1.1分类加法计数原理

合集下载

高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第2课时 分类加法计(1)

高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第2课时 分类加法计(1)
答案:4 6 12
类型 1 组数问题(自主研析) [典例 1] 用 0,1,2,3,4 五个数字, (1)可以排出多少个三位数字的密码? (2)可以排成多少个三位数? (3)可以排成多少个能被 2 整除的无重复数字的三位数? 解:(1)三位数字的密码,首位可以是 0,数字也可以重 复,每个位置都有 5 种排法,共有 5×5×5=53=125(种). (2)三位数的首位不能为 0,但可以有重复数字,首先考
19
共有 60+96=156(个). 其中比 2 000 小的有:千位是 1 的共有 3×4×3= 36(个), 所以符合条件的四位偶数共有 156-36=120(个).
20
类型 2 分配问题
[典例 2] (1)高三年级的三个班到甲、乙、丙、丁四
个工厂进行社会实践,其中工厂甲必须有班级去,每班去
6
2.应用分类加法计数原理的注意事项 分类要做到不重不漏,分类后再分别对每一类进行 计数,最后用分类加法计数原理求和,得到总数. 3.应用分步乘法计数原理的注意事项 分步要做到步骤完整,步与步之间要相互独立,根 据分步乘法计数原理,把完成每一步的方法数相乘得到 总数.
7
1.从 3 名女同学和 2 名男同学中选出一人主持本班
答案:C
11
5.如图所示,从点 A 沿圆或三角形的边运动到点 C, 若经过点 B,有________种不同的走法.若可经过点 B, 也可不经过点 B,有________种不同的走法.
解析:经过点 B,不同的走法有 2×2=4(种).若可 经过点 B,也可不经过点 B,不同的走法有 2×2+2= 6(种).
一次班会,则不同的选法种数为( )
A.6
B.5
C.3Leabharlann D.2解析:由分类加法计数原理,共有 3+2=5 种不同选

高一数学:计数原理

高一数学:计数原理

1.1 分类加法计数与分步乘法计数分类加法计数原理: 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有 N=m+n 种不同的方法。

分类要做到“不重不漏”。

分步乘法计数原理:完成一件事需要两个步骤。

做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N=m ×n 种不同的方法。

分步要做到“步骤完整”。

n 元集合A={a 1,a 2⋯,a n }的不同子集有2n 个。

1.2 排列与组合 1.2.1 第一章计数原理排列一般地,从n 个不同元素中取出m(m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列(arrangement)。

从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号A n m 表示。

排列数公式:n 个元素的全排列数规定:0!=11.2.2 组合一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合(combination)。

从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C n m 或(n m )表示。

组合数公式:∵ A n m =C n m ∙A m m∴规定:C n 0组合数的性质:1.3 二项式定理1.3.1 二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。

1.3.2 “杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律! (1) 对称性(2) 当n 是偶数时,共有奇数项,中间的一项C n n 2+1取得最大值;当n 是奇数时,共有偶数项,中间的两项C n n−12,C n n+12同时取得最大值。

1.1 分类计数原理和分步计数原理

1.1 分类计数原理和分步计数原理

(3)有不同颜色的5件上衣与3件不同颜色的长裤,如果一条长裤与一件上衣配 成一套,则不同的配法有多少种? 分步问题 (4)从一个装有4个不同白球的盒子里或装有3个不同黑球的盒子里取1个球, 共有多少种不同的取法? 分类问题 (5)从一个装有4个不同白球的盒子里和装有3个不同黑球的盒子里各取1个 球,共有多少种不同的取法? 分步问题 (6)某商场有6个门,某人从其中的任意一个门进入商场,再从其他的门出去, 共有多少种不同的进出商场的方式? 分步问题
问题剖析
小明要完成的一件事是什么
北京→重庆
完成这件事情要分几步
2步
每步中的任一方法能否独立完成这 件事
不能
每步方案中分别有几种不同的方法 4种 3种
完成这件事共有多少种不同的方法 4✕3=12种
想一想:
(1)用前6个大写英文字母和1~9九个阿拉伯数字,以 A1,A2,···,B1,B2,···的方式给教室里的座 位编号,总共能够编出多少种不同的号码? (2)从班上30名男生、25名女生中选男生、女生各1名 担任数学课代表,一共有多少种不同的选法?
现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画
事件1:从中任选一幅画布置房间 事件2:从这些国画、油画、水彩画中各选一幅布置房间 事件3:从这些画中选出两幅不同种类的画布置房间
问题2:以上三个事件各有多少种不同的选法
1.解决计数问题的基本方法:
列举法、两个计数原理
2.选择两个原理解题的关键是: 根据题目,弄清完成一件事的要求至关重要, 只有这样才能正确区分“分类”和“分步”.
数,只需将各类方法数相加,因此分类计数原理又称加法原理
2)首先要根据具体的问题确定一个分类标准,分类 要做到类类独立,不重不漏。

