九年级数学上册第三章圆的基本性质微专题圆周角定理的综合运用随堂练习(含解析)(新版)浙教版

合集下载

九年级数学期末复习上第三章圆的基本性质试卷(浙教版含解析)

九年级数学期末复习上第三章圆的基本性质试卷(浙教版含解析)

期末复习:浙教版九年级数学学上册第三章圆的基本性质一、单选题(共10题;共30分)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O上C. 点P在⊙O外D. 无法判断2.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°3.如图,AB是圆0的直径,弦CD AB于点E,则下列结论正确的是( )A. OE=BEB.C. △BOC是等边三角形D. 四边形ODBC是菱形4.如图,在⊙O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦A. 2B. 3C. 4D. 55.如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()A. B. 2 C. 2 D. 36.如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为()A. 28°B. 56°C. 60°D. 62°7.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是()A.90°B.120°C.150°D.180°8.如图,AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A. 30°B. 40°C. 45°D. 50°9.如图,CD为⊙O的直径,CD⊥EF,垂点为G,∠EOD=40°,则∠DCF ()A. 80°B. 50°C. 40°D. 20°10.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A. 80°B. 50°C. 40°D. 20°二、填空题(共10题;共30分)11.如图,在⊙O中,点A,B,C在⊙O上,且∠ACB=110°,则∠α=________.12.如图,AB是⊙O的直径,点C为⊙O上一点,∠AOC=50°,则∠ABC= ________.13.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M,N分别是AB、BC的中点,则MN长的最大值是________.14.平面直角坐标系中,以点P(0,1)为中心,把点A(5,1)逆时针旋转90°,得到点B,则点B 的坐标为________.15.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是________°16.如图,点,,,在上,∠,∠,是中点,则∠的度数为________.17.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD=________.18.如图,⊙O是正方形ABCD的外接圆,点E是上任意一点,则∠BEC的度数为________.19.如图,P是等边三角形ABC中的一个点,PA=2,PB=2,PC=4,则三角形ABC的边长为________20.如图,将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,An分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为________三、解答题(共8题;共60分)21.(2017•宁波)在的方格中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.22.如图,已知AB是⊙O的直径,CD⊥AB ,垂足为点E,如果BE=OE ,AB=12,求△ACD 的周长23.已知,AB、AC是圆O的两条弦,AB=AC,过圆心O作OH⊥AC于点H.(1)如图1,求证:∠B=∠C;(2)如图2,当H、O、B三点在一条直线上时,求∠BAC的度数;(3)如图3,在(2)的条件下,点E为劣弧BC上一点,CE=6,CH=7,连接BC、OE交于点D,求BE的长和的值.24.如图所示,△ABC中,AB=AC=10,BC=12,求△ABC外接圆的半径.25.如图,△ABC中,AB=AC,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,连接BD、CE.求证:BD=CE.26.如图,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.(1)若∠BAC=30°,求证:CD平分OB.(2)若点E为弧ADB的中点,连接0E,CE.求证:CE平分∠OCD.(3)若⊙O的半径为4,∠BAC=30°,则圆周上到直线AC距离为3的点有多少个?请说明理由.27.如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.28.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,交OA于点F,连接EF并延长EF交AB于G,且EG⊥AB.(1)求证:直线AB是⊙O的切线;(2)若EF=2FG,AB= ,求图中阴影部分的面积;(3)若EG=9,BG=12,求BD的长.答案解析部分一、单选题1.【答案】A【考点】点与圆的位置关系【解析】【解答】解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙0内,故选A.【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d 时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.2.【答案】D【考点】圆周角定理【解析】【分析】由⊙O是△ABC的外接圆,若∠ABC=40°,根据圆周角定理,即可求得答案。

九年级数学上册 第三章 圆的基本性质 微专题 圆周角定理的综合运用随堂练习(含解析)(新版)浙教版

九年级数学上册 第三章 圆的基本性质 微专题 圆周角定理的综合运用随堂练习(含解析)(新版)浙教版

微专题__圆周角定理的综合运用_一巧作辅助线教材P91作业题第5题)如图1,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°.求∠CAD的度数.图1 教材母题答图解:如答图,连结DC.∵AD是⊙O的直径,∴∠ACD=90°.∵∠ABC=50°,∴∠ADC=50°,∴∠CAD=90°-∠ADC=40°.【思想方法】利用圆周角定理,常见的辅助线作法有:①作半径,构造圆心角;②作弦,构造圆周角.[2016·泰安]如图2,点A,B,C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交⊙O于点F,则∠BAF等于( B )A.12.5°B.15°C.20°D.22.5°图2 变形1答图【解析】如答图,连结OB.∵四边形ABCO是平行四边形,∴OC=AB,OC∥AB,又∵OA=OB=OC,∴OA=OB=AB,∴△AOB是等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF =12∠BOF =15°.故选B.如图3,已知四边形ABCD 是⊙O 的内接正方形,P 是劣弧CD 上不同于点C 的任意一点,则∠BPC 的度数是( A ) A .45°B .60°C .75°D .90°图3 变形2答图【解析】 如答图,连结OB ,OC ,则∠BOC =90°, 根据圆周角定理,得∠BPC =12∠BOC =45°.如图4,已知AB =AC =AD ,∠CBD =2∠BDC ,∠BAC =44°,则∠CAD 的度数为( B ) A .68°B .88°C .90°D .112°图4 变形3答图【解析】 如答图,以A 为圆心,AB 为半径画圆,则点C ,D 都在圆上, ∵∠CBD =2∠BDC ,∴CD ︵=2BC ︵,∵∠BAC =44°,∴∠CAD =2∠BAC =88°.故选B.如图5,⊙O 是△ABC 的外接圆,且AB =AC =13,BC =24,求⊙O 的半径.图5 变形4答图解:如答图,连结AO ,BO ,AO 交BC 于点D . 则根据垂径定理的逆定理,得OA ⊥BC ,BD =CD =12BC =12.在Rt △ABD 中,由勾股定理得AD =AB 2-BD 2=5. 设⊙O 的半径为r ,则OD =OA -AD =r -5. 在Rt △OBD 中,由勾股定理得BD 2+OD 2=OB 2, 即122+(r -5)2=r 2,解得r =16.9, 即⊙O 的半径为16.9.如图6,AB 是⊙O 的直径,AC 是弦,OD ⊥AB 交AC 于点D .若∠A =30°,OD =20,求CD 的长.图6 变形5答图解:如答图,连结BC .∵OD ⊥AB ,∠A =30°,OD =20,∴AD =2OD =40,∴OA =AD 2-OD 2=20 3. ∵AB 是⊙O 的直径,∴AB =2OA =403,且∠ACB =90°, ∴BC =12AB =203,∴AC =AB 2-BC 2=60,∴CD =AC -AD =60-40=20.二 圆周角定理与直角三角形、全等三角形等知识的综合运用教材P93作业题第5题)一个圆形人工湖如图7所示,弦AB 是湖上的一座桥.已知AB 长为100 m ,圆周角∠C =45°.求这个人工湖的直径.图7 教材母题答图解:如答图,设圆心为O,连结OA,OB.∵∠C=45°,∴∠AOB=2∠C=90°,∴OA=AB2=502(m),∴这个人工湖的直径为2OA=1002(m).【思想方法】直角三角形与圆周角定理的综合运用一般是通过圆周角定理进行角度转换,利用直角三角形的相关知识求解.[2016·嘉善模拟]如图8,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC,∠ABC的平分线交AC于点D,交⊙O于点E,连结CE.若CE=2,则BD的长为.图8 变形1答图【解析】如答图,延长BA,CE交于点M.∵BC是⊙O的直径,∴∠BAD=∠CAM=90°,∠BEC=∠BEM=90°,∵AB=AC,∠ABD=∠ACM,∴△ABD≌△ACM,∴BD=CM,∵BE平分∠ABC,∴∠EBM=∠EBC,∵BE=BE,∠BEC=∠BEM,∴△BEC≌△BEM,∴EC=EM,∴BD=CM=2CE=2 2.如图9,在△ABC中,以AB为直径的⊙O交BC于点D,连结AD,请添加一个条件__AB=AC或BD=CD或∠B=∠C或∠BAD=∠CAD__,使△ABD≌△ACD.图9如图10,⊙O是△ABC的外接圆,∠C=30°,AB=2 cm,求⊙O的半径.图10 变形3答图解:如答图,连结AO 并延长交⊙O 于点D ,连结BD . ∵∠D ,∠C 所对的圆弧都为AB ︵, ∴∠D =∠C =30°.∵AD 是⊙O 的直径,∴∠ABD =90°, ∴AD =2AB =4(cm),∴AO =12AD =2(cm),即⊙O 的半径为2 cm.在⊙O 中,直径AB =4,CD =2,直线AD ,BC 相交于点E .(1)如图11①,∠E 的度数为__60°__;(2)如图②,AB 与CD 交于点F ,请补全图形并求∠E 的度数; (3)如图③,弦AB 与弦CD 不相交,求∠AEC 的度数.图11解:(1)如答图①,连结OD ,OC ,BD . ∵OD =OC =CD =2,∴△DOC 为等边三角形, ∴∠DOC =60°,∴∠DBC =30°, ∵AB 为直径,∴∠ADB =90°,∴∠E =90°-30°=60°,∴∠E 的度数为60°;(2)补全图形如答图②,直线AD ,CB 交于点E ,连结OD ,OC ,AC . ∵OD =OC =CD =2,∴△DOC 为等边三角形, ∴∠DOC =60°,∴∠DAC =30°, ∵∠DAC +∠DBC =12×360°=180°,∴∠DBC=150°,∴∠EBD=180°-∠DBC=30°,∵AB为直径,∴∠ADB=90°,∴∠BDE=90°,∴∠E=90°-30°=60°;(3)如答图③,连结OD,OC,BD.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠CBD=30°,∵AB为直径,∴∠ADB=90°,∴∠BED=60°,∴∠AEC=60°.①②③变形4答图三圆周角定理的创新应用教材P92例3)如图12,有一个弓形的暗礁区,弓形所在圆的圆周角∠C=50°.问:船在航行时怎样才能保证不进入暗礁区?图12解:当张角∠ASB<∠ACB时,船在弓形暗礁区外;当张角∠ASB=∠ACB时,船在弓形暗礁区边上;当张角∠ASB>∠ACB时,船在弓形暗礁区内,∴要使船保证不进入暗礁区,必须使∠ASB<∠ACB,即∠ASB<50°.【思想方法】由圆周角定理知,同弧上的圆周角相等,应用在航海上,常常用来考查动点问题.如图13,AB是⊙O的直径,弦BC=2 cm,F是弦BC的中点,∠ABC=60°.若动点E以2 cm/s的速度从A点出发沿着A→B→A的方向运动,设运动时间为t(s)(0≤t<3),连结EF,当△BEF是直角三角形时,t的值为( D )图13A.74 B .1 C.74或1 D.74或1或94【解析】 ∵AB 是⊙O 的直径,∴∠ACB =90°. ∵在Rt △ABC 中,BC =2 cm ,∠ABC =60°, ∴∠A =30°,∴AB =2BC =4(cm). ①当∠BFE =90°时,∵在Rt △BEF 中,∠ABC =60°,则∠BEF =30°, ∴BE =2BF =2(cm),∴AE =AB -BE =2(cm),∴E 点运动的距离为2 cm 或6 cm ,故t =1 s 或3 s , 由于0≤t <3,故t =3 s 不合题意,舍去, ∴当∠BFE =90°时,t =1 s ;②当∠BEF =90°时,同①可求得BE =12 cm ,此时AE =AB -BE =72(cm),∴E 点运动的距离为72 cm 或92 cm ,∴t =74 s 或94s.综上所述,当t 的值为1或74或94时,△BEF 是直角三角形.故选D.[2016·山西]请阅读下列材料,并完成相应的任务.阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯学者Al -Biruni(973~1050年)的译文中保存了阿基米德折弦定理的内容,苏联一家出版社在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图14①,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,M 是ABC ︵的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD .① ② ③图14下面是运用“截长法”证明CD =AB +BD 的部分证明过程. 证明:如图②,在CB 上截取CG =AB ,连结MA ,MB ,MC 和MG . ∵M 是ABC ︵的中点,∴MA =MC . …任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图③,已知等边三角形ABC 内接于⊙O ,AB =2,D 为AC ︵上一点,∠ABD =45°,AE ⊥BD 于点E ,则△BDC 的周长是.解:(1)证明:如图②,在CB 上截取CG =AB ,连结MA ,MB ,MC 和MG . ∵M 是ABC ︵的中点,∴MA =MC .在△MBA 和△MGC 中,⎩⎪⎨⎪⎧BA =GC ,∠A =∠C ,MA =MC ,∴△MBA ≌△MGC (SAS ),∴MB =MG , 又∵MD ⊥BC ,∴BD =GD , ∴DC =GC +GD =AB +BD ;变形2答图(2)如答图,截取BF =CD ,连结AF ,AD ,CD , 由题意,得AB =AC ,∠ABF =∠ACD ,在△ABF 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠ABF =∠ACD ,BF =CD ,∴△ABF ≌ACD (SAS ),∴AF =AD , ∵AE ⊥BD ,∴FE =DE ,则CD +DE =BE , ∵∠ABD =45°,∴BE =AB2=2,则△BDC 的周长是2+2 2.本文档仅供文库使用。

