,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅则A=______________ 7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。

概率论与数理统计试题与答案完整版

概率论与数理统计试题与答案完整版

概率论与数理统计试题与答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】概率论与数理统计试题与答案(2012-2013-1)概率统计模拟题一一、填空题(本题满分18分,每题3分)1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。

2、设随机变量p)B(3,~Y p),B(2,~X ,若95)1(=≥X p ,则=≥)1(Y p 。

3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。

4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。

5、设)X ,,X ,(X n 21 为来自总体)10(2χ的样本,则统计量∑==n1i i X Y 服从分布。

6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。

(按下侧分位数)二、选择题(本题满分15分,每题3分)1、 若A 与自身独立,则( )(A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<<A P ; (D) 0)(=A P 或1)(=A P2、下列数列中,是概率分布的是( )(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p (C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p 3、设),(~p n B X ,则有( )(A) np X E 2)12(=- (B) )1(4)12(p np X D -=-(C) 14)12(+=+np X E (D) 1)1(4)12(+-=+p np X D4、设随机变量),(~2σμN X ,则随着σ的增大,概率()σμ<-X P ( )。

(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定5、设),,,(21n X X X 是来自总体),(~2σμN X 的一个样本,X 与2S 分别为样本均值与样本方差,则下列结果错误..的是( )。

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。

把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。

(完整word版)2013-2014学年第一学期概率论与数理统计期末考试试卷(A卷)答案

(完整word版)2013-2014学年第一学期概率论与数理统计期末考试试卷(A卷)答案

北京交通大学2013〜2014学年第一学期概率论与数理统计期末考试试卷( A 卷)某些标准正态分布的数值X 0.34 0.53 0.675 1.16 1.74 1.96 2.33 2.58 Q(x )0.66310.70190.750.8770.95910.9750.990.995其中①[X 是标准正态分布的分布函数.一.(本题满分8分)某人钥匙丢了,他估计钥匙掉在宿舍里、教室里以及路上的概率分别为0.4、0.35和0.25,而钥匙在上述三个地方被找到的概率分别为 0.5、0.65和0.45 •如果钥匙最终被找到, 求钥匙是在路上被找到的概率.解:设B = “钥匙被找到”.A 二“钥匙掉在宿舍里”,A ?二“钥匙掉在教室里”,A 3二“钥匙掉在路上”.由Bayes 公式,得PA 3B = 3PA 3PBA3Z P (A P (B A )i 10.25 0.450.2083 .0.4 0.5 0.35 0.65 0.25 0.45二.(本题满分8分)抛掷3枚均匀的硬币,设事件A 」「至多出现一次正面 \B =「正面与反面都出现1判断随机事件 A 与B 是否相互独立(4分)?如果抛掷 4枚均匀的硬币,判断上述随机事件 A 与B 是否相互独立(4分)?100解:⑴如果抛掷3枚硬币,则样本点总数为21 2 3=8 .P A 丄丄,P B 丄丄,P AB ,8 28 4 8所以有 P AB =- =1 3二PAPB ,因此此时随机事件A 与B 是相互独立的. 8 2 4⑵ 如果抛掷4枚硬币,则样本点总数为24=16.514 74 1P A , P B, P AB 二1616 8 16 4P AB — - =P A P B ,因此此时随机事件 A 与B 不是相互独立的. 416 8.(本题满分8分)设随机变量X 的密度函数为0 : x :: 1其它E X (4 分);⑵ plx E X / (4 分).解::: 1E (X )= J xf (x dx = J x 4(1 - x j dx1⑵ P 〈XE X [;-P a 0.2 ; = j 41 -x 3dx0.2所以有 求:⑴ 1=4 x - 3x 2 3x 3ddx=4 丄1 3」124 5 丿 10.2.52013-2014学年第一学期概率论与数理统计学期末考试试卷( A 卷)答案 Page 2 of 9100四.(本题满分8分) 某加油站每周补给一次汽油,如果该加油站每周汽油的销售量 度函数为0 : x :: 100 其它1=4 1 _3x 3x 2dx =40.2 X-3X 2x 」x 2 4 0.2 25 60.409662 5 X (单位:千升)是一随机变量,其密试问该加油站每次的储油量需要多大,才能把一周内断油的概率控制在2%以下?解:设该加油站每次的储油量为a •则由题意,a应满足0 ::: a ::: 100 ,而且P X a <0.02 .而P(X > a )= [ f (x dx = [ f (x dx + [ f (x )dx = [—x 1 -a 20 I 100丿1」100100所以,应当有,1」兰0.02.、一 100 丿 所以,得 1 一上 <V0.02,即 1 —1002 兰 2 , 100 100 因此有 a -100 1 -5 0.02 =54.2694948因此可取a = 55 (千升),即可使一周内断油的概率控制在5%以下.五.(本题满分8分)设平面区域D 是由双曲线 , x 0以及直线y =x , x =2所围,二维随机变量 xX, Y 服从区域D 上的均匀分布.求:⑴ 二维随机变量 X, Y 的联合密度函数f x, y (4分);⑵随机变量丫的边缘密度函数 f Y y (4分).解:⑴区域D 的面积为2* 1 2 A = J x-— dx =(2x 2- In x ) = 6- In 2 ,x 丿 r 1所以,二维随机变量 X, Y 的联合密度函数为10 (x, y 弹 D1 ⑵当丄"£1时,2-be 2 / 、 1 1 1fY (y )— J f (X, ydx- f dx -2——“ h —1— (x, y )^ D f (x ,y )=【6-l n2y6—1 n2 ;6—In 2 I y 丿y所以,随机变量Y 的边际密度函数为必求出Y 的密度函数,只需指出Y 是哪一种分布,以及分布中的参数即可.)解:由于X 1 ~ N 0,匚2 , X 2~N0,-2,而且X 1与X 2相互独立,所以X 1 X 2 ~ N 0,2;「2 , X 1—X 2~N0,2匚2 .-be卜八f x.y dx =16 —In 22dx1 6 —In 22-y •六.(本题满分8分)f Y(y )=«其它设随机变量 X 与Y 满足:var X =2 , var Y =4 , cov X ,Y = 1 ,再设随机变量U = 2X - 3Y ,V =3X -2丫,求二维随机变量 U, V 的相关系数:-U ,V .解:var U = var 2X -3Y =4 var X 9 var Y -12cov X, Y [=4 2 9 4 -12 =32 , var V =var3X-2Y = 9var X i 亠 4 var Y -12 cov X, Y ]=9 24 4-12 =22 ,cov U , V =cov 2X -3Y, 3X - 2Y^6var X 6var X -4cov X, Y -9cov X, Y [=6 26 4-13 1 =23.所以,二维;U ,V_covU,_V . 23 =23“8668451157、var U var V . 32 . 228、1123七.(本题满分8分)设X 1, X 2是取自正态总体 N 0,匚2中的一个样本.试求随机变量X^X 2 “―X22的分布(不1 6 — l n21 < y ::: 1 2由于covX1 X2,X r _X2= v a rX1-v a rX2=0 ,所以, 广X1 +X2 2<屈丿21,_X2相互独立.所以,Y二乂+x2丫l X1- X2 丿「X1 +X2 22 X1 二X2 i占b八.(本题满分8分)某射手射击,他打中10环的概率为0.5,打中9环的概率为0.3,打中8环的概率为0.1,打中7环的概率为0.05,打中6环的概率为0.05 .他射击100次,试用中心极限定理近似计算他所得的总环数介于900环与930环之间的概率.x 1.25 1.30 1.35 1.40①(x)0.8944 0.90230 0.91149 0.91924解:设X k表示该射手射击的第则X k的分布律为X k 10 9 8 7 6P 0.5 0.3 0.1 0.05 0.05所以,E X k1=10 0.5 9 0.3 8 0.1 7 0.05 6 0.05 715,=102 0.5 92 0.3 82 0.1 - 72 0.05 62 0.05 =84.95,所以,D X k二EX: -Ex k2=84.95-9.152=1.2275.因此,X1, X2,…,X100是独立同分布的随机变量,故1 0 0P 9002X k 兰930『P1 0 0 1 0 0 1 0 0 1 0 0900、E X k ' X k-' E X k 930、E X k k £.:::k =1km.:::k T一,1 0 0 — 110 0「D X k ' D X k[k d . k=11 0 0' D X kk =12,而且X1 X2, X1 —X2服从二元正态分布,所以X1 X2与X1 —X2相互独立./ 100送 X k —100x9.15=P —1.35388 兰 7 l J100 汉 1.2275「Q1.35 ]尬[1.35 U 1.35 -1 =2 0.91149 -1 =0.82289 .九.(本题满分9分)设随机变量X 与Y 相互独立而且同分布,其中随机变量X 的分布列为P^X =1 j p 0, P 「X =0 =1 - p 0 ,再设随机变量”1 X +Y 为偶数 Z =」0 X +Y 为奇数■-⑴ 写出随机变量 X, Z 的联合分布律以及 X 与Z 各自的边缘分布律;⑵ 问p 取什么值时,随机变量X 与Z 相互独立?解:⑴X 与Z 的联合分布列以及X 与Z 各自的边际分布列为其中 P 〈X =0, Z =0丄 P 「X =0,Y =1丄 P 〈X =0:PY =1、p 1 - p ; P 〈X =0, Z =1 丄 P 「X =0,Y =0 .;S x "pY =0 .;h [1 - p 2;P :X =1, Z =0 ; = P :X =1, Y =0 ; = P :X =1P "Y =0^= p 1 — p ; P^X =1, Z =1 ; = P 「X =1, Y =1 ;S x=1 ;=P 2 ;900-100 9.15 J00 1.2275100X k -100 9.15•::: 一k -J100x 1.2275930-100 9.15 -<1 00 1.2275<1.35388)第6页共9页⑵如果X 与Z 相互独立,则有P :X =1, Z =0、p 1 一 p 二 P 「X =<:piz =0、p 2p 1 一 p , 1 1解方程 p1-P 二p ・2p1 — p ,得p =—.并且当p =-时,有221Pi • X1 1 1 044211 1 1 4 4 21 1 p j22可以验证,此时X 与Z 是相互独立的.十.(本题满分9分)两台相同型号的自动记录仪,每台无故障工作的时间分别为X 和Y ,假设X 与Y 相互独立,都服从参数为冬-5的指数分布.X 的密度函数为由题意,知 ^X Y ,设T 的密度函数为f T t ,则-be-bef T t = f X x f Y t - x dx 二 5e _5x f Y t - x dx-:作变换 u=t-x ,贝U du =-dx ,当x =0时,u =t ;当x - 时,u —;匚.代入上式,得f (x5e _5xx 0 xE0现首先开动其中一台,当其损坏停用时另一台自动开动,直至第二台记录仪损坏为止.令: T :从开始到第二台记录仪损坏时记录仪的总共工作时间,试求随机变量T 的概率密度函数.解:5e*xX 的密度函数为fx (x )=」x 0 x 乞0丫的密度函数为fY (y )= “ 5e^ytf r (t )= - \5e~^~ F Y (U du =5e~ Je 5u fY(u dut-20当仁0时,由f Y y =0,知f r t =o ; 当t 0时,tf T t =5e® e 5u 5e“u du =25te^综上所述,可知随机变量T 的密度函数为(本题满分9分) 设总体X 的密度函数为1 _ixf x;e 二,-:::x26其中二0是未知参数. X 1,…,X n 是从中抽取的一个样本•求解:r 的似然函数为1_(日)=口 f (X i ;日 Ay^exh —4 送 X i ;>, y(2日)I 日-‘ 则有‘ / 1 nIn L (e )=—nln (2&)— —为 x i ,对。