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理【基础知识】1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事情,共有N =m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事情共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.[难点正本疑点清源]分类加法计数原理与分步乘法计数原理是解决排列、组合问题的基础并贯穿始终.分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类,简单的说分类的标准是“不重不漏,一步完成”.而分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,即是完成这件事的一种方法,简单的说步与步之间的方法“相互独立,多步完成”.【题型讲解】题型一分类加法计数原理的应用分类时,首先要根据问题的特点确定一个适合它的分类标准,然后在这个标准下进行分类;其次分类时要注意满足一个基本要求,就是完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.例1高三一班有学生50人,男生30人,女生20人;高三二班有学生60人,男生30人,女生30人;高三三班有学生55人,男生35人,女生20人.(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?(2)从高三一班、二班男生中,或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?思维启迪:用分类加法计数原理.解(1)完成这件事有三类方法第一类,从高三一班任选一名学生共有50种选法;第二类,从高三二班任选一名学生共有60种选法;第三类,从高三三班任选一名学生共有55种选法,根据分类加法计数原理,任选一名学生任校学生会主席共有50+60+55=165种选法.(2)完成这件事有三类方法第一类,从高三一班男生中任选一名共有30种选法;第二类,从高三二班男生中任选一名共有30种选法;第三类,从高三三班女生中任选一名共有20种选法.综上知,共有30+30+20=80种选法.例2 王刚同学衣服上左、右各有一个口袋,左边口袋装有30张英语单词卡片,右边口袋装有20张英语单词卡片,这些英语单词卡片都互不相同,问从两个口袋里任取一张英语单词卡片,有多少种不同的取法?[解析] 从口袋中任取一张英语单词卡片的方法分两类:第一类:从左边口袋取一张英语单词卡片有30种不同的取法;第二类:从右边口袋取一张英语单词卡片有20种不同的取法.根据分类加法计数原理,所以从口袋中任取一张英语单词卡片的方法种类为30+20=50(种). 例3 在所有的两位数中,个位数字大于十位数字的两位数共有多少个?[分析] 该问题与计数有关,可考虑选用两个基本原理来计算,完成这件事,只要两位数的个位、十位确定了,这件事就算完成了,因此可考虑按十位上的数字情况或按个位上的数字情况进行分类.[解析] 解法一:按十位数上的数字分别是1,2,3,4,5,6,7,8的情况分为8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数的个数共有8+7+6+5+4+3+2+1=36(个). 解法二:按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理共有1+2+3+4+5+6+7+8=36(个).例4 方程x 2m +y 2n=1表示焦点在y 轴上的椭圆,其中m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},那么这样的椭圆有多少个?解 以m 的值为标准分类,分为五类.第一类:m =1时,使n >m ,n 有6种选择;第二类:m =2时,使n >m ,n 有5种选择;第三类:m =3时,使n >m ,n 有4种选择;第四类:m =4时,使n >m ,n 有3种选择;第五类:m=5时,使n>m,n有2种选择.∴共有6+5+4+3+2=20种方法,即有20个符合题意的椭圆.题型二分步乘法计数原理的应用探究提高利用分步乘法计数原理解决问题:①要按事件发生的过程合理分步,即分步是有先后顺序的;②各步中的方法互相依存,缺一不可,只有各个步骤都完成了才算完成这件事.例1已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个数有多少个?[解析]圆方程由三个量a,b,r确定,a,b,r分别有3种,4种,2种选法,由分步乘法计数原理,表示不同的圆的个数为3×4×2=24(个).例1有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.思维启迪:可以根据报名过程,使用分步乘法计数原理.解(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有选法36=729(种).(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).例1已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图像开口向上的二次函数.解(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx +c可以表示5×6×6=180(个)不同的二次函数.(2)y=ax2+bx+c图像的开口向上时,a的取值有2种情况,b、c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72(个)图像开口向上的二次函数.例1(1)有5本书全部借给3名学生,有多少种不同的借法?(2)有3名学生分配到某工厂的5个车间去参加社会实践,则有多少种不同分配方案?[解析](1)中要完成的事件是把5本书全部借给3名学生,可分5个步骤完成,每一步把一本书借出去,有3种不同的方法,根据分步乘法计数原理,共有N=3×3×3×3×3=35=243(种)不同的借法.(2)中要完成的事件是把3名学生分配到5个车间中,可分3个步骤完成,每一步分配一名学生,有5种不同的方法,根据分步乘法计数原理,共有N=5×5×5=53=125(种)不同的分配方案.题型三两个原理的综合应用例1一个三层书架的上层放有5本不同的数学书,中层放有3本不同的语文书,下层放有2本不同的英语书(1)从书架上任取一本书,有多少种不同的取法?(2)从书架上任取三本书,其中数学书、语文书、英语书各一本,有多少种不同的取法?[解析](1)从书架上任取一本书,有三类方法:第一类方法:从书架上层任取一本数学书,有5种不同的方法;第二类方法:从书架中层任取一本语文书,有3种不同的方法;第三类方法:从书架下层任取一本英语书,有2种不同的方法.只要在书架上任意取出一本书,任务即完成,由分类加法计数原理知,不同的取法共有N=5+3+2=10(种).(2)从书架上任取三本书,其中数学书、语文书、英语书各一本,可以分成三个步骤完成:第一步:从书架上层取一本数学书,有5种不同的方法;第二步:从书架中层取一本语文书,有3种不同的方法;第三步:从书架下层取一本英语书,有2种不同的方法.由分步乘法计数原理知,不同的取法共有N=5×3×2=30(种).所以从书架上任取三本书,其中数学书、语文书、英语书各一本,共有30种不同的取法.例1一个科技小组中有4名女同学,5名男同学,从中任选一名同学参加学科竞赛,共有不同的选派方法________种;若从中任选一名女同学和一名男同学参加学科竞赛,共有不同的选派方法________种.[答案]920[解析]由分类加法计数原理得从中任选一名同学参加学科竞赛共5+4=9种,由分步乘法计数原理得从中任选一名女同学和一名男同学参加学科竞赛共5×4=20种.例1现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?[解析](1)分为三类:从国画中选,有5种不同的选法;从油画中选,有2种不同的选法;从水彩画中选,有7种不同的选法.根据分类加法计数原理共有5+2+7=14种不同的选法.(2)分为三步:国画、油画、水彩画各有5种、2种、7种不同的选法,根据分步乘法计数原理,共有5×2×7=70种不同的选法.(3)分为三类:第一类是一幅选自国画,一幅选自油画,由分步乘法计数原理知,有5×2=10种不同的选法.第二类是一幅选自国画,一幅选自水彩画,有5×7=35种不同的选法.第三类是一幅选自油画,一幅选自水彩画,有2×7=14种不同的选法,所以有10+35+14=59种不同的选法.例1有三只口袋装小球,一只装有5个白色小球,一只装有6个黑色小球,一只装有7个红色小球,若每次从中取两个不同颜色的小球,共有多少种不同的取法?[解析]分为三类:一类是取白球、黑球,有5×6=30种取法;一类是取白球、红球,有5×7=35种取法;一类是取黑球、红球,有6×7=42种取法.∴共有取法:30+35+42=107(种).例1如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数.思维启迪:染色问题是常见的计数应用问题,可从选颜色、选顶点进行分类、分步,从不同角度解决问题.解方法一可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法计数原理即可得出结论.由题设,四棱锥S—ABCD的顶点S、A、B所染的颜色互不相同,它们共有5×4×3=60(种)染色方法.当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7=420(种).方法二以S、A、B、C、D顺序分步染色.第一步,S点染色,有5种方法;第二步,A点染色,与S在同一条棱上,有4种方法;第三步,B点染色,与S、A分别在同一条棱上,有3种方法;第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C 是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).方法三按所用颜色种数分类.第一类,5种颜色全用,共有A55种不同的方法;第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;第三类,只用3种颜色,则A与C、B与D必定同色,共有A35种不同的方法.由分类加法计数原理,得不同的染色方法总数为A55+2×A45+A35=420(种).探究提高用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析.例1有一项活动,需在3名老师、8名男生和5名女生中选人参加.(1)若只需1人参加,有多少种不同选法?(2)若需老师、男生、女生各一人参加,有多少种不同的选法?(3)若需一名老师、一名学生参加,有多少种不同的选法?解(1)分三类:取老师有3种选法;取男生有8种选法;取女生有5种选法,故共有3+8+5=16种选法.(2)分三步:第一步选老师,第二步选男生,第三步选女生,故共有3×8×5=120种选法.(3)分两步:第一步选老师,第二步选学生.对第二步,又分为两类:第一类选男生,第二类选女生,故共有3×(8+5)=39种选法.对两个基本原理的特殊题型典例:(1)(5分)把3封信投到4个信箱,所有可能的投法共有() A.24种B.4种C.43种D.34种(2)(5分)某人从甲地到乙地,可以乘火车,也可以坐轮船,在这一天的不同时间里,火车有4趟,轮船有3次,问此人的走法可有________种.易错分析解决计数问题的基本策略是合理分类和分步,然后应用加法原理和乘法原理来计算.解决本题易出现的问题是完成一件事情的标准不清楚导致计算出现错误,对于(1),选择的标准不同,误认为每个信箱有三种选择,所以可能的投法有34种,没有注意....到一封信只能投在一个信箱中.............;对于(2),易混淆“类”与“步”,误认为到达乙地先坐火车后坐轮船,使用乘法原理计算.解析(1)第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种方法.(2)因为某人从甲地到乙地,乘火车的走法有4种,坐轮船的走法有3种,每一种方法都能从甲地到乙地,根据分类加法计数原理,可得此人的走法可有4+3=7(种).答案(1)C(2)7温馨提醒(1)每封信只能投到一个信箱里,而每个信箱可以装1封信,也可以装2封信,其选择不是唯一的,所以应注意由信来选择信箱,每封信有4种选择.(2)在处理具体的应用问题时,首先必须弄清楚“分类”与“分步”的具体标准是什么.选择合理的标准处理事情,可以避免计数的重复或遗漏.用0,1,2,3,4,5可以组成多少个无重复数字的比2000大的四位奇数?[解析] 方法一:按末位是1,3,5分三类计数:第一类:末位是1,共有4×4×3=48个;第二类,末位是3的共有3×4×3=36个;第三类末位是5的共有3×4×3=36个,由分类加法计数原理知共有48+36+36=120(个).方法二:符合条件的数有3×4×4×3-2×4×3=120(个).3.从6人中选4人分别到巴黎,伦敦,悉尼,莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲,乙2个不去巴黎游览,则不同的选择方案共有()A.300种B.240种C.144种D.96种[答案] B[解析]能去巴黎的有4个人,依次去伦敦,悉尼,莫斯科的有5个人,4个人,3个人,故不同的选择方案为4×5×4×3=240(种).故选B.5.电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有________种不同的播放方式.(结果用数值表示) [答案]48[解析]先安排首尾播放公益广告,共2种,再安排4种不同的商业广告共4×3×2×1=24种,由分步乘法计数原理得24×2=48种.方法与技巧1.分类加法和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.2.混合问题一般是先分类再分步.3.分类时标准要明确,做到不重复不遗漏.4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.失误与防范1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.1.(2011·大纲全国)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种答案 B解析依题意,就所剩余的一本画册进行分类计数:第一类,剩余的是一本画册,此时满足题意的赠送方法共有4种;第二类,剩余的是一本集邮册,此时满足题意的赠送方法共有C24=6(种).因此,满足题意的赠送方法共有4+6=10(种),选B.2.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有________种.答案32解析每位同学有两种不同的报名方法,而且只有这5位同学全部报名结束,才算事件完成.所以共有2×2×2×2×2=32(种).3.教学大楼共有4层,每层都有东西两个楼梯,由一层到4层共有走法种数为() A.6B.23 C.42 D.44答案 B解析由一层到二层有2种选择,二层到三层有2种选择,三层到四层有2种选择,∴23=8.4.高三年级的三个班去甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A.16种B.18种C.37种D.48种答案 C解析自由选择去四个工厂有43种方法,甲工厂不去,自由选择去乙、丙、丁三个工厂有33种方法,故不同的分配方案有43-33=37(种).5.有不同颜色的4件上衣与不同颜色的3件长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数是________.答案12解析由分步乘法计数原理,一条长裤与一件上衣配成一套,分两步,第一步选上衣有4种选法,第二步选长裤有3种选法,所以有4×3=12(种)选法.6.按ABO血型系统学说,每个人的血型为A、B、O、AB型四种之一,依血型遗传学,当父母的血型中没有AB型时,子女的血型有可能是O型,若某人的血型是O型,则其父母血型的所有可能情况有()A.6种B.9种C.10种D.12种答案 B解析找出其父母血型的所有情况分二步完成,第一步找父亲的血型,依题意有3种;第二步找母亲的血型也有3种,由分步乘法计数原理得:其父母血型的所有可能情况有3×3=9种.7.现安排一份5天的工作值班表,每天有一个人值日,共有5个人,每个人都可以值多天或不值班,但相邻两天不能同一个人值班,则此值日表共有__________种不同的排法.答案 1 280解析完成一件事是安排值日表,因而需一天一天地排,用分步计数原理,分步进行:第一天有5种不同排法,第二天不能与第一天已排人的相同,所以有4种不同排法,依次类推,第三、四、五天都有4种不同排法,所以共有5×4×4×4×4=1 280种不同的排法.8.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,则大师赛共有________场比赛.答案16解析小组赛共有2C24场比赛;半决赛和决赛共有2+2=4(场)比赛;根据分类加法计数原理共有2C24+4=16(场)比赛.9.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了2个新节目.如要将这2个节目插入原节目单中,那么不同插法的种类为 ()A.42 B.30 C.20 D.12答案 A解析将新增的2个节目分别插入原定的5个节目中,插入第一个有6种插法,插入第2个时有7个空,共7种插法,所以共6×7=42(种).10.已知I={1,2,3},A、B是集合I的两个非空子集,且A中所有数的和大于B中所有数的和,则集合A、B共有()A.12对B.15对C.18对D.20对答案 D解析依题意,当A、B均有一个元素时,有3对;当B有一个元素,A有两个元素时,有8对;当B有一个元素,A有三个元素时,有3对;当B有两个元素,A有三个元素时,有3对;当A、B均有两个元素时,有3对;共20对,选择D.11.若从集合P到集合Q={a,b,c}所有的不同映射共有81个,则从集合Q到集合P所有的不同映射共有()A.32个B.27个C.81个D.64个答案 D解析可设P集合中元素的个数为x,由映射的定义以及分步乘法计数原理,可得P→Q 的映射种数为3x=81,可得x=4.反过来,可得Q→P的映射种数为43=64.12.有A、B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,现在要从三名工人中选2名分别去操作以上车床,不同的选派方法有() A.6种B.5种C.4种D.3种答案 C解析若选甲、乙二人,包括甲操作A车床,乙操作B车床,或甲操作B车床,乙操作A车床,共有2种选派方法;若选甲、丙二人,则只有甲操作B车床,丙操作A车床这一种选派方法;若选乙、丙二人,则只有乙操作B车床,丙操作A车床这一种选派方法.故共2+1+1=4(种)不同的选派方法.故应选C.13.由1到200的自然数中,各数位上都不含8的有______个.答案162个解析一位数8个,两位数8×9=72个.3位数有9×9=81个,另外1个(即200),共有8+72+81+1=162个.14.从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有________个.答案32解析和为11的数共有5组:1与10,2与9,3与8,4与7,5与6,子集中的元素不能取自同一组中的两个数,即子集中的元素取自5个组中的一个数.而每个数的取法有2种,所以子集的个数为2×2×2×2×2=25=32.15.从正方体的6个表面中取3个面,使其中两个面没有公共点,则共有________种不同的取法.答案12解析分两步完成这件事,第一步取两个平行平面,有3种取法;第二步再取另外一个平面,有4种取法,由分步计数原理共有3×4=12种取法.16. 如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有()A.288种B.264种C.240种D.168种答案 B解析分两类:第一类,涂三种颜色,先涂点A,D,E有A34种方法,再涂点B,C,F 有2种方法,故有A34×2=48(种)方法;第二类,涂四种颜色,先涂点A,D,E有A34种方法,再涂点B,C,F有3C13种方法,故共有A34·3C13=216(种)方法.由分类加法计数原理,共有48+216=264(种)不同的涂法.17.标号为A、B、C的三个口袋,A袋中有1个红色小球,B袋中有2个不同的白色小球,C袋中有3个不同的黄色小球,现从中取出2个小球.(1)若取出的两个球颜色不同,有多少种取法?(2)若取出的两个球颜色相同,有多少种取法?解析(1)若两个球颜色不同,则应在A、B袋中各取一个或A、C袋中各取一个,或B、C袋中各取一个.∴应有1×2+1×3+2×3=11种.(2)若两个球颜色相同,则应在B或C袋中取出2个.∴应有1+3=4种.18.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7个,B型血的共有9个,AB型血的有3个.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1个去献血,有多少种不同的选法?解析从O型血的人中选1个有28种不同的选法,从A型血的人中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1个人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,这件“任选1人去献血”的事情已完成,所以由分类计数原理,共有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即要在每种血型的人中依次选出1人后,这件“各选1人去献血”的事情才完成,所以用分步计数原理,共有28×7×9×3=5 292种不同的选法.A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为() A.3 B.4 C.6 D.8答案 D解析以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9,共4个.把这四个数列顺序颠倒,又得到4个数列,故所求数列有8个.2.由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有() A.238个B.232个C.174个D.168个答案 C解析由0,1,2,3可组成的四位数共有3×43=192(个),其中无重复数字的四位数共有3A33=18(个),故共有192-18=174(个).3.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为() A.10 B.11 C.12 D.15答案 B解析方法一分0个相同、1个相同、2个相同讨论.(1)若0个相同,则信息为:1001.共1个.。