浙教版数学九年级上册 第3章 圆的基本性质(含答案)

浙教版数学九年级上册  第3章 圆的基本性质(含答案)

第3章 圆的基本性质班级 学号 得分 姓名一、选择题(本大题有10小题,每小题3分,共30分)1. 下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中真命题是( )A. ①②B. ②③C. ①③D. ①②③2. 如图,AB 是⊙O 的直径,C,D 是⊙O 上位于AB 异侧的两点,下列四个角中一定与∠ACD 互余的是 ( )A. ∠ADCB. ∠ABDC. ∠BACD. ∠BAD3.如图,点A,B,C,D,E 均在⊙O 上,∠BAC=15°,∠CED=30°,则∠BOD 的度数为( )A. 45°B. 60°C. 75°D. 90°4.如图,AB 是圆O 的弦,OC⊥AB,交圆O 于点C,连结OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( )A. 40°B. 50°C. 70°D. 80°5. 如图,点A ,B ,S 在圆上,若弦AB 的长度等于圆半径 2₂倍,则∠ASB 的度数是( )A. 22.5°B. 30°C. 45°D. 60°6.(2020·中考)如图,在等腰△ABC 中, AB =AC =25,BC =8,,按下列步骤作图:①以点 A 为圆心,适当的长度为半径作弧,分别交 AB ,AC 于点E ,F ,再分别以点 E ,F 为圆心,大 12₂EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点 A ,B为圆心,大 12₂AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心线段OA 的长为半径作圆,则⊙O 的半径为( )A.25B. 10C. 4D. 57. 如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于点 D,连结BE,若 AB =27,CD =1,则BE 的长是( )A. 5B. 6C. 7D. 88.已知⊙O 中,弦AB 的长等于半径,P 为弦AB 所对的弧上一动点,则∠APB 的度数为( )A. 30°B. 150°C. 30°或150°D. 60°或120°9. 已知⊙O 的直径CD=10cm,AB 是⊙O 的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为…… ( ) A.25cm B.45cmC.25cm 或 45cmD.23cm 或 43cm10. 如图,AB为⊙O的直径,AC交⊙O于点E,BC交⊙O于点D,CD=BD,∠C=70°,现给出以下三个结论:①∠A=45°;②AC=AB;③AE=BE.其中正确的有( )A. 1个B. 2 个C. 3个D. 0个二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,一次函数y= kx+b的图象与x轴,y轴分别相交于A,B两点,⊙O经过A,B两点,已知AB=2,则 kb的值为 .12. 如图,AB是⊙O的直径,点C,D在圆上,∠D=65°,则∠BAC等于度.13. 如图,已知矩形ABCD的边AB=3,AD=4.(1)以点 A为圆心,4为半径作圆A,则点B,C,D与圆A 的位置关系分别是;(2)若以A点为圆心作圆A,使B,C,D三点中至少有一个点在圆内,且至少有一个点在圆外,则圆A的半径r的取值范围是 .14. 如图,BC是半圆O 的直径,D,E是BC上两点,连结BD,CE 并延长交于点A,连结OD,OE.如果∠A=70°,那么∠DOE的度数为 .15. 如图所示,AB是⊙O的直径,弦CD⊥AB于点H,∠A=30∘,CD=23,则⊙O的半径是 .16. 如图所示,⊙O的直径AB=16cm,P是OB 中点,∠ABP=45°,则CD= cm.三、解答题(本大题有8小题,共66分)17.(6分)如图,点A,B,C都在⊙O上,OC⊥OB,点A 在劣弧BC上,且OA=AB,求∠ABC的度数.18. (6分)如图,在同一平面内,有一组平行线l₁,l₂,l₃,,相邻两条平行线之间的距离均为4,点O在直线l₁上,⊙O与直线l₃的交点为A,B,AB=12,求⊙O的半径.19.(6分)如图,在△ABC的外接圆上AB,BC,CA三弧的度数比为12:13:11.在劣弧BC上取一点D,过点D分别作直线AC,直线AB的平行线,分别交 BC于E,F两点,求∠EDF的度数.20. (8分)如图,△ABC内接于⊙O,AB=AC,,D在弧AB 上,连结CD交AB 于点E,B 是弧CD 的中点,求证:∠B=∠BEC.21.(8分)已知:如图,点M是/AB的中点,过点M的弦MN交AB 于点C,设⊙O的半径为4cm,. MN=43cm.(1)求圆心 O到弦MN的距离;(2)求∠ACM的度数.22.(10分)如图,已知方格纸中每个小正方形的边长为1个单位,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以C 为旋转中心旋转180°,得到△A₁B₁C,请画出△A₁B₁C;(2)平移△ABC,使点 A的对应点.A₂的坐标为(−2,−6),请画出平移后对应的图形△A₂B₂C₂;(3)若将△A₁B₁C绕某一点旋转可得到△A₂B₂C₂.请直接写出旋转中心的坐标.23.(10分)如图,已知AB是⊙O的直径,C是圆周上的动点,P 是ABC的中点.(1)求证:OP//BC;(2)如图,连结PA,PC交直径AB于点D,当(OC=DC时,求∠A的度数.24.(12分)我们学习了“弧、弦、圆心角的关系”,实际上我们还可以得到“圆心角、弧、弦,弦心距之间的关系”如下:圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦或两条弦的弦心距中有一组量相等,那么它们对应的其余各组量也相等弦心距指从圆心到弦的距离如图(1)中的 OC,OC′,弦心距也可以说成圆心到弦的垂线段的长度 l请直接运用圆心角、弧、弦、弦心距之间的关系解答下列问题.如图(2),点O是∠EPF的平分线上一点,以点O为圆心的圆与角的两边分别交于点A,B,C,D.(1)求证:AB=CD.(2)若角的顶点 P 在圆上或圆内,上述结论还成立吗? 若不成立,请说明理由;若成立,请加以证明.第3章 圆的基本性质1. A2. D3. D4. D5. C6. D7. B8. C9. C 10. A 11. 1212. 25 13. (1)B 在圆内、C 在圆外、D 在圆上(2)3<r<5 14. 40° 15. 2 16. 1417. 解:∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB 是等边三角形,∴∠AOB=60°,∵OC⊥OB,∴∠COB= 90°,∴∠COA = 90°- 60°= 30°,∴∠ABC=15°.18. 解:如图,连结 OA,过点O 作OD⊥AB 于点 D.∵ AB =12,∴AD =12AB =12×12=6.相邻两条平行线之间的距离均为4,∴OD=8.在 Rt△AOD 中,∵AD =6,OD =8,∴OA =AD 2+OD = 62+82=10.∴⊙O 的半径为 10.19. 解: ∵AB ,BC ,CA 三弧的度数比为12:13:11,∴ ABm.1212+13+11×360∘=120∘,AC−m m 1112+13+11×360∘=110∘,∴∠ACB =12×120∘= 0∘,∠ABC =12×110∘=55∘,∵ACED,AB DF,∴∠FED=∠ACB=60°,∠EFD=∠ABC= 55°,∴∠EDF =180°−60°−55°=65°20. 证明:∵B 是弧 CD 的中点, ∴BC =BD ,∴∠BCE = =∠BAC.:∠BEC =180°−∠BCE,∠ACE ,=180°-∠BAC--∠B,∴∠BEC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠BEC.21. 解:(1)连结 OM.∵点 M 是. AB 的中点,∴OM⊥AB.过点 O 作OD⊥MN 于点 D,由垂径定理,得 MD =12MN =23cm,在Rt△ODM 中,OM=4cm, MD =23cm,∴OD =OM 2−MD 2=2(cm ).故圆心 O 到弦MN 的距离为 2cm. (2)∵OD=2cm,OM=4cm,∴∠M=30°,∴∠ACM=60°.22. 解:(1)(2)图略.(3)旋转中心的坐标为(0,-2).23. (1)证明:连结AC,延长 PO 交AC 于点 H,如图,∵P 是 ABC 的中点,∴PH⊥AC,∵A B 是⊙O 的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC. (2)解:∵P 是 ABC 的中点, P C,∴∠PAC=∠PCA,:OA=OC, ∴ ∠OA C= ∠OCA,∴∠PAO=∠C O=CD 时,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD =2x,∴∠ODC=∠POD+∠OP C=3x,∵CD=CO,∴∠DOC=∠ODC=3x.在△POC 中,x+x+5x=180°,解得 x =180∘7,即 ∠PAO =180∘7.24. (1)证明:过点 O 作OM⊥AB 于点M,ON⊥CD 于点 N,连结OB,OD,则∠OMB=∠OND=90°,∵PO 平分∠EPF,∴O M=ON,∵OM⊥AB,ON⊥CD,∴AB=CD.(2)成立.当点 P 在圆上时如图;作OM⊥PB,ON⊥PD,垂足分别为M,N,∵PC平分∠EPF,∴OM=ON,∵OM⊥AB,ON⊥CD,∴PB=PD;当点P 在圆内时:过点 O作OM⊥AB,ON⊥CD,∵PO平分∠BPF,∴OM=ON.∵OM⊥AB,ON⊥CD,∴AB=CD.。

