贺州2015中考数学试题

合集下载

广西贺州市中考数学试卷及答案

广西贺州市中考数学试卷及答案

广西贺州市中考数学试卷及答案各位考生,欢迎你参加中考数学考题.在做题之前请你注意:1.本次考题数学试题共8页28题,请你看清楚试卷,不要漏做题目;2.数学考题时间为120分钟,满分120分.请你合理安排好时间,做题时先易后难,充分发挥自己的水平;3.答题时,不要把答案写到密封线内.一、填空题(本大题共12小题;每小题3分,共36分)1.比较两个数的大小: 12 -2 。

(用“<、=、>”符号填空) 2.计算:2225ab a b -+ = 。

3.妈妈煮一道菜时,为了了解菜的咸淡是否适合,于是妈妈取了一点品尝,这应该属于 。

(填普查或抽样调查) 4.如图1:已知直线a 、b被直线c所截,a ∥b,∠1=60°,则∠2= 。

5.分解因式: 3x x-+= 。

6.已知∠A=50º, 则∠A 的余角的补角是 。

7.函数242x y x -=- 中,自变量x = 时, 函数值y 等于0。

8.已知 10m=2,10n=3,则3210m n+= 。

9.长度分别为2㎝、4㎝、5㎝、6㎝的四条线段,从中任取三条线段能够组成三角形的概率是 .10.如图2,在梯形ABCD 中,AD ∥BC ,AC 、BD 是梯形的 对角线,且AC ⊥BD ,AD=3cm ,BC=7cm ,BD=6cm ,则 梯形ABCD 的面积是 2cm 。

11.如图3,△NKM 与△ABC 是两块完全相同的45°的三角尺,将 △NKM 的直角顶点M 放在△ABC 的斜边AB 的中点处,且MK 经过点C ,设AC=a 。

则两个三角尺的重叠部分△ACM 的周长是 。

得 分 评卷人BCA D(图2)ca12(图1)12.数列: —12,13,—110, 115,—126,…… 则这个数列的第100个数是 。

二、选择题:(本大题共8小题;每小题3分,共24分.请选出各题 中一个符合题意的正确选项,不选、多选、错选,均不给分)13.16 的算术平方根是 …………………………………………………………… ( )。

2015年广西中考数学真题卷含答案解析

2015年广西中考数学真题卷含答案解析

2015年南宁市初中毕业升学考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A、B、C、D四个结论,其中只有一个是正确的.1.3的绝对值是( )A.3B.-3C.13D.-132.如图是由四个大小相同的正方体组成的几何体,那么它的主视图是( )3.南宁快速公交(简称:BRT)将在今年底开始动工,预计2016年下半年建成并投入试运营.首条BRT西起南宁火车站,东至南宁东站,全长约为11300米.其中数据11300用科学记数法表示为( )A.0.113×105B.1.13×104C.11.3×103D.113×1024.某校男子足球队的年龄分布如条形图所示,则这些队员年龄的众数是( )A.12B.13C.14D.155.如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于( )A.30°B.45°C.60°D.90°6.不等式2x-3<1的解集在数轴上表示为( )7.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为( )A.35°B.40°C.45°D.50° 8.下列运算正确的是( )A.4ab÷2a=2abB.(3x 2)3=9x 6C.a 3·a 4=a 7D.√6÷√3=2 9.一个正多边形的内角和为540°,则这个正多边形的每个外角等于( ) A.60° B.72° C.90° D.108°10.如图,已知经过原点的抛物线y=ax 2+bx+c(a ≠0)的对称轴为直线x=-1.下列结论中:①ab>0;②a+b+c>0;③当-2<x<0时,y<0.正确的个数是( )A.0个B.1个C.2个D.3个11.如图,AB 是☉O 的直径,AB=8,点M 在☉O 上,∠MAB=20°,N 是MB⏜的中点,P 是直径AB 上一动点.若MN=1,则△PMN 周长的最小值为( )A.4B.5C.6D.712.对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b 中较大的数,如:max{2,4}=4.按照这个规定,方程max{x,-x}=2x+1x的解为( )A.1-√2B.2-√2C.1-√2或1+√2D.1+√2或-1第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:ax+ay= .14.要使分式1x -1有意义,则字母x 的取值范围是 .15.一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸取一个小球,则取出的小球标号是奇数的概率是 .16.如图,在正方形ABCD 的外侧,作等边△ADE,则∠BED 的度数为 °.17.如图,点A 在双曲线y=2√3x(x>0)上,点B 在双曲线y=kx (x>0)上(点B 在点A 的右侧),且AB ∥x轴.若四边形OABC 是菱形,且∠AOC=60°,则k= .18.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第1次点A向左移动3个单位长度到达点A1,第2次从点A1向右移动6个单位长度到达点A2,第3次从点A2向左移动9个单位长度到达点A3,……,按照这种移动规律进行下去,第n次移动到达点A n.如果点A n与原点的距离不小于20,那么n的最小值是.三、解答题(本大题共2小题,每小题满分6分,共12分)19.计算:20150+(-1)2-2tan45°+√4..20.先化简,再求值:(1+x)(1-x)+x(x+2)-1,其中x=12四、解答题(本大题共2小题,每小题满分8分,共16分)21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕点B顺时针旋转90°后得到△A2BC2.请在图中画出△A2BC2,并求出线段BC在旋转过程中所扫过的面积.(结果保留π)22.今年5月份,某校九年级学生参加了南宁市中考体育考试.为了了解该校九年级(1)班学生的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制出以下不完整的频数分布表和扇形统计图.请根据图表中的信息解答下列问题:分组分数段(分)频数A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班学生人数和m的值;(2)直接写出该班学生的中考体育成绩的中位数落在哪个分数段;(3)该班中考体育成绩满分(60分)共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流.请用“列表法”或“画树状图法”,求出恰好选到一男一女的概率.五、解答题(本大题满分8分)23.如图,在▱ABCD中,E,F分别是AB,DC边上的点,且AE=CF.(1)求证:△ADE≌△CBF;(2)若∠DEB=90°,求证:四边形DEBF是矩形.六、解答题(本大题满分10分)24.如图①,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上,修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的甬道,设甬道的宽为a米.图①(1)用含a的式子表示花圃的面积;,求此时甬道的宽;(2)如果甬道所占面积是整个长方形空地面积的38(3)已知某园林公司修建甬道、花圃的造价y1(元)、y2(元)与修建面积x(m2)之间的函数关系如图②所示.如果学校决定由该公司承建此项目,并要求修建的甬道宽不少于2米且不超过10米,那么甬道宽为多少米时,修建的甬道和花圃的总造价最低?最低总造价为多少元?图②七、解答题(本大题满分10分)25.如图,AB是☉O的直径,C,G是☉O上两点,且AC⏜=CG⏜.过点C的直线CD⊥BG于点D,交BA 的延长线于点E,连结BC,交OD于点F.(1)求证:CD是☉O的切线;(2)若OFFD =23,求∠E的度数;(3)连结AD,在(2)的条件下,若CD=√3,求AD的长.八、解答题(本大题满分10分)26.在平面直角坐标系中,已知A,B是抛物线y=ax2(a>0)上两个不同的动点,其中A在第二象限,B在第一象限.(1)如图①所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A,B 两点的横坐标的乘积;(2)如图②所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A,B 两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由;(3)在(2)的条件下,若直线y=-2x-2分别交直线AB,y轴于点P,C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.图①图②答案全解全析:一、选择题1.A因为|3|=3,所以选项A正确.故选A.2.B由题意可知,主视图有两层,上面的一层有一个正方形,在左侧下面的一层有两个正方形.选项B符合.故选B.3.B11300=1.13×104.故选B.4.C14岁的人数最多,所以众数为14.故选C.5.A∵DE∥BC,∴∠CAE=∠C=30°.故选A.6.D∵2x-3<1,∴2x<4,∴x<2.在数轴上表示应为从2画起(空心),向左,选项D符合题意,故选D.7.A∵AB=AD,∴∠ADB=∠B=70°,∵AD=DC,∴∠C=∠DAC.∵∠ADB是△ADC的外∠ADB=35°.故选A.角,∴∠C=128.C4ab÷2a=2b,选项A错误;(3x2)3=27x6,选项B错误;√6÷√3=√2,选项D错误;a3·a4=a7,选项C正确.故选C.9.B由(n-2)·180°=540°,得n=5,所以每一个外角等于360°=72°.故选B.5<0,所以ab>0,所以①正确;当x=1时,y=a+b+c>0,所以②正10.D因为对称轴为直线x=-b2a确;由对称轴可知抛物线与x轴的交点坐标为(-2,0),(0,0),所以-2<x<0时,图象在x轴下方,即y<0,所以③正确.故选D.11.B△PMN的周长为PM、PN、MN的和,其中MN=1,所以只要PM、PN的和最小即可.如图,取N关于AB的对称点C,连结MC交AB于P,此时PM、PN的和最小,PM、PN的和就是MC的长⏜的中点,∴∠NOB=20°.∵直径度.连结OM、ON、OC.∵∠MAB=20°,∴∠MOB=40°.∵N为BMAB⊥CN,∴∠COB=20°.∴∠MOC=60°.∵OM=OC,∴△MOC为等边三角形.∵AB=8,∴MC=OM=4.∴△PMN的周长的最小值为1+4=5.故选B.12.D(1)当x>-x,即x>0时,max{x,-x}=x,2x+1=x,解这个方程可得x=1±√2.经检验,x=1±√2是原方程的解.∵x>0,∴x=1+√2.x(2)当x<-x,即x<0时,max{x,-x}=-x,2x+1=-x,解这个方程可得x=-1.经检验,x=-1是原方程的解.x综上所述,x=1+√2或x=-1.故选D.评析本题是新概念学习题,考查的是分类讨论思想与解一元二次方程.属中档题.二、填空题13.答案a(x+y)解析ax+ay=a(x+y).14.答案x≠1解析若分式1有意义,则分母x-1≠0,即x≠1.x-115.答案0.6解析一共有5个小球,标号是奇数的小球有3个,所以取出的小球标号是奇数的概率是3÷5=0.6.16.答案45解析由题意可知,∠BAE=150°,BA=AE,∴∠AEB=15°.∴∠BED=45°.17.答案 6√3解析 作AD ⊥x 轴交x 轴于点D,∵∠AOC=60°,∴AD=√3OD,∴可设A(x,√3x). ∵点A 在双曲线y=2√3x(x>0)上,∴x ·√3x=2√3. ∴x 2=2.∵x>0,∴x=√2.∴A(√2,√6).∴OA=2√2.∵四边形OABC 是菱形, ∴AB=OA=2√2.∵AB ∥x 轴,∴B(3√2,√6). ∵点B 在双曲线y=k x(x>0)上, ∴k=xy=3√2×√6=6√3.评析 本题考查了反比例函数与菱形的综合应用,需要借助反比例函数关系式求出菱形的边长,再利用菱形的性质求出反比例函数图象上的点的坐标.属中档题. 18.答案 13解析 根据题意,写出移动后各点所表示的数:A 1:-2 A 2:4 A 3:-5 A 4:7 A 5:-8 A 6:10 A 7:-11 A 8:13 A 9:-14 A 10:16 A 11:-17 A 12:19 A 13:-20如果点A n 与原点的距离不小于20,那么n 的最小值是13.三、解答题19.解析 原式=1+1-2×1+2(4分) =2.(6分)20.解析 原式=1-x 2+x 2+2x-1(2分) =2x.(4分)当x=12时,原式=2×12=1.(6分)四、解答题21.解析 (1)△A 1B 1C 1如图所示.(3分,正确作出一点给1分) (2)△A 2BC 2如图所示.(6分,正确作出一点给1分)在Rt △ABC 中,AB=2,AC=3, ∴BC=√22+32=√13.(7分) ∵∠CBC 2=90°,∴S 扇形BCC 2=90π(√13)2360=13π4.(8分)22.解析 (1)全班学生人数:15÷30%=50(人).(2分) m=50-2-5-15-10=18.(3分)(2)51≤x<56.(5分)(3)画树状图或列表如下:或男1男2 女 男1男2男1女男1 男2 男1男2女男2女男1女男2女(7分)由图或表可知,所有可能出现的结果共有6种,并且它们出现的可能性相等,“一男一女”的结果有4种,即:男1女,男2女,女男1,女男2. ∴P(一男一女)=23.(8分) 五、解答题23.证明 (1)∵四边形ABCD 是平行四边形, ∴AD=CB,∠A=∠C.(2分) ∵AE=CF,(3分)∴△ADE ≌△CBF.(4分)(2)证法一:∵△ADE ≌△CBF, ∴DE=BF.(5分)∵四边形ABCD 是平行四边形,∴AB=CD.∵AE=CF,∴AB -AE=CD-CF.∴EB=DF.(6分)∴四边形DEBF 是平行四边形.(7分)∵∠DEB=90°,∴▱DEBF 是矩形.(8分)证法二:∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD.(5分)∵AE=CF,∴AB -AE=CD-CF.∴EB=DF.(6分)∴四边形DEBF 是平行四边形.(7分)∵∠DEB=90°,∴▱DEBF 是矩形.(8分)六、解答题24.解析 (1)花圃的面积为(60-2a)(40-2a)平方米或(4a 2-200a+2 400)平方米.(2分)(2)(60-2a)(40-2a)=60×40×(1-38),(4分)即a 2-50a+225=0,解得a 1=5,a 2=45(不合题意,舍去).∴此时甬道的宽为5米.(5分)(3)∵2≤a ≤10,花圃面积随着甬道宽的增大而减小,∴800≤x 花圃≤2 016.由图象可知,当x ≥800时,设y 2=k 2x+b,因为直线y 2=k 2x+b 经过点(800,48 000)与(1 200,62 000),所以{800k 2+b =48 000,1 200k 2+b =62 000.解得{k 2=35,b =20 000.∴y 2=35x+20 000.(6分)当x ≥0时,设y 1=k 1x,因为直线y 1=k 1x 经过点(1 200,48 000),所以1 200k 1=48 000. 解得k 1=40.∴y 1=40x.(7分)设修建甬道、花圃的总造价为y 元,依题意,得解法一:y=y 甬道+y 花圃=40(60×40-x 花圃)+35x 花圃+20 000=40(2 400-4a 2+200a-2 400)+35(4a 2-200a+2 400)+20 000(8分)=-20a 2+1 000a+104 000=-20(a-25)2+116 500.∵-20<0,∴当a<25时,y 随a 的增大而增大.(9分)而2≤a ≤10,∴当a=2时,y 最小=105 920.∴当甬道的宽为2米时,修建甬道、花圃的总造价最低,最低为105 920元.(10分) 解法二:y=y 甬道+y 花圃=40(60×40-x 花圃)+35x 花圃+20 000(8分)=-5x 花圃+116 000.∵-5<0,∴y 随x 花圃的增大而减小.(9分)而800≤x 花圃≤2 016,∴当x花圃=2016时,y最小=105920.∴当x花圃=2016时,4a2-200a+2400=2016.解得a1=2,a2=48(不合题意,舍去).∴当甬道的宽为2米时,修建甬道、花圃的总造价最低,最低为105920元.(10分)解法三:y=y甬道+y花圃=40x甬道+35(60×40-x甬道)+20000(8分)=5x甬道+104000.∵5>0,∴y随x甬道的增大而增大.(9分)而800≤x花圃≤2016,∴384≤x甬道≤1600.∴当x甬道=384时,y最小=105920.∴当x甬道=384时,60×40-(4a2-200a+2400)=384.解得a1=2,a2=48(不合题意,舍去).∴当甬道的宽为2米时,修建甬道、花圃的总造价最低,最低为105920元.(10分)评析本题考查的是一元二次方程与函数的实际应用,需要通过实际问题的情境和函数图象列出合理的表达式,属较难题.七、解答题25.解析(1)证法一:连结半径OC.⏜=CG⏜,∵AC∴∠ABC=∠CBG.(1分)∵OB=OC,∴∠OBC=∠OCB.∴∠OCB=∠CBG.∴OC∥BD.(2分)∵CD⊥BD,∴OC⊥CD.∴CD是☉O的切线.(3分)证法二:连结半径OC.⏜=CG⏜,∵AC∴∠ABC=∠CBG.(1分)∵OB=OC,∴∠OBC=∠OCB.∴∠OCB=∠CBG.(2分)∵CD⊥BD,∴∠DCB+∠CBG=90°.∴∠DCB+∠OCB=90°.∴OC⊥CD.∴CD是☉O的切线.(3分)(2)∵OC ∥BD,∴△OCF ∽△DBF,△EOC ∽△EBD.(4分,至少写出一对三角形相似给1分)∴OC BD =OF DF ,OC BD =OE BE. ∵OF DF =23,∴OE BE =23.(5分)设OC=OB=r,OE=x,则x x+r =23, 解得x=2r.∴OE=2r.(6分)在Rt △OEC 中,sin E=OC OE =r 2r =12,∴∠E=30°.(7分)(3)∵∠E=30°,CD ⊥BD,∴∠ABD=60°,∠ABC=∠CBD=30°.∴BC=2CD=2√3,BD=CD tan30°=3.解法一:∵OC BD =OF DF =23,∴OC=2,AB=4.(8分)连结AG.∵AB 是☉O 的直径,∴∠AGB=90°,∵∠ABD=60°,∴∠BAG=30°.∴BG=12AB=2,AG=2√3.(9分)∴DG=BD -BG=1.∴AD=√AG 2+DG 2=√(2√3)2+12=√13.(10分)解法二:连结AC.∵AB 是☉O 直径,∴∠ACB=90°.∴AB=BC cos ∠ABC =2√3cos30°=4.(8分)过点D 作DM ⊥AB 于点M.∴DM=BD ·sin 60°=3√32,BM=BD ·cos 60°=32. ∴AM=AB -BM=4-32=52.(9分)∴AD=2+AM 2√(3√32)2+(52)2=√13.(10分)八、解答题26.解析 (1)∵抛物线y=ax 2(a>0)关于y 轴对称,AB 与x 轴平行,∴A,B 关于y 轴对称.∵∠AOB=90°,AB=2,∴A(-1,1),B(1,1).(1分)∴1=a(-1)2,解得a=1.∴抛物线的解析式为y=x 2.(2分)∵A(-1,1),B(1,1),∴A,B 两点的横坐标的乘积为-1.(3分)(2)过A,B 分别作AG,BH 垂直x 轴于G,H.由(1)可设A(m,m 2),B(n,n 2),m<0,n>0.(4分)∵∠AOB=∠AGO=∠BHO=90°,∴∠AOG+∠BOH=∠AOG+∠OAG=90°.∴∠BOH=∠OAG.(5分)∴△AGO ∽△OHB.∴AG OG =OH BH.(6分) ∴m 2-m =n n 2,化简得mn=-1.∴A,B 两点的横坐标的乘积是常数-1.(7分)(3)解法一:过A,B 分别作AA 1,BB 1垂直y 轴于A 1,B 1.设A(m,m 2),B(n,n 2),D(0,b),m<0,n>0,b>0.∵AA 1∥BB 1,∴△AA 1D ∽△BB 1D.∴AA 1DA 1=BB 1B 1D ,即-m m 2-b =nb -n 2,化简得mn=-b. ∵mn=-1,∴b=1,D(0,1).(8分)∵∠BPC=∠OCP,C(0,-2),∴DP=DC=3.设P(c,-2c-2),过点P 作PQ ⊥y 轴于Q.∵PQ 2+DQ 2=PD 2,∴c 2+(-2c-2-1)2=32.(9分)解得c 1=0(舍去),c 2=-125,-2c-2=145.∴P (-125,145).(10分)解法二:设直线AB:y=kx+b(k ≠0),A(m,m 2),B(n,n 2),m<0,n>0,b>0.联立得{y =kx +b,y =x 2,得x 2-kx-b=0,依题意可知m,n 是方程x 2-kx-b=0的两根. ∴m 2-km-b=0,n 2-kn-b=0.∴nm 2-kmn-bn=0,mn 2-kmn-bm=0.两式相减,并化简得mn=-b.∵mn=-1,∴b=1,D(0,1).(8分)∵∠BPC=∠OCP,C(0,-2),∴DP=DC=3.设P(c,-2c-2),过点P 作PQ ⊥y 轴于Q.∵PQ 2+DQ 2=PD 2,∴c 2+(-2c-2-1)2=32.(9分)解得c 1=0(舍去),c 2=-125,-2c-2=14.∴P (-125,145).(10分)评析 本题考查的是函数图象与三角形的综合应用,需要借助抛物线表示出点的坐标,并借助相似三角形的性质、勾股定理列出方程.属较难题.。

2015年广西省贺州市中考数学试卷(含解析版)

2015年广西省贺州市中考数学试卷(含解析版)