2013-2014学年第一学期概率论与数理统计阶段测验(一)试卷答案

2013-2014学年第一学期概率论与数理统计阶段测验(一)试卷答案

北 京 交 通 大 学2013~2014学年第一学期概率论与数理统计阶段测验(一)试卷参 考 答 案一.(本题满分4分)从1到1000这1000个数字中任取一个,求取出的数字能被2或者被3整除的概率. 解:设=A “取出的数字能够被2或者3整除”,所求概率为()A P . =B “取出的数字能够被2整除”, =C “取出的数字能够被3整除”. 则 C B A ⋃=.由概率的加法公式,得 ()()()()()BC P C P B P C B P A P -+=⋃= 1000667100016610003331000500=-+=. 二.(本题满分8分)n ()2>n 个人围成一个圆圈,求甲、乙两人站在一起的概率.解:n 个人围成一个圆圈,有方法()!1-n 种,这是样本点总数.设=A “甲、乙两人站在一起”.甲乙两人站在一起,有2种可能,将甲乙两人排好后,再与其余2-n 人,共1-n 个“人”排成一个圆圈,有()!2-n 种方法,因此A 事件所含的样本点数为()!22-⨯n .所以 ()()()12!1!22-=--⨯=n n n A P .三.(本题满分8分)在某城市中,共发行3种报纸A ,B ,C ,在这城市的居民中,订有A 报纸的占%45,订有B 报纸的占%35,订有C 报纸的占%30,同时订购A ,B 报纸的占%10,同时订购B ,C 报纸的占%5,同时订购A ,C 报纸的占%8,同时订购A ,B ,C 报纸的占%3,试求下列事件的百分率:⑴ 只订购A 报纸的(4分);⑵ 正好订购两种报纸的(4分). 解:设=A “订购A 报纸”;=B “订购B 报纸”;=C “订购C 报纸”.由已知,()45.0=A P ,()35.0=B P ,()30.0=C P ,()10.0=AB P ,()05.0=BC P , ()08.0=AC P ,()03.0=ABC P . ⑴ 所求概率为()C B A P .()()()()()C B A A P C B A P C B A P ⋃-=⋃-= ()()()()()AC AB P A P C B A P A P ⋃-=⋃-= ()()()()A B C P AC P AB P A P +--= 30.003.008.010.045.0=+--=. ⑴ 所求概率为()BC A C B A C AB P ⋃⋃.()()()()BC A P C B A P C AB P BC A C B A C AB P ++=⋃⋃ ()()()ABC BC P ABC AC P ABC AB P -+-+-= ()()()()ABC P BC P AC P AB P 3-++= 14.003.0308.005.010.0=⨯-++=.四.(本题满分8分)将6只颜色分别为黑、白、红、黄、蓝、绿的球任意地放入6只颜色也分别为黑、白、红、黄、蓝、绿的盒子中,每个盒子放一球.求球与盒子的颜色都不一致的概率. 解:设=B “球与盒子的颜色都不一致”.=1A “黑球放入黑盒”,=2A “白球放入白盒”,=3A “红球放入红盒”, =4A “黄球放入黄盒”,=5A “蓝球放入蓝盒”,=6A “绿球放入绿盒”, 则有 61654321===i i A A A A A A A B .所以有()⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=== 61611i i i i A P A P B P ()()()()∑∑∑∑≤<<<≤≤<<≤≤<≤=+-+-=616161611l k j i lkj ik j i kj ij i jii i A A A A P A A A P A A P A P()()65432161A A A A A A P A A A A A P m l k j i ml kj i+-∑≤<<<<≤!61!6!1!6!2!6!3!6!4!6!516161616161+-+-+-=∑∑∑∑∑≤<<<<≤≤<<<≤≤<<≤≤<≤=m l k j i l k j i k j i j i i !61!6!1!6!2!6!3!6!4!6!515646362616+⋅-⋅+⋅-⋅+⋅-=C C C C C 14453!61!51!41!31!21!111=+-+-+-=. 五.(本题满分8分)某地区有甲、乙、丙、丁四家商店,分别有员工80人、90人、60人及150人,其中女员工分别占各店员工总数的21、32、41和53,现已知一名女员工辞职了,求这名员工是乙商店员工的概率. 解:设=1A “辞职员工是甲店员工”,=2A “辞职员工是乙店员工”, =3A “辞职员工是丙店员工”,=4A “辞职员工是丁店员工”. =B “辞职员工是女员工”.则所求概率为()B A P 2. 由Bayes 公式,得 ()()()()()∑==41222i iiA B P A P A B P A P B A P533801504138060323809021380803238090⨯+⨯+⨯+⨯⨯=2926829268.04112==. 六.(本题满分8分)设()4.0=A P ,()5.0=B P ,()5.0=C P .试分别就下面两种情况,计算概率()C AB C A P ⋃- :⑴. 随机事件A 、B 、C 相互独立;⑵. 随机事件A 、B 相互独立,且随机事件A 、C 互不相容; 解:()()()()C AB P C AB C A P C AB C A P ⋃⋃⋂=⋃-()()()()C AB P C C A AB C A P ⋃⋂⋃⋂=()()()()()()()A B CP C P AB P ABC P AB P C AB P C AB P -+-=⋃=⑴. 随机事件A 、B 、C 相互独立时 ()()()()()()A B CP C P AB P ABC P AB P C AB C A P -+-=⋃- ()()()()()()()()()()()C P B P A P C P B P A P C P B P A P B P A P -+-=615.05.04.05.05.04.05.05.04.05.04.0=⨯⨯-+⨯⨯⨯-⨯=;⑵. 随机事件A 、B 相互独立,且随机事件A 、C 互不相容时,即∅=AC ,并且由于AC ABC ⊂,所以有∅=ABC .因此,()()()()()()()()()C P AB P AB P ABC P C P AB P ABC P AB P C AB C A P +=-+-=⋃- ()()()()()725.05.04.05.04.0=+⨯⨯=+=C P B P A P B P A P .七.(本题满分8分)设甲,乙,丙三枚导弹向同一目标射击.已知甲,乙,丙三枚导弹击中目标的概率分别为4.0,5.0,7.0.如果只有一枚导弹击中目标,目标被摧毁的概率为2.0;如果只有两枚导弹击中目标,目标被摧毁的概率为6.0;如果三枚导弹全击中目标,目标被摧毁的概率为9.0.⑴ 求目标被摧毁的概率(4分).⑵ 已知目标被摧毁,求恰有两枚导弹击中目标的概率(4分). 解:⑴ 设=1A “甲导弹命中目标”,=2A “乙导弹命中目标”,=3A “丙导弹命中目标”. =1B “恰有1枚导弹命中目标”,=2B “恰有2枚导弹命中目标”, =3B “3枚导弹都命中目标”. =C “目标被摧毁”.则有 3213213211A A A A A A A A A B ⋃⋃=,所以,()()3213213211A A A A A A A A A P B P ⋃⋃= ()()()321321321A A A P A A A P A A A P ++=()()()()()()()()()321321321A P A P A P A P A P A P A P A P A P ++=()()()()()()7.05.014.017.015.04.017.015.014.0⋅-⋅-+-⋅⋅-+-⋅-⋅= 7.05.06.03.05.06.03.05.04.0⨯⨯+⨯⨯+⨯⨯= 36.0=.