10.10 简支梁的内力包络图和绝对最大弯矩.ppt

合集下载

结构力学 绘制内力包络图和确定绝对最大弯矩

结构力学 绘制内力包络图和确定绝对最大弯矩

子项目三 绘制内力包络图和确定绝对最大弯矩 学习进程
子项目三 绘制内ห้องสมุดไป่ตู้包络图和确定绝对最大弯矩
知识链接
1.内力包络图的概念 在结构设计中,必须求出恒载和移动活载共同作用下全梁各截面弯
矩、剪力的最大(小)值,作为结构设计的依据。按前述方法求出各截 面的最大(小)内力后,取横坐标表示梁的截面位置,用纵坐标表示相 应截面上同类内力的最大(小)值,依次联结各截面同类内力最大(小) 值的曲线称为内力包络图。梁的内力包络图包括弯矩包络图和剪力包络 图。
子项目三 绘制内力包络图和确定绝对最大弯矩
能力拓展
在结构设计或验算中,经常需求出结构在恒载和活载共同作用下,各截面 的最大、最小内力值。在实际工作中,对于活载尚需考虑其冲击力的影响, 这通常是将静载或活载所产生的内力值乘以冲击系数1+ μ 来实现的。冲击 系数的确定详见《公路桥涵设计通用规范》。关于荷载沿桥横向分布系数 mc 及其沿桥纵向的变化需进一步学习。
子项目三 绘制内力包络图和确定绝对最大弯矩
项目实施
案例 4 – 8 试求如图 4 – 42a 所示简支梁在单个移动集中荷载作用下的弯 矩包络图。
子项目三 绘制内力包络图和确定绝对最大弯矩
项目实施
案例 4 – 9 试求如图 4 – 43a 所示吊车梁的绝对最大弯矩。 解答:不难看出,绝对最大弯矩将发生在荷载 P2 或 P3 下面的截面。 ① 求荷载 P2 下面的最大弯矩。合力 4 82 kN R= × = 328 kN 。确定 R 与 P2 的间距。 ② 求荷载 P3 下面的最大弯矩。③ 相应地绘制弯矩包络图和剪力包络图, 如图 4 – 44 所示。
小结
4.在间接荷载作用下,结构主梁上某量值的影响线的做法是先作直接荷载作用 下该量值的影响线,然后将相邻的结点竖标用直线连接即可。 5.影响线的应用有两种:一是计算各种固定荷载产生的量值。固定集中荷载产 生的量值为 S=ΣPiyi ,固定均布荷载产生的量值为S= Σqωi 。二是用来确定移 动荷载的最不利荷载位置,从而计算出量值的最大值。 6.我国现行的公路荷载分为公路 – Ⅰ级和公路 – Ⅱ两个等级。汽车荷载分为 车道荷载和车辆荷载两种。

简支梁的内力包络图和绝对最大弯矩

简支梁的内力包络图和绝对最大弯矩

简支梁的内力包络图和绝对最大弯矩1)简支梁的内力包络图在设计承受移动荷载的结构时,通常需要求出结构中所有截面的最大、最小内力,连接各截面的最大、最小内力的图形称为内力包络图。