九年级数学上册第三章圆的基本性质3.5圆周角第1课时圆周角定理随堂练习(含解析)浙教版(2021年

九年级数学上册第三章圆的基本性质3.5圆周角第1课时圆周角定理随堂练习(含解析)浙教版(2021年

九年级数学上册第三章圆的基本性质3.5 圆周角第1课时圆周角定理随堂练习(含解析)(新版)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第三章圆的基本性质3.5 圆周角第1课时圆周角定理随堂练习(含解析)(新版)浙教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第三章圆的基本性质3.5 圆周角第1课时圆周角定理随堂练习(含解析)(新版)浙教版的全部内容。

3。

5__圆周角第1课时圆周角定理1.[2017·徐州]如图3-5-1,点A,B,C在⊙O上,∠AOB=72°,则∠ACB =( D )A.28°B.54° C.18°D.36°【解析】根据同弧所对的圆周角等于圆心角的一半,得∠ACB=错误!∠AOB =错误!×72°=36°。

图3-5-1 图3-5-22.如图3-5-2,BC是⊙O的直径,A是⊙O上异于B,C的一点,则∠A的度数为( D )A.60°B.70° C.80°D.90°3.如图3-5-3,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是( A )A.25°B.40° C.30°D.50°【解析】∵DE∥OA,∴∠AOD=∠D=50°,∴∠C=12∠AOD=25°。

故选A.图3-5-3 图3-5-44.[2017·广州]如图3-5-4,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连结CO,AD,∠BAD=20°,则下列说法中正确的是( D ) A.AD=2OB B.CE=EOC.∠OCE=40°D.∠BOC=2∠BAD【解析】∵AB⊥CD,∴错误!=错误!,∴∠BOC=2∠BAD=40°,∴∠OCE=90°-40°=50°.故选D。

浙教版九年级上《第三章圆的基本性质》期末复习试卷(含解析)

浙教版九年级上《第三章圆的基本性质》期末复习试卷(含解析)

期末复习:浙教版九年级数学学上册第三章圆的基本性质一、单选题(共10题;共30分)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O上C. 点P在⊙O外D. 无法判断2.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°3.如图,AB是圆0的直径,弦CD AB于点E,则下列结论正确的是( )A. OE=BEB.C. △BOC是等边三角形D. 四边形ODBC是菱形4.如图,在⊙O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦A. 2B. 3C. 4D. 55.如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()A. B. 2 C. 2 D. 36.如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为()A. 28°B. 56°C. 60°D. 62°7.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是()A.90°B.120°C.150°D.180°8.如图,AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A. 30°B. 40°C. 45°D. 50°9.如图,CD为⊙O的直径,CD⊥EF,垂点为G,∠EOD=40°,则∠DCF ()A. 80°B. 50°C. 40°D. 20°10.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A. 80°B. 50°C. 40°D. 20°二、填空题(共10题;共30分)11.如图,在⊙O中,点A,B,C在⊙O上,且∠ACB=110°,则∠α=________.12.如图,AB是⊙O的直径,点C为⊙O上一点,∠AOC=50°,则∠ABC= ________.13.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M,N分别是AB、BC 的中点,则MN长的最大值是________.14.平面直角坐标系中,以点P(0,1)为中心,把点A(5,1)逆时针旋转90°,得到点B,则点B的坐标为________.15.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是________°16.如图,点,,,在上,,,是中点,则的度数为________.17.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD=________.18.如图,⊙O是正方形ABCD的外接圆,点E是上任意一点,则∠BEC的度数为________.19.如图,P是等边三角形ABC中的一个点,PA=2,PB=2 ,PC=4,则三角形ABC的边长为________20.如图,将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,An分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为________三、解答题(共8题;共60分)21.(2017•宁波)在的方格中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.22.如图,已知AB是⊙O的直径,CD⊥AB ,垂足为点E,如果BE=OE ,AB=12,求△ACD的周长23.已知,AB、AC是圆O的两条弦,AB=AC,过圆心O作OH⊥AC于点H.(1)如图1,求证:∠B=∠C;(2)如图2,当H、O、B三点在一条直线上时,求∠BAC的度数;(3)如图3,在(2)的条件下,点E为劣弧BC上一点,CE=6,CH=7,连接BC、OE交于点D,求BE的长和的值.24.如图所示,△ABC中,AB=AC=10,BC=12,求△ABC外接圆的半径.25.如图,△ABC中,AB=AC,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,连接BD、CE.求证:BD=CE.26.如图,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.(1)若∠BAC=30°,求证:CD平分OB.(2)若点E为弧ADB的中点,连接0E,CE.求证:CE平分∠OCD.(3)若⊙O的半径为4,∠BAC=30°,则圆周上到直线AC距离为3的点有多少个?请说明理由.27.如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.28.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,交OA于点F,连接EF并延长EF交AB于G,且EG⊥AB.(1)求证:直线AB是⊙O的切线;(2)若EF=2FG,AB= ,求图中阴影部分的面积;(3)若EG=9,BG=12,求BD的长.答案解析部分一、单选题1.【答案】A【考点】点与圆的位置关系【解析】【解答】解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙0内,故选A.【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.2.【答案】D【考点】圆周角定理【解析】【分析】由⊙O是△ABC的外接圆,若∠ABC=40°,根据圆周角定理,即可求得答案。

第3章 圆的基本性质 浙教版数学九年级上册测试(含答案)

第3章 圆的基本性质 浙教版数学九年级上册测试(含答案)

