2019-2020学年八年级上学期数学期中考试试卷新版
2019-2020学年北京师大附属实验中学八年级(上)期中数学试卷
2019-2020学年北京师大附属实验中学八年级(上)期中数学试卷一.选择题(每小题3分,共30分)1.(3分)在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.2.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.(3分)点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5)C.(﹣2,﹣5)D.(2,﹣5)4.(3分)如图所示,△ABC≌△ECD,∠A=48°,∠D=62°,则图中∠B的度数是()A.38°B.48°C.62°D.70°5.(3分)下列各式分解因式正确的是()A.(a2+b2)﹣(a+b)=(a+b)(a+b﹣1)B.3x2﹣6xy﹣x=x(3x﹣6y)C.a2b2﹣ab3=ab2(4a﹣b)D.x2﹣5x+6=(x﹣1)(x﹣6)6.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM 7.(3分)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点8.(3分)如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC 的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD 的度数为()A.65°B.60°C.55°D.45°9.(3分)平面直角坐标系中,已知A(2,0),B(0,2)若在坐标轴上取C点,使△ABC 为等腰三角形,则满足条件的点C的个数是()A.4B.6C.7D.810.(3分)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二.填空题(每题2分,17,18题各3分,共18分)11.(2分)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.12.(2分)已知一个多边形的内角和与它的外角和正好相等,则这个多边形是边形.13.(2分)如果x2+mx+1=(x+n)2,且m>0,则n的值是.14.(2分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.15.(2分)若等腰三角形的一个角等于120°,则它的底角的度数为.16.(2分)如图,△ABC中,AB=14,AM平分∠BAC,∠BAM=15°,点D、E分别为AM、AB的动点,则BD+DE的最小值是.17.(3分)已知a+b=4,ab=﹣5,则﹣ab=.18.(3分)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC 延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为.三、解答题(19-22题每题6分,23-26题每题7分,共52分)19.(6分)因式分解:2m(a﹣b)﹣3n(b﹣a)20.(6分)因式分解:(2a+b)2﹣(a+2b)221.(6分)如图,已知A(1,2),B(3,1),C(4,3).(1)作△ABC关于y轴的对称图形△A1B1C1,写出点C1的坐标;(2)直线m平行于x轴,在直线m上求作一点P使得△ABP的周长最小,请在图中画出P点.22.(6分)如图,长方形台球桌ABCD上有两个球P,Q.(1)请画出一条路径,使得球P撞击台球桌边AB反弹后,正好撞到球Q;(2)请画出一条路径,使得球P撞击台球桌边,经过两次反弹后,正好撞到球Q.23.(7分)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.24.(7分)如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O (1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.25.(7分)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到(+)2=2+2+2这个等式,请解答下列问题:(1)写出图2中所表示的数学等式.(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则2+2+2=.(4)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张长宽分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+4b)的长方形,则x+y+z =.26.(7分)我们知道:有两条边相等的三角形叫做等腰三角形,类似的,我们定义:至少有一组对边相等的四边形叫做等边四边形.(1)如图,在△ABC中,点D,E分别在AB,AC上,设CD,BE相交于点O,若∠A =60°,∠DCB=∠EBC=∠A.请你写出图中一个与∠A相等的角,并猜想图中哪个四边形是等对边四边形?(2)在△ABC中,如果∠A是不等于60°的锐角,点D,E分别在AB,AC上,且∠DCB=∠EBC=∠A.探究:满足上述条件的图形是否存在等对边四边形,并证明你的结论.四.代数阅读题(本题共5分)27.(5分)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)请说明28是否为“神秘数”;(2)下面是两个同学演算后的发现,请选择一个“发现”,判断真假,并说明理由.①小能发现:两个连续偶数2k+2和2k(其中k取非负整数)构造的“神秘数”也是4的倍数.②小仁发现:2016是“神秘数”.五.几何阅读题(本题共7分)28.(7分)在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有条对称轴,非正方形的长方形有条对称轴,等边三角形有条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图2和图3都可以看作由图1修改得到的,仿照类似的修改方式,请你在图4和图5中,分别修改图2和图3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图6中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.六.几何探究题(本题共8分)29.(8分)(1)如图1,点A为线段BC外一动点,且BC=a,AB=b,填空:当点A位于时,线段AC的长取到最大值,且最大值为;(用含a、b的式子表示).(2)如图2,若点A为线段BC外一动点,且BC=6,AB=3,分别以AB,AC为边,作等边△ABD和等边△ACE,连接CD,BE.①图中与线段BE相等的线段是线段,并说明理由;②直接写出线段BE长的最大值为.(3)如图3,在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(10,0),点P为线段AB外一动点,且PA=4,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值为,及此时点P的坐标为.(提示:等腰直角三角形的三边长a、b、c满足a:b:c=1:1:)2019-2020学年北京师大附属实验中学八年级(上)期中数学试卷参考答案与试题解析一.选择题(每小题3分,共30分)1.(3分)在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.2.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.(3分)点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5)C.(﹣2,﹣5)D.(2,﹣5)【解答】解:∵点P(2,﹣5)关于x轴对称,∴对称点的坐标为:(2,5).故选:B.4.(3分)如图所示,△ABC≌△ECD,∠A=48°,∠D=62°,则图中∠B的度数是()A.38°B.48°C.62°D.70°【解答】解:∵△ABC≌△ECD,∠A=48°,∠D=62°,∴∠ACB=∠D=62°,∴∠B=180°﹣∠A﹣∠ACB=70°,故选:D.5.(3分)下列各式分解因式正确的是()A.(a2+b2)﹣(a+b)=(a+b)(a+b﹣1)B.3x2﹣6xy﹣x=x(3x﹣6y)C.a2b2﹣ab3=ab2(4a﹣b)D.x2﹣5x+6=(x﹣1)(x﹣6)【解答】解:A、原式不能分解,不符合题意;B、原式=x(3x﹣6y﹣1),不符合题意;C、原式=ab2(4a﹣b),符合题意;D、原式=(x﹣2)(x﹣3),不符合题意,故选:C.6.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM 【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P时直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选:B.7.(3分)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.8.(3分)如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC 的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD 的度数为()A.65°B.60°C.55°D.45°【解答】解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选:A.9.(3分)平面直角坐标系中,已知A(2,0),B(0,2)若在坐标轴上取C点,使△ABC 为等腰三角形,则满足条件的点C的个数是()A.4B.6C.7D.8【解答】解:如图所示:当AB=AC时,符合条件的点有3个;当BA=BC时,符合条件的点有3个;当点C在AB的垂直平分线上时,符合条件的点有一个.故符合条件的点C共有7个.故选:C.10.(3分)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上【解答】解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON.∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.解法二:过点P作PE⊥OA于点E,PF⊥OB于点F,作∠MPN=60°.∵PE⊥OA,PF⊥OB,∠AOB=120°,OP平分∠AOB,∴PE=PF,∠EPF=60°,∵∠EPF=∠MPN=60°,∴∠MPE=∠NPF,∵∠PEM=∠PFN=90°,∴△PEM≌△PFN(ASA),∴PM=PN,∴△PMN是等边三角形,故这样的三角形有无数个.故选:D.二.填空题(每题2分,17,18题各3分,共18分)11.(2分)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是10.【解答】解:因为2+2=4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=10,答:它的周长是10,故答案为:1012.(2分)已知一个多边形的内角和与它的外角和正好相等,则这个多边形是四边形.【解答】解:∵多边形的外角和为360°,而一个多边形的内角和与它的外角和正好相等,设这个多边形为n边形,∴(n﹣2)•180°=360°,∴n=4,故答案为:四.13.(2分)如果x2+mx+1=(x+n)2,且m>0,则n的值是1.【解答】解:∵x2+mx+1=(x+n)2=x2+2nx+n2∴m=2n,n2=1,∵m>0,∴n=1.故答案为:1.14.(2分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.15.(2分)若等腰三角形的一个角等于120°,则它的底角的度数为30°.【解答】解:∵等腰三角形的两底角相等,∴120°只能是等腰三角形的顶角,∴底角为:(180°﹣120°)÷2=30°.故答案为:30°.16.(2分)如图,△ABC中,AB=14,AM平分∠BAC,∠BAM=15°,点D、E分别为AM、AB的动点,则BD+DE的最小值是7.【解答】解:作BF⊥AC于点F,如右图所示,∵在△ABC中,AB=14,AM平分∠BAC,∠BAM=15°,∠BFA=90°,∴∠BAC=30°,∴AB=2BF,∴BF=7,∵AM平分∠BAC,点D、E分别为AM、AB的动点,F∴BD+DE的最小值是BF,∴BD+DE=7,故答案为:7.17.(3分)已知a+b=4,ab=﹣5,则﹣ab=18.【解答】解:﹣ab==,∵a+b=4,ab=﹣5,∴原式==18.故答案为:18.18.(3分)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为.【解答】解:过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=1,∴DE=.故答案为:.三、解答题(19-22题每题6分,23-26题每题7分,共52分)19.(6分)因式分解:2m(a﹣b)﹣3n(b﹣a)【解答】解:2m(a﹣b)﹣3n(b﹣a)=2m(a﹣b)+3n(a﹣b)=(a﹣b)(2m+3n).20.(6分)因式分解:(2a+b)2﹣(a+2b)2【解答】解:原式=(2a+b+a+2b)(2a+b﹣a﹣2b)=3(a+b)(a﹣b).21.(6分)如图,已知A(1,2),B(3,1),C(4,3).(1)作△ABC关于y轴的对称图形△A1B1C1,写出点C1的坐标;(2)直线m平行于x轴,在直线m上求作一点P使得△ABP的周长最小,请在图中画出P点.【解答】解:(1)如图1所示:C1(﹣4,3);(2)如图2所示:点P即为所求.22.(6分)如图,长方形台球桌ABCD上有两个球P,Q.(1)请画出一条路径,使得球P撞击台球桌边AB反弹后,正好撞到球Q;(2)请画出一条路径,使得球P撞击台球桌边,经过两次反弹后,正好撞到球Q.【解答】解:(1)如图,运动路径:P→M→Q,点M即为所求.(2)如图,运动路径:P→E→F→Q,点E,点F即为所求.23.(7分)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.24.(7分)如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O (1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠BEC=∠BDC=90°∴△BEC≌△CDB∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∵∠DOE+∠A=180°∴∠BOC=∠DOE=180°﹣80°=100°.25.(7分)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到(+)2=2+2+2这个等式,请解答下列问题:(1)写出图2中所表示的数学等式(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则2+2+2=30.(4)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张长宽分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+4b)的长方形,则x+y+z=15.【解答】解:(1)∵正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)证明:(a+b+c)(a+b+c),=a2+ab+ac+ab+b2+bc+ac+bc+c2,=a2+b2+c2+2ab+2ac+2bc.(3)a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,=102﹣2(ab+ac+bc),=100﹣2×35,=30.故答案为:30;(4)由题可知,所拼图形的面积为:xa2+yb2+zab,∵(2a+b)(a+4b),=2a2+8ab+ab+4b2,=2a2+4b2+9ab,∴x=2,y=4,z=9.∴x+y+z=2+4+9=15.故答案为:15.26.(7分)我们知道:有两条边相等的三角形叫做等腰三角形,类似的,我们定义:至少有一组对边相等的四边形叫做等边四边形.(1)如图,在△ABC中,点D,E分别在AB,AC上,设CD,BE相交于点O,若∠A =60°,∠DCB=∠EBC=∠A.请你写出图中一个与∠A相等的角,并猜想图中哪个四边形是等对边四边形?(2)在△ABC中,如果∠A是不等于60°的锐角,点D,E分别在AB,AC上,且∠DCB=∠EBC=∠A.探究:满足上述条件的图形是否存在等对边四边形,并证明你的结论.【解答】解:(1)∵∠A=60°,∠DCB=∠EBC=∠A,∴∠OBC=∠OCB=30°,∴∠BOD=∠EOC=∠OBC+∠OCB=60°,∴与∠A相等的角是∠BOD,∠EOC.如图1,过点B作BG⊥CD于G,过点C作CF⊥BE于F.∵∠DCB=∠EBC=∠A,∴OB=OC,在△BGO和△CFO中,,∴△BGO≌△CFO(AAS),∴BG=CF,∵∠BOD=∠A,∴∠BDG=∠BOD+∠ABE=∠A+∠ABE=∠CEF,∵∠BDG=∠CEF,∠BGD=∠CEF=90°,BG=CE,∴△BGD≌△CFE(AAS)∴BD=CE,∴四边形BCED是等对边四边形;(3)结论:四边形BCED是等对边四边形.理由如下:如图2中,作BG⊥CD于G,CF⊥BE于F.∵∠DCB=∠EBC=∠A,∴OB=OC,在△BGO和△CFO中,,∴△BGO≌△CFO(AAS),∴BG=CF,∵∠BOD=∠A,∴∠A+∠DOE=180°,∠ADO+∠AEO=180°,∵∠AEO+∠CEF=180°,∠ADO=∠BDG,∴∠BDG=∠CEF,∵∠BDG=∠CEF,∠BGD=∠CEF=90°,BG=CE,∴△BGD≌△CFE(AAS)∴BD=CE,∴四边形BCED是等对边四边形.四.代数阅读题(本题共5分)27.(5分)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)请说明28是否为“神秘数”;(2)下面是两个同学演算后的发现,请选择一个“发现”,判断真假,并说明理由.①小能发现:两个连续偶数2k+2和2k(其中k取非负整数)构造的“神秘数”也是4的倍数.②小仁发现:2016是“神秘数”.【解答】解:(1)∵28=82﹣62,∴28是神秘数;(2)当选择①时,两个连续偶数2k+2和2k(其中k取非负整数)构造的“神秘数”也是4的倍数是真命题,理由:∵(2k+2)2﹣(2k)2=4k2+8k+4﹣4k2=8k+4,k取非负整数,∴8k+4一定能被4整除,∴两个连续偶数2k+2和2k(其中k取非负整数)构造的“神秘数”也是4的倍数;当选择②时,2016是“神秘数”是假命题,理由:∵(2k+2)2﹣(2k)2=4k2+8k+4﹣4k2=8k+4,令8k+4=2016,得k=251.5,∵k为非负整数,∴k=251.5不符合实际,舍去,∴2016是“神秘数”错误.五.几何阅读题(本题共7分)28.(7分)在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有1条对称轴,非正方形的长方形有2条对称轴,等边三角形有3条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图2和图3都可以看作由图1修改得到的,仿照类似的修改方式,请你在图4和图5中,分别修改图2和图3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图6中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.【解答】解:(1)非等边的等腰三角形有1条对称轴,非正方形的长方形有2条对称轴,等边三角形有3条对称轴,故答案为:1、2、3;(2)恰好有1条对称轴的凸五边形如图中所示.(3)恰好有2条对称轴的凸六边形如图所示.(4)恰好有3条对称轴的凸六边形如图所示.六.几何探究题(本题共8分)29.(8分)(1)如图1,点A为线段BC外一动点,且BC=a,AB=b,填空:当点A位于CB的延长线上时时,线段AC的长取到最大值,且最大值为a+b;(用含a、b的式子表示).(2)如图2,若点A为线段BC外一动点,且BC=6,AB=3,分别以AB,AC为边,作等边△ABD和等边△ACE,连接CD,BE.①图中与线段BE相等的线段是线段CD=BE,并说明理由;②直接写出线段BE长的最大值为9.(3)如图3,在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(10,0),点P为线段AB外一动点,且PA=4,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值为4+6,及此时点P的坐标为(4﹣2,2)或(4﹣2,﹣2).(提示:等腰直角三角形的三边长a、b、c满足a:b:c=1:1:)【解答】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴CD=BE.②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=9;故答案为CD=BE,9.(3)如图1,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(4,0),点B的坐标为(10,0),∴OA=4,OB=10,∴AB=6,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=4,∴最大值为4+6.如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=2,∴OE=BO﹣AB﹣AE=10﹣6﹣2=4﹣2,∴P(4﹣2,2).如图3中,根据对称性可知当点P在第四象限时,P(4﹣2,﹣2)时,也满足条件.综上所述,满足条件的点P坐标(4﹣2,2)或(4﹣2,﹣2),AM的最大值为4+6.故答案为4+6,(4﹣2,2)或(4﹣2,﹣2).。
安徽省合肥市庐江县2019-2020学年八年级(上)期中数学试卷(含解析)
2019-2020学年安徽省合肥市庐江县八年级(上)期中数学试卷一、选择题(每小题4分,共40分)1.下列交通标志中,属于轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.6,6,6D.9,9,193.用三角板作ABC∆的边BC上的高,下列三角板的摆放位置正确的是() A.B.C.D.4.如图,ABC DEF∠的度数为()∆≅∆,则EA.80︒B.40︒C.62︒D.38︒5.一个多边形的内角和比外角和的3倍多180︒,则它的边数是()A.八B.九C.十D.十一6.周长为40cm的三角形纸片ABC(如图甲),AB AC=,将纸片按图中方式折叠,使点A与点B 重合,折痕为DE (如图乙).若DBC ∆的周长为25cm ,则BC 的长( )A .10cmB .12:cmC .15cmD .16cm7.如图,AB CD ⊥,CE AF ⊥,BF ED ⊥.若AB CD =,8CE =,6BF =,10AD =,则EF 的长为( )A .4B .72C .3D .528.如图,ABC ∆中,BP 平分ABC ∠,AP BP ⊥于P ,连接PC ,若PAB ∆的面积为23.5cm ,PBC ∆的面积为24.5cm ,则PAC ∆的面积为( )A .20.25cmB .20.5cmC .21cmD .21.5cm9.如图,在ABC ∆中,6AB =,7BC =,4AC =,直线m 是ABC ∆中BC 边的垂直平分线,点P 是直线m 上的一动点.则APC ∆周长的最小值为( )A .10B .11C .11.5D .1310.如图,AD 是ABC ∆的中线,E 是AD 上一点,BE 交AC 于F ,若EF AF =,7.5BE =,6CF =,则EF 的长度为( )A .2.5B .2C .1.5D .1二、填空题(每小题5分,共20分)11.已知ABC FED ∆≅∆,若ABC ∆的周长为32,8AB =,12BC =,则FD 的长为 . 12.如图,一艘轮船在A 处看见巡逻艇M 在其北偏东62︒的方向上,此时一艘客船在B 处看见巡逻艇M 在其北偏东13︒的方向上,DA AB ⊥,BE AB ⊥,则此时从巡逻艇上看这两艘船的视角AMB ∠= 度.13.如图,在Rt ABC ∆中,90C ∠=︒,8AC cm =,若BD 是角平分线,3AD CD =,则点D 到AB 的距离为 .14.在ABC ∆中,AH 是BC 边上的高,若CH BH AB -=,70ABH ∠=︒,则BAC ∠= . 三、(本大题共2小题,每小题8分,满分16分)15.如图,已知//AB CD ,125C ∠=︒,45A =︒,求E ∠的度数,16.小明用大小相同高度为2cm 的10块小长方体垒了两堵与地面垂直的木墙AD ,BE ,当他将一个等腰直角三角板ABC 如图垂直放入时,直角顶点C 正好在水平线DE 上,锐角顶点A 和B 分别与木墙的顶端重合,求两堵木墙之间的距离.四、(本大题共2小题,每小题8分,满分16分)17.在平面直角坐标系中,ABC ∆的三个顶点的坐标为(3,4)A ,(1,2)B ,(5,1)C . (1)写出A 、B 、C 关于y 轴对称的点1A 、1B 、1C 的坐标:1A 、1B 、1C ; (2)若ABC ∆各顶点的横坐标不变,纵坐标都乘以1-,请你在同一坐标系中描出对应的点A '、B '、C ',并依次连接这三个点,判断所得△A B C '''与原ABC ∆有怎样的位置关系.18.如图,给出四个等式:①AB DC =,②BE CE =,③B C ∠=∠,④BAE CDE ∠=∠.请你从这四个等式中选出两个作为条件,推出AED ∆是等腰三角形.(要求写出所有符合要求的条件,并给出其中一种条件下的证明过程).五、(本大题共2小题,每小题10分,满分20分)19.如图,实线部分是由正方形,正五边形和正六边形叠放在一起形成的,其中正方形和正六边形的边长相同,求图中MON ∠的度数.20.如图,在ABC ∆中,AB AC =,P 、Q 、R 分别在AB 、AC 上,且BP CQ =,BQ CR =. 求证:点Q 在PR 的垂直平分线上.六、(本题满分12分)21.如图,已知30MON ∠=︒,点1A ,2A ,3A ,⋯⋯射线ON 上,点1B ,2B ,3..B 在射线OM 上,△112A B A ,△223A B A ,△334A B A ,.均为等边三角形,若11OA =. (1)12A A = ; (2)求34A A 的长;(3)根据你发现的规律直接写出20192020A A 的边长.七、(本题满分12分)22.如图,在四边形ABCD 中,//AD BC ,E 是AB 的中点,连接DE 并延长交CB 的延长线于点F,若CDF ADF∠=∠.(1)求证::ADE BFE∆≅∆(2)连接CE,判断CE与DF的位置关系,并说明理由.八、(本题满分14分)23.如图,在Rt ABC∆中,1BC=,30A∠=︒.(1)求AB的长度:(2)过点A作AB的垂线,交AC的垂直平分线于点D,以AB为一边作等边ABE∆.①连接CE,求证:BD CE=;②连接DE交AB于F.求EFDF的值.2019-2020学年安徽省合肥市庐江县八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列交通标志中,属于轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不合题意;故选:C.2.下列长度的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.6,6,6D.9,9,19【解答】解:由3,4,8,可得348+<,故不能组成三角形;由5,6,11,可得6511+=,故不能组成三角形;由6,6,6,可得666+>,故能组成三角形;由9,9,19,可得9919+<,故不能组成三角形;故选:C.3.用三角板作ABC∆的边BC上的高,下列三角板的摆放位置正确的是() A.B.C.D.【解答】解:B,C,D都不是ABC∆的边BC上的高,故选:A.4.如图,ABC DEF∠的度数为()∆≅∆,则EA.80︒B.40︒C.62︒D.38︒【解答】解:ABC DEFC∠=︒,∠=︒,62A∆≅∆,80D A∴∠=∠=︒,80∠=∠=︒,F C62E D F∴∠=︒-∠-∠=︒-︒-︒=︒,180180806238故选:D.5.一个多边形的内角和比外角和的3倍多180︒,则它的边数是() A.八B.九C.十D.十一【解答】解:根据题意可得:n-︒=⨯︒+︒,(2)1803360180解得:9n=.经检验9n=符合题意,所以这个多边形的边数是九.故选:B.6.周长为40cm的三角形纸片ABC(如图甲),AB AC=,将纸片按图中方式折叠,使点A 与点B重合,折痕为DE(如图乙).若DBC∆的周长为25cm,则BC的长()A .10cmB .12:cmC .15cmD .16cm【解答】解:将ADE ∆沿DE 折叠,使点A 与点B 重合, AD BD ∴=,ABC ∆的周长为40cm ,DBC ∆的周长为25cm ,40AB AC BC cm ∴++=,25BD CE BC AD CD BC AC BC cm ++=++=+=, 15AB cm AC ∴== 251510BC cm ∴=-=故选:A .7.如图,AB CD ⊥,CE AF ⊥,BF ED ⊥.若AB CD =,8CE =,6BF =,10AD =,则EF 的长为( )A .4B .72C .3D .52【解答】解:AB CD ⊥,CE AD ⊥,90C D ∴∠+∠=︒,90A D ∠+∠=︒, A C ∴∠=∠,且AB CD =,AFB CED ∠=∠,()ABF CDE AAS ∴∆≅∆ 6BF DE ∴==,8CE AF ==, 1064AE AD DE =-=-=844EF AF AE ∴=-=-=,故选:A .8.如图,ABC∆中,BP平分ABC∠,AP BP⊥于P,连接PC,若PAB∆的面积为23.5cm,PBC∆的面积为24.5cm,则PAC∆的面积为()A.20.25cm B.20.5cm C.21cm D.21.5cm【解答】解:延长AP交BC于D,BP平分ABC∠,AP BP⊥,ABP DBP∴∠=∠,90APB DPB∠=∠=︒,在ABP∆与DBP∆中,ABP DBPPB PBAPB DPB∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABP DBP ASA∴∆≅∆,AP PD∴=,23.5PBDABPS S cm∆∆∴==,PBC∆的面积为24.5cm,21CPDS cm∆∴=,PAC∴∆的面积21CPDS cm∆==,故选:C.9.如图,在ABC∆中,6AB=,7BC=,4AC=,直线m是ABC∆中BC边的垂直平分线,点P是直线m上的一动点.则APC∆周长的最小值为()A .10B .11C .11.5D .13【解答】解:直线m 垂直平分AB , B ∴、C 关于直线m 对称,设直线m 交AB 于D ,∴当P 和D 重合时,AP CP +的值最小,最小值等于AB 的长,APC ∴∆周长的最小值是6410+=.故选:A .10.如图,AD 是ABC ∆的中线,E 是AD 上一点,BE 交AC 于F ,若EF AF =,7.5BE =,6CF =,则EF 的长度为( )A .2.5B .2C .1.5D .1【解答】解:如图,延长AD ,使DG AD =,连接BG ,AD是ABC∆的中线∠=∠=,ADC BDGBD CD∴=,且DG AD∴∆≅∆()ADC GDB SAS∴==+=+,DAC G∠=∠AC DG CF AF AF6=,EF AF∴∠=∠DAC AEF∴∠=∠=∠G AEF BEGBE BG∴==7.5∴+==AF BG67.5∴==AF EF1.5故选:C.二、填空题(每小题5分,共20分)11.已知ABC FEDBC=,则FD的长为12.AB=,12∆的周长为32,8∆≅∆,若ABC【解答】解:ABCBC=,∆的周长为32,8AB=,12∴=--=,AC3281212∆≅∆,ABC FED∴==.12FD AC故答案为:12.12.如图,一艘轮船在A处看见巡逻艇M在其北偏东62︒的方向上,此时一艘客船在B处看见巡逻艇M在其北偏东13︒的方向上,DA AB⊥,则此时从巡逻艇上看这⊥,BE AB两艘船的视角AMB∠=49度.【解答】解:从图中我们可以发现180(9013)(9062)49AMB ∠=︒-︒+︒-︒-︒=︒.13.如图,在Rt ABC ∆中,90C ∠=︒,8AC cm =,若BD 是角平分线,3AD CD =,则点D 到AB 的距离为 2cm .【解答】解:8AC cm =,3AD CD =,2CD cm ∴=,BD 是角平分线,90C ∠=︒, CD ∴=点D 到AB 的距离2cm =,故答案为:2cm14.在ABC ∆中,AH 是BC 边上的高,若CH BH AB -=,70ABH ∠=︒,则BAC ∠= 75︒或35︒ .【解答】解:当ABC ∠为锐角时,过点A 作AD AB =,交BC 于点D ,如图1所示. AB AD =,70ADB ABH ∴∠=∠=︒,BH DH =. AB BH CH +=,CH CD DH =+, CD AB AD ∴==,1352C ADB ∴∠=∠=︒,18075BAC ABH C ∴∠=︒-∠-∠=︒.当ABC ∠为钝角时,作AH BC ⊥于H ,如图2所示. CH BH AB -=,AB BH CH ∴+=, AB BC ∴=,1352BAC ACB ABH ∴∠=∠=∠=︒. 