1.1分类加法计数原理

1.1分类加法计数原理

2012-12-25
发现新知 探究(1)以上两个问题都是研究 完成一件事情 的方 法种数 两类 (2)第一个问题完成一件事有 不同案,在 第1类方案中有m1种不同的方法; 在第2类方案中有m2种不同的方法; 那么完成这件事共有 m1+m2 种方法. (3)第二个问题完成一件事有 三 类 不同案,在 第1类方案中有m1种不同的方法; 在第2类方案中有m2种不同的方法; 在第3类方案中有m3种不同的方法; m1+m2+m3 种方法. 那么完成这件事共有 2012-12-25
分析2: 按十位数字是1,2,3,4,5,6,7,8分成8类,在每
一类中满足条件的两位数分别是:
8个,7个,6个,5个,4个,3个,2个,1个.
根据加法原理共有 8+7+6+5+4+3+2+1 = 36 (个)
解题关键:从总体上看做这件事情是“确定分类标准每 类方案中有几种方法(不重不漏)” 再根据加法计数原 理计算.
布置作业:
2012-12-25
布置作业: 1、已知两条异面直线a,b上分别有5个点和8个 点则经过这13个点可以确定几个不同的平面? 2、高二(9)班共52位同学暑期聚会结束时彼 此握握手,互相道别,请你统计一下,大家握 手次数共有多少? 3、编一道运用分类加法原理的解答题,并加 以解答。
2012-12-25
2012-12-25
小结:
何时用加法原理呢?应用中注意什么问题?
加法原理 完成一件事情有n类方法,若每一类方案 中的任何一种方法均能将这件事情从 头至尾完成。
注意分类标准要一致、具体,要做到“不重不 漏”
2012-12-25
结束语
两大原理妙无穷, 茫茫数理此中求; 万万千千说不尽, 运用解题任驰骋。

1.1分类加法计数原理与分步计数乘法原理(2)

1.1分类加法计数原理与分步计数乘法原理(2)
1.1 分类加法计数原理 与分步乘法计数原理(2) 与分步乘法计数原理(2)
计数 1.分类 ──类类相加( 1.分类──类类相加(把做一件事的方法 分类 ──类类相加 N = m + m2 +L+ mn 分类) 分类) 1 2.分步 ──步步相乘 分步──步步相乘( 2.分步 ──步步相乘(把做一件事分几步 N = m × m2 ×L× mn 来进行) 来进行) 1 这是我们考虑计数问题的两种思想方法. 这是我们考虑计数问题的两种思想方法. 具体运用时,要弄清是分类,还是分步. 具体运用时 ,要弄清是分类,还是分步.
分析: 分析:整个模块的任 意一条路径都分两步 完成: 完成:第1步是从开 步是从开 始执行到A执行到结束。 而第步可由子模块1 而第步可由子模块 或子模块2或子模块 或子模块 或子模块3 或子模块 来完成; 来完成;第二步可由 子模块4或子模块 或子模块5来 子模块 或子模块 来 完成。因此, 完成。因此,分析一 条指令在整个模块的 执行路径需要用到两 个计数原理。 个计数原理。
随着人们生活水平的提高, 例9 随着人们生活水平的提高,某城市家庭汽车拥 有量迅速增长,汽车牌照号码需要扩容。 有量迅速增长,汽车牌照号码需要扩容。交通管理部 门出台了一种汽车牌照组成办法, 门出台了一种汽车牌照组成办法,每一个汽车牌照都 必须有3个不重复的英文字母和3 必须有3个不重复的英文字母和3个不重复的阿拉伯 数字,并且3个字母必须合成一组出现, 数字,并且3个字母必须合成一组出现,3个数字也 必须合成一组出现, 必须合成一组出现,那么这种办法共能给多少辆汽车 上牌照? 上牌照?
4×4×…×4 =4100 ×
例7 电子元件很容易实现电路的通与断、电位的高与 底等两种状态,而这也是最容易控制的两种状态。因 此计算机内部就采用了每一位只有0或1两种数字的计 数法,即二进制,为了使计算机能够识别字符,需要 对字符进行编码,每个字符可以用一个或多个字节来 表示,其中字节是计算机中数据存储的最小计量单位, 每个字节由8个二进制位构成,问 (1)一个字节(8位)最多可以表示多少个不同的字符? (2)计算机汉字国标码(GB码)包含了6763个汉字, 2×2×…×2 =28=256 × 一个汉字为一个字符,要对这些汉字进行编码,每个 汉字至少要用多少个字节表示?

2-3、1.1计数原理—排列、组合

2-3、1.1计数原理—排列、组合

2-3第一章:计数原理(上)【本章知识脉络】一、两大计数原理(1)分类加法原理:完成一件事,有两类不同的方案,在第1类方案中有m 种不同的办法;在第2类方案中有n 种不同的方法;那么,完成这件事共有N m n =+种不同的方法.(2)分步乘法原理完成一件事,需要两个步骤,做第1步有m 种不同的方法;做第2步有n 种不同的方法;那么,完成这件事共有N m n =⨯种不同的方法.二、排列、组合1、排列 (1)排列定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。

(2)排列数:从n 个不同元素中取出)(n m m ≤个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数。

用符号m n A 表示.(3)排列数公式:其中*,N m n ∈,并且n m ≤特殊的,当n m =时,即有n n A 称为n 的阶乘,通常用!n 表示,即 !n A n n =2、 组合:(1)组合定义:一般地,从n 个不同元素中取出)(n m m ≤个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

(2)组合数:从n 个不同元素中取出)(n m m ≤个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数。