浙教版数学九年级上册第三章圆的基本性质一、选择题1.下列说法正确的是( )A.三个点可以确定一个圆B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.长度相等的弧是等弧2.已知一个扇形的面积是24π,弧长是2π,则这个扇形的半径为( )A.24B.22C.12D.63.如图,点A、B、C在⊙O上,∠C=40∘,则∠AOB的度数是( )A.50∘B.60∘C.70∘D.80∘4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,AE=1,则弦CD的长是()A.5B.5C.25D.65.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是( )A.28°B.30°C.36°D.56°6.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为( )A .103πB .109πC .59πD .518π7.如图, AB 是半圆O 的直径,点C ,D 在半圆O 上.若 ∠ABC =50° ,则 ∠BDC 的度数为( )A .90°B .100°C .130°D .140°8. 如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )A .3B .6C .3D .239.如图,正五边形ABCDE 内接于⊙O ,阅读以下作图过程:①作直径AF ;②以点F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接AM ,MN ,AN .结论Ⅰ:△AMN 是等边三角形;结论Ⅱ:从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正十八边形.对于结论Ⅰ和结论Ⅱ,下列判断正确的是( )A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对10.如图,抛物线y=x2﹣8x+15与x轴交于A、B两点,对称轴与x轴交于点C,点D(0,﹣2),点E (0,﹣6),点P是平面内一动点,且满足∠DPE=90°,M是线段PB的中点,连接CM.则线段CM的最大值是( )A.3B.412C.72D.5二、填空题11.如图,在⊙O中,弦AB,CD相交于点P.若∠A=40°,∠APD=75°,则∠B= °.12.如图,AB、AC是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N.如果MN=2.5,那么BC= .13.如图,四边形ABCD内接于⊙O ,若四边形ABCD的外角∠DCE=65°,则∠BAD的度数是 .14.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为 .15.我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的割圆术:“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O,若用圆内接正十二边形作近似估计,可得π的估计值为 .的面积,可得π的估计值为33216.如图,点M(2,0)、N(0,4),以点M为圆心5为半径作⊙M交y轴于A、B两点,点C为⊙M上一动点,连接CN,取CN中点D,连接AD、BD,则A D2+B D2的最大值为 .三、解答题17.如图,四边形ABCD为⊙O的内接四边形,AC是⊙O的直径,AD=BD,∠CAB=32°.求∠ACD的度数.18.如图,OC为⊙O的半径,弦AB⊥OC于点D,OC=10,CD=4,求AB的长.19.如图,正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求解答下列问题:(1)△A1B1C1与△ABC关于坐标原点O成中心对称,则B1的坐标为__________;(2)BC与B1C1的位置和数量关系为___________;(3)将△ABC绕某点逆时针旋转90°后,其对应点分别为A2(―1,―2),B2(1,―3),C2(0,―5),则旋转中心的坐标为___________.20.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,(1)求∠ACB的度数;(2)求BC的长;(3)求AD,BD的长.21.如图,AB是⊙O的直径,C是⏜BD的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF.(2)若CD=6,AC=8,求⊙O的半径及CE的长.22.如图所示,AB为☉O的直径,AC是☉O的一条弦,D为BC的中点,作DE⊥AC于点E,交AB的延长线于点F,连接DA.(1)若AB=90 cm,则圆心O到EF的距离是多少?说明你的理由.(2)若DA=DF=63,求阴影部分的面积(结果保留π).23.如图,AB是⊙O的直径,弦CD⊥AB与点E,已知AB=10,AE=8,点P为AB上任意一点,(点P不与A、B重合),连结CP并延长与⊙O交于点Q,连QD,PD,AD.(1)求CD的长.(2)若CP=PQ,直接写出AP的长.(3)①若点P在A,E之间(点P不与点E重合),求证:∠ADP=∠ADQ.②若点P在B,E之间(点P不与点E重合),求∠ADP与∠ADQ满足的关系.答案解析部分1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】C9.【答案】D10.【答案】C11.【答案】3512.【答案】513.【答案】65°14.【答案】15°15.【答案】316.【答案】49217.【答案】61°18.【答案】1619.【答案】(1)(2,2);(2)平行且相等;(3)(0,―1).20.【答案】(1)∠ACB=90°(2)BC=8cm(3)BD=AD=52cm21.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠A=90°-∠ABC.∵CE⊥AB,∴∠ECB=90°-∠ABC,又∵C是BD的中点,∴CD=BC,∴∠DBC=∠A,∴∠ECB=∠DBC,∴CF= BF;(2)解:∵BC=CD,∴BC=CD=6.在Rt△ABC中,AB= BC2+AC2=62+82=10,∴⊙O的半径为5;∵S△ABC= 12AB×CE= 12BC×AC,∴CE= BC×ACAB =6×810=245.22.【答案】(1)解:如图所示,连接OD,∵D为BC的中点,∴∠CAD=∠BAD.∵OA=OD,∴∠BAD=∠ADO.∴∠CAD=∠ADO.∴OD∥AE.∵DE⊥AC,∴OD⊥EF.∴OD的长是圆心O到EF的距离.∵AB=90 cm,∴OD=12AB=45 cm.(2)解:如图所示,过点O作OG⊥AD交AD于点G.∵DA=DF,∴∠F=∠BAD.由(1),得∠CAD=∠BAD,∵∠F+∠BAD+∠CAD=90°,∴∠F=∠BAD=∠CAD=30°.∴∠BOD=2∠BAD=60°,OF=2OD.∵在Rt△ODF中,OF2-OD2=DF2,∴(2OD)2-OD2=(63)2,解得OD=6.在Rt△OAG中,OA=OD=6,∠OAG=30°,AG=OA2―O G2=33,AD=23,S△AOD=1×63×3=93.2+93=6π+93.∴S阴影=S扇形OBD+S△AOD=60π×6236023.【答案】(1)解:连接OD,∵直径AB=10,AE=8,∴BE=2.∴OE=5-2=3.又∵AB⊥CD,在Rt△PED中,P D2=P E2+E D2∴ED=52―32=4∴CD=2ED=8(2)解:若CP=PQ,则点P与点O重合,或点P与点E重合.所以AP=5或8(3)解:①连接AC,由图可知∠ACQ=∠ADQ,因为AB是⊙O的直径,AB⊥CD,所以CE=DE,即AB是CD的垂直平分线,所以AC=AD,PC=PD,因为AP=AP,所以∠ACP=∠ADP ,所以∠ADP=∠ADQ .②∠ADP+∠ADQ=180°.理由如下:连接AC ,因为AB 是直径,AB ⊥CD ,所以AC=AD ,CE=DE ,所以△ACP ≌△ADP (SSS ),所以∠ACP=∠ADP ,因为∠ACP=12ADQ ,∠ADQ=12ACQ ,所以∠ACP+∠ADQ=12(ADQ +ACQ )=180°.。

九年级数学上册第3章圆的基本性质3.5圆周角第1课时圆周角定理及其推论1同步练习新版浙教版word格式

九年级数学上册第3章圆的基本性质3.5圆周角第1课时圆周角定理及其推论1同步练习新版浙教版word格式

第3章 圆的基本性质3.5 圆周角第1课时 圆周角定理及其推论1知识点1 识别圆周角1.下列四个图中,∠x 是圆周角的是( )图3-5-12.如图3-5-2,图中的圆周角共有________个,其中BC ︵所对的圆周角是__________.3-5-23-5-3知识点2 圆周角定理3.如图3-5-3,A ,B ,C 是⊙O 上的三点,且∠ABC =70°,则∠AOC 的度数是( ) A .35° B .140° C .70° D .70°或140°4.2017·阜新如图3-5-4,△ABC 内接于⊙O ,且OB ⊥OC ,则∠A 的度数是( )A.90° B.50° C.45° D.30°图3-5-43-5-55.如图3-5-5,△ABC的顶点A,B,C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC 的度数是________.图3-5-66.2017·绍兴如图3-5-6,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为________.知识点3 圆周角定理推论17.如图3-5-7,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是( )3-5-7A.35° B.45° C.55° D.65°8.如图3-5-8,AB是⊙O的直径,C是⊙O上一点,AB=10,AC=6,OD⊥BC,垂足为D,则BD的长为( )3-5-8A.2 B.3 C.4 D.69.从下列三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )图3-5-910.如图3-5-10,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,求⊙O的直径.图3-5-10图3-5-1111.如图3-5-11,点A ,B ,C ,P 在⊙O 上,CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE =40°,则∠P 的度数为( )A .140°B .70°C .60°D .40°12.如图3-5-12,△ABC 的外接圆上,AB ︵,BC ︵,CA ︵的度数之比为12∶13∶11.在劣弧BC 上取一点D ,分别作直线AC ,AB 的平行线,且交BC 于E ,F 两点,则∠EDF 的度数为( )A .55°B .60°C .65°D .70°3-5-123-5-1313.如图3-5-13,已知EF 是⊙O 的直径,把∠A 为60°的直角三角尺ABC 的一条直角边BC 放在直线EF 上,斜边AB 与⊙O 交于点P ,点B 与点O 重合;将三角尺ABC 沿OE 方向平移,直至点B 与点E 重合为止.设∠POF =x °,则x 的取值范围是________.14.如图3-5-14,⊙O 的半径OD 垂直弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,求EC 的长.图3-5-1415.2017·永嘉县二模如图3-5-15,已知AB 是半圆O 的直径,OC ⊥AB 交半圆O 于点C ,D 是射线OC 上一点,连结AD 交半圆O 于点E ,连结BE ,CE .(1)求证:EC 平分∠BED ; (2)当BE =DE 时,求证:AE =CE .图3-5-1516.新定义如图3-5-16,P 为圆外一点,PB 交圆于点A ,B ,PD 交圆于点C ,D ,BD ︵的度数为75°,AC ︵的度数为15°.(1)求∠P的度数;(2)如果我们把顶点在圆外,并且两边都和圆相交的角叫圆外角,请你仿照圆周角定理“圆周角的度数等于它所对弧的度数的一半”来概括出圆外角的性质;(3)请你定义“圆内角”,并概括出圆内角的性质.图3-5-16详解详析1.C2.4 ∠A ,∠D 3.B4.C [解析] ∵OB ⊥OC ,∴∠BOC =90°,∴∠A =12∠BOC =45°. 故选C.5.60° [解析] ∵∠ABC =12∠AOC , 而∠ABC +∠AOC =90°, ∴12∠AOC +∠AOC =90°, ∴∠AOC =60°.6.90° [解析] 根据一条弧所对的圆周角的度数是它所对的圆心角度数的一半,得到∠DOE =2∠A =2×45°=90°.7.C8.C [解析] 根据垂径定理,得BD =12BC ,因此只要求出BC 的长即可. ∵AB 是⊙O 直径,∴∠C 是直角,∴BC =102-62=8. ∵OD ⊥BC ,∴BD =12BC ,∴BD =4.故选C. 9.B10.解:连结OB ,OA ,∵∠BAC =120°,AB =AC , ∴∠C =30°,∴∠BOA =60°. 又∵OA =OB ,∴△AOB 是等边三角形. ∴OB =AB =4,∴⊙O 的直径为2×4=8.11.B [解析] ∵CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE =40°,∴∠DOE =360°-90°-90°-40°=140°,∴∠P =12∠DOE =70°.故选B.12.C [解析] ∵AB ︵,BC ︵,CA ︵的度数之比为12∶13∶11,∴AB ︵=1212+13+11×360°=120°,AC ︵=1112+13+11×360°=110°,∴∠ACB =12×120°=60°,∠ABC =12×110°=55°. ∵AC ∥DE ,AB ∥DF , ∴∠FED =∠ACB =60°, ∠EFD =∠ABC =55°,∴∠EDF =180°-60°-55°=65°. 故选C. 13.30≤x ≤60[解析] 如图①,当点B 与点O 重合时,∠POF =30°.如图②,当点B与点E重合时,∠POF=2∠ABC=60°.∴x的取值范围是30≤x≤60.14.解:∵⊙O的半径OD垂直弦AB于点C,AB=8,∴AC=CB=4. 设⊙O的半径为r,则OC=r-2.在Rt△AOC中,OA2=AC2+OC2,即r2=42+(r-2)2,解得r=5,∴OC=3.连结BE,在Rt△ABE中,∵AE=10,AB=8,∴BE=AE2-AB2=102-82=6.在Rt△BCE中,∵BE=6,BC=4,∴EC=BE2+BC2=62+42=2 13.15.证明:(1)∵AB是半圆O的直径,∴∠AEB=90°,∴∠DEB=90°.∵OC⊥AB,∴∠AOC=∠BOC=90°,∴∠BEC=45°,∴∠DEC=45°,∴∠BEC=∠DEC,即EC平分∠BED.(2)如图,连结BC,OE.在△BEC 与△DEC 中,⎩⎪⎨⎪⎧BE =DE ,∠BEC=∠DEC,EC =EC ,∴△BEC ≌△DEC ,∴∠CBE =∠CDE . ∵∠CDE =90°-∠A =∠ABE , ∴∠ABE =∠CBE . ∴∠AOE =∠COE , ∴AE =CE .16.解:(1)如图①,连结AD ,∵BD ︵的度数是75°,AC ︵的度数是15°,∴∠BAD =12×75°=37.5°,∠ADC =12×15°=7.5°, ∴∠P =∠BAD -∠ADC =30°.(2)圆外角的性质:圆外角的度数等于它所夹的较大弧的度数减去较小弧的度数所得差的一半.理由:如图①,连结AD ,∵圆周角的度数等于它所对弧的度数的一半,∴∠BAD =m 12BD ︵,∠ADC =m 12AC ︵, ∴∠P =∠BAD -∠ADC =m 12BD ︵-12AC ︵=12(BD ︵-AC ︵),∴圆外角的度数等于它所夹的较大弧的度数减去较小弧的度数所得差的一半.(3)圆内角的定义:圆的两条弦在圆内相交所成的角叫做圆内角.圆内角的性质:圆内角的度数等于它和它的对顶角所对两弧的度数和的一半. 理由:如图②,延长BA ,交圆于点D ,延长CA ,交圆于点E ,连结CD . ∵∠BAC 是△ACD 的一个外角,∴∠BAC =∠C +∠D .∵圆周角的度数等于它所对弧的度数的一半,∴∠C =m 12DE ︵,∠D =m 12BC ︵, ∴∠BAC =∠C +∠D =m 12DE ︵+12BC ︵= 12(DE ︵+BC ︵).。