又有 3213213212A A A A A A A A A B ⋃⋃=, 所以,()()3213213212A A A A A A A A A P B P ⋃⋃= ()()()321321321A A A P A A A P A A A P ++=()()()()()()()()()321321321A P A P A P A P A P A P A P A P A P ++= ()()()7.05.04.017.05.014.07.015.04.0⋅⋅-+⋅-⋅+-⋅⋅= 7.05.06.07.05.04.03.05.04.0⨯⨯+⨯⨯+⨯⨯= 41.0=. 又有 3213A A A B =, 所以,()()3213A A A P B P = ()()()321A P A P A P = 7.05.04.0⨯⨯= 14.0=. 因此,由全概率公式,得()()()444.09.014.06.041.02.036.031=⨯+⨯+⨯==∑=i i i B C P B P C P .⑵ 所求概率为()C B P 2.()()()()554054054.0444.06.041.0222=⨯==C P B C P B P C B P . 八.(本题满分8分)某工厂宣称自己的产品的次品率为20%,检查人员从该厂的产品中随机地抽取10件,发现有3件次品,可否据此判断该厂谎报了次品率? 解:将抽取10件产品看作是一10重Bernoulli 试验,每次试验“成功”的概率为2.0=p . 设X :抽取10件产品中的次品数,则()2.010~,B X所以,()2013.08.02.0373310=⨯⨯==C X P因此随机事件“{}3=X ”并非是小概率事件,故不能据此判断该厂谎报了次品率.九.(本题满分8分)设连续型随机变量X 的分布函数为()x B A x F arctan +=, ()+∞<<∞-x .试求:⑴. 系数A 与B (3分);⑵. 概率{}11<<-X P (3分);⑶. 随机变量X 的密度函数(2分). 解:⑴. 由()1lim =+∞→x F x ,()0lim =-∞→x F x ,得()()B A x B A x F x x 2a r c t a nlim lim 1π+=+==+∞→+∞→ ()()B A x B A x F x x 2a r c t a nlim lim 0π-=-==-∞→-∞→解方程组 ⎪⎩⎪⎨⎧=-=+0212B A B A ππ ,得21=A ,π1=B 所以,()x x F arctan 121π+=()+∞<<∞-x ⑵. {}11<<-X P ()()11--=F F()⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛+=1a r c t a n 1211a r c t a n 121ππ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⨯+-⎪⎭⎫ ⎝⎛⨯+=41214121ππππ 21=⑶. X 的密度函数为()()2111x x F x f +='=π ()+∞<<∞-x . 十.(本题满分8分)某地区成年男子的体重X (以kg 计)服从正态分布()2,σμN.若已知()5.070=≤X P ,()25.060=≤X P ,⑴ 求μ与σ的值;⑵ 如果在该地区随机抽取5名成年男子,求至少有两个人的体重超过kg 65的概率. 解:⑴ 由已知()5.0707070=⎪⎭⎫ ⎝⎛-Φ=⎪⎭⎫ ⎝⎛-≤-=≤σμσμσμX P X P ,()25.0606060=⎪⎭⎫⎝⎛-Φ=⎪⎭⎫ ⎝⎛-≤-=≤σμσμσμX P X P得⎪⎪⎩⎪⎪⎨⎧=-=⎪⎭⎫ ⎝⎛-Φ-=⎪⎭⎫ ⎝⎛-Φ75.025.016015.070σμσμ .即⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛--Φ=⎪⎭⎫⎝⎛-Φ75.0605.070σμσμ ,查正态分布表,得⎪⎩⎪⎨⎧=--=-675.060070σμσμ,解方程组,得70=μ,81.14=σ.⑵ 设=A “从该地区任意选取一名成年男子,其体重超过kg 65”.则()()⎪⎭⎫⎝⎛-≤--=⎪⎭⎫ ⎝⎛-≤--=≤-=>3376.081.1470181.14706581.1470165165X P X P X P X P ()()6631.03376.03376.01=Φ=-Φ-=. 设X :该地区随机抽取的5名成年男子中体重超过kg 65的人数.则 ()6631.0,5~B X . 设=B “5人中至少有两人的体重超过kg 65.则 ()()()()()101112===-=≤-=≥=X P X P X P X P B P9530.03369.06631.03369.06631.0141155005=⨯⨯-⨯⨯-C C .(已知()75.0675.0=Φ,()6631.034.0=Φ)十一.(本题满分8分) 一袋中有5个编号分别为5,4,3,2,1的乒乓球,从中任意地取出三个,以X 表示取出的三个球中的最大号码,写出X 的分布律和X 的分布函数,并画出其分布函数的图形. 解:X 的取值为3,4,5,并且{}10133522===C C X P ,{}10343523===C C X P ,{}10653524===C C X P .所以,X 的分布律为X 的分布函数为()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<≤<≤<=x x x x x F 51541044310130.(分布函数的图形省略.)十二.(本题满分8分)假设一个人在一年中患感冒的次数X 服从参数为4=λ的Poisson 分布.现有一种预防感冒的新药,它对于22%的人来讲,可将上面的参数λ降为1=λ(称为疗效显著);对37%的人来讲,可将上面的参数λ降为3=λ(称为疗效一般);而对于其余的人来讲则是无效的.现有一人服用此药一年,在这一年中,他患了2次感冒,求此药对他是“疗效显著”概率有多大? 解:设{}此药疗效显著=1A ,{}此药疗效一般=2A ,{}此药无效=3A ,{}次感冒某人一年中患2=B .由题设,可知如果事件1A 发生,则X 服从参数为1=λ的Poisson 分布;如果事件2A 发生,则X 服从参数为3=λ的Poisson 分布;如果事件3A 发生,则X 服从参数为4=λ的Poisson 分布.因此,由Bayes 公式,我们有 ()()()()()∑==31111k kkA BP A P A B P A P B A P2206.02441.02337.02122.02122.042321212=⨯+⨯+⨯⨯=----e e e e. 十三.(本题满分8分) 设随机变量X 的密度函数为()⎪⎩⎪⎨⎧<<=其它022ππx xx f X ,求随机变量X Y sin =的密度函数()y f Y . 解:由随机变量X Y sin =,知随机变量Y 的取值范围是[]1,0. 因此,当0<y 时,()0=y F Y ; 当1>y 时,()1=y F Y ; 当10≤≤y 时,()()()y X P y Y P y F Y ≤=≤=s i n()()ππ≤≤-+≤≤=X y P yX P a r c s i n a r c s i n 0 ⎰⎰-+=ππππyydx xdx xarcsin 2arcsin 0222.所以,随机变量X Y sin =的分布函数为()⎪⎪⎩⎪⎪⎨⎧>≤≤+<=⎰⎰-11102200a r c s i n 2a r c s i n 02y y dx x dx x y y F y y Y ππππ . 因此,随机变量X Y sin =的密度函数为()()⎪⎩⎪⎨⎧<<-='=其它010122y y y F y f Y Y π .韩非子名言名句大全,韩非子寓言故事,不需要的朋友可以下载后编辑删除!!1、千里之堤,毁于蚁穴。