用符号m n C 表示。

(3)组合数公式:其中*,N m n ∈,并且n m ≤,规定10=n C注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”.(4)*组合数的性质:()()()()!!121m n n m n n n n A m n -=+---= ()()12321⋅⋅⋅⋅--= n n n A n n ()()()()!!!!121m n m n m m n n n n C m n -=+---= m n n m n C C -=mn m n m n C C C 11+-=+【变式1】:四棱锥改成三棱锥其他条件不变,共有多少种不同的染色方法?.【变式2】原题颜色改为6种呢?例题2、4明男生和5明女生站成一排:(1)甲不在中间也不在两端的站法有多少种?(2)甲、乙两人必须站在两端的站法有多少种?(3)男、女分别排在一起的站法有多少种?(4)男、女相间的站法有多少种?(5)甲、乙、丙三人从左到右顺序一定的站法有多少种?一、 相邻问题—捆绑法例1、7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.()注意:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.1、晚会上有8个唱歌节目和3个舞蹈节目,要求3个舞蹈在节目不能隔开,则不同节目单的种数为 .【变式1-1】8人围圆桌开会,其中正、副组长各1人,记录员1人(1)若正、副组长相邻而坐,有多少种坐法?(2)若记录员坐于正、副组长之间,有多少种坐法?【变式1-2】用1,2,3,4,5五个数字组成无重复数字的五位数,其中恰有一个奇数夹在两个偶数之间的五位数的个数是多少?【变式1-3】将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A . 18种B .24种C .36种D .72种二、不相邻问题—插空法例2、(1)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为?(2)一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?注意:元素相离问题可先把没有位置要求的元素进行排列再把不相邻元素插入中间和两端 55A 22A 22A2、晚会上有8个唱歌节目和3个舞蹈节目,若3个舞蹈在节目单中要隔开,则不同节目单的种数为( )A 、88AB 、811A C 、3988A A ⋅ D 、3888A A ⋅ 【变式2-1】4个女孩和6个男孩围成一圈,让任两个女孩都不相邻,则有多少种不同的方法?【变式2-2】停车站划出一排12个停车位置,今有8辆不同的车需要停位,若要求剩余的4个空车位连在一起,则不同的停车方法有( )A 、812A B 、44882A A ⋅ C 、888A D 、889A 【变式2-3】6个同学站成一排,甲、乙不能站在一起,不同的排法有( )A 、2246A A ⋅B 、5566A A -C 、2544A A ⋅D 、2344A A ⋅三、定序问题—除法例3、7人排队,其中甲乙丙3人顺序一定共有多少不同的排法?注意:定序问题可先不排序,后作除法3、今有2个红球、3个黄球和4个白球,同色球不加以区分,将这9个球排成三列,有________种不同的方法(用数字作答)【变式3-1】7人站成一排,其中甲在乙前(不一定相邻),乙在丙前,则共有多少种不同的站法?【变式3-2】将字母A 、B 、C 、D 、E 排成一排,要求字母A 排在字母B 的左边(可相邻也可以不相邻),不同的排法有( )A 、44AB 、4421AC 、5521A D 、33A【变式3-3】由数字0,1,2,3,4,5所组成的没有重复数字的四位数,其中个位数字小于十位数字的共有( )A 、210个B 、150个C 、464个D 、600个【变式3-4】书架上原来摆放着6本书,现要插入3本书,则不同的插法种数为_______个四、特殊元素和特殊位置优先安排例4、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数_________ .注意:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。