浙教版九年级数学上册 第3章 圆的基本性质 选择题训练(含解析)

浙教版九年级数学上册 第3章 圆的基本性质 选择题训练(含解析)

第3章圆的基本性质选择题复习1.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A.3B.C.D.42.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB 与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.83.如图,O的直径垂直于弦CD,垂足为E,22.5AOC=,CD的长为()∠=︒,4A.B.4C.D.84.如图,点A、B、C都在O上,O的半径为2,30∠=︒,则AB的长是()ACBA.2πB.πC.23πD.13π5.如图,在矩形ABCD中,已知4AB=,3BC=,矩形在直线l上绕其右下角的顶点B向右旋转90︒至图①位置,再绕右下角的顶点继续向右旋转90︒至图②位置,⋯,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()A.2015πB.3019.5πC.3018πD.3024π6.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°7.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)8.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.49.如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB=40m,点C是的中点,点D是AB的中点,且CD=10m,则这段弯路所在圆的半径为()A.25m B.24m C.30m D.60m10.在圆中,与半径相等的弦所对的圆心角的度数为()A.30°B.45°C.60°D.90°11.如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112°D.124°12.如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°13.如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°14.如图,在⊙O中,所对的圆周角∠ACB=50°,若P为上一点,∠AOP=55°,则∠POB的度数为()A.30°B.45°C.55°D.60°15.如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°16.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3B.3C.4D.217.如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°18.如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A.70°B.55°C.35.5°D.35°19.如图,正六边形ABCDEF内接于⊙O,连接BD.则∠CBD的度数是()A.30°B.45°C.60°D.90°20.如图,在正六边形ABCDEF中,AC=2,则它的边长是()A.1B.C.D.221.如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°22.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°23.如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=6,则的长为()A.B.C.2πD.2π24.如图,点A、B,C,D在⊙O上,AB=AC,∠A=40°,BD∥AC,若⊙O的半径为2.则图中阴影部分的面积是()25.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()26.如图,直径为2cm的圆在直线l上滚动一周,则圆所扫过的图形面积为()A.5πB.6πC.20πD.24π27.如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()28.一个扇形的半径为6,圆心角为120°,则该扇形的面积是()A.2πB.4πC.12πD.24π29.如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平行四边形,则图中阴影部分的面积为()A.6πB.3πC.2πD.2π第3章圆的基本性质选择题复习参考答案与试题解析1.【分析】连接BP,如图,先解方程x2﹣4=0得A(﹣4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.【解答】解:连接BP,如图,当y=0时,x2﹣4=0,解得x 1=4,x2=﹣4,则A(﹣4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.2.【分析】由Rt△APB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,据此求解可得.【解答】解:∵PA⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,∴OM =5, 又∵MP ′=2, ∴OP ′=3, ∴AB =2OP ′=6, 故选:C .【点评】本题主要考查点与圆的位置关系,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB 取得最小值时点P 的位置.3.【解答】解:22.5A ∠=︒,245BOC A ∴∠=∠=︒,O 的直径AB 垂直于弦CD ,CE DE ∴=,OCE ∆为等腰直角三角形,CE ∴==,2CD CE ∴==. 故选:C .4.【解答】解30ACB ∠=︒,60AOB ∴∠=︒,2OA =, ∴60221801803n r AB πππ===︒, 故选:C .5.【解答】解:转动一次A 的路线长是:9042180ππ⨯=,转动第二次的路线长是:90551802ππ⨯=, 转动第三次的路线长是:90331802ππ⨯=, 转动第四次的路线长是:0, 转动五次A 的路线长是:9042180ππ⨯=, 以此类推,每四次循环,故顶点A 转动四次经过的路线长为:352622ππππ++=,20154503÷=….3 顶点A 转动2015次经过的路线长为:65043024ππ⨯=.故选:D .6.【分析】根据图形的对称性,用360°除以3计算即可得解.【解答】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选:C .【点评】本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键. 7.【分析】先求出AB =6,再利用正方形的性质确定D (﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90°,此时旋转前后的点D 关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D 的坐标.【解答】解:∵A (﹣3,4),B (3,4),∴AB =3+3=6,∵四边形ABCD 为正方形,∴AD =AB =6,∴D (﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D 的坐标为(3,﹣10).故选:D .【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.8.【分析】过点O 作OF ⊥CD 于点F ,OG ⊥AB 于G ,连接OB 、OD 、OE ,由垂径定理得出DF =CF ,AG =BG =AB =3,得出EG =AG ﹣AE =2,由勾股定理得出OG ==2,证出△EOG是等腰直角三角形,得出∠OEG=45°,OE=OG=2,求出∠OEF=30°,由直角三角形的性质得出OF=OE=,由勾股定理得出DF═,即可得出答案.【解答】解:过点O作OF⊥CD于点F,OG⊥AB于G,连接OB、OD、OE,如图所示:则DF=CF,AG=BG=AB=3,∴EG=AG﹣AE=2,在Rt△BOG中,OG===2,∴EG=OG,∴△EOG是等腰直角三角形,∴∠OEG=45°,OE=OG=2,∵∠DEB=75°,∴∠OEF=30°,∴OF=OE=,在Rt△ODF中,DF===,∴CD=2DF=2;故选:C.【点评】本题考查的是垂径定理、勾股定理以及直角三角形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.【解答】解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m故选:A.【点评】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OB的长度.10.【分析】画出符合题意的几何图形,证明△OAB是等边三角形即可得到此弦所对圆心角的度数.【解答】解:如图,∵OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°.故选:C.【点评】本题考查了圆心角、弧、弦的关系.解答该题时,利用了等边三角形的判定和性质,熟记和圆有关的各种性质是解题的关键.11.【分析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】解:∵∠ACB=90°,∠A=56°,∴∠ABC=34°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故选:C.【点评】此题主要考查了圆周角定理以及四边形内角和定理,正确得出∠OCE的度数是解题关键.12.【分析】连接AC,如图,根据圆周角定理得到∠BAC=90°,∠ACB=∠ADB=70°,然后利用互余计算∠ABC的度数.【解答】解:连接AC,如图,∵BC是⊙O的直径,∴∠BAC=90°,∵∠ACB=∠ADB=70°,∴∠ABC=90°﹣70°=20°.故答案为20°.故选:A.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.13.【分析】由圆周角定理得到∠AOC=2∠ADC=60°,然后由垂径定理和圆心角、弧、弦的关系求得∠BOC的度数.【解答】解:如图,∵∠ADC=30°,∴∠AOC=2∠ADC=60°.∵AB是⊙O的弦,OC⊥AB交⊙O于点C,故选:D.【点评】本题考查了垂径定理,圆周角定理,圆心角、弧、弦之间的关系等知识点,能综合运用定理进行推理是解此题的关键.14.【分析】根据圆心角与圆周角关系定理求出∠AOB的度数,进而由角的和差求得结果.【解答】解:∵∠ACB=50°,∴∠AOB=2∠ACB=100°,∵∠AOP=55°,∴∠POB=45°,故选:B.【点评】本题是圆的一个计算题,主要考查了在同圆或等圆中,同弧或等弧所对的圆心角等于它所对的圆周角的2信倍.15.【分析】连接AC,根据圆内接四边形的性质求出∠DAB,根据圆周角定理求出∠ACB、∠CAB,计算即可.【解答】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°﹣∠C=70°,∵=,∴∠CAB=∠DAB=35°,∵AB是直径,∴∠ABC=90°﹣∠CAB=55°,故选:A.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.16.【分析】连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.【解答】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故选:D.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理.17.【分析】根据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.【解答】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.【点评】此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.18.【分析】根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.【解答】解:连接OB,∵点B是的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°,故选:D.【点评】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.【解答】解:∵在正六边形ABCDEF中,∠BCD==120°,BC=CD,∴∠CBD=(180°﹣120°)=30°,故选:A.【点评】本题考查的是正多边形和圆、等腰三角形的性质,三角形的内角和,熟记多边形的内角和是解题的关键.20.【分析】过点B作BG⊥AC于点G.,正六边形ABCDEF中,每个内角为(6﹣2)×180°÷6=120°,即∠ABC=120°,∠BAC=∠BCA=30°,于是AG=AC=,AB=2,【解答】解:如图,过点B作BG⊥AC于点G.正六边形ABCDEF中,每个内角为(6﹣2)×180°÷6=120°,∴∠ABC=120°,∠BAC=∠BCA=30°,∴AG=AC=,∴GB=1,AB=2,即边长为2.故选:D.【点评】本题考查了正多边形,熟练运用正多边形的内角和公式是解题的关键.21.【分析】根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.【解答】解:∵五边形ABCDE为正五边形,∴∠ABC=∠C==108°,CD CB∴∠CBD==36°,∴∠ABD=∠ABC﹣∠CBD=72°,故选:C.【点评】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n﹣2)×180°是解题的关键.22.【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.【点评】本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.【分析】连接OC,根据等边三角形的性质得到∠BOC=80°,根据弧长公式计算即可.【解答】解:连接OC,∵OA=OC,∠CAO=60°,∴△AOC为等边三角形,∴∠AOC=60°,∴∠BOC=∠AOB﹣∠AOC=140°﹣60°=80°,则的长==,【点评】本题考查的是弧长的计算,等边三角形的判定和性质,掌握弧长公式:l =是解题的关键. 24.【分析】连接BC 、OD 、OB ,先证△BOD 是等边三角形,再根据阴影部分的面积是S 扇形BOD ﹣S △BOD 计算可得.【解答】解:如图所示,连接BC 、OD 、OB ,∵∠A =40°,AB =AC ,∴∠ACB =70°,∵BD ∥AC ,∴∠ABD =∠A =40°,∴∠ACD =∠ABD =40°,∴∠BCD =30°,则∠BOD =2∠BCD =60°,又OD =OB ,∴△BOD 是等边三角形,则图中阴影部分的面积是S 扇形BOD ﹣S △BOD =﹣×22 =π﹣,故选:B.【点评】本题主要考查扇形面积的计算,解题的关键是掌握等腰三角形和等边三角形的判定与性质、圆周角定理、扇形的面积公式等知识点.25.【分析】根据题意,作出合适的辅助线,即可求得DE的长、∠DOB的度数,然后根据图形可知阴影部分的面积是△ABC的面积减去△AOD的面积和扇形BOD的面积,从而可以解答本题.【解答】解:∵在Rt△ABC中,∠ABC=90°,AB=2,BC=2,∴tan A=,∴∠A=30°,∴∠DOB=60°,∵OD=AB=,∴DE=,∴阴影部分的面积是:=,故选:A.【点评】本题考查扇形面积的计算、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.26.【分析】根据圆的面积和矩形的面积公式即可得到结论.【解答】解:圆所扫过的图形面积=π+2π×2=5π,故选:A.【点评】本题考查了圆的面积的计算矩形的面积的计算,圆的周长的计算,中点圆所扫过的图形面积是圆的面积与矩形的面积和是解题的关键.27.【分析】连接OB 、OC ,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长2,利用三角形和扇形的面积公式即可求解;【解答】解:作OD ⊥BC ,则BD =CD ,连接OB ,OC ,∴OD 是BC 的垂直平分线, ∵=,∴AB =AC ,∴A 在BC 的垂直平分线上,∴A 、O 、D 共线,∵∠ACB =75°,AB =AC ,∴∠ABC =∠ACB =75°,∴∠BAC =30°,∴∠BOC =60°,∵OB =OC ,∴△BOC 是等边三角形,∴OA =OB =OC =BC =2,∵AD ⊥BC ,AB =AC ,∴BD =CD ,∴AD 经过圆心O ,∴OD =OB =,∴AD =2+,∴S △ABC =BC •AD =2+,S △BOC =BC •OD =,∴S 阴影=S △ABC +S 扇形BOC ﹣S △BOC =2++﹣=2+π,【点评】本题主要考查了扇形的面积公式,圆周角定理,垂径定理等,明确S 阴影=S △ABC +S 扇形BOC ﹣S △BOC 是解题的关键.28.【分析】根据扇形的面积公式S =计算即可.【解答】解:S ==12π,故选:C .【点评】本题考查的是扇形面积的计算,掌握扇形的面积公式S =是解题的关键.29.【分析】连接OB ,根据平行四边形的性质得到AB =OC ,推出△AOB 是等边三角形,得到∠AOB =60°,根据扇形的面积公式即可得到结论.【解答】解:连接OB ,∵四边形OABC 是平行四边形,∴AB =OC ,∴AB =OA =OB ,∴△AOB 是等边三角形,∴∠AOB =60°,∵OC ∥AB ,∴S △AOB =S △ABC ,∴图中阴影部分的面积=S 扇形AOB ==6π,【点评】本题考查的是扇形面积的计算,平行四边形的性质,掌握扇形的面积公式是解题的关键.。