2015年广西省贺州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,给出的四个选项中,只有一项是符合题目要求的)1.(2015•贺州)下列各数是负数的是()A. 0B.C. 2.5D. -12.(2015•贺州)如图,下列各组角中,是对顶角的一组是()A. ∠1和∠2B. ∠3和∠5C. ∠3和∠4D. ∠1和∠53.(2015•贺州)下列实数是无理数的是()A. 5B. 0C.D.4.(2015•贺州)下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.(2015•贺州)一组数据3,2,x,1,2的平均数是2,则这组数据的中位数和众数分别是()A. 3,2B. 2,1C. 2,2.5D. 2,26.(2015•贺州)下列运算正确的是()A. (x2)3+(x3)2=2x6B. (x2)3•(x2)3=2x12C. x4•(2x)2=2x6D. (2x)3•(﹣x)2=﹣8x57.(2015•贺州)把多项式4x2y﹣4xy2﹣x3分解因式的结果是()A. 4xy(x﹣y)﹣x3B. ﹣x(x﹣2y)2C. x(4xy﹣4y2﹣x2)D. ﹣x(﹣4xy+4y2+x2)8.(2015•贺州)如图是由四个小正方体叠成的一个几何体,它的左视图是()A. B. C. D.9.(2015•贺州)如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是()A. 34°B. 36°C. 38°D. 40°10.(2015•贺州)已知k1<0<k2,则函数和y=k2x﹣1的图象大致是()A. B. C. D.11.(2015•贺州)如图,BC是⊙O的直径,AD是⊙O的切线,切点为D,AD与CB的延长线交于点A,∠C=30°,给出下面四个结论:①AD=DC;②AB=BD;③AB=BC;④BD=CD,其中正确的个数为()A. 4个B. 3个C. 2个D. 1个12.(2015•贺州)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是()A. 0B. 3C. 4D. 8二、填空题(本大题共6小题,每小题3分,共18分)13.(2015•贺州)函数的自变量x的取值范围为 ________.14.(2015•贺州)中国的陆地面积约为9600000km2,这个面积用科学记数法表示为 ________km2.15.(2015•贺州)某校在一次期末考试中,随机抽取八年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上,据此估计该校八年级630名学生中期末考试数学成绩达108分以上的学生约有 ________名.16.(2015•贺州)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D′,则点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是 ________(结果保留π).17.(2015•贺州)已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0,②a ﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若点(﹣2,y1)和(,y2)在该图象上,则y1>y2.其中正确的结论是 ________(填入正确结论的序号).18.(2015•贺州)如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤,其中正确的结论是 ________(填入正确结论的序号).三、解答题(本大题共8题,满分66分,解答时应写出文字说明、证明过程或演算步骤)19.(2015•贺州)计算:(4﹣π)0+()﹣1﹣2cos60°+|﹣3|20.(2015•贺州)解分式方程:.21.(2015•贺州)在甲口袋中有三张完全相同的卡片,分别标有﹣1,1,2,乙口袋中有完全相同的卡片,分别标有﹣2,3,4,从这两个口袋中各随机取出一张卡片.(1)用树状图或列表表示所有可能出现的结果;(2)求两次取出卡片的数字之积为正数的概率.22.(2015•贺州)根据道路管理规定,在贺州某段笔直公路上行驶的车辆,限速40千米/时,已知交警测速点M到该公路A点的距离为米,∠MAB=45°,∠MBA=30°(如图所示),现有一辆汽车由A往B方向匀速行驶,测得此车从A点行驶到B点所用的时间为3秒.(1)求测速点M到该公路的距离;(2)通过计算判断此车是否超速.(参考数据:≈1.41,≈1.73,≈2.24)23.(2015•贺州)如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F.若DE=4,BD=8.(1)求证:AF=EF;(2)求证:BF平分∠ABD.24.(2015•贺州)某商场销售一批同型号的彩电,第一个月售出50台,为了减少库存,第二个月每台降价500元将这批彩电全部售出,两个月的销售量的比是9:10,已知第一个月的销售额与第二个月的销售额相等,这两个月销售总额超过40万元.(1)求第一个月每台彩电销售价格;(2)这批彩电最少有多少台?25.(2015•贺州)如图,AB是⊙O的直径,C为⊙O上一点,AC平分∠BAD,AD⊥DC,垂足为D,OE⊥AC,垂足为E.(1)求证:DC是⊙O的切线;(2)若OE=cm,AC=cm,求DC的长(结果保留根号).26.(2015•贺州)如图,已知抛物线y=﹣x2+bx+c与直线AB相交于A(﹣3,0),B(0,3)两点.(1)求这条抛物线的解析式;(2)设C是抛物线对称轴上的一动点,求使∠CBA=90°的点C的坐标;(3)探究在抛物线上是否存在点P,使得△APB的面积等于3?若存在,求出点P的坐标;若不存在,请说明理由.2015年广西省贺州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,给出的四个选项中,只有一项是符合题目要求的)1.(2015•贺州)下列各数是负数的是()A. 0B.C. 2.5D. -1【答案】D【考点】正数和负数【解析】解:﹣1是一个负数.故选:D.【分析】在正数的前面加上一个负号就表示一个负数.2.(2015•贺州)如图,下列各组角中,是对顶角的一组是()A. ∠1和∠2B. ∠3和∠5C. ∠3和∠4D. ∠1和∠5【答案】B【考点】对顶角、邻补角【解析】解:由对顶角的定义可知:∠3和∠5是一对对顶角,故选B.【分析】根据对顶角的定义,首先判断是否由两条直线相交形成,其次再判断两个角是否有公共边,没有公共边有公共顶点的是对顶角.3.(2015•贺州)下列实数是无理数的是()A. 5B. 0C.D.【答案】D【考点】无理数的认识【解析】解:5,0,是有理数,只有是无理数,故选D.【分析】根据无理数就是无限不循环小数即可判定选择项.4.(2015•贺州)下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【考点】轴对称图形,中心对称及中心对称图形【解析】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,但不是轴对称图形,故B错误;C、既是轴对称图形,又是中心对称图形,故C正确;D、是轴对称图形,但不是中心对称图形,故D错误.故选C.【分析】根据轴对称及中心对称图形的定义对各选项进行逐一分析即可.5.(2015•贺州)一组数据3,2,x,1,2的平均数是2,则这组数据的中位数和众数分别是()A. 3,2B. 2,1C. 2,2.5D. 2,2【答案】D【考点】平均数及其计算【解析】解:∵这组数据3,2,x,1,2的平均数是2,∴(3+2+x+1+2)÷5=2,解得:x=2,把这组数据从小到大排列为1,2,2,2,3,∴这组数据的中位数是2,∵2出现的次数最多,∴这组数据的众数是2.故选D.【分析】先根据平均数的定义求出x的值,再把这组数据从小到大排列,求出最中间两个数的平均数和出现次数最多的数即可.6.(2015•贺州)下列运算正确的是()A. (x2)3+(x3)2=2x6B. (x2)3•(x2)3=2x12C. x4•(2x)2=2x6D. (2x)3•(﹣x)2=﹣8x5【答案】A【考点】幂的乘方与积的乘方,单项式乘单项式【解析】解:A、原式=x6+x6=2x6,故A正确;B、原式=x6•x6=x12,故B错误;C、原式=x4•4x2=4x6,故C错误;D、原式=8x3•x2=8x5,故D错误;故选:A.【分析】根据幂的乘方,可得同类项,根据合并同类项,可判断A;根据幂的乘方,可得同底数幂的乘法,根据同底数幂的乘法,可判断B;根据幂的乘方,可得同底数幂的乘法,根据同底数幂的乘法,可判断C;根据幂的乘方,可得同底数幂的乘法,根据同底数幂的乘法,可判断D.7.(2015•贺州)把多项式4x2y﹣4xy2﹣x3分解因式的结果是()A. 4xy(x﹣y)﹣x3B. ﹣x(x﹣2y)2C. x(4xy﹣4y2﹣x2)D. ﹣x(﹣4xy+4y2+x2)【答案】B【考点】提公因式法与公式法的综合运用【解析】解:4x2y﹣4xy2﹣x3=﹣x(x2﹣4xy+4y2)=﹣x(x﹣2y)2,故选:B.【分析】先提公因式﹣x,再运用完全平方公式进行分解即可得到答案.8.(2015•贺州)如图是由四个小正方体叠成的一个几何体,它的左视图是()A. B. C. D.【答案】A【考点】简单组合体的三视图【解析】解:如图是由四个小正方体叠成的一个几何体,它的左视图是.故选:A.【分析】从左边看几何体得到左视图即可.9.(2015•贺州)如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是()A. 34°B. 36°C. 38°D. 40°【答案】C【考点】旋转的性质【解析】解:由题意得,∠AOD=31°,∠BOC=31°,又∠AOC=100°,∴∠DOB=100°﹣31°﹣31°=38°.故选:C.【分析】根据旋转的性质求出∠AOD和∠BOC的度数,计算出∠DOB的度数.10.(2015•贺州)已知k1<0<k2,则函数和y=k2x﹣1的图象大致是()A. B. C.D.【答案】C【考点】一次函数的图象,反比例函数的图象【解析】解:∵k1<0<k2,b=﹣1<0,∴直线过一、三、四象限;双曲线位于二、四象限.故选:C.【分析】根据反比例函数的图象性质及正比例函数的图象性质可作出判断.11.(2015•贺州)如图,BC是⊙O的直径,AD是⊙O的切线,切点为D,AD与CB的延长线交于点A,∠C=30°,给出下面四个结论:①AD=DC;②AB=BD;③AB=BC;④BD=CD,其中正确的个数为()A. 4个B. 3个C. 2个D. 1个【答案】B【考点】切线的性质【解析】连接DO,∵BC是⊙O的直径,AD是⊙O的切线,切点为D,∴∠BDC=∠ADO=90°,∵DO=CO,∴∠C=∠CDO=30°,∴∠A=30°,∠DBC=60°,∠ADB=30°,∴AD=DC,故①正确;∵∠A=30°,∠DBC=60°,∴∠ADB=30°,∴AB=BD,故②正确;∵∠C=30°,∠BDC=90°,∴BD=BC,∵AB=BD,∴AB=BC,故③正确;无法得到BD=CD,故④错误.故选:B【分析】利用圆周角定理结合切线的性质得出∠BDC=∠ADO=90°,进而得出∠A,∠ADB的度数即可得出答案,再利用直角三角形中30°所对的边等于斜边的一半进而得出AB=BC,判断即可.12.(2015•贺州)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是()A. 0B. 3C. 4D. 8【答案】B【考点】探索数与式的规律【解析】解:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,末位数字以2,4,8,6循环,原式=2+22+23+24+…+22015﹣1=﹣1=22016﹣3,∵2016÷4=504,∴22016末位数字为6,则2+22+23+24+…+22015﹣1的末位数字是3,故选B【分析】观察已知等式,发现末位数字以2,4,8,6循环,原式整理后判断即可得到结果.二、填空题(本大题共6小题,每小题3分,共18分)13.(2015•贺州)函数的自变量x的取值范围为 ________.【答案】x≥﹣1【考点】函数自变量的取值范围【解析】解:由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【分析】根据被开方数大于等于0列式计算即可得解.14.(2015•贺州)中国的陆地面积约为9600000km2,这个面积用科学记数法表示为 ________km2.【答案】9.6×106【考点】科学记数法—表示绝对值较大的数【解析】解:9600000km2用科学记数法表示为9.6×106.故答案为:9.6×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.15.(2015•贺州)某校在一次期末考试中,随机抽取八年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上,据此估计该校八年级630名学生中期末考试数学成绩达108分以上的学生约有 ________名.【答案】63【考点】用样本估计总体【解析】解:∵随机抽取30名学生的数学成绩进行分析,有3名学生的成绩达108分以上,∴八年级630名学生中期末考试数学成绩达108分以上的学生约有630×=63(名);故答案为:63.【分析】先求出随机抽取的30名学生中成绩达到108分以上的所占的百分比,再乘以630,即可得出答案.16.(2015•贺州)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D′,则点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是 ________(结果保留π).【答案】【考点】扇形面积的计算,旋转的性质【解析】解:如图,连接BD与B′D,点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是:S扇形BDB′+S矩形ABCD=π×52+3×4=+12.故答案为:+12.【分析】利利点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是=S扇形BDB′+S矩形ABCD 求解即可.17.(2015•贺州)已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若点(﹣2,y1)和(,y2)在该图象上,则y1>y2.其中正确的结论是 ________(填入正确结论的序号).【答案】②④【考点】二次函数图象与系数的关系【解析】解:∵二次函数开口向下,且与y轴的交点在x轴上方,∴a<0,c>0,∵对称轴为x=1,∴﹣=1,∴b=﹣2a>0,∴abc<0,故①、③都不正确;∵当x=﹣1时,y<0,∴a﹣b+c<0,故②正确;由抛物线的对称性可知抛物线与x轴的另一交点在2和3之间,∴当x=2时,y>0,∴4a+2b+c>0,故④正确;∵抛物线开口向下,对称轴为x=1,∴当x<1时,y随x的增大而增大,∵﹣2<﹣,∴y1<y2,故⑤不正确;综上可知正确的为②④,故答案为:②④.【分析】由图象可先判断a、b、c的符号,可判断①;由x=﹣1时函数的图象在x轴下方可判断②;由对称轴方程可判断③;由对称性可知当x=2时,函数值大于0,可判断④;结合二次函数的对称性可判断⑤;可得出答案.18.(2015•贺州)如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤,其中正确的结论是 ________(填入正确结论的序号).【答案】②③【考点】全等三角形的判定与性质,相似三角形的判定与性质【解析】解:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①错误;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=,∴,∴,∴cosα=,∵AB=AC=15,∴BG=12,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD与△DBE中,,∴△ACD≌△BDE(ASA).故②正确;③当∠BED=90°时,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=,AB=15,∴∴BD=12.当∠BDE=90°时,易证△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=,AC=15,∴cosC=,∴CD=.∵BC=24,∴BD=24﹣=即当△DCE为直角三角形时,BD=12或.故③正确;④易证得△BDE∽△CAD,由②可知BC=24,设CD=y,BE=x,∴,∴,整理得:y2﹣24y+144=144﹣15x,即(y﹣12)2=144﹣15x,∴0<x≤,∴0<BE≤.故④错误.故正确的结论为:②③.故答案为:②③.【分析】①根据有两组对应角相等的三角形相似即可证明;②由CD=9,则BD=15,然后根据有两组对应角相等且夹边也相等的三角形全等,即可证得;③分两种情况讨论,通过三角形相似即可求得;④依据相似三角形对应边成比例即可求得.三、解答题(本大题共8题,满分66分,解答时应写出文字说明、证明过程或演算步骤)19.(2015•贺州)计算:(4﹣π)0+()﹣1﹣2cos60°+|﹣3|【答案】【解答】解:原式=1﹣2﹣2×+3=1﹣2﹣1+3=1.【考点】实数的运算,0指数幂的运算性质,负整数指数幂的运算性质,特殊角的三角函数值【解析】根据零整数指数幂、负整数指数幂、绝对值和三角函数计算即可.20.(2015•贺州)解分式方程:.【答案】【解答】解:原方程即,两边同时乘以(2x+1)(2x﹣1)得:x+1=3(2x﹣1)﹣2(2x+1),x+1=6x﹣3﹣4x﹣2,解得:x=6.经检验:x=6是原分式方程的解.∴原方程的解是x=6.【考点】解分式方程【解析】方程两边同时乘以(2x+1)(2x﹣1),即可化成整式方程,解方程求得x的值,然后进行检验,确定方程的解.21.(2015•贺州)在甲口袋中有三张完全相同的卡片,分别标有﹣1,1,2,乙口袋中有完全相同的卡片,分别标有﹣2,3,4,从这两个口袋中各随机取出一张卡片.(1)用树状图或列表表示所有可能出现的结果;(2)求两次取出卡片的数字之积为正数的概率.【答案】(1)【解答】解:根据题意列表如下:由表可知共9种情况;(2)由1可知两次取出卡片的数字之积为正数有5种情况,所以其概率=.【考点】列表法与树状图法【解析】(1)根据甲口袋中的﹣1,1,2,乙口袋分别标有﹣2,3,4,列表即可得到所有可能出现的结果;(2)利用(1)中的表格求出两次取出卡片的数字之积为正数的概率即可.22.(2015•贺州)根据道路管理规定,在贺州某段笔直公路上行驶的车辆,限速40千米/时,已知交警测速点M到该公路A点的距离为米,∠MAB=45°,∠MBA=30°(如图所示),现有一辆汽车由A往B方向匀速行驶,测得此车从A点行驶到B点所用的时间为3秒.(1)求测速点M到该公路的距离;(2)通过计算判断此车是否超速.(参考数据:≈1.41,≈1.73,≈2.24)【答案】(1)【解答】解:过M作MN⊥AB,在Rt△AMN中,AM=,∠MAN=45°,∴sin∠MAN=,即,解得:MN=10,则测速点M到该公路的距离为10米;(2)由1知:AN=MN=10米,在Rt△MNB中,∠MBN=30°,由tan∠MBN=,得:,解得:BN=(米),∴AB=AN+NB=10+≈27.3(米),∴汽车从A到B的平均速度为27.3÷3=9.1(米/秒),∵9.1米/秒=32.76千米/时<40千米/时,∴此车没有超速.【考点】解直角三角形的应用【解析】23.(2015•贺州)如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F.若DE=4,BD=8.(1)求证:AF=EF;(2)求证:BF平分∠ABD.【答案】(1)【解答】证明:在矩形ABCD中,AB=CD,∠A=∠C=90°,∵△BED是△BCD翻折而成,∴ED=CD,∠E=∠C,∴ED=AB,∠E=∠A.在△ABF与△EDF中,∵,∴△ABF≌△EDF(AAS),∴AF=EF;(2)在Rt△BCD中,∵DC=DE=4,DB=8,∴sin∠CBD=,∴∠CBD=30°,∴∠EBD=∠CBD=30°,∴∠ABF=90°﹣30°×2=30°,∴∠ABF=∠DBF,∴BF平分∠ABD.【考点】全等三角形的判定与性质,矩形的性质,翻折变换(折叠问题)【解析】(1)先根据翻折变换的性质得出ED=CD,∠E=∠C,故ED=AB,∠E=∠A.由AAS 定理得出△ABF≌△EDF,故可得出结论;(2)在Rt△BCD中根据sin∠CBD=可得出∠CBD=30°,∠EBD=∠CBD=30°,由直角三角形的性质可知∠ABF=90°﹣30°×2=30°,所以∠ABF=∠DBF,BF平分∠ABD.24.(2015•贺州)某商场销售一批同型号的彩电,第一个月售出50台,为了减少库存,第二个月每台降价500元将这批彩电全部售出,两个月的销售量的比是9:10,已知第一个月的销售额与第二个月的销售额相等,这两个月销售总额超过40万元.(1)求第一个月每台彩电销售价格;(2)这批彩电最少有多少台?【答案】(1)【解答】解:设第一个月每台彩电售价为x元,则第二个月每台彩电售价为(x﹣500)元,依题意有9x=10(x﹣500),解得x=5000.答:第一个月每台彩电售价为5000元.(2)设这批彩电有y台,依题意有5000×50+(5000﹣500)(y﹣50)>400000,解得y>,∵y为整数,∴y≥84.答:这批彩电最少有84台.【考点】一元一次不等式的应用【解析】(1)可设第一个月每台彩电售价为x元,则第二个月每台彩电售价为(x﹣500)元,根据等量关系:第一个月的销售额与第二个月的销售额相等,列出方程求解即可;(2)设这批彩电有y台,根据不等关系:这两个月销售总额超过40万元,列出不等式求解即可.25.(2015•贺州)如图,AB是⊙O的直径,C为⊙O上一点,AC平分∠BAD,AD⊥DC,垂足为D,OE⊥AC,垂足为E.(1)求证:DC是⊙O的切线;(2)若OE=cm,AC=cm,求DC的长(结果保留根号).【答案】(1)【解答】证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAD,∴∠DAC=∠OAC,∴∠DAC=∠OCA,∴AD∥OC,∴∠ADC=∠OCF,∵AD⊥DC,∴∠ADC=90°,∴∠OCF=90°,∴OC⊥CD,∵OC为半径,∴CD是⊙O的切线.(2)∵OE⊥AC,∴AE=AC=cm,在Rt△AOE中,AO==4cm,由1得∠OAC=∠CAD,∠ADC=∠AEO=90°,∴△AOE∽△ACD,∴,即,∴DC=cm.【考点】切线的判定,相似三角形的判定与性质【解析】26.(2015•贺州)如图,已知抛物线y=﹣x2+bx+c与直线AB相交于A(﹣3,0),B(0,3)两点.(1)求这条抛物线的解析式;(2)设C是抛物线对称轴上的一动点,求使∠CBA=90°的点C的坐标;(3)探究在抛物线上是否存在点P,使得△APB的面积等于3?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)【解答】解:把点A(﹣3,0),B(0,3)代入y=﹣x2+bx+c得:,解得:∴抛物线的解析式是y=﹣x2﹣2x+3;(2)如图1:过点B作CB⊥AB,交抛物线的对称轴于点C,过点C作CE⊥y轴,垂足为点E,∵y=﹣x2﹣2x+3,∴抛物线对称轴为直线x=﹣1,∴CE=1,∵AO=BO=3,∴∠ABO=45°,∴∠CBE=45°,∴BE=CE=1,∴OE=OB+BE=4,∴点C的坐标为(﹣1,4);(3)假设在在抛物线上存在点P,使得△APB的面积等于3,如图2:连接PA,PB,过P作PD⊥AB于点D,作PF∥y轴交AB于点F,在Rt△OAB中,易求AB==,∵S△APB=3,∴PD=∵∠PFD=∠ABO=45°,∴PF=2,设点P的坐标为(m,﹣m2﹣2m+3),∵A(﹣3,0),B(0,3),∴直线AB的解析式为y=x+3,∴可设点F的坐标为(m,m+3),①当点P在直线AB上方时,可得:﹣m2﹣2m+3=m+3+2,解得:m=﹣1或﹣2,∴符合条件的点P坐标为(﹣1,4)或(﹣2,3),②当点P在直线AB下方时,可得:﹣m2﹣2m+3=m+3﹣2,解得:m=或,∴符合条件的点P坐标为(,)或(,)综上可知符合条件的点P有4个,坐标分别为:(﹣1,4)或(﹣2,3)或(,)或(,).【考点】二次函数的应用【解析】(1)把点A(﹣3,0),B(0,3)两点的坐标分别代入抛物线解析式求出b和c 的值即可;(2)过点B作CB⊥AB,交抛物线的对称轴于点C,过点C作CE⊥y轴,垂足为点E,易求点C的横坐标,再求出OE的长,即可得到点C的纵坐标;(3)假设在在抛物线上存在点P,使得△APB的面积等于3,连接PA,PB,过P作PD⊥AB 于点D,作PF∥y轴交AB于点F,在Rt△OAB中,易求AB==3,设点P的坐标为(m,﹣m2﹣2m+3),设点F的坐标为(m,m+3),再分两种情况①当点P在直线AB上方时,②当点P在直线AB下方时分别讨论求出符合条件点P的坐标即可.。