故答案为:75︒或35︒.三、(本大题共2小题,每小题8分,满分16分)15.如图,已知//AB CD ,125C ∠=︒,45A =︒,求E ∠的度数,【解答】解:直线//AB CD ,125C ∠=︒, 1125C ∴∠=∠=︒,1A E ∠=∠+∠,45A ∠=︒, 11254580E A ∴∠=∠-∠=︒-︒=︒.16.小明用大小相同高度为2cm 的10块小长方体垒了两堵与地面垂直的木墙AD ,BE ,当他将一个等腰直角三角板ABC 如图垂直放入时,直角顶点C 正好在水平线DE 上,锐角顶点A 和B 分别与木墙的顶端重合,求两堵木墙之间的距离.【解答】解:由题意得:AC BC =,90ACB ∠=︒,AD DE ⊥,BE DE ⊥, 90ADC CEB ∴∠=∠=︒,90ACD BCE ∴∠+∠=︒,90ACD DAC ∠+∠=︒, BCE DAC ∴∠=∠,在ADC ∆和CEB ∆中, ADC CEB DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADC CEB AAS ∴∆≅∆;由题意得:6AD EC cm ==,14DC BE cm ==, 20()DE DC CE cm ∴=+=,答:两堵木墙之间的距离为20cm .四、(本大题共2小题,每小题8分,满分16分)17.在平面直角坐标系中,ABC ∆的三个顶点的坐标为(3,4)A ,(1,2)B ,(5,1)C .(1)写出A 、B 、C 关于y 轴对称的点1A 、1B 、1C 的坐标:1A (3,4)- 、1B 、1C ; (2)若ABC ∆各顶点的横坐标不变,纵坐标都乘以1-,请你在同一坐标系中描出对应的点A '、B '、C ',并依次连接这三个点,判断所得△A B C '''与原ABC ∆有怎样的位置关系.【解答】解:(1)1(3,4)A -,1(1,2)B -,1(5,1)C -; (2)△A B C '''即为所求.△A B C '''与原ABC∆关于x 轴对称.18.如图,给出四个等式:①AB DC =,②BE CE =,③B C ∠=∠,④BAE CDE ∠=∠.请你从这四个等式中选出两个作为条件,推出AED ∆是等腰三角形.(要求写出所有符合要求的条件,并给出其中一种条件下的证明过程).【解答】解:①③或①④或②③; 选②③证明, 在ABE ∆和DCE ∆中, AEB DEC BE CEB C ∠=∠⎧⎪=⎨⎪∠=∠⎩,ABE DCE ∴∆≅∆,AE DE ∴=,AED ∴∆为等腰三角形.五、(本大题共2小题,每小题10分,满分20分)19.如图,实线部分是由正方形,正五边形和正六边形叠放在一起形成的,其中正方形和正六边形的边长相同,求图中MON ∠的度数.【解答】解:由正方形、正五边形和正六边形的性质得,108AOM ∠=︒,120OBC ∠=︒,90NBC ∠=︒,1120602AOB ∴∠=⨯︒=︒,1086048MOB ∠=︒-︒=︒, 36012090150OBN ∴∠=︒-︒-︒=︒,1(180150)152NOB ∴∠=⨯︒-︒=︒, 33MON ∴∠=︒.20.如图,在ABC ∆中,AB AC =,P 、Q 、R 分别在AB 、AC 上,且BP CQ =,BQ CR =. 求证:点Q 在PR 的垂直平分线上.【解答】证明:在ABC ∆中,AB AC =, B C ∴∠=∠,在PBQ ∆和CQR ∆中,BP CQB CBQ CR=⎧⎪∠=∠⎨⎪=⎩,()BPQ CQR SAS∴∆≅∆,PQ RQ∴=,∴点Q在PR的垂直平分线上.六、(本题满分12分)21.如图,已知30MON∠=︒,点1A,2A,3A,⋯⋯射线ON上,点1B,2B,3..B在射线OM上,△112A B A,△223A B A,△334A B A,.均为等边三角形,若11OA=.(1)12A A=1;(2)求34A A的长;(3)根据你发现的规律直接写出20192020A A的边长.【解答】解:(1)△112A B A,△223A B A,△334A B A,⋯均为等边三角形,12121111260A AB A B A A B A∴∠==∠=︒,已知30MON∠=︒,1290OB A∴∠=︒,1130OB A∠=︒,111111MON OB A OA A B∴∠=∠∴==,121A A∴=.故答案为1.(2)由(1)可得:23222A A A B==,234332242A A A B∴==+==答:34A A的长为4.(3)23222A A A B==,234332242A A A B==+==3454482A A=+==45688162A A=+==⋯2018201920202A A=.答:20192020A A的边长为20182.七、(本题满分12分)22.如图,在四边形ABCD中,//AD BC,E是AB的中点,连接DE并延长交CB的延长线于点F,若CDF ADF∠=∠.(1)求证::ADE BFE∆≅∆(2)连接CE,判断CE与DF的位置关系,并说明理由.【解答】(1)证明://AD BC,ADE BFE∴∠=∠,E为AB的中点,AE BE∴=,在ADE∆和BFE∆中,ADE BFEAED BEFAE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE BFE AAS∴∆≅∆;(2)解:CE垂直平分DF,理由如下:如图所示:CDF ADF∠=∠.ADF BFE∠=∠,CDF BFE∴∠=∠,CD CF∴=,由(1)得:ADE BFE∆≅∆,DE FE∴=,即CE为DF上的中线,CE DF∴⊥,即CE垂直平分DF.八、(本题满分14分)23.如图,在Rt ABC∆中,1BC=,30A∠=︒.(1)求AB的长度:(2)过点A作AB的垂线,交AC的垂直平分线于点D,以AB为一边作等边ABE∆.①连接CE,求证:BD CE=;②连接DE交AB于F.求EFDF的值.【解答】解:(1)在Rt ABC∆中,1BC=,30A∠=︒.22AB BC∴==,(2)①连接CD,过点A作AB的垂线,交AC的垂直平分线于点D,AD CD ∴=,90BAD ∠=︒, 30BAC ∠=︒,60CAD ∴∠=︒,ACD ∴∆是等边三角形,AC AD ∴=,ABE ∆是等边三角形,AE AB ∴=,60EAB ∠=︒, 90EAC ∴∠=︒,在AEC ∆与ABD ∆中90AB AEEAC BAD AC AD=⎧⎪∠=∠=︒⎨⎪=⎩,()AEC ABD SAS ∴∆≅∆,CE BD ∴=;②DQ 是AC 的垂直平分线, //QD BC ∴,60AQD ABC ∴∠=∠=︒,2AQ AB = 90QAD ∠=︒,2QD AQ AB ∴==,QFD EFA ∠=∠,////QD AE BC ,QDF AEF ∴∠=∠,QFD AFE ∴∆∆∽,∴EF AE DF QD =, AE AB =,DQ AB =, ∴1EF AB DF AB==.。
江苏省常州市2019-2020学年八年级上期中数学试卷及答案
江苏省常州市2019-2020学年八年级(上)期中试卷数学一、选择题(每题3分共30分)1.计算(a3)2的结果是()A.a5B.a6C.a8D.a92.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个3.如图,AB∥DE,CD=BF,若要证明△ABC≌△EDF,还需补充的条件是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充4.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4 B.5 C.6 D.75.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以6.如图是用直尺和圆规作角平分线的示意图,通过证明△DOP≌△EOP可以说明OC是∠AOB的角平分线,那么△DOP≌△EOP的依据是()A.SSS B.SAS C.ASA D.AAS7.下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a58.若4x2+axy+25y2是一个完全平方式,则a=()A.20 B.﹣20 C.±20 D.±109.若(x﹣3)(x+4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12 B.p=﹣1,q=12 C.p=7,q=12 D.p=7,q=﹣1210.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个C.3个D.4个二、填空题(每题2分共18分)11.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.12.一个多边形的每个内角都等于150°,则这个多边形是边形.13.图示,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是(填上适当的一个条件即可)14.若x+y=10,xy=1,则x2y+xy2= .15.因式分解:a3﹣a= .16.计算:(﹣5a4)•(﹣8ab2)= .17.若x=3﹣,则代数式x2﹣6x+9的值为.18.计算:()2007×(﹣1)2008= .19.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为.三、解答题20.计算:(1)(ab2)2•(﹣a3b)3÷(﹣5ab);(2)3a(2a2﹣9a+3)﹣4a(2a﹣1)21.分解因式:(1)m2﹣6m+9;(2)3x﹣12x3.22.先化简,再求值:2(x﹣3)(x+2)﹣(3+a)(3﹣a),其中a=﹣2,x=1.23.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.24.如图,AB=DE,AC=DF,BE=CF.求证:AB∥DE.25.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.26.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:1+3+32+33+34+ (320)江苏省常州市学八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分共30分)1.计算(a3)2的结果是()A.a5B.a6C.a8D.a9【考点】幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变,指数相乘即可求.【解答】解:(a3)2=a6,故选B.2.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,7和3,4,9和3,7,9和4,7,9;只有3,7,9和4,7,9能组成三角形.故选:B.3.如图,AB∥DE,CD=BF,若要证明△ABC≌△EDF,还需补充的条件是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充【考点】全等三角形的判定.【分析】根据平行线的性质得出∠B=∠D,求出BC=DF,根据全等三角形的判定定理逐个判断即可.【解答】解:AB=DE,理由是:∵AB∥DE,∴∠B=∠D,∵BF=DC,∴BC=DF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),即选项B正确,选项A、C、D都不能推出△ABC≌△DEF,即选项A、C、D都错误,故选B.4.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4 B.5 C.6 D.7【考点】多边形内角与外角.【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.5.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以【考点】三角形的面积;三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:三角形的中线把三角形分成等底等高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选B.6.如图是用直尺和圆规作角平分线的示意图,通过证明△DOP≌△EOP可以说明OC是∠AOB的角平分线,那么△DOP≌△EOP的依据是()A.SSS B.SAS C.ASA D.AAS【考点】全等三角形的判定.【分析】熟练掌握三角形全等的判定条件是解答此题的关键.易知:OD=OE,PD=PE,OP=OP,因此符合SSS的条件,故选择A.【解答】解:由作图知:OD=OE、PD=PE、OP是公共边,即三边分别对应相等(SSS),△DOP≌△EOP,故选A.7.下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a5【考点】幂的乘方与积的乘方;科学记数法—原数;同底数幂的乘法;负整数指数幂.【分析】A:根据负整数指数幂的运算方法判断即可.B:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数,据此判断即可.C:根据积的乘方的运算方法判断即可.D:根据同底数幂的乘法法则判断即可.【解答】解:∵=2,∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确.故选:D.8.若4x2+axy+25y2是一个完全平方式,则a=()A.20 B.﹣20 C.±20 D.±10【考点】完全平方式.【分析】根据这里首末两项是2x和5y这两个数的平方,那么中间一项为加上或减去2x和5y乘积的2倍,即可得出a的值.【解答】解:∵4x2+axy+25y2是一个完全平方式,∴(2x±5y)2=4x2±20xy+25y2,∴a=±20,故选:C.9.若(x﹣3)(x+4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12 B.p=﹣1,q=12 C.p=7,q=12 D.p=7,q=﹣12【考点】多项式乘多项式.【分析】此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p、q的值.【解答】解:由于(x﹣3)(x+4)=x2+x﹣12=x2+px+q,则p=1,q=﹣12.故选A.10.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个C.3个D.4个【考点】整式的混合运算.【分析】①原式利用单项式乘以单项式法则计算即可得到结果;②原式利用单项式除以单项式法则计算即可得到结果;③原式利用幂的乘方运算计算即可得到结果;④原式利用同底数幂的除法法则计算即可得到结果.【解答】解:①3x3•(﹣2x2)=﹣6x5,正确;②4a3b÷(﹣2a2b)=﹣2a,正确;③(a3)2=a6,错误;④(﹣a)3÷(﹣a)=(﹣a)2=a2,错误,则正确的个数有2个.故选B.二、填空题(每题2分共18分)11.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【考点】三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.12.一个多边形的每个内角都等于150°,则这个多边形是12 边形.【考点】多边形内角与外角.【分析】根据多边形的内角和定理:180°•(n﹣2)求解即可.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.13.图示,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是BC=BD (填上适当的一个条件即可)【考点】全等三角形的判定.【分析】求出∠ABC=∠ABD,根据全等三角形的判定定理SAS推出即可.【解答】解:BC=BD,理由是:∵∠CBE=∠DBE,∠CBE+∠ABC=180°,∠DBE+∠ABD=180°,∴∠ABC=∠ABD,在△ABC和△ABD中∴△ABC≌△ABD,故答案为:BC=BD.14.若x+y=10,xy=1,则x2y+xy2= 10 .【考点】因式分解的应用.【分析】原式提取公因式,将已知等式代入计算即可求出值.【解答】解:∵x+y=10,xy=1,∴原式=xy(x+y)=10,故答案为:10.15.因式分解:a3﹣a= a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)16.计算:(﹣5a4)•(﹣8ab2)= 40a5b2.【考点】单项式乘单项式.【分析】直接利用单项式乘以单项式运算法则求出答案.【解答】解:(﹣5a4)•(﹣8ab2)=40a5b2.故答案为:40a5b2.17.若x=3﹣,则代数式x2﹣6x+9的值为 2 .【考点】代数式求值.【分析】根据完全平方公式,代数式求值,可得答案.【解答】解:x2﹣6x+9=(x﹣3)2,当x=3﹣时,原式=(3﹣﹣3)2=2,故答案为:2.18.计算:()2007×(﹣1)2008= .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先把原式化为()2007×(﹣1)2007×(﹣1),再根据有理数的乘方法则计算.【解答】解:()2007×(﹣1)2008=()2007×(﹣1)2007×(﹣1)=(﹣×1)2007×(﹣1)=﹣1×(﹣1)=.故答案为:.19.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为20 .【考点】代数式求值.【分析】由题意列出关系式,求出2a2+3a的值,将所求式子变形后,把2a2+3a 的值代入计算即可求出值.【解答】解:∵2a2+3a+1=6,即2a2+3a=5,∴6a2+9a+5=3(2a2+3a)+5=20.故答案为:20.三、解答题20.计算:(1)(ab2)2•(﹣a3b)3÷(﹣5ab);(2)3a(2a2﹣9a+3)﹣4a(2a﹣1)【考点】整式的混合运算.【分析】(1)原式利用积的乘方与幂的乘方运算法则计算,再利用乘除法则计算即可得到结果;(2)原式先利用单项式乘多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6;(2)原式=6a3﹣27a2+9a﹣8a+4a=6a3﹣35a2+13a;21.分解因式:(1)m2﹣6m+9;(2)3x﹣12x3.【考点】提公因式法与公式法的综合运用.【分析】(1)原式利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=(m﹣3)2;(2)原式=﹣3x(x2﹣1)=﹣3x(x+1)(x﹣1).22.先化简,再求值:2(x﹣3)(x+2)﹣(3+a)(3﹣a),其中a=﹣2,x=1.【考点】整式的混合运算—化简求值.【分析】先根据多项式乘多项式的法则以及平方差公式计算,再去括号,然后合并,最后把a、x的值代入计算.【解答】解:原式=2(x2﹣x﹣6)﹣(9﹣a2)=2x2﹣2x+a2﹣21,当a=﹣2,x=1时,原式=2×12﹣2×1+(﹣2)2﹣21=﹣17.23.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.【考点】三角形的角平分线、中线和高;三角形内角和定理.【分析】根据AD是△ABC的角平分线,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC的高,∠BCE=40°,得出∠B的度数,进而得出∠ADB的度数.【解答】解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠B CE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.24.如图,AB=DE,AC=DF,BE=CF.求证:AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【分析】求出BC=EF,根据SSS证△ABC≌△DEF,推出∠B=∠DEF,根据平行线判定推出即可.【解答】证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠B=∠DEF,∴AB∥DE.25.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD﹣DE.【解答】(1)证明:如图,∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,,∴△ADC≌△CEB(AAS);(2)由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm.26.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:1+3+32+33+34+ (320)【考点】规律型:数字的变化类.【分析】设S=1+3+32+33+…+320,两边乘以3得出3S=3+32+33+34+35+…+320+321,将下式减去上式即可得出答案.【解答】解:设S=1+3+32+33+ (320)两边乘以3得:3S=3+32+33+34+35+…+320+321,将下式减去上式,得3S﹣S=321﹣l∴S=,即1+3+32+33+34+…+320=.。
2019-2020学年重庆八中八年级(上)期中数学试卷(含答案)
2019-2020学年重庆八中八年级(上)期中数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑.1.(4分)(2019秋•沙坪坝区校级期中)下列算式中,正确的是()A.3=3B.C.D.=32.(4分)(2019秋•沙坪坝区校级期中)下列条件中,不能判断△ABC为直角三角形的是()A.a2=3,b2=4,c2=5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=1:2:33.(4分)(2019秋•沙坪坝区校级期中)下列方程中是二元一次方程的有()①﹣m=12;②z+1;③=1;④mn=7;⑤x+y=6zA.1个B.2个C.3个D.4个4.(4分)(2019春•南关区期中)如图,直线y1=kx+2与y2=x+b交于点P,点P的横坐标是1,则关于x的不等式kx+2>x+b的解集是()A.x<0B.x<1C.0<x<1D.x>15.(4分)(2019秋•沙坪坝区校级期中)若A(m+2n,2m﹣n)关于x轴对称点是A1(5,5),则P(m,n)的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(﹣1,3)D.(1,3)6.(4分)(2019秋•沙坪坝区校级期中)已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的边长分别为9cm和12cm,则正方形③的边长为()A.3cm B.13cm C.14cm D.15cm7.(4分)(2019秋•沙坪坝区校级期中)若方程组的解中x与y互为相反数,则m的值为()A.﹣2B.﹣1C.0D.18.(4分)(2019秋•沙坪坝区校级期中)如图,将一根长27厘米的筷子,置于高为11厘米的圆柱形水杯中,且筷子露在杯子外面的长度最少为(27﹣)厘米,则底面半径为()厘米.A.6B.3C.2D.129.(4分)(2019秋•沙坪坝区校级期中)有一长、宽、高分别是5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A.cm B.cm C.cm D.cm 10.(4分)(2019秋•沙坪坝区校级期中)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为()A.5B.C.9D.6二、填空题:(本大题3个小题,每小题4分,共12分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)(2019秋•沛县期中)直角三角形的两条直角边长分别是3cm、4cm,则斜边长是cm.12.(4分)(2020春•丛台区校级期中)函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=.13.(4分)(2019秋•沙坪坝区校级期中)已知实数x,y满足y=+2,则(y ﹣x)2011的值为.三、解答题:(本大题共5小题,14题8分,15,16,17,18各10分,共48分)14.(8分)(2019秋•沙坪坝区校级期中)(1)(2)15.(10分)(2019秋•沙坪坝区校级期中)数学课上,静静将一副三角板如图摆放,点A,B,C三点共线,其中∠F AB=∠ECD=90°,∠D=45°,∠F=30°,且DE∥AC.(1)若AB=2,BF=4.求AF的长.(2)若ED=4,求BC的长.16.(10分)(2019秋•沙坪坝区校级期中)探究函数y=|x﹣1|﹣2的图象和性质.静静根据学习函数的经验,对函数y=|x﹣1|﹣2的图象进行了探究,下面是静静的探究过程,请补充完成:(1)化简函数解析式,当x<1时,y=,当x≥1时,y=.(2)根据(1)的结果,完成下表,并补全函数y=|x﹣1|﹣2图象;(3)观察函数图象,请写出该函数的一条性质:.17.(10分)(2019秋•沙坪坝区校级期中)已知函数y=kx+b(k≠0)图象经过点A(﹣2,1),点B(1,).(1)求直线AB的解析式;(2)若在直线AB上存在点C,使S△ACO=S△ABO,求出点C坐标.18.(10分)(2019秋•沙坪坝区校级期中)小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?四、选填题(本大题共5小题,每小题4分,共20分)请将每小题的答案直接填在答题卡中对应的横线上、19.(4分)(2020春•韩城市期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)20.(4分)(2019秋•沙坪坝区校级期中)如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则重叠部分△DEF的面积是()cm2.A.15B.12C.7.5D.621.(4分)(2019秋•沙坪坝区校级期中)半期考试来临,元元到文具店购买考试用的铅笔,签字笔和钢笔,其中铅笔每支8元,签字笔每支10元,钢笔每支20元,若他一共用了122元,那么他最多能买钢笔支.22.(4分)(2019秋•沙坪坝区校级期中)如图,Rt△ABC中,∠CAB=90°,△ABD是等腰三角形,AB=BD=4,CB⊥BD,交AD于E,BE=1,则AC=.23.(4分)(2019秋•沙坪坝区校级期中)A、B两地之间有一条直线跑道,甲,乙两人分别从A,B同时出发,相向而行匀速跑步,且乙的速度是甲速度的90%.当甲,乙分别到达B地,A地后立即调头往回跑,甲的速度保持不变,乙的速度提高20%(仍保持匀速前行).甲,乙两人之间的距离y(米)与跑步时间x(分钟)之间的关系如图所示,则他们在第二次相遇时距B地米.五、解答题:(本大题共三小题,24题10分、25题8分,26题12分,共30分)24.(10分)(2019秋•沙坪坝区校级期中)材料:对于平面直角坐标系中的任意两点M1(x1,y1),M2(x2,y2),我们把d=叫做M1,M2两点间的距离公式,记作d(M1,M2).如A(﹣2,3),B(2,5)则A,B两点的距离为d(A,B)=.请根据以上阅读材料,解答下列问题:(1)当A(a,1),B(﹣1,4)的距离d(A,B)=5时,求出a的值.(2)若在平面内有一点C(x0,y0),使有最小值,求出它的最小值和此时x0的范围.(3)若有最小值,请直接写出最小值.25.(8分)(2019秋•沙坪坝区校级期中)已知,如图,∠BAC=∠DAE=90°,且AD=AE,AC=AB.其中B、E、D共线且DE交AC于F.(1)如图1,若E为BD的中点,且DC=,求AB的长;(2)如图2,若DE=BE,过点E作EG⊥AE交AB于点G,求证:AB+BG=BC.26.(12分)(2019秋•沙坪坝区校级期中)如图,直线L1:y=﹣x+3与x轴,y轴分别交于A,B两点,若将直线l1向右平移2个单位得到直线L2,L2与x轴,y轴分别交于C,D两点.(1)求点D的坐标;(2)如图1,若点M是直线L2上一动点,且MN⊥L1,NH⊥x轴,连接BM,求BM+MN+NH 的最小值及此时点N的坐标;(3)如图2,将线段AB绕点C顺时针旋转90°得到线段A′B′,延长线段A′B′得到直线L3,线段A′B′在直线L3上移动,当以点C、A′、B′构成的三角形是等腰三角形时,直接写出点A′的坐标.2019-2020学年重庆八中八年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑.1.(4分)(2019秋•沙坪坝区校级期中)下列算式中,正确的是()A.3=3B.C.D.=3【分析】根据二次根式的加减法对A、B进行判断;根据完全平方公式对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=2,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=3﹣2+2=5﹣2,所以C选项正确;D、原式==,所以D选项错误.故选:C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.(4分)(2019秋•沙坪坝区校级期中)下列条件中,不能判断△ABC为直角三角形的是()A.a2=3,b2=4,c2=5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=1:2:3【分析】根据三角形内角和定理,以及勾股定理逆定理分别进行分析可得答案.【解答】解:A、3+4=7≠5,利用勾股定理逆定理判定△ABC不为直角三角形,故此选项符合题意;B、32+42=52,根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠C=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=30°,∠B=60°,∠C=90°,可判定△ABC不是直角三角形,故此选项不合题意.故选:A.【点评】此题主要考查了勾股定理逆定理,判断三角形是否为直角三角形可利用勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.(4分)(2019秋•沙坪坝区校级期中)下列方程中是二元一次方程的有()①﹣m=12;②z+1;③=1;④mn=7;⑤x+y=6zA.1个B.2个C.3个D.4个【分析】利用二元一次方程的定义判断即可.【解答】解:①﹣m=12,不是整式方程,不符合题意;②y=z+1,是二元一次方程,符合题意;③=1,不是整式方程,不符合题意;④mn=7,是二元二次方程,不符合题意;⑤x+y=6z,是三元一次方程,不符合题意,故选:A.【点评】此题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键.4.(4分)(2019春•南关区期中)如图,直线y1=kx+2与y2=x+b交于点P,点P的横坐标是1,则关于x的不等式kx+2>x+b的解集是()A.x<0B.x<1C.0<x<1D.x>1【分析】观察函数图象得到当x<1时,函数y1=kx+2的图象都在y2=x+b的图象上方,所以不等式kx+2>x+b的解集为x<1;【解答】解:当x<1时,kx+2>x+b,即不等式kx+2>x+b的解集为x<1.故选:B.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.5.(4分)(2019秋•沙坪坝区校级期中)若A(m+2n,2m﹣n)关于x轴对称点是A1(5,5),则P(m,n)的坐标是()A.(﹣1,﹣3)B.(1,﹣3)C.(﹣1,3)D.(1,3)【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.直接利用关于x轴对称点的性质得出m,n的值,进而得出答案.【解答】解:∵A(m+2n,2m﹣n)关于x轴对称点是A1(5,5),∴m+2n=5,2m﹣n=﹣5,解得m=﹣1,n=3,∴P(m,n)的坐标是(﹣1,3).故选:C.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.6.(4分)(2019秋•沙坪坝区校级期中)已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的边长分别为9cm和12cm,则正方形③的边长为()A.3cm B.13cm C.14cm D.15cm【分析】根据正方形的性质就可以得出∠EAB=∠EBD=∠BCD=90°,BE=BD,∠AEB =∠CBD,就可以得出△ABE≌△CDB,得出AE=BC,AB=CD,由勾股定理就可以得出BE的值,进而得出结论.【解答】解:∵四边形①、②、③都是正方形,∴∠EAB=∠EBD=∠BCD=90°,BE=BD,∴∠AEB+∠ABE=90°,∠ABE+∠DBC=90°,∴∠AEB=∠CBD.在△ABE和△CDB中,,∴△ABE≌△CDB(AAS),∴AE=BC=9cm,AB=CD=12cm.∴AE2=81,CD2=144.∴AB2=63.在Rt△ABE中,由勾股定理,得BE2=AE2+AB2=81+144=225,∴BE=15.故选:D.【点评】本题考查的是勾股定理,正方形的性质的运用,正方形的面积公式的运用,三角形全等的判定及性质的运用,解答时证明△ABE≌△CDB是关键.7.(4分)(2019秋•沙坪坝区校级期中)若方程组的解中x与y互为相反数,则m的值为()A.﹣2B.﹣1C.0D.1【分析】根据x与y互为相反数,得到x=﹣y,代入方程组第一个方程求出y的值,进而求出x的值,确定出m的值即可.【解答】解:根据题意得:,解得:,代入得:3(m+1)+3=6,解得:m=0,故选:C.