概率论与数理统计模拟题

概率论与数理统计模拟题

《概率论与数理统计》模拟题一.单选题1.对于事件A,B,下列命题正确的是( D ).A.若A,B 互不相容,则A 与B ̅也互不相容.B.若A,B 相容,那么A 与B̅也相容. C.若A,B 互不相容,且概率都大于零,则A,B 也相互独立. D.若A,B 相互独立,那么A 与B ̅也相互独立.2.在一次假设检验中,下列说法正确的是( A ). A.既可能犯第一类错误也可能犯第二类错误B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都不变D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误3.对总体X~N(μ,σ²)的均值和作区间估计,得到置信度为95%的置信区间,意义是指这个区间( D ).A.平均含总体95%的值B.平均含样本95%的值C.有95%的机会含样本的值D.有95%的机会的机会含μ的值4.在假设检验问题中,犯第一类错误的概率α的意义是( C ). A.在H 0不成立的条件下,经检验H 0被拒绝的概率 B.在H 0不成立的条件下,经检验H 0被接受的概率 C.在H 0成立的条件下,经检验H 0被拒绝的概率 D.在H 0成立的条件下,经检验H 0被接受的概率5.在一次假设检验中,下列说法正确的是( C ). A.第一类错误和第二类错误同时都要犯B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都要变小D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误6.设θ 是未知参数θ的一个估计量,若θθ≠ E 则θ是θ的( B ).A.极大似然估计B.矩法估计C.相合估计D.有偏估计7.在对单个正态总体均值的假设检验中,当总体方差已知时,选用( B ).A.t 检验法B.u 检验法C.F 检验法D.σ2检验法8.在一个确定的假设检验中,与判断结果相关的因素有( D ).A.样本值与样本容量B.显著性水平C.检验统计量D.A,B,C 同时成立9.对正态总体的数学期望进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( A ).A.必须接受H0B.可能接受,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H010.设A 和B 为两个任意事件,且A ⊂B ,P(B)>0,则必有( B ).A.P (A )<P (A |B )B.P (A )≤P (A |B )C.P (A )>(A |B )D.P (A )≥P (A |B )11.已知P(A)=0.4,P(B)=0.6,P(B|A)=0.5,则P(A|B)=( B ).A.1/2B.1/3C.10/3D.1/512.甲.乙两人独立的对同一目标各射击一次,其中命中率分别为0.6和0.5,现已知目标被命中,则它是乙命中的概率是( C ).A.3/5B.5/11C.5/8 B.6/1113.设A 和B 为两个任意事件,则下列关系成立的是( C ).A.(A ∪B )−B =AB.(A ∪B )−B ⊃AC.(A ∪B )−B ⊂AD.(A −B )∪B =A14.设A 和B 为两个任意事件,且A ⊂B ,则必有( D ).A.P (A )<P(AB)B.P (A )≤P(AB)C.P (A )>P(AB)D.P (A )≥P(AB)15.设每次实验成功的概率为p(0<p<1)则在三次独立重复试验中至少一次成功的概率为( B ).A.p 3B.1-p 3C.(1-p)3D.1-(1-p)316.某人射击时,中靶的概率为2/3,如果射击直到中靶子为止,则射击次数为3的概率( A ). A. 2/27 B.2/9 C.8/27 D.1/2717.设随机事件A 和B 满足P (B |A )=1,则( C ).A.为必然事件B.P (B |A )=0C.B ⊂AD.B ⊃A18.设一随机变量X 的密度函数φ(−x )=φ(x ),F(x)是X的分布函数,则对任意实数a 有( B ). A.F (−a )=1−∫φ(x )a0dx B.F (−a )=12−∫φ(x )a0dx C.F (−a )=1−F(a) D.F (−a )=2F (a )−119.变量X 的密度函数为f (x )={Cx 30<x <10其它,则常数C=( B ).A.3B.4C.1/4D.1/320.设X和Y相互独立,且分别服从N(0,1)和N(1,1)则( B ).A.P{X+Y≤0}=12B.P{X+Y≤1}=12C.P{X−Y≤0}=12D.P{X−Y≤1}=1221.设X和Y独立同分布,且P{X=1}=P{Y=1}=12,P{X=−1}=P{Y=−1}=12,则下列各式成立的是( A ).A.P{X=Y}=12B.P{X=Y}=1 C.P{X+Y=0}=14D.P{XY=1}=1422.总体方差D等于( C ).A.1n ∑(X i−X̅)2ni=1B.1n−1∑(X i−X̅)2ni=1C.1n∑X i2−(EX)2ni=1D.1n−1∑(X i−EX)2ni=123.设随机变量X~N(μ,σ²),则随着σ的增大,概率P{|X−μ|<σ}为( C ).A.单调增加B.单调减少C.保持不变D.增减不定24.设随机变量X和Y均服从正态分布X~N(μ,4²),Y~N(μ,5²),记p1=P{X<μ−4},p2= P{Y≥μ+5},则( A ).A.对任何实数μ都有p1=p2B.对任何实数μ都有p1<p2C.仅对个别值有p1=p2D.对任何实数μ都有p1>p225.设X1,X2,…,X n为来自总体的一个样本,X̅为样本均值,EX未知,则总体方差DX的无偏估计量为( B ).A.1n ∑(X i−X̅)2ni=1B.1n−1∑(X i−X̅)2ni=1C.1n ∑(X i−EX)2ni=1D.1n−1∑(X i−EX)2ni=126.设总体X~f(x,θ),θ为未知参数,X1,X2,…,X n为X的一个样本,θ1(X1,X2,…,X n).θ2(X1,X2,…,X n)为两个通缉量(θ1,θ2)为θ的置信度为1-α的置信区间,则应有( C ).A.P{θ1<θ<θ2}=αB.P{θ<θ2}=1-αC.P{θ1<θ<θ2}=1-αD.P{θ<θ1}=α27.在假设建设检验中,记H0为检验假设,则所谓犯第一类错误的是( D ).A.H0为真时,接受H0B.H0不真时,接受H0C.H0不真时,拒绝H0D.H0为真时,拒绝H028.袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球.则第二人取到黄球的概率是( B ).A.1/5B.2/5C.3/5D.4/529.事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( D ). A.“甲种产品滞销,乙种产品畅销” B.“甲.乙两种产品均畅销”C.“甲种产品滞销”D.“甲种产品滞销或乙种产品畅销”30.设A,B,C 表示三个随机事件,则A ⋃B ⋃C 表示( A ) A.A,B,C 中至少有一个发生; B.A,B,C 都同时发生; C.A,B,C 中至少有两个发生; D.A,B,C 都不发生.31.已知事件A,B 相互独立,且P(A)=0.5,P(B)=0.8,则P (A ⋃B )=( C ) A.0.65 B.1.3 C.0.9 D.0.332.设X ~B (n,p ),则有( D )A.E (2X -1)=2np;B.E (2X +1)=4np +1;C.D (2X +1)=4np (1-p )+1A.;D.D (2X -1)=4np (1-p )33.X则a =( A )A.1/3B.0C.5/12D.1/434.常见随机变量的分布中,数学期望和方差一定相等的分布是( D ) A.二项分布; B.标准正态分布; C.指数分布; D.泊松分布.35.在n 次独立重复的贝努利试验中,设P (A )=p,那么A 事件恰好发生k 次的概率为( B ). A.p k ; B.(nk )p k (1-p)n-k ; C.p n-k (1-p)k ; D.p k (1-p)n-k .36.设X A.1/4,1/16; B.1/2,3/4; C.1/4,11/16; D.1/2,11/16.37.设随机变量X 的密度函数f (x )={2x x ∈[0,A]0 其他,则常数A=( A ).A.1;B.1/2;C.1/2;D.2.38.若T ~t(n),下列等式中错误的是( C ).A.P{T>0}=P{T ≤0};B.P{T ≥1}=P{T>1};C.P{T=0}=0.5;D.P{T>t α}=P{T<-t α}.39.设X ~N(μ1,σ12),它有容量为n 1的样本X i ,i=1,2,…n 1;Y ~N(μ2,σ22),它有容量为n 2的样本Y j ,j=1,2,…n 2.它们均相互独立,X 和Y 分别是它们样本平均值,s 12和s 22分别是它们样本方差,σ12,σ22未知但是相等.则统计量212121221121)2()()(n n n n n n s n s n Y X +-++---μμ应该服从的分布是( C ).A.t(n 1+n 2);B.t(n 1+n 2-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1).40.设X ~N(μ1,σ2),它有容量为n 1的样本X i i=1,2,…n 1;Y ~N(μ2,σ2),它有容量为n 2的样本Y j j=1,2,…n 2.均相互独立,s 12和s 22分别是它们样本方差.则统计量1122221211--n s n n s n 应该服从的分布是( D ).A.χ2(n 1+n 2-2);B.F(n 2-1,n 1-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1).41.若μˆ1和μˆ2同是总体平均数μ的无偏估计,则下面叙述中,不正确的是( B ). A.2μˆ1-μˆ2仍是总体平均数μ的无偏估计; B.21μˆ1-21μˆ2仍是总体平均数μ的无偏估计; C.21μˆ1+21μˆ2仍是总体平均数μ的无偏估计 D.32μˆ1+31μˆ2仍是总体平均数μ的无偏估计.42.假设检验时,当样本容量n 固定时,缩小犯第Ⅰ类错误的概率α,则犯第Ⅱ类错误的概率β( B ).A.一般要变小;B.一般要变大;C.可能变大也可能变小;D.肯定不变.43.设X ~N(μ,σ2),μ和σ2均未知,X 是样本平均值,s 2是样本方差,则(X -t 0.051-n s ,X +t 0.051-n s )作为的置信区间时,其置信水平为( C ).A.0.1;B.0.2;C.0.9;D.0.8.44.已知一元线性回归直线方程为yˆ=a +4x,且x =3,y =6.则a=( D ). A.0; B.6; C.2; D.-6.45.设(x 1,y 1),(x 2,y 2),...