浙教版数学九年级上册 第3章测试卷 圆的基本性质(含答案)

浙教版数学九年级上册  第3章测试卷 圆的基本性质(含答案)

第3章测试卷圆的基本性质班级学号得分姓名一、选择题(本大题有10小题,每小题3分,共30分)1.已知⊙O的直径为10,点P到点O的距离大于8,那么点P的位置( )A. 一定在⊙O的内部B. 一定在⊙O的外部C. 一定在⊙O上D. 不能确定2.正六边形的每个内角度数为( )A. 90°B. 108°C. 120°D. 150°3.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为( )A. 60°B. 50°C. 40°D. 20°4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是( )A7 B. 7 C. 6 D. 85. 下列有关圆的一些结论:①与半径长相等的弦所对的圆周角是30°;②圆内接正六边形的边长与该圆半径相等;③垂直于弦的直径平分这条弦;④平分弦的直径垂直于弦.其中正确的是( )A. ①②③B. ①③④C. ②③D. ②④6. 如图,正方形ABCD 内接于⊙O,AB=22,则AB的长是( )A. πB.32π C. 2π D127.如图,已知 BC 是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点 A,点C重合),BD与OA交于点E,设∠AED=α,∠AOD=β,则( )A. 3α+β=180°B. 2α+β=180°C. 3α-β=90°D. 2α-β=90°8. 如图,在扇形 AOB中,∠AOB=90°,点C 是弧AB 的中点,点 D 在OB 上,点 E 在OB 的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为( )A. π-2B. 2π—2C. π—4D. 2π-49. 如图,四边形ABCD内接于⊙O,点I是△ABC角平分线的交点,∠AIC=124°,点 E 在AD 的延长线上,则∠CDE的度数为( )A. 56°B. 62°C. 68°D. 78°10. 如图,AB是半圆O 的直径,点 P 从点O 出发,沿OA→AB→BO(的路径匀速运动一周.设OP 的长为s,运动时间为t,则下列图象能大致地刻画s与t之间关系的是( )二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,点 A,B,C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为 .12. 如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB 的距离为 .13. 如图,在四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC 交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是 .14.如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为 .15.如图,在半径2₂的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形面积为 .16. 如图所示,E,F分别是正方形ABCD 的边AB,BC上的点,BE=CF,连结CE,DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转了.三、解答题(本大题有8小题,共66分)17. (6分)已知扇形的半径为6cm,面积为10πcm²,求该扇形的弧长.18. (6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,点O,M也在格点上.(1)画出△ABC关于直线OM 对称的△A₁B₁C₁;(2)画出△ABC绕点O按顺时针方向旋转 90°后所得的△A₂B₂C₂.19. (6分)中国的拱桥始建于东汉中后期,已有一千八百余年的历史,如图,一座拱桥在水面上方部分是.AB,拱桥在水面上的跨度AB为8米,拱桥AB与水面的最大距离为3米.(1)用直尺和圆规作出AB所在圆的圆心O;(2)求拱桥 AB所在圆的半径.20.(8分)如图所示,在△ABC中,AB=AC,∠A=30°,,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点 B作BP 平行于DE,交⊙O于点P,连结OP,CP.(1)求证:BD=DC;(2)求∠BOP的度数.21.(8分)如图,AB是⊙O的直径,C是.AE的中点,CD⊥AB于点D,交AE于点F,连结AC.求证:AF=CF.22.(10分)如图,A,P,B,C是⊙O上的四点,且满足∠BAC=∠APC=60°.(1) 试判断△ABC是否为等边三角形? 为什么?(2)若⊙O的半径OD⊥BC于点E,BC=8,,求⊙O的半径长.23.(10分)如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的⊙O交BC 于点D,且.BD= DE.(1)求证:AB为⊙O的直径;(2)若AB=8,∠BAC=45°,,求阴影部分的面积.24.(12分)如图,点A,B,C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB;(2)如图,过点O作(OE⊥AB于点E,交AC于点 P.若AB=2,∠AOE=30°,求 PE的长.第3章测试卷 圆的基本性质1. B2. C3. B4. B5. C6. A7. D8. A9. C 10. C 11. 6 12. 3 13. 6π14 12 15. π 16. 9017. 解:由 S =12l ⋅R 得 l =2S R =2×106=103π(cm ).18. 解:(1)如图, △A₁B₁C₁即为所求作的三角形.(2)如图, △A₂B₂C₂即为所求作的三角形.19. 解:(1)如图1所示,点 O 即为所求;(2)如图2 所示,取 AB 的中点D ,连结OD 交AB 于点 E,连结OA,则 OD ⊥AB,且AE=EB=4米,由题意得,DE=3米,设圆的半径为r 米,在 Rt△AEO 中, AE +EO²=OA²,即 4²+(r−3)²=r²,解得 r =256.即拱桥AB 所在圆的半径为 256米.20. (1)证明:如图,连结 AD.∵AB 为⊙O 的直径,∴∠ADB=90°,即 AD⊥BC,∵AB=AC,∴BD=CD. (2)解:∵∠BAC= 30°,AB= AC,∴ ∠ABC =12×(180∘−30∘)=75°.∵四边形 ABDE 为圆O 的内接四边形,∴∠EDC=∠BAC=30°.∵BP∥DE,∴∠PBC=∠EDC=30°,∴∠OBP=∠ABC--∠PBC=45°.∵OB =OP,∴∠OPB=∠OBP=45°,∴∠BOP =90°21. 证明:延长CD 交⊙O 于点 H,∵C 是 AE 的中点, ∴AC =CE ,∵CD ⊥AB,∴AC =AH ,∴CE =AH ,∴∠ACD=∠CAE,∴AF=CF.22. 解:(1)△ABC 是等边三角形.理由:∵∠BAC=∠APC=60°,又∵∠APC=∠ABC,∴∠ABC=60°,∴∠ACB =180°−∠BAC−∠ABC =180°− 60°−60°=60°,∴△ABC 是等边三角形. (2)如图,连结OB,∵△ABC 为等边三角形,⊙O 为其外接圆,∴BO 平分∠ABC,∴∠OBC=30°,∵OD ⟂BC,∴BD =CD,BE =CE = 4,∠BOD =60∘,∴OE =433, OB =833.∴OO|的半径长 833.23. (1)证明:如图,连结.AD, ∵⌢BD =DE ,∴∠BAD =∠CAD.又∵AB = AC, ∴AD ⊥ BC, ∴∠ADB=90°,∴AB 为⊙O 的直径. (2)解:∵AB 为⊙O 的直径,∴O 在AB 上,如图,连结OE,∵AB=8,∠BAC=45°,∴∠AOE=∠BOE= ∴1∘∴AB =8,∴BO =EO =4,S 扇形AOE =90×π×42360 =4π,S BOE =12OB 2=12×16=8,∴S 阴影=S BOE24. (1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠OAC,∴∠BAC=∠OAC,即AC 平分∠OAB. (2)解: COE⟂AB,∴AE =BE =12AB =1,又∵∠AOE 、30°,∠PEA=90°,∴∠OAE= 60∘,∴∠EAP =3∠OAE =30∘,∴PE =12PA.设PE=x,则 PA=2x,根据勾股定理得 x²+1²=(2x)²,解得 x =33,∴PE =33.。