贺州市名校2015年中考第一次模拟联考数学试题

贺州市名校2015年中考第一次模拟联考数学试题
22.(本题满分7分)如图,在由边长为1的小正方形组成的网格中,三角形ABC的顶点均落在格点上.
(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;
(2)求线段OA在旋转过程中扫过的图形面积;(结果保留 )
(3)求∠BCC1的正切值.
23.(本小题满分8分)
如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E、交BC于点F,连接AF、CE.(1)求证:四边形AFCE为菱形;
(1)当 =3时,求点A的坐标和BC的长;
(2)当 >1时,连结CA,当CA⊥CP时,求 的值.
(3)过点P作PE⊥PC且PE=PC,问是否存在 ,使得点E落x轴在上?若存在,求出所有满足要求的 的值,并写出相对应的点E坐标;若不存在,请说明理由.
15.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程是。
16.如图所示,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角 120°,则该圆锥的母线长 为cm.
17.如图,在边长为10的菱形ABCD中,对角线BD=16.点E是AB的中点,P、Q是BD上的动点,且始终保持PQ=2.则四边形AEPQ周长的最小值为_________.(结果保留根号)
A.CM=DMB.弧CB=弧DBC.∠ACD=∠ADCD.OM=MD
9.如图,E,F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点
O,下列结论中不成立的是()
A.AE=BFB.AE⊥BFC.AO=OED.S△AOB=S四边形DEOF
10.如图所示,给出下列条件:① ;② ;③ ;

超全:广西省所有市2015年中考真题大全附解析打包下载

超全:广西省所有市2015年中考真题大全附解析打包下载

超全:广西省所有市2015年中考真题大全附解析打包下载超全:广西省所有市2015年中考真题大全附解析打包下载2015年广西北海市中考数学试卷一、选择题:2.(3分)(2015?北海)计算2﹣1+的结果是()4.(3分)(2015?北海)一个几何体的三视图如图所示,则这个几何体是()5.(3分)(2015?北海)某市户籍人口1694000人,则该市户籍人口数据用科学记数法可表7.(3分)(2015?北海)正比例函数y=kx的图象如图所示,则k的取值范围是()10.(3分)(2015?北海)小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两B12.(3分)(2015?北海)如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是(),),)二、填空题:13.(3分)(2015?北海)9的算术平方根是.14.(3分)(2015?北海)在市委宣传部举办的以“弘扬社会主义核心价值观”为主题的演讲比赛中,其中10位参赛选手的成绩如下:9.3;9.5;8.9;9.3;9.5;9.5;9.7;9.4;9.5,这组数据的众数是.15.(3分)(2015?北海)已知点A(﹣,m)是反比例函数y=图象上的一点,则m的值为.16.(3分)(2015?北海)如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE=.17.(3分)(2015?北海)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.18.(3分)(2015?北海)如图,直线y=﹣2x+2与两坐标轴分别交于A、B两点,将线段OA分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则当n=2015时,S1+S2+S3+…+S n﹣1=.三、解答题:19.(2015?北海)解方程:.20.(2015?北海)解不等式组:.21.(2015?北海)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“篮球”所对应的圆心角的度数;(3)该校共有2500名学生,请估计全校学生喜欢足球运动的人数.22.(2015?北海)如图,已知BD平分∠ABF,且交AE于点D,(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD 时,求证:四边形ABCD 是菱形.316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?24.(2015?北海)如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(参考数据:sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)25.(2015?北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠B EP;(3)若⊙O的半径为5,CF=2EF,求PD的长.26.(2015?北海)如图1所示,已知抛物线y=﹣x2+4x+5的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上.(1)直接写出D点和E点的坐标;(2)点F为直线C′E与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线C′E交于点G,设点H的横坐标为m(0<m<4),那么当m为何值时,S△HGF:S△BGF=5:6?(3)图2所示的抛物线是由y=﹣x2+4x+5向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使△PQT 是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.2015年广西北海市中考数学试卷参考答案与试题解析一、选择题:2.(3分)(2015?北海)计算2﹣1+的结果是()+4.(3分)(2015?北海)一个几何体的三视图如图所示,则这个几何体是()5.(3分)(2015?北海)某市户籍人口1694000人,则该市户籍人口数据用科学记数法可表7.(3分)(2015?北海)正比例函数y=kx的图象如图所示,则k的取值范围是()10.(3分)(2015?北海)小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两B∴小明和小颖平局的概率为:=12.(3分)(2015?北海)如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是(),),)==,即=,,EF=,+4=,=,,二、填空题:13.(3分)(2015?北海)9的算术平方根是3.14.(3分)(2015?北海)在市委宣传部举办的以“弘扬社会主义核心价值观”为主题的演讲比赛中,其中10位参赛选手的成绩如下:9.3;9.5;8.9;9.3;9.5;9.5;9.7;9.4;9.5,这组数据的众数是9.5.15.(3分)(2015?北海)已知点A(﹣,m)是反比例函数y=图象上的一点,则m的值为﹣4.(﹣y=(﹣图象上的一点,m=84.16.(3分)(2015?北海)如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE=8.17.(3分)(2015?北海)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是2.=18.(3分)(2015?北海)如图,直线y=﹣2x+2与两坐标轴分别交于A、B两点,将线段OA分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则当n=2015时,S1+S2+S3+…+S n﹣1=.的横坐标为:,×(﹣=﹣的横坐标为:,(﹣的横坐标为:,()()=×(=×2014=.故答案为:.三、解答题:19.(2015?北海)解方程:.20.(2015?北海)解不等式组:.,21.(2015?北海)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“篮球”所对应的圆心角的度数;(3)该校共有2500名学生,请估计全校学生喜欢足球运动的人数.×=62522.(2015?北海)如图,已知BD平分∠ABF,且交AE于点D,(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD 时,求证:四边形ABCD 是菱形.316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?,然后解此方程)根据题意得:,.24.(2015?北海)如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(参考数据:sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48),AEG=,25.(2015?北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.=,求得,即可求得。

广西贺州市年初中毕业升学考试试卷、答案(word)

广西贺州市年初中毕业升学考试试卷、答案(word)

贺州市初中毕业升学考试一试卷数学各位考生,欢迎你参加2009 年中考数学考试.在做题以前请你注意:1.本次考试数学试题共8 页 28 题,请你看清楚试卷,不要漏做题目;2.数学考试时间为120 分钟,满分 120 分.请你合理安排好时间,做题时先易后难,充足发挥自己的水平;3.答题时,不要把答案写到密封线内.得分评卷人一、填空题(本大题共12 小题;每题 3 分,共36 分)1.计算:2009 .2.分解因式: x 3 2 x 2 y xy 2 .3.截止 2009 年 6 月 5 日止,全世界感染 H1N1 流感病毒有21240 人,感染人数用科学计数法表示为人.4.函数y 2 x 4 中,自变量x的取值范围是.5.甲、乙两同学近期 4 次数学单元测试成绩的均匀分同样,甲同学成绩的方差S甲2 3.2 ,乙同学成绩的方差S乙2 4.1,则他们的数学测试成绩谁较稳固(填甲或乙).6.已知对于 x 的一元二次方程x2 x m 0 有两个不相等的实数根,则实数m 的取值范围是.A D( 1 a37.计算:( 2a) 1) = .O4 P ·8.已知代数式2a3b n 1 与3a m 2 b2 是同类项,则 2m 3n . B C 9.如图,正方形ABCD 是⊙ O 的内接正方形,点P是劣弧AB上第9题图不一样于点 B 的随意一点,则∠ BPC= 度.y10.如图,设点 P 是函数y 1PP 在第一象限图象上的随意一点,点x对于原点 O 的对称点为 P′,过点 P 作直线 PA 平行于 y 轴,过点′O x PP′ A作直线 P′A平行于 x 轴, PA 与 P′A订交于点 A,则△ PAP′的面积为第 10题图.11.将一根绳索对折 1 次从中间剪断,绳索变为 3 段;将一根绳索对折 2 次,从中间剪断,绳索变为 5 段;依此类推,将一根绳索对折 n 次,从中间剪一刀所有剪断后,绳索变为段.A B12.如图,正方形 ABCD 的边长为 1cm, E、F 分别是 BC、CD 的中E 点,连结 BF 、DE ,则图中暗影部分的面积是cm2.D FC 得分评卷人第 12题图二、选择题:(本大题共 8 小题;每题 3 分,共 24 分.请选出各题中一个切合题意的正确选项,不选、多项选择、错选,均不给分)13.计算( 3)2的结果是().A.- 6 B. 9 C.- 9 D. 614.以下事件:( 1)检查长江现有鱼的数目;( 2)检查你班每位同学穿鞋的尺码;( 3)认识一批电视机的使用寿命;( 4)校订某本书上的印刷错误.最合适做全面检查的是().A .( 1)( 3)B.( 1)( 4)C.( 2)( 3)D.( 2)(4)15.在平面直角坐标系中,若点,b)在第二象限,则点-,-)象P( a Q(1 a b)在第(限.A .第一象限B .第二象限C.第三象限 D .第四象限16.已知a 3,且(4 tan 45 b)2 3 1b c 0 ,以a、b、c为边构成的三角形面积2等于().A . 6 B. 7 C.8 D. 9 17.某校 10 名篮球队队员进行投篮命中率测试,每人投篮10 次,实质测得成绩记录以下表:命中次数(次) 5 6 7 8 9人数(人) 1 4 3 1 1由上表知,此次投篮测试成绩的中位数与众数分别是().A.6,6B.6.5,6C.6,6.5D.7,6 18.以下根式中不是最简二次根式的是().A . 2 B. 6 C.8 D.10 19.在直线AB 上任取一点O,过点O 作射线OC、OD,使OC⊥OD,当∠AOC=30 o时,∠ BOD 的度数是( ). A . 60oB . 120oC . 60o 或 90oD . 60o 或 120o20.如图,点 A 、B 分别在射线 OM 、ON 上, C 、D 分别是线段 OA 和 OB 上的点,以 OC 、OD 为邻边作平行四边形OCED ,下边给出三种作法的条件:①取 OC 3OA 、OD 1 OB ;②取 OC 1OA 、OD 1OB;MA4 5 23③取 OC3 1OA 、ODOB .能使点 E 落在暗影地区内的45CE作法有().ODB NA .①B .①② 第20题图C .①②③D .②③三、解答题:(本大题共 8 题,满分 60 分)得 分 评卷人21. ( 此题共 2 小题;第( 1)题 5 分,第( 2)题 5 分,共 10分)( 1) 计算:22 3 3 1 ( 3 1) 0 2sin 30(2)解分式方程:5x 4 4x101x 2 3x 6得 分22.(此题满分 6 分)评卷人25 ,矩形 ABCD 的对角线 AC ON ,边如图, MONBC 在 OM 上,当 AC= 3 时,AD 长是多少? (结果精准到0.01)ADMC BO25°N第22题图得分评卷人23.(此题满分 6 分)一个不透明的布袋里装有 4 个大小、质地均同样的乒乓球,每个球上边分别标有 1,2,3, 4.小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的 3 个球中随机抽取第二个乒乓球.(1)请你列出所有可能的结果;(2)求两次获得乒乓球的数字之积为奇数的概率.得分24. ( 此题满分 6 分 )评卷人如图: BD 是矩形 ABCD 的对角线.(1)请用尺规作图:作△BC D与△ BCD 对于矩形 ABCD 的对角线 BD 所在的直线对称(要求:在原图中作图,不写作法,不证明,保存作图痕迹).(2)若矩形ABCD 的边 AB= 5,BC= 12,( 1)中BC交 AD 于点 E,求线段BE 的长.A DB C第24题图得分评卷人25. ( 此题满分7 分 )如图,在 Rt△ ABC 中,∠ C= 90°,以 BC 为直径作⊙ O 交AB 于点 D,取 AC 的中点 E,连结 DE 、OE .(1)求证: DE 是⊙ O 的切线; A(2)假如⊙ O 的半径是 3 c m ,ED= 2cm,求 AB 的长.2E DCBO第 25题图26.( 此题满分 7 分)得分评卷人已知一件文化衫价钱为18 元,一个书包的价钱是一件文化衫的2倍还少 6元.(1)求一个书包的价钱是多少元?(2)某企业出资 1800 元,取出许多于 350 元但不超出 400 元的经费奖赏山区小学的优异学生,节余经费还可以为多少名山区小学的学生每人购置一个书包和一件文化衫?得分评卷人27.( 此题满分 8 分)图中是一副三角板, 45°的三角板 Rt △ DEF 的直角极点 D 恰巧在 30°的三角板 Rt△ ABC 斜边 AB 的中点处,∠ A=30o,∠ E= 45o,∠EDF= ∠ACB= 90 o,DE 交 AC 于点 G,GM⊥AB 于 M.(1)如图①,当 DF 经过点 C 时,作 CN⊥ AB 于 N,求证: AM=DN .(2)如图②,当 D F∥ AC 时, DF 交 BC 于 H,作 HN⊥ AB 于 N,( 1)的结论仍旧建立,请你说明原因.F EC 45°CE45° FG G H° B30°BA30M D N AD NM①②第 27题图得分评卷人28. (此题满分 10 分 )如图,抛物线 y 1 x2 x 2 的极点为A,与y轴交于点4B.( 1)求点 A、点 B 的坐标.y( 2)若点 P 是 x 轴上随意一点,求证:PA PB≤ AB.( 3)当PA PB 最大时,求点P的坐标.A·BO x第28题图初中毕业升学考试数学评分标准一、 填空题 (本大题共 12 小题;每题3 分.共 36 分)1. 2009 ;2. x( x y)2 ;3. 2.124 ×104;4. x ≥ 2;5.甲; 6. m1 ; 7.1 a 4 2a ; 8.13;429.45; 10.2 ;11. 2n1;12.23二、选择题: (本大题共 8 小题;每题3 分,共 24 分)题 号 13 14 15 16 17 18 19 20 答 案BDDABCDA三、解答题: (本大题共 8 小题,满分 60 分)21.(此题共 2 小题;第( 1)题 5 分,第( 2)题 5 分,共10 分)( 1) 解:原式43112 1······························4 分323 ·······································5 分( 2) 解:方程两边同乘 3(x 2) ,得 ······························1 分3(5x 4) 4x 10 3( x 2). ······························3 分解这个方程,得 x= 2 ·······························4 分 查验:当 x= 2 时, 3( x 2)=0,因此 x= 2 是增根,原方程无解.·······5 分22.(此题满分 6 分)解:延伸 AC 交 ON 于点 E , ··················1 分∵AC ⊥ON ,∠OEC= 90°, ··························2 分∵四边形 ABCD 是矩形,∴∠ ABC= 90°, A D=BC ,又∵∠ OCE= ∠ ACB ,∴∠ BAC= ∠O=2 5°,······················3 分在 Rt △ ABC 中, AC= 3,∴BC=AC · sin25 °≈ 1.27 ·····················5 分 ∴AD ≈1.27 ··························6 分(注:只需考生用其余方法解出正确的结果,赐予相应的分值)ADMCB25°NOE第 22题图23、(此题满分 6 分)解:( 1)依据题意列表以下:1 2 3 41 (1, 2)( 1,3)(1,4)2 (2,1)( 2,3)(2,4)3 (3,1)(3, 2)(3,4)4 (4,1)(4, 2)( 4,3)由以上表格可知:有 12 种可能结果································3 分(注:用其余方法得出正确的结果,也赐予相应的分值)(2)在( 1)中的 12 种可能结果中,两个数字之积为奇数的只有 2 种,因此, P(两个数字之积是奇数)2 1分. (6)12 624.(此题满分 6 分)(1)方法一:作BC′= BC, DC′=DC.方法二:作∠ C′ BD=∠ CBD,取 BC′=BC,连结 DC′.C′方法三:作∠ C′ DB=∠ CDB ,取 DC′ =DC,连结 BC′.方法四:作C′与 C 对于 BD 对称,连结BC′、 DC′.EA以上各样方法所获得的△BDC ′都是所求作的三角形.只需考生尺规作图正确,印迹清楚都给 3 分.(2)解:∵△ C′BD与△CBD 对于 BD 对称,∴∠ EBD= ∠ CBD . B第 24题图又∵矩形 ABCD 的 AD ∥ BC∴∠ EDB =∠CBD .∴∠ EBD= ∠ EDB ,BE = DE .在 Rt△ ABE 中, AB2+AE 2=BE 2,而 AB= 5, BC= 12.∴ 52+( 12— BE)2=BE 2································5分D CBE 169 24∴所求线段BE 的长是169.································6 分2425、(此题满分7 分)证明:( 1)连结 OD.·····································1分由 O、E 分别是 BC、 AC 中点得 OE∥ AB.∴∠ 1=∠2,∠ B=∠ 3,又 OB=OD .∴∠ 2=∠3.而 OD=OC , OE=OE∴△ OCE ≌△ ODE .∴∠ OCE= ∠ ODE .又∠ C= 90°,故∠ ODE = 90°. ·············2 分∴ DE 是⊙ O 的切线.···················3 分( 2)在 Rt △ ODE 中,由 OD3, DE=225 ··························5 分得OE2又∵ O 、E 分别是 CB 、CA 的中点 ∴ AB=2·5OE252AED21C3 BO第25题图∴所求 AB 的长是 5cm . ····································7 分 26.(此题满分7 分)解:( 1) 182 6 30 (元) ·······························1 分因此一个书包的价钱是30 元. ··································2 分(注:用其余方法解出正确答案也赐予相应的分值)( 2)设还可以为 x 名学生每人购置一个书包和一件文化衫,依据题意得: ········3 分(1830) x ≥ 1800 400(1830) x ≤ 1800350····································4 分x ≥ 2916 解之得:5x ≤ 3024因此不等式组的解集为:29 1 ≤ x ≤ 305························5 分624∵ x 为正整数,∴ x=30················································6 分答:节余经费还可以为 30 名学生每人购置一个书包和一件文化衫. ············7 分27.(此题满分 8 分)证明:( 1)∵∠ A= 30°,∠ ACB= 90°, D 是 AB 的中点.F ∴ BC=BD , ∠ B=60 °CE45°∴△ BCD 是等边三角形.················1 分又∵ CN ⊥DB ,G∴ DN1DB ························2 分A30°B2MDN第 27 题图①∵∠ EDF= 90°, △BCD 是等边三角形. ∴∠ ADG =30 °,而∠ A=30 °.∴GA=GD .∵GM⊥AB广西贺州市年初中毕业升学考试试卷、答案(word)11 / 11∴AM1AD ····················3 分2又∵ AD=DBE∴ AM=DN·····················4 分45°C(2)∵ DF ∥ACF∴∠ 1= ∠ A= 30°,∠ AGD= ∠ GDH= 90°,∴∠ ADG= 60°.∵∠ B= 60°, AD=DB ,∴△ ADG ≌△ DBHGH°1BA30NM D第 27 题图②∴ AG=DH , ······················6 分又∵∠ 1=∠ A , GM ⊥AB ,HN ⊥AB , ∴△ AMG ≌△ DNH .∴ AM=DN .···················8 分28.(此题满分 10 分)解:( 1)抛物线 y1 x2 x 2 与 y 轴的交于点 B ,y4令 x= 0 得 y= 2.A∴B ( 0, 2) ···················1 分 ·B∵ y1 x2 x 2 1( x 2) 2344HOPx∴A ( — 2, 3) ···················3 分(2)当点 P 是 AB 的延伸线与 x 轴交点时,PA PB AB . ···················5 分当点 P 在 x 轴上又异于 AB 的延伸线与 x 轴的交点时, 第28题图在点 P 、 A 、B 构成的三角形中, PA PB AB .综合上述:PA PB ≤ AB ····································7 分(3)作直线 AB 交 x 轴于点 P ,由( 2)可知:当 PA —PB 最大时,点 P 是所求的点··8 分作 AH ⊥OP 于 H .∵ BO ⊥ OP , ∴△BOP ∽△ AHP∴AH HP··············································9 分BO OP由( 1)可知: AH= 3、 OH= 2、 OB= 2,∴ OP= 4,故 P ( 4, 0) ····································10 分注:求出 AB 所在直线分析式后再求其与 x 轴交点 P ( 4, 0)等各样方法只需正确也相应给分.。