(x n ,y n )是对总体(X,Y)的n 次观测值,l YY =∑=-ni iy y12)(,l XX =∑=-n i ix x12)(分别是关于Y,关于X 的校正平方和及l XY =∑=--ni i i y y x x 1))((是关于X 和Y的校正交叉乘积和,则它们的一元回归直线的回归系数b=( A ).A.XX XY l l ;B.XX XY l l ;C.YY XX XY l l l 2; D.YYXX XY l l l .46.设A,B 为两个事件,则AB =( D ).A.A B ;B.A B;C.A B ;D.A ∪B .47.若X ~N(0,1),ϕ(x)是它的密度函数,Φ(x)是它的分布函数,则下面叙述中不正确的是( A ). A.Φ(-x)=-Φ(x); B.ϕ(x)关于纵轴对称; C.Φ(0)=0.5; D.Φ(-x)=1-Φ(x).48.对单个总体X ~N(μ,σ2)假设检验,σ2未知,H 0:μ≥μ0.在显著水平α下,应该选( A ). A.t 检验; B.F 检验; C.χ2检验; D.u 检验.49.甲乙两人各自同时向敌机射击,已知甲击中敌机的概率为0.8,乙击中敌机的概率为0.5,则恰有一人击中敌机的概率( B ).A.0.8B.0.5C.0.4D.0.650.设X~N(μ,0.3²),容量n=9,均值X 5=,则未知参数μ的置信度为0.95的置信区间是( C ).(查表Z 0.025=1.96)A.(4.808,6.96)B.(3.04,5.19)C.(4.808,5.19)D.(3.04,6.96)二.填空题 1.设X 1,X 2,…,X 16是来自总体X~(4,σ2)的简单随机样本,2σ已知,令1611X 16ii X==∑则统计量4X-16σ服从分布 N(0,1) (必须写出分布的参数).2.设2X~μσ(,),而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为71.111=∑=ni i X n3. 设X~U[a,1],X 1,…,X n 是从总体X 中抽取的样本,求a 的矩估计为 121-∑=ni i X n4.已知F 0.1(8,20)=2,则F 0.9(20,8)= 0.55、设某个假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值(x 1,x 2,…,x n )落入W 的概率为0.15,则犯第一类错误的概率为 0.156.设样本的频数分布为X 0 1 2 3 4 频数 13212则样本方差s 2= 27.设X1,X2,,Xn 为来自正态总体N(μ,σ²)的一个简单随机样本,其中参数μ和σ²均未知,记,221Q )ni i X X ==-∑(,则假设H 0:μ=0的t 检验使用的统计量是X t (1)n n Q=- (用X 和Q表示)8. 设总体X~N(μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,则样本均值X = n 2σ9. 设总体X ~b,(np),0<p<1,X 1,X 2,…,X n 为其样本,则n 的矩估计是 X n p =10.设总体X ~[U,θ],(X 1,X 2,…,X n )是来自X 的样本,则θ的最大似然估计量是{}12max X X X n θ=,,11.测得自动车床加工的10个零件的尺寸与规定尺寸的偏差(微米)如下:+2,+1,-2,+3,+2,+4,-2,+5,+3,+4.则零件尺寸偏差的数学期望的无偏估计量 212.设X 1,X 2,X 3,X 4是来自正态总体N(0,2)2的样本,令Y=(X 1+X 2)2+(X 3-X 4)2,则当C= 1/8 时CY ~x 2(2).13.设容量n=10的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值样本方差 s 2=214.设A.B 为随机事件,P(A)=0.5,P(B)=0.6,P(B|A)=0.8则P(B|A)= 0.715. 若事件A 和事件B 相互独立,P(A)=α,P(B)=0.3,P (A⋃B )=0.7,则α= 3/716.设X ~N(2,σ²),且P{2<x<4}=0.3,则P{x<0}= 217.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为 2/318. 三个人独立地解答一道难题,他们能单独正确解答的概率分别为1/5.1/3.1/4,则此难题被正确解答的概率为 3/519.设有一箱产品由三家工厂生产的其中1/2是第一加工厂生产的,其余两家工厂各生产1/4,又知第一.第二工厂生产的产品有2%的次品,第三工厂生产的产品有4%的次品,现从箱中任取一只,则取到的次品的概率为 2.5%20.一个盒子中有10个球,其中有3个红球,2个黑球,5个白球,从中取球两次,每次取一个(有放回)则:第二次取到黑球的概率为 0.221. 由长期统计资料得知,某一地区在4月下雨(记事件A)的概率为4/15,刮风(记作事件B)概率为7/15,刮风又下雨(记作事件C)概率为1/10则:p(B|A)= 3/822.一盒子中黑球.红球.白球各占50%,30%,20%,从中任取一球,结果不是红球,则取到的是白球的概率为 2/723.某公共汽车站甲.乙丙动人分别独立地等1.2.3路汽车,设每个人等车时间(单位分钟)均服从[0,5]上的均匀分布,则三人中至少有两个人等车时间不超过2分钟的概率为 0.35224. 若随机变量X ~(2,σ²)且p{2<X<4}=0.3,则p{X<2}= 0.525. 若随机变量X ~N(-1,1),Y ~N(3,1)且X 和Y 相互独立,设随机变量Z=X-2Y+7,则Z ~ N(0,5)26.设随机变量X ~N(1,22),则EX 2= 5三.计算题1.已知100个产品中有5个次品,现从中有放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.007125.0)95.0()05.0(}2{223===C X P2.某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率. [答案]:).02.0,400(~b XX 的分布律为,)98.0()02.0(400}{400kk k k XP -⎪⎪⎭⎫ ⎝⎛==0,1,,400.k = 于是所求概率为 }1{}0{1}2{=-=-=≥X P X P X P 399400)98.0)(02.0(400)98.0(1--=.9972.0=3.已知100个产品中有5个次品,现从中无放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率. [答案]:.00618.0}2{310025195≈==C C C X P4.某一城市每天发生火灾的次数X 服从参数8.0=λ的泊松分布,求该城市一天内发生3次或3次以上火灾的概率. [答案]:由概率的性质,得}3{1}3{<-=≥X P X P }2{}1{}0{1=-=-=-=X P X P X P⎪⎪⎭⎫ ⎝⎛++-=-!28.0!18.0!08.012108.0e.0474.0≈5.某公共汽车站从上午7时起,每15分钟来一班车,即7:00,7:15,7:30,7:45等时刻有汽车到达此站,如果乘客到达此站时间X 是7:00到7:30之间的均匀随机变量,试求他候车时间少于5分钟的概率.[答案]:以7:00为起点0,以分为单位,依题意 ~X ),30,0(U ⎪⎩⎪⎨⎧<<=其它,0300,301)(x x f为使候车时间X 少于5分钟,乘客必须在7:10到7:15之间,或在7:25到7:30之间到达车站,故所求概率为}3025{}1510{<<+<<X P X P 3130130130251510=+=⎰⎰dx dx6.某元件的寿命X 服从指数分布,已知其平均寿命为1000小时,求3个这样的元件使用1000小时,至少已有一个损坏的概率.[答案]:由题设知,X 的分布函数为.0,00,1)(1000⎪⎩⎪⎨⎧<≥-=-x x e x F x 由此得到}1000{1}1000{≤-=>X P X P .)1000(11-=-=e F各元件的寿命是否超过1000小时是独立的,用Y 表示三个元件中使用1000小时损坏的元件数,则).1,3(~1--e b Y所求概率为}0{1}1{=-=≥Y P Y P .1)()1(13310103----=--=e e e C7.设某项竞赛成绩N X~(65,100),若按参赛人数的10%发奖,问获奖分数线应定为多少?[答案]:设获奖分数线为,0x 则求使1.0}{0=≥x X P 成立的.0x )(1}{1}{000x F x X P x X P -=<-=≥,1.0106510=⎪⎭⎫⎝⎛-Φ-=x即,9.010650=⎪⎭⎫⎝⎛-Φx 查表得,29.110650=-x 解得,9.770=x 故分数线可定为78.8.设随机变量X 具有以下的分布律,试求2)1(-=X Y 的分布律.4.01.03.02.02101i p X -[答案]:Y 所有可能的取值0,1,4,由,2.0}1{}4{,7.0}2{}0{}1{,1.0}1{}0)1{(}0{2=-=====+=======-==X P Y P X P X P Y P X P X P Y P9.已知随机变量X 的分布函数⎪⎩⎪⎨⎧>≤<≤=4,140,4/0,0)(x x x x x F ,求).(X E[答案]:随机变量X 的分布密度为,,040,4/1)()(⎩⎨⎧≤<='=其它x x F x f故.2841)()(424==⋅==⎰⎰∞+∞-x dx x dx x xf X E10.设05.0=α,求标准正态分布的水平0.05的上侧分位数和双侧分位数. [答案]:由于,95.005.01)(05.0=-=Φu 查标准正态分布函数值表可得,645.105.0=u 而水平0.05的双侧分位数为,025.0u 它满足:,975.0025.01)(025.0=-=Φu 查标准正态分布函数值表可得.96.1025.0=u 2χ分布.11.设),2,21(~2N X 2521,,,X X X 为X 的一个样本,求:(1)样本均值X 的数学期望与方差;(2)}.24.0|21{|≤-X P[答案]:)1(由于),2,21(~2N X 样本容量,25=n所以,252,21~2⎪⎪⎭⎫ ⎝⎛N X 于是,21)(=X E .4.0252)(22==X D)2(由),4.0,21(~2N X 得),1,0(~4.021N X - 故⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=≤-6.04.021}24.0|21{|X P X P .4514.01)6.0(2=-Φ=12.⎪⎩⎪⎨⎧≤<≤≤--+=其它100101)(x x xA x x f ,则求常数A.期望EX 及方差DX. [答案]:011(1)x dx -=++⎰10()A x dx -⎰,得A=1 ()EX xf x dx +∞-∞==⎰01(1)x x dx -++⎰10(1)0x x dx -=⎰22()EX x f x dx +∞-∞==⎰021(1)x x dx -++⎰120(1)1/6x x dx -=⎰ 61)D(x)22=-=EX EX (。