内力包络图反映了结构承受移动荷载作用时,所有截面内力的极值,是结构设计的重要依据,在吊车梁、楼盖的连续梁和桥梁的设计中都要用到。

下面以一实例来说明简支梁的弯矩包络图和剪力包络图的绘制方法。

如图17.20(a)所示为一跨度为12m的吊车梁,承受图中所示的吊车荷载作用。

首先将梁沿其轴线分为若干等分,本例分为十等分。

然后利用影响线逐一求出各等分截面上的最大弯矩和最小弯矩。

其中最小弯矩是梁在恒载作用下各个截面的弯矩。

对于吊车梁来讲,恒载所引起的弯矩比活载所引起的弯矩要小得多,设计中通常将它略去。

因此,本例只考虑活载即移动荷载所引起的弯矩,那么各截面的最小弯矩均为零。

最后根据计算结果,将各截面的最大弯矩以相同的比例画出,并用光滑曲线相连,即得到弯矩包络图,如图17.20(b)所示。

图17.20同理,可求出梁上所有截面的最大和最小剪力,画出剪力包络图,如图17.20(c)所示。

由于每个截面都会产生最大剪力和最小剪力,因此剪力包络图有两条曲线。

由上可以看出,内力包络图是针对某种移动荷载而言的,同一结构在不同的移动荷载作用下,其内力包络图也不相同。

2)简支梁的绝对最大弯矩由前面的讲述我们知道,简支梁的弯矩包络图反映了所有截面弯矩的最大值,其中的最大竖标值是所有截面最大弯矩中的最大值,称为绝对最大弯矩,用Mmax表示。

绝对最大弯矩无疑是考虑移动荷载作用时结构分析、设计的重要依据。

可以通过作出弯矩包络图来得到绝对最大弯矩,但这种方法计算量大,而且精度也不高,因此一般不采用此方法来计算绝对最大弯矩。

下面介绍一种较为简便的方法。

由于简支梁在移动荷载作用下,其上任一截面都有最大弯矩,其值可以通过确定该截面弯矩的最不利荷载位置,并计算该荷载位置时的弯矩而得到。

梁的内力剪力和弯矩共36页

梁的内力剪力和弯矩共36页
梁的内力剪力和弯矩
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童道 德教育 最重要 的部分 。—— 陈鹤琴
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you

简支梁的内力包络图及绝对最大弯矩

简支梁的内力包络图及绝对最大弯矩
简支梁的绝对最大弯矩与任一截面的最大弯矩既有区别又有联系。 梁内所有截面最大弯矩中的最大值称为该梁的最大弯矩。由包络图的画 法可知最大弯矩也是包络图中的最大纵坐标值。它代表在确定的移动荷 载作用下梁内可能出现的弯矩最大值。
现以简支梁受一组数值不变的集中荷载作用为例,介绍如何求得梁 内可能发生的绝对最大弯矩。
如图12-17 所示,在这一组集中荷载中,选出一个 PK ,研究它的作 用点移动到什么位置时可能使所在的截面弯矩为最大 。
图 12-17
以 x 表示 PK 到支座 A 的距离,a 表示梁上全部荷载的合力 FR 与
PK 作用线之间的距离,对 B 点取矩。
由 M B 0 ,求得
FA
FR l
l
x
a
用 PK 作用截面以左所有外力对 PK 作用点取矩,得 PK 作用点所在
图 12-16
1.2 简支梁的绝对最大弯矩
在移动荷载作用下,弯矩图中的最大纵坐标值是简支梁各截面的所 有最大弯矩中的最大值,称为绝对最大弯矩。产生绝对最大弯矩的某一 截面一定有某个临界荷载 PK 作用的截面。为此可用逐个荷载试算的办 法,先假定其中的某个荷载为临界荷载,求出其产生最大弯矩时的位置 和最大弯矩值,然后将计算出的最大弯矩加以比较,即可找出梁的绝对 最大弯矩。
M max
FR l
l 2
a 2
2
M
K
式中,当 PK 在 FR 左边时取负号; PK 在 FR 右边时取正号。
(12-10)
按上述方法,依次将每个荷载作为临界荷载计算出最大弯矩并加以比 较,确定梁的最大弯矩。
经验表明,简支梁的最大弯矩,通常发生在梁的跨中附近,因此可确
定一个靠近梁的中点截面处的较大荷载作为临界荷载 PK,并移动系列荷载, 使 PK 与梁上荷载的合力对称于梁的中点,再计算此时 PK 作用点的弯矩, 即得绝对最大弯矩。