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8.(4分)(2019秋•沙坪坝区校级期中)如图,将一根长27厘米的筷子,置于高为11厘米的圆柱形水杯中,且筷子露在杯子外面的长度最少为(27﹣)厘米,则底面半径为()厘米.A.6B.3C.2D.12【分析】首先得出杯子内筷子的长度,再根据勾股定理求得圆柱形水杯的直径,即可求出底面半径.【解答】解:27﹣(27﹣)=(厘米),筷子,圆柱的高,圆柱的直径正好构成直角三角形,=6(厘米),6÷2=3(厘米).故底面半径为3厘米.故选:B.【点评】此题主要考查了勾股定理的应用,正确得出杯子内筷子的长度是解决问题的关键.9.(4分)(2019秋•沙坪坝区校级期中)有一长、宽、高分别是5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A.cm B.cm C.cm D.cm【分析】根据勾股定理即可得到结论.【解答】解:如图,AB==,∴需要爬行的最短路径长为,故选:A.【点评】此题考查最短路径问题,解题的关键是明确线段最短这一知识点,然后把立体的长方体放到一个平面内,求出最短的线段.10.(4分)(2019秋•沙坪坝区校级期中)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB 于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为()A.5B.C.9D.6【分析】由已知条件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面积即可得出答案.【解答】解:如图所示:∵Rt△ABC的周长为15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405﹣225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD===6;故选:D.【点评】本题考查了勾股定理,三角形的面积公式,完全平方公式,三角形的周长的计算,熟记直角三角形的性质是解题的关键.二、填空题:(本大题3个小题,每小题4分,共12分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)(2019秋•沛县期中)直角三角形的两条直角边长分别是3cm、4cm,则斜边长是5cm.【分析】根据勾股定理解答即可.【解答】解:∵直角三角形的两条直角边长分别是3cm、4cm,则∴斜边长=cm,故答案为:5【点评】此题考查勾股定理,关键是根据如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2解答.12.(4分)(2020春•丛台区校级期中)函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=﹣2.【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,即可得出m的值.【解答】解:根据一次函数的定义可得:m﹣2≠0,|m|﹣1=1,由|m|﹣1=1,解得:m=﹣2或2,又m﹣2≠0,m≠2,则m=﹣2.故答案为:﹣2.【点评】本题主要考查了一次函数的定义,难度不大,注意基础概念的掌握.13.(4分)(2019秋•沙坪坝区校级期中)已知实数x,y满足y=+2,则(y ﹣x)2011的值为﹣1.【分析】直接利用二次根式有意义的条件进而分析得出答案.【解答】解:∵与都有意义,∴x=3,则y=2,故(y﹣x)2011=﹣1.故答案为:﹣1.【点评】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.三、解答题:(本大题共5小题,14题8分,15,16,17,18各10分,共48分)14.(8分)(2019秋•沙坪坝区校级期中)(1)(2)【分析】(1)根据二次根式的乘法法则和平方差公式计算;(2)先把方程组整理为,然后利用加减消元法解方程组.【解答】解:(1)原式=++12﹣1=9+3+12﹣1=23;(2)方程组整理为,②﹣①得4x=8,解得x=2,把x=2代入①得2﹣4y=﹣2,解得y=1,所以原方程组的解为.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.也考查了解二元一次方程组.15.(10分)(2019秋•沙坪坝区校级期中)数学课上,静静将一副三角板如图摆放,点A,B,C三点共线,其中∠F AB=∠ECD=90°,∠D=45°,∠F=30°,且DE∥AC.(1)若AB=2,BF=4.求AF的长.(2)若ED=4,求BC的长.【分析】(1)在直角△AFB中,利用勾股定理求得AF的长度;(2)如图,过点E作EG⊥AC于点G,构造等腰直角△EGC.在直角△EDC中,根据勾股定理求得EC的长度;然后在直角△EGC中,再次利用勾股定理求得GC的长度,在直角△EGB中,求得BG的长度,则BC=GC﹣GB.【解答】(1)解:如图,直角△AFB中,∠F AB=90°,AB=2,BF=4.由勾股定理知,AF===2;(2)解:如图,过点E作EG⊥AC于点G,则AF∥EG.∵∠F=30°,∴∠BEG=30°.∴BG=BE.∵∠ECD=90°,∠D=45°,∴∠DEC=∠D=45°.∴EC=CD.∴ED=EC.又ED=4,∴EC=2.∵DE∥AC,∴∠ECG=∠DEC=45°.∴∠GEC=∠GCE=45°.∴EG=CG.∴EC=GC,即2=GC.∴GC=2.在直角△BGE中,由勾股定理知BG2+EG2=BE2,即BG2+22=4BG2.∴BG=.∴BC=GC﹣GB=2﹣.【点评】考查了勾股定理和含30度角的直角三角形.注意图中辅助线的作法,通过作辅助线,构造直角三角形,方可利用勾股定理求得相关线段的长度.16.(10分)(2019秋•沙坪坝区校级期中)探究函数y=|x﹣1|﹣2的图象和性质.静静根据学习函数的经验,对函数y=|x﹣1|﹣2的图象进行了探究,下面是静静的探究过程,请补充完成:(1)化简函数解析式,当x<1时,y=﹣x﹣,当x≥1时,y=x﹣.(2)根据(1)的结果,完成下表,并补全函数y=|x﹣1|﹣2图象;(3)观察函数图象,请写出该函数的一条性质:当x≥1时,y随x的增大而增大.【分析】(1)根据绝对值的性质化简即可.(2)利用描点法取点,画出图形即可.(3)观察图象解答即可(答案不唯一).【解答】解:(1)化简函数解析式,当x<1时,y=(1﹣x)﹣2=﹣x﹣,当x≥1时,y=(x﹣1)﹣2=x﹣,故答案为﹣x﹣,x﹣.(2)当x<1时,y=(1﹣x)﹣2=﹣x﹣,当x=0时,y=﹣,当x=﹣1时,y=﹣1,故答案为0,﹣1.﹣,﹣1,函数图象如图所示:(3)观察图象可知:当x≥1时,y随x的增大而增大.故答案为:当x≥1时,y随x的增大而增大.【点评】本题考查一次函数的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.(10分)(2019秋•沙坪坝区校级期中)已知函数y=kx+b(k≠0)图象经过点A(﹣2,1),点B(1,).(1)求直线AB的解析式;(2)若在直线AB上存在点C,使S△ACO=S△ABO,求出点C坐标.【分析】(1)根据点A、B的坐标利用待定系数法求出一次函数的解析式,此题得解.(2)根据题意得到C是线段AB的中点,或A是线段AC的三等分点,且C点在A点的左侧,即可求得C的坐标.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣2,1)、点B(1,).∴,解得:.∴这个一次函数的解析式为:y=x+2.(2)如图,∵C在直线AB上,且S△ACO=S△ABO,∴C是线段AB的中点,或A是线段AC的三等分点,且C点在A点的左侧,∵A(﹣2,1),B(1,).∴C(﹣,)或(﹣,);【点评】本题考查了待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.18.(10分)(2019秋•沙坪坝区校级期中)小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?【分析】(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,根据小华制作两种花束的数量与所用时间的关系表,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)根据小华本月的总收入=基本工资+制作花束的数量×每束的提成,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n 分钟,依题意,得:,解得:.答:小华每制作一束普通花束需要10分钟,每制作一束精致花束需要20分钟.(2)20×8×60=9600(分钟).依题意,得:W=1800+2×+5×=﹣+4200(3000≤x≤5000).∵﹣<0,∴W的值随x值的增大而减小,∴当x=3000时,W取得最大值,最大值为4050元.3000÷10=300(束),(9600﹣3000)÷20=330(束).答:小华该月收入W最多是4050元,此时小华本月制作普通花束300束,制作精致花束330束.【点评】本题考查了二元一次方程组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出W关于x 的函数关系式.四、选填题(本大题共5小题,每小题4分,共20分)请将每小题的答案直接填在答题卡中对应的横线上、19.(4分)(2020春•韩城市期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)【分析】令P点第n次运动到的点为P n点(n为自然数).列出部分P n点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”,根据该规律即可得出结论.【解答】解:令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵17=4×4+1,∴P第17次运动到点(17,1).故选:A.【点评】本题考查了规律型中的点的坐标,属于基础题,难度适中,解决该题型题目时,根据点的变化罗列出部分点的坐标,根据坐标的变化找出变化规律是关键.20.(4分)(2019秋•沙坪坝区校级期中)如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则重叠部分△DEF的面积是()cm2.A.15B.12C.7.5D.6【分析】根据翻折变换可得AE=A′E,∠A′=∠C=90°,即可利用勾股定理求得DE 的长,进而求解.【解答】解:长方形ABCD中,AB=CD=3,AD=9,∠C=90°根据翻折可知:∠A′=∠C=90°,A′D=DC=3,A′E=AE,设AE=A′E=x,则DE=9﹣x,在Rt△A′ED中,根据勾股定理,得(9﹣x)2=x2+32,解得x=4,∴DE=9﹣x=5,∴S△DEF=DE•CD=×5×3=7.5(cm2).故选:C.【点评】本题考查了翻折变换、三角形的面积、矩形的性质,解决本题的关键是利用翻折的性质.21.(4分)(2019秋•沙坪坝区校级期中)半期考试来临,元元到文具店购买考试用的铅笔,签字笔和钢笔,其中铅笔每支8元,签字笔每支10元,钢笔每支20元,若他一共用了122元,那么他最多能买钢笔4支.【分析】设购买x支钢笔,y支铅笔,z支签字笔,根据他一共用了122元,列出方程,将x用含y和z的式子表示出来,分别对y和z取值验证,即可得解.【解答】解:设购买x支钢笔,y支铅笔,z支签字笔,依题意,得:20x+8y+10z=122∴x==由题意可知x,y,z均为正整数∴当y=1,z=1时,x=5.2,不符合题意;当y=2,z=1时,x=4.8,不符合题意;当y=3,z=1时,x=4.4,不符合题意;当y=2,z=2时,由奇偶性可知,分子为奇数,不符合题意;当y=4,z=1时,x=4,符合题意.故答案为:4.【点评】本题考查了代数式变形在实际问题中的应用,根据题意正确列式并分类讨论,是解题的关键.22.(4分)(2019秋•沙坪坝区校级期中)如图,Rt△ABC中,∠CAB=90°,△ABD是等腰三角形,AB=BD=4,CB⊥BD,交AD于E,BE=1,则AC=.【分析】根据等腰三角形的性质得到∠BAE=∠BDE,根据等式的性质得到∠CAE=∠DEB,求得AC=EC,根据勾股定理列方程即可得到结论.【解答】解:∵AB=BD=4,∴∠BAE=∠BDE,∵CB⊥BD,∴∠DBE=∠CAB=90°,∴∠DEB=90°﹣∠D,∠CAE=90°﹣∠BAD,∴∠CAE=∠DEB,∵∠AEC=∠DEB,∴∠CAE=∠CEA,∴AC=EC,∵BE=1,∴BC=AC+1,∵AC2+AB2=BC2,∴AC2+42=(AC+1)2,∴AC=,故答案为:.【点评】本题考查了直角三角形的性质,等腰三角形的性质,勾股定理,证得AC=CE 是解题的关键.23.(4分)(2019秋•沙坪坝区校级期中)A、B两地之间有一条直线跑道,甲,乙两人分别从A,B同时出发,相向而行匀速跑步,且乙的速度是甲速度的90%.当甲,乙分别到达B地,A地后立即调头往回跑,甲的速度保持不变,乙的速度提高20%(仍保持匀速前行).甲,乙两人之间的距离y(米)与跑步时间x(分钟)之间的关系如图所示,则他们在第二次相遇时距B地米.【分析】观察函数图象,可知甲用9分钟到达B地,由速度=路程÷时间可求出甲的速度,结合甲、乙速度间的关系可求出乙的初始速度及乙加速后的速度,利用时间=路程÷速度可求出乙到达A地时的时间,设乙从返回到第二次相遇跑了t分钟,根据题意列方程解答即可.【解答】解:甲的速度为2700÷9=300(米/分钟),乙的初始速度为300×90%=270(米/分钟),乙到达A地时的时间为2700÷270=10(分钟),乙加速后的速度为270×(1+20%)=324(米/分钟).设乙从返回到相遇跑了t分钟,根据题意得:(300+324)t=2700﹣300×(10﹣9),解得:t=,∴他们在第二次相遇时距B地2700﹣300×()=(米),故答案为:.【点评】本题考查了一次函数的应用以及一元一次方程的应用,通过解方程求出两人第二次相遇的时间是解题的关键.五、解答题:(本大题共三小题,24题10分、25题8分,26题12分,共30分)24.(10分)(2019秋•沙坪坝区校级期中)材料:对于平面直角坐标系中的任意两点M1(x1,y1),M2(x2,y2),我们把d=叫做M1,M2两点间的距离公式,记作d(M1,M2).如A(﹣2,3),B(2,5)则A,B两点的距离为d(A,B)=.请根据以上阅读材料,解答下列问题:(1)当A(a,1),B(﹣1,4)的距离d(A,B)=5时,求出a的值.(2)若在平面内有一点C(x0,y0),使有最小值,求出它的最小值和此时x0的范围.(3)若有最小值,请直接写出最小值.【分析】(1)根据两点间距离公式构建方程即可解决问题.(2)求的最小值,相当于求点(x0,y0)到点(﹣4,4)和点(2,4)的距离和的最小值.(3)由=,推出3y=4时,这个式子有最小值,最小值为3,因为+=+=+,求出+的最小值即可解决问题.【解答】解:(1)由题意:(a+1)2+(1﹣4)2=52,解答a=3或﹣5.(2)求的最小值,相当于求点(x0,y0)到点(﹣4,4)和点(2,4)的距离和的最小值,观察图象可知最小值=6,此时﹣4≤x0≤2.(3)∵=,∴3y=4时,这个式子有最小值,最小值为3,∴+=+,求出+的最小值即可解决问题,求+,相当于求点(2x,3)到点(4,1)和点(0,0)的距离和的最小值,这个最小值==,∴原式的最小值=+3.【点评】本题考查勾股定理,非负数的性质,两点间的距离公式,最短问题等知识,解题的关键是学会用转化的思想思考问题,学会利用数形结合的思想解决问题.25.(8分)(2019秋•沙坪坝区校级期中)已知,如图,∠BAC=∠DAE=90°,且AD=AE,AC=AB.其中B、E、D共线且DE交AC于F.(1)如图1,若E为BD的中点,且DC=,求AB的长;(2)如图2,若DE=BE,过点E作EG⊥AE交AB于点G,求证:AB+BG=BC.【分析】(1)只要证明△DAC≌△EAB,推出CD=EB,∠ACD=∠ABE,由∠CFD=∠AFB,推出∠CDF=∠F AB=90°,再求出CD、BD,利用勾股定理求出BC即可解决问题.(2)如图2中,延长AE交BC于J.想办法证明C=CJ,BJ=BG即可解决问题.【解答】解:(1)如图1中,∵△ABC和△ADE均为等腰直角三角形,∴∠BAC=∠EAD=90°,AB=AC,AE=AD=1,∴∠EAB=∠DAC,∴△DAC≌△EAB,∴CD=EB=,∠ACD=∠ABE,∵∠CFD=∠AFB,∴∠CDF=∠F AB=90°,∵DE=EB=CD=,∴BC===,∴AB=AC=BC=.(2)如图2中,延长AE交BC于J.∵DE=BE,DE=AE,∴AE=EB,∴∠EAB=∠EBA,∵∠DEA=45°=∠EAB+∠EBA,∵EF=BE,∠BAF=90°,∴∠EAB=∠EBA=∠EBC=22.5°,∴∠CAE=67.5°,∴∠CJA=180°﹣∠CAJ﹣∠ACJ=67.5°,∴∠CAJ=∠CJA,∴CA=CJ=CB,∵EG⊥AE,∴∠AEG=∠GEJ=90°,∴∠AGE=90°﹣22.5°=67.5°,∵∠AGE=∠EBG+∠GEB,∴∠BEG=45°=∠BEJ,∵BE=BE,∠EBJ=∠EBG,∴△EBJ≌△EBG(ASA),∴BG=BJ,∴BC=CJ+BJ=AB+BG.【点评】本题考查等腰直角三角形的性质、全等三角形的判定和性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.(12分)(2019秋•沙坪坝区校级期中)如图,直线L1:y=﹣x+3与x轴,y轴分别交于A,B两点,若将直线l1向右平移2个单位得到直线L2,L2与x轴,y轴分别交于C,D两点.(1)求点D的坐标;(2)如图1,若点M是直线L2上一动点,且MN⊥L1,NH⊥x轴,连接BM,求BM+MN+NH 的最小值及此时点N的坐标;(3)如图2,将线段AB绕点C顺时针旋转90°得到线段A′B′,延长线段A′B′得到直线L3,线段A′B′在直线L3上移动,当以点C、A′、B′构成的三角形是等腰三角形时,直接写出点A′的坐标.。
2019-2020学年天津市河西区八年级(上)期中数学试卷-(解析版)
2019-2020学年天津市河西区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列标志中,可以看作是轴对称图形的是()A.B.D.C.2.要使四边形木架(用四根木条钉成)不变形,至少要再钉上的木条的根数为()A.一条B.两条C.三条D.四条:3.在△ABC中,∠A=45°,∠B=45°,则下列判断错误的是()A.△ABC是直角三角形C.△ABC是等腰三角形B.△ABC是锐角三角形D.∠A和∠B互余4.由下列长度组成的各组线段中,不能组成三角形的是()A.1cm,3cm,3cm C.8cm,6cm,4cm B.2cm,5cm,6cm D.14cm,7cm,7cm5.已知等腰三角形的两边长分别是5和11,则这个等腰三角形的周长为()A.21B.16C.27D.21或27(6.在下面的四组全等的三角形中,可以看作把△ABC经过翻折(轴对称)而得到△DEF的是()A.B.D.C.7.如图,足球图片正中的黑色正五边形的内角和是()A.180°B.360°C.540°D.720°8.如图,为了促进当地旅游发展,某地要在三条公路围成的一块三角形平地ABC上修建一个度假村,要使这个度假村到三条公路的距离相等,应该修在()@A.△ABC三边中线的交点B.△ABC三个角的平分线的交点C.△ABC三边高线的交点D.△ABC三边垂直平分线的交点9.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′C.AD=AE B.∠ACD=∠B′CD D.AE=CE;10.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=C D=D E,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE 的度数是()A.60°B.65°C.75°D.80°二、填空题:本大题共6小题,每小题3分,共18分.11.点M(3,3)关于x轴对称的点的坐标为.12.有一角为60°的等腰三角形是.13.如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.;14.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为.15.如图,A(m,0),B(0,n),以B点为直角顶点在第二象限作等腰直角△ABC,则C点的坐标为.(用字母m、n表示)16.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.三、解答题:本大题共7小题,共52分.解答应写出文字说明,演算步骤或证明过程.17.在直角坐标系中,△ABC的三个顶点的位置如图所示.·(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′().18.已知:∠α.求作:∠CAB,使得∠CAB=∠α.(尺规作图,保留作图痕迹,不写作法.)19.如图,在△ABC中,BO,CO分别平分∠ABC和∠ACB.…(Ⅰ)若∠A=60°,则∠BOC的度数为(Ⅱ)若∠A=100°,则∠BOC的度数;;(Ⅲ)若∠A=α,求∠BOC的度数,并说明理由.20.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°.(Ⅰ)求∠BCD的度数;(Ⅱ)若BD=a,求AB的长度(用a表示)./21.在平面直角坐标系中,点A(2,0),点B(0,3)和点C(0,2).(Ⅰ)请直接写出OB的长度:OB=;(Ⅱ)如图:若点D在x轴上,且点D的坐标为(﹣3,0),求证:△AOB≌△COD.22.如图,在等边△ABC中,点D,E分别在边BC,AB上,AD交CE于点P,且BD=AE.求证:(Ⅰ)AD=CE;(Ⅱ)求∠DPC的度数.—23.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.2019-2020学年天津市河西区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)@1.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选:C.。
2019-2020学年江苏省徐州市八年级(上)期中数学试卷试题及答案(解析版)
2019-2020学年江苏省徐州市八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列大学的校徽图案是轴对称图形的是( )A .清华大学B .北京大学C .中国人民大学D .浙江大学2.16的算术平方根是( )A .8B .8-C .4D .4±3.已知等腰ABC ∆中,120A ∠=︒,则底角的大小为( )A .60︒B .30︒或120︒C .120︒D .30︒4.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC ∆的( )A .三边中线的交点B .三边垂直平分线的交点C .三条角平分线的交点D .三边上高的交点 5.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是( )A .ASAB .SASC .SSSD .AAS6.下列等式成立的是( )A 5=±B 3=C 4=-D .0.6=±7.下列三角形中,不是直角三角形的是( )A .ABC ∆中,ABC ∠=∠-∠B .ABC ∆中,::1:2:3a b c =C .ABC ∆中,222a c b =-D .ABC ∆中,三边的长分别为22m n +,22m n -,2(0)mn m n >>8.如图是由11个等边三角形拼成的六边形,若最小等边三角形的边长为a ,最大等边三角形的边长为b ,则a 与b 的关系为( )A .3b a =B .5b a =C .133b a =D .92b a = 二、选择题(每小题4分,共32分)9.直角三角形斜边上的中线长为5cm ,则斜边长为 cm .10.如图,在ABC ∆和DEF ∆中,点B ,F ,C ,E 在同一直线上,BF CE =,//AB DE ,请添加一个条件,使ABC DEF ∆≅∆,这个添加的条件可以是 (只需写一个,不添加辅助线).11.如图,在Rt ABC ∆中,90A ∠=︒,ABC ∠的平分线BD 交AC 于点D ,3AD =,则点D 到边BC 的距离 .12.已知等腰三角形的周长为16cm ,其中一边长为4cm ,则该等腰三角形的腰长是 cm .13.若29a =1=-,则a b -的值是 .14.如图,在Rt ABC ∆中,90B ∠=︒,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知35C ∠=︒,则BAE ∠的度数为 ︒.15.如图,已知ABC ∆中,90ABC ∠=︒,AB BC ==,三角形的顶点在相互平行的三条直线1l 、2l 、3l 上,且2l 、3l 之间的距离为2,则1l 、2l 之间的距离为 .16.如图的实线部分是由Rt ABC ∆经过两次折叠得到的,首先将Rt ABC ∆沿BD 折叠,使点C 落在斜边上的点C '处,再沿DE 折叠,使点A 落在DC '的延长线上的点A '处.若图中90C ∠=︒,3DE cm =,4BD cm =,则DC '的长为 .三、解答题(本大题共9小题,共84分)17.求下列各式的x 的值(1)24121x =;(2)3(2)8x -=-18.利用网格作图,(1)请你在图①中画出线段AB 关于线段CD 所在直线成轴对称的图形;(2)请你在图②中添加一条线段,使图中的3条线段组成一个轴对称图形.请画出所有情形.19.已知:如图,ABC ∆中,90A ∠=︒,现要在AC 边上确定一点D ,使点D 到BA 、BC 的距离相等.(1)请你按照要求,在图上确定出点D 的位置(尺规作图,不写作法,保留作图痕迹);(2)若10BC =,8AB =,则AC = ,AD = (直接写出结果).20.已知:如图点O在射线AP上,1215∠=︒.B∠=∠=︒,AB AC=,40(1)求证:ABO ACO∆≅∆;(2)求POC∠的度数.21.已知:如图,90∠=∠=︒,M,N分别是AC,BD的中点.求证:MN BD⊥.ABC ADC22.已知:如图,BE CD=,==,BC DA⊥垂足为E,8BE DE(1)求证:BEC DEA∆≅∆;(2)若MN是边AD的垂直平分线,分别交AD、CD于M、N,且5CE=,求AEN∆的周长.23.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯13=,梯子底端离墙角的距离AB m=.5BO m(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A 下滑4m 到点C ,那么梯子的底部B 在水平方向上滑动的距离4BD m =吗?为什么?24.如图,在长方形ABCD 中,5AB =,13AD =,点E 为BC 上一点,将ABE ∆沿AE 折叠,使点B 落在长方形内点F 处,连接DF 且12DF =.(1)试说明:ADF ∆是直角三角形;(2)求BE 的长.25.如图(1),7AB cm =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.2019-2020学年江苏省徐州市八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.下列大学的校徽图案是轴对称图形的是( )A .清华大学B .北京大学C .中国人民大学D .浙江大学【解答】解:A 、不是轴对称图形,本选项错误;B 、是轴对称图形,本选项正确;C 、不是轴对称图形,本选项错误;D 、不是轴对称图形,本选项错误.故选:B .2.16的算术平方根是( )A .8B .8-C .4D .4±【解答】解:2(4)16±=,16∴的算术平方根是4,故选:C .3.已知等腰ABC ∆中,120A ∠=︒,则底角的大小为( )A .60︒B .30︒或120︒C .120︒D .30︒【解答】解:在等腰ABC ∆中,120A ∠=︒,A ∴∠为等腰三角形的顶角,B C ∴∠=∠,120A ∠=︒,30B C ∴∠=∠=︒;故选:D .4.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC ∆的( )A .三边中线的交点B .三边垂直平分线的交点C .三条角平分线的交点D .三边上高的交点 【解答】解:三角形的三条垂直平分线的交点到三角形三个顶点的距离相等, ∴凳子应放在ABC ∆的三条垂直平分线的交点最适当.故选:B .5.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是( )A .ASAB .SASC .SSSD .AAS【解答】解:小周书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是:两角及其夹边分别相等的两个三角形全等()ASA .故选:A .6.下列等式成立的是( )A 5=±B 3=C 4=-D .0.6=±【解答】解:A 、原式5=,不符合题意;B 、原式3=-,不符合题意;C 、原式|4|4=-=,不符合题意;D 、原式0.6=±,符合题意,故选:D .7.下列三角形中,不是直角三角形的是( )A .ABC ∆中,ABC ∠=∠-∠B .ABC ∆中,::1:2:3a b c =C .ABC ∆中,222a c b =-D .ABC ∆中,三边的长分别为22m n +,22m n -,2(0)mn m n >>【解答】解:A 、ABC ∆中,A B C ∠=∠-∠,是直角三角形,故此选项不合题意; B 、ABC ∆中,::1:2:3a b c =,设三边长为:x ,2x ,3x ,由222(2)(3)x x x +≠,故此三角形不是直角三角形,符合题意;C 、ABC ∆中,222a c b =-,符合勾股定理逆定理,是直角三角形,故此选项不合题意;D 、ABC ∆中,三边的长分别为22m n +,22m n -,2(0)mn m n >>,则2222222()(2)()m n mn m n -+=+,是直角三角形,故此选项不合题意; 故选:B .8.如图是由11个等边三角形拼成的六边形,若最小等边三角形的边长为a ,最大等边三角形的边长为b ,则a 与b 的关系为( )A .3b a =B .5b a =C .133b a =D .92b a = 【解答】解:设第二个小的等边三角形的边长为x ,则第三个小的等边三角形的边长为:x a +,第四个小的等边三角形的边长为:2x a +,最大的个小的等边三角形的边长3b x a =+, 又3b x =,33x x a ∴=+,32x a ∴=, 932b x a ∴==, 故选:D .二、选择题(每小题4分,共32分)9.直角三角形斜边上的中线长为5cm ,则斜边长为 10 cm .【解答】解:直角三角形中斜边上的中线等于斜边的一半,∴斜边长2510cm =⨯=.10.如图,在ABC ∆和DEF ∆中,点B ,F ,C ,E 在同一直线上,BF CE =,//AB DE ,请添加一个条件,使ABC DEF ∆≅∆,这个添加的条件可以是 AB ED = (只需写一个,不添加辅助线).【解答】解:添加AB ED =,BF CE =,BF FC CE FC ∴+=+,即BC EF =,//AB DE ,B E ∴∠=∠,在ABC ∆和DEF ∆中AB ED B E CB EF =⎧⎪∠=∠⎨⎪=⎩,()ABC DEF SAS ∴∆≅∆,故答案为:AB ED =.11.如图,在Rt ABC ∆中,90A ∠=︒,ABC ∠的平分线BD 交AC 于点D ,3AD =,则点D 到边BC 的距离 3 .【解答】解:过点D 作DE BC ⊥交BC 于点E ,如图所示:,90A∠=︒,DA AB∴⊥,又BD是ABC∠的平分线,DA DE∴=,又3AD=,3DE∴=,即点D到边BC的距离是3,故答案为3.12.已知等腰三角形的周长为16cm,其中一边长为4cm,则该等腰三角形的腰长是6cm.【解答】解:①4cm是腰长时,底边为:16428cm-⨯=,三角形的三边长分别为4cm、4cm、8cm,448+=,∴不能组成三角形,②4cm是底边长时,腰长为:1(164)62cm ⨯-=,三角形的三边长分别6cm、6cm、4cm,能组成三角形,综上所述,该等腰三角形的腰长是6cm.故答案为:6.13.若29a=1=-,则a b-的值是4或2-.【解答】解:29a=1=-,3a∴=±,1b=-,当3a=时,原式3(1)4=--=,当3a=-时,原式3(1)2=---=-,故答案为:4或2-14.如图,在Rt ABC∆中,90B∠=︒,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知35C∠=︒,则BAE∠的度数为20︒.【解答】解:ED 是AC 的垂直平分线,AE CE ∴=,35EAC C ∴∠=∠=︒,在Rt ABC ∆中,90B ∠=︒,9055BAC C ∴∠=︒-∠=︒,20BAE BAC EAC ∴∠=∠-∠=︒.故答案为:20.15.如图,已知ABC ∆中,90ABC ∠=︒,AB BC ==,三角形的顶点在相互平行的三条直线1l 、2l 、3l 上,且2l 、3l 之间的距离为2,则1l 、2l 之间的距离为 1 .【解答】解:设1l 、2l 之间的距离为x ,过A 作3AG l ⊥于G ,过C 作3CH l ⊥于H ,由题意得:2AG =,2CH x =+,90ABC ∠=︒,90ABG CBH ∴∠+∠=︒,90ABG GAB ∠+∠=︒,CBH GAB ∴∠=∠,AB BC =,90AGB BHC ∠=∠=︒,()AGB BHC AAS ∴∆≅∆,2BH AG ∴==,2BG HC x ==+,222AB AG BG =+,2134(2)x ∴=++,解得:1x =,5x =(不合题意舍去),1l ∴、2l 之间的距离为1.16.