广西贺州市中考数学真题试题

广西贺州市中考数学真题试题

广西贺州市2013年中考数学试卷一、选择题(共12小题,每小题3分,共36分,给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣3的相反数是()B.C.3D.3A.﹣2.(3分)下面各图中∠1和∠2是对顶角的是()A.B.C.D.3.(3分)估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间4.(3分)(2013•贺州)下列图形是中心对称图形而不是轴对称图形的是()A.B.C.D.5.(3分)为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况.随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有()A.500名B.600名C.700名D.800名6.(3分)下列运算正确的是()A.x•x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x47.(3分)如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为()A.2cm3B.3cm3C.6cm3D.8cm38.(3分)把a3﹣2a2+a分解因式的结果是()A.a2(a﹣2)+a B.a(a2﹣2a)C.a(a+1)(a﹣1)D.a(a﹣1)29.(3分)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm10.(3分)当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A.B.C.D.11.(3分)(2013•贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是()A.25°或155°B.50°或155°C.25°或130°D.50°或130°12.(3分)2615个位上的数字是()A.2B.4C.6D.8二、填空题(共6小题,每小题3分,满分18分)13.(3分)函数的自变量x的取值范围是x≤2.14.(3分)地球距月球表面约为383900千米,那么这个距离用科学记数法应表示为3.84×105千米.(结果保留三个有效数字)15.(3分)调查市场上某种食品的色素含量是否符合国家标准,这种调查适用抽样调查.(填全面调查或者抽样调查)16.(3分)如图,在△ABC中,AB=6,将△ABC绕点B顺时针旋转60°后得到△DBE,点A 经过的路径为弧AD,则图中阴影部分的面积是6π.17.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确的是①②⑤.(填正确结论的序号)18.(3分)如图,A、B、C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积7 .三、解答题(共8小题,满分66分。

【2019-2020年度】中考数学 专题19 全等三角形试题(含解析)

【2019-2020年度】中考数学 专题19 全等三角形试题(含解析)

【2019-2020年度】中考数学专题19 全等三角形试题(含解析)☞解读考点【2015年题组】1.(2015六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【答案】D.【解析】试题分析:A.可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B.可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.利用ASA判定△ABC≌△DCB,故此选项不符合题意;D.SSA不能判定△ABC≌△DCB,故此选项符合题意;故选D.考点:全等三角形的判定.2.(2015贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【答案】B.考点:全等三角形的判定与性质.3.(2015义乌)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【答案】D.【解析】试题分析:在△ADC和△ABC中,∵AD=AB,DC=BC,AC=AC,∴△ADC≌△ABC (SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选D.考点:全等三角形的应用.4.(2015泰州)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对【答案】D.考点:1.全等三角形的判定;2.线段垂直平分线的性质;3.等腰三角形的性质;4.综合题.5.(2015宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()12 A.0个 B.1个 C.2个 D.3个【答案】D.【解析】试题分析:在△ABD与△CBD中,∵AD=CD,AB=BC,DB=DB,∴△ABD≌△CBD (SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,∵AD=CD,∠ADB=∠CDB,OD=OD,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选D.考点:1.全等三角形的判定与性质;2.新定义;3.阅读型.6.(2015宜昌)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【答案】C.考点:全等三角形的判定.7.(2015荆门)如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB 平分∠AMC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个【答案】D.考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质;3.综合题;4.压轴题.8.(2015柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH12其中,正确的结论有()A.1个 B.2个 C.3个 D.4个【答案】B.【解析】试题分析:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;2∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.考点:1.全等三角形的判定与性质;2.正方形的性质;3.相似三角形的判定与性质;4.综合题.9.(2015柳州)如图,△ABC≌△DEF,则EF= .【答案】5.【解析】试题分析:∵△ABC≌△DEF,∴BC=EF,则EF=5.故答案为:5.考点:全等三角形的性质.10.(2015盐城)如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.【答案】DC=BC或∠DAC=∠BAC.考点:1.全等三角形的判定;2.开放型.11.(2015贵港)如图,在正方形ABCD的外侧,作等边三角形CDE,连接AE,BE,则∠AEB的度数为.【答案】30°.考点:1.全等三角形的判定与性质;2.等腰三角形的性质;3.正方形的性质;4.综合题.12.(2015常州)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是.【答案】(400,800).【解析】试题分析:连接AC,由题意可得:AB=300m,BC=400m,在△AOD和△ACB中,∵AD=AB,∠ODA=∠ABC,DO=BC,∴△AOD≌△ACB(SAS),∴∠CAB=∠OAD,∵B、O在一条直线上,∴C,A,D也在一条直线上,∴AC=AO=500m,则CD=AC=AD=800m,∴C点坐标为:(400,800).故答案为:(400,800).考点:1.勾股定理的应用;2.坐标确定位置;3.全等三角形的应用.13.(2015福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是【答案】.1考点:1.旋转的性质;2.全等三角形的判定与性质;3.角平分线的性质;4.等边三角形的判定与性质;5.等腰直角三角形;6.综合题.14.(2015鄂尔多斯)如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG= cm.12【答案】4.考点:1.全等三角形的判定与性质;2.等腰直角三角形;3.综合题.15.(2015长春)如图,在平面直角坐标系中,点P 在函数()的图象上.过点P 分别作x 轴、y 轴的垂线,垂足分别为A 、B ,取线段OB 的中点C ,连结PC 并延长交x 轴于点D .则△APD 的面积为 .6y x =0x >【答案】6.【解析】试题分析:∵PB⊥y 轴,PA⊥x 轴,∴=|k|=6,在△PBC 与△DOC 中,∵∠PBC=∠DOC=90°,BC=BC ,∠PCB=∠DCO,∴△PBC≌△DOC,∴S△APD=S 矩形APBO=6.故答案为:6.APBD S 矩形考点:1.反比例函数系数k 的几何意义;2.全等三角形的判定与性质.16.(2015)如图,OP 平分∠MON,PE⊥OM 于E ,PF⊥ON 于F ,OA=OB ,则图中有 对全等三角形.【答案】3.考点:1.全等三角形的判定;2.角平分线的性质;3.综合题.17.(2015贺州)如图,在△ABC 中,AB=AC=15,点D 是BC 边上的一动点(不与B 、C 重合),∠ADE=∠B=∠α,DE 交AB 于点E ,且tan∠α=.有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD 与△DBE 全等;③△BDE 为直角三角形时,BD 为12或;④0<BE≤,其中正确的结论是 (填入正确结论的序号).34214245【答案】②③.若△BDE 为直角三角形,则有两种情况:(1)若∠BED=90°,∵∠BDE=∠CAD ,∠B=∠C ,∴△BDE ∽△CAD ,∴∠CDA=∠BED=90°,∴AD ⊥BC ,∵AB=AC ,∴BD=BC=12;12(2)若∠BDE=90°,如图2,设BD=x ,则DC=24-x ,∵∠CAD=∠BDE=90°,∠B=∠C=∠α,∴cos ∠C=cosB=,∴,解得:,∴若△BDE 为直角三角形,则BD 为12或,故③正确;45154245AC DC x ==-214x =214设BE=x ,CD=y ,∵△BDE ∽△CAD ,∴,∴,∴,∴,∴,∴,∴0<BE ≤,∴故④错误;BE CD BD CA =2415x y y =-21524x y y =-215144(12)x y =--15144x ≤485x ≤485故答案为:②③.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.18.(2015南宁)如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,且AE=CF ,(1)求证:△ADE≌△CB F ;(2)若∠DEB=90°,求证:四边形DEBF 是矩形.【答案】(1)证明见试题解析;(2)证明见试题解析.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.矩形的判定.19.(2015崇左)如图,点D 在AB 上,点E 在AC 上,AB=AC ,AD=AE .求证:BE=CD .【答案】证明见试题解析.【解析】试题分析:根据两边及其夹角对应相等可以判断△ADE≌△AEB,再由全等三角形对应边相等可说明结论.证明:在△ADE和△AEB中,∵AB=AC,∠A=∠A,AD=AE,∴△ADE≌△AEB,∴BE=CD.考点:全等三角形的判定与性质.20.(2015来宾)如图,在▱ABCD中,E、F为对角线AC上的两点,且AE=CF,连接DE、BF,(1)写出图中所有的全等三角形;(2)求证:DE∥BF.【答案】(1)△ABC≌△CDA,△ABF≌△△CDE,△ADE≌△CBF;(2)证明见试题解析.考点:1.平行四边形的性质;2.全等三角形的判定与性质.21.(2015百色)如图,AB∥DE,AB=DE,BF=EC.(1)求证:AC∥DF;(2)若CF=1个单位长度,能由△ABC经过图形变换得到△DEF吗?若能,请你用轴对称、平移或旋转等描述你的图形变换过程;若不能,说明理由.【答案】(1)证明见试题解析;(2)能,△ABC先向右平移1个单位长度,再绕点C旋转180°即可得到△DEF.考点:1.全等三角形的判定与性质;2.几何变换的类型;3.网格型.22.(2015常州)如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.【答案】(1)证明见试题解析;(2)60°.【解析】试题分析:(1)根据平行四边形的性质得到∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,根据等边三角形的性质得到BE=BC,DF=CD,∠EBC=∠CDF=60°,即可证出∠ABE=∠FDA,AB=DF,BE=AD,由SAS证明△ABE≌△FDA,得出对应边相等即可;(2)根据全等三角形的性质得到∠AEB=∠FAD,求出∠AEB+∠BAE=60°,得出∠FAD+∠BAE=60°,即可得出∠EAF的度数.试题解析:(1)∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,∵△BCE和△CDF都是正三角形,∴BE=BC,DF=CD,∠EBC=∠CDF=60°,∴∠ABE=∠FDA,AB=DF,BE=AD,在△ABE和△FDA中,∵AB=DF,∠ABE=JIAO FDA,BE=AD,∴△ABE≌△FDA(SAS),∴AE=AF;(2)∵△ABE≌△FDA,∴∠AEB=∠FAD,∵∠ABE=60°+60°=120°,∴∠AEB+∠BAE=60°,∴∠FAD+∠BAE=60°,∴∠EAF=120°﹣60°=60°.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的性质.23.(2015乐山)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.【答案】(1)证明见试题解析;(2)试题解析:(1)∵AD∥BC,∴∠ADB=∠DBC,根据折叠的性质∠ADB=∠BDF,∠F=∠A=∠C=90°,∴∠DBC=∠BDF,∴BE=DE,在△DCE和△BFE中,∵∠BEF=∠DEC,∠F=∠C,BE=DE,∴△DCE≌△BFE;(2)在Rt△BCD中,∵CD=2,∠ADB=∠DBC=30°,∴BC=,在Rt△BCD中,∵CD=2,∠EDC=30°,∴DE=2EC,∴,∴CE=,∴BE=BC﹣EC=.222-=EC EC CD(2)33考点:1.翻折变换(折叠问题);2.全等三角形的判定与性质;3.综合题.24.(2015潜江)已知∠MAN=135°,正方形ABCD绕点A旋转.(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD的边CB,CD的延长线交于点M,N,连接MN.①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是;②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN分别与直线BD交于点M,N,探究:以线段BM,MN,DN的长度为三边长的三角形是何种三角形,并说明理由.【答案】(1)①MN=BM+DN;②成立;(2)直角三角形.(2)如图3,将△ABM绕点A逆时针旋转90°,得到△ADE,连结NE.由旋转的性质得到DE=BM,AE=AM,∠EAM=90°,∠NDE=90°.先证明△AMN≌△AEN.得到MN=EN.由DN,DE,NE为直角三角形的三边,得到以线段BM,MN,DN的长度为三边长的三角形是直角三角形.②如图2,若BM≠DN,①中的数量关系仍成立.理由如下:延长NC到点P,使DP=BM,连结AP.∵四边形ABCD是正方形,∴AB=AD,∠ABM=∠ADC=90°.在△ABM与△ADP中,∵AB=AD,∠ABM=∠ADP,BM=DP,∴△ABM≌△ADP(SAS),∴AM=AP,∠1=∠2=∠3,∵∠1+∠4=90°,∴∠3+∠4=90°,∵∠MAN=135°,∴∠PAN=360°﹣∠MAN﹣(∠3+∠4)=360°﹣135°﹣90°=135°.在△ANM与△ANP中,∵AM=AP,∠MAN=∠PAN,AN=AN,∴△ANM≌△ANP(SAS),∴MN=PN,∵PN=DP+DN=BM+DN,∴MN=BM+DN;(2)以线段BM,MN,DN的长度为三边长的三角形是直角三角形.理由如下:如图3,将△ABM绕点A逆时针旋转90°,得到△ADE,连结NE.由旋转的性质得:DE=BM,AE=AM,∠EAM=90°,∠NDE=90°.∵∠MAN135°,∴∠EAN360°∠MAN∠EAM =135°,∴∠EAN =∠MAN.在△AMN与△AEN中,∵AM=AE,∠MAN=∠EAN,AN=AN,∴△AMN≌△AEN.∴MN=EN.∵DN,DE,NE为直角三角形的三边,∴以线段BM,MN,DN的长度为三边长的三角形是直角三角形.==--考点:1.几何变换综合题;2.全等三角形的判定与性质;3.勾股定理的逆定理;4.和差倍分;5.探究型;6.综合题;7.压轴题.【2014年题组】1.(2014年贵州黔西南)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【答案】C.考点:全等三角形的判定.2.(2014年湖南益阳)如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能是( )A .AE=CFB .BE=FDC .BF=DED .∠1=∠2【答案】A .【解析】试题分析:根据平行四边形的性质以及全等三角形的判定分别作出判断:A 、当AE=CF 时,构成的条件是SSA ,无法得出△ABE≌△CDF,故此选项符合题意;B 、当BE=FD 时,构成的条件是SAS ,可得△ABE≌△CDF,故此选项不符合题意;C 、当BF=ED 时,由等量减等量差相等得BE=FD ,构成的条件是SAS ,可得△ABE≌△CDF,故此选项不符合题意;D 、当∠1=∠2时,构成的条件是ASA ,可得△ABE≌△CDF,故此选项不符合题意.故选A .考点:1.平行四边形的性质;2.全等三角形的判定.3.(2014年江苏连云港)如图,若△ABC 和△DEF 的面积分别为、,则( )1S 2SA .B .C .D .1212S S =1272S S =12S S =1285S S = 【答案】C .考点:1.全等三角形的判定和性质;2.等底等高三角形的性质.4.(2014年福建福州)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是边AB ,AC 的中点,延长BC 到点F ,使..若AB=10,则EF 的长是_______ .12CF BC =【答案】5.【解析】∵在Rt△ABC 中,∠ACB=90°,点D ,E 分别是边AB ,AC 的中点,AB=10,∴AD=5,AE=EC ,,∠AED=90°.12DE BC =∵,∴DE=FC .12CF BC =在Rt△ADE 和Rt△EFC 中,∵AE=EC ,DE=FC ,∴Rt△ADE≌Rt△EFC (SAS ).∴EF=AD=5.考点:1.三角形中位线定理;2.全等三角形的判定和性质.5.(2014年湖南长沙)如图,点B 、E 、C 、F 在一条直线上,AB ∥DE ,AB=DE ,BE=CF ,AC=6,则DF= __________ .【答案】6.考点:1.平行的性质;2.全等三角形的判定和性质.6.(2014年湖南常德)如图,已知△ABC 三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC=BC ,AD=AO ,若∠BAC=80°,则∠BCA 的度数为______.【答案】60°.【解析】试题分析:∵△ABC 三个内角的平分线交于点O ,∴∠ACO=∠BCO.在△COD 和△COB 中,∵CD=CB,∠OCD=∠OCB,CO=CO ,∴△COD≌△COB (SAS ).∴∠D=∠CBO.∵∠BAC=80°,∴∠BAD=100°,∠BAO=40°.∴∠DAO=140°.∵AD=AO,∴∠D=20°.∴∠CBO=20°.∴∠ABC=40°.∴∠BCA=60°.考点:1.角的平分线定义;2.全等三角形的判定和性质;3.等腰三角形的性质.7、(2014年福建福州7分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】证明见试题解析.考点:全等三角形的判定和性质.8.(2014年湖北宜昌)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD 平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DA=DE.【答案】(1)30°;(2)证明见试题解析.【解析】试题分析:(1)利用“直角三角形的两个锐角互余”的性质和角平分的性质进行解答.(2)由ASA证明△ACD≌△ECD来推知DA=DE.试题解析:解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠CAB=60°.又∵AD平分∠CAB,∴∠CAD=∠CAB=30°,即∠CAD=30°.12(2)证明:∵∠ACD+∠ECD=180°,且∠ACD=90°,∴∠ECD=90°.∴∠ACD=∠ECD.在△ACD与△ECD中,∵AC=EC,∠ACD=∠ECD,CD=CD,∴△ACD≌△ECD(SAS).∴DA=DE.考点:1.直角三角形两锐角的关系;2.全等三角形的判定与性质.☞考点归纳归纳 1:全等三角形的性质基础知识归纳:全等三角形的对应边相等,对应角相等基本方法归纳:利用全等三角形的性质解决有关线段相等和角的计算的有关问题注意问题归纳:利用全等三角形的性质时,关键是找准对应点,利用对应点得到相应的对应边以及对应角.【例1】如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为.【答案】60°.考点:1.全等三角形的判定与性质;2.等腰三角形的性质.归纳 2:全等三角形的判定方法基础知识归纳:三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”).基本方法归纳:证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.注意问题归纳:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例2】如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【答案】C.考点:全等三角形的判定与性质.归纳 3:角平分线基础知识归纳:角平分线上的点到角的两边的距离相等,到角两边距离相等的点在角平分线上.基本方法归纳:角平分线的性质是证明线段相等的重要工具,角平分线的性质经常用来解决点到直线的距离以及三角形的面积问题.注意问题归纳:注意区分角平分线的性质与判定,角平分线的性质和判定都是由三角形全等得到的.【例3】如图所示,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.【答案】证明见试题解析.考点:1.全等三角形的判定和性质;2.角平分线的性质.☞1年模拟1.(2015届中考二模)用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A O B AOB'''∠=∠A .(SAS )B .(SSS )C .(AAS )D .(ASA )【答案】B .【解析】试题分析:由题意可知,利用尺规作图法,可知OC=O ′C ′,OD=O ′D ′,CD=C ′D ′,根据全等三角形的判定定理(SSS )可得△OCD ≌△O ′C ′D ′,得出.故选B .A O B AOB '''∠=∠考点:1.全等三角形的判定;2.尺规作图.2.(2015届中考二模)如图,等边△ABC 的边AB 上一点P ,作PE⊥AC 于E ,Q 为BC 延长线上的一点,当PA=CQ 时,连接PQ 交AC 于点D ,下列结论中不一定正确的是( )A .PD=DQB .DE=AC C .AE=CQD .PQ ⊥AB2121 【答案】D .考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质;3.平行线的性质.3.(2015届中考模拟)如图,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC 固定不动,△AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合),设BE=m ,CD=n .下列结论:(1)图中有三对相似而不全等的三角形;(2)m•n=2;(3)BD2+CE2=DE2;(4)△ABD≌△ACE;(5)DF=AE .其中正确的有( )A 、2个B 、3个C 、4个D 、5个【答案】A .(5)当AF 与AB 重合时,AE=AF ,AB=AF ,得到DF ≠AF ,于是由AE 与DF 不一定相等;12212试题解析:(1)△ABE ∽△DAE ,△ABE ∽△DCA ,故(1)错误;(2)∵△ABE ∽△DCA ,∴,由题意可知CA=BA=, ∴,∴m=,∴mn=2;(1<n <2); 故(2)正确;BE BAAC CD =n =2n (3)证明:将△ACE 绕点A 顺时针旋转90°至△ABH 的位置,则CE=HB ,AE=AH ,∠ABH=∠C=45°,旋转角∠EAH=90°.连接HD ,在△EAD 和△HAD 中, ∵AE=AH ,∠HAD=∠EAH-∠FAG=45°=∠EAD ,AD=AD , ∴△EAD ≌△HAD ,∴DH=DE .又∠HBD=∠ABH+∠ABD=90°, ∴BD2+CE2=DH2, 即BD2+CE2=DE2; 故(3)正确;(4)若△ABC固定不动,△AFG绕点A旋转,∴∠BAD≠∠CAE,∴△ABD与△ACE不一定全等,∴(4)错误;(5)当AF与AB重合时,AE=AF,AB=AF,∴DF≠AF,∴AE与DF不一定相等;∴(5)错误.故选A.121 2考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.等腰直角三角形.4.(2015届中考二模)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是()A.1:2 B.1:3 C.1:4 D.1:5【答案】A.考点:1.平行四边形的性质;2.全等三角形的判定与性质.5.(2015届中考模拟二)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.7.5 B.8 C.15 D.无法确定【答案】A.考点:1.角平分线的性质;2.全等三角形的判定与性质.6.(2015届中考二模)如图,点A,B,D,E在同一直线上,AB=ED,AC∥EF,∠C=∠F.求证:AC=EF.【答案】证明见解析.【解析】试题分析:根据全等三角形的片对于性质,再由原子条件即可证明△ABC ≌△EDF (AAS ),推出AC=EF 即可.试题解析:证明:∵AC ∥EF ,∴∠A=∠E .在△ABC 和△DEF 中,,∴△ABC ≌△EDF .A E C F AB ED ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AC=EF .考点:全等三角形的判定与性质.7.(2015届中考二模)如图,在△ABC 中,D 为AB 边上一点,F 为AC 的中点,连接DF 并延长至E ,使得EF=DF ,连接AE 和EC .(1)求证:四边形ADCE 为平行四边形;(2)如果DF=,∠FCD=30°,∠AED=45°,求DC的长.【答案】(1)证明见解析;(2).2+(2)解:如图,过点F 作FG ⊥DC 与G .∵四边形ADCE 为平行四边形,∴AE ∥CD .∴∠FDG=∠AED=45°,在Rt △FDG 中,∠FGD=90°,∠FDG=45°,DF=,∵cos ∠FDG=,∴DG=GF===2.DG DFcos DF FDG ⋅∠cos45︒ 在Rt △FCG 中,∠FGC=90°,∠FCG=30°,GF=2,∵tan ∠FCG=,∴,FGGC 2tan tan30FG CG FCG ===∠︒∴DC=DG+GC=.2+考点:1.解直角三角形;2.平行四边形的判定与性质;3.全等三角形的判定与性质.8.(2015届中考二模)如图1,在△ABC 中,CA=CB ,∠ACB=90°,D 是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案;(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由;(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;(3)(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵线段CD绕点C逆时针旋转90°得到线段CE,∴CD=CE,∠DCE=90°,∴∠CDE=∠CED=45°.又∵∠ADC=135°,∴∠ADC+∠CDE=180°,∴A、D、E三点在同一条直线上,∴AE=AD+DE.又∵∠ACB=90°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE,∴AD=BE.∵CD=CE,∠DCE=90°,CM⊥DE,∴DE=2CM,∴AE=BE+2CM.(3)点A到BP考点:1.作图—旋转变换;2.探究型;3.和差倍分;4.全等三角形的判定与性质.9.(2015届中考二模)如图,点D是等边△ABC中BC边上一点,过点D分别作DE∥AB,DF∥AC,交AC ,AB 于E ,F ,连接BE ,CF ,分别交DF ,DE 于点N ,M ,连接MN .试判断△DMN 的形状,并说明理由.【答案】△DMN 为等边三角形,理由见解析.考点:1.等边三角形的判定与性质;2.全等三角形的判定与性质.10.(2015届中考一模)如图,已知,在△ABC 中,CA=CB ,∠ACB=90°,E ,F 分别是CA ,CB 边的三等分点,将△ECF 绕点C 逆时针旋转α角(0°<α<90°),得到△MCN,连接AM ,BN .(1)求证:AM=BN ;(2)当MA∥CN 时,试求旋转角α的余弦值.【答案】(1)证明见解析;(2).13(2)∵MA∥CN,∴∠ACN=∠CAM,∵∠ACN+∠ACM=90°,∴∠CAM+∠ACM=90°,∴∠AMC=90°,∴cos α=.13CM CE AC AC == 考点:1.全等三角形的判定与性质;2.旋转的性质;3.锐角三角函数的定义.11.(2015届中考模拟)已知四边形ABCD 中,AB=BC ,∠ABC=120°,∠MBN=60°,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .当∠MBN 绕B 点旋转到AE=CF 时(如图1),易证AE+CF=EF ;当∠MBN 绕B 点旋转到AE≠CF 时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE ,CF ,EF 又有怎样的数量关系?请写出你的猜想,不需证明.【答案】证明见解析.∴△ABE≌△CBF(SAS);∴∠ABE=∠CBF,BE=BF;∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴AE=BE,CF=BF;121 2∵∠MBN=60°,BE=BF,∴△BEF为等边三角形;∴AE+CF=BE+BF=BE=EF;121 2则△BAE≌△BCK,∴BE=BK,∠ABE=∠KBC,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠KBC=60°,∴∠KBF=∠FBE=60°,在△KBF和△EBF中,BK BEKBF EBF BF BF⎪∠⎪⎩∠⎧⎨===∴△KBF≌△EBF,∴KF=EF,∴KC+CF=EF,即AE+CF=EF.图3不成立,AE、CF、EF的关系是AE-CF=EF.考点:1.全等三角形的判定与性质;2.和差倍分;3.存在型;4.探究型;5.综合题.12.(2015届中考一模)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.12【答案】(1)证明见解析,(2)四边形ABCD是矩形,理由见解析.考点:1.全等三角形的判定与性质;2.平行四边形的判定与性质;3.矩形的判定;4.探究型.13.(2015届九年级下学期4月中考模拟)在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.【答案】(1)BD=DP成立.证明见解析;(2)BD=DP.证明见解析.∵∠1+∠ADB=90°,∠ADB+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,,∴△BDF≌△PDA(ASA),∴BD=DP .⎪⎩⎪⎨⎧︒=∠=∠=∠=∠4521DAP DFB DA DF(2)BD=DP .证明如下:如答图3,过点D 作DF ⊥MN ,交AB 的延长线于点F ,则△ADF 为等腰直角三角形,∴DA=DF .在△BDF 与△PDA 中,,∴△BDF ≌△PDA (ASA ),∴BD=DP .⎪⎩⎪⎨⎧∠=∠=︒=∠=∠PDA BDF DA DF PAD F 45考点:1.全等三角形的判定与性质;2.等腰直角三角形;3.平行四边形的性质;4.探究型.14.(2015届初中毕业班综合测试)如图,在△ABC 与△ABD 中,BC 与AD 相交于点O ,∠1=∠2,CO=DO .求证:∠C=∠D.【答案】证明见解析.考点:全等三角形的判定与性质.15.(2015届中考一模)已知:如图,在▱ABCD 中,线段EF 分别交AD .AC .BC 于点E 、O 、F ,EF⊥AC,AO=CO .(1)求证:△ABF≌△CDE;(2)在本题的已知条件中,有一个条件如果去掉,并不影响(1)的证明,你认为这个多余的条件是 (直接写出这个条件).【答案】(1)证明见解析;(2)EF ⊥AC .考点:1.平行四边形的性质;2.全等三角形的判定与性质.16.(2015届中考模拟二)如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,连接BF 、EF ,恰有BF=EF ,将线段EF 绕点F 顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.【答案】(1)证明见解析.(2)四边形BFGN为菱形,证明见解析.(2)解:四边形BFGN为菱形,证明如下:∵MN⊥EF,∴∠E+∠EBM=90°,且∠EBM=∠ABN,∴∠ABN+∠E=90°,∵BF=EF,∴∠E=∠EBF,∴∠ABN+∠EBF=90°,又∵∠EBC=90°,∴∠CBF+∠EBF=90°,∴∠ABN=∠CBF,∵四边形ABCD为正方形,∴AB=BC,∠NAB=∠CBF=90°,在△ABN和△CBF中∴△ABN≌△CBF(ASA),∴BF=BN,又由旋转可得EF=FG=BF,∴BN=FG,∵∠GFM=∠BME=90°,∴BN∥FG,∴四边形BFGN为菱形.考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的判定;4.旋转的性质;5.和差倍分.。