1.1加法原理和乘法原理

1.1加法原理和乘法原理

授课主题加法原理和乘法原理教学目标1.理解分类加法计数原理与分步乘法计数原理.2.会用这两个原理分析和解决一些简单的实际计数问题.3.能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题.教学内容1.分类计数原理(加法原理)做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,…,在笫n类办法中有m n种不同的方法.那么完成这件事共有N=m1+m2+…+m n种不同的方法.原理的核心是每一种办法都能将事情完成.例如:某人从甲地到乙地,可以乘火车,也可以乘汽车,在这天的不同时间中,火车有4班,汽车有3班,此人的走法共有4+3=7种选择.2.分步计数原理(乘法原理)做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有m n种不同的方法.那么完成这件事有N=m1 ·m2·…·m n种不同的方法.原理的核心是每一个步骤都依次完成后,这件事情才能完成.例如:某人上楼从底层到三层,今知从底层到二层有4个扶梯可走,又从二层到三层有2个扶梯可走,此人从底层到三层的走法共有4 2=8种.分类计数原理与分步计数原理的区别在于完成一件事是分类还是分步.3.加法原理和乘法原理的异同(1)共同点是,它们都是研究完成一件事情共有多少种不同的方法.(2)不同点是,它们研究完成一件事情的方式不同,加法原理是“分类完成”,即任何一类办法中的任何一个方法都能完成这件事.乘法原理是“分步完成”,即这些方法需要分步,各个步骤顺次相依,且每一步都完成了,才能完成这件事情.4.根据具体情况选择应用不用的原理(1)完成一件事情有n类办法,若每一类办法中的任何一种方法均能将这件事情从头至尾完成,则计算完成这件事情的方法总数用加法原理.(2)完成一件事情有n个步骤,若每一步的任何一种方法只能完成这件事的一部分,并且必须且只需完成互相独立的这n步后,才能完成这件事,则计算完成这件事的方法总数用乘法原理.5.一些非常规计数问题的解法(1)枚举法:将各种情况通过树状图、表格等方法一一列举出来,它适用于计数种数较少的情况,分类计数时将问题分类实际上也是将分类种数一一列举出来.(2)间接法:若计数时分类较多或无法直接计数时,可用间接法先求出没有限制条件的总数,再减去不满足条件的种数,即正难则反.(3)转换法:转换问题的角度或转换成其他已知的问题.在实际应用中,应根据具体问题灵活处理.特别提醒:对于较复杂的既要用分类计数原理,又要用分步计数原理的问题,可以根据题意恰当合理地画出示意图或者列出表格,使问题的实质直观地显现出来,从而便于解题.题型一分类加法计数原理的应用例1某校高三共有三个班,其各班人数如下表:班级男生数女生数总数高三(1) 32 22 54高三(2) 28 22 50高三(3) 31 20 51(1)从三个班中选一名学生会主席,有多少种不同的选法?(2)从(1)班、(2)班女生中或从(3)班男生中选一名学生任学生会生活部部长,有多少种不同的选法?解析:(1)从三个班中任选一名学生,可分三类:第1类,从高三(1)班任选一名学生,有54种不同选法;第2类,从高三(2)班任选一名学生,有50种不同选法;第3类,从高三(3)班任选一名学生,有51种不同选法.由分类加法计数原理知,不同的选法共有N=54+50+51=155(种).(2)由题设知共有三类:第1类,从(1)班女生中任选一名学生,有22种不同选法;第2类,从(2)班女生中任选一名学生,有22种不同选法;第3类,从(3)班男生中任选一名学生,有31种不同选法.由分类加法计数原理知,不同的选法共有N=22+22+31=75(种).点评:分类加法计数原理是涉及完成一件事的不同方法的计数种类,每一类中的各种方法都是相互独立的,且每一类方案中的每一种方法都可以独立地完成这件事,在应用该原理解题时,首先要根据问题的特点,确定好分类的标准.分类时应满足:完成一件事的任何一种方法,必属于某一类且仅属于某一类.巩固(1)某班有男生26人,女生24人,从中选一位同学为数学科代表,则不同选法的种数有() A.50种B.26种C.24种D.616种(2)一项工作可以用A或B这两种方法中的一种方法完成,有4人会用A方法完成,另外8人会用B方法完成,从中选出1人来完成这项工作,不同选法的种数是()A.12种B.32种C.24种D.64种解析:(1)由分类加法计数原理知,不同选法的种数有26+24=50(种).故选A.(2)由分类加法计数原理知,不同选法的种数有4+8=12(种).故选A.答案:(1)A(2)A题型二分步乘法计数原理的应用例24个插班生分到甲、乙、丙三个班,有多少种不同的分法?分析:一个学生分到甲、乙、丙中的某个班,有3种不同方法,一个学生确定到哪个班后,这件事情并没有完成,只有4个学生全部确定各自到哪个班后这件事情才算完成,故应用乘法原理解决.解析:完成4个学生分到3个不同的班级这件事,可按每个学生对班级选择分四步完成,每一步中每一个学生在3个班级中选择1个,有3种选法,由乘法原理得共有34=81种不同的分法.点评:利用分步乘法计数原理计数的一般思路是首先考虑这件事要经过哪几个步骤才能完成,然后找出每一步中有多少种不同的方法,最后求其积,但应注意各个步骤是既相互独立又密切相关的,都完成后,才能完成整件事.巩固已知a∈{1,2,3},b∈{4,5,6,7},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个数为() A.9个B.12个C.8个D.24个解析:完成表示不同的圆这件事有三步:第一步,确定a有3种不同的选取方法;第二步,确定b有4种不同的选取方法;第三步,确定r有2种不同的方法.由分步乘法计数原理,方程(x-a)2+(y-b)2=r2可表示不同的圆共有3×4×2=24个.故选D.答案:D题型三分类加法计数原理和分步乘法计数原理的综合应用例3集合A={1,2,-3},B={-1,-2,3,4},现从A、B中各取一个元素作为点P(x,y)的坐标.(1)可以得到多少个不同的点?(2)在这些点中,位于第一象限的有几个点?解析:(1)第一类:选A中的元素为x,B中的元素为y,有3×4=12个不同的点;第二类:选A中的元素为y,B中的元素为x,有4×3=12个不同的点.故可以得到24个不同的点.(2)第一象限内的点,即x,y必须为正数,从而只能取A、B中的正数,同样分两类,所以N=2×2+2×2=8(个).即这些点中,位于第一象限的有8个点.点评:(1)解决此类综合题的关键在于区分该问题是“分类”还是“分步”.如果完成这件事,可以分几种情况,每种情况中任何一种方法都能完成任务,则是分类;而从其中一种情况中任取一种方法只能完成一部分事件,且只有依次完成各种情况,才能完成这件事,则是分步.(2)注意运用分类加法计数原理和分步乘法计数原理解决既有“分类”又有“分步”的综合问题时应“先分类,后分步”.巩固书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架的第1、2、3层各取1本书,有______种不同的取法;(2)从书架上任取两本不同学科的书,有______种不同的取法.解析:(1)从书架的第1,2,3层各取1本书,可以分成3个步骤完成:第1步,从第1层取1本计算机书,有4种方法;第2步,从第2层取1本文艺书,有3种方法;第3步,从第3层取1本体育书,有2种方法.根据分步乘法计数原理,不同取法的种数是N=4×3×2=24.(2)取一本计算机书和一本文艺书,有4×3=12种方法;取一本计算机书和一本体育书,有4×2=8种方法;取一本文艺书和一本体育书,有3×2=6种方法;所以总的方法数是N=12+8+6=26.答案:(1)24(2)26题型四分配问题例4(1)8本不同的书,任选3本分给3个同学,每人1本,有多少种不同的分法?(2)将4封信投入3个邮筒,有多少种不同的投法?(3)3位旅客到4个旅馆住宿,有多少种不同的住宿方法?解析:(1)分三步,每位同学取书一本,第1,2,3个同学分别有8,7,6种取法,因而由分步乘法计数原理,不同分法共有N=8×7×6=336(种).(2)完成这件事情可以分作四步,第一步投第一封信,可以在3个邮筒中任选一个,因此有3种投法;第二步投第二封信,同样有3种投法;第三步投第三封信,也同样有3种投法;第四步,投第四封信,仍然有3种投法.由分步乘法计数原理,可得出不同的投法共有N=3×3×3×3=81(种).(3)分三步,每位旅客都有4种不同的住宿方法,因而不同的方法共有N=4×4×4=64(种).点评:此类分配问题,实际上是分步计数问题,解题的关键是弄清分几步和每一步的方法总数.巩固(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?解析:(1)要完成的是“4名同学每人从三个项目中选一项报名”这件事,因为每人必报一项,四人都报完才算完成,于是按人分步,且分为四步,又每人可在三项中选一项,选法为3种,所以共有3×3×3×3=81种报名方法.(2)完成的是“三个项目冠军的获取”这件事,因为每项冠军只能有一人获得,三项冠军都有得主,这件事才算完成,于是应以“确定三项冠军得主”为线索进行分步.而每项冠军是四人中的某一人,有4种可能情况,于是共有4×4×4=43=64种可能的情况.题型五组数问题例5用0,1,2,3,4,5可以组成多少个无重复数字的比2 000大的四位偶数?分析:按末位是0,2,4分三类或千位是2,3,4,5分四类计数或用间接法.解析:法一按末位是0,2,4分为三类.第一类:末位是0的有4×4×3=48(个);第二类:末位是2的有3×4×3=36(个);第三类:末位是4的有3×4×3=36(个).则由分类计数原理有N=48+36+36=120(个).法二按千位是2,3,4,5分四类.第一类:千位是2的有2×4×3=24(个);第二类:千位是3的有3×4×3=36(个);第三类:千位是4的有2×4×3=24(个);第四类:千位是5的有3×4×3=36(个).则由分类计数原理有N=24+36+24+36=120(个).法三(间接法)用0,1,2,3,4,5可以组成的无重复数字的四位偶数分两类.第一类:末位是0的有5×4×3=60(个);第二类:末位是2或4的有2×4×4×3=96(个).共有60+96=156(个).其中比2 000小的千位是1的有3×4×3=36(个).所以符合条件的四位偶数共有156-36=120(个).点评:对于组数问题的计数,一般按特殊位置(末位或首位)由谁占领分类,每类中再分步来计数;但当分类较多时,可用间接法先求出总数,再减去不符合条件的数去计数.巩固用0,1,…,9这十个数字,可以组成多少个:(1)三位整数?(2)无重复数字的三位整数?(3)小于500的无重复数字的三位整数?解析:由于0不可在最高位,因此应对它进行单独考虑.(1)百位数字有9种选择,十位数字和个位数字都各有10种选择.由分步乘法计数原理知,适合题意的三位数共有9×10×10=900(个).(2)由于数字不可重复,可知百位数字有9种选择,十位数字也有9种选择,但个位数字仅有8种选择.由分步乘法计数原理知,适合题意的三位数共有9×9×8=648(个).(3)百位数字只有4种选择,十位数字有9种选择,个位数字有8种选择.由分步乘法计数原理知,适合题意的三位数共有4×9×8=288(个).题型六涂色问题例6把一个圆分成3个扇形,现在用5种不同的颜色给3个扇形涂色,要求相邻扇形的颜色互不相同,问(1)有多少种不同的涂法?(2)若分割成4个扇形呢?解析:(1)不同的涂色方法是5×4×3=60种.(2)如图所示,分别用a,b,c,d记这四个扇形.先考虑给a,c涂色,分两类:第一类给a,c涂同种颜色,共5种涂法;再给b涂色,有4种涂法;最后给d涂色,也有4种涂法.由分步乘法计数原理知,此时共有5×4×4种涂法.第二类给a,c涂不同颜色,共有5×4种涂法;再给b涂色,有3种方法;最后给d涂色,也有3种方法.此时共有5×4×3×3种涂法.由分类加法计数原理知,共有5×4×4+5×4×3×3=260种涂法.点评:涂色问题往往是既要分类又要分步,因此是排列组合中较难的问题.一般根据颜色的异同分类,根据涂色区域分步.巩固将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端点异色,如果只有5种颜色可供使用,求不同的染色方法总数.解析:按照S→A→B→C→D的顺序分类染色.第一类:A,C染相同颜色,有5×4×3×1×3=180(种);第二类:A,C染不同颜色,有5×4×3×2×2=240(种).故共有180+240=420种不同的染色方法.(加法)A组1.家住广州的小明同学准备周末去深圳参观旅游,从广州到深圳一天中动车组有30个班次,特快列车20个班次,汽车有40个不同班次.则小明乘坐这些交通工具去深圳有多少种不同的方法()A.90种B.120种C.180种D.360种解析:根据分分类加法计数原理,得方法种数为30+20+40=90(种).故选A.答案:A2.从A地到B地要经过C地和D地,从A地到C地有3条路,从C地到D地有2条路,从D地到B地有4条路,则从A地到B地不同走法的种数是()A.9种B.10种C.18种D.24种答案:D3.已知x∈{2,3,7},y∈{-3,-4,8},则x·y可表示不同的值的个数为()A.8个B.9个C.10个D.12个解析:根据分步乘法计数原理,得乘积个数为3×3=9(个),未出现重复的现象.故选B.答案:BB组一、选择题1.王刚同学衣服上左、右各有一个口袋,左边口袋装有30个英语单词卡片,右边口袋装有20个英语单词卡片,这些英语单词卡片都互不相同,问从两个口袋里各任取一个英语单词卡片,则不同的取法有() A.20种B.600种C.10种D.50种答案:B2.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为()A.7种B.12种C.64种D.81种解析:要完成配套,分两步:第一步,选上衣,从4件中任选一件,有4种不同的选法;第二步,选长裤,从3条长裤中任选一条,有3种不同选法.故共有4×3=12种不同取法.答案:B3.如图,一条电路从A处到B处接通时,可构成线路的条数为()A.8条B.6条C.5条D.3条解析:依题意,可构成线路的条数为2×3=6(条).故选B.答案:B4.植树节那天,四位同学植树,现有3棵不同的树,若一棵树限1人完成,则不同的植树方法种数有() A.1×2×3种B.1×3种C.34种D.43种解析:完成每棵树的种植都有4种方法,由分步乘法计数原理得,完成这三棵树的种植的方法总数是4×4×4=43(种).故选D.答案:D5.某班小张等4位同学报名参加A、B、C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有()A.27种B.36种C.54种D.81种解析:除小张外,每位同学都有3种选择,小张只有2种选择,所以不同的报名方法有3×3×3×2=54(种).故选C.答案:C二、填空题6.如图,从A→C有________种不同走法.答案:67.某校会议室有四个出入门,若从一个门进,另一个门出,不同的走法有________种.答案:128.在所有的两位数中,则个位数字大于十位数字的两位数共有________个.解析:根据题意将十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理,符合题意的两位数的个数共有:8+7+6+5+4+3+2+1=36(个).答案:36三、解答题9.小明同学有课外参考书若干本,其中有5本不同的外语书,4本不同的数学书,3本不同的语文书,他欲带参考书到图书馆阅读.(1)若他从这些参考书中带1本去图书馆,有多少种不同的带法?(2)若从这些参考书中选2本不同学科的参考书带到图书馆,有多少种不同的带法?解析:(1)完成的事情是带一本书,无论带外语书,还是数学书、语文书,事情都已完成,从而确定应用分类加法计数原理,结果为5+4+3=12种.(2)选1本外语书和选1本数学书应用分步乘法计数原理,有5×4=20种选法;同样,选外语书、语文书各1本,有5×3=15种选法;选数学书、语文书各1本,有4×3=12种选法;即有三类情况,应用分类加法计数原理,结果为20+15+12=47种.10.如图是某校的校园设施平面图,现用不同的颜色作为各区域的底色,为了便于区分,要求相邻区域不能使用同一种颜色.若有6种不同的颜色可选,问有多少种不同的着色方案?解析:操场可从6种颜色中任选1种着色;餐厅可从剩下的5种颜色中任选1种着色;宿舍区和操场、餐厅颜色都不能相同,故可从剩下的4种颜色中任选1种着色;教学区和宿舍区、餐厅的颜色都不能相同,故可从剩下的4种颜色中任选1种着色.根据分步乘法计数原理,知共有6×5×4×4=480(种)着色方案.(乘法)A组1.某小组有8名男生,6名女生,从中任选男生、女生各一人去参加座谈会,则不同的选法有() A.48种B.24种C.14种D.12种解析:从8名男生中任意挑选一名参加座谈会,共有8种不同的选法,从6名女生中任意挑选一名参加座谈会,共有6种不同的选法.由分步乘法计数原理知,不同的选法共有8×6=48(种).故选A.答案:A2.(a1+a2)·(b1+b2+b3)·(c1+c2+c3+c4)的展开式中的项数是()A.48项B.36项C.24项D.12项解析:要得到项数分三步:第一步,从第一个因式中取一个因子,有两种取法;第二步,从第二个因式中取一个因子,有3种取法;第三步,从第三个因式中取一个因子,有4种取法.由分步乘法计数原理知,共有2×3×4=24(项).故选C.答案:C3.已知函数y=ax2+bx+c,其中a,b,c∈{0,1,2,3,4},则不同的二次函数的个数为()A.125个B.15个C.100个D.10个答案:CB组一、选择题1.由0,1,2三个数字组成的三位数(允许数字重复)的个数为()A.27个B.18个C.12个D.6个解析:分三步,分别取个位、十位、百位上的数字,分别有3种、3种、2种取法,故共可得3×3×2=18个不同的三位数.答案:B2.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种答案:A3.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为() A.40个B.16个C.13个D.10个答案:C4.某市汽车牌照号码(由4个数字和1个字母组成)可以上网自编,但规定从左到右第二个号码只能从字母B,C,D 中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复).某车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码所有可能的情况有()A.180种B.360种C.720种D.960种解析:分五步完成,第i步取第i个号码(i=1,2,3,4,5).由分步乘法计数原理,可得车牌号码共有5×3×4×4×4=960种.故选D.答案:D5.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为() A.14个B.13个C.12个D.10个解析:方程ax2+2x+b=0有实数解,分析讨论:①当a=0时,很显然为垂直于x轴的直线方程,有解.此时可以取4个值.故有4种有序数对;②当a≠0时,需要Δ=4-4ab≥0,即ab≤1.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).因为(a,b)共有4×4=16种实数对,故答案应为16-3=13.故选B.答案:B二、填空题6.如图,从A到C有________不同的走法.解析:用列举法可知有8种不同的走法.答案:87.若从1,2,3,…,9这9个数中同时取4个不同的数,其和为偶数,则不同的取法有________种.答案:668.把9个相同的小球放入编号为1,2,3的三个箱子里,要求每个箱子放球的个数不小于其编号数,则不同的放球方法共有____种.解析:第一个箱子放入1个小球则共有4种情况,第一个箱子放入2个小球则共有3种情况,第一个箱子放入3个小球则共有2种情况,第一个箱子放入4个小球则共有1种情况,据分类加法计数原理共有10种情况.答案:10三、解答题9.从1到200的自然数中,各个数位上都不含有数字8的自然数有多少个?解析:从整体看需分类完成,用分类计数原理.从局部看需分步完成,用分步计数原理.第一类:一位数中除8外符合要求的有8个(0除外);第二类:两位数中,十位上数字除0和8外有8种情况,而个位数字除8外,有9种情况,有(8×9)个符合要求;第三类:三位数中,百位上数字是1的,十位和个位上数字除8外均有9种情况,有(9×9)种,而百位数字上是2的只有200符合.所以总共有8+8×9+9×9+1=162(个).10.某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A,B,C,A1,B1,C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有多少种?解析:第一步,在点A1,B1,C1上安装灯泡,A1有4种方法,B1有3种方法,C1有2种方法,共有4×3×2=24(种)方法.第二步,从A,B,C中选一个点安装第4种颜色的灯泡,有3种方法.第三步,再给剩余的两个点安装灯泡,共有3种方法,由分步乘法计数原理可得,共有4×3×2×3×3=216(种)方法.11。