如图的实线部分是由Rt ABC ∆经过两次折叠得到的,首先将Rt ABC ∆沿BD 折叠,使点C 落在斜边上的点C '处,再沿DE 折叠,使点A 落在DC '的延长线上的点A '处.若图中90C ∠=︒,3DE cm =,4BD cm =,则DC '的长为 5.【解答】解:ABC ∆是直角三角形,90C ∴∠=︒,由折叠的性质得:12BDC BDC CDC '∠=∠'=∠,12ADE A DE ADA ''∠=∠=∠,90BCD C ∠=∠=︒,1180902BDE BDC A DE '∴∠=∠+∠'=⨯︒=︒,DC AB '⊥,5()BE cm ∴===,BDE ∆的面积1122BE DC DE BD '=⨯=⨯, 3412()55DE BD DC cm BE ⨯⨯'∴===; 故答案为:125cm . 三、解答题(本大题共9小题,共84分)17.求下列各式的x 的值(1)24121x =;(2)3(2)8x -=-【解答】解:(1)24121x =,21214x ∴=, 112x ∴=±; (2)3(2)8x -=-,22x ∴-=-,0x ∴=;18.利用网格作图,(1)请你在图①中画出线段AB 关于线段CD 所在直线成轴对称的图形;(2)请你在图②中添加一条线段,使图中的3条线段组成一个轴对称图形.请画出所有情形.【解答】解:(1)、(2)如图所示:.19.已知:如图,ABC ∆中,90A ∠=︒,现要在AC 边上确定一点D ,使点D 到BA 、BC 的距离相等.(1)请你按照要求,在图上确定出点D 的位置(尺规作图,不写作法,保留作图痕迹);(2)若10BC =,8AB =,则AC = 6 ,AD = (直接写出结果).【解答】解:(1)如图,点D 即为所求.(2)作DH BC ⊥于H .在Rt ABC ∆中,10BC =,8AB =,6AC ∴===, BD 平分ABC ∠,ABD HBD ∴∠=∠,90A DHB ∠=∠=︒,BD BD =,()ABD HBD AAS ∴∆≅∆,8AB BH ∴==,AD DH =,设AD DH x ==,在Rt CDH ∆中,222CD DH CH =+,222(6)2x x ∴-=+,83x ∴=, 83AD ∴=, 故答案为6,83. 20.已知:如图点O 在射线AP 上,1215∠=∠=︒,AB AC =,40B ∠=︒.(1)求证:ABO ACO ∆≅∆;(2)求POC ∠的度数.【解答】(1)证明:在ABO ∆与ACO ∆中12AB AC AO AO =⎧⎪∠=∠⎨⎪=⎩,()ABO ACO SAS ∴∆≅∆;(2)解:ABO ACO ∆≅∆,40C B ∴∠=∠=︒,2154055POC C ∴∠=∠+∠=︒+︒=︒.21.已知:如图,90ABC ADC ∠=∠=︒,M ,N 分别是AC ,BD 的中点.求证:MN BD ⊥.【解答】证明:如图,连接BM 、DM ,90ABC ADC ∠=∠=︒,M 是AC 的中点,12BM DM AC ∴==, 点N 是BD 的中点,MN BD ∴⊥.22.已知:如图,BE CD ⊥垂足为E ,8BE DE ==,BC DA =,(1)求证:BEC DEA ∆≅∆;(2)若MN 是边AD 的垂直平分线,分别交AD 、CD 于M 、N ,且5CE =,求AEN ∆的周长.【解答】(1)证明:BE CD⊥,90BEC DEA∴∠=∠=︒,在Rt BEC∆与Rt DEA∆中BE DE BC DA=⎧⎨=⎩,Rt BEC Rt DEA(HL)∴∆≅∆;(2)解:Rt BEC Rt DEA∆≅∆,5AE CE∴==,MN是边AD的垂直平分线,AN DN∴=,AEN∴∆的周长5813AN EN AE AE DN EN AE DE=++=++=+=+=.23.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯13AB m=,梯子底端离墙角的距离5BO m=.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离4BD m=吗?为什么?【解答】解:(1)AO DO⊥,AO∴==,12m =,∴梯子顶端距地面12m 高;(2)滑动不等于4m ,4AC m =,8OC AO AC m ∴=-=,OD ∴===,54BD OD OB ∴=-=->,∴滑动不等于4m .24.如图,在长方形ABCD 中,5AB =,13AD =,点E 为BC 上一点,将ABE ∆沿AE 折叠,使点B 落在长方形内点F 处,连接DF 且12DF =.(1)试说明:ADF ∆是直角三角形;(2)求BE 的长.【解答】解:(1)根据折叠可知:5AB AF ==,13AD =,12DF =,22212513+=,即222FD AF AD +=,根据勾股定理的逆定理,得ADF ∆是直角三角形.(2)设BE x =,则EF x =,根据折叠可知:90AFE B ∠=∠=︒,90AFD ∠=︒,180DFE ∴∠=︒,D ∴、F 、E 三点在同一条直线上,12DE x ∴=+,13CE x =-,5DC AB ==,在Rt DCE ∆中,根据勾股定理,得222DE DC EC =+,即222(12)5(13)x x +=+-,解得1x =.答:BE 的长为125.如图(1),7AB cm =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.【解答】解:(1)ACP BPQ ∆≅∆,AC AB ⊥,BD AB ⊥90A B ∴∠=∠=︒2AP BQ ==,5BP ∴=,BP AC ∴=,在ACP ∆和BPQ ∆中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,ACP BPQ ∴∆≅∆;(2)存在x 的值,使得ACP ∆与BPQ ∆全等, ①若ACP BPQ ∆≅∆,则AC BP =,AP BQ =,可得:572t =-,2t xt = 解得:2x =,1t =;②若ACP BQP ∆≅∆,则AC BQ =,AP BP =,可得:5xt =,272t t =- 解得:207x =,74t =.。
2019-2020学年武汉市汉阳区八年级上期中数学试卷(有答案)
.2019-2020学年湖北省武汉市汉阳区八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列“表情图”中,属于轴对称图形的是(中,属于轴对称图形的是( )A .B .C .D .2.(3分)下列四个图形中,线段BE 是△ABC 的高的是(的高的是( )A .B .C .D .3.(3分)下列长度的三条线段能组成三角形的是(分)下列长度的三条线段能组成三角形的是( ) A .1,2,3 B .1,,3 C .3,4,8 D .4,5,6 4.(3分)一定能确定△ABC ≌△DEF 的条件是(的条件是( ) A .∠A=∠D ,AB=DE ,∠B=∠E B .∠A=∠E ,AB=EF ,∠B=∠D C .AB=DE ,BC=EF ,∠A=∠DD .∠A=∠D ,∠B=∠E ,∠C=∠F5.(3分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是(书本上完全一样的三角形,那么聪聪画图的依据是( )A .SSSB .SASC .ASAD .AAS6.(3分)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为(,则这个等腰三角形的周长为( ) A .11 B .16 C .17 D .16或17 7.(3分)如图,在△ABC 中,AB=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E=35°,则∠BAC 的度数为(的度数为( )A .40°B .45°C .60°D .70°8.(3分)如图,在△ABC 中,AB=AC ,AB 的垂直平分线交边AB 于D 点,交边AC 于E 点,若△ABC 与△EBC 的周长分别是40,24,则AB 为(为( )A .8B .12C .16D .20 9.(3分)如图,四边形ABCD 是直角梯形,AB ∥CD ,AD ⊥AB ,点P 是腰AD 上的一个动点,要使PC +PB 最小,则点P 应该满足(应该满足( )A .PB=PCB .PA=PDC .∠BPC=90°D .∠APB=∠DPC10.(3分)在平面直角坐标系中,已知A (0,2),B (2,0),若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是(的个数是( ) A .6B .7C .8D .9二、填空题(每题3分,共18分)11.(3分)已知点P 关于x 轴的对称点P 1的坐标是(2,1),则点P 的坐标是的坐标是 . 12.(3分)如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3的度数是度数是.13.(3分)如图,在△ABC 中,AB=AC ,AE ⊥AB 交BC 于点E ,∠BAC=120°,AE=3,则BC 的长是长是.14.(3分)如果一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的底角的度数度数.15.(3分)在△ABC 中,AB=2cm ,AC=4cm ,则BC 边上的中线AD 的取值范围是的取值范围是 . 16.(3分)请你仔细观察图中等边三角形图形的变换规律,写出你发现关于等边三角形内一点到三边距离的数学事实:点到三边距离的数学事实:.三、解答题(共8道小题,共72分)17.(8分)一个多边形的内角和是外角和的2倍,则这个多边形是几边形? 18.(8分)如图,点B 、E 、C 、F 在同一直线上,BE=CF ,AB=DE ,AC=DF . 求证:AB ∥DE .19.(8分)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F . (1)∠ABC=40°,∠A=60°,求∠BFD 的度数; (2)直接写出∠A 与∠BFD 的数量关系.20.(8分)如图,在平面直角坐标系中,A (﹣1,5),B (﹣1,0),C (﹣4,3).(1)在图中作出△ABC 关于直线m (直线m 上各点的横坐标都为﹣2)对称的图形△A 1B 1C 1;(2)线段BC 上有一点P (﹣,),直接写出点P 关于直线m 对称的点的坐标; (3)线段BC 上有一点M (a ,b ),直接写出点M 关于直线m 对称的点的坐标.21.(8分)如图△ABC是等边三角形.(1)请按要求完成图形,分别作∠ABC,∠ACB的平分线,交点为O;再分别作OB,OC的垂直平分线分别交BC于点D,E;(2)在(1)的条件下,判断△ODE的形状,并证明你的结论.22.(10分)如图,在△ABC中,∠ACB=90°,∠A=30°.(1)教材中有这样的结论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.请结合图1,证明该结论;(2)若将图2分割成三个全等的三角形,请你画出图形,并简单描述辅助线的作法.23.(10分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.24.(12分)(1)问题解决:如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.;个性质是①如图1,若α=90°,根据教材中一个重要性质直接可得AD=CD,这个性质是②在图2中,求证AD=CD;(2)拓展探究:根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证BD+AD=BC.2019-2020学年湖北省武汉市汉阳区八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列“表情图”中,属于轴对称图形的是(中,属于轴对称图形的是( )A. B. C. D.【解答】解:A不属于轴对称图形,故错误;B不属于轴对称图形,故错误;C不属于轴对称图形,故错误;D属于轴对称图形,故正确;故选:D.2.(3分)下列四个图形中,线段BE是△ABC的高的是(的高的是( )A. B.C.D.【解答】解:线段BE是△ABC的高的图是选项D.故选D.3.(3分)下列长度的三条线段能组成三角形的是(分)下列长度的三条线段能组成三角形的是( )A .1,2,3 B.1,,3 C.3,4,8 D.4,5,6【解答】解:A、1+2=3,不能组成三角形,故本选项错误;B、1+<3,不能组成三角形,故本选项错误;C、3+4<8,不能组成三角形,故本选项错误;D、4+5>6,能组成三角形,故本选项正确.故选D.4.(3分)一定能确定△ABC≌△DEF的条件是(的条件是( )A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F【解答】解:A 、根据ASA 即可推出△ABC ≌△DEF ,故本选项正确;B 、根据∠A=∠E ,∠B=∠D ,AB=DE 才能推出△ABC ≌△DEF ,故本选项错误; C 、根据AB=DE ,BC=EF ,∠B=∠E 才能推出△ABC ≌△DEF ,故本选项错误;D 、根据AAA 不能推出△ABC ≌△DEF ,故本选项错误; 故选A .5.(3分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是(书本上完全一样的三角形,那么聪聪画图的依据是( )A .SSSB .SASC .ASAD .AAS【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形. 故选:C .6.(3分)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为(,则这个等腰三角形的周长为( ) A .11 B .16 C .17 D .16或17【解答】解:①6是腰长时,三角形的三边分别为6、6、5, 能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5, 能组成三角形, 周长=6+5+5=16.综上所述,三角形的周长为16或17. 故选D .7.(3分)如图,在△ABC 中,A B=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E=35°,则∠BAC 的度数为(的度数为( )A.40° B.45° C.60° D.70°【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.8.(3分)如图,在△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若)为(△ABC与△EBC的周长分别是40,24,则AB为(A.8 B.12 C.16 D.20【解答】解:∵DE是AB的垂直平分线,∴AE=BE;∵△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,∴△ABC的周长﹣△EBC的周长=AB,∴AB=40﹣24=16.故选:C.9.(3分)如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,)应该满足(要使PC+PB最小,则点P应该满足(A.PB=PC B.PA=PD C.∠BPC=90° D.∠APB=∠DPC【解答】解:如图,作点C关于AD的对称点E,连接BE交AD于P,连接CP.根据轴对称的性质,得∠DPC=∠EPD,根据对顶角相等知∠APB=∠EPD,所以∠APB=∠DPC.故选D.10.(3分)在平面直角坐标系中,已知A(0,2),B(2,0),若在坐标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C的个数是()的个数是(A.6 B.7 C.8 D.9【解答】解:如图所示:当AB=AC时,符合条件的点有3个;当BA=BC时,符合条件的点有3个;当点C在AB的垂直平分线上时,符合条件的点有一个.故符合条件的点C共有7个.故选:B .二、填空题(每题3分,共18分)11.(3分)已知点P 关于x 轴的对称点P 1的坐标是(2,1),则点P 的坐标是的坐标是 (2,﹣1) . 【解答】解:点P 关于x 轴的对称点P 1的坐标是(2,1),则点P 的坐标是(2,﹣1), 故答案为:(2,﹣1).12.(3分)如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3的度数是度数是 20° .【解答】解:由题意得:∠4=∠2=40°; 由三角形外角的性质得:∠4=∠1+∠3, ∴∠3=∠4﹣∠1=40°﹣20°20°=20°=20°, 故答案为:20°.13.(3分)如图,在△ABC 中,AB=AC ,AE ⊥AB 交BC 于点E ,∠BAC=120°,AE=3,则BC 的长是长是 9 .【解答】解:过点A 作AF ⊥BC 交BC 于F ,∵AB=AC ,∠BAC=120°,∴∠B=∠C=30°,BC=2BF , 在Rt △BAE 中, AB=AE•cot30°=3×=3,在Rt △AF B 中,BF BF=AB•cos30°=3=AB•cos30°=3×=, ∴BC=2BF=2×=9, 故答案为:9.14.(3分)如果一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的底角的度数度数 15°或75° .【解答】解:解:(1)当等腰三角形是锐角三角形时,腰上的高在三角形内部,如图,BD 为等腰三角形ABC 腰AC 上的高,并且BD=AB ,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角为30°,此时底角为75°;(2)当等腰三角形是钝角三角形时,腰上的高在三角形外部,如图,BD 为等腰三角形ABC 腰AC 上的高,并且BD=AB ,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角的邻补角为30°,此时顶角是150°, 底角为15°.故答案为:15°或75°.15.(3分)在△ABC 中,AB=2cm ,AC=4cm ,则BC 边上的中线AD 的取值范围是的取值范围是 1cm <AD <3cm .【解答】解:延长AD 到E ,使AD=DE ,连接BE , ∵AD 是△ABC 的中线, ∴BD=CD ,在△ADC 与△EDB 中, ∵,∴△ADC ≌△EDB , ∴EB=AC ,根据三角形的三边关系定理:4cm ﹣2cm <AE <4cm +2cm , ∴1cm <AD <3cm ,故答案为:1cm <AD <3cm .16.(3分)请你仔细观察图中等边三角形图形的变换规律,写出你发现关于等边三角形内一点到三边距离的数学事实:点到三边距离的数学事实: 等边三角形内任意一点到三边的距离之和等于该等边三角形的高 .【解答】解:由图可知,等边三角形里任意一点到三边的距离和等于它的高.三、解答题(共8道小题,共72分)17.(8分)一个多边形的内角和是外角和的2倍,则这个多边形是几边形? 【解答】解:设这个多边形的边数为n ,∴(n ﹣2)•180•180°°=2×360°, 解得:n=6.故这个多边形是六边形.18.(8分)如图,点B 、E 、C 、F 在同一直线上,BE=CF ,AB=DE ,AC=DF . 求证:AB ∥DE .【解答】证明:∵BE=CF , ∴BC=EF ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF (SSS ), ∴∠B=∠DEF , ∴AB ∥DE .19.(8分)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F . (1)∠ABC=40°,∠A=60°,求∠BFD 的度数; (2)直接写出∠A 与∠BFD 的数量关系.【解答】解:(1)∵∠ABC=40°,∠A=60°, ∴∠ACB=180°﹣40°﹣60°60°=80°=80°, ∵∠B 、∠C 的平分线BE ,CD 相交于点F ,∴∠BFD=∠FBC +∠FCB=∠ABC +∠ACB=20°+40°40°=60°=60°.(2)∵∠B 、∠C 的平分线BE ,CD 相交于点F ,∴∠BFD=∠FBC +∠FCB=∠ABC +∠ACB=(∠ABC +∠ACB )=(180°﹣∠A )=90°﹣∠A .20.(8分)如图,在平面直角坐标系中,A (﹣1,5),B (﹣1,0),C (﹣4,3).(1)在图中作出△ABC 关于直线m (直线m 上各点的横坐标都为﹣2)对称的图形△A 1B 1C 1;(2)线段BC 上有一点P (﹣,),直接写出点P 关于直线m 对称的点的坐标; (3)线段BC 上有一点M (a ,b ),直接写出点M 关于直线m 对称的点的坐标.【解答】解:(1)如图所示,(2)线段BC 上有一点P (﹣,),点P 关于直线m 对称的点的坐标是(﹣,), (3)线段BC 上有一点M (a ,b ),点M 关于直线m 对称的点的坐标是(﹣4﹣a ,b ).21.(8分)如图△ABC是等边三角形.(1)请按要求完成图形,分别作∠ABC,∠ACB的平分线,交点为O;再分别作OB,OC的垂直平分线分别交BC于点D,E;(2)在(1)的条件下,判断△ODE的形状,并证明你的结论.【解答】解:(1)如图,(2)△ODE为等边三角形.理由如下:∵△ABC是等边三角形.∴∠ABC=∠ACB=60°,∵OB平分∠ABC,OC平分∠AC B,∴∠OBC=∠ABC=30°,∠OCB=∠ACB=30°,∵OB,OC的垂直平分线分别交BC于点D,E,∴DB=DO,EC=EO,∴∠ODB=∠DBO=30°,∠EOC=∠ECO=30°,∴∠ODE=∠ODB+∠DBO=60°,∠OED=∠EOC+∠ECO=60°,∴△ODE为等边三角形.22.(10分)如图,在△ABC中,∠ACB=90°,∠A=30°.(1)教材中有这样的结论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.请结合图1,证明该结论;(2)若将图2分割成三个全等的三角形,请你画出图形,并简单描述辅助线的作法.【解答】解:(1)证法一:如答图所示,延长BC到D,使CD=BC,连接AD,易证AD=AB,∠BAD=60°.∴△ABD为等边三角形,∴AB=BD,∴BC=CD=AB,即BC=AB.证法二:如答图所示,取AB的中点D,连接DC,有CD=AB=AD=DB,∴∠DCA=∠A=30°,∠BDC=∠DCA+∠A=60°.∴△DBC为等边三角形,∴BC=DB=AB,即BC=AB.证法三:如答图所示,在AB 上取一点D ,使BD=BC , ∵∠B=60°,∴△BDC 为等边三角形,∴∠DCB=60°,∠ACD=90°﹣∠DCB=90°﹣60°60°=30°=30°=30°==∠A .∴DC=DA ,即有BC=BD=DA=AB ,∴BC=AB .证法四:如图所示,作△ABC 的外接圆⊙D ,∠C=90°,AB 为⊙O 的直径, 连DC 有DB=DC ,∠BDC=2∠A=2×30°=60°, ∴△DBC 为等边三角形,∴BC=DB=DA=AB ,即BC=AB .(2)如图2,作∠ACB 平分线交AC 于点D ,作DE ⊥AB 于点E , 则△ADE ≌△BDE ≌△BDC由作图知∠DBC=∠DBE=∠A=30°,∠AED=∠BED=∠C=90°, ∴AD=BD ,∴AE=BE=AB , 又∵BC=AB , ∴AE=BE=BC ,在△ADE 、△BDE 、△BDC 中,∵,∴△ADE≌△BDE≌△BDC.23.(10分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【解答】解:(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得2x=,解得:x=36°,则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE 时, ∵2x +x=30°+30°, ∴x=20°; ②当AD=DE 时, ∵30°+30°+2x +x=180°, ∴x=40°;综上所述,∠C 为20°或40°的角.24.(12分)(1)问题解决:如图,在四边形ABCD 中,∠BAD=α,∠BCD=180°﹣α,BD 平分∠ABC .①如图1,若α=90°,根据教材中一个重要性质直接可得AD=CD ,这个性质是,这个性质是 角平分线上的点到角的两边距离相等点到角的两边距离相等 ; ②在图2中,求证AD=CD ;(2)拓展探究:根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC 中,∠BAC=100°,BD 平分∠ABC ,求证BD +AD=BC .【解答】解:(1)①根据角平分线的性质定理可知AD=CD . 所以这个性质是角平分线上的点到角的两边距离相等. 故答案为角平分线上的点到角的两边距离相等. ②如图2中,作DE ⊥BA 于E ,DF ⊥BC 于F .∵BD平分∠EBF,DE⊥BE,DF⊥BF,∴DE=DF,∵∠BAD+∠C=180°,∠BAD+∠EAD=180°,∴∠EAD=∠C,∵∠E=∠DFC=90°,∴△DEA≌△DFC,∴DA=DC.(2)如图3中,在BC时截取BK=BD,BT=BA,连接DK.∵AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBK=∠ABC=20°,∵BD=BK,∴∠BKD=∠BDK=80°,∵∠BKD=∠C+∠KDC,∴∠KDC=∠C=40°,∴DK=CK,∵BD=BD,BA=BT,∠DBA=∠DBT,∴△DBA≌△DBT,∴AD=DT,∠A=∠BTD=100°,∴∠DTK=∠DKT=80°,∴DT=DK=CK,∴BD+AD=BK+CK=BC.。
安徽省2019-2020学年八年级上学期期中数学试卷 (有解析)
安徽省2019-2020学年八年级上学期期中数学试卷一、选择题(本大题共10小题,共40.0分)1.日常生活中,我们会看到很多标志,在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.以下列各组线段为边,能组成三角形的是()A. 2、2、4B. 8、6、3C. 2、6、3D.11、4、63.如图,AD是△ABC的外角∠CAE的平分线,∠B=40°,∠DAE=55°,则∠ACB的度数是()A. 70°B. 80°C. 100°D. 110°4.点M(5,−4)关于y轴的对称点的坐标是A. (5,4)B. (−5,−4)C. (−5,4)D.(−4,5)5.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A. 16cmB. 13cmC. 19cmD. 10cm6.如图,A、B、C、D在一条直线上,MB=ND,∠MBA=∠D,添加下列某一条件后不能判定△ABM≌△CDN的是()A. ∠M=∠NB. AB=CDC. AM=CND.AM//CN7.在△ABC中,AD是BC边上的高,BE平分∠ABC交AD于点E,AB=8,DE=3,则△ABE的面积是()A. 24B. 12C. 16D. 118.如图,在△ABC中,∠ABC=100°,AM=AN,CB=CN,则∠MNB的度数是()A. 20°B. 40°C. 60°D. 80°9.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A. 50°B. 70°C. 75°D.80°10.如图,△ABC和△BED都是等边三角形,BC=10,BD=9,则△ADE的周长为()A. 19B. 20C. 27D. 30二、填空题(本大题共4小题,共20.0分)11.等腰三角形的一边长为3,另一边长为6,则该三角形的周长是______.12.如图,线段AC,BD相交于点O,且OA=OC,OB=OD,则AB和CD的位置关系是.若AB=6cm,则CD=.13.如图,△ABC为等边三角形,点D为边AB的中点,DE⊥BC于点E,若BE=2,则AC的长为________.14.如图,在△ABC中,AD⊥BC于D,BF与AD相交于E.若AD=BD,BE=AC,BC=8cm,DC=3cm,则AE=______,∠BFC=______.三、解答题(本大题共9小题,共90.0分)15.如图,在△ABC中,AD是高,BE是角平分线,AD,BE交于点F,∠C=30°,∠BFD=70°,求∠BAC的度数.16.如图,已知AB=CD,AD=CB,求证:△ABD≌△CDB.17.如图,已知A、B两点在直线l的同一侧,根据题意,尺规作图.(1)在(图1)直线l上找出一点P,使PA=PB.(2)在(图2)直线l上找出一点P,使PA+PB的值最小.(3)在(图3)直线l上找出一点P,使PA−PB的值最大.18.如图,已知AB=DC,∠ABC=∠DCB,E为AC、BD的交点.求证:AC=DB.19.如图,一艘渔船以16海里/小时的速度由西向东航行,上年10点在A处测得海中小岛C在北偏东60°方向上,10点30分航行到B处,在B处测得小岛C在东北方向上.(1)求小岛C到航线的距离(结果保留到整数,参考数据:√2≈1.4,√3≈1.7);(2)小岛C周围10海里内有暗礁,如果渔船不改变航线继续向东航行,那么它有没有触礁的危险?判断并说明理由.20.已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD.求证:(1)△BDE≌△CDF;(2)点D在∠BAC的角平分线上.21.如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于点Q.(1)求证:∠BPQ=60°;(2)若PQ=3,PE=1,求AD的长.22.在▵ABC中,AE平分且;(1)如果点F与点A重合,且∠C=50°,∠B=30°,求∠EFD的度数;(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C−∠B有怎样的数量关系?并说明理由。
2019-2020学年上海市青浦区实验中学八年级上学期期中数学试题(解析版)