广西贺州市中考数学真题试题(含解析)

广西贺州市中考数学真题试题(含解析)

广西贺州市2014年中考数学试卷一、选择题(每题3分,共36分)1.(3分)(2014•贺州)在﹣1、0、1、2这四个数中,最小的数是()A.0B.﹣1 C.1D.1考点:有理数大小比较分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣1<0<1<2,应选:B.点评:此题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2014•贺州)分式有意义,则x的取值范围是()A.x≠1B.x=1 C.x≠﹣1 D.x=﹣1考点:分式有意义的条件.分析:根据分式有意义的条件:分母不等于0,即可求解.解答:解:根据题意得:x﹣1≠0,解得:x≠1.应选A.点评:此题主要考查了分式有意义的条件,准确理解条件是解题的关键.3.(3分)(2014•贺州)如图,OA⊥OB,若∠1=55°,则∠2的度数是()A.35°B.40°C.45°D.60°考点:余角和补角分析:根据两个角的和为90°,可得两角互余,可得答案.解答:解:∵OA⊥OB,若∠1=55°,∴∠AO∠=90°,即∠2+∠1=90°,∴∠2=35°,应选:A.点评:此题考查了余角和补角,两个角的和为90°,这两个角互余.4.(3分)(2014•贺州)未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将8450亿元用科学记数法表示为8.45×103亿元.应选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要准确确定a的值以及n的值.5.(3分)(2014•贺州)A、B、C、D四名选手参加50米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道,若A首先抽签,则A抽到1号跑道的概率是()A.1B.C.D.考点:概率公式.分析:直接利用概率公式求出A抽到1号跑道的概率.解答:解:∵赛场共设1,2,3,4四条跑道,∴A首先抽签,则A抽到1号跑道的概率是:.应选;D.点评:此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.6.(3分)(2014•贺州)以下图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.正方形D.正五边形考点:中心对称图形;轴对称图形.专题:常规题型.分析:根据轴对称图形与中心对称图形的概念求解.假如一个图形沿着一条直线对折后两局部完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.假如一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答:解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;C、正方形是轴对称图形,也是中心对称图形,故本选项准确;D、正五边形是轴对称图形,不是中心对称图形,故本选项错误.应选C.点评:此题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两局部折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两局部重合.7.(3分)(2014•贺州)不等式的解集在数轴上表示准确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共局部,然后把不等式的解集表示在数轴上即可解答:解:,解得,应选:A.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,假如数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.(3分)(2014•贺州)如图是由5个大小相同的正方体组成的几何体,它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:从正面看,第一层是两个正方形,第二层左边是一个正方形,应选:C.点评:此题考查了简单组合体的三视图,从正面看得到的图形是主视图.9.(3分)(2014•贺州)如图,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,则梯形ABCD的周长为()A.12B.15C.12 D.15考点:等腰梯形的性质.分析:过点A作AE∥CD,交BC于点E,可得出四边形ADCE是平行四边形,再根据等腰梯形的性质及平行线的性质得出∠AEB=∠BCD=60°,由三角形外角的定义求出∠EAC的度数,故可得出四边形ADEC是菱形,再由等边三角形的判定定理得出△ABE是等边三角形,由此可得出结论.解答:解:过点A作AE∥CD,交BC于点E,∵梯形ABCD是等腰梯形,∠B=60°,∴AD∥BC,∴四边形ADCE是平行四边形,∴∠AEB=∠BCD=60°,∵CA平分∠BCD,∴∠ACE=∠BCD=30°,∵∠AEB是△ACE的外角,∴∠AEB=∠ACE+∠EAC,即60°=30°+∠EAC,∴∠EAC=30°,∴AE=CE=3,∴四边形ADEC是菱形,∵△ABE中,∠B=∠AEB=60°,∴△ABE是等边三角形,∴AB=BE=AE=3,∴梯形ABCD的周长=AB+(BE+CE)+CD+AD=3+3+3+3+3=15.应选D.点评:此题考查的是等腰梯形的性质,根据题意作出辅助线,构造出平行四边形是解答此题的关键.10.(3分)(2014•贺州)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如下图,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx+的图象过第二、三、四象限,反比例函数y=分布在第二、四象限.应选B.点评:此题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.11.(3分)(2014•贺州)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.分析:连接OC,先根据勾股定理判断出△A CE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.解答:解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.应选B.点评:此题考查的是垂径定理,涉及到直角三角形的性质、弧长公式等知识,难度适中.12.(3分)(2014•贺州)张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(0>0),解得x=1,这时矩形的周长2(x+)=4最小,所以x+(x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A.2B.1C.6D.10考点:分式的混合运算;完全平方公式.专题:计算题.分析:根据题意求出所求式子的最小值即可.解答:解:得到x>0,得到=x+≥2=6,则原式的最小值为6.应选C点评:此题考查了分式的混合运算,弄清题意是解此题的关键.二、填空题(每题3分,共18分)13.(3分)(2014•贺州)分解因式:a3﹣4a= a(a+2)(a﹣2).考点:提公因式法与公式法的综合使用.分析:首先提取公因式a,进而利用平方差公式分解因式得出即可.解答:解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.(3分)(2014•贺州)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1<y2(填“>”或“<”或“=”).考点:一次函数图象上点的坐标特征.分析:直接把P1(1,y1),P2(2,y2)代入正比例函数y=x,求出y1,y2)的值,再比较出其大小即可.解答:解:∵P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,∴y1=,y2=×2=,∵<,∴y1<y2.故答案为:<.点评:此题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.(3分)(2014•贺州)近年来,A市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量(单位:万辆)依次为11,13,15,19,x.若这五个数的平均数为16,则x= 22 .考点:算术平均数.分析:根据算术平均数:对于n个数x1,x2,…,x n,则=(x1+x2+…+x n)就叫做这n个数的算术平均数实行计算即可.解答:解:(11+13+15+19+x)÷5=16,解得:x=22,故答案为:22.点评:此题主要考查了算术平均数,关键是掌握算术平均数的计算公式.16.(3分)(2014•贺州)已知关于x的方程x2+(1﹣m)x+=0有两个不相等的实数根,则m的最大整数值是0 .考点:根的判别式.专题:计算题.分析:根据判别式的意义得到△=(1﹣m)2﹣4×>0,然后解不等式得到m的取值范围,再在此范围内找出最大整数即可.解答:解:根据题意得△=(1﹣m)2﹣4×>0,解得m<,所以m的最大整数值为0.故答案为0.点评:此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.17.(3分)(2014•贺州)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN 交AC于点D,则∠A的度数是50°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.解答:解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.点评:此题考查了线段垂直平分线上的点到两端点的距离相等的性质,等腰三角形的性质,熟记性质并用∠A表示出△ABC的另两个角,然后列出方程是解题的关键.18.(3分)(2014•贺州)网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= .考点:锐角三角函数的定义;三角形的面积;勾股定理.分析:根据正弦是角的对边比斜边,可得答案.解答:解:如图,作AD⊥BC于D,CE⊥AB于E,由勾股定理得AB=AC=2,BC=2,AD=3,由BC•AD=AB•CE,即CE==,sinA===,故答案为:.点评:此题考查锐角三角函数的定义及使用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.三、计算题(共计66分)19.(8分)(2014•贺州)(1)计算:(﹣2)0+(﹣1)2014+﹣sin45°;(2)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.考点:分式的化简求值;零指数幂;二次根式的混合运算;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项利用二次根式性质化简,最后一项利用特殊角的三角函数值计算即可得到结果;(2)原式利用除法法则变形,约分得到最简结果,将a与b的值代入计算即可求出值.解答:解:(1)原式=1+1+﹣=2;(2)原式=ab(a+1)•=ab,当a=+1,b=﹣1时,原式=3﹣1=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解此题的关键.20.(6分)(2014•贺州)已知关于x、y的方程组的解为,求m、n的值.考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组计算即可求出m与n的值.解答:解:将x=2,y=3代入方程组得:,②﹣①得: n=,即n=1,将n=1代入②得:m=1,则m=1,n=1.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.21.(7分)(2014•贺州)如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)利用平行四边形的性质得出∠5=∠3,∠AEB=∠4,进而利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出AE=CF,进而得出四边形AECF是平行四边形,即可得出答案.解答:证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.点评:此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质等知识,得出△ABE≌△CDF是解题关键.22.(8分)(2014•贺州)学习成为现代人的时尚,某市相关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了以下两个不完整的统计图.(1)在统计的这段时间内,共有16 万人次到图书馆阅读,其中商人占百分比为12.5 %;(2)将条形统计图补充完整;(3)若5月份到图书馆的读者共28000人次,估计其中约有多少人次读者是职工?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)根据学生的人数除以占的百分比,求出总人数;求出商人占的百分比即可;(2)求出职工的人数,补全条形统计图即可;(3)由职工的百分比乘以28000即可得到结果.解答:解:(1)根据题意得:4÷25%=16(万人次),商人占的百分比为×100%=12.5%;(2)职工的人数为16﹣(4+2+4)=6(万人次),补全条形统计图,如下图:(3)根据题意得:×100%×28000=10500(人次),则估计其中约有10500人次读者是职工.故答案为:(1)16;12.5%点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解此题的关键.23.(7分)(2014•贺州)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.考点:分式方程的应用.分析:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依据等量关系:马小虎走600米的时间=爸爸走1600米的时间+10分钟.解答:解:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依题意得=+10,解得 x=80.经检验,x=80是原方程的根.答:马小虎的速度是80米/分.点评:此题考查了分式方程的应用.分析题意,找到适宜的等量关系是解决问题的关键.24.(8分)(2014•贺州)如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,co s55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)考点:解直角三角形的应用-方向角问题.分析:(1)过C作AB的垂线,设垂足为D,则CD的长为海轮在航行过程中与灯塔C的最短距离;(2)在Rt△BCD中,根据55°角的余弦值即可求出海轮在B处时与灯塔C的距离.解答:解:(1)C作AB的垂线,设垂足为D,根据题意可得:∠1=∠2=42°,∠3=∠4=55°,设CD的长为x海里,在Rt△ACD中,tan42°=,则AD=x•tan42°,在Rt△BCD中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD=80,∴x•tan42°+x•tan55°=80,解得:x≈34.4,答:海轮在航行过程中与灯塔C的最短距离是34.4海里;(2)在Rt△BCD中,cos55°=,∴BC=≈60海里,答:海轮在B处时与灯塔C的距离是60海里.点评:此题考查理解直角三角形的应用:方向角问题,具体就是在某点作出东南西北,即可转化角度,也得到垂直的直线.25.(10分)(2014•贺州)如图,AB,BC,CD分别与⊙O相切于E,F,G.且AB∥CD.BO=6cm,CO=8cm.(1)求证:BO⊥CO;(2)求BE和CG的长.考点:切线的性质;相似三角形的判定与性质.分析:(1)由AB∥CD得出∠ABC+∠BCD=180°,根据切线长定理得出OB、OC平分∠EBF和∠BCG,也就得出了∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°.从而证得∠BOC是个直角,从而得出BO⊥CO;(2)根据勾股定理求得AB=10cm,根据RT△BOF∽RT△BCO得出BF=3.6cm,根据切线长定理得出BE=BF=3.6cm,CG=CF,从而求得BE和CG的长.解答:(1)证明:∵AB∥CD∴∠ABC+∠BCD=180°∵AB、BC、CD分别与⊙O相切于E、F、G,∴BO平分∠ABC,CO平分∠DCB,∴∠OBC=,∠OCB=,∴∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°,∴∠BOC=90°,∴BO⊥CO.(2)解:连接OF,则OF⊥BC,∴RT△BOF∽RT△BCO,∴=,∵在RT△BOF中,BO=6cm,CO=8cm,∴BC==10cm,∴=,∴BF=3.6cm,∵AB、BC、CD分别与⊙O相切,∴BE=BF=3.6cm,CG=CF,∵CF=BC﹣BF=10﹣3.6=6.4cm.∴CG=CF=6.4cm.点评:此题主要考查了直角梯形的性质和切线长定理的综合使用.属于基础题.26.(12分)(2014•贺州)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM 平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.考点:二次函数综合题.专题:综合题.分析:(1)根据题意可设函数的解析式为y=ax2,将点A代入函数解析式,求出a的值,继而可求得二次函数的解析式;(2)过点P作PB⊥y轴于点B,利用勾股定理求出PF,表示出PM,可得PF=PM,∠PFM=∠PMF,结合平行线的性质,可得出结论;(3)首先可得∠FMH=30°,设点P的坐标为(x, x2),根据PF=PM=FM,可得关于x 的方程,求出x的值即可得出答案.解答:(1)解:∵二次函数图象的顶点在原点O,∴设二次函数的解析式为y=ax2,将点A(1,)代入y=ax2得:a=,∴二次函数的解析式为y=x2;(2)证明:∵点P在抛物线y=x2上,∴可设点P的坐标为(x, x2),过点P作PB⊥y轴于点B,则BF=x2﹣1,PB=x,∴Rt△BPF中,PF==x2+1,∵PM⊥直线y=﹣1,∴PM=x2+1,∴PF=PM,∴∠PFM=∠PMF,又∵PM∥x轴,∴∠MFH=∠PMF,∴∠PFM=∠MFH,∴FM平分∠OFP;(3)解:当△FPM是等边三角形时,∠PMF=60°,∴∠FMH=30°,在Rt△MFH中,MF=2FH=2×2=4,∵PF=PM=FM,∴x2+1=4,解得:x=±2,∴x2=×12=3,∴满足条件的点P的坐标为(2,3)或(﹣2,3).点评:此题考查了二次函数的综合,涉及了待定系数法求函数解析式、角平分线的性质及直角三角形的性质,解答此题的关键是熟练基本知识,数形结合,将所学知识融会贯通.。