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理

自然数2520有多少个约数? 有多少个约数? 例3.自然数 自然数 有多少个约数 解:2520=23×32×5×7 = × 分四步完成: 分四步完成: 第一步: 第一步:取20,21,22,23,24有4种; 种 第二步: 第二步:取30,31,32有3种; 种 第三步:取50,51有2种; 第三步: 种 第四步: 第四步:取70,71有2种。 种 由分步计数原理,共有4× × × = 种 由分步计数原理,共有 ×3×2×2=48种 练习: 张 元币 元币, 张 角币 角币, 张 分币 分币, 张 分币 分币, 练习:5张1元币,4张1角币,1张5分币,2张2分币,可组成 多少种不同的币值?( 张不取, ?(1张不取 角不计在内) 多少种不同的币值?( 张不取,即0元0分0角不计在内) 元 分 角不计在内 元:0,1,2,3,4,5 , , , , , 角:0,1,2,3,4 , , , , 分:0,2,4,5,7,9 , , , , , 6×5×6-1=179 × × - =
பைடு நூலகம்
(染色问题) 染色问题)
1.如图 要给地图 、B、C、D四个区域分别涂上 种 如图,要给地图 四个区域分别涂上3种 如图 要给地图A、 、 、 四个区域分别涂上 不同颜色中的某一种,允许同一种颜色使用多次 允许同一种颜色使用多次,但相 不同颜色中的某一种 允许同一种颜色使用多次 但相 邻区域必须涂不同的颜色,不同的涂色方案有多少种 不同的涂色方案有多少种? 邻区域必须涂不同的颜色 不同的涂色方案有多少种?
深化理解 4. 何时用分类计数原理、分步计数原理呢 何时用分类计数原理、分步计数原理呢? 完成一件事情有n类方法 答:完成一件事情有 类方法 若每一类方法中的任 完成一件事情有 类方法,若每一类方法中的任 何一种方法均能将这件事情从头至尾完成,则计算完 何一种方法均能将这件事情从头至尾完成 则计算完 成这件事情的方法总数用分类计数原理. 成这件事情的方法总数用分类计数原理 完成一件事情有n个步骤 若每一步的任何一种 完成一件事情有 个步骤,若每一步的任何一种 个步骤 方法只能完成这件事的一部分,并且必须且只需完成 方法只能完成这件事的一部分 并且必须且只需完成 互相独立的这n步后 才能完成这件事,则计算完成这 步后,才能完成这件事 互相独立的这 步后 才能完成这件事 则计算完成这 件事的方法总数用分步计数原理. 件事的方法总数用分步计数原理

分类加法与分步乘法计数原理-

分类加法与分步乘法计数原理-
共能给22 464 000辆汽车上牌照.
35
思考
集合A={a1,a2,…,an}共有多少个 子集?
36
课堂练习
1. 一种号码锁有4个拨号盘, 每个拨号盘上有从0到9共10个数字, 这4个拨号盘可以组成多少个四位 数字号码?
N=10×10×10×10=10000(种)
37
2. 要从甲、乙、丙3名工人中选 出2名分别上日班和晚班,有多少种 不同的选法? 第一步: 选1人上日班; 有3种方法 第二步: 选1人上晚班. 有2种方法
33
开始
子模块1 18条执行路径
子模块2 45条执行路径
A
子模块3 28条执行路径
子模块4 38条执行路径ቤተ መጻሕፍቲ ባይዱ
子模块5 43条执行路径
7371条
结束
178次
34
例5 随着人们生活水平的提高,某 城市家庭汽车拥有量迅速增长,汽车牌 照号码需要扩容.交通管理部门出台了一 种汽车牌照组成方法,每一个汽车牌照 都必须有3个不重复的英文字母和3个不 重复的阿拉伯数字,并且3个字母必须合 成一组出现,3个数字也必须合成一组出 现.那么这种办法共能给多少辆汽车上牌 照?
4×8=32
13
问题探究
3.从师大声乐系某6名男生和8名女生中 各选一人表演男女二重唱,共有多少种 不同的选派方法?
6×8=48
上述原理称为分步乘法计数原理.
14
问题探究
4.上述计数问题的算法有何共同特点? 完成一件事需要两个步骤, 做第1步有m 种不同的方法, 做第2步有n 种不同的 方法, 那么完成这件事共有N=m×n种 不同的方法.
30×29×20+20×19×30 =17400+11400=28800(种)

分类加法计数原理和分步乘法计数原理

分类加法计数原理和分步乘法计数原理

分类加法计数原理和分步乘法计数原理【要点梳理】要点一:分类加法计数原理(也称加法原理)1.分类加法计数原理:完成一件事,有n 类办法.在第1类办法中有1m 种不同方法,在第2类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同方法,那么完成这件事共有n m m m N +++=Λ21种不同的方法.2.加法原理的特点是:① 完成一件事有若干不同方法,这些方法可以分成n 类;② 用每一类中的每一种方法都可以完成这件事;③ 把每一类的方法数相加,就可以得到完成这件事的所有方法数.要点诠释:使用分类加法计数原理计算完成某件事的方法数,第一步是对这件事确定一个标准进行分类,第二步是确定各类的方法数,第三步是取和。

3.图示分类加法计数原理:由A 到B 算作完成一件事.直线型流程线表示第1类方案中包括的方法数,折线型流程线表示第2类方案中包括的方法数。

从图中可以看出,完成由A 到B 这件事,共有方法m+n 种。

要点诠释:用分类加法计数原理计算完成某件事的方法数,“类”要一竿到底,它的起点、终点就是完成这件事的开始与结束,图示分类加法计数原理,用意就在其中。

要点二、分步乘法计数原理1.分步乘法计数原理“做一件事,完成它需要分成n 个步骤”,就是说完成这件事的任何一种方法,都要分成n 个步骤,要完成这件事必须并且只需连续完成这n 个步骤后,这件事才算完成.2.乘法原理的特点:① 完成一件事需要经过n 个步骤,缺一不可;② 完成每一步有若干种方法;③ 把每一步的方法数相乘,就可以得到完成这件事的所有方法数.要点诠释:使用分步乘法计数原理计算完成某件事的方法数,第一步是对完成这件事进行分步,第二步是确定各步的方法数,第三步是求积。

3.图示分步乘法计数原理:由A到C算作完成一件事.设完成这件事的两个步骤为从A到B、从B到C。

要点诠释:从A到C算作完成一件事,A是起点,C是终点,点B是中间单元,从A到B是第1步,从B到C是第2步。

1.1分类加法计数原理与分步乘法计数原理(2)

1.1分类加法计数原理与分步乘法计数原理(2)