上海市青浦区实验中学2019-2020学年八年级上学期期中考试数学试卷一、选择题(共18分,每题3分)1.下列方程是一元二次方程的是()A.1x-=0x+1 B.2x-2x C.23x-2x+1=0 D.2ax+bx+c=0【答案】C【解析】【分析】根据一元二次方程的定义进行判断即可.【详解】A.该方程属于分式方程,故本选项错误;B.根号内含有未知数,是无理方程,故本选项错误;C.该方程符合一元二次方程的定义,故本选项正确;D.当a=0时,它不是一元二次方程,故本选项错误.故选C.【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).2.二次三项式2x2-8x+5在实数范围内因式分解为()A.4+64-6(x+)(x+)22 B.4+66(x-)(x-)22C.4+64-62(x+)(x-)22 D.4+64-62(x-)(x-)22【答案】D【解析】【分析】令二次三项式等于0,求出x的值,即可得到分解因式的结果.【详解】令2x 2-8x +5=0,解得:x 1=426,x 2=426,则2x 2-8x +5=46462()()22x x +---.故选D .【点睛】本题考查了实数范围内分解因式-求根公式法.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.注意当无法用十字相乘法的方法时用求根公式法可分解因式.3.对圆的周长公式2C r π=的说法正确的是()A.π,r 是变量,2是常量B.C ,r 是变量,π,2是常量C.r 是变量,2,π,C 是常量D.C 是变量,2,π,r 是常量【答案】B 【解析】在变化过程中,某量若保持不变,则称之为常量;反之,则称之为变量.π是常数,约等于3.14,和2一样是不变的常数,所以它们是常量;C 和r 是变化的量,故是变量,故选B.4.在下列函数中,当x 增大时,y 的值减小的函数是()A.y=2xB.y=5xC.3y=-xD.x y=-4【答案】D 【解析】【分析】根据一次函数的性质,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小,反比例函数的增减性必须是在每个象限内或在双曲线的每一支上,否则,不能讨论它的增减性.【详解】A .是反比例函数,其增减性必须强调在双曲线的每一支上,故本选项错误;B .k =5>0,所以y 随x 的增大而增大,故本选项错误;C .是反比例函数,其增减性必须强调在双曲线的每一支上,故本选项错误.D .是一次函数k =14-<0,所以y 随x 的增大而减小,正确.故选D .【点睛】本题考查了一次函数与反比例函数的性质,反比例函数的增减性必须强调在每个象限内或在双曲线的每一支上,这也是同学们经常出错的地方.5.函数1y=k x 和2k y=x(k 1>0,且k 1k 2<0)的图像大致是()A. B.C.D.【答案】C 【解析】【分析】首先根据k 1>0且k 1k 2<0,可得k 2<0,再根据正比例函数的性质可得y =k 1x 的图象在第一三象限,根据反比例函数的性质可得2k y x=的图象在第二四象限,进而可选出答案.【详解】∵k 1>0且k 1k 2<0,∴k 2<0,∴y =k 1x 的图象在第一三象限,2k y x=的图象在第二四象限.故选C .【点睛】本题考查了正比例函数与反比例函数的图象与性质,关键是熟练掌握两个函数的性质.6.同学聚会,每两人都握手一次,共握手45次,设x 人参加聚会,列方程为()A.x(x-1)=45 B.x(x-1)=452C.12x(x-1)=45 D.x(x+1)=45【答案】C 【解析】【分析】本题利用一元二次方程应用中的基本数量关系:x 人参加聚会,两人只握一次手,握手总次数为12x (x ﹣1),列方程即可.【详解】由题意列方程得:12x (x ﹣1)=45.故选C .【点睛】本题考查了一元二次方程的应用.找准相等关系是解答本题的关键.二、填空题(共36分,每题3分)7.如果x=12是一元二次方程x2+bx+2=0的一个根,则b的值为____________.【答案】9-2【解析】【分析】把方程的解x=12代入方程得到关于b的等式,可以求出字母系数b的值.【详解】把x=12代入方程有:112042b++=,解得:b=92-.故答案为:9 2-.【点睛】本题考查了一元二次方程的解,把方程的解代入方程可以求出字母系数的值.8.方程x2=8x的根是______.【答案】x1=0,x2=8【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:x2=8x,x2-8x=0,x(x-8)=0,x=0,x-8=0,x1=0,x2=8,故答案为:x1=0,x2=8.【点睛】考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.9.将方程x2-4x-3=0用配方法化成(x+a)2=b的形式,所得方程是____________________.【答案】(x-2)2=7【解析】【分析】根据配方法的步骤把常数项移到等号的右边,再在等式两边同时加上一次项系数一半的平方,然后进行配方即可求出答案.【详解】x2﹣4x﹣3=0,x2﹣4x=3,x2﹣4x+4=3+4,(x﹣2)2=7.故答案为:(x﹣2)2=7.【点睛】本题考查了配方法解一元二次方程,掌握配方法的步骤是解答本题的关键.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.10.方程x2-2x-3=0的根的判别式的值为________________.【答案】16【解析】【分析】先找出一元二次方程x2﹣2x﹣3=0中a、b、c的值,再代入判别式△=b2﹣4ac计算即可.【详解】∵a=1,b=﹣2,c=﹣3,∴△=b2﹣4ac=(﹣2)2﹣4×1×(﹣3)=4+12=16.故答案为:16.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式,牢记根的判别式为△=b2﹣4ac是解题的关键.11.函数y=x-2x-3的定义域是____________________.【答案】x≥2且x≠3【解析】【分析】当表达式的分母中含有自变量时,自变量取值要使分母不为零.当函数的表达式是二次根式时,自变量的取值范围必须使被开方数不小于零.【详解】∵函数y=23xx--,∴x-2≥0且x-3≠0,解得:x≥2且x≠3,∴函数y=23xx--的定义域为x≥2且x≠3.故答案为:x≥2且x≠3.【点睛】本题考查了函数自变量的取值范围,对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.12.已知函数y=32x-1-2x,则f(1)=_________________.【答案】1【解析】【分析】把x =1代入函数解析式,计算即可.【详解】f (1)=3221--=3-2=1.故答案为:1.【点睛】本题考查了函数值.掌握函数值的求法是解答本题的关键.13.已知直角三角形的一个锐角为36°,则另一个锐角的大小为________________.【答案】54°【解析】【分析】根据直角三角形两锐角互余列式计算即可得解.【详解】90°﹣36°=54°.故答案为:54°.【点睛】本题考查了直角三角形两锐角互余的性质,是基础题.14.已知,RtΔABC 中,∠C =90°,∠ABC =30°,BC =3,那么AC =________________.3【解析】【分析】设AC =x .由30°角所对直角边等于斜边的一半,得到AB =2AC =2x .由Rt △ABC 中,利用勾股定理,即可求出AC 的长.【详解】设AC =x .∵∠C =90°,∠ABC =30°,∴AB =2AC =2x .又∵BC 2222(2)3AB AC x x x -=-=3,∴x 3,∴AC 33.【点睛】本题考查了含30度角的直角三角形的性质以及勾股定理,知道30度角所对的直角边等于斜边的一半是解答本题的关键.15.在实数范围内因式分解:2x2-x-2=__________________.【答案】117117 2()44x x+--【解析】【分析】当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.2x2-x-2不是完全平方式,所以只能用求根公式法分解因式.【详解】2x2-x-2=0的解是x1=1174,x2=﹣1174,所以2x2-x-2=1171172(44x x+---.【点睛】本题考查了实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.求根公式法分解因式:ax2+bx+c=a(x﹣x1)(x﹣x2),其中x1,x2是方程ax2+bx+c=0的两个根.16.一次函数y=112x-+图像与坐标轴围成的三角形的面积是______________.【答案】1【解析】【分析】求得函数与坐标轴的交点,然后根据三角形的面积公式即可求得三角形的面积.【详解】一次函数的关系式是y=112x-+,当x=0时,y=1;当y=0时,x=2,它的图象与坐标轴围成的三角形面积是:12×1×2=1.故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征.求线段的长的问题一般是转化为求点的坐标的问题解决.17.某药品原来售价为20元,经过连续两次降价后的售价为12.8元,则平均每次的降价率为____________________.【答案】20%【解析】【分析】设平均每次降价率为x,可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣x)=12.8,把相应数值代入即可求解.【详解】设平均每次降价率为x,则第一次降价后的价格为20×(1﹣x),两次连续降价后售价后的价格为:20×(1﹣x)×(1﹣x),则列出的方程是20×(1﹣x)2=12.8,解得:x1=0.2=20%,x2=1.8(舍去).即平均每次的降价率为20%.故答案为:20%.【点睛】本题考查了一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.18.若A、B两点关于y轴对称,点A在双曲线y=2x上,点B在直线y=-x上,则点B的坐标是___________________________.【答案】2,2)或(22)【解析】【分析】首先根据A、B两点关于y轴对称,设B的坐标是B(a,b),则A(﹣a,b).根据点B在直线y=﹣x上,得到a,b之间的关系,再根据反比例函数图象上点的坐标特征求出a、b的值,进而得到B的坐标.【详解】∵A、B两点关于y轴对称,∴设B点坐标是(a,b),则A(﹣a,b).∵点B在直线y=﹣x上,∴﹣a=b,∴B坐标变为:(a,﹣a),A点坐标变为(﹣a,﹣a).∵点A在双曲线y=2x上,∴a2=2,∴a=2.当a=2时,b=2;当a=2时,b2,∴B点2,2)或(2-2).故答案为:2,2-)或(2,2).【点睛】本题考查了关于y轴对称的点的坐标特征,反比例函数图象上点的特征,以及正比例函数图象上点的特征,关键是要准确掌握各函数图象上的点的特征,才能正确解决问题.三、解答题(共46分,19-22题每题5分,23-24每题8分,25题10分)19.已知关于x的一元二次方程(m-1)x2-2x+3=0有两个不相等的实数根,求m的取值范围.【答案】m<43且m≠1.【解析】【分析】根据判别式的意义得到△=22﹣4(m﹣1)×3>0,且m﹣1≠0,然后解不等式即可.【详解】根据题意得:△=22﹣4(m﹣1)×3>0且m﹣1≠0,解得:m<43且m≠1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.20.建一个面积为1152平方米的长方形仓库,仓库的一面靠墙,墙长100米,另三面用长度为120米的铁栅栏围起来,求仓库两条邻边的长度各是多少米?【答案】长为48米,宽为24米或长为96米,宽为12米【解析】【分析】设垂直于墙的一边是x米.根据面积为1152平方米的长方形列方程求解.【详解】设垂直于墙的一边是x米.根据题意,得:x(120﹣2x)=1152整理得:x2﹣60x+576=0.解得:x=48或x=12.当x=48时,120-2x=24;当x=12时,则120﹣2x=96.答:仓库两条邻边的长各是48米、24米或96米、12米.【点睛】本题考查了一元二次方程的应用,找准等量关系列方程是解答本题的关键.21.已知正比例函数y=1x2和反比例函数的图像都经过A,点A的纵坐标是-3,求这个反比例函数的解析式.【答案】18 yx【解析】【分析】根据题意将y =-3代入正比例函数解析式,求出点A 的坐标,再将点A 代入反比例函数(0)ky k x=≠求出解析式即可.【详解】∵点A 在正比例函数y =12x 的图象上,∴-3=12x ,解得:x =-6,∴A (-6,-3).又∵A 在反比例函数k y x=的图象上,∴63k -=-,解得:k =18,∴反比例函数的解析式为18y x =.【点睛】本题考查了反比例函数和一次函数的交点问题,注意交点同时满足两个函数的解析式.22.已知:BE⊥CD,BE=DE,BC=DA.求证:FD⊥BC.【答案】证明见解析【解析】【分析】根据已知利用HL 即可判定△BEC ≌△DEA ,利用全等三角形的对应角相等可得到∠B=∠D ,从而不难求得DF ⊥BC .【详解】∵BE ⊥CD ,∴∠CEB=∠AED=90°,在Rt △BEC 和Rt △DEA 中,{BE DE BC DA==∴Rt △BEC ≌Rt △DEA (HL ),∴∠CBE=∠ADC ,∵∠CBE+∠C=90°,∴∠ADC+∠C=90°,∴DF ⊥BC.【点睛】此题主要考查学生对全等三角形的判定及性质的理解及运用,做题时要注意思考,认真寻找全等三角形全等的条件是解决本题的关键.23.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长千米;(2)小强下坡的速度为千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是分钟.【答案】(1)2(2)0.5(3)14【解析】【分析】(1)根据题意和函数图象可以得到下坡路的长度;(2)根据函数图象中的数据可以求的小强下坡的速度;(3)根据题意可以求得小强上坡的速度,进而求得小强返回时需要的时间.【详解】(1)由题意和图象可得:小强去学校时下坡路为:3﹣1=2(千米).故答案为:2;(2)小强下坡的速度为:2÷(10﹣6)=0.5千米/分钟.故答案为:0.5;(3)小强上坡时的速度为:1÷6=16千米/分钟,故小强回家骑车走这段路的时间是:2110.56=14(分钟).故答案为:14.【点睛】本题考查了函数图象,解题的关键是明确题意,找出所求问题需要的条件.24.如图,在平面直角坐标系中,直线y=2x经过点A(m,6),点B坐标为(4,0).(1)求点A的坐标;(2)若P为射线OA上的一点,当ΔPOB是直角三角形时,求P点的坐标.【答案】(1)(3,6);(2)(4,8)或(0.8,1.6).【解析】【分析】(1)根据直线y=2x经过点A(m,6),可得6=2m,易求m=3,即可得A点坐标;(2)考虑有两种情况:①当∠OBP=90°时,点P的横坐标与点B的横坐标相同,均为4,把x=4代入y=2x,易求y=8,从而可得P点坐标;当∠OPB=90°时,可先设P点坐标是(n,2n),根据勾股定理易得n2+(2n)2+(n﹣4)2+(2n)2=42,解方程即可得到结论.【详解】(1)∵直线y=2x经过点A(m,6),∴6=2m,解得:m=3,∴点A的坐标为(3,6);(2)分两种情况讨论:①当∠OBP=90°时,点P的横坐标与点B的横坐标相同,均为4,将x=4代入y=2x,得y=8,∴点P的坐标为(4,8);②当∠OPB=90°时,PO2+PB2=OB2,设P点坐标为(n,2n),n2+(2n)2+(n﹣4)2+(2n)2=42,解得:n1=0.8,n2=0(舍去),∴点P的坐标为(0.8,1.6).综上所述:当△POB是直角三角形时,点P的坐标为(4,8)或(0.8,1.6).【点睛】本题考查了一次函数综合题、勾股定理.解题的关键是根据题意画出图,要根据P点的不同位置进行分类讨论.25.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C顺时针方向旋转60°,到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由.(3)探索:当α为多少度时,△AOD是等腰三角形.【答案】(1)见解析;(2)见解析;(3)110°或125°或140°.【解析】【分析】(1)根据△BOC绕点C按顺时针方向旋转60°得△ADC,得CO=CD,∠OCD=60°故△COD是等边三角形;(2)求得∠ADO=∠ADC-∠CDO=90°即可知△AOD是直角三角形;(3)分别求出∠ADO=α-60°,∠AOD=360°-60°-110°-α=190°-α,再根据等腰三角形的底角相同分3中情况讨论.【详解】解:(1)∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴∠ADC=∠BOC=α=150°,∵△COD是等边三角形,∴∠CDO=60°,∴∠ADO=∠ADC-∠CDO=90°,∴△AOD是直角三角形;(3)∵△COD是等边三角形,∴∠CDO=∠COD=60°,∴∠ADO=α-60°,∠AOD=360°-60°-110°-α=190°-α,当∠AOD=∠ADO时,△AOD是等腰三角形,即190°-α=α-60°,解得α=125°;当∠AOD=∠DAO时,△AOD是等腰三角形,即2(190°-α)+α-60°=180°,解得α=140°;当∠ADO=∠DAO时,△AOD是等腰三角形,即190°-α+2(α-60°)=180°,解得α=110°,综上所述,∠BOC的度数为110°或125°或140°时,△AOD是等腰三角形.【点睛】此题主要考察旋转的性质与应用.。
山东省济宁市任城区2019-2020学年八年级(上)期中数学试卷 含解析
2019-2020学年八年级(上)期中数学试卷一.选择题(共9小题)1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤32.下列各式中不是分式的是()A.B.C.D.3.下列由左到右的变形中属于因式分解的是()A.24x2y=3x•8xy B.m2﹣2m﹣3=m(m﹣2)﹣3C.m2﹣2m﹣3=(m﹣3)(m+1)D.(x+3)(x﹣3)=x2﹣94.某校5名同学在“国学经典颂读”比赛中,成绩(单位:分)分别是86,95,97,90,88,这组数据的中位数是()A.97 B.90 C.95 D.885.利用因式分解计算:2100﹣2101=()A.﹣2 B.2 C.2100D.﹣21006.把分式(x+y≠0)中的x,y都扩大3倍,那么分式的值()A.扩大为原来的3倍B.缩小为原来的C.扩大为原来的9倍D.不变7.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):则被遮盖的两个数据依次是()A.80,80 B.81,80 C.80,2 D.81,28.从甲地到乙地有两条同样长的路,一条是平路,另一条的是上山,是下山,如果上山的速度为平路速度的,平路速度是下山速度的,那么从甲地到乙地()A.走山路快B.走平路快C.走山路与平路一样快D.哪个快不能确定9.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0 B.1 C.2 D.3二.填空题(共5小题)10.已知x2+4mx+16能用完全平方公式因式分解,则m的值为.11.一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是.12.若,则=.13.关于x的方程的解为x=1,则a=.14.观察以下等式第1个等式:第2个等式:第3个等式:第4个等式:第5个等式:……按照以上规律,写出你猜想的第n个等式:.(用含n的等式表示).三.解答题(共2小题)15.分解因式(1)a2b﹣b;(2)﹣2x3+12x2﹣18x.16.计算下列各题(1).(2).17.解分式方程(1).(2).18.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 9590 95 88(1)根据上述数据,将下列表格补充完整.整理、描述数据:数据分析:样本数据的平均数、众数和中位数如下表得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.19.学习了因式分解的知识后,老师提出了这样一个向题:设n为整数,则(n+7)2﹣(n﹣3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.你能解答这个问题吗?20.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.(﹣)÷21.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)用含m,n的代数式表示所有裁剪线(图中虚线部分)的长度之和;(2)观察图形,发现代数式2m2+5mn+2n2可以因式分解为;(3)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求(m+n)2的值.组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.23.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案与试题解析一.选择题(共9小题)1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤3【分析】本题主要考查分式有意义的条件:分母≠0.【解答】解:∵x﹣3≠0,∴x≠3.故选:C.2.下列各式中不是分式的是()A.B.C.D.【分析】根据分式的定义对四个选项进行逐一分析即可.【解答】解:A、分母中含有未知数,故是分式,故本选项错误;B、分母中不含有未知数,故不是分式,故本选项正确;C、分母中含有未知数,故是分式,故本选项错误;D、分母中含有未知数,故是分式,故本选项错误.故选:B.3.下列由左到右的变形中属于因式分解的是()A.24x2y=3x•8xy B.m2﹣2m﹣3=m(m﹣2)﹣3C.m2﹣2m﹣3=(m﹣3)(m+1)D.(x+3)(x﹣3)=x2﹣9【分析】根据因式分解的定义,逐个判断,得到正确结论.【解答】解:选项B和D都是和的形式,不是因式分解,选项A不是多项式的积的形式,不是因式分解;因为选项C是整式积的形式,符合因式分解的定义.故选:C.4.某校5名同学在“国学经典颂读”比赛中,成绩(单位:分)分别是86,95,97,90,88,这组数据的中位数是()A.97 B.90 C.95 D.88【分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答】解:将小明所在小组的5个同学的成绩重新排列为:86、88、90、95、97,所以这组数据的中位数为90分,故选:B.5.利用因式分解计算:2100﹣2101=()A.﹣2 B.2 C.2100D.﹣2100【分析】提取公因式2100,整理并计算即可.【解答】解:2100﹣2101=2100﹣2100•2=2100(1﹣2)=﹣2100.故选:D.6.把分式(x+y≠0)中的x,y都扩大3倍,那么分式的值()A.扩大为原来的3倍B.缩小为原来的C.扩大为原来的9倍D.不变【分析】把分式中的x换成3x,y换成3y,然后根据分式的基本性质进行化简即可.【解答】解:(x+y≠0)中的x,y都扩大3倍,那么分式的值扩大3倍,故选:A.7.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):则被遮盖的两个数据依次是()A.80,80 B.81,80 C.80,2 D.81,2【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【解答】解:根据题意得:80×5﹣(81+77+80+82)=80(分),则丙的得分是80分;众数是80,故选:A.8.从甲地到乙地有两条同样长的路,一条是平路,另一条的是上山,是下山,如果上山的速度为平路速度的,平路速度是下山速度的,那么从甲地到乙地()A.走山路快B.走平路快C.走山路与平路一样快D.哪个快不能确定【解答】解:设从甲地到乙地的路程为1,平路速度为x,则上山速度为x,下山的速度为2x,则走平路所用的时间:,走山路所用时间:+=;故选:C.9.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0 B.1 C.2 D.3【分析】根据题目中的式子,可以求得a﹣b、a﹣c、b﹣c的值,然后对所求式子变形,利用完全平方公式进行解答.【解答】解:∵a=2018x+2018,b=2018x+2019,c=2018x+2020,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣ac﹣bc=====3,故选:D.二.填空题(共5小题)10.已知x2+4mx+16能用完全平方公式因式分解,则m的值为±2 .【分析】利用完全平方公式的结构特征判断就确定出m的值.【解答】解:∵关于x的多项式x2﹣4mx+16能用完全平方公式进行因式分解,∴m=±2,故答案为:±2.11.一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是 5 .【分析】先利用中位数的定义得到a=4,然后根据平均线的计算方法计算这组数据的平均数.【解答】解:∵整数a是这组数据中的中位数,∴a=4,∴这组数据的平均数=(2.2+3.3+4.4+4+11.1)=5.故答案为5.12.若,则= 2 .【分析】灵活运用完全平方和公式的变形,x2+y2=(x+y)2﹣2xy,直接代入计算即可.【解答】解:∵,∴=(x+)2﹣2=4﹣2=2.故应填:2.13.关于x的方程的解为x=1,则a=﹣3 .【分析】根据方程的解的定义,把x=1代入方程,即可得到一个关于a的方程,即可求解.【解答】解:根据题意得:=,去分母得:4(2a+3)=3(a﹣1),解得:a=﹣3.故答案是:﹣3.14.观察以下等式第1个等式:第2个等式:第3个等式:第4个等式:第5个等式:……按照以上规律,写出你猜想的第n个等式:.(用含n的等式表示).【分析】根据已知等式得出规律即可.【解答】解:第1个等式:第2个等式:第3个等式:第4个等式:第5个等式:第n个等式为:,故答案为:三.解答题(共2小题)15.分解因式(1)a2b﹣b;(2)﹣2x3+12x2﹣18x.【分析】(1)首先提取公因式,进而利用平方差公式进行分解即可;(2)首先提取公因式,进而利用完全平方公式进行分解即可【解答】解:(1)a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1);(2)﹣2x3+12x2﹣18x=﹣2x(x2﹣6x+9)=﹣2x(x﹣3)2.16.计算下列各题(1).(2).【分析】(1)根据分式的运算法则即可求出答案;(2)根据分式的运算法则即可求出答案;【解答】解:(1)原式=b(a﹣b)•=ab2;(2)原式=•=;17.解分式方程(1).(2).【考点】B3:解分式方程.【专题】522:分式方程及应用;66:运算能力.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x+4=3x,解得:x=4,经检验x=4是分式方程的解;(2)去分母得:x2+2x﹣1=x2﹣4,解得:x=﹣1.5,经检验x=﹣1.5是分式方程的解.18.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 9590 95 88(1)根据上述数据,将下列表格补充完整.整理、描述数据:数据分析:样本数据的平均数、众数和中位数如下表得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为91 分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.【考点】V5:用样本估计总体;W2:加权平均数;W4:中位数;W5:众数.【专题】542:统计的应用.【分析】(1)由题意即可得出结果;(2)由20×50%=10,结合题意即可得出结论;(3)由20×30%=6,即可得出结论.【解答】解:(1)由题意得:90分的有5个;97分的有3个;出现次数最多的是90分,∴众数是90分;故答案为:5;3;90;(2)20×50%=10,如果该校想确定七年级前50%的学生为“良好”等次,则“良好”等次的测评成绩至少定为91分;故答案为:91;(3)估计评选该荣誉称号的最低分数为97分;理由如下:∵20×30%=6,∴估计评选该荣誉称号的最低分数为97分.19.学习了因式分解的知识后,老师提出了这样一个向题:设n为整数,则(n+7)2﹣(n﹣3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.你能解答这个问题吗?【考点】54:因式分解﹣运用公式法.【专题】512:整式;66:运算能力.【分析】直接利用平方差公式将原式变形进而得出答案.【解答】解:(n+7)2﹣(n﹣3)2=[(n+7)+(n﹣3)][(n+7)﹣(n﹣3)]=10(2n+4)=20(n+2),故(n+7)2﹣(n﹣3)2的值一定能被20整除.20.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.(﹣)÷【考点】6D:分式的化简求值.【专题】513:分式.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式=[﹣]÷=[﹣]÷=•=x+2∵x﹣2≠0,x﹣4≠0,∴x≠2且x≠4,∴当x=﹣1时,原式=﹣1+2=1.21.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)用含m,n的代数式表示所有裁剪线(图中虚线部分)的长度之和;(2)观察图形,发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(3)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求(m+n)2的值.【考点】59:因式分解的应用.【专题】11:计算题.【分析】(1)根据整式的加减混合运算法则计算;(2)根据图形的面积的不同的表示方法解答;(3)变形完全平方公式,代入计算即可.【解答】解:(1)图中所有裁剪线(虚线部分)长度之和为:2(m+2n)+2(2m+n)=6m+6n=6(m+n);(2)2m2+5mn+2n2可以因式分解为:(m+2n)(2m+n),故答案为:(m+2n)(2m+n);(3)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49.22.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【考点】B7:分式方程的应用.【专题】522:分式方程及应用.【分析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x 千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.23.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】12:应用题.【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【解答】解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有=,解得:x=30.经检验,x=30是原方程的解,x+10=30+10=40.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11.答:他们最多可购买11棵乙种树苗.。
2019-2020学年山东省德州市禹城市八年级(上)期中数学试卷(解析版)
2019-2020学年山东省德州市禹城市八年级(上)期中数学试卷一、选择题(本大题共12个小题得小题4分,共18分.在每小题余出的四个选理中,以有一项是符合题目要求的)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下面各组线段中,能组成三角形的是()A.5,11,6B.8,8,16C.10,5,4D.6,9,143.如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°4.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC5.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OA对称,P2与P于OB对称,则△P1OP2的形状一定是()A.直角三角形B.等边三角形C.底边和腰不相等的等腰三角形D.钝角三角形6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.27.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D.则∠D的度数为()A.15°B.17.5°C.20°D.22.5°8.△ABC中,∠ABC与∠ACB的平分线相交于I,且∠BIC=130°,则∠A的度数是()A.40°B.50°C.65°D.80°9.如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是()A.∠1+∠6=∠2B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠5+∠4=180°10.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°11.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°12.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB′=∠ACB,④AB =A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)13.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.14.点A(3,﹣2)关于x轴对称的点的坐标是.15.等腰三角形的一个角为50°,那么它的一个底角为.16.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.17.如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则EC =.18.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QP A全等,则AP =.三、解答题(共78分)19.(9分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标;(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使P A=PB(保留作图痕迹).20.(9分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.21.如图,CA=CD,∠BCE=∠ACD,BC=EC,求证:∠A=∠D.22.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.23.如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED =EC.(1)当点E为AB的中点时(如图1),则有AE DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.24.(1)阅读理解:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.25.如图①,已知等腰直角△ABC中,BD为斜边上的中线,E为DC上的一点,且AG⊥BE于G,AG交BD于F.(1)求证:AF=BE;(2)如图②,若点E在DC的延长线上,其它条件不变,①的结论还能成立吗?若不能,请说明理由;若能,请予以证明.2019-2020学年山东省德州市禹城市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题得小题4分,共18分.在每小题余出的四个选理中,以有一项是符合题目要求的)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.2.下面各组线段中,能组成三角形的是()A.5,11,6B.8,8,16C.10,5,4D.6,9,14【解答】解:A、∵5+6=11,∴不能组成三角形,故A选项错误;B、∵8+8=16,∴不能组成三角形,故B选项错误;C、∵5+4<10,∴不能组成三角形,故C选项错误;D、∵6+9>14,∴能组成三角形,故D选项正确.故选:D.3.如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°【解答】解:∵图中是三个等边三角形,∴∠1=180°﹣60°﹣∠ABC=120°﹣∠ABC,∠2=180°﹣60°﹣∠ACB=120°﹣∠ACB,∠3=180°﹣60°﹣∠BAC=120°﹣∠BAC,∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°﹣180°=180°,故选:D.4.