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。

中南民族大学2013-2014第一学期概率论与数理统计试卷(A卷)

中南民族大学2013-2014第一学期概率论与数理统计试卷(A卷)

注意事项:1. 考生将姓名、学号等信息写在试卷相应位置;2. 必须使用蓝(黑)色钢笔或签字笔在规定位置答题;3. 注意字迹清楚,保持卷面整洁。

A -2 共 8 页A(C )1()F z -(D )21(1())F z --8. 设随机变量X 的密度函数为()f x ,则下列选项中正确的是( ) (A )0()1f x ≤≤ (B )()1f x dx +∞-∞=⎰(C )()0lim x f x →-∞=(D )()1lim x f x →+∞=9. 设随机变量~()(1)X t n n >,2Y X =,则( ) (A )2()~n Y χ(B )2(1)~n Y χ-(C )~(,1)Y F n(D )~(1,)Y F n10.在假设检验中,设0H 为原假设,1H 为备择假设,则犯第一类错误的情况为( ) (A )0H 真,拒绝1H (B )1H 真,接受0H(C )0H 真,接受1H(D )1H 真,拒绝0H三、填空题(5小题,每小题2分,共10分)11. 将3只小球随机地放入4个杯子中去,求杯子中球的最大个数为2的概率 .12. 已知E(X)=7300,D(X)=4900,则P (6600<X <8000)≥ .13. 设A 、B 为两个事件,且()0.5P B =,()0.3P A B -=,()P AB = .注意事项:1. 考生将姓名、学号等信息写在试卷相应位置;2. 必须使用蓝(黑)色钢笔或签字笔在规定位置答题;3. 注意字迹清楚,保持卷面整洁。

A -4 共 8 页A17. (8分)设随机变量X 具有概率密度函数2,00,()x ae x f x -⎧>⎨⎩=其它(1)求a ; (2)求P(1X 2)≤≤注意事项:1. 考生将姓名、学号等信息写在试卷相应位置;2. 必须使用蓝(黑)色钢笔或签字笔在规定位置答题;3. 注意字迹清楚,保持卷面整洁。

A -6 共 8 页A19. (8分)设随机变量的概率密度为(),01,010,(,)x y x y f x y +<<<<⎧⎨⎩=其它,求Z X Y =+的概率密度.20. (8分)设~(0,1)X N ,~(0,4)Y N ,且相互独立,U X Y =+,V Y X =-,求U 、V 的相关系数UV ρ.注意事项:1. 考生将姓名、学号等信息写在试卷相应位置;2. 必须使用蓝(黑)色钢笔或签字笔在规定位置答题;3. 注意字迹清楚,保持卷面整洁。

《概率论与数理统计》(B)模拟试题(一)

《概率论与数理统计》(B)模拟试题(一)

《概率论与数理统计》(B )模拟试题(一)一 判断题(2分ⅹ5=10分)1.其概率为1的事件,必定是必然事件.2.若事件A,B 相互独立,则,A B 也相互独立.3.若事件X,Y 都服从正态分布,则(X,Y)也服从正态分布.4.连续型随机变量X,Y 相互独立的充要条件是f(x,y)=()()X Y f x f y ⋅.5.设12,,,n X X X ⋅⋅⋅是来自总体X 的样本,且E(X)=μ,(1)X t n -. 二 单选题(3分ⅹ5=15分)1.若事件A,B 相互独立,则概率P(A B)= .(A) P(A+B) (B) 1-P(A )P(B ) (C) P(A )+P(B ) (D) 1-P(A)P(B)2. 设X 的概率密度为:当x ≥0时,()f x =3x Ae -;当x<0时, ()f x =0,则A= .(A) 1/3 (B) –1/3 (C) 3 (D) --33. 设X,Y 相互独立,且P(X=0)=13,P(X=1)=23, P(Y=0)=13, P(Y=1)=23, 则P(X=Y)= 。

(A)59 (B) 49 (C) 29 (D) 19 4 . 设X 在[2,4]上服从均匀分布,则E (2X+1)= .(A) 1 (B) 3 (C) 5 (D) 75. 设总体X N(2,μσ), 其中2,μσ为未知参数, 1,2,,n X X X ⋅⋅⋅是来自总体X 的一个样本,则可作为2σ的无偏估计的是 . (A) 11n - 21()n i i X μ=-∑ (B) 1n 21()n i i X μ=-∑ (C) 11n -21()n i i X X =-∑ (D) 1n 21()n i i X X =-∑三、填空题(4分ⅹ5=20分)1. 设A,B,C 为任意事件,则“A,B,C 中至少有两个事件出现”可表示为 。

2 设A,B 为随机事件,且P(B)=, P(AB)=, 则条件概率P(A ∕B)= . 3已知离散型变量X 的分布律为P(X=k)=a k b (k=1,2,….),则b= .4 设X,Y 相互独立,且D(X)=D(Y)=1, 则D(2X-3Y)= .5. 设X U[0,3θ], (0θ≥,未知), 1,2,,n X X X ⋅⋅⋅是来自总体X 的一个样本,且11ni i X X n ==∑,则参数θ的估计量为 . 四 (10分) 已知事件A,B 相互独立,且P(A)=, P(B)=, 求P(A ∪B), P(A-B).五 (10分). 一袋中共有3个黑球,7个白球,今从中任意抽球两次,每次抽取一个,抽后不放回,求第二次抽出的是黑球的概率.六 (10分). 已知电源电压X 服从正态分布N(220,225), 在电源电压处于以下三种状态: X ≤200V, 200V ≤X ≤240V, X ≥240V 时,某电子元件损坏的概率分别为, , . 试求: (1) 该电子元件损坏的概率; (2) 该电子元件损坏时, 电压在200—240V 之间的概率. (已知:0(0.8)0.7881Φ=).七(12分).已知X,Y 相互独立, (X,Y)的分布律为: P(X=1,Y=1)=318, P(X=1,Y=2)=218, P(X=1,Y=3)=118, P(X=2,Y=1)= 618, P(X=2,Y=2)=α, P(X=2,Y=3)=β. 试求: (1) ,αβ的值; (2) X,Y 的边缘分布;.八 (13分) 设1,2,,n X X X ⋅⋅⋅是来自总体X 的一个样本, X 的概率密度为f(x)=其中θ>1的未知参数,试求θ的矩估计量和极大似然估计量.《概率论与数理统计》(B )模拟试题(二)一、 判断题(2分ⅹ5=10分)1. 其概率为0的事件,必定是不可能事件. ( )2. 若事件A,B 相互独立,则AB=∅. ( )3. 若(X,Y)的联合分布密度为f(x,y), 则Y 的边缘分布密度为()(,)Y f y f x y dx +∞-∞=⎰.( ).4. 若X,Y 相互独立, 都服从正态分布, 则(X,Y)服从二维正态分布. ( )5. 设1,2,,n X X X ⋅⋅⋅是来自总体X 的一个样本, 且E (X )=μ,则(1)X t n -。