4.如图,该电路,从A到B共有多少条不同的线路可
通电?
A
B
4.如图,该电路,从A到B共有多少条不同的线路可
通电?
4.如图,该电路,从A到B共有多少条不同的线路可
通电?
4.如图,该电路,从A到B共有多少条不同的线路可
通电?
4.如图,该电路,从A到B共有多少条不同的线路可
通电?
4.如图,该电路,从A到B共有多少条不同的线路可
解: 按地图A、B、C、D四个区域依次分四步完成, 第一步, m1 = 3 种, 第二步, m2 = 2 种, 第三步, m3 = 1 种, 第四步, m4 = 1 种, 所以根据乘法原理, 得到不同的涂色方案种数共有 N = 3 × 2 ×1×1 = 6 种。
例4 如图, 要给地图A、B、C、D四个区域分别涂 上3种不同颜色中的某一种, 允许同一种颜色使用 多次, 但相邻区域必须涂不同的颜色, 不同的涂色 方案有多少种?
思考 你能归纳一下用分类加法计数原理、分步乘 法计数原理解决计数问题的方法吗?
用两个计数 原理解决计 数问题时, 最 重要的是 在 开始 计算 之 前要进 行仔 细分析 需 要分类还 是 需要分步.
分类要做到"不重不漏". 分类后再分别
对每一类进行计数 最后用分类加法计 , 数原理求和, 得到总数.
课本P9例9
分析 按照新规定, 牌照可以分为 2 类,即字 母组合在左和字母组合在右.确定一个牌照 的字母和数字可以分6个步骤.
解 将汽车牌照分为2类, 一类字母组合在左, 另一 类的字母组合在右. 字母组合在左时分6个步骤确定一个汽车牌 , 照的 字母和数字: 第1步, 从26个字母中选 个, 放在首位 有26种选法 1 , ; 第 2 步, 从剩下的 个字母中选 个, 放在第2位,有 25 1 25种选法; 第3步, 从剩下的 个字母中选1 个, 放在第3位,有 24 24种选法;

原创1:1.1分类加法计数原理与分类乘法计数原理

原创1:1.1分类加法计数原理与分类乘法计数原理
根据分步计数原理,有重复数字的四位数有:N=5 × 5 × 5× 5=625(种) 3.由数字1,2,3,4,5可以组成多少个无重复数字的四位数?
根据分步计数原理,无重复数字的四位数有:N=5 × 4 × 3× 2=120(种)
巩固练习
4.羊村内的小羊们正热火朝天地举行运动会。绵羊族有8名运动员,盘羊族 有7名运动员,羚羊族有6名运动员。问:
第一章 计数原理
§1.1分类加法计数原理与分布乘法计数原理
高中数学选修2-3·精品课件
问题探究一:
喜羊羊与灰太狼故事
狼堡
羊村
灰太狼从狼堡 去羊村抓羊,他开飞机去有 2 条航线,骑 摩托车去有 3 条道路.请问灰太狼去羊村一共有几种不 同方法?
问题剖析
灰太狼做什么事情?
从狼堡到羊村抓羊
完成这个事情有几类方法?
区别3
各类办法是互相独立的。
各步之间是互相关联的。
即:类类独立,步步关联。
巩固练习
1.灰太狼开着飞机发现羊村正在开运动会,有12只羊在跳远、11只羊在跳 高、9只羊在标枪比赛、13只羊在铁饼比赛。灰太狼要从中抓一只羊,有多 少种不同的选择? 根据分类计数原理,不同的选法共有:N=12+11+9+13=45(种) 2.由数字1,2,3,4,5可以组成多少种可以有重复数字的四位数?
例4.核糖核酸(RNA)分子是在生物细胞中发现的化学成分,一个RNA分子 是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种 称为碱基的化学成分所占据,总共有4个不同的碱基,分别用A,C,G,U 表示,在一个RNA分子中,各种碱基能够以任意次序出现,所以在任意一个 位置上的碱基与其他位置上的碱基无关。假设有一类RNA分子由100个碱基 组成,那么能有多少种不同的RNA分子?

1.1.1分类加法计数原理

1.1.1分类加法计数原理

例3.设某班有男生30名,女生24名。现要从中选出男、 女生各一名代表班级参加比赛,共有多少种不同的 选法?
分析: 选出一组参赛代表,可以分两个步骤。 第1步选男生,第2步选女生。 第2步,从24名女生中选出1人,有24种方法。 根据分步乘法计数原理,共有 32×24=720种不同的选法。
解: 第1步,从30名男生中选出1人,有30种方法;
思考?
用前6个大写英文字母和1~9九个阿 拉伯数字,以A1,A2,·,B1,B2,·的方 · · · · 式给教室里的座位编号,总共能编出多少 个不同的号码?
分析:由于前6个英文字母中的任意一个都能 与9个数字中的任何一个组成一个号码,而且 它们各个不同,因此共有6×9=54个不同的 号码。
字母
根据分类加法计数原理:这名同学可能的专业选择共有5+4=9种。
探究
问题. 从甲地到乙地,可以乘火车,也可
以乘汽车,还可以乘轮船。一天中,火车 有4 班, 汽车有2班,轮船有3班。那么一天 中乘坐这些交通工具从甲地到乙地共有多 少种不同的走法? 解: 从甲地到乙地有3类方法, 第1类方法, 乘火车,有4种方法; 第2类方法, 乘汽车,有2种方法; 第3类方法, 乘轮船, 有3种方法; 所以 从甲地到乙地共有 4 + 2 + 3 = 9 种方法。
例1 在填写高考志愿表时,一名高中毕业生了解到A、B两 所大学各有一些自己感兴趣的强项专业,具体情况如下: A大学 生物学 化学 医学 物理学 B大学 数学 会计学 信息技术学 法学
工程学 如果这名同学只能选一个专业,那么他共有多少种选择呢?
解:这名同学在A大学中有5种专业选择,在B大学中有4种专业选择。
1.1.1分类加法计数原理

分类加法计数原理与分步乘法计数原理PPT优秀课件15

分类加法计数原理与分步乘法计数原理PPT优秀课件15
94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳]
解:可分为两条线路,
第一类线路:
宾馆 中国国家馆 上汽集团-通用汽车馆 宾馆
3×2×2=12
第二类线路:
宾馆 上汽集团-通用汽车馆 中国国家馆 宾馆
2×2×3=12
所以有 12+12=24 种走法
小结:回忆本节课所学习的内容,你都学到了什么?
类类相加 步步相乘
作业:自主学习丛书 P91 T13 (3)选作
通过练习,你能总结一下用计数原理解题的一般步骤吗?
都可以用来求完成一件事的方法种类
类类相加
步步相乘
完成任何其中的一步都
用任何一类中的任何一 不能完成该件事,只有
种方法都可以单独完成 当各个步骤都完成后,
这件事
才算完成这件事
巩固练习
1.填空: ①一件工作可以用2种方法完成,有5人会用第1种方
法完成,另有4人会用第2种方法完成,从中选出1 人来完成这件工作,不同选法的种数是 9 . ②从A村去B村的道路有3条,从B村去C村的道路有2 条,从A村经B村去C村,不同的路线有 6 条.
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]

数学高中选修2-3第一章 计数原理1.分类加法计数原理和分步乘法计数原理1.1 分类加法计数原理

数学高中选修2-3第一章 计数原理1.分类加法计数原理和分步乘法计数原理1.1 分类加法计数原理

制作 冯健璇
问题1 从温州到杭州旅游,可以乘火车,也可以乘汽
车。若一天中火车有3列,汽车有2辆。那么一天中乘坐 这些交通工具从温州到杭州有多少种不同的走法?
变式: 从温州到杭州旅游,可以乘火车,也可以乘汽
车,还可以乘飞机。若一天中火车有3列,汽车有2辆, 飞机有4架。那么一天中乘坐这些交通工具从温州到 杭州有多少种不同的走法?
分类计数原理
(加法原理)
完成一件事,有n类办法. 在第1类办法中有m1 种不同的方法,在第2类办法中有m2种不同的方 法,……,在第n类办法中有mn种不同的方法,
则完成这件事共有 N= m1+m2+… +mn 种 不同的方法.
在1,2,3,…,200中,能够被5整除的数共有 多少个? 解:能够被5整除的数,末位数字是0或5, 因此,我们把1,2,3,…,200中,能够被5整除的 数分成两类来计数: 第一类:末位数字是0的数,一共有20个. 第二类:末位数字是5的数,一共有20个. 根据加法原理,在1,2,3,…,200中,能够被5整 除的数共有20+20=40个.
一个商店销售某种型号的电视机, 其中本地的产品有4种,外地的产 品有7种,要买1台这种型号的电视 机,有多少种不同的选法?
N= 4 + 7 =11
分类计数原理
针对的是“分类”问题
(加法原理)
各类方法相互独立
完成一件事,有n类办法. 在第1类办法中有m1 种不同的方法,在第2类办法中有m2种不同的方 法,……,在第n类办法中有mn种不同的方法, 则完成这件事共有 N= m1+m2+… +mn 种 不同的方法.
完成一件工作,有两种方法,有5个人只会 用第一种方法,另外有4个人只会用第二种 方法,从这9个人中选1人完成这件工作, 一共有多少种选法? 分类计数原理: 针对的是“分类”问题