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.5.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OA对称,P2与P于OB对称,则△P1OP2的形状一定是()A.直角三角形B.等边三角形C.底边和腰不相等的等腰三角形D.钝角三角形【解答】解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形.故选:B.6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.2【解答】解:过点P作PE⊥BC于E,∵AB∥CD,P A⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴P A=PE,PD=PE,∴PE=P A=PD,∵P A+PD=AD=8,∴P A=PD=4,∴PE=4.故选:C.7.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D.则∠D的度数为()A.15°B.17.5°C.20°D.22.5°【解答】解:∵AB=AC,∴∠ACB=∠ABC=75°,∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4=37.5°,∵∠ACE=180°﹣∠ACB=105°,∴∠2=52.5°,∴∠BCD=75°+52.5°=127.5°,∴∠D=180°﹣∠3﹣∠BCD=15°.故选:A.8.△ABC中,∠ABC与∠ACB的平分线相交于I,且∠BIC=130°,则∠A的度数是()A.40°B.50°C.65°D.80°【解答】解:∵∠BIC=130°,∴∠EBC+∠FCB=180°﹣∠BIC=180°﹣130°=50°,∵BE、CF是△ABC的角平分线,∴∠ABC+∠ACB=2(∠EBC+∠FCB)=2×50°=100°,∴∠A=180°﹣100°=80°.故选:D.9.如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是()A.∠1+∠6=∠2B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠5+∠4=180°【解答】解:A、∠1+∠6与∠2没有关系,结论不成立,故本选项正确;B、由三角形的外角性质,∠4+∠5=∠2成立,故本选项错误;C、由三角形的内角和定理与对顶角相等,∠1+∠3+∠6=180°成立,故本选项错误;D、由三角形的内角和定理与对顶角相等,∠1+∠5+∠4=180°成立,故本选项错误.故选:A.10.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°【解答】解:∵ED是AC的垂直平分线,∴AE=CE∴∠EAC=∠C,又∵∠B=90°,∠BAE=10°,∴∠AEB=80°,又∵∠AEB=∠EAC+∠C=2∠C,∴∠C=40°.故选:B.11.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°【解答】解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.12.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB′=∠ACB,④AB =A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:①②③为条件,根据SAS,可判定△BCA≌△B′CA′;可得结论④;①②④为条件,根据SSS,可判定△BCA≌△B′CA′;可得结论③;①③④为条件,SSA不能证明△BCA≌△B′CA′.②③④为条件,SSA不能证明△BCA≌△B′CA′.最多可以构成正确结论2个.故选:B.二、填空题(每小题4分,共24分)13.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是三角形的稳定性.【解答】解:给凳子加了两根木条之后形成了三角形,所以“这样凳子就比较牢固了”的数学原理是:三角形的稳定性,故答案为:三角形的稳定性.14.点A(3,﹣2)关于x轴对称的点的坐标是(3,2).【解答】解:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为:(3,2).15.等腰三角形的一个角为50°,那么它的一个底角为50°或65°.【解答】解:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50°或65°.故答案是:50°或65°.16.一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.17.如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则EC =8.【解答】解:∵AB=AC,∠A=120°,∴∠B=∠C=30°,∵DE垂直平分AB,∴BE=AE,∴∠B=∠BAE=30°,∴∠EAC=90°,∴AE CE=2DE=4,∴CE=2AE=8,故答案为:818.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QP A全等,则AP=6或12.【解答】解:①当AP=CB时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QP A中,,∴Rt△ABC≌Rt△QP A(HL),即AP=BC=6;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QP A中,,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=12,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,AP=6或12.故答案为:6或12.三、解答题(共78分)19.(9分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标(1,﹣3);(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使P A=PB(保留作图痕迹).【解答】解:(1)如图所示:A1的坐标(1,﹣3);故答案为:(1,﹣3);(2)如图所示:点C即为所求;(3)如图所示:点P即为所求.20.(9分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.【解答】解:(1)如图所示:BD即为所求;(2)∵AB=AC,∴∠ABC=∠C,∵∠A=36°,∴∠ABC=∠ACB=(180°﹣36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=36°+36°=72°,∴BD=BC,∴△DBC是等腰三角形.21.如图,CA=CD,∠BCE=∠ACD,BC=EC,求证:∠A=∠D.【解答】证明:∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴∠A=∠D.22.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.【解答】证明:如图,连接AD,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,又∵DE⊥AB,DF⊥AC,∴DE=DF.23.如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED =EC.(1)当点E为AB的中点时(如图1),则有AE=DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.【解答】解:(1)如图1,∵△ABC是等边三角形,点E是AB的中点,∴CE平分∠ACB,CE⊥AB,∴∠ACB=60°,∠BEC=90°,AE=BE,又∵ED=EC,∴∠D=∠ECB=30°,∴∠DEC=120°,∴∠DEB=120°﹣90°=30°,∴∠D=∠DEB=30°,∴BD=BE=AE,即AE=DB.故答案为:=.(2)当点E为AB上任意一点时,如图2,AE与DB的大小关系不会改变.理由如下:过E作EF∥BC交AC于F,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF,∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,在△DEB和△ECF中,,∴△DEB≌△ECF(AAS),∴BD=EF=AE,即AE=BD24.(1)阅读理解:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是2<AD<8;(2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.【解答】解:(1)如图1所示:延长AD至E,使DE=AD,连接BE,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,∵,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)如图2所示:延长FD至点M,使DM=DF,连接BM、EM,同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF.25.如图①,已知等腰直角△ABC中,BD为斜边上的中线,E为DC上的一点,且AG⊥BE于G,AG交BD于F.(1)求证:AF=BE;(2)如图②,若点E在DC的延长线上,其它条件不变,①的结论还能成立吗?若不能,请说明理由;若能,请予以证明.【解答】证明:(1)∵△ABC是等腰三角形,BD为斜边上的中线,∴BD=AD AC,∠ADB=90°,∴∠1+∠GAD=90°,∵AG⊥BE于G,∴∠2+∠DBE=90°,∵∠1=∠2,∴∠DAF=∠DBE,在△AFD和△BED中,,∴△AFD≌△BED(ASA),∴AF=BE;(2)①的结论还能成立;∵△ABC是等腰三角形,BD为斜边上的中线,∴BD=AD AC,∠ADB=90°,∴∠DBE+∠DEB=90°,∵AG⊥BE于G,∴∠GBF+∠F=90°,∵∠DBE=∠GBF,∴∠F=∠DEB,在△AFD和△BED中,,∴△AFD≌△BED(AAS),∴AF=BE;。
福建省厦门外国语学校2019-2020学年八年级上学期期中数学试卷(详细解析)
厦门外国语学校2019-2020学年八年级(上)期中数学试卷一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列计算结果为x6的是()A.x3•x2B.x2+x4C.(x4)2D.x7÷x3.如图,已知△ADC中,AB=AC,BD=DC,则下列结论错误的是()A.∠BAC=∠B B.∠BAD=∠CAD C.AD⊥BC D.∠B=∠C4.下列计算正确的是()A.(x+y)2=x2+y2B.(2m2)3=6m6C.(x﹣2)2=x2﹣4 D.(x+1)(x﹣1)=x2﹣15.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC6.如图所示,AD=AE,AB=AC,∠BAC=∠DAE,B、D、E在同一直线上,∠1=22°,∠2=30°,求∠3的度数()A.42°B.52°C.62°D.72°7.(x+p)(x+5)=x2+rx﹣10,则p,r的值分别是()A.2,﹣3 B.2,3 C.﹣2,3 D.﹣2,﹣38.如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=50,S△AED=38,则△DEF的面积为()A.6 B.12 C.4 D.89.如图,两个正方形边长分別为a,b,如果a+b=9,ab=12,则阴影部分的面积为()A.21.5 B.22.5 C.23.5 D.2410.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN =x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定二.填空题(共6小题)11.2x2y3•(﹣7x3y)=.12.点P(﹣3,4)关于原点对称的点的坐标是.13.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为.14.如图,在△ABC中,AB=AC,BE=CD,BD=CF,∠EDF=78°,则∠A的度数为.15.等腰三角形的其中两边长分别为(x+2)(2x﹣5),(x﹣1)2,已知这两边不相等,且x >5,则该等腰三角形的周长为(用含x的式子表示)16.计算:40372﹣8072×2019=.三.解答题(共9小题)17.计算:[(x+2y)2﹣(x﹣2y)(x+2y)]÷2y18.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.19.如图AB⊥l于点B,CD⊥1于点D,点E,F在直线1上,且BF=DE,AE=CF.求证:AE ∥CF.20.如图△ABC,请用尺规作出它的外角∠BAE的平分线AD,若AD∥BC,证明:AB=AC.21.如图在△ABC中,DE是AC的垂直平分线,AE=5,△ABD的周长为14,求△ABC的周长.22.长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少2厘米.(1)新长方形的面积比原长方形的面积减少了多少平方厘米?(2)如果减少的面积恰好等于原面积的,试确定(a﹣6)(b﹣6)的值.23.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:①把被除式、除式按某个字母作降幂接列,井把所块的项用零补齐;②用除式的第一项除以除式第一项,得到商式的第一项;③用商式的一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2﹣2x﹣1,余式为0.根据阅读材料,请回答下列问题:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)的商是,余式是;(2)x3﹣x2+ax+b能被x2+2x+2整除,求a,b的值.24.等边三角形△ABC,直线1过点C且垂直AC.(1)请在直线1上作出点D,使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,求证,AD=2BD.25.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),点C的坐标为.(2)如图2,若OA平分∠BAC,BC与x轴交于点E,若点C纵坐标为m,求AE的长.(3)如图3,在(2)的条件下,点F在射线DM上,且∠ABF=∠ADF,AH⊥BF于点H,试探究BF、HFDF的数量关系.参考答案与试题解析一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意.故选:C.2.下列计算结果为x6的是()A.x3•x2B.x2+x4C.(x4)2D.x7÷x【分析】分别根据同底数幂的乘法法则,合并同类项法则,幂的乘方法则以及同底数幂的除法法则逐一判断即可.【解答】解:A.x3•x2=x5,故本选项不合题意;B.x2与x4不是同类项,所以不能合并,故本选项不合题意;C.(x4)3=x8,故本选项不合题意;D.x7÷x=x6,故本选项符合题意.故选:D.3.如图,已知△ADC中,AB=AC,BD=DC,则下列结论错误的是()A.∠BAC=∠B B.∠BAD=∠CAD C.AD⊥BC D.∠B=∠C【分析】证明△ADB≌△ADC即可解决问题.【解答】解:∵AB=AC,BD=DC,AD=AD,∴△ADB≌△ADC(SSS),∴∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,∴AD⊥BC,故B,C,D正确,故选:A.4.下列计算正确的是()A.(x+y)2=x2+y2B.(2m2)3=6m6C.(x﹣2)2=x2﹣4 D.(x+1)(x﹣1)=x2﹣1【分析】各项化简得到结果,即可作出判断.【解答】解:A、原式=x2+2xy+y2,不符合题意;B、原式=8m6,不符合题意;C、原式=x2﹣4x+4,不符合题意;D、原式=x2﹣1,符合题意,故选:D.5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC【分析】根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.【解答】解:A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选:C.6.如图所示,AD=AE,AB=AC,∠BAC=∠DAE,B、D、E在同一直线上,∠1=22°,∠2=30°,求∠3的度数()A.42°B.52°C.62°D.72°【分析】由“SAS”可证△ABD≌△ACE,可得∠ABD=∠2=30°,由三角形外角性质可求解.【解答】解:∵∠BAC=∠DAE,∴∠1=∠CAE,且AD=AE,AB=AC,∴△ABD≌△ACE(SAS)∴∠ABD=∠2=30°,∴∠3=∠2+∠ABD=52°,故选:B.7.(x+p)(x+5)=x2+rx﹣10,则p,r的值分别是()A.2,﹣3 B.2,3 C.﹣2,3 D.﹣2,﹣3【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出p,r 的值即可.【解答】解:∵(x+p)(x+5)=x2+(p+5)x+5p=x2+rx﹣10,∴p+5=r,5p=﹣10,解得:p=﹣2,r=3.故选:C.8.如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=50,S△AED=38,则△DEF的面积为()A.6 B.12 C.4 D.8【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.△GDH【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50﹣S,解得S=6.故选:A.9.如图,两个正方形边长分別为a,b,如果a+b=9,ab=12,则阴影部分的面积为()A.21.5 B.22.5 C.23.5 D.24【分析】根据正方形和三角形的面积的和差即可求解.【解答】解:根据题意,得∵a+b=9,ab=12,∴(a+b)2=92∴a2+2ab+b2=81,∴a2+b2=81﹣24=57,∴阴影部分的面积为:a2﹣b(a﹣b)=(a2﹣ab+b2)=(57﹣12)=22.5.故选:B.10.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN =x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题;【解答】解:将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,∵∠MON=30°,∴∠ABM+∠CBN=30°,∴∠NBH=∠CBH+∠CBN=30°,∴∠NBM=∠NBH,∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x,∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形,故选:C.二.填空题(共6小题)11.2x2y3•(﹣7x3y)=﹣14x5y4.【分析】原式利用单项式乘以单项式法则计算即可求出值.【解答】解:原式=﹣14x5y4,故答案为:﹣14x5y412.点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).【分析】本题比较容易,考查平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【解答】解:根据中心对称的性质,得点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).13.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为PQ≥2 .【分析】根据垂线段最短可得PQ⊥OB时,PQ最短,再根据角平分线上的点到角的两边距离相等可得PQ=PD.【解答】解:由垂线段最短可得PQ⊥OB时,PQ最短,∵OP平分∠AOB,PD⊥OA,∴PQ=PD=2,即线段PQ的最小值是2.∴PQ的取值范围为PQ≥2,故答案为PQ≥2.14.如图,在△ABC中,AB=AC,BE=CD,BD=CF,∠EDF=78°,则∠A的度数为24°.【分析】由等腰三角形的性质可得∠B=∠C,由“SAS”可证△BED≌△CDF,可得∠CDF =∠BED,由三角形外角的性质可得∠EDF=∠B=70°,即可求∠A的度数.【解答】解:∵AB=AC∴∠B=∠C,又∵BE=CD,BD=CF∴△BED≌△CDF(SAS)∴∠CDF=∠BED∵∠EDC=∠B+∠BED=∠CDF+∠EDF∴∠EDF=∠B=78°∴∠C=∠B=78°∴∠A=180°﹣78°﹣78°=24°故答案为:24°.15.等腰三角形的其中两边长分别为(x+2)(2x﹣5),(x﹣1)2,已知这两边不相等,且x >5,则该等腰三角形的周长为5x2﹣4x﹣19 (用含x的式子表示)【分析】分为两种情况:①当三角形的三边是(x+2)(2x﹣5),(x+2)(2x﹣5),(x﹣1)2时,②当三角形的三边是(x+2)(2x﹣5),(x﹣1)2,(x﹣1)2时,看看是否符合三角形的三边关系定理,符合时求出即可.【解答】解:分为两种情况:①当等腰三角形的腰为(x+2)(2x﹣5)时,三角形的三边是(x+2)(2x﹣5),(x+2)(2x﹣5),(x﹣1)2,此时符合三角形的三边关系定理,此时三角形的周长是:(x+2)(2x﹣5)+(x+2)(2x﹣5)+(x﹣1)2=2x2﹣x﹣10+2x2﹣x﹣10+x2﹣2x+1=5x2﹣4x﹣19;②当等腰三角形的腰为(x﹣1)2时,三角形的三边是(x+2)(2x﹣5),(x﹣1)2,(x﹣1)2时,∵(x﹣1)2+(x﹣1)2=2x2﹣4x+2,(x+2)(2x﹣5)=2x2﹣x﹣10,x>5,∴(x﹣1)2+(x﹣1)2﹣(x+2)(2x﹣5)=(2x2﹣4x+2)﹣(2x2﹣x﹣10)=﹣3x+12<0,∴(x﹣1)2+(x﹣1)2<(x+2)(2x﹣5),∴此时不符合三角形的三边关系定理,此时不存在三角形.故答案为:5x2﹣4x﹣19.16.计算:40372﹣8072×2019= 1 .【分析】把8072×2019变为4038×4036,再套用平方差公式计算得结果.【解答】解:原式=40372﹣2×4036×2019=40372﹣4036×4038=40372﹣(4037﹣1)(4037+1)=40372﹣(40372﹣1)=1故答案为:1三.解答题(共9小题)17.计算:[(x+2y)2﹣(x﹣2y)(x+2y)]÷2y【分析】直接利用乘法公式进而化简,再利用整式的除法运算法则计算得出答案.【解答】解:原式=[x2+4y2+4xy﹣(x2﹣4y2)]÷2y=(8y2+4xy)÷2y=4y+2x.18.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.【分析】延长AO交BC于点D,先证出△ABO≌△ACO,得出∠BAO=∠CAO,再根据三线合一的性质得出AO⊥BC即可.【解答】证明:延长AO交BC于点D,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠BAO=∠CAO,∵AB=AC,∴AO⊥BC.19.如图AB⊥l于点B,CD⊥1于点D,点E,F在直线1上,且BF=DE,AE=CF.求证:AE ∥CF.【分析】证明△ABE≌△CDF(HL),推出∠AEB=∠CFD可得结论.【解答】证明:∵AB⊥l于点B,CD⊥1于点D,∴∠ABE=∠CDF=90°,∵BF=DE,∴DF=BE,∵AE=CF,∴Rt△ABE≌Rt△CDF(HL),∴∠AEB=∠CFD,∴AE∥CF.20.如图△ABC,请用尺规作出它的外角∠BAE的平分线AD,若AD∥BC,证明:AB=AC.【分析】用尺规作外角∠BAE的平分线AD,再进行证明即可.【解答】解:如图所示:AD即为所求作的图形.证明:∵AD∥BC,∴∠DAE=∠C,∠DAB=∠B,∵AD平分∠BAE,∴∠DAE=∠DAB,∴∠B=∠C,∴AB=AC.21.如图在△ABC中,DE是AC的垂直平分线,AE=5,△ABD的周长为14,求△ABC的周长.【分析】根据线段的垂直平分线的性质得到DA=DC,AE=CE=5,而AB+BDAD=14,从而得到△ABC的周长.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,AE=CE=5,而△ABD的周长是14,即AB+BD+AD=14,∴AB+BC+AC=AB+BD+CD+AC=14+10=24,即△ABC的周长是24.22.长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少2厘米.(1)新长方形的面积比原长方形的面积减少了多少平方厘米?(2)如果减少的面积恰好等于原面积的,试确定(a﹣6)(b﹣6)的值.【分析】(1)根据题意表示出原来长方形与新长方形的面积,相减即可得到结果;(2)根据题意列出等式,化简即可求出.【解答】解:(1)ab﹣(a﹣2)(b﹣2)=ab﹣(ab﹣2a﹣2b+4)=ab﹣ab+2a+2b﹣4=2a+2b﹣4,∴新长方形的面积比原长方形的面积减少了(2a+2b﹣4)平方厘米;(2)由题意知2a+2b﹣4=ab,∴ab=6a+6b﹣12,(a﹣6)(b﹣6)=ab﹣6a﹣6b+36=6a+6b﹣12﹣6a﹣6b+36=24.23.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:①把被除式、除式按某个字母作降幂接列,井把所块的项用零补齐;②用除式的第一项除以除式第一项,得到商式的第一项;③用商式的一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2﹣2x﹣1,余式为0.根据阅读材料,请回答下列问题:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)的商是x2﹣2x+3 ,余式是 1 ;(2)x3﹣x2+ax+b能被x2+2x+2整除,求a,b的值.【分析】(1)根据整式除法的竖式计算方法,这个进行进行计算即可;(2)根据整式除法的竖式计算方法,要使x3﹣x2+ax+b能被x2+2x+2整除,即余式为0,可以得到a、b的值.【解答】解:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)=x2﹣2x+3 (1)故答案为:x2﹣2x+3,1.(2)由题意得:∵x3﹣x2+ax+b能被x2+2x+2整除,∴a﹣2=﹣6,b=﹣6,即:a=﹣4,b=﹣6.24.等边三角形△ABC,直线1过点C且垂直AC.(1)请在直线1上作出点D,使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,求证,AD=2BD.【分析】(1)作点A关于直线l的对称点A′,连接AA′交直线1于点D,此时使得△ABD 的周长最小.(2)在(1)的条件下,连接AD,BD,根据对称性和30度角所对直角边等于斜边的一半即可证明AD=2BD.【解答】解:(1)如图所示:作点A关于直线l的对称点A′,连接AA′,与直线l交于点D,则点D即为所求作的点.(2)根据对称性可知:AC=A′C,AD=A′D,∵△ABC为等边三角形,∴AC=BC=AB,∠ACB=60°=∠BAC,∴A′C=BC,∴∠A′=∠A′BC=30°,∠A′=∠DAA′=30°,∴∠ABD=90°,∴AD=2BD.25.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),点C的坐标为(﹣1,4).(2)如图2,若OA平分∠BAC,BC与x轴交于点E,若点C纵坐标为m,求AE的长.(3)如图3,在(2)的条件下,点F在射线DM上,且∠ABF=∠ADF,AH⊥BF于点H,试探究BF、HFDF的数量关系.【分析】(1)作CH⊥y轴于H,如图1,易得OA=3,OB=1根据等腰直角三角形的性质得BA=BC,∠ABC=90°,再利用等角的余角相等得到∠CBH=∠BAO,则可根据“AAS”证明△ABO≌△BCH,得到OB=CH=1,OA=BH=3,所以C(﹣1,4);(2)如图2,过点C作CF⊥AO,交AB的延长线于H,由“ASA”可证△AFC≌△AFH,可得CF=FH=m,由“AAS”可证△ABE≌△CBH,可得AE=CH=2m;(3)如图3,过点A作AN⊥DF于点N,由“AAS”可证△ABH≌△ADN,可得AN=AH,BH =DN,由“HL”可证Rt△ANF≌Rt△AHF,可得NF=FH,即可得结论.【解答】解:(1)作CH⊥y轴于H,如图1,∵点A的坐标是(﹣3,0),点B的坐标是(0,1),∴OA=3,OB=1,∵△ABC是等腰直角三角形,∴BA=BC,∠ABC=90°,∴∠ABO+∠CBH=90°,∵∠ABO+∠BAO=90°,∴∠CBH=∠BAO,在△ABO和△BCH中,∴△ABO≌△BCH(AAS),∴OB=CH=1,OA=BH=3,∴OH=OB+BH=1+3=4,∴C(﹣1,4),故答案为:(﹣1,4);(2)如图2,过点C作CF⊥AO,交AB的延长线于H,∴∠CBH=90°,∵CF⊥AO,∴∠BCH+∠H=90°,而∠HAF+∠H=90°,∴∠BCH=∠HAF,且∠ABC=∠CBH=90°,AB=CB,∴△ABE≌△CBH(AAS),∴AE=CH,∵AO平分∠BAC,∴∠CAF=∠HAF,且AF=AF,∠AFH=∠AFC,∴△AFC≌△AFH(ASA)∴CF=FH=m,∴AE=CH=2m;(3)BF=2FH+DF,理由如下:如图3,过点A作AN⊥DF于点N,∵∠CAE=∠BAE,∠AOB=∠AOD,∴∠ADB=∠ABD,∴AD=AB,且∠ADF=∠ABF,∠AHB=∠AND=90°,∴△ABH≌△ADN(AAS)∴AN=AH,BH=DN,∵在Rt△ANF和Rt△AHF中,AN=AH,AF=AF,∴Rt△ANF≌Rt△AHF(HL)∴NF=FH,∵BF=BH+FH=DN+FH∴BF=DF+NF+FH=2FH+DF.。
河南省南阳市宛城区2019-2020学年八年级(上)期中数学试卷(解析版)