绝对最大弯矩

绝对最大弯矩

当Mx为极大时,根据极值条件
dM x FR (l 2 x a) 0 dx l
l a x 2 2
截面的弯矩达到最大
l /2 l /2 – a /2
FPcr FPk
a C
a 2 a 2
FR
这表明,当FPK与合力FR对称于梁的中点时, FPK之下的截面,即 为
M max
l a 2 2
计算各等分点截面的 最大、最小弯矩值。 先绘出各截面的弯矩 影响线。 由于对称,可只计算 半跨的截面。
弯矩包络图
根据计算结果,将各截面的最大、最小弯矩值分别 用曲线相连,即得到弯短包络图。这里,梁的绝对 最大弯矩即近似地以跨中最大弯矩代替。
M1影响线 M2影响线 M3影响线 M4影响线
连续梁的内力包络图

一跨度为18m的单线铁路钢筋混凝土简支梁桥,有 两片梁,恒载为q=2×54.1kN/m,承受中一活载 ,根据铁路桥涵设计规范。试绘制一片梁的弯矩和 剪力包络图。
16m
剪力包络图 将梁分成8等分
FQ0影响线
剪力包络图
根据计算结果,将 各截面的最大、最 小剪力值分别用曲 线相连,即得到剪 力包络图。
a 30 5 70 9 50 4 2.32m 250
C
(3)移动荷载组使100kN 与FR对称于梁的中点, 此时梁上荷载与求合力 时相符。
a
算得绝对最大弯矩(即 截面D 的弯矩)为
M max 250 20 2.32 2 ( ) 50 4 777 kN m 20 2 2
绘制方法:逐跨布置法
步骤: 1.绘出恒载作 用下的M图;
2.依次考虑每
恒载 : q 800 KN / m 活载 : p 1500 KN / m

简支梁的内力包络图和绝对最大弯矩(1)

简支梁的内力包络图和绝对最大弯矩(1)

MⅡ P max
840 (12 12 2
1.12) 2
280 4.8
1668.4kN m
MⅠ P max
1624.9kN m
由此可知,FP2位于截面C之右0.56m时,其所在截面的最大弯矩为166
8.4kN·m。
同理,可求得当FP3位于截面C之左0.56m时,其所在截面的最大弯矩
也为1668.4kN·m 。
M max
FR l
(l 2
a )2 2
Mi
(10-17)
若合力FR位于FPi的左边,则 式(10-16)、式(10-17)中a
/2前的减号202应1/9改/10为加号。
x
a
FPi 距左端距离
FP1 FP2 FPi
l-x-a
合力 FR 距右端距离
FR
FPn
A
C
B
D a/2 a/2 E
FRA
l/2
l /2
10.10 简支梁的内力包络图和绝对最大弯矩
10.10.1 内力包络图
在恒载和移动荷载共同作用下,连接各截面某内力最 大值和最小值的曲线称为该内力的包络图。包络图 分弯矩包络图和剪力包络图 。包络图由两条曲线构 成:一条由各截面内力最大值构成,另一条由最小 值构成。因此,内力包络图实际上表达了各截面上 内力变化的上、下限。
力包络图
工程中常这样简化:求出两 端和跨中截面的最大、最小 剪力值,连以直线,即得到 近似的剪力包络图。
2021/9/10
FP1=280kN FP2=280kN FP3=280kN
K
d
K
4.8m
1.44m
4.8m
FP4=280kN
0 1 2 3 4 5 6 7 8 9 10