浙教版九年级上册数学第3章 圆的基本性质含答案(综合题)

浙教版九年级上册数学第3章 圆的基本性质含答案(综合题)

浙教版九年级上册数学第3章圆的基本性质含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.平面内三个点确定一个圆B.旅客上飞机前的安检应采用抽样调查 C.方差越大,数据的波动越小 D.在标准大气压下,水加热到100℃会沸腾是必然事件2、如图,在Rt△ABC中,∠ACB=90°,点O是边AC上任意一点,以点O为圆心,以OC为半径作圆,则点B与⊙O的位置关系()A.点B在⊙O外B.点B在⊙O上C.点B在⊙O内D.与点O在边AC上的位置有关3、如图,A、D是⊙O上的两个点,若∠ADC=33°,则∠ACO的大小为A.57°B.66°C.67°D.44°4、如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=()A.40°B.45°C.50°D.60°5、如图,在Rt△ABC中,∠ACB=90°,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定6、如图,在△ABO中,AB⊥OB,OB=,OB在x轴正半轴上,∠AOB=30°,把△ABO绕点O顺时针旋转150°后得到△A1B1O,则点A的对应点A1的坐标为( )A.(﹣,﹣1)B.(﹣1,﹣2)C.(﹣2,﹣1)D.(﹣1,﹣)7、如图,将Rt△ABC绕点A逆时针旋转40°,得到Rt△AB'C',点C恰好落在斜边AB上,连接BB’,则∠BB’C’=()度。

A.25B.20C.30D.158、如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A. B. C.2π D.9、下列说法正确的是()A.三点确定一个圆B.正多边形既是轴对称图形也是中心对称图形C.等弧所对的圆周角相等D.三角形的外心到三边的距离相等10、在已知点M(3,-4),在x轴上有一点与M的距离为5,则该点的坐标为()A.(6,0)B.(0,1)C.(0,-8)D.(6,0)或(0,0)11、如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是()A.80°B.110°C.120°D.140°12、已知,AB是⊙O的弦,且OA=AB,则∠AOB的度数为()A.30°B.45°C.60°D.90°13、已知⊙O的半径为5cm,若OP=3cm,那么点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.都有可能14、某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求的是()A. B. C. D.15、下列命题中正确的是()A.三点确定一个圆B.圆的切线垂直于半径C.平分弦的直径垂直于弦 D.圆中最长的弦是经过圆心的弦二、填空题(共10题,共计30分)16、如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2 ,则阴影部分图形的面积为________.17、如图,AB是的直径,弦于点E,,,则________cm.18、如图,⊙O的半径为2 ,OA,OB是⊙O的半径,P是上任意一点,PE⊥OA于E,PF⊥OB于F,则EF的最大值为________.19、已知圆中最长的弦为6,则这个圆的半径为________.20、如图,在菱形ABCD中,点E是BC的中点,以C为圆心,CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为________.21、如图,网格的小正方形的边长均为1,小正方形的顶点叫做格点.△ABC的三个顶点都在格点上,那么△ABC的外接圆半径是________.22、如图,四边形ABCD内接于⊙O,且四边形OABC是平行四边形,则∠D=________.23、在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB的度数为________(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示)________ .(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是________24、如图,点P为⊙O外一点,PA,PB分别与⊙O相切于点A,B,∠APB=90°.若⊙O的半径为2,则图中阴影部分的面积为________(结果保留π).25、如图,△ABC是⊙O的内接正三角形,图中阴影部分的面积是12π,则⊙O 的半径为________.三、解答题(共5题,共计25分)26、如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.27、已知⊙O的弦AB长为10,半径长R为7,OC是弦AB的弦心距,求OC的长28、如图,在半径为6的⊙O中,弦AB长为6.求弦AB与所围成的阴影部分的面积.29、如图所示,圆O为△ABC的外接圆,AM,AT分别为中线和角平分线,过点B 和点C的圆O的切线相交于点P,连结AP,与BC和圆O分别相交于点D、E.求证:点T是△AME的内心。