2019-2020学年八年级(上)期中数学试卷一.选择题(共10小题)1.下列各数中,属于有理数的是()A.B.πC.D.0.10101000…2.计算(﹣x2)3÷x2的结果是()A.﹣x4B.x4C.﹣x5D.﹣x53.下列说法中,正确的是()A.﹣4的算术平方根是2 B.是2的一个平方根C.(﹣1)2的立方根是﹣1 D.的立方根是44.下列因式分解正确的是()A.x2﹣1=(x﹣1)2B.a2+ab+a=a(a+b)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)25.已知x a=2,x b=3,则x3a﹣2b等于()A.B.﹣1 C.17 D.726.判断命题“如果n<1,那么n2﹣2<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣B.﹣1 C.0 D.7.如图,边长为a,b的长方形的周长为10,面积为6,则a3b+ab3的值为()A.15 B.30 C.60 D.788.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2 C.2D.9.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab10.△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个B.2个C.3个D.4个二.填空题(共5小题)11.方程64x3﹣125=0的根是.12.若(x2﹣mx+6)(3x﹣2)的展开式中不含x的二次项,则m的值是.13.若4x2﹣2ax+49是完全平方式,则a=.14.如图,四边形ABCD中,AB=AD,AC=6,∠DAB=∠DCB=90°,则四边形ABCD的面积为.15.如图,△ABC中,∠ACB=90°,AC≤BC,将△ABC沿EF折叠,使点A落在直角边BC 上的D点处,设EF与AB、AC边分别交于点E、点F,如果折叠后△CDF与△BDE均为等腰三角形,那么∠B=.三.解答题(共8小题)16.计算或化简:(1)(﹣3x2)(4x﹣3);(2)(x+y)(x2﹣xy+y2)17.分解因式:(1)﹣x2﹣4y2+4xy(2)(x﹣1)2+2(x﹣5)18.计算:(1)(2)19.先化简,再求值:[(a﹣b)2﹣(3a﹣b)(a+b)+2(a﹣2b)(a+2b)]÷(b),其中实数a、h满足=0.20.阅读并解决问题:分解因式(a+b)2+2(a+b)+1.解:设a+b=x,则原式=x2+2x+1=(x+1)2=(a+b+1)2.这样的解题方法叫做“换元法”,即当复杂的多项式中,某﹣﹣部分重复出现时,我们用字母将其替换,从而简化这个多项式换元法是一一个重要的数学方法,不少问题能用换元法解决.请用“换元法”对下列多项式进行因式分解:(1)(m+n)2﹣18(m+n)+81;(2)(x2﹣4x+2)(x2﹣4x+6)+421.如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF、EF相交于点F.(1)求证:∠C=∠BAD;(2)求证:AC=EF.22.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,我们把形如a+bi(a,b为实数,i是虚数单位)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.复数的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2+)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i;(1+i)×(2﹣i)=1×2﹣1×i+2×i﹣i2=2+(﹣1+2)i﹣(﹣1)=3+i.根据以上信息,解答下列问题:(1)下列等式或命题中,错误的是A.i4=1B.复数(1+i)2的实部为0C.(1+i)×(3﹣4i)=﹣1﹣iD.i+i2+i3+i4+…+i2019=﹣1(2)计算:①(1+2i)(2﹣i)+(2﹣i)2;②(1+2)3(1﹣2i)3.23.如图,等边△ABC中,AM为边BC上的中线,动点D在直线AM上,以CD为一边在CD 的下方作等边△CDE,设直线BE与直线AM的交点为O.(1)如图1,点D在线段AM上时,填空:①线段AD与BE的数量关系是②∠AOB的度数是.(2)如图2,当动点D在线段MA的延长线上时,试判断(1)中的结论是否成立?若成立,请给予证明:若不成立,请写出新的结论,并说明理由.参考答案与试题解析一.选择题(共10小题)1.下列各数中,属于有理数的是()A.B.πC.D.0.10101000…【分析】直接利用有理数以及无理数的定义分别分析得出答案.解:A、﹣是无理数,故此选项错误;B、π是无理数,故此选项错误;C、是有理数,故此选项正确;D、0.1010010001……是无理数,故此选项错误;故选:C.2.计算(﹣x2)3÷x2的结果是()A.﹣x4B.x4C.﹣x5D.﹣x5【分析】根据同底数幂的除法解答即可.解:(﹣x2)3÷x2=﹣x4,故选:A.3.下列说法中,正确的是()A.﹣4的算术平方根是2 B.是2的一个平方根C.(﹣1)2的立方根是﹣1 D.的立方根是4【分析】根据平方根与立方根的定义即可求出答案.解:(A)负数没有平方根,故A错误;(C)(﹣1)2=1,1的立方根为1,故C错误;(D)的=4,4的立方根为,故D错误;故选:B.4.下列因式分解正确的是()A.x2﹣1=(x﹣1)2B.a2+ab+a=a(a+b)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)2【分析】各项分解得到结果,即可作出判断.解:A、原式=(x+1)(x﹣1),不符合题意;B、原式=a(a+b+1),不符合题意;C、原式=﹣2y(y﹣2),不符合题意;D、原式=n(m2﹣2m+1)=n(m﹣1)2,符合题意,故选:D.5.已知x a=2,x b=3,则x3a﹣2b等于()A.B.﹣1 C.17 D.72【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则将原式变形得出答案.解:∵x a=2,x b=3,∴x3a﹣2b=(x a)3÷(x b)2=23÷32=.故选:A.6.判断命题“如果n<1,那么n2﹣2<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣B.﹣1 C.0 D.【分析】根据实数的大小比较法则、乘方法则解答.解:﹣<1,(﹣)2﹣2=0,∴当n=﹣时,“如果n<1,那么n2﹣2<0”是假命题,故选:A.7.如图,边长为a,b的长方形的周长为10,面积为6,则a3b+ab3的值为()A.15 B.30 C.60 D.78【分析】先把所给式子提取公因式ab,再整理为与题意相关的式子,代入求值即可.解:根据题意得:a+b=5,ab=6,则a3b+ab3=ab(a2+b2)=ab[(a+b)2﹣2ab]=6×(52﹣2×6)=6×13=78.故选:D.8.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2 C.2D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE =DC,就可以求出DE的值.解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.9.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab【分析】根据图形确定出图1与图2的面积,即可作出判断.解:根据题意得:(a﹣b)2=a2﹣2ab+b2,故选:B.10.△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个B.2个C.3个D.4个【分析】和△ABC全等,那么必然有一边等于3,有一边等于,又一角等于45°.据此找点即可,注意还需要有一条公共边.解:分三种情况找点,①公共边是AC,符合条件的是△ACE;②公共边是BC,符合条件的是△BCF、△CBG、△CBH;③公共边是AB,符合条件的三角形有,但是顶点不在网格上.故选:D.二.填空题(共5小题)11.方程64x3﹣125=0的根是x=.【分析】根据立方根的定义即可求出答案.解:∵64x3﹣125=0,∴x3=,∴x=,故答案为:x=12.若(x2﹣mx+6)(3x﹣2)的展开式中不含x的二次项,则m的值是﹣.【分析】根据多项式乘多项式的计算法则和(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,可以求得m的值,本题得以解决.解:(x2﹣mx+6)(3x﹣2)=3x3﹣(2+3m)x2+(2m+18)x﹣12,∵(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,∴2+3m=0,解得m=﹣.故答案为:﹣.13.若4x2﹣2ax+49是完全平方式,则a=±7 .【分析】这里首末两项是x和7这两个数的平方,那么中间一项为加上或减去x和7积的2倍,则﹣2a=±14,a=±7.解:∵x2﹣2ax+49是完全平方式,∴﹣2a=±2•x•7,∴a=±7,故答案为:±7.14.如图,四边形ABCD中,AB=AD,AC=6,∠DAB=∠DCB=90°,则四边形ABCD的面积为18 .【分析】根据已知线段关系,将△ACD绕点A逆时针旋转90°,AD与AB重合,得到△ABE,证明C、B、E三点共线,则△ACE是等腰直角三角形,四边形面积转化为△ACE面积.解:∵AD=AD,且∠DAB=90°,∴将△ACD绕点A逆时针旋转90°,AD与AB重合,得到△ABE.∴∠ABE=∠D,AC=AE.根据四边形内角和360°,可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=×AC2=×62=18;故答案为:18.15.如图,△ABC中,∠ACB=90°,AC≤BC,将△ABC沿EF折叠,使点A落在直角边BC 上的D点处,设EF与AB、AC边分别交于点E、点F,如果折叠后△CDF与△BDE均为等腰三角形,那么∠B=45°或30°.【分析】先确定△CDF是等腰三角形,得出∠CFD=∠CDF=45°,因为不确定△BDE是以那两条边为腰的等腰三角形,故需讨论,①DE=DB,②BD=BE,③DE=BE,然后分别利用角的关系得出答案即可.解:∵△CDF中,∠C=90°,且△CDF是等腰三角形,∴CF=CD,∴∠CFD=∠CDF=45°,设∠DAE=x°,由对称性可知,AF=FD,AE=DE,∴∠FDA=∠CFD=22.5°,∠DEB=2x°,分类如下:①当DE=DB时,∠B=∠DEB=2x°,由∠CDE=∠DEB+∠B,得45°+22.5°+x=4x,解得:x=22.5°.此时∠B=2x=45°;见图形(1),说明:图中AD应平分∠CAB.②当BD=BE时,则∠B=(180°﹣4x)°,由∠CDE=∠DEB+∠B得:45°+22.5°+x=2x+180°﹣4x,解得x=37.5°,此时∠B=(180﹣4x)°=30°.图形(2)说明:∠CAB=60°,∠CAD=22.5°.③DE=BE时,则∠B=(180﹣2x)°,由∠CDE=∠DEB+∠B得,45°+22.5°+x=2x+(180﹣2x)°,此方程无解.∴DE=BE不成立.综上所述,∠B=45°或30°.故答案为:45°或30°.三.解答题(共8小题)16.计算或化简:(1)(﹣3x2)(4x﹣3);(2)(x+y)(x2﹣xy+y2)【分析】(1)根据单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加即可求解;(2)根据立方和公式计算即可求解.解:(1)(﹣3x2)(4x﹣3)=﹣12x3+9x2;(2)(x+y)(x2﹣xy+y2)=x3+y3.17.分解因式:(1)﹣x2﹣4y2+4xy(2)(x﹣1)2+2(x﹣5)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式整理后,利用平方差公式分解即可.解:(1)原式=﹣(x2﹣4xy+4y2)=﹣(x﹣2y)2;(2)原式=x2﹣2x+1+2x﹣10=x2﹣9=(x+3)(x﹣3).18.计算:(1)(2)【分析】(1)原式利用二次根式性质计算即可求出值;(2)原式利用平方根、立方根定义计算即可求出值.解:(1)原式=×0.9﹣2×+×10=0.3﹣5+1=﹣3.7;(2)原式=﹣+﹣=﹣.19.先化简,再求值:[(a﹣b)2﹣(3a﹣b)(a+b)+2(a﹣2b)(a+2b)]÷(b),其中实数a、h满足=0.【分析】先根据算术平方根和绝对值的非负性求出a、b的值,再算括号内的乘法,合并同类项,算除法,最后代入求出即可.解:=0,a+2=0,b﹣3=0,a=﹣2,b=3,[(a﹣b)2﹣(3a﹣b)(a+b)+2(a﹣2b)(a+2b)]÷(b)=[a2﹣2ab+b2﹣3a2﹣3ab+ab+b2+2a2﹣8b2]÷(﹣b)=[﹣4ab﹣6b2]÷(﹣b)=12a+18b,当a=﹣2,b=3时,原式=﹣24+48=24.20.阅读并解决问题:分解因式(a+b)2+2(a+b)+1.解:设a+b=x,则原式=x2+2x+1=(x+1)2=(a+b+1)2.这样的解题方法叫做“换元法”,即当复杂的多项式中,某﹣﹣部分重复出现时,我们用字母将其替换,从而简化这个多项式换元法是一一个重要的数学方法,不少问题能用换元法解决.请用“换元法”对下列多项式进行因式分解:(1)(m+n)2﹣18(m+n)+81;(2)(x2﹣4x+2)(x2﹣4x+6)+4【分析】(1)设m+n=x,把原多项式换元后因式分解,再代入还元;(2)设x2﹣4x+2=y,先把原多项式换元后因式分解,代入后再用完全平方公式因式分解.解:(1)设m+n=x,则原式=x2﹣18x+81=(x﹣9)2=(m+n﹣9)2;(2)设x2﹣4x+2=y,则原式=y(y+4)+4=y2+4y+4=(y+2)2=(x2﹣4x+2+2)2=[(x﹣2)2]2=(x﹣2)421.如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF、EF相交于点F.(1)求证:∠C=∠BAD;(2)求证:AC=EF.【分析】(1)由等腰三角形的性质可得AD⊥BC,由余角的性质可得∠C=∠BAD;(2)由“ASA”可证△ABC≌△EAF,可得AC=EF.【解答】证明:(1)∵AB=AE,D为线段BE的中点,∴AD⊥BC∴∠C+∠DAC=90°,∵∠BAC=90°∴∠BAD+∠DAC=90°∴∠C=∠BAD(2)∵AF∥BC∴∠FAE=∠AEB∵AB=AE∴∠B=∠AEB∴∠B=∠FAE,且∠AEF=∠BAC=90°,AB=AE∴△ABC≌△EAF(ASA)∴AC=EF22.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,我们把形如a+bi(a,b为实数,i是虚数单位)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.复数的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2+)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i;(1+i)×(2﹣i)=1×2﹣1×i+2×i﹣i2=2+(﹣1+2)i﹣(﹣1)=3+i.根据以上信息,解答下列问题:(1)下列等式或命题中,错误的是CA.i4=1B.复数(1+i)2的实部为0C.(1+i)×(3﹣4i)=﹣1﹣iD.i+i2+i3+i4+…+i2019=﹣1(2)计算:①(1+2i)(2﹣i)+(2﹣i)2;②(1+2)3(1﹣2i)3.【分析】(1)利用题中的新定义判断即可;(2)①原式利用多项式乘以多项式法则,完全平方公式化简,再利用题中的新定义计算即可求出值;②原式利用完全平方公式,以及多项式乘以多项式法则计算,再利用新定义化简即可求出值.解:(1)A.i4=i2•i2=(﹣1)×(﹣1)=1,不符合题意;B.复数(1+i)2=1+2i﹣1=2i,实数部分为0,不符合题意;C.(1+i)×(3﹣4i)=3﹣4i+3i+4=7﹣i,符合题意;D.i+i2+i3+i4+…+i2019=i﹣1﹣i+1+…+i﹣1﹣i=﹣1,不符合题意,故选C;(2)①原式=2﹣i+4i+2+4﹣4i﹣1=7﹣i;②原式=27(﹣3﹣4i)(1﹣2i)=27(﹣3+6i﹣4i﹣8)=27(﹣11+2i)=﹣297+54i.23.如图,等边△ABC中,AM为边BC上的中线,动点D在直线AM上,以CD为一边在CD 的下方作等边△CDE,设直线BE与直线AM的交点为O.(1)如图1,点D在线段AM上时,填空:①线段AD与BE的数量关系是AD=BE②∠AOB的度数是60°.(2)如图2,当动点D在线段MA的延长线上时,试判断(1)中的结论是否成立?若成立,请给予证明:若不成立,请写出新的结论,并说明理由.【分析】(1)①证明△ACD≌△BCE即可.②先证明∠CAM=30°,由△ACD≌△BCE得∠OBM=∠CAM=30°,由此即可解决问题.(2)结论不变.证明方法类似(1).解:(1)∵△ABC和△DCE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故答案为:AD=BE;②∵BM=CM,AB=AC,∠BAC=60°,∴AM⊥BC,∠BAM=∠CAM=30°,∴∠AMC=∠MBO=90°,∵△ACD≌△BCE,∴∠OBM=∠CAM=30°,∵∠OBM+∠BOM=90°∴∠AOB=60°;故答案为:60°;(2)(1)中的结论成立,理由如下:∵△ABC和△DCE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,∵BM=CM,AB=AC,∠BAC=60°,∴AM⊥BC,∠BAM=∠CAM=30°,∴∠AMC=∠MBO=90°,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠DAC=∠EBC,∴∠OBM=∠CAM=30°,∴∠AOB=90°﹣∠OBM=60°.。
2019-2020学年江西省南昌市八年级(上)期中数学试卷(解析版)
2019-2020学年江西省南昌市八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分1.下列四个图形中,不是轴对称图形的是()A.B.C.D.2.在平面直角坐标系中,有A(3,3)、B(3,﹣3)两点,则A与B关于()A.x轴对称B.y轴对称C.原点对称D.直线y=x对称3.若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A.36B.72C.108D.1444.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1B.AC=CA C.∠B=∠D D.BC=DC5.有四根长度分别为3,4,5,x(x为正整数)的木棒,从中任取三根,首尾顺次相接都能组成一个三角形,则组成的三角形的周长()A.最小值是11B.最小值是12C.最大值是14D.最大值是15 6.如图,已知∠AOB=60°,点P在边OA上,OP=10,点M、N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.67.把一张正方形纸片按如图所示的方法对折两次后剪去两个直角,那么打开以后的形状是()A.六边形B.八边形C.十二边形D.十六边形8.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α二、填空题(本大题共6小题,每小题3分,共18分)9.△ABC中,∠A=50°,∠B=60°,则∠C=度.10.如图,若正五边形和正六边形有一边重合,则∠BAC=.11.一个等腰三角形的一个角为100°,则这个等腰三角形的底角的度数是.12.如图,若AB⊥BC于点B,AE⊥DE于点E,AB=AE,∠ACB=∠ADE,∠ACD=∠ADC =70°,∠BAD=60°,则∠BAE的度数是.13.在平面直角坐标系中,有A(﹣2,4)、B(4,2)两点,若在x轴上取一点P,使点P 到点A和点B的距离之和最小,则点P的坐标是.14.当三角形中一个内角α是另一个内角β的2倍时,则称此三角形为“倍角三角形”其中角α称为“倍角”.若“倍角三角形”中有一个内角为36°,则这个“倍角三角形”的“倍角”的度数可以是三、解答題(本大题共4小题,每小题6分,共24分)15.如图,AB=AC,BD=CD.(1)求证:∠B=∠C(2)若∠A=2∠B,求证:∠BDC=4∠C.16.已知三角形的两边长为4和6,第三条边长x最小.(1)求x的取值范围;(2)当x为何值时,组成三角形周长最大?最大值是多少?17.如图,在棋盘中有A(﹣1,1)、O(0,0)、B(1,0)三个棋子,若再添加一个棋子A、O、B、P四个棋子成为一个轴对称图形,请在三个图中分别画出三种不同的对称轴分别写出棋子P的坐标.18.如图,已知AD平分∠BAC,且∠1=∠2.(1)求证:BD=CD(2)判断AD与BC的位置关系,并说明理由.四、解答题(本大题共3小题,每小题8分,共24分)19.如图1,已知线段AB、CD相交于点O,连接AC、BD.(1)求证:∠A+∠C=∠B+∠D;(2)如图2,∠CAB与∠BD的平分线AP、DP相交于点P,求证:∠B+∠C=2∠P.20.在△ABC中,AB=AC,点D在边BC上,点E在边AC上,且AD=AE.(1)如图1,当AD是边BC上的高,且∠BAD=30°时,求∠EDC的度数;(2)如图2,当AD不是边BC上的高时,请判断∠BAD与∠EDC之间的关系,并加以证明.21.如图,AD平分∠BAC,且∠B+∠C=180°(1)在图1中,当∠B=90°时,求证:BD=CD;(2)在图2中,当∠B=60°时,求证:AB﹣AC=BD;五、探究(本大题共1小题,共10分)22.【问题探究】将三角形ABC纸片沿DE折叠,使点A落在点A′处(1)如图1,当点A落在四边形BCDE的边CD上时,直接写出∠A与∠1之间的数量关系;(2)如图2,当点A落在四边形BCDE的内部时,求证:∠1+∠2=2∠A;(3)如图3,当点A落在四边形BCDE的外部时,探索∠1,∠2,∠A之间的数量关系,并加以证明;【拓展延伸】(4)如图4,若把四边形ABCD纸片沿EF折叠,使点A、D落在四边形BCFE的内部点A′、D′的位置,请你探索此时∠1,∠2,∠A,∠D之间的数量关系,写出你发现的结论,并说明理由.2019-2020学年江西省南昌市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分1.下列四个图形中,不是轴对称图形的是()A.B.C.D.【解答】解:A、B、D都是轴对称图形,C不是轴对称图形,故选:C.2.在平面直角坐标系中,有A(3,3)、B(3,﹣3)两点,则A与B关于()A.x轴对称B.y轴对称C.原点对称D.直线y=x对称【解答】解:∵A(3,3)、B(3,﹣3)两点,∴A与B关于关于x轴对称,故选:A.3.若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A.36B.72C.108D.144【解答】解:∵∠A+∠B+∠C=180°,∴2(∠A+∠B+∠C)=360°,∵2(∠A+∠C)=3∠B,∴∠B=72°,∴∠B的外角度数是180°﹣∠B=108°,故选:C.4.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1B.AC=CA C.∠B=∠D D.BC=DC【解答】解:∵△ABC≌△CDA,∴∠1=∠2,AC=CA,∠B=∠D,BC=AD,故只有选项D,BC=DC错误.故选:D.5.有四根长度分别为3,4,5,x(x为正整数)的木棒,从中任取三根,首尾顺次相接都能组成一个三角形,则组成的三角形的周长()A.最小值是11B.最小值是12C.最大值是14D.最大值是15【解答】解:由题意知,3,4,x和3,5,x都能组成三角形,∴2<x<7,∵x为正整数,∴x取3或4或5或6,要组成三角形的周长最小,即:x=3时,三边为3,3,4,其最小周长为3+3+4=10;要组成的三角形的周长最大,即:x=6,三边为4,5,6,其周长最大值为4+5+6=15.故选:D.6.如图,已知∠AOB=60°,点P在边OA上,OP=10,点M、N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.6【解答】解:作PH⊥MN于H,∵PM=PN,∴MH=NH=MN=1,∵∠AOB=60°,∴∠OPH=30°,∴OH=OP=5,∴OM=OH﹣MH=4,故选:B.7.把一张正方形纸片按如图所示的方法对折两次后剪去两个直角,那么打开以后的形状是()A.六边形B.八边形C.十二边形D.十六边形【解答】解:此题需动手操作,因为剪去的角是直角,通过折叠可知是八边形.故选:B.8.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.△ABC中,∠A=50°,∠B=60°,则∠C=70度.【解答】解:∵△ABC中,∠A=50°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣50°﹣60°=70°.10.如图,若正五边形和正六边形有一边重合,则∠BAC=132°.【解答】解:正五边形的内角为=108°,正六边形的内角为=120°,∠BAC=360°﹣108°﹣120°=132°,故答案为:132°.11.一个等腰三角形的一个角为100°,则这个等腰三角形的底角的度数是40°.【解答】解:∵100°为三角形的顶角,∴底角为:(180°﹣100°)÷2=40°.故答案为:40°.12.如图,若AB⊥BC于点B,AE⊥DE于点E,AB=AE,∠ACB=∠ADE,∠ACD=∠ADC =70°,∠BAD=60°,则∠BAE的度数是80°.【解答】解:∵AB⊥BC,AE⊥DE,∴∠B=∠E=90°,在△ABC和△AED中,,∴△ABC≌△AED(AAS),∴∠BAC=∠EAD,∵∠ACD=∠ADC=70°,∴∠CAD=180°﹣70°﹣70°=40°,∴∠BAC=∠BAD﹣∠CAD=60°﹣40°=20°,∴∠BAE=∠BAD+∠DAE=∠BAD+∠BAC=80°;故答案为:80°.13.在平面直角坐标系中,有A(﹣2,4)、B(4,2)两点,若在x轴上取一点P,使点P 到点A和点B的距离之和最小,则点P的坐标是(2,0).【解答】解:作A关于x轴的对称点C,连接BC交x轴于P,连接AP,则此时AP+PB 最小,即此时点P到点A和点B的距离之和最小,∵A(﹣2,4),∴C(﹣2,﹣4),设直线CB的解析式是y=kx+b,把C、B的坐标代入得解得:k=1,b=﹣2,∴y=x﹣2,把y=0代入得:0=x﹣2,解得x=2,即P的坐标是(2,0),故答案为(2,0)14.当三角形中一个内角α是另一个内角β的2倍时,则称此三角形为“倍角三角形”其中角α称为“倍角”.若“倍角三角形”中有一个内角为36°,则这个“倍角三角形”的“倍角”的度数可以是36°或72°或96°【解答】解:设三角形的三个内角为∠A,∠B,∠C,当∠A=36°,∠A是∠C的2倍,则∠C=18°,如果∠B是∠C的2倍,∵∠B+∠C=144°,∴∠B=96°,∠C=48°,如果∠B是∠A的2倍,∵∠B=2∠A=72°,∴这个“倍角三角形”的“倍角”的度数可以是36°,72°,96°,故答案为:36°或72°或96°.三、解答題(本大题共4小题,每小题6分,共24分)15.如图,AB=AC,BD=CD.(1)求证:∠B=∠C(2)若∠A=2∠B,求证:∠BDC=4∠C.【解答】(1)证明:连接AD并延长至E,如图所示:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠B=∠C;(2)在△ABD中,∠BDE=∠BAD+∠B,在△ACD中,∠CDE=∠BAD+∠C,∴∠BDE=+∠CDE=∠BAD+∠CAD+∠B+∠C,即∠BDC=∠BAC+∠B+∠C,∵∠BAC=2∠B,∠B=∠C,∴∠BDC=4∠C.16.已知三角形的两边长为4和6,第三条边长x最小.(1)求x的取值范围;(2)当x为何值时,组成三角形周长最大?最大值是多少?【解答】解:(1)由三角形的构造条件,得2<x<10,∵x为最小,∴x的取值范围是2<x≤4.(2)当x=4时,三角形的周长最大,且最大值是4+6+4=14.17.如图,在棋盘中有A(﹣1,1)、O(0,0)、B(1,0)三个棋子,若再添加一个棋子A、O、B、P四个棋子成为一个轴对称图形,请在三个图中分别画出三种不同的对称轴分别写出棋子P的坐标.【解答】解:如图所示,棋子P的坐标分别为(﹣1,﹣1),(2,1),(0,﹣1),(﹣1,2).(答案不唯一)18.如图,已知AD平分∠BAC,且∠1=∠2.(1)求证:BD=CD(2)判断AD与BC的位置关系,并说明理由.【解答】(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(AAS),∴BD=CD;(2)解:AD⊥BC,理由如下:由(1)得:△ABD≌△ACD,∴AB=AC,∵AD平分∠BAC,∴AD⊥BC.四、解答题(本大题共3小题,每小题8分,共24分)19.如图1,已知线段AB、CD相交于点O,连接AC、BD.(1)求证:∠A+∠C=∠B+∠D;(2)如图2,∠CAB与∠BD的平分线AP、DP相交于点P,求证:∠B+∠C=2∠P.【解答】证明:(1)在△AOC中,∠A+∠C=180°﹣∠AOC,在△BOD中,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)在AP、CD相交线中,有∠CAP+∠C=∠P+∠CDP,在AB、DP相交线中,有∠B+∠BDP=∠P+∠BAP,∴∠B+∠C+∠CAP+∠BDP=2∠P+∠CDP+∠BAP,∵AP、DP分别平分∠CAB、∠BDC,∴∠CAP=∠BAP,∠BDP=∠CDP,∴∠B+∠C=2∠P.20.在△ABC中,AB=AC,点D在边BC上,点E在边AC上,且AD=AE.(1)如图1,当AD是边BC上的高,且∠BAD=30°时,求∠EDC的度数;(2)如图2,当AD不是边BC上的高时,请判断∠BAD与∠EDC之间的关系,并加以证明.【解答】解:(1)∵AD是边BC上的高,∴∠ADC=90°,∵AB=AC,∴AD是∠BAC的角平分线,∴∠BAD=∠CAD,∵∠BAD=30°,∴∠CAD=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°;(2)∠BAD=2∠EDC,理由:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠ADC=∠B+∠BAD,∠AED=∠C+∠EDC,∴∠B+∠BAD=∠ADC=∠ADE+∠EDC=∠AED+∠∠EDC=∠C+2∠EDC,∴∠BAD=2∠EDC.21.如图,AD平分∠BAC,且∠B+∠C=180°(1)在图1中,当∠B=90°时,求证:BD=CD;(2)在图2中,当∠B=60°时,求证:AB﹣AC=BD;【解答】(1)证明:∵B+∠C=180°,∠B=90°,∴∠C=90°,∵AD平分∠BAC,∴BD=CD;(2)证明:过D作DE⊥AB于E,DF⊥AC于F,如图2所示:则∠DEB=∠DFC=90°,∵∠B+∠ACD=180°,∠DCF+∠ACD=180°,∴∠B=∠DCF,∵AD平分∠BAC,∴DE=DF,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴BD=CD,BE=CF,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴AB﹣AC=AE+BE﹣(AF﹣CF)=2BE,在Rt△BDE中,∠B=60°,∴∠BDE=30°,∴BE=BD,即2BE=BD,∴AB=AC=BD.五、探究(本大题共1小题,共10分)22.【问题探究】将三角形ABC纸片沿DE折叠,使点A落在点A′处(1)如图1,当点A落在四边形BCDE的边CD上时,直接写出∠A与∠1之间的数量关系;(2)如图2,当点A落在四边形BCDE的内部时,求证:∠1+∠2=2∠A;(3)如图3,当点A落在四边形BCDE的外部时,探索∠1,∠2,∠A之间的数量关系,并加以证明;【拓展延伸】(4)如图4,若把四边形ABCD纸片沿EF折叠,使点A、D落在四边形BCFE的内部点A′、D′的位置,请你探索此时∠1,∠2,∠A,∠D之间的数量关系,写出你发现的结论,并说明理由.【解答】解:(1)如图1,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A;(2)如图2,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2;(3)如图3,∠1﹣∠2=2∠A,理由:∵∠2+2∠AED=180°,2∠ADE﹣∠2=180°,∴∠1﹣∠2+2∠AED+2∠AED=360°,∵∠A+∠AED+∠ADE=180°,∴2∠A+2∠AED+2∠ADE=360°,∴∠1﹣∠2=2∠A;(4)∠1+∠2=2(∠A+∠D)﹣360°,理由:∵∠1+2∠AEF=180°,∠2+2∠DFE=180°,∴∠1+∠2+2∠AEF+2∠DFE=360°,∵∠A+∠D+∠AEF+∠DFE=360°,∴2∠A+2∠D+2∠AEF+2∠DFE=720°,∴∠1+∠2=2(∠A+∠D)﹣360°.。
2019-2020学年天津市武清区八年级(上)期中数学试卷(解析版)