简支梁的内力包络图和绝对最大弯矩

简支梁的内力包络图和绝对最大弯矩

简支梁的内力包络图和绝对最大弯矩
解决绝对最大弯矩问题要比解决最不利荷载位 置问题复杂。因为它有两个未知位置,即产生绝对 最大弯矩的截面位置,以及相应于此截面的最不利 荷载位置。下面介绍工程上常用的一种计算绝对最 大弯矩的方法。因为简支梁任一截面弯矩影响线为 三角形,所以其顶点就在该截面的竖线上,而最不 利荷载位置总是发生在某一临界荷载Pcr之下。这一 结论同样适合于绝对最大弯矩。
图弯矩
同理,可作吊车梁的 剪力包络图,如图16-13 中的(b)~(h)所示。因各等 分点截面的剪力影响线都 将产生最大剪力和最小剪 力,故剪力包络图有两根 曲线,如图16-13(h)所示。
图16-13
简支梁的内力包络图和绝对最大弯矩
1.2
绝对最大弯矩
弯矩包络图中的最大竖标称为绝对 最大弯矩,它是该简支梁各截面的所有 最大弯矩中的最大值,是设计等截面简 支梁时的依据。
图16-14
简支梁的内力包络图和绝对最大弯矩
简支梁的内力包络图和绝对最大弯矩
由式(16-9)可知,临界荷载Pcr应 该与荷载的合力R对称地放在简支梁中 点的两边,如图16-14所示,计算时, 须注意R应是梁上的实有荷载的合力。 在安排Pcr与R的位置时,有些荷载可能 在梁上或离开梁上,这时应重新计算 合力R的数值和位置。
工程力学
简支梁的内力包络图和绝对最大弯矩
1.1
简支梁的内力包络图
将结构杆件各截面的最大、最小(或最大负值)内力值 按同一比例标在图上,连成曲线,则这种曲线图形就是内 力包络图。内力包络图实际上表达了各截面内力变化的上、 下限,是结构实际设计计算的重要依据。这个图上能清楚 地看出各截面某一内力的最大、最小值的变化规律,还可 以找出该内力的绝对最大值以及它所在的截面位置。 梁的 内力包络图有两种:弯矩包络图和剪力包络图。

结构力学4-6简支梁的包络图和绝对最大弯矩-PPT文档资料

结构力学4-6简支梁的包络图和绝对最大弯矩-PPT文档资料

a 2
l 2
l 2
F RB
l a 1 M F M m a x R c r 22 l

2
例: 求图示吊车梁的绝对最大弯矩。 FFFF 8 2 k N P 1 P 2 P 3 P 4 解: ⑴ 求FP2下面的最大弯矩:
F
P 1
M 5 7 8 k N m m a x
由于对称,本题在FP2 、FP3 下的最 M 5 7 8 k N m m a x 大弯矩相等,故绝对最大弯矩即为 578 kN· m 。而该处由恒载产生的弯矩:
A
q5 0 k Nm
12m
B
300kN 300kN 0 2 1 M 3 0 0 5 . 6 2 5 5 0 5 . 6 2 58 9 6 . 5 k N m 2
§4-6 简支梁的内力包络图和绝对最大弯矩 FP 把梁分成十等分,求其最大弯矩: x
A
C
B
a
a b l
b
l
MC影 响 线
截面4: a 0 . 4 l ,
a b F M 1 m P a x l
b 0 . 6 l
截面5: a 0 . 5 l ,
0 . 4 l 0 . 6 l F 0 . 2 4 F l P P l
0 1
2 3 4
5 6
7 8
9 10
a b M F 1max P l
b 0 . 8 l
截面3: a 0 . 3 l ,
0 . 2 l 0 . 8 l F 0 . 1 6 F l P P l
a b M F 1max P l
b 0 . 7 l
0 . 3 l 0 . 7 l F 0 . 2 1 F l P P l