初三中考数学数与式

初三中考数学数与式

第一部分 中考基础复习第一章 数与式第1讲 实数A 级 基础题1.(2015年广东梅州)12的相反数是( )A .2B .-2 C.12 D .-122.(2015年广东佛山)-3的倒数是( )A .-13 B.13C .3D .-33.(2015年广东广州)四个数-3.14,0,1,2中为负数的是( ) A .-3.14 B .0 C .1 D .24.(2015年内蒙古呼和浩特)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .-3 ℃B .15 ℃C .-10 ℃D .-1 ℃5.(2015年广东汕尾)今年五月份香港举办“保普选反暴力”大联盟大型签名行动,9天共收集超121万个签名,将121万用科学记数法表示为( )A .1.21×106B .12.1×105C .0.121×107D .1.21×1056.(2015年湖南永州)在数轴上表示数-1和2014的两点分别为A 和B ,则A ,B 两点间的距离为( )A .2013B .2014C .2015D .20167.(2015年黑龙江绥化)在实数0,π,227, 2 ,-9中,无理数的个数有( )A .1个B .2个C .3个D .4个 8.(2015年山东威海)已知实数a ,b 在数轴上的位置如图1-1-2,下列结论错误的是( )图1-1-2A.||a <1<||b B .1 <-a <b C .1 < ||a <b D .-b <a <-1 9.(2015年湖北武汉)计算:-10+(+6)=________.10.(2015年吉林长春)比较大小:2__________1.(填“>”“=”或“<”) 11.(2015年江苏镇江)已知一个数的绝对值是4,则这个数是__________. 12.计算:(1)(2015年广东梅州)计算:8+|2 2-3|-⎝⎛⎭⎫13-1-(2015+2)°. (2)(2015年广东佛山)计算:9+20150+(-2)3+2 3×sin60°.B 级 中等题13.(2015年山东青岛)某种计算机完成一次基本运算的时间约为0.000 000 001 s ,将0.000 000 001 s 用科学记数法表示为( )A .0.1×10-8 sB .0.1×10-9 sC .1×10-8 sD .1×10-9 s 14.(2015年山东菏泽)如图1-1-3,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )图1-1-3A .点MB .点NC .点PD .点Q 15.(2015年重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成.在图1-1-4中,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的个数是( )图1-1-4A .32B .29C .28D .2616.(2015年贵州遵义)按一定规律排列的一列数依次为:45,48,411,414,…,按此规律,这列数中的第10个数与第16个数的积是__________.C 级 拔尖题17.(2015年湖南娄底)下列数据是按一定规律排列的(如图1-1-5),则第7行的第一个数为__________.图1-1-5第2讲 代数式A 级 基础题1.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.122.(2015年吉林)购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需要钱数为( )A .(a +b )元B .3(a +b )元C .(3a +b )元D .(a +3b )元3.(2015年四川自贡)为庆祝抗战胜利70周年,我市某楼盘让利于民,决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为( )A .a -10%元/米2B .a ·10%元/米2C .a (1-10%)元/米2D .a (1+10%)元/米24.(2015年福建厦门)某商店举办促销活动,促销的方法是将原价x 元的衣服以⎝⎛⎭⎫45x -10元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元5.(2015年海南)某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元 6.(2015年重庆)如图1-2-4所示的图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第④个图形中小圆圈的个数为( )图1-2-4A .21个B .24个C .27个D .30个7.(2015年湖南株洲)如果手机通话每分钟收费m 元,那么通话a 分钟,收费________元.8.(2014年江苏苏州)若a -2b =3,则9-2a +4b 的值为________. 9.(2015年湖南益阳)如图1-2-5是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有________根小棒.图1-2-510.(2015年四川内江)如图1-2-6是由火柴棒搭成的几何图案,则第n 个图案中有________根火柴棒.(用含n 的代数式表示)图1-2-611.已知a=3,b=|-2|,c=12,求代数式a2+b-4c的值.12.已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求|| a+b2m2+1+4m-3cd的值.B级中等题13.按如图1-2-7所示的程序计算,若开始输入n的值为1,则最后输出的结果是()图1-2-7A.3 B.15 C.42 D.6314.(2015年黑龙江绥化)如图1-2-8,填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=________.图1-2-815.(2015年江苏淮安)将连续正整数按如下规律排列(如图1-2-9):图1-2-9若正整数565位于第a 行,第b 列,则a +b =________. 16.(2014年四川达州)《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图1-2-10.图1-2-10由图易得:12+122+123+…+12n =________.C 级 拔尖题17.(2014年安徽)观察下列关于自然数的等式: 32-4×12=5;① 52-4×22=9;② 72-4×32=13;③ ……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.(列代数式)第3讲 整式与分式 第1课时 整式A 级 基础题1.(2015年浙江台州)单项式2a 的系数是( ) A .2 B .2a C .1 D .a2.(2015年广东珠海)计算-3a 2×a 3的结果为( ) A .-3a 5 B .3a 6 C .-3a 6 D .3a 53.(2015年四川巴中)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1 4.(2015年湖南邵阳)已知a +b =3,ab =2,则a 2+b 2的值为( ) A .3 B .4 C .5 D .65.(2015年广东佛山)若(x +2)(x -1)=x 4+mx +n ,则m +n =( ) A .1 B .-2 C .-1 D .26.(2015年广东深圳)下列说法错误的是( )A .a ·a =a 2B .2a +a =3aC .(a 3)2=a 5D .a 3÷a -1=a 47.(2015年浙江金华)已知a +b =3,a -b =5,则代数式a 2-b 2=________. 8.(2015年广东珠海)填空:x 2+10x +________=(x +________)2. 9.(2015年四川绵阳)计算:a (a 2÷a )-a 2=________.10.(2015年山东菏泽)若x 2+x +m =(x -3)(x +n )对x 恒成立,则n =__________. 11.(2015年广东梅州)已知a +b =-2,求代数式(a -1)2+b (2a +b )+2a 的值.12.(2015年北京)已知2a 2+3a -6=0.求代数式3a ()2a +1-()2a +1()2a -1的值.B 级 中等题13.(2015年山东临沂)观察下列关于x 的单项式,探究其规律: x,3x 2,5x 3,7x 4,9x 5,11x 6,…,按照上述规律,第2015个单项式是( ) A .2015x 2015 B .4029x 2014 C .4029x 2015 D .4031x 201514.(2015年安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是____________.15.(2014年浙江宁波)一个大正方形和四个全等的小正方形按图1-3-2(1)(2)两种方式摆放,则图(2)的大正方形中未被小正方形覆盖部分的面积是________.(用a,b的代数式表示)图1-3-216.(2015年河北)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x=x2-5x+1(1)求所捂住的二次三项式;(2)若x=6+1,求所捂住的二次三项式的值.C级拔尖题17.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问:用这三种方案调价的结果是否一样,最后是不是都恢复了原价?第2课时 因式分解A 级 基础题1.(2014年海南)下列式子从左到右变形是因式分解的是( ) A .a 2+4a -21=a (a +4)-21 B .a 2+4a -21=(a -3)(a +7) C .(a -3)(a +7)=a 2+4a -21 D .a 2+4a -21=(a +2)2-25 2.(2015年湖北武汉)把a 2-2a 分解因式,正确的是( ) A .a (a -2) B .a (a +2) C .a (a 2-2) D .a (2-a ) 3.(2014年辽宁葫芦岛)计算:552-152=( ) A .40 B .1600 C .2400 D .28004.(2015年浙江台州)把多项式2x 2-8分解因式,结果正确的是( ) A .2()x 2-8 B .2()x -22C .2()x +2()x -2D .2x ⎝⎛⎭⎫x -4x 5.(2015年贵州毕节)下列因式分解正确的是( )A .a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9)B .x 2-x +14=⎝⎛⎭⎫x -122 C .x 2-2x +4=(x -2)2 D .4x 2-y 2=(4x +y )(4x -y )6.(2015年广西贺州)把多项式4x 2y -4xy 2-x 3分解因式的结果是( ) A .4xy (x -y )-x 3 B .-x (x -2y )2C .x (4xy -4y 2-x 2)D .-x (-4xy +4y 2+x 2) 7.(2015年山东枣庄)如图1-3-3,边长为a ,b 的矩形的周长为14,面积为10,则a 2b+ab 2的值为( )图1-3-3A .140B .70C .35D .248.(2015年广东梅州)分解因式:m 3-m =________. 9.(2015年广东广州)分解因式:2mx -6my =________. 10.(2015年广东深圳)分解因式:3a 2-3b 2________.11.(2015年山东东营)分解因式:4+12(x -y )+9(x -y )2=________. 12.已知ab =-3,a +b =2.求代数式a 3b +ab 3的值.B 级 中等题13.(2015年湖南衡阳)已知a +b =3,a -b =-1,则a 2-b 2的值为________. 14.(2015年湖北孝感)分解因式:(a -b )2-4b 2__________. 15.(2015年甘肃平凉)分解因式:x 3y -2x 2y +xy =________.16.(2015年湖南株洲)分解因式:x 2()x -2-16()x -2=____________________.C 级 拔尖题17.分解因式:x 2-y 2-3x -3y .第3课时 分式A 级 基础题1.(2015年浙江丽水)分式-11-x可变形为( )A .-1x -1 B.11+x C .-11+x D.1x -12.(2015年浙江金华)要使分式xx +4有意义,则x 的取值应满足( )A .x =-4B .x ≠4C .x >-4D .x ≠-43.(2015年湖南)若分式3-xx +1的值为0,则x 的值为( )A .3或-1B .0C .3D .-14.(2014年内蒙古赤峰)化简a 2b -ab 2b -a的结果正确的是( )A .abB .-abC .a 2-b 2D .b 2-a 25.(2015年山东济南)化简 m 2m -3-9m -3 的结果是( )A .m +3B .m -3 C.m -3m +3 D.m +3m -36.(2015年湖南益阳)下列等式成立的是( ) A.1a +2b =3a +b B.22a +b =1a +b C.ab ab -b 2=a a -b D.a -a +b =-a a +b7.(2015年广东珠海)若分式3x -5有意义,则x 应满足________.8.(2015年江苏镇江)当x =__________时,分式x +1x -2的值为0.9.(2015年吉林)计算:x x -y ·x 2-y 2x=________.10.(2015年贵州六盘水)已知c 4=b 5=a6≠0,则b +c a 的值为________.11.(2015年广东佛山)计算:2x -2-8x 2-4.12.(2015年广东广州)已知A =x 2+2x +1x 2-1-xx -1.(1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.B 级 中等题 13.(2015年山东临沂)计算:a a +2-4a 2+2a = ______________.14.(2015年湖南邵阳)先化简⎝⎛⎭⎫1x -2-2x ·x 2-2x 2,再从0,1,2中选取一个合适的x 的值代入求值.15.(2015年湖北襄阳)先化简,再求值:⎝ ⎛⎭⎪⎫5x +3yx 2-y 2+2x y 2-x 2÷1x 2y -xy 2,其中x =3+2,y =3- 2.16.(2015年贵州黔东南州)先化简,再求值:m -33m 2-6m ÷⎝⎛⎭⎫m +2-5m -2,其中m 是方程x 2+2x -3=0的根.C 级 拔尖题 17.(2015年广东梅州)若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a=______,b =______;计算:m =11×3+13×5+15×7+…+119×21=________.第4讲 二次根式A 级 基础题1.(2015年重庆)计算3 2-2的值是( )A .2B .3 C. 2 D .2 22.(2015年安徽)计算8×2的结果是( )A.10 B .4 C. 6 D .23.(2015年江苏无锡)函数y =x -4中自变量x 的取值范围是( )A .x >4B .x ≥4C .x ≤4D .x ≠44.(2015年四川凉山州)下列根式中,不能与3合并的是( ) A.13 B.33C.23D.12 5.(2015年江苏淮安)下列式子为最简二次根式的是( )A. 3B. 4C.8D.126.(2015年湖北潜江)下列各式计算正确的是( )A.2+3= 5 B .4 3-3 3=1 C .2 3×3 3=6 3 D.27÷3=37.(2015年湖南衡阳)计算8-2=________.8.(2015年江苏南京)计算5×153的结果是________. 9.(2015年江苏泰州)计算:18-2 12等于________. 10.(2015年湖北荆门)当1<a <2时,代数式()a -22+||1-a 的值是________.11.(2014年广东佛山)计算:8÷2-1+327×[2+(-2)3].12.(2014年湖北荆门)计算:24×13-4×18×(1-2)0.B 级 中等题13.(2014年安徽)设n 为正整数,且n <65<n +1,则n 的值为( )A .5B .6C .7D .814.(2014年山东济宁)如果ab>0,a+b<0,那么下面各式:①ab=ab;②ab·ba=1;③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③15.(2015年四川攀枝花)若y=x-3+3-x+2,则x y=________.16.(2014年山东德州)若y=x-4+4-x2-2,则(x+y)y=________.C级拔尖题17.(2015年山西)阅读与计算:阅读以下材料,并完成相应的任务.斐波那契(约1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰好是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用:斐波那契数列中的第n个数可以用15⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n表示.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.第一章基础题强化提高测试时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.-15的相反数是( )A .15B .-15 C.115 D .-1152.用科学记数法表示316 000 000为( )A .3.16×107B .3.16×108C .31.6×107D .31.6×1063.下列二次根式中的最简二次根式是( ) A.30 B.12 C.8 D.124.下列运算正确的是( )A .a 2+a 3=a 5 B.()-a 32=a 6C .ab 2·3a 2b =3a 2b 2D .-2a 6÷a 2=-2a 35.下列计算正确的是( )A .ab ·ab =2abB .(2a )3=2a 3C .3 a -a =3(a ≥0) D.a ·b =ab (a ≥0,b ≥0)6.下列运算正确的是( )A.2+3= 5 B .3x 2y -x 2y =3C.a 2+b 2a +b=a +b D.()a 2b 3=a 6b 3 二、填空题(本大题共4小题,每小题5分,共20分)7.若分式1x -5有意义,则实数x 的取值范围是________. 8.81的平方根是________.9.若a 2-3b =5,则6b -2a 2+2015=________.10.化简:2(8-2)=________.三、解答题(本大题共5小题,每小题10分,共50分)11.分解因式:m 3n -4mn .12.化简:1x +3+6x 2-9.13.先化简,再求值:(2a +b )(2a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =-2,b =1.14.计算:|-3|+2sin45°+tan60°-⎝⎛⎭⎫-13-1-12+(π-3)0.15.先化简,再求值:⎝ ⎛⎭⎪⎫a 2-b 2a 2-2ab +b 2+a b -a ÷b 2a 2-ab,其中a ,b 满足a +1+|b -3|=0.第一部分 中考基础复习第一章 数与式第1讲 实数【演练·巩固提升】1.D 2.A 3.A 4.C 5.A 6.C 7.B 8.A9.-4 10.> 11.±412.解:(1)原式=2 2+3-2 2-3-1=-1.(2)原式=3+1-8+2 3×32=-4+3=-1. 13.D 14.C 15.B 16.110017.22 解析:由排列的规律可得,第n -1行结束的时候排了1+2+3+…+n -1=12n (n -1)个数.所以第n 行的第1个数为12n (n -1)+1.所以n =7时,第7行的第1个数为22. 第2讲 代数式【演练·巩固提升】1.B 2.D 3.C 4.B 5.A6.B 7.am 8.3 9.5n +1 10.2n (n +1)11.解:当a =3,b =|-2|=2,c =12时,a 2+b -4c =3+2-2=3. 12.解:根据题意,可知:a +b =0,①cd =1,②|m |=2,即m =±2.③把①②代入原式,可得原式=0+4m -3×1=4m -3.当m =2时,4m -3=2×4-3=5;当m =-2时,4m -3=-2×4-3=-11.所以,原式的值是5或-11.13.C 解析:把n =1代入,得n (n +1)=2<15,把n =2代入,得n (n +1)=6<15,把n =6代入,得n (n +1)=42>15,则最后输出的结果为42.14.110 解析:根据左上角+4=左下角,左上角+3=右上角,右下角的数是左下角与右上角两个数的乘积加上1的和,可得6+4=a,6+3=c ,ac +1=b ,可得a =10,c =9,b =91,所以a +b +c =10+9+91=110.15.147 解析:∵565÷4=141……1,∴正整数565位于第142行,即a =142.∵奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,∴正整数565位于第五列,即b =5.∴a +b =142+5=147.16.2n -12n 解析:取n 天后剩下12n ,所以n 天共取走1-12n ,即12+122+123+…+12n =1-12n=2n -12n . 17.解:(1)4 17(2)第n 个等式为(2n +1)2-4n 2=4n +1.证明如下:左边=(2n +1)2-4n 2=4n 2+4n +1-4n 2=4n +1=右边.∴(2n +1)2-4n 2=4n +1.第3讲 整式与分式第1课时 整式【演练·巩固提升】1.A 2.A 3.A 4.C 5.C 6.C7.15 8.25 5 9.0 10.411.解:原式=a 2-2a +1+2ab +b 2+2a =()a +b 2+1,当a +b =-2时,()a +b 2+1=()-22+1=3.12.解:原式=6a 2+3a -(4a 2-1)=6a 2-4a 2+3a +1=2a 2+3a +1.因为2a 2+3a -6=0,所以2a 2+3a =6,所以原式=7.13.C 解析:先看x 的指数,第一个指数是1,第二个指数是2,第2015个单项式的指数是2015;再看系数,系数是连续的奇数,所以第2015个奇数为4029,所以第2015个单项式为4029x 2015.14.xy =z 解析:∵a m a n =a m +n ,21×22=23,22×23=25,23×25=28,25×28=213,故答案为xy =z .15.ab 解析:设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得⎩⎪⎨⎪⎧ x 1+2x 2=a ,x 1-2x 2=b ,解得⎩⎨⎧ x 1=a +b 2,x 2=a -b 4.图②的大正方形中未被小正方形覆盖部分的面积=⎝⎛⎭⎫a +b 22-4×⎝⎛⎭⎫a -b 42=ab .16.解:(1)设所捂的二次三项式为A ,则A =x 2-5x +1+3x =x 2-2x +1.(2)若x =6+1,则A =()x -12=()6+1-12=6.17.解:方案(1)的调价结果为(1+10%)(1-10%)a =0.99a ;方案(2)的调价结果为(1-10%)(1+10%)a =0.99a ;方案(3)的调价结果为(1+20%)(1-20%)a =0.96a .由此可以得到方案(1)(2)的调价结果是一样的,方案(3)的调价结果与(1)(2)不一样.最后都没有恢复原价. 第2课时 因式分解【演练·巩固提升】1.B 2.A 3.D 4.C 5.B 6.B 7.B8.m ()m +1()m -1 9.2m ()x -3y10.3()a +b ()a -b 11.(3x -3y +2)212.解:∵a +b =2,∴(a +b )2=4.∴a 2+2ab +b 2=4.又∵ab =-3,a 2+2ab +b 2=4,∴a 2+b 2=10.∴a 3b +ab 3=ab (a 2+b 2)=-30.13.-3 14.(a +b )(a -3b ) 15.xy (x -1)216.(x -2)(x -4)(x +4)17.解:原式=(x +y )(x -y )-3(x +y )=(x +y )(x -y -3)第3课时 分式【演练·巩固提升】1.D 2.D 3.C 4.B 5.A 6.C 7.x ≠5 8.-1 9.x +y10.32 解析:由题意,可设a =6k ,b =5k ,c =4k ,则b +c a =5k +4k 6k =32. 11.解:原式=2()x +2-8()x +2()x -2=2()x -2()x +2()x -2=2x +2. 12.解:(1)A =x 2+2x +1x 2-1-x x -1=()x +12()x +1()x -1-x x -1=x +1x -1-x x -1=1x -1. (2)解x -1≥0,得x ≥1.解x -3<0,得x <3.∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x <3. ∵x 为整数,∴x =1,2.当x =1时,分式无意义;当x =2时,A =12-1=1. 13.a -2a 解析:原式=a a +2-4a (a +2)=a 2a (a +2)-4a (a +2)=a 2-4a (a +2)=(a +2)(a -2)a (a +2)=a -2a. 14.解:原式=⎣⎢⎡⎦⎥⎤x x (x -2)-2(x -2)x (x -2)·x (x -2)2=x -2(x -2)x (x -2)·x (x -2)2=x -2x +42=-x +42, 由于x ≠0,且x ≠2,因此只能取x =1.所以当x =1时,原式的值为-x +42=-1+42=32. 15.解:原式=⎝ ⎛⎭⎪⎫5x +3y x 2-y 2-2x x 2-y 2÷1xy (x -y )=3(x +y )(x +y )(x -y )·xy (x -y ) =3xy .把x =3+2,y =3-2代入,可得:原式=3(3+2)(3-2)=3.16.解:原式=m -33m (m -2)÷⎝ ⎛⎭⎪⎫m 2-4m -2-5m -2=m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3). ∵m 是方程x 2+2x -3=0的根,∴m =-3或m =1.当m =-3时,原式无意义;当m =1时,原式=13m (m +3)=13×1×(1+3)=112. 17.12 -12 1021. 解析:∵1()2n -1()2n +1=12()2n -1-12()2n +1 =a 2n -1+b 2n +1, ∴a =12,b =-12. ∴m =11×3+13×5+15×7+…+119×21=⎝⎛⎭⎫12-16+⎝⎛⎭⎫16-110+…+⎝⎛⎭⎫138-142=1021. 第4讲 二次根式【演练·巩固提升】1.D 2.B 3.B 4.C 5.A 6.D 7.2 8.5 9.2 210.1 解析:原式=||a -2+||1-a =2-a +a -1=1.11.解:原式=2 2÷12+3×(2-2 2)=4 2+6-6 2 =6-2 2.12.解:(1)原式=24×13-4×24×1=2 2-2= 2. 13.D 14.B15.9 解析:由题意,得x -3≥0,且3-x ≥0,得x =3,故y =2.∴x y =9. 16.14解析:由题意,得x -4≥0,且4-x ≥0. 解得x ≥4,且x ≤4.所以x =4.所以y =-2.所以(x +y )y =(4-2)-2=14. 17.解:第1个数:当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤1+52-1-52 =15×5=1. 第2个数:当n =2时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52-1-52⎝ ⎛⎭⎪⎫1+52+1-52 =15×5×1=1. 第一章基础题强化提高测试1.A 2.B 3.A 4.B 5.D 6.D7.x ≠5 8.±3 9.2005 10.211.解:原式=mn ()m 2-4= mn (m +2)(m -2).12.解:原式=x -3(x +3)(x -3)+6(x +3)(x -3)=x -3+6(x +3)(x -3)=x +3(x +3)(x -3)=1x -3. 13.解:原式=4a 2-b 2+b 2-2ab =2a (2a -b ). 当a =-2,b =1时,原式=2×(-2)×[2×(-2)-1]=20.14.解:原式=3+2×22+3-(-3)-2 3+1 =3+1+3+3-2 3+1=5.15.解:原式=⎣⎢⎡⎦⎥⎤(a +b )(a -b )(a -b )2-a a -b ·a (a -b )b 2 =⎝ ⎛⎭⎪⎫a +b a -b -a a -b ·a (a -b )b2=b a -b ·a (a -b )b 2=a b . ∵a +1+|b -3|=0,∴a +1=0,b -3=0.解得a =-1,b = 3.∴原式=-13=-33.。