高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第1课时 分类加法计数原理与

高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第1课时 分类加法计数原理与

第1课时分类加法计数原理与分步乘法计数原理[A 基础达标]1.从甲地到乙地一天有汽车8班,火车2班,轮船3班,某人从甲地到乙地,共有不同的走法种数为( )A.13 B.16C.24 D.48解析:选A.由分类加法计数原理可知,不同的走法种数为8+2+3=13(种).2.(2019·某某高二检测)如图,一条电路从A处到B处接通时,可构成线路的条数为( )A.8 B.6C.5 D.3解析:选B.从A处到B处的电路接通可分两步:第一步,前一个并联电路接通有2条线路;第二步,后一个并联电路接通有3条线路.由分步乘法计数原理知电路从A处到B处接通时,可构成线路的条数为2×3=6(条),故选B.3.(2019·某某高二检测)已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )A.40 B.16C.13 D.10解析:选C.分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13(个)不同的平面.4.现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A.81 B.64C.48 D.24解析:选A.每个同学都有3种选择,所以不同选法共有34=81(种),故选A.5.如果x,y∈N,且1≤x≤3,x+y<7,那么满足条件的不同的有序自然数对(x,y)的个数是( )A.15 B.12C.5 D.4解析:选A.分三类情况讨论:①当x=1时,y=0,1,2,3,4,5,有6种情况;②当x=2时,y=0,1,2,3,4,有5种情况;③当x=3时,y=0,1,2,3,有4种情况.由分类加法计数原理可得,满足条件的有序自然数对(x,y)的个数是6+5+4=15(个).6.十字路口来往的车辆,如果不允许回头,则不同的行车路线有________种.解析:完成该任务可分为四类,从每一个方向的入口进入都可作为一类,如图,从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12(种)不同的行车路线.答案:127.已知集合A={0,3,4},B={1,2,7,8},集合C={x|x∈A或x∈B},则当集合C 中有且只有一个元素时,C的情况有________种.解析:分两种情况:当集合C中的元素属于集合A时,有3种;当集合C中的元素属于集合B时,有4种.因为集合A与集合B无公共元素,所以集合C的情况共有3+4=7(种).答案:78.(2019·某某高二检测)已知函数y=ax2+bx+c为二次函数,其中a,b,c∈{0,1,2,3,4},则不同的二次函数个数为________.解析:若y=ax2+bx+c为二次函数,则a≠0,要完成该事件,需分步进行:第一步,对系数a有4种选法;第二步,对系数b有5种选法;第三步,对系数c有5种选法.所以共有4×5×5=100(个)不同的二次函数.答案:1009.现有高二四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选两人作中心发言,这两人需来自不同的班级,有多少种不同的选法?解:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种).(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5 040(种).(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).10.(2019·某某高二检测)已知集合A={a,b,c},集合B={-1,0,1}.(1)从集合A到B能构造多少个不同的函数?(2)满足f(a)+f(b)+f(c)=0的函数有多少个?解:(1)每个元素a,b,c都可以有3个数和它对应,故从A到B能构造3×3×3=27(个)不同的函数.(2)列表如下:[B 能力提升]11.从集合{1,2,3,…,10}中任意选出3个不同的数,使这3个数成等比数列,这样的等比数列的个数为( )A.3 B.4C.6 D.8解析:选D.以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到4个数列,所以所求的数列共有2×(2+1+1)=8(个).12.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14 B.13C.12 D.10解析:选B.对a进行讨论,为0与不为0,当a不为0时还需考虑判别式与0的大小关系.若a=0,则b=-1,0,1,2,此时(a,b)的取值有4个;若a≠0,则方程ax2+2x+b=0有实根,需Δ=4-4ab≥0,所以ab≤1,此时(a,b)的取值为(-1,0),(-1,1),(-1,-1),(-1,2),(1,1),(1,0),(1,-1),(2,-1),(2,0),共9个.所以(a,b)的个数为4+9=13(个).故选B.13.某节目中准备了两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?解:抽奖过程分三步完成,考虑到幸运之星可分别出现在两个信箱中,故可分两种情形考虑,分两大类:(1)幸运之星在甲箱中抽,先定幸运之星,再在两箱中各定一名幸运伙伴有30×29×20=17 400(种)结果.(2)幸运之星在乙箱中抽,同理有20×19×30=11 400(种)结果.因此共有不同结果17 400+11 400=28 800(种).14.(选做题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有多少种?解:法一:(直接法)若黄瓜种在第一块土地上,则有3×2×1=6种不同的种植方法.同理,黄瓜种在第二块、第三块土地上均有3×2×1=6种不同的种植方法.故不同的种植方法共有6×3=18(种).法二:(间接法)从4种蔬菜中选出3种种在三块土地上,有4×3×2=24种方法,其中不种黄瓜有3×2×1=6种方法,故共有不同的种植方法24-6=18(种).。

1.1分类加法计数原理与分步乘法计数原理(高中数学人教A选修2-3)

1.1分类加法计数原理与分步乘法计数原理(高中数学人教A选修2-3)
解析: (1)选一名学生有三类不同的选法. 第一类:从高二(1)班选一名,有50种不同的方法; 第二类:从高二(2)班选一名,有60种不同的方法; 第三类:从高二(3)班选一名,有55种不同的方法.
故任选一名学生任学生会主席的选法共有50+60+55=165 种不同的方法.
(2)选一名学生任学生会体育部长有三类不同的选法. 第一类:从高二(1)班男生中选有30种不同的方法; 第二类:从高二(2)班男生中选有30种不同的方法; 第三类:从高二(3)班女生中选有20种不同的方法.
2.分步计数原理针对的是“分步”问题, 各个步骤中的方法相互依存,只有各 个步骤都完成才算做完这件事.
两个计数原理
分类加法计数原理 分步乘法计数原理
相同点 用来计算“完成一件事”的方法种数
分类完成类类相加 分步完成 步步相乘
每类方案中的每一 每步_依__次__完__成__才
不同点 种完方成法这都 件能 事_独__立___
两类

26种 10种
26+10=36种
假如你从南宁到北海,
可以坐直达客车或直达火车,
客车每天有3个班次,火车每天有2个班次,
请问你共有多少种不同的走法客?车1
北海
南宁
客车2
客车3
火车1 火车2 分析:完成从南宁到北海这件事有2类方案, 所以,从从南宁到北海共有3+ 2= 5种方法.
问题1:你能否发现这两个问题有什么共同特征? 1、都是要完成一件事 2、用任何一类方法都能直接完成这件事 3、都是采用加法运算
物理学
法学
汉语言文学
工程学
பைடு நூலகம்
韩语
如果这名同学只能选一个专业,那么他共有多少种 选择呢? N=5+4+5=14(种)
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分类加法计数原理与分步乘法计数原理的区别和联系:
联系
加法原理
乘法原理
回答的都是关于完成一件事情的不同方法的
种数的问题。
区别一 关键词是“分类”
关键词是“分步”
区别二 区别三
每一步得到的只是中间结果,
每类办法都能独立完成 这件事情。
任何一步都不能独立完成 这件事情,缺少任何一步也 不能完成这件事情,只有每
4、在所有的两位数中,个位数字比十位数字大 的两位数有多少个?
5、8本不同的书,任选3本分给3个同学,每人1本, 有多少种不同的分法?
6、已知 a {3, 4,6},b {1, 2,7,8}, r {8,9}
则方程 (x a)2 ( y b)2 r2 可表示不同的圆的
个数有多少?
分类加法计数原理
与 分步乘法计数原理(一)
游周平
问题 1. 从宁明到南宁,可以乘火车,也可以乘 汽车。一天中,火车有3班, 汽车有5班。那么一 天中乘坐这些交通工具从宁明到南宁共有多少种 不同的走法? 分析: 从宁明到南宁有2类方法
第一类方法, 乘火车,有3种方法; 第二类方法, 乘汽车,有5种方法; 所以 从宁明到南宁共有 3+5 = 8 种方法。
例1、商店里的饮料有矿泉水、牛奶、可乐、凉茶, 其中矿泉水有3种不同的牌子、牛奶有2种不同的 牌子、可乐有2种不同的牌子、凉茶有3种不同的 牌子。若到该商店买一瓶饮料,有多少种不同的 买法?
问题二:若选择从宁明坐汽车去南宁,第二天再从南
宁坐高铁去广州,宁明去南宁的汽车有5班,南宁到
广州的高铁有6列。请问从宁明到广州有几种方法?
分析:宁明到广州分两个步骤走
第一步
汽车1 汽车2 汽车3 汽车4 汽车5
第二步 高铁1 高铁2 高铁3 高铁4 高铁5 高铁6
方法数
5×6=30
分步 第一步 第二步 第三步 第四步 。。。
每一步
5
6
3
5
方法数
方法总数
5×6 ×3 ×5 。。。
分步 第一步 第二步 第三步 … 第n步
每一步 方法数
方法分类
每一类方 法数 方法总数
火车 汽车 高铁 。。。
3
5
4
3+5 +4 +。。。
方法分类
每一类 方法数 方法总数
第1类 第2类 第3类。。。第n类
m1 m2 m3 … mn m1+m2+m3+…+mn
分类加法计数原理:完成一件事,有n类办法,在 第1类办法中有m1种不同的方法,在第2类办法中有 m2种不同的方法……在第n类办法中有mn种不同的 方法.那么完成这件事共有 N m1 m2 mn 种 不同的方法.
个步骤完成了,才能完成这
件事情。
各类办法是互斥的、 并列的、独立的
各步之间是相关联的
例3、有一项活动,需在3名教师、8名男生和5名女 生中选人参加。
(1)若只需1人参加,有多少种选法?
(2)若需教师、男生、女生各1人参 加, 有多少 种选法?
练习1、P3 例1 2、P5 , 1 , 2
3、商店里有15种上衣,18种裤子,某人 要买1件上衣或1条裤子,共有多少种选法? 若要买上衣、裤子各一件,共有多少种选 法?
方法总数
m1
m2
m3
… mn
m1×m2×m3×…×mn
2、分步乘法计数原理:完成一件事需要经过n个步骤, 缺一不可,做第一步有m1种不同的方法,做第二步有m2 种不同的方法……,做第n步有mn种不同的方法.那么
完成这件事共有 N m1 m2 mn 种不同的方法.
ห้องสมุดไป่ตู้
例2、如图,车站的检票口是由大写英文字母和两个 阿拉伯数字组成。若首位在字母A,B中选,第二位 在数字0,1,2中选,第三位在数字1,2,3,4,5, 6,7,8,9中选.请问可以编多少个检票口的号码?
小结:
1、本节课主要学习了什么内容? 2、完成一件事情的方法数计算,如何判断是用 加法原理还是乘法原理?
3、数学与生活联系紧密,学好数学知识有助于 我们认识世界,解决生活中的一些实际问题。
4、要敢于归纳、猜想、概括,这是发现新知识 的法宝。
作业:A组1、3、4、5
谢谢大家!
相关文档
最新文档