结构力学46简支梁的包络图和绝对最大弯矩

结构力学46简支梁的包络图和绝对最大弯矩

M1 max
FP
ab l
FP
0.2l 0.8l l
0.16FP l
截面3:a 0.3l, b 0.7l
M1 max
FP
ab l
FP
0.3l
0.7l l
0.21FP l
1
§4-6 简支梁的内力包络图和绝对最大弯矩
A
x
FP
C
把梁分成十等分,求其最大弯矩:
B 截面4:a 0.4l, b 0.6l
300kN
M0 300 5.625 1 50 5.6252 896.5kN m 2
所以弯矩包络图(图5-25c) 上 x=5.625m 处的竖距为:
M 896.5 1.05578
1503.4kN m
Mmax 578kN m
8
5.625 6.375 0 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 12
215
366 465 559 4 578 578
弯矩包络图(单位:kN m)
3
82kN 82kN 82kN 82kN 3.5m 1.5m 3.5m
A
12m
B
同样,还可作出剪力包络图:
212 179 153 12794.365.0 41.725.316.4 8.2 0
2
1
(82 3.5)
2 2 12
578kN m
Mmax FR
l 2
a 2
2
1 l
Mcr 6
例: 求图示吊车梁的绝对最大弯矩。 FP1 FP 2 FP 3 FP4 82kN 解:
Mmax 578kN m
a FR
⑴ 求FP2下面的最大弯矩:

梁的内力图剪力图和弯矩图

梁的内力图剪力图和弯矩图












第三 节 梁的内力图—剪力图和弯矩图(1)











第三 节 梁的内力图—剪力图和弯矩图(1)











第三 节 梁的内力图—剪力图和弯矩图(1)











第三 节 梁的内力图—剪力图和弯矩图(1)





梁的内力图—剪力图和弯矩图(1)











第三 节 梁的内力图—剪力图和弯矩图(1)
斜直线。 在集中力作用处:V图发生突变,突变的绝对值等
于该集中力;M图发生转折。











第三 节 梁的内力图—剪力图和弯矩图(1)
二、在集中力偶作用下梁的内力图: 例6-6简支梁AB在C截面处作用有集中力偶m(如图),试画出梁
的剪力图和弯矩图







绝弯曲 对特值等点于:该在集集中中力力偶偶的作力用偶处矩V图。无变化,M图发生突变,突变的力学











第三 节 梁的内力图—剪力图和弯矩图(1)

简支梁的内力包络图及绝对最大

简支梁的内力包络图及绝对最大

在实际计算中,常常可以估计出哪个荷 载或哪几个荷载需要考察。因为简支梁绝对最 大弯矩总是发生在中点附近的截面上,所以使 梁跨中截面产生最大弯矩的临界荷载,通常就 是产生绝对最大弯矩的荷载。因此,计算简支 梁的绝对最大弯矩可按以下述步骤进行:
(1)确定使梁跨中截面上发生最大弯矩的临界 荷载Fcr 。
同理,可求得F3作用在截面C时产生的最大弯矩, 由对称性可知,其值与上相同。
(a)
2) 求吊车梁的绝对最大弯矩。 由于F2和F3都是产生绝对最大弯矩的临界荷载, 并且对称于梁的中点。所以只需考虑F2作为临界荷 载的情况。为此,使F2与梁上荷载的合力FR对称于 梁的中点布置。
(a)
当F2在合力的左边时[图(c)],梁上有四个荷载,
1.1 简支梁的内力包络图
用上节介绍的在移动荷载作用下,计算静 定梁任一指定截面上最大内力的方法,可以求 出简支梁所有截面上内力的最大值(或最小 值)。如果把求得的各截面上内力的最大(或 最小)值按同一比例标在图上,然后连成曲线, 则这一曲线图形就称为内力包络图。
内力包络图表示静定梁所有截面上内力变 化的极限值,是吊车梁、楼盖的连续梁和桥梁 结构设计的重要依据。
下面先以简支梁在单个移动集中荷载作用 下的弯矩包络图为例,说明内力包络图的绘制 方法。
如图(a)所示的简支梁受单个移动集中荷载作用, 某个截面C上弯矩的影响线如图(b)所示。
(a) (b) MC影响线
由影响线可以判定,当荷载正好作用于C点时,MC
值为最大:M C
ab l
F
。由此可见,荷载由A向B移动时,只
而梁上荷载组的合力FR至Fi的距离为a,如图所示。
由 M,得B 支0 座A处的约束反力为
FA y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档