《概率论与数理统计》模拟试卷

《概率论与数理统计》模拟试卷

《概率论与数理统计》模拟试卷一、填空题1.三只考签由三个学生轮流放回抽取一次,每次取一只,设i A 表示第i 只考签被抽到(1,2,3)i =,则“至少有一只考签没有..被抽到〞这一事件可表示为 . 2.设()0.4P A =,()0.3P B =,()0.6P A B =,则()P AB = .3.一袋中装有10个球,其中3个黑球,7个白球,先后两次不放回从袋中各取一球,则第二次取到的是黑球的概率为 .4.随机变量X 的分布函数为0,0()0.4,011,1x F x x x <⎧⎪=≤<⎨⎪≥⎩,则{1}P X == .5.设随机变量~(,25)X N μ,且{5}0.5P X >=,则μ= .6.设随机变量X 的概率密度函数为,01()0,Ax x f x <<⎧=⎨⎩其它,则常数A = .7.设随机变量X 服从参数为,n p 的二项分布,且16n =,()4D X =,则p = . 8.设二维随机变量(,)X Y 的分布律为则{}P X Y == .9.设随机变量X 服从参数为1的泊松分布,则2{()}P X E X == .10.设随机变量~(1,1),~(1,1)X N Y N -,且X 与Y 相互独立,则2[()]E X Y -= . 11.()1D X =,()9D Y =,0.5XY ρ=,则(321)D X Y -+= .12.设X 和Y 的方差DX 和DY 都存在,且满足()()D X Y D X Y +=-,则X 与Y 的相关系数XY ρ= .13.设1210,,,X X X 是来自总体(0,1)X N 的简单随机样本,则统计量2221210X X X +++服从自由度n = 的2χ分布.14.设来自总体~(,1)X N μ的容量为16的样本的样本均值 5.11x =,其未知参数μ的置信水平为1α-的置信区间为(4.62,5.60),则α= .15.设正态总体2~(,)X N μσ,其中2,μσ均未知,12,,,n X X X 为来自总体X 的简单随机样本,记11n i i X X n ==∑,221()ni i Q X X ==-∑,则检验假设01:0,:0H H μμ=≠的t 检验方法使用统计量t = .二、计算题1.设随机变量X 的概率密度函数,01()2,120,x x f x x x <<⎧⎪=-≤<⎨⎪⎩其他 ,求⑴{1}P X ≥;⑵分布函数()F x .2.设随机变量X 的概率密度函数1,01()0,X x f x <<⎧=⎨⎩其他,⑴求XY e =的概率密度函数()Y f y ;⑵求Y 的数学期望()E Y .3.设,X Y 的联合概率密度函数为,01,01(,)0,x y x y f x y +<<<<⎧=⎨⎩其他,⑴求X 和Y 的边缘概率密度函数()X f x 和()Y f y ;⑵推断X 与Y 的是否独立?4.将两封信随意投入3个邮筒,设X 和Y 分别表示投入第1和2号邮筒中信的数目,⑴求X 和Y 的联合分布律;⑵求X 与Y 的协方差(,)Cov X Y .5.设总体X 的概率密度函数22,0(;)0,xx f x θθθ⎧<<⎪=⎨⎪⎩其他,其中0θ>为未知参数,n X X X ,,,21 是来自总体X 的样本.⑴求未知参数θ的矩估量量ˆθ;⑵推断所求的估量量ˆθ是否为θ的无偏估量量.6.设总体X 的概率密度函数||1(;)()2x f x e x θθθ-=-∞<<+∞,其中0θ>为未知参数,6,3,1,2,4,7,8,9---为来自总体的X 样本值,求θ的极大似然估量值.参考答案一、填空题1.123A A A 2.0.3 3.0.3 4.0.6 5.56.2 7.0.5 8.0.4 9.12e10.6 11.27 12.0 13.10 14.0.05 15X三、计算以下概率问题1.解:⑴1{1}1{1}10.5P X P X xdx ≥=-<=-=⎰⑵当0x <时,()0F x =; 当01x ≤<时,2()2xx F x xdt ==⎰;当12x ≤<时,211()(2)212xx F x xdx x dx x =+-=--⎰⎰; 当2x ≥时,()1F x =;所以2200,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪--≤<⎪⎪≥⎩,.2.解:⑴()1,01,0,x f x <<⎧=⎨⎩其他 (){}{}X Y F y P Y y P e y =≤=≤当0y <时,()0Y F y =; 当0,y ≥时,(){ln }(ln )Y X F y P X y F y =≤=,()()Y Y f y F y '=,于是1,1()0,Y y ey f y ⎧<<⎪=⎨⎪⎩其他⑵1()()1XxE Y E e e dx e ===-⎰3.解:⑴当01x <<时,11()(,)()2X f x f x y dy x y dy x +∞-∞==+=+⎰⎰; 当01y <<时,101()(,)()2Y f y f x y dx x y dx y +∞-∞==+=+⎰⎰; ⑵(,)()()X Y f x y f x f y ≠∴X 与Y 不是相互独立的。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 .2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 .8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P .11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P .14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P .17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P .18、设21)(,41)(,31)(===B A P B P A P ,则=)(B A P 。

概率论与数理统计试卷及答案

概率论与数理统计试卷及答案

模拟试题一一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ;4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , COV(2X-3Y, X)= ;7、设125,,,X X X L 是总体~(0,1)X N 的简单随机样本,则当k = 时,~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X L 为其样本,11ni i X X n ==∑为样本均值,则θ的矩估计量为: 。

9、设样本129,,,X X X L 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ;二、计算题(35分)1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ; 2) 问X 与Y 是否独立?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ϕ;3、(11分)设总体X 的概率密度函数为:1,0(),000xe x x x θϕθθ-⎧≥⎪=>⎨⎪<⎩X 1,X 2,…,X n 是取自总体X 的简单随机样本。

概率论与数理统计B+答案

概率论与数理统计B+答案

第 1 页 共 4 页2013 - 2014学年度第一学期试卷 B (闭卷)课程 概率论与数理统计 院系 专业 年级、班级 学号 姓名题号 一 二 三 四 总分 阅卷人 得分一、填空题:(每空3分,共18分)1.设A , B 为随机事件, P (A )=0.6, P (B |A )=0.3, 则P (AB )=__________.2.设随机事件A 与B 互不相容, P (A )=0.6, P (A ∪B )=0.8, 则P (B )=__________. 3.设A , B 互为对立事件, 且P (A )=0.4, 则P (A B )=__________.4.设随机变量X 服从参数为3的泊松分布, 则P {X =2}=__________.5.设随机变量X ~N (0,42), 且P {X >1}=0.4013, Φ (x )为标准正态分布函数, 则Φ(0.25)=__________.6.设X 为随机变量, E (X +3)=5, D (2X )=4, 则E (X 2)=__________二、选择题:(每题3分,共18分)1.设A, B, C, 为随机事件, 则事件“A, B, C 都不发生”可表示为(A )C B A (B )C B A(C )C B A (D )C B A ( ) 2.设随机事件A 与B 相互独立, 且P (A )=51, P (B )=53, 则P (A ∪B )(A )253 (B )2517(C )54 (D )2523( ) 3.设随机变量X ~B (3, 0.4), 则P {X ≥1} (A )0.352 (B )0.432(C )0.784 (D )0.936 ( )4.设随机变量X 的概率密度为,4)2(2e 2π21)(+-=x x f 则E (X ), D (X )分别为(A )2,2- (B )-2, 2(C )2,2(D )2, 2 ( )5.设二维随机变量 (X , Y )的概率密度为⎩⎨⎧≤≤≤≤=,,0,20,10,),(其他y x c y x f 则常数c =(A )41(B )21 (C )2 (D )4 ( )6.设X , Y 为随机变量, D (X )=4, D (Y )=16, Cov (X ,Y )=2, 则XY ρ= (A )321 (B )161 (C )81(D )41( )三、问答题(5小题,共50分)1.(本题10分)在1500个产品中有400个次品,1100个正品,任意取200个。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计》练习及答案一、单项选择题1.设事件A 与事件B 互不相容,则( D ) (A )0)(=B A P(B )()()()P AB P A P B =(C )()1()P A P B =-(D )()1P A B ⋃=2. 设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0,10,)(3其他x ax x f 则常数=a ( D )A .41 B .31C .3D .43.设1X 、2X 是两个相互独立的连续型随机变量,它们的概率密度分别为)(1x f 、)(2x f ,分布函数分别为)(1x F 、)(2x F ,则( C )(A ))(1x f +)(2x f 必为某一随机变量的概率密度 (B ))(1x f )(2x f 必为某一随机变量的概率密度 (C ))(1x F )(2x F 必为某一随机变量的分布函数 (D ))(1x F +)(2x F 必为某一随机变量的分布函数4.设随机变量X 、Y 相互独立,且都服从区间(0,1)上的均匀分布,则{}=≤+122Y X P ( D )4)(8)(21)(41)(ππD C B A5. 设随机变量X 服从参数为3的指数分布,其分布函数记为)(x F ,则=)31(F( C )。