(典型题)浙教版九年级上册数学第3章 圆的基本性质含答案

(典型题)浙教版九年级上册数学第3章 圆的基本性质含答案

浙教版九年级上册数学第3章圆的基本性质含答案一、单选题(共15题,共计45分)1、如图,点B、C、D在⊙O上,若∠BCD=140°,则∠BOD的度数是()A.40°B.50°C.80°D.90°2、如图,等边三角形内接于,若的半径为2,则图中阴影部分的面积等于()A. B. C. D.3、如图,如果为的直径,弦,垂足为,那么下列结论中,错误的是()A. B. C. D.4、如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6B.6C.8D.85、如图,AB是的直径,点C是圆上一点,连结AC和BC,过点C作于D,且,则的周长为()A. B. C. D.6、下列命题:①任意三点确定一个圆;②平分弦(不是直径)的直径垂直于弦;③相等的圆心角所对的弦相等;④长度相等的弧是等弧.其中真命题的有()A. 个B. 个C. 个D. 个7、如图,A、B、C为⊙O上的任意三点,若∠BOC=100°,则∠BAC的度数为()A.50°B.80°C.100°D.130°8、如图,在⊙O中,半径OA垂直于弦BC,点D在⊙O上,若∠AOB=70°,则∠ADC的度数为()A.30°B.35°C.45°D.70°9、下列命题中,正确的是()A.圆心角相等,所对的弦的弦心距相等B.三点确定一个圆C.平分弦的直径垂直于弦,并且平分弦所对的弧D.弦的垂直平分线必经过圆心10、已知⊙O的半径是3,OP=3,那么点P和⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定11、如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°12、如图,已知在⊙O中,AB=4, AF=6,AC是直径,AC⊥BD于F,图中阴影部分的面积是()A. B. C. D.13、如图,中,,将绕着点旋转至,点的对应点点恰好落在边上.若,,则的长为()A.2B.3C.D.414、如图,半径为10的圆中,弦AB垂直平分半径OC,则弦AB的长为()A.5B.C.10D.15、如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是( )A.70°B.60°C.50°D.30°二、填空题(共10题,共计30分)16、如图,△ABC内接于⊙O,∠C=45°,半径OB的长为3,则AB的长为________.17、如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA上一点,若∠ABC=32°,则∠P的度数为________.18、如图,正五边形和正六边形有一条公共边AB,并且正五边形在正六边形内部,连接AC并延长,交正六边形于点D,则∠ADE=________°.19、如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O 的半径是________.20、如图,将△ABC绕点C按逆时针方向旋转40°到△EFC的位置(点A与点E 是对应点),若CF⊥AB,则∠F的度数为________.21、如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=________.22、如图,四边形ABCD是⊙O的内接四边形,若∠C=130°,则∠BOD=________23、半径为5的圆中有两条弦长分别为6,8的平行弦,这两条弦之间的距离是________.24、制作一个圆锥模型,要求圆锥母线长9cm,底面圆直径为10cm,那么要制作的这个圆锥模型的侧面展开扇形的纸片圆心角度数是________度.25、设△ABC外接圆的半径为R,内切圆的半径为r,内心为I,延长AI交外接圆于D,则AI•ID=________.三、解答题(共5题,共计25分)26、如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.27、如图,已知⊙O是△ABC的外接圆,AC是直径,∠A=30°,BC=2,点D是AB的中点,连接DO并延长交⊙O于点P,过点P作PF⊥AC于点F.(1)求劣弧PC的长;(结果保留π)(2)求阴影部分的面积.(结果保留π).28、如图,ABCD是圆O的内接四边形,BC是圆O的直径,∠ACB=20°,D为弧的中点,求∠DAC的度数.29、如图,已知A(-2,-3),B(-3,-1),C(-1,-2)是平面直角坐标系中三点.(1)请你画出ABC关于原点O对称的A1B1C1;(2)请写出点A关于y轴对称的点A2的坐标.若将点A2向上平移h个单位,使其落在A1B1C1内部,指出h的取值范围.30、已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).参考答案一、单选题(共15题,共计45分)1、C2、C3、D4、B5、A6、B7、D8、B9、D10、B11、C12、D13、A14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微专题__圆周角定理的综合运用_一巧作辅助线教材P91作业题第5题)如图1,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°.求∠CAD的度数.图1 教材母题答图解:如答图,连结DC.∵AD是⊙O的直径,∴∠ACD=90°.∵∠ABC=50°,∴∠ADC=50°,∴∠CAD=90°-∠ADC=40°.【思想方法】利用圆周角定理,常见的辅助线作法有:①作半径,构造圆心角;②作弦,构造圆周角.[2016·泰安]如图2,点A,B,C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交⊙O于点F,则∠BAF等于( B )A.12.5°B.15°C.20°D.22.5°图2 变形1答图【解析】如答图,连结OB.∵四边形ABCO是平行四边形,∴OC=AB,OC∥AB,又∵OA=OB=OC,∴OA=OB=AB,∴△AOB是等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF =12∠BOF =15°.故选B.如图3,已知四边形ABCD 是⊙O 的内接正方形,P 是劣弧CD 上不同于点C 的任意一点,则∠BPC 的度数是( A ) A .45°B .60°C .75°D .90°图3 变形2答图【解析】 如答图,连结OB ,OC ,则∠BOC =90°, 根据圆周角定理,得∠BPC =12∠BOC =45°.如图4,已知AB =AC =AD ,∠CBD =2∠BDC ,∠BAC =44°,则∠CAD 的度数为( B )A .68°B .88°C .90°D .112°图4 变形3答图【解析】 如答图,以A 为圆心,AB 为半径画圆,则点C ,D 都在圆上, ∵∠CBD =2∠BDC ,∴CD ︵=2BC ︵,∵∠BAC =44°,∴∠CAD =2∠BAC =88°.故选B.如图5,⊙O 是△ABC 的外接圆,且AB =AC =13,BC =24,求⊙O 的半径.图5 变形4答图解:如答图,连结AO ,BO ,AO 交BC 于点D . 则根据垂径定理的逆定理,得OA ⊥BC ,BD =CD =12BC =12.在Rt △ABD 中,由勾股定理得AD =AB 2-BD 2=5. 设⊙O 的半径为r ,则OD =OA -AD =r -5. 在Rt △OBD 中,由勾股定理得BD 2+OD 2=OB 2, 即122+(r -5)2=r 2,解得r =16.9, 即⊙O 的半径为16.9.如图6,AB 是⊙O 的直径,AC 是弦,OD ⊥AB 交AC 于点D .若∠A =30°,OD =20,求CD 的长.图6 变形5答图解:如答图,连结BC .∵OD ⊥AB ,∠A =30°,OD =20,∴AD =2OD =40,∴OA =AD 2-OD 2=20 3. ∵AB 是⊙O 的直径,∴AB =2OA =403,且∠ACB =90°, ∴BC =12AB =203,∴AC =AB 2-BC 2=60,∴CD =AC -AD =60-40=20.二 圆周角定理与直角三角形、全等三角形等知识的综合运用教材P93作业题第5题)一个圆形人工湖如图7所示,弦AB 是湖上的一座桥.已知AB 长为100 m ,圆周角∠C =45°.求这个人工湖的直径.图7 教材母题答图解:如答图,设圆心为O,连结OA,OB.∵∠C=45°,∴∠AOB=2∠C=90°,∴OA=AB2=502(m),∴这个人工湖的直径为2OA=1002(m).【思想方法】直角三角形与圆周角定理的综合运用一般是通过圆周角定理进行角度转换,利用直角三角形的相关知识求解.[2016·嘉善模拟]如图8,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC,∠ABC的平分线交AC于点D,交⊙O于点E,连结CE.若CE=2,则BD的长为.图8 变形1答图【解析】如答图,延长BA,CE交于点M.∵BC是⊙O的直径,∴∠BAD=∠CAM=90°,∠BEC=∠BEM=90°,∵AB=AC,∠ABD=∠ACM,∴△ABD≌△ACM,∴BD=CM,∵BE平分∠ABC,∴∠EBM=∠EBC,∵BE=BE,∠BEC=∠BEM,∴△BEC≌△BEM,∴EC=EM,∴BD=CM=2CE=2 2.如图9,在△ABC中,以AB为直径的⊙O交BC于点D,连结AD,请添加一个条件__AB=AC或BD=CD或∠B=∠C或∠BAD=∠CAD__,使△ABD≌△ACD.图9如图10,⊙O是△ABC的外接圆,∠C=30°,AB=2 cm,求⊙O的半径.图10 变形3答图解:如答图,连结AO 并延长交⊙O 于点D ,连结BD . ∵∠D ,∠C 所对的圆弧都为AB ︵, ∴∠D =∠C =30°.∵AD 是⊙O 的直径,∴∠ABD =90°, ∴AD =2AB =4(cm),∴AO =12AD =2(cm),即⊙O 的半径为2 cm.在⊙O 中,直径AB =4,CD =2,直线AD ,BC 相交于点E .(1)如图11①,∠E 的度数为__60°__;(2)如图②,AB 与CD 交于点F ,请补全图形并求∠E 的度数; (3)如图③,弦AB 与弦CD 不相交,求∠AEC 的度数.图11解:(1)如答图①,连结OD ,OC ,BD . ∵OD =OC =CD =2,∴△DOC 为等边三角形, ∴∠DOC =60°,∴∠DBC =30°, ∵AB 为直径,∴∠ADB =90°,∴∠E =90°-30°=60°,∴∠E 的度数为60°;(2)补全图形如答图②,直线AD ,CB 交于点E ,连结OD ,OC ,AC . ∵OD =OC =CD =2,∴△DOC 为等边三角形, ∴∠DOC =60°,∴∠DAC =30°, ∵∠DAC +∠DBC =12×360°=180°,∴∠DBC=150°,∴∠EBD=180°-∠DBC=30°,∵AB为直径,∴∠ADB=90°,∴∠BDE=90°,∴∠E=90°-30°=60°;(3)如答图③,连结OD,OC,BD.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠CBD=30°,∵AB为直径,∴∠ADB=90°,∴∠BED=60°,∴∠AEC=60°.①②③变形4答图三圆周角定理的创新应用教材P92例3)如图12,有一个弓形的暗礁区,弓形所在圆的圆周角∠C=50°.问:船在航行时怎样才能保证不进入暗礁区?图12解:当张角∠ASB<∠ACB时,船在弓形暗礁区外;当张角∠ASB=∠ACB时,船在弓形暗礁区边上;当张角∠ASB>∠ACB时,船在弓形暗礁区内,∴要使船保证不进入暗礁区,必须使∠ASB<∠ACB,即∠ASB<50°.【思想方法】由圆周角定理知,同弧上的圆周角相等,应用在航海上,常常用来考查动点问题.如图13,AB是⊙O的直径,弦BC=2 cm,F是弦BC的中点,∠ABC=60°.若动点E以2 cm/s的速度从A点出发沿着A→B→A的方向运动,设运动时间为t(s)(0≤t<3),连结EF,当△BEF是直角三角形时,t的值为( D )图13A.74 B .1 C.74或1 D.74或1或94【解析】 ∵AB 是⊙O 的直径,∴∠ACB =90°. ∵在Rt △ABC 中,BC =2 cm ,∠ABC =60°, ∴∠A =30°,∴AB =2BC =4(cm). ①当∠BFE =90°时,∵在Rt △BEF 中,∠ABC =60°,则∠BEF =30°, ∴BE =2BF =2(cm),∴AE =AB -BE =2(cm),∴E 点运动的距离为2 cm 或6 cm ,故t =1 s 或3 s , 由于0≤t <3,故t =3 s 不合题意,舍去, ∴当∠BFE =90°时,t =1 s ;②当∠BEF =90°时,同①可求得BE =12 cm ,此时AE =AB -BE =72(cm),∴E 点运动的距离为72 cm 或92 cm ,∴t =74 s 或94s.综上所述,当t 的值为1或74或94时,△BEF 是直角三角形.故选D.[2016·山西]请阅读下列材料,并完成相应的任务.阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯学者Al -Biruni(973~1050年)的译文中保存了阿基米德折弦定理的内容,苏联一家出版社在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图14①,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,M 是ABC ︵的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD .① ② ③图14下面是运用“截长法”证明CD =AB +BD 的部分证明过程. 证明:如图②,在CB 上截取CG =AB ,连结MA ,MB ,MC 和MG . ∵M 是ABC ︵的中点,∴MA =MC . …任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图③,已知等边三角形ABC 内接于⊙O ,AB =2,D 为AC ︵上一点,∠ABD =45°,AE ⊥BD 于点E ,则△BDC 的周长是.解:(1)证明:如图②,在CB 上截取CG =AB ,连结MA ,MB ,MC 和MG . ∵M 是ABC ︵的中点,∴MA =MC .在△MBA 和△MGC 中,⎩⎪⎨⎪⎧BA =GC ,∠A =∠C ,MA =MC ,∴△MBA ≌△MGC (SAS ),∴MB =MG , 又∵MD ⊥BC ,∴BD =GD , ∴DC =GC +GD =AB +BD ;变形2答图(2)如答图,截取BF =CD ,连结AF ,AD ,CD , 由题意,得AB =AC ,∠ABF =∠ACD ,在△ABF 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠ABF =∠ACD ,BF =CD ,∴△ABF ≌ACD (SAS ),∴AF =AD , ∵AE ⊥BD ,∴FE =DE ,则CD +DE =BE , ∵∠ABD =45°,∴BE =AB2=2,则△BDC 的周长是2+2 2.。

相关文档
最新文档