历年广西省贺州市中考试题(含答案)

历年广西省贺州市中考试题(含答案)

历年⼴西省贺州市中考试题(含答案)2016年⼴西贺州市中考数学试卷⼀、选择题:本⼤题共12⼩题,每⼩题3分,共36分,给出的四个选项中,只有⼀项是符合题⽬要求的,在试卷上作答⽆效.1.(3分)(2016?贺州)的相反数是()A.﹣ B.C.﹣2 D.22.(3分)(2016?贺州)如图,已知∠1=60°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110°D.120°3.(3分)(2016?贺州)下列实数中,属于有理数的是()A.B.C.πD.4.(3分)(2016?贺州)⼀个⼏何体的三视图如图所⽰,则这个⼏何体是()A.三棱锥B.三棱柱C.圆柱 D.长⽅体5.(3分)(2016?贺州)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡⽚中,随机抽取⼀张,所抽卡⽚上的数的绝对值不⼩于2的概率是()A.B.C.D.6.(3分)(2016?贺州)下列运算正确的是()A.(a5)2=a10B.x16÷x4=x4C.2a2+3a2=5a4D.b3?b3=2b37.(3分)(2016?贺州)⼀个等腰三⾓形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20 8.(3分)(2016?贺州)若关于x的分式⽅程的解为⾮负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠49.(3分)(2016?贺州)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(2,5)B.(5,2)C.(2,﹣5)D.(5,﹣2)10.(3分)(2016?贺州)抛物线y=ax2+bx+c的图象如图所⽰,则⼀次函数y=ax+b与反⽐例函数y=在同⼀平⾯直⾓坐标系内的图象⼤致为()A.B.C.D.11.(3分)(2016?贺州)已知圆锥的母线长是12,它的侧⾯展开图的圆⼼⾓是120°,则它的底⾯圆的直径为()A.2 B.4 C.6 D.812.(3分)(2016?贺州)n是整数,式⼦[1﹣(﹣1)n](n2﹣1)计算的结果()A.是0 B.总是奇数C.总是偶数 D.可能是奇数也可能是偶数⼆、填空题:本⼤题共6⼩题,每⼩题3分,共18分,请把答案填在答题卡对应的位置上,在试卷上作答⽆效.13.(3分)(2016?贺州)要使代数式有意义,则x的取值范围是.14.(3分)(2016?贺州)有⼀组数据:2,a,4,6,7,它们的平均数是5,则这组数据的中位数是.15.(3分)(2016?贺州)据教育部统计,参加2016年全国统⼀⾼考的考⽣有940万⼈,940万⼈⽤科学记数法表⽰为⼈.16.(3分)(2016?贺州)如图,在△ABC中,分别以AC、BC为边作等边三⾓形ACD和等边三⾓形BCE,连接AE、BD交于点O,则∠AOB的度数为.17.(3分)(2016?贺州)将m3(x﹣2)+m(2﹣x)分解因式的结果是.18.(3分)(2016?贺州)在矩形ABCD中,∠B 的⾓平分线BE与AD交于点E,∠BED 的⾓平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)三、解答题:本⼤题共8题,满分66分,解答应写出⽂字说明、证明过程或演算步骤,在试卷上作答⽆效.19.(6分)(2016?贺州)计算:﹣(π﹣2016)0+|﹣2|+2sin60°.20.(6分)(2016?贺州)解⽅程:.21.(8分)(2016?贺州)为了深化课程改⾰,某校积极开展校本课程建设,计划成⽴“⽂学鉴赏”、“国际象棋”、“⾳乐舞蹈”和“书法”等多个社团,要求每位学⽣都⾃主选择其中⼀个社团,为此,随机调查了本校部分学⽣选择社团的意向.并将调查结果绘制成如下统计图表(不完整):选择意向⽂学鉴赏国际象棋⾳乐舞蹈书法其他所占百分⽐ a 20% b 10% 5%根据统计图表的信息,解答下列问题:(2)将条形统计图补充完整;(3)若该校共有1300名学⽣,试估计全校选择“⾳乐舞蹈”社团的学⽣⼈数.22.(8分)(2016?贺州)如图,是某市⼀座⼈⾏天桥的⽰意图,天桥离地⾯的⾼BC是10⽶,坡⾯10⽶处有⼀建筑物HQ,为了⽅便使⾏⼈推车过天桥,市政府部门决定降低坡度,使新坡⾯DC的倾斜⾓∠BDC=30°,若新坡⾯下D处与建筑物之间需留下⾄少3⽶宽的⼈⾏道,问该建筑物是否需要拆除(计算最后结果保留⼀位⼩数).(参考数据:=1.414,=1.732)23.(9分)(2016?贺州)如图,AC是矩形ABCD的对⾓线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的⾯积.(结果保留根号)24.(9分)(2016?贺州)某地区2014年投⼊教育经费2900万元,2016年投⼊教育经费3509万元.(1)求2014年⾄2016年该地区投⼊教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投⼊不低于国民⽣产总值的百分之四,结合该地区国民⽣产总值的增长情况,该地区到2018年需投⼊教育经费4250万元,如果按(1)中教育经费投⼊的增长率,到2018年该地区投⼊的教育经费是否能达到4250万元?请说明理由.(参考数据:=1.1,=1.2,=1.3,=1.4)25.(10分)(2016?贺州)如图,在△ABC中,E是AC边上的⼀点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC 于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.26.(10分)(2016?贺州)如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使(2)求AD的长;(3)点P是抛物线对称轴上的⼀动点,当△PAD的周长最⼩时,求点P的坐标.2016年⼴西贺州市中考数学试卷参考答案与试题解析⼀、选择题:本⼤题共12⼩题,每⼩题3分,共36分,给出的四个选项中,只有⼀项是符合题⽬要求的,在试卷上作答⽆效.1.(3分)(2016?贺州)的相反数是()A.﹣ B.C.﹣2 D.2【分析】根据只有符号不同的两个数互为相反数解答.【解答】解:的相反数是﹣.故选A.【点评】本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2016?贺州)如图,已知∠1=60°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110°D.120°【分析】先根据补⾓的定义求出∠2的度数,再由平⾏线的性质即可得出结论.【解答】解:∵∠1=60°,∴∠2=180°﹣60°=120°.∵CD∥BE,∴∠2=∠B=120°.故选D.【点评】本题考查的是平⾏线的性质,⽤到的知识点为:两直线平⾏,同位⾓相等.3.(3分)(2016?贺州)下列实数中,属于有理数的是()A.B.C.πD.【分析】根据有理数是有限⼩数或⽆限循环⼩数,可得答案.【解答】解:A、﹣是⽆理数,故A错误;B、是⽆理数,故B错误;D、是有理数,故D正确;故选:D.【点评】本题考查了实数,有限⼩数或⽆限循环⼩数是有理数,⽆限不循环⼩数是⽆理数.4.(3分)(2016?贺州)⼀个⼏何体的三视图如图所⽰,则这个⼏何体是()A.三棱锥B.三棱柱C.圆柱 D.长⽅体【分析】根据三视图的知识,正视图为两个矩形,左视图为⼀个矩形,俯视图为⼀个三⾓形,故这个⼏何体为直三棱柱【解答】解:根据图中三视图的形状,符合条件的只有直三棱柱,因此这个⼏何体的名称是直三棱柱.故选:B.【点评】本题考查由三视图确定⼏何体的形状,主要考查学⽣空间想象能⼒及对⽴体图形的认识.5.(3分)(2016?贺州)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡⽚中,随机抽取⼀张,所抽卡⽚上的数的绝对值不⼩于2的概率是()A.B.C.D.【分析】由标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡⽚中,随机抽取⼀张,所抽卡⽚上的数的绝对值不⼩于2的有4种情况,直接利⽤概率公式求解即可求得答案.【解答】解:∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡⽚中,随机抽取⼀张,所抽卡⽚上的数的绝对值不⼩于2的有4种情况,∴随机抽取⼀张,所抽卡⽚上的数的绝对值不⼩于2的概率是:.故选D.【点评】此题考查了概率公式的应⽤.注意找到绝对值不⼩于2的个数是关键.6.(3分)(2016?贺州)下列运算正确的是()A.(a5)2=a10B.x16÷x4=x4C.2a2+3a2=5a4D.b3?b3=2b3【分析】根据幂的乘⽅底数不变指数相乘,同底数幂的除法底数不变指数相减,合并同类项系数相加字母及指数不变,同底数幂的乘法底数不变指数相加,可得答案.【解答】解:A、幂的乘⽅底数不变指数相乘,故A正确;B、同底数幂的除法底数不变指数相减,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、同底数幂的乘法底数不变指数相加,故D错误;故选:A.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.7.(3分)(2016?贺州)⼀个等腰三⾓形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进⾏分析.【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三⾓形的周长=8+8+4=20.【点评】本题考查的是等腰三⾓形的性质和三边关系,解答此题时注意分类讨论,不要漏解.8.(3分)(2016?贺州)若关于x的分式⽅程的解为⾮负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4【分析】分式⽅程去分母转化为整式⽅程,表⽰出整式⽅程的解,根据解为⾮负数及分式⽅程分母不为0求出a的范围即可.【解答】解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由题意得:≥0且≠2,解得:a≥1且a≠4,故选:C.【点评】此题考查了分式⽅程的解,需注意在任何时候都要考虑分母不为0.9.(3分)(2016?贺州)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(2,5)B.(5,2)C.(2,﹣5)D.(5,﹣2)【分析】由线段AB绕点O顺时针旋转90°得到线段A′B′可以得出△ABO≌△A′B′O′,∠AOA′=90°,作AC⊥y轴于C,A′C′⊥x轴于C′,就可以得出△ACO≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A的坐标就可以求出结论.【解答】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).【点评】本题考查了旋转的性质的运⽤,全等三⾓形的判定及性质的运⽤,等式的性质的运⽤,点的坐标的运⽤,解答时证明三⾓形全等是关键.10.(3分)(2016?贺州)抛物线y=ax2+bx+c的图象如图所⽰,则⼀次函数y=ax+b与反⽐例函数y=在同⼀平⾯直⾓坐标系内的图象⼤致为()A.B.C.D.【分析】根据⼆次函数图象与系数的关系确定a>0,b<0,c<0,根据⼀次函数和反⽐例函数的性质确定答案.【解答】解:由抛物线可知,a>0,b<0,c<0,∴⼀次函数y=ax+b的图象经过第⼀、三、四象限,反⽐例函数y=的图象在第⼆、四象限,故选:B.【点评】本题考查的是⼆次函数、⼀次函数和反⽐例函数的图象与系数的关系,掌握⼆次函数、⼀次函数和反⽐例函数的性质是解题的关键.11.(3分)(2016?贺州)已知圆锥的母线长是12,它的侧⾯展开图的圆⼼⾓是120°,则它的底⾯圆的直径为()A.2 B.4 C.6 D.8【分析】根据圆锥侧⾯展开图的圆⼼⾓与半径(即圆锥的母线的长度)求得的弧长,就是圆锥的底⾯的周长,然后根据圆的周长公式l=2πr解出r的值即可.【解答】解:设圆锥的底⾯半径为r.圆锥的侧⾯展开扇形的半径为12,∵它的侧⾯展开图的圆⼼⾓是120°,∴弧长==8π,即圆锥底⾯的周长是8π,∴8π=2πr,解得,r=4,∴底⾯圆的直径为8.故选D.【点评】本题考查了圆锥的计算.正确理解圆锥的侧⾯展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底⾯圆周长是扇形的弧长.12.(3分)(2016?贺州)n是整数,式⼦[1﹣(﹣1)n](n2﹣1)计算的结果()A.是0 B.总是奇数【分析】根据题意,可以利⽤分类讨论的数学思想探索式⼦[1﹣(﹣1)n](n2﹣1)计算的结果等于什么,从⽽可以得到哪个选项是正确的.【解答】解:当n是偶数时,[1﹣(﹣1)n](n2﹣1)=[1﹣1](n2﹣1)=0,当n是奇数时,[1﹣(﹣1)n](n2﹣1)=×(1+1)(n+1)(n﹣1)=,设n=2k﹣1(k为整数),则==k(k﹣1),∵0或k(k﹣1)(k为整数)都是偶数,故选C.【点评】本题考查因式分解的应⽤,解题的关键是明确题意,利⽤分类讨论的数学思想解答问题.⼆、填空题:本⼤题共6⼩题,每⼩题3分,共18分,请把答案填在答题卡对应的位置上,在试卷上作答⽆效.13.(3分)(2016?贺州)要使代数式有意义,则x的取值范围是x≥﹣1且x≠0.【分析】根据⼆次根式和分式有意义的条件:被开⽅数⼤于等于0,分母不等于0,列不等式组求解.【解答】解:根据题意,得,解得x≥﹣1且x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;⼆次根式的被开⽅数是⾮负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.14.(3分)(2016?贺州)有⼀组数据:2,a,4,6,7,它们的平均数是5,则这组数据的中位数是6.【分析】根据平均数为5,求出a的值,然后根据中位数的概念,求解即可.【解答】解:∵该组数据的平均数为5,∴,∴a=6,将这组数据按照从⼩到⼤的顺序排列为:2,4,6,6,7,可得中位数为:6,故答案为:6.【点评】本题考查了中位数和算术平均数的知识,解答本题的关键是排好顺序,然后根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.15.(3分)(2016?贺州)据教育部统计,参加2016年全国统⼀⾼考的考⽣有940万⼈,940万⼈⽤科学记数法表⽰为9.4×106⼈.【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值⼤于10时,n是正数;当原数的绝对值⼩于1时,n是负数.【解答】解:940万⼈⽤科学记数法表⽰为9.4×106⼈,故答案为:9.4×106.【点评】本题考查了科学记数法表⽰⼤数,科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要于点O,则∠AOB的度数为120°.【分析】先证明∴△DCB≌△ACE,再利⽤“8字型”证明∠AOH=∠DCH=60°即可解决问题.【解答】解:如图:AC与BD交于点H.∵△ACD,△BCE都是等边三⾓形,∴CD=CA,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE,∴∠CAE=∠CDB,∵∠DCH+∠CHD+∠BDC=180°,∠AOH+∠AHO+∠CAE=180°,∠DHC=∠OHA,∴∠AOH=∠DCH=60°,∴∠AOB=180°﹣∠AOH=120°.故答案为120°【点评】本题考查全等三⾓形的判定和性质、等边三⾓形的性质等知识,解题的关键是正确寻找全等三⾓形,学会利⽤“8字型”证明⾓相等,属于中考常考题型.17.(3分)(2016?贺州)将m3(x﹣2)+m(2﹣x)分解因式的结果是m(x﹣2)(m﹣1)(m+1).【分析】先提公因式,再利⽤平⽅差公式进⾏因式分解即可.【解答】解:原式=m(x﹣2)(m2﹣1)=m(x﹣2)(m﹣1)(m+1).故答案为:m(x﹣2)(m﹣1)(m+1).【点评】本题考查的是多项式的因式分解,掌握提公因式法和平⽅差公式是解题的关键.18.(3分)(2016?贺州)在矩形ABCD中,∠B的⾓平分线BE与AD交于点E,∠BED的⾓平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)【分析】先延长EF和BC,交于点G,再根据条件可以判断三⾓形ABE为等腰直⾓三⾓形,并求得其斜边BE的长,然后根据条件判断三⾓形BEG为等腰三⾓形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进⾏计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B的⾓平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直⾓三⾓形ABE中,BE==,⼜∵∠BED的⾓平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:【点评】本题主要考查了矩形、相似三⾓形以及等腰三⾓形,解决问题的关键是掌握矩形的性质:矩形的四个⾓都是直⾓,矩形的对边相等.解题时注意:有两个⾓对应相等的两个三⾓形相似.三、解答题:本⼤题共8题,满分66分,解答应写出⽂字说明、证明过程或演算步骤,在试卷上作答⽆效.19.(6分)(2016?贺州)计算:﹣(π﹣2016)0+|﹣2|+2sin60°.【分析】直接利⽤绝对值的性质以及特殊⾓的三⾓函数值和零指数幂的性质分别化简求出答案.【解答】解:原式=2﹣1+2﹣+2×=3.【点评】此题主要考查了绝对值的性质以及特殊⾓的三⾓函数值和零指数幂的性质等知识,正确化简各数是解题关键.20.(6分)(2016?贺州)解⽅程:.【分析】⽅程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣3(30﹣x)=60,去括号得:2x﹣90+3x=60,移项合并得:5x=150,解得:x=30.【点评】此题考查了解⼀元⼀次⽅程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.(8分)(2016?贺州)为了深化课程改⾰,某校积极开展校本课程建设,计划成⽴“⽂学鉴赏”、“国际象棋”、“⾳乐舞蹈”和“书法”等多个社团,要求每位学⽣都⾃主选择其中⼀个社团,为此,随机调查了本校部分学⽣选择社团的意向.并将调查结果绘制成如下统计图表(不完整):选择意向⽂学鉴赏国际象棋⾳乐舞蹈书法其他所占百分⽐ a 20% b 10% 5%根据统计图表的信息,解答下列问题:(1)求本次抽样调查的学⽣总⼈数及a、b的值;(2)将条形统计图补充完整;(3)若该校共有1300名学⽣,试估计全校选择“⾳乐舞蹈”社团的学⽣⼈数.【分析】(1)⽤书法的⼈数除以其所占的百分⽐即可求出抽样调查的学⽣总⼈数,⽤⽂学鉴赏、⾳乐舞蹈的⼈数除以总⼈数即可求出a、b的值;(2)⽤总⼈数乘以国际象棋的⼈数所占的百分⽐求出国际象棋的⼈数,再把条形统计图补充即可;(3)⽤该校总⼈数乘以全校选择“⾳乐舞蹈”社团的学⽣所占的百分⽐即可.【解答】解:(1)本次抽样调查的学⽣总⼈数是:20÷10%=200,a=×100%=30%,b=×100%=35%,(2)国际象棋的⼈数是:200×20%=40,条形统计图补充如下:(3)若该校共有1300名学⽣,则全校选择“⾳乐舞蹈”社团的学⽣⼈数是1300×35%=455(⼈),答:全校选择“⾳乐舞蹈”社团的学⽣⼈数是1300×35%=455⼈.【点评】本题考查的是条形统计图的综合运⽤.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表⽰出每个项⽬的数据.22.(8分)(2016?贺州)如图,是某市⼀座⼈⾏天桥的⽰意图,天桥离地⾯的⾼BC是10⽶,坡⾯10⽶处有⼀建筑物HQ,为了⽅便使⾏⼈推车过天桥,市政府部门决定降低坡度,使新坡⾯DC的倾斜⾓∠BDC=30°,若新坡⾯下D处与建筑物之间需留下⾄少3⽶宽的⼈⾏道,问该建筑物是否需要拆除(计算最后结果保留⼀位⼩数).(参考数据:=1.414,=1.732)【分析】根据正切的定义分别求出AB、DB的长,结合图形求出DH,⽐较即可.【解答】解:由题意得,AH=10⽶,BC=10⽶,在Rt△ABC中,∠CAB=45°,∴AB=BC=10,在Rt△DBC中,∠CDB=30°,∴DB==10,∴DH=AH﹣AD=AH﹣(DB﹣AB)=10﹣10+10=20﹣10≈2.7(⽶),∵2.7⽶<3⽶,∴该建筑物需要拆除.【点评】本题考查的是解直⾓三⾓形的应⽤﹣坡度坡⾓问题,掌握锐⾓三⾓函数的定义、熟记特殊⾓的三⾓函数值是解题的关键.23.(9分)(2016?贺州)如图,AC是矩形ABCD的对⾓线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的⾯积.(结果保留根号)【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继⽽证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利⽤三⾓函数求得CF的长,继⽽求得答案.【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的⾯积为:EC?AB=2.【点评】此题考查了矩形的性质、菱形的判定与性质以及三⾓函数等知识.注意证得△AOF ≌△COE是关键.24.(9分)(2016?贺州)某地区2014年投⼊教育经费2900万元,2016年投⼊教育经费3509万元.(1)求2014年⾄2016年该地区投⼊教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投⼊不低于国民⽣产总值的百分之四,结合该地区国民⽣产总值的增长情况,该地区到2018年需投⼊教育经费4250万元,如果按(1)中教育经费投⼊的增长率,到2018年该地区投⼊的教育经费是否能达到4250万元?请说明理由.(参考数据:=1.1,=1.2,=1.3,=1.4)【分析】(1)⼀般⽤增长后的量=增长前的量×(1+增长率),2015年要投⼊教育经费是2900(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出⽅程求解.(2)利⽤(1)中求得的增长率来求2018年该地区将投⼊教育经费.【解答】解:(1)设增长率为x,根据题意2015年为2900(1+x)万元,2016年为2900(1+x)2万元.则2900(1+x)2=3509,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投⼊教育经费的平均增长率为10%.(2)2018年该地区投⼊的教育经费是3509×(1+10%)2=4245.89(万元).4245.89<4250,答:按(1)中教育经费投⼊的增长率,到2018年该地区投⼊的教育经费不能达到4250万元.【点评】本题考查了⼀元⼆次⽅程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.25.(10分)(2016?贺州)如图,在△ABC中,E是AC边上的⼀点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC 于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.【分析】(1)由AE=AB,可得∠ABE=90°﹣∠BAC,⼜由∠BAC=2∠CBE,可求得∠ABC=∠ABE+∠CBE=90°,继⽽证得结论;(2)⾸先连接BD,易证得△ABD∽△ACB,然后由相似三⾓形的对应边成⽐例,求得答案.【解答】(1)证明:∵AE=AB,∴△ABE是等腰三⾓形,∴∠ABE=(180°﹣∠BAC=)=90°﹣∠BAC,∵∠BAC=2∠CBE,∴∠CBE=∠BAC,∴∠ABC=∠ABE+∠CBE=(90°﹣∠BAC)+∠BAC=90°,即AB⊥BC,∴BC是⊙O的切线;(2)解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABC=90°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABD∽△ACB,∴=,∵在Rt△ABC中,AB=8,BC=6,∴AC==10,∴,解得:AD=6.4,∵AE=AB=8,∴DE=AE﹣AD=8﹣6.4=1.6.【点评】此题考查了切线的判定与性质、相似三⾓形的判定与性质、等腰三⾓形的性质以及勾股定理.注意准确作出辅助线,证得△ABD∽△ACB是解此题的关键.26.(10分)(2016?贺州)如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的⼀动点,当△PAD的周长最⼩时,求点P的坐标.【分析】(1)利⽤矩形的性质和B点的坐标可求出A点的坐标,再利⽤待定系数法可求得抛物线的解析式;(2)设AD=x,利⽤折叠的性质可知DE=AD,在Rt△BDE中,利⽤勾股定理可得到关于x 的⽅程,可求得AD的长;(3)由于O、A两点关于对称轴对称,所以连接OD,与对称轴的交点即为满⾜条件的点P,利⽤待定系数法可求得直线OD的解析式,再由抛物线解析式可求得对称轴⽅程,从⽽可求得P点坐标.【解答】解:(1)∵四边形ABCD是矩形,B(10,8),∴A(10,0),⼜抛物线经过A、E、O三点,把点的坐标代⼊抛物线解析式可得,解得,∴抛物线的解析式为y=﹣x2+x;(2)由题意可知:AD=DE,BE=10﹣6=4,AB=8,设AD=x,则ED=x,BD=AB﹣AD=8﹣x,在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5,∴AD=5;(3)∵y=﹣x2+x,∴其对称轴为x=5,∵A、O两点关于对称轴对称,∴PA=PO,当P、O、D三点在⼀条直线上时,PA+PD=PO+PD=OD,此时△PAD的周长最⼩,如图,连接OD交对称轴于点P,则该点即为满⾜条件的点P,由(2)可知D点的坐标为(10,5),设直线OD解析式为y=kx,把D点坐标代⼊可得5=10k,解得k=,∴直线OD解析式为y=x,。