A .13e B .3e C .11e -- D .1113e --6、设A 、B 为两个事件,则AB =( D )A. AB B. A BC. ABD. A B7、离散型随机变量X 的分布律为则5.0{-P <}5.2≤X = ( C )A. 4.0B. 8.0C.7.0D. 18、随机变量X 服从二项分布)2.0,10(B ,则( C )A. 2EX DX ==B. 1.6EX DX ==C. 2, 1.6EX DX ==D. 1.6,2EX DX ==二、填空题1. 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则()___0.3____P AB =2.设随机变量X 服从),(2σμN ,且二次方程042=++X y y 无实根的概率为21,则=μ____ 4 __ 3. 设随机变量)1,1(~-U X ,则=⎭⎬⎫⎩⎨⎧≤21X P 12。

4.设随机变量X 在区间[-1,2]上服从均匀分布。

随机变量⎪⎩⎪⎨⎧<-=>=,0,1,0,0,0,1X X X Y 则=)(Y D ____98___5.设随机变量X 服从参数为1的泊松分布,则()==2EX X P 121-e 6. 设离散型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤--<=,2,1,21,31,1,0)(x x x x F则{}==2X P _______。

7、设随机变量)8.0,100(~B X ,由中心极限定量可知,{}≈≤<8674X P 0.8664。

((1.5)0.9332)Φ=8. 设X ~N (0,1),Y =2X -3,则D (Y )=4。

三、计算题(一)1.一批同一规格的产品由甲厂和乙厂生产,甲厂和乙厂生产的产品分别占70%和30%,甲乙两厂的合格率分别为95%和90%,现从中任取一只,则(1)它是次品的概率为多少?(2)若为次品,它是甲厂生产的概率为多少? 答:解:设A =‘次品’,B =‘产品是甲厂生产’ 依题意有:%70)(=B P ,%30)(=B P ,%5)|(=B A P ,%10)|(=B A P ,(1)()()(|)()(|)P A P B P A B P B P A B =+=065.0%1030%5%70=⨯+⨯(2))()|()()|()()|()|(B P B A P B P B A P B P B A P A B P ⨯+⨯⨯=5385.03.01.07.005.07.005.0≈⨯+⨯⨯=2.设随机变量)1,0(~N X ,求随机变量12-=X Y 的概率密度函数。

答:解:X 的密度为:()2221x X e x f -=π,∞<<∞-x()()()⎪⎭⎫ ⎝⎛+≤=≤-=≤=2112y X P y X P y Y P y F Y⎰+∞--=212221y x dx e π由()()y F y f Y Y '=得:()8)1(2221+-=y Y e y f π,∞<<∞-y3.设随机变量X 的概率密度函数为 ⎩⎨⎧≤≤=其他,010,)(x Ax x f ,(1)求常数A ;(2)求概率⎭⎬⎫⎩⎨⎧<<2131X P -;(3)求X 的分布函数)(x F 。

解:(1)⎰∞∞-=1)(dx x f 即⎰=11Axdx2=⇒A(2)⎭⎬⎫⎩⎨⎧<<2131X P -⎰==210412xdx (3)⎰∞-=xdt t f x F )()(⎪⎩⎪⎨⎧>≤≤<=1,110,0,02x x x x4.设二维离散型随机变量X 、Y 的概率分布为(1) 求;),(Y Y X Cov -;(2) 求XY ρ. 解:(1) X 、Y 、XY 的分布分别为),(Y Y X Cov -),(),(Y Y Cov Y X Cov -= ),(Y X Cov EXEY EXY -=,其中,32=EX ,1=EY ,32=EXY ,所以0),(=Y X Cov22)(),(EY EY DY Y Y Cov -==,其中,1=EY ,352=EY ,所以32),(=Y Y C o v 由此得,),(Y Y X Cov -),(),(Y Y Cov Y X Cov -=32-= (2) DXDYY X COV XY ),(=ρ,因为0),(=Y X Cov ,所以XY ρ=0四、计算题(二)1.某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%, 求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?解:A 为事件“生产的产品是次品”,B 1为事件“产品是甲厂生产的”,B 2为事件“产品是乙厂生产的”,B 3为事件“产品是丙厂生产的”易见的一个划分是Ω321,,B B B(1)由全概率公式,得.0345.0%2%40%4%35%5%25)()()()(3131=⨯+⨯+⨯===∑∑==ii ii iB A P B P AB P A P (2) 由Bayes 公式有:69250345.0%5%25)()()()()(31111=⨯==∑=i iiB P B A P B P B A P A B P2.设随机变量X 的概率密度函数为 ⎩⎨⎧≤≤=其他,010,)(x Ax x f ,(1)求常数A ;(2)求概率⎭⎬⎫⎩⎨⎧<<2131X P -;(3)求X 的分布函数)(x F 。

答案见上面第二题3.设随机变量X 具有概率密度函数⎩⎨⎧<<=其他,,0;40,)(x x x f X求:随机变量XY e =的概率密度函数。

解:XY e =的分布函数).(y F Yln ()()()(ln )()yXY X F y P Y y P e y P X y f x dx -∞=≤=≤=≤=⎰=2440,0;1ln ,0;161,.y y y e e y <⎧⎪⎪≤<⎨⎪≤⎪⎩ 于是Y 的概率密度函数4ln ,0;8()()0,.Y Yyy e d y f y F y dy ⎧<<⎪==⎨⎪⎩其他4求(1)X 的分布函数)(x F ;(2))8.15.0(≤<-X P (3)DX 。

解:(1)010.110()0.3010.61212x x F x x x x<-⎧⎪-≤<⎪⎪=≤<⎨⎪≤<⎪≤⎪⎩ 。

由分布函数的定义()()F x P X x =-∞<≤可得(2)(0.5 1.8)(1.8)(0.5)0.60.10.5P X F F -<≤=--=-=(3)因()1E X =,2()E X =2,22()()1DX E X E X =-=5.某地区年降雨量X (单位:mm )服从正态分布2(1000,100)N ,设各年降雨量相互独立,求从今年起连续10年内有9年降雨量不超过1250mm ,而有一年降雨量超过1250mm 的概率。

(取小数四位,(2.5)0.9938Φ=,(1.96)0.9750Φ=Φ(1.96)=0.9750)解: 设A 表示“1250X >”,Y 表示10年中,A 发生的次数,则(10,)YB p()(1250)1(1250)125010001()1(2.5)0.0062100p P A P X P X ==>=-≤-=-Φ=-Φ= 所以11991010(1)(1)0.00620.99380.0582P Y p p C C ==-=⨯⨯=四、计算题设总体X 的概率密度函数为⎩⎨⎧≤<+=其他,010,)1()(x x x f θθ,(1->θ) n X X X ,,,21 是抽自总体X 的样本,求未知参数θ的矩估计∧θ和极大似然估计*θ。

解:1012|21)1()()(⎰⎰+∞∞-++=+==θθθθθx dx x x dx x xf X E =12θθ++ 样本的一阶原点矩为XnnX X X =+++ 21替换,12X θθ+=+,得矩估计∧θ=211X X--似然函数为⎪⎩⎪⎨⎧≤<=∏=其他,)+(010,1),,,(11i i n i n x x x x L θθθ 1ln ln(1)ln nii L n xθθ==++∑0ln 1ln 1=++=∑=ni i x nd L d θθ 解似然方程得θ的极大似然估计1ln 1*--=∑=i iXnθ。

相关文档
最新文档