2015年广西贺州市中考一模数学试卷(解析版)

2015年广西贺州市中考一模数学试卷(解析版)

2015年广西贺州市中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分。

给出的四个选项中,只有一项是符合题目要求的。

在试卷上作答无效)1.(3分)计算(﹣1)×3的结果等于()A.﹣1B.1C.3D.﹣32.(3分)若分式的值为零,那么x的值为()A.x=1或x=﹣1B.x=1C.x=﹣1D.x=03.(3分)已知∠A=25°,则∠A的补角等于()A.65°B.75°C.155°D.165°4.(3分)截至2014年5月底,某市人口总数已达420000人.4520000用科学记数法表示为()A.0.452×108B.4.52×107C.4.52×106D.4.52×105 5.(3分)在一个不透明的口袋中有颜色不同的红、黄两种小球,其中红球4个,黄球n个.若从袋中任取一个小球,摸出黄球的概率为,则n的值为()A.6B.9C.10D.126.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.7.(3分)已知实数m、n,若m<n,则下列结论成立的是()A.m﹣3<n﹣3B.2+m>2+n C.>D.﹣3m<﹣3n 8.(3分)如图是一个长方体包装盒,则它的平面展开图是()A.B.C .D .9.(3分)如图,梯形ABCD 中,AB ∥CD ,∠1=∠A ,DC =8,梯形ABCD 的周长是45,则△BCE 的周长是( )A .29B .30C .31D .3210.(3分)若一个反比例函数的图象与一次函数y =x ﹣3的图象在同一平面直角坐标系中没有公共点,则这个反比例函数的解析式可能是( )A .y =B .y =﹣C .y =D .y =﹣11.(3分)如图,在⊙O 中,点A 、B 、C 是圆上的点,连接OA 、OB 、AC 、BC ,若∠CAO =20°,∠CBO =50°,∠AOB 的度数是( )A .30°B .40°C .50°D .60°12.(3分)小张在做数学题时,发现了下面有趣的结果:3﹣2=1,8+7﹣6﹣5=4,15+14+13﹣12﹣11﹣10=9,24+23+22+21﹣20﹣19﹣18﹣17=16,…根据以上规律可知,第20行左起第一个数是( )A .360B .339C .440D .483二、填空题(本大题共6小题,每小题3分,共18分。

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_用样本估计总体-填空题专训及答案

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_用样本估计总体-填空题专训及答案

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_用样本估计总体-填空题专训及答案用样本估计总体填空题专训1、(2015北京.中考真卷) 北京市2009﹣2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约________ 万人次,你的预估理由是________ .2、(2013扬州.中考真卷) 为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.3、(2014苏州.中考真卷) 某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解各门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有________人.4、(2017顺义.中考模拟) 图1为北京城市女生从出生到15岁的平均身高统计图,图2是北京城市某女生从出生到12岁的身高统计图.请你根据以上信息预测该女生15岁时的身高约为________,你的预测理由是________.5、(2017奉贤.中考模拟) 为了解某区3600名九年级学生的体育训练情况,随机抽取了区内200名九年级学生进行了一次体育模拟测试,把测试结果分为四个等级:A级:优秀;良好;及格;不及格,并将测试结果绘成了如图所示的统计图,由此估计全区九年级体育测试成绩可以达到优秀的人数约为________人.6、(2017虎丘.中考模拟) 某校在“祖国好、家乡美”主题宣传周里推出五条A、B、C、D、E旅游线路.某校摄影社团随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图.全校2400名学生中,请你估计,选择“C”路线的人数约为________.7、(2017苏州.中考模拟) 在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间为8小时的人数是________.8、(2017瑞安.中考模拟) 为了解某校师生捐书情况,随机调查了部分师生,根据调查结果绘制了如图所示的统计图.若该校共有师生1000人,则捐文学类书籍的师生约有________人.9、(2018福清.中考模拟) 为了培养学生勤俭节约的意识,从小养成良好的生活习惯.某校随机抽查部分初中生对勤俭节约的态度(态度分为:赞成、无所谓、反对),并对抽查对象的态度绘制成了图1和图2两个统计图(统计图不完整),请根据图中的信息解答下列问题:(1)此次共抽查名学生;(2)持反对意见的学生人数占整体的%,无所谓意见的学生人数占整体的%;(3)估计该校1200名初中生中,大约有名学生持反对态度.10、(2017洛宁.中考模拟) 某商场4月份随机抽查了6天的营业额,结果分别如下(单位:万元):2.8、3.2、3.4、3.7、3.0、3.1.试估算该商场4月份的总营业额,大约是________万元.11、(2019河池.中考模拟) 某校抽查50名九年级学生对艾滋病三种主要传授途径的知晓情况,结果如表估计该校九年级600名学生中,三种传播途径都知道的有传播途径(种)0 1 2 3知晓人数(人)3 7 15 25(2011来宾.中考真卷) 某校八年级共240名学生参加某次数学测试,教师从中随机抽取了40名学生的成绩进行统计,共有12名学生成绩达到优秀等级,根据上述数据估算该校八年级学生在这次数学测试中达到优秀的人数大约有________人.13、(2014来宾.中考真卷) 某校在九年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生的成绩达108分以上,据此估计该校九年级640名学生中这次模拟考数学成绩达108分以上的约有________名学生.14、(2015贺州.中考真卷) 某校在一次期末考试中,随机抽取八年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上,据此估计该校八年级630名学生中期末考试数学成绩达108分以上的学生约有________名.15、(2016重庆.中考真卷) 某学校组建了书法、音乐、美术、舞蹈、演讲五个社团,全校1600名学生每人都参加且只参加了其中一个社团的活动.校团委从这1600名学生中随机选取部分学生进行了参加活动情况的调查,并将调查结果制成了如图不完整的统计图.请根据统计图完成下列问题:参加本次调查有________名学生,根据调查数据分析,全校约有________名学生参加了音乐社团;请你补全条形统计图.16、(2014成都.中考真卷) 在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是________.17、(2021株洲.中考模拟) 为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为________.18、(2020常德.中考真卷) 4月23日是世界读书日,这天某校为了解学生课外阅读阅读时间(x小时)x≤3.5 3.5<x≤55<x≤6.5x>6.5人数12 8 6 4若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为________.19、(2020赤峰.中考真卷) 某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30 b合格9 15%不合格 3 5%合计60 60 100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为________人.20、(2021福建.中考真卷) 某校共有1000名学生.为了解学生的中长跑成绩分布情况,随机抽取100名学生的中长跑成绩,画出条形统计图,如图.根据所学的统计知识可估计该校中长跑成绩优秀的学生人数是.用样本估计总体填空题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:。

备考2021年中考数学复习专题:统计与概率_数据收集与处理_扇形统计图

备考2021年中考数学复习专题:统计与概率_数据收集与处理_扇形统计图

备考2021年中考数学复习专题:统计与概率_数据收集与处理_扇形统计图备考2021中考数学复习专题:统计与概率_数据收集与处理_扇形统计图,专项训练单选题:1、(2019乐清.中考模拟) 某校在开展“爱阅读”活动中,学生某一个月的课外阅读情况的统计图如图所示.若该校的学生有 60 0 人,则阅读的数量是4本的学生有()A . 人B . 人C . 人D . 人2、(2019温州.中考模拟) 小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上共支出100元,则她在午餐上共支出()A . 50元B . 100元C . 150元D . 200元3、(2019温州.中考真卷) 对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A . 20人B . 40人C . 60人D . 80人4、(2013温州.中考真卷) 小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是()A . 羽毛球B . 乒乓球C . 排球D . 篮球5、(2011温州.中考真卷) 某校开展形式多样的“阳光体育”活动,七(3)班同学积极响应,全班参与.晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示),由图可知参加人数最多的体育项目是()A . 排球B . 乒乓球C . 篮球D . 跳绳6、(2016泰安.中考真卷) 某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)选修课 A B C D E F人数 40 60 100根据图表提供的信息,下列结论错误的是( )A . 这次被调查的学生人数为400人B . 扇形统计图中E部分扇形的圆心角为72°C . 被调查的学生中喜欢选修课E,F的人数分别为80,70D . 喜欢选修课C的人数最少7、(2020许昌.中考模拟) 九年级一班同学根据兴趣分成 A,B,C,D,E 五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则 D 小组的人数是()A . 10 人B . l1 人C . 12 人D . 15 人8、(2011崇左.中考真卷) 我市某中学八年级一班准备在“七一”组织参加红色旅游,班长把全班48名同学对旅游地点的意向绘制成了扇形统计图,其中“想去我市龙州县红八军纪念馆参加的学生数”的扇形圆心角为60°,则下列说法中正确的是()A . 想去龙州县红八军纪念馆参加的学生占全班学生的60%B . 想去龙州县红八军纪念馆参观的学生有12人C . 想去龙州县红八军纪念馆参观的学生肯定最多 D . 想去龙州县红八军纪念馆参观的学生占全班学生的9、(2013贺州.中考真卷) 为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况.随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有( )A . 500名B . 600名C . 700名D . 800名10、(2015梧州.中考真卷) 为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是( )A . 100人B . 200人C . 260人D . 400人填空题:11、(2017苏州.中考模拟) 如图,某班参加课外活动的总共有30人,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1:2,那么参加“其它”活动的人数有________人.12、(2017苏州.中考模拟) 某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,其中A所在扇形的圆心角为30°,则在被调查的学生中选择跳绳的人数是________.13、(2012宁波.中考真卷) 如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是________人.14、(2017含山.中考模拟) 某校组织开展“迎新春长跑活动”,将报名的男运动员共分成4组,分别是:七年级组、八年级组、九年级组、教工组,各组人数所占比例如图所示,已知九年级组有60人,则教工组人数是________.15、(2018长沙.中考真卷) 某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为________度.16、(2017番禺.中考模拟) 根据环保局公布的广州市2013年至2014年PM2.5的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是________.(填主要来源的名称)17、(2018毕节.中考模拟) 如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是________人.18、(2018青海.中考真卷) 某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图如图,可计算出该店当月销售出水果的平均价格是________元解答题:19、(2017河西.中考模拟) 为了解某校八、九年级部分学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如图的统计图表:睡眠情况分段情况如下组别睡眠时间x(小时)A 4.5≤x<5.5B 5.5≤x<6.5C 6.5≤x<7.5D7.5≤x<8.5E8.5≤x<9.5根据图表提供的信息,回答下列问题:(Ⅰ)直接写出统计图中a的值(Ⅱ)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?20、(2018惠山.中考模拟) 初二年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初二学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初二学生,那么在试卷评讲课中,“独立思考”的初二学生约有多少人?21、(2017绍兴.中考真卷) 为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如下图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题.(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.22、(2019滨州.中考模拟) 为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(Ⅰ)被抽样调查的学生有________人,并补全条形统计图;(Ⅱ)每天户外活动时间的中位数是________(小时);(Ⅲ)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人 ________?23、(2017深圳.中考模拟) 为了解南山荔枝的销售情况,某部门对该市场的三种荔枝品种A、B、C在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(Ⅰ)该市场6月上半月共销售这三种荔枝多少吨?(Ⅱ)补全图1的统计图并计算图2中A所在扇形的圆心角的度数.(Ⅲ)某商场计划六月下半月进货A、B、C三种荔枝共300千克,根据该市场6月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?24、(2020贵州.中考模拟) 今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706(1)表中的x=;(2)扇形统计图中m=,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a,a表示)和两名女生(用b,b表示),请用列表或画树状图的方法求恰好选取的是a和b的概率.12121125、(2020绍兴.中考真卷) 一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如下统计图表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年广西贺州市中考数学试卷
一、选择题(共12小题,每小题3分,共36分)
1.(3分)下列各数是负数的是( )
A .0
B .13
C .2.5
D .﹣1 2.(3分)如图,下列各组角中,是对顶角的一组是( )
A .∠1和∠2
B .∠3和∠5
C .∠3和∠4
D .∠1和∠5
3.(3分)下列实数是无理数的是( )
A .5
B .0
C .13
D .2 4.(3分)下面的图形中,既是轴对称图形又是中心对称图形的是( )
A .
B .
C .
D .
5.(3分)一组数据3,2,x ,1,2的平均数是2,则这组数据的中位数和众数分别是( )
A .3,2
B .2,1
C .2,2.5
D .2,2
6.(3分)下列运算正确的是( )
A .23326()()2x x x +=
B .233212()()2x x x ⋅=
C .426(2)2x x x ⋅=
D .325
(2)()8x x x -=-
7.(3分)把多项式22344x y xy x --分解因式的结果是( )
A .34()xy x y x --
B .2(2)x x y --
C .22(44)x xy y x --
D .22(44)x xy y x --++
8.(3分)如图是由四个小正方体叠成的一个几何体,它的左视图是( )
A .
B .
C .
D .
9.(3分)如图,△ODC 是由△OAB 绕点O 顺时针旋转31°后得到的图形,若点D 恰好落在AB 上,且∠AOC 的度数为100°,则∠DOB 的度数是( )
A .34°
B .36°
C .38°
D .40°
10.(3分)已知120k k <<,则函数1k y x
=和21y k x =-的图象大致是( )
A .
B .
C .
D .
11.(3分)如图,BC 是⊙O 的直径,AD 是⊙O 的切线,切点为D ,AD 与CB 的延长线交于点A ,∠C =30°,给出下面四个结论:①AD =DC ;②AB =BD ;③AB =
12
BC ;④BD =CD , 其中正确的个数为( )
A .4个
B .3个
C .2个
D .1个
12.(3分)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是( )
A .0
B .3
C .4
D .8
二、填空题(共6小题,每小题3分,共18分)
13.(3分)函数1y x =+的自变量x 的取值范围为 .
14.(3分)中国的陆地面积约为9 600 000km 2,这个面积用科学记数法表示为 .
15.(3分)某校在一次期末考试中,随机抽取八年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上,据此估计该校八年级630名学生中期末考试数学成绩达108分以上的学生约有 名.
16.(3分)如图,在矩形ABCD 中,AB =3,AD =4,将矩形ABCD 绕点D 顺时针旋转90°得到矩形A ′B ′C ′D ′,则点B 经过的路径与BA ,AC ′,C ′B ′所围成封闭图形的面积是 (结果保留π).
17.(3分)已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①abc >0,②a ﹣b +c <0,③2a =b ,④4a +2b +c >0,⑤若点(﹣2,1y )和(13
-
,2y )在该图象上,则12y y >.其中正确的结论是 (填入正确结论的序号).
18.(3分)如图,在△ABC 中,AB =AC =15,点D 是BC 边上的一动点(不与B 、C 重合),∠ADE =∠B =
∠α,DE 交AB 于点E ,且tan ∠α=
34
.有以下的结论:①△ADE ∽△ACD ;②当CD =9时,△ACD 与△DBE 全等;③△BDE 为直角三角形时,BD 为12或214;④0<BE ≤245,其中正确的结论是 (填入正确结论的序号).
三、解答题(共8小题,满分66分)
19.(6分)计算:011(4)()2cos 6032π--+--+- .
20.(6分)解分式方程:2134412142
x x x x +=--+-. 21.(8分)在甲口袋中有三张完全相同的卡片,分别标有﹣1,1,2,乙口袋中有完全相同的卡片,分别标有﹣2,3,4,从这两个口袋中各随机取出一张卡片.
(1)用树状图或列表表示所有可能出现的结果;
(2)求两次取出卡片的数字之积为正数的概率.
22.(8分)根据道路管理规定,在贺州某段笔直公路上行驶的车辆,限速40千米/时,已知交警测速点M 到该公路A 点的距离为102米,∠MAB =45°,∠MBA =30°(如图所示),现有一辆汽车由A 往B 方向匀速行驶,测得此车从A 点行驶到B 点所用的时间为3秒.
(1)求测速点M 到该公路的距离;
(2)通过计算判断此车是否超速.(参考数据:2≈1.41,3≈1.73,5≈2.24)
23.(8分)如图,将矩形ABCD 沿对角线BD 对折,点C 落在E 处,BE 与AD 相交于点F .若DE =4,BD =8.
(1)求证:AF =EF ;
(2)求证:BF 平分∠ABD .
24.(8分)某商场销售一批同型号的彩电,第一个月售出50台,为了减少库存,第二个月每台降价500元将这批彩电全部售出,已知第一个月的销售额与第二个月的销售额相等,这两个月销售总额超过40万元.
(1)求第一个月每台彩电销售价格;
(2)这批彩电最少有多少台?
25.(10分)如图,AB 是⊙O 的直径,C 为⊙O 上一点,AC 平分∠BAD ,AD ⊥DC ,垂足为D ,OE ⊥AC ,垂足为E . (1)求证:DC 是⊙O 的切线;
(2)若OE =3cm ,AC =213cm ,求DC 的长(结果保留根号).
26.(12分)如图,已知抛物线2
y x bx c =-++与直线AB 相交于A (﹣3,0),B (0,3)两点.
(1)求这条抛物线的解析式;
(2)设C 是抛物线对称轴上的一动点,求使∠CBA =90°的点C 的坐标;
(3)探究在抛物线上是否存在点P ,使得△APB 的面积等于3?若存在,求出点P 的坐标;若不存在,请说明理由.。

相关文档
最新文档