2019-2020学年天津市武清区八年级(上)期中数学试卷一、选择题(每题3分,共36分)1.下列四个图形中,是轴对称图形的是()A.B.C.D.2.下列线段能组成三角形的是()A.3、4、8B.5、6、11C.5、6、10D.2、2、43.如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.94.若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15或17B.16C.14D.14或165.下列说法正确的是()A.能够完全重合的三角形是全等三角形B.面积相等的三角形是全等三角形C.周长相等的三角形是全等三角形D.所有的等边三角形都是全等三角形6.已知:点P、Q是△ABC的边BC上的两个点,且BP=PQ=QC=AP=AQ,∠BAC的度数是()A.100°B.120°C.130°D.150°7.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D8.如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.若CD=3,BC+AB=16,则△ABC的面积为()A.16B.18C.24D.329.如图,在△ABC中,AB=AC,E、D分别为AB、AC边上的中点,连接BD、CE交于O,此图中全等三角形的对数为()对.A.4B.3C.2D.110.下列说法正确的是()A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC与△A′B′C′成轴对称,则△ABC≌△A′B′C′D.点A,点B在直线l两旁,且AB与直线l交于点O,若AO=BO,则点A与点B关于直线l对称11.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L 与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°12.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC 边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°二、填空题(每题3分,共18分)13.等腰三角形的一个角100°,它的另外两个角的度数分别为.14.若A(x,3)关于y轴的对称点是B(﹣2,y),则x=,y=,点A关于x轴的对称点的坐标是.15.从八边形的一个顶点出发可以画出条对角线,内角和为.16.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若BD=10厘米,BC=8厘米,DC=6厘米,则点D到直线AB的距离是厘米.17.如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.18.如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论正确的是.①P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.三、解答题(共66分)19.如图,△ABC中,AB=AD=DC,∠BAD=40°,求∠B、∠C的度数.20.△ABC在平面直角坐标系中的位置如图所示,点A(﹣2,2),点B(﹣3,﹣1),点C(﹣1,1).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标.(2)求出△A1B1C1的面积.21.已知AB=AC,BD=CE,求证:∠B=∠C.22.已知:AB=CD,AE⊥BC于E,DF⊥BC于F,且CE=BF.求证:AB∥CD.23.如图所示,在△ABC中,∠C=90°,∠BAC=60°,AB的垂直平分线DE交AB于D,交BC于E,若CE=3cm,求BE的长.24.如图,点B,C分别在∠A的两边上,点D是∠A内一点,DE⊥AB,DF⊥AC,垂足分别为E,F,且AB=AC,DE=DF.求证:BD=CD.25.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.2019-2020学年天津市武清区八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1.下列四个图形中,是轴对称图形的是()A.B.C.D.【解答】解:A选项和D选项中的图形既不是中心对称也不是轴对称图形,B选项中的图形为中心对称图形,C选项中的图形既是中心对称也是轴对称图.故选:C.2.下列线段能组成三角形的是()A.3、4、8B.5、6、11C.5、6、10D.2、2、4【解答】解:A、∵3+4<8,∴3、4、8不能组成三角形,故本选项错误;B、∵5+6=11,∴5、6、11不能组成三角形,故本选项错误;C、∵5+6>10,∴5、6、10能组成三角形,故本选项正确;D、∵2+2=4,∴2、2、4不能组成三角形,故本选项错误.故选:C.3.如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.9【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×4,解得n=10.故选:C.4.若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15或17B.16C.14D.14或16【解答】解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.5.下列说法正确的是()A.能够完全重合的三角形是全等三角形B.面积相等的三角形是全等三角形C.周长相等的三角形是全等三角形D.所有的等边三角形都是全等三角形【解答】解:A、能够完全重合的三角形是全等三角形正确,故本选项正确;B、面积相等的三角形是全等三角形错误,故本选项错误;C、周长相等的三角形是全等三角形错误,故本选项错误;D、所有的等边三角形不一定是全等三角形,故本选项错误.故选:A.6.已知:点P、Q是△ABC的边BC上的两个点,且BP=PQ=QC=AP=AQ,∠BAC的度数是()A.100°B.120°C.130°D.150°【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠BAP=∠CAQ=30°.∴∠BAC=120°.故∠BAC的度数是120°.故选:B.7.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D【解答】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC ≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.8.如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.若CD=3,BC+AB=16,则△ABC的面积为()A.16B.18C.24D.32【解答】解:如图,过点D作DE⊥AB于E,∵∠ACB=90°,BD平分∠ABC,∴DE=CD=3,∴S△ABC=S△BCD+S△ABD=BC•CD+AB•DE=(BC+AB)×3∵BC+AB=16,∴△ABC的面积=×16×3=24.故选:C.9.如图,在△ABC中,AB=AC,E、D分别为AB、AC边上的中点,连接BD、CE交于O,此图中全等三角形的对数为()对.A.4B.3C.2D.1【解答】解:∵AB=AC,∴∠EBC=∠DCB,∵AE=BE,AD=DC,∴BE=DC,∵BC=CB,∴△EBC≌△DCB,∴∠ECB=∠DBC,∴∠EBO=∠DCO,∵BE=CD,∴∠BOE=∠COD,∴△BOE≌△COD,∵∠A=∠A,AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE,共有3对全等三角形,故选:B.10.下列说法正确的是()A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC与△A′B′C′成轴对称,则△ABC≌△A′B′C′D.点A,点B在直线l两旁,且AB与直线l交于点O,若AO=BO,则点A与点B关于直线l对称【解答】解:A、轴对称图形才有对称轴,故错误;B、两个全等三角形一定关于某直线对称,由于位置关系不明确,不能正确判定,故错误;C、若△ABC与△A′B′C′成轴对称,则对应的线段、角都相等,则△ABC≌△A′B′C′,故正确;D、点A,点B在直线1两旁,且AB与直线1交于点O,若AO=BO,则点A与点B关于直线l对称,由于位置关系不明确,不能正确判定,故错误.故选:C.11.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L 与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.12.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC 边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°【解答】解:过E作EM∥BC,交AD于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30°,故选:C.二、填空题(每题3分,共18分)13.等腰三角形的一个角100°,它的另外两个角的度数分别为40°,40°.【解答】解:∵等腰三角形的一个角100°,∴100°的角是顶角,∴另两个角是(180°﹣100°)=40°,即40°,40°.故答案为:40°,40°.14.若A(x,3)关于y轴的对称点是B(﹣2,y),则x=2,y=3,点A关于x 轴的对称点的坐标是(2,﹣3).【解答】解:∵A(x,3)关于y轴的对称点是B(﹣2,y),∴x=2,y=3;∴A(2,3),∴点A关于x轴的对称点的坐标是(2,﹣3),故答案为:2,3,(2,﹣3).15.从八边形的一个顶点出发可以画出5条对角线,内角和为1080°.【解答】解:八边形的内角和为(8﹣2)•180°=1080°;从八边形一个顶点出发可以画8﹣3=5条对角线.故答案为:5,1080°.16.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若BD=10厘米,BC=8厘米,DC=6厘米,则点D到直线AB的距离是6厘米.【解答】解:过D作DE⊥AB,交AB于点E,∵BD平分∠ABC,DC⊥CB,DE⊥BA,∴DE=DC=6厘米,则点D到直线AB的距离是6厘米,故答案为:617.如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.18.如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论正确的是①②③④.①P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.【解答】解:∵PR=PS,PR⊥AB,PS⊥AC,∴P在∠A的平分线上,在Rt△ARP和Rt△ASP中,∵,∴Rt△ARP≌Rt△ASP(HL),∴AS=AR,∠QAP=∠PAR,∵AQ=PQ,∴∠PAR=∠QPA,∴∠QPA=∠QAR∴QP∥AR,∵△ABC为等边三角形,∴∠B=∠C=∠BAC=60°,∴∠PAR=∠QPA=30°,∴∠PQS=60°,在△BRP和△QSP中,∵,∴△BRP≌△QSP(AAS),∴①②③④项四个结论都正确,故答案为①②③④.三、解答题(共66分)19.如图,△ABC中,AB=AD=DC,∠BAD=40°,求∠B、∠C的度数.【解答】解:在△ABC中,AB=AD=DC,∵AB=AD,在三角形ABD中,∠B=∠ADB=(180°﹣40°)×=70°,又∵AD=DC,在三角形ADC中,∴∠C=∠ADB=70°×=35°.20.△ABC在平面直角坐标系中的位置如图所示,点A(﹣2,2),点B(﹣3,﹣1),点C(﹣1,1).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标.(2)求出△A1B1C1的面积.【解答】解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(2,2);(2)△A1B1C1的面积为:2×3﹣×1×1﹣×2×2﹣×1×3=221.已知AB=AC,BD=CE,求证:∠B=∠C.【解答】证明:∵AB=AC,BD=CE,∴AD=AE,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C.22.已知:AB=CD,AE⊥BC于E,DF⊥BC于F,且CE=BF.求证:AB∥CD.【解答】证明:∵CE=BF,∴CE+EF=BF+EF,即EB=FC,又∵AB=CD,AE⊥BC于E,DF⊥BC于F,∴AEB△≌△DFC(HL),∴∠B=∠C,∴AB∥CD(内错角相等,两直线平行).23.如图所示,在△ABC中,∠C=90°,∠BAC=60°,AB的垂直平分线DE交AB于D,交BC于E,若CE=3cm,求BE的长.【解答】解:∵∠C=90°,∠BAC=60°,∴∠B=90°﹣60°=30°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=30°,∴∠CAE=∠BAE,∴DE=CE=3cm,又∵∠B=30°,∴BE=2DE=2×3=6cm.24.如图,点B,C分别在∠A的两边上,点D是∠A内一点,DE⊥AB,DF⊥AC,垂足分别为E,F,且AB=AC,DE=DF.求证:BD=CD.【解答】证明:连接AD,∵DE⊥AB,DF⊥AC,DE=DF,∴∠BAD=∠CAD,在△ABD和△ACD中,∴△ABD≌△ACD,(SAS),∴BD=CD.25.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.【解答】解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.。
连云港市海州区四校2019-2020学年八年级上学期期中考试数学试题(含答案)
2019—2020学年度第一学期期中试卷八年级数学试卷(试卷:100分钟 总分:150分)一、选择题(每小题3分,满分24分。
每小题只有一个答案,请把正确答案填在表格中) 1.下列图形中,不是轴对称图形的是( )A .B .C .D .2..下列给出的三条线段的长,能组成直角三角形的是( )A .1 、 2 、3B .2 、 3、 4C .5、 7 、 9D .6、 8、 10 3. 如果等腰三角形两边长是9和4,那么它的周长是( )A .13B .17C .22D .17或224.如图,下列条件中,不能证明△ABD ≌△ACD 的是( ) A .AB=AC ,BD=CD B .∠B=∠C ,∠BAD=∠CAD C .∠B=∠C ,BD=CD D .∠ADB=∠ADC ,DB=DC5.如图,用直尺和圆规作一个角的平分线,是运用了“全等三角形的对应角相等”这一性质,由作图所得条件,判定三角形全等运用的方法是( )A .SSSB .ASAC .ASAD .ASA第6题图第7题图第5题图第8题图AB 第4题图6.如图,在△ABC 中,AB=AC ,D 为BC 中点,∠BA D=20°, 则∠C 的度数是( ) A.20 ° B.45° C. 60° D. 70°7.如图,在△ABC 中,CE 平分∠ACB,CF 平分∠ACD,且EF∥BC 交AC 于M ,若CM=3,则CE2+CF2的值为( )A.36B.9C. 6D.188.如图所示,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 等于( ) A.1 B.2 C. 3 D.4 二、填空题(每小题3分,共30分)9.如图,若△RtABC ≌Rt △ADE ,且∠B=60°,则∠E=___________°10、如图,∠ 1=∠ 2,要使△ABD ≌ △ ACD ,需添加的一个条件是__________. (只添一个)128厘米的圆柱形杯子中,则筷子露在杯子外面的长度至少为________厘米.12.如图,A 、E 、C 三点在一天直线上,△ABE ≌△CED ,∠A =∠C=90°,AB=3cm ,CD=7cm ,则AC= cm.13.如图,在△ABC 中,DE 是AC 的垂直平分线,AE=4cm ,△ABD 的周长为13cm ,则△ABC 的周长为 cm .第9题图 第12题图第10题图第14题图第15题图第13题图第11题图14.如图,△ABC≌△ADE,BC 的延长线经过点E ,交AD 于F ,∠AED=105°,∠CAD=10°,∠B=50°,则∠EAB= °15.如图,已知等边△ABC 中,BD=CE ,AD 与BE 相交于点P ,则∠APE 的度数是__________° 16.如图,△ABC 为等边三角形,BD⊥AB,BD=AB ,则∠DCB= °.17.如图,在三角形ABC 中,∠B=900,AB=3,AC=5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则BE 为 。
2019-2020学年山西省晋中市榆次区八年级(上)期中数学试卷(解析版)
2019-2020学年山西省晋中市榆次区八年级(上)期中数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.若(1,2)表示教室里第1列第2排的位置,则教室里第3列第2排的位置表示为()A.(2,3)B.(3,2)C.(2,1)D.(3,3)2.﹣的相反数为()A.B.﹣C.3D.﹣33.下列实数3.5,,0,﹣,,﹣π中,无理数的个数为()A.4B.3C.2D.14.若点A(m,n)在平面直角坐标系的第三象限,则点B(mn,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴5.一次函数y=1.5x+b(b<0)的图象可能是()A.B.C.D.6.今年的国庆70周年大阅兵,展示了我国强大的军力,是我国复兴崛起的直接表现,是我们每个中国人的骄傲.如图所示的是阅兵中轰炸机梯队的其中一部分飞行队形,如果A、B两架轰炸机的平面坐标分别是A(﹣1,1)和B(﹣1,﹣3),那么轰炸机C的平面坐标是()A.(1,﹣3)B.(3,﹣1)C.(﹣3,1)D.(﹣1,3)7.已知点(﹣4,y1),(2,y2)都在直线y=﹣2x+3上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较8.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是9、16、1、9,则最大正方形E的边长是()A.35B.C.70D.无法确定9.平面直角坐标系内AB∥y轴,AB=5,点A的坐标为(﹣5,3),则点B的坐标为()A.(﹣5,8)B.(0,3)C.(﹣5,8)或(﹣5,﹣2)D.(0,3)或(﹣10,3)10.如图,分别以数轴的单位长度1和2为直角边长作Rt△OBC,然后以点B为圆心,线段BC的长为半径画弧,交数轴于点A,那么点A所表示的数为()A.B.1+C.+2D.3.2二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:=.12.与最接近的整数是.13.如图,一只螳螂在一圆柱形松树树干的A点处,发现它的正上方B点处有一只小虫子,螳螂想捕到这只虫子,但又怕被发现,于是准备按如图所示的路线,绕到虫子后面吃掉它.已知树干的周长为40cm,A,B两点间的距离为30cm.若螳螂想吃掉B点处的小虫子,螳螂绕行的最短路程为cm.14.如图,将直线OA向上平移2个单位得到的一次函数图象解析式为.15.如图,分别以长方形OABC的边OC,OA所在直线为x轴、y轴,建立平面直角坐标系.已知AO=13,AB=5,点E在线段OC上,以直线AE为轴,把△OAE翻折,点O的对应点D恰好落在线段BC上.则点E的坐标为.三、解答题(本大题含8个小题,共55分)16.如图,在平面直角坐标系中,△ABC的顶点A,B,C均在正方形网格的格点上.(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)直接写出△A1B1C1各个顶点的坐标.17.求满足下列各式的未知数x:(1)(x+1)2=4(2)3x3=2718.计算:(1)(2)19.如果三条线段a、b、c满足|a﹣|++(c﹣)2=0,那么这三条线段组成的三角形是直角三角形吗?请说明理由.20.为庆祝祖国70华诞,某小区计划在一块面积为196m2的正方形空地上建一个面积为100m2的长方形花坛(长方形的边与正方形空地的边平行),要求长方形的长是宽的2倍.请你通过计算说明该小区能否实现这个愿望?21.在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)是燃烧时间x(h)的一次函数.某蜡烛的高度为30cm,燃烧3h后,蜡烛剩余部分的高度为12cm.(1)求蜡烛燃烧时y(cm)与x(h)之间的函数表达式;(2)求出蜡烛从点燃到燃尽所用的时间.22.国家推行“节能减排,低碳经济”政策后,某企业推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装费为b元,如图所示l1和l2分别表示每辆车的燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系.(1)哪条线表示每辆车改装后的燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系?(2)每辆车的改装费b=元,正常营运天后,就可以从节省的燃料费中收回改装成本;(3)每辆车改装前每天的燃料费为元;改装后每天的燃料费为元;(4)直接写出每辆车改装前、后的燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系式.23.综合与实践问题情境在学习了《勾股定理》和《实数》后,某班同学以“已知三角形三边的长度,求三角形面积”为主题开展了数学活动.操作发现“毕达哥拉斯”小组的同学想到借助正方形网格解决问题.如图1是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C、A,他们借助此图求出了△ABC的面积.(1)在图1中,所画的△ABC的三边长分别是AB=,BC=,AC=;△ABC的面积为.实践探究(2)在图2所示的正方形网格中画出△DEF(顶点都在格点上),使DE=,DF=,EF=,并写出△DEF的面积.继续探究“秦九韶”小组的同学想到借助曾经阅读的数学资料:已知三角形的三边长分别为a、b、c,求其面积,对此问题中外数学家曾经进行过深入研究.古希腊的几何学家海伦(Heron,约公元50年),在他的著作《度量》一书中,给出了求其面积的海伦公式我国南宋时期数学家秦九韶(约1202~1261),给出了著名的秦九韶公式(3)一个三角形的三边长依次为,,,请你从上述材料中选用适当的公式求这个三角形的面积.(写出计算过程)2019-2020学年山西省晋中市榆次区八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.若(1,2)表示教室里第1列第2排的位置,则教室里第3列第2排的位置表示为()A.(2,3)B.(3,2)C.(2,1)D.(3,3)【解答】解:类比(1,2)表示教室里第1列第2排的位置,则教室里第3列第2排的位置表示为(3,2).故选:B.2.﹣的相反数为()A.B.﹣C.3D.﹣3【解答】解:﹣的相反数为,故选:A.3.下列实数3.5,,0,﹣,,﹣π中,无理数的个数为()A.4B.3C.2D.1【解答】解:在3.5,,0,﹣,,﹣π中,无理数有:,﹣π共2个.故选:C.4.若点A(m,n)在平面直角坐标系的第三象限,则点B(mn,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴【解答】解:因为点A(m,n)在平面直角坐标系的第三象限,所以m<0,n<0,所以mn>0,所以点B(mn,0)横坐标是正数,纵坐标是0,符合点在x轴的正半轴上的条件.故选:A.5.一次函数y=1.5x+b(b<0)的图象可能是()A.B.C.D.【解答】解:∵一次函数y=1.5x+b(其中b<0),∴k=1.5>0,图象过点(0,b),∴该函数的图象经过第一、三、四象限,故选:A.6.今年的国庆70周年大阅兵,展示了我国强大的军力,是我国复兴崛起的直接表现,是我们每个中国人的骄傲.如图所示的是阅兵中轰炸机梯队的其中一部分飞行队形,如果A、B两架轰炸机的平面坐标分别是A(﹣1,1)和B(﹣1,﹣3),那么轰炸机C的平面坐标是()A.(1,﹣3)B.(3,﹣1)C.(﹣3,1)D.(﹣1,3)【解答】解:因为A(﹣1,1)和B(﹣1,﹣3),所以可得点C的坐标为(3,﹣1),故选:B.7.已知点(﹣4,y1),(2,y2)都在直线y=﹣2x+3上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【解答】解:∵点(﹣4,y1),(2,y2)在直线y=﹣2x+3上,∴y1=8+3=11,y2=﹣4+3=﹣1,∵11>﹣1,∴y1>y2.故选:A.8.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是9、16、1、9,则最大正方形E的边长是()A.35B.C.70D.无法确定【解答】解:正方形A、B、C、D的面积分别是9、16、1、9,由勾股定理得,正方形G的面积为:9+16=25,正方形H的面积为:1+9=10,则正方形E的面积为:25+10=35,最大正方形E的边长=,故选:B.9.平面直角坐标系内AB∥y轴,AB=5,点A的坐标为(﹣5,3),则点B的坐标为()A.(﹣5,8)B.(0,3)C.(﹣5,8)或(﹣5,﹣2)D.(0,3)或(﹣10,3)【解答】解:∵AB∥y轴,∴A、B两点横坐标都为﹣5,又∵AB=5,∴当B点在A点上边时,B(﹣5,8),当B点在A点下边时,B(﹣5,﹣2);故选:C.10.如图,分别以数轴的单位长度1和2为直角边长作Rt△OBC,然后以点B为圆心,线段BC的长为半径画弧,交数轴于点A,那么点A所表示的数为()A.B.1+C.+2D.3.2【解答】解:∵Rt△OBC中,OC=2,OB=1,∴BC==,∵以点B为圆心,线段BC的长为半径画弧,交数轴于点A,∴BA=BC=,∴OA=1+,∴点A所表示的数为1+,故选:B.二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:=5.【解答】解:原式=|﹣5|=5.故答案是:5.12.与最接近的整数是10.【解答】解:∵93=729,103=1000,∴9<9<10,729与900的距离大于1000与900的距离,∴与最接近的整数是10.故答案为:1013.如图,一只螳螂在一圆柱形松树树干的A点处,发现它的正上方B点处有一只小虫子,螳螂想捕到这只虫子,但又怕被发现,于是准备按如图所示的路线,绕到虫子后面吃掉它.已知树干的周长为40cm,A,B两点间的距离为30cm.若螳螂想吃掉B点处的小虫子,螳螂绕行的最短路程为50cm.【解答】解:把这段树干看成用纸卷成的圆柱,从AB处将它展开如下:则AB极为所为的最短距离.其中BC=30cm,AC=40cm,在RT△ACB中,AB===50(cm).答:螳螂绕行的最短路程是50cm.故答案为:50.14.如图,将直线OA向上平移2个单位得到的一次函数图象解析式为y=2x+2.【解答】解:可从直线OA上找两点:(0,0)、(2,4)这两个点向上平移2个单位得到的点是(0,2)(2,6),那么这两个点在将直线OA向上平移2个单位,得到一个一次函数的图象y=kx+b上,则b=2,2k+b=6解得:k=2.∴解析式为:y=2x+2.故答案为:y=2x+215.如图,分别以长方形OABC的边OC,OA所在直线为x轴、y轴,建立平面直角坐标系.已知AO=13,AB=5,点E在线段OC上,以直线AE为轴,把△OAE翻折,点O的对应点D恰好落在线段BC上.则点E的坐标为(2.6,0).【解答】解:设E(x,0),则OE=x,CE=5﹣x,在Rt△ABD中,AD=AO=13,AB=5,则BD=,∴CD=BC﹣BD=13﹣12=1,在Rt△ECD中,由勾股定理得,EC2+CD2=DE2,即(5﹣x)2+12=x2,解得x=2.6.故答案为(2.6,0).三、解答题(本大题含8个小题,共55分)16.如图,在平面直角坐标系中,△ABC的顶点A,B,C均在正方形网格的格点上.(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)直接写出△A1B1C1各个顶点的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求:(2)△A1B1C1各个顶点的坐标分别为:A1(0,1);B1(﹣3,3);C1(﹣1,4)17.求满足下列各式的未知数x:(1)(x+1)2=4(2)3x3=27【解答】解:(1)(x+1)2=4,∴x+1=±2,∴x=1或x=﹣3.(2)3x3=27,∴x3=9,∴x=.18.计算:(1)(2)【解答】解:(1)原式=﹣4=10﹣4;(2)原式=4﹣9×+×4=4﹣﹣=.19.如果三条线段a、b、c满足|a﹣|++(c﹣)2=0,那么这三条线段组成的三角形是直角三角形吗?请说明理由.【解答】解:这三条线段组成的三角形是直角三角形,理由是:∵三条线段a、b、c满足|a﹣|++(c﹣)2=0,∴a﹣=0,b﹣5=0,c﹣=0,∴a=,b=5,c=,∴a2+c2=b2,∴以a、b、c为边组成的三角形是直角三角形.20.为庆祝祖国70华诞,某小区计划在一块面积为196m2的正方形空地上建一个面积为100m2的长方形花坛(长方形的边与正方形空地的边平行),要求长方形的长是宽的2倍.请你通过计算说明该小区能否实现这个愿望?【解答】解:长方形花坛的宽为xm,长为2xm.2x•x=100,∴x2=50,∵x>0,∴x=,2x=2,∵正方形的面积=196m2,∴正方形的边长为14m,∵2>14,∴当长方形的边与正方形的边平行时,开发商不能实现这个愿望.长方形花坛如图放置,设宽为2xm,长为4xm.∵正方形ABCD的面积为196m2,∴AB=14(m),AC=14(m),由题意2x+4x=14,∴x=,∴长方形EFGH的面积=8x2≈87.1<100,∴开发商不能实现这个愿望.综上所述,开发商不能实现这个愿望.21.在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)是燃烧时间x(h)的一次函数.某蜡烛的高度为30cm,燃烧3h后,蜡烛剩余部分的高度为12cm.(1)求蜡烛燃烧时y(cm)与x(h)之间的函数表达式;(2)求出蜡烛从点燃到燃尽所用的时间.【解答】解:(1)设y与x的函数关系式为y=kx+b,,解得,即蜡烛燃烧时y与x之间的函数关系式是y=﹣6x+30(0≤x≤5);(2)令y=0时,0=﹣6x+30,解得,x=5,答:蜡烛从点燃到燃尽所用的时间是5h.22.国家推行“节能减排,低碳经济”政策后,某企业推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装费为b元,如图所示l1和l2分别表示每辆车的燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系.(1)哪条线表示每辆车改装后的燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系?(2)每辆车的改装费b=4000元,正常营运100天后,就可以从节省的燃料费中收回改装成本;(3)每辆车改装前每天的燃料费为90元;改装后每天的燃料费为50元;(4)直接写出每辆车改装前、后的燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系式.【解答】解:(1)根据图象可知l1表示每辆车改装后的燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系;(2)每辆车的改装费b=4000元,正常营运100天后,就可以从节省的燃料费中收回改装成本;故答案为:4000;100;(3)每辆车改装前每天的燃料费为9000÷100=90元;改装后每天的燃料费为(9000﹣4000)÷100=元;故答案为:90;50;(4)设改装前燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系式为y=k1x,根据题意得100k1=9000,解得k1=90,∴改装前燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系式为y=90x;设改装后燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系式为y=k2x+b,根据题意得,解得,∴改装后燃料费(含改装费)y(元)与正常运营时间x(天)之间的关系式为y=50x+4000.23.综合与实践问题情境在学习了《勾股定理》和《实数》后,某班同学以“已知三角形三边的长度,求三角形面积”为主题开展了数学活动.操作发现“毕达哥拉斯”小组的同学想到借助正方形网格解决问题.如图1是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C、A,他们借助此图求出了△ABC的面积.(1)在图1中,所画的△ABC的三边长分别是AB=5,BC=,AC=;△ABC的面积为.实践探究(2)在图2所示的正方形网格中画出△DEF(顶点都在格点上),使DE=,DF=,EF=,并写出△DEF的面积.继续探究“秦九韶”小组的同学想到借助曾经阅读的数学资料:已知三角形的三边长分别为a、b、c,求其面积,对此问题中外数学家曾经进行过深入研究.古希腊的几何学家海伦(Heron,约公元50年),在他的著作《度量》一书中,给出了求其面积的海伦公式我国南宋时期数学家秦九韶(约1202~1261),给出了著名的秦九韶公式(3)一个三角形的三边长依次为,,,请你从上述材料中选用适当的公式求这个三角形的面积.(写出计算过程)【解答】解:(1)AB==5,BC==,AC==,△ABC的面积=4×4﹣×3×4﹣×1×4﹣×3×1=,故答案为:5;;;;(2)画出△DEF如图所示:△DEF的面积=3×4﹣×3×2﹣×2×4﹣×2×1=4;(3)三边长依次为,,的三角形的面积==.。
山东省济宁市任城区2019-2020学年八年级(上)期中数学试卷含解析
2019-2020学年八年级(上)期中数学试卷一.选择题(共9小题)1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤32.下列各式中不是分式的是()A.B.C.D.3.下列由左到右的变形中属于因式分解的是()A.24x2y=3x•8xy B.m2﹣2m﹣3=m(m﹣2)﹣3C.m2﹣2m﹣3=(m﹣3)(m+1)D.(x+3)(x﹣3)=x2﹣94.某校5名同学在“国学经典颂读”比赛中,成绩(单位:分)分别是86,95,97,90,88,这组数据的中位数是()A.97 B.90 C.95 D.885.利用因式分解计算:2100﹣2101=()A.﹣2 B.2 C.2100D.﹣21006.把分式(x+y≠0)中的x,y都扩大3倍,那么分式的值()A.扩大为原来的3倍B.缩小为原来的C.扩大为原来的9倍D.不变7.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):则被遮盖的两个数据依次是()A.80,80 B.81,80 C.80,2 D.81,28.从甲地到乙地有两条同样长的路,一条是平路,另一条的是上山,是下山,如果上山的速度为平路速度的,平路速度是下山速度的,那么从甲地到乙地()A.走山路快B.走平路快C.走山路与平路一样快D.哪个快不能确定9.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0 B.1 C.2 D.3二.填空题(共5小题)10.已知x2+4mx+16能用完全平方公式因式分解,则m的值为.11.一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是.12.若,则=.13.关于x的方程的解为x=1,则a=.14.观察以下等式第1个等式:第2个等式:第3个等式:第4个等式:第5个等式:……按照以上规律,写出你猜想的第n个等式:.(用含n的等式表示).三.解答题(共2小题)15.分解因式(1)a2b﹣b;(2)﹣2x3+12x2﹣18x.16.计算下列各题(1).(2).17.解分式方程(1).(2).18.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 8890 97 95 90 95 88(1)根据上述数据,将下列表格补充完整.整理、描述数据:数据分析:样本数据的平均数、众数和中位数如下表得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.19.学习了因式分解的知识后,老师提出了这样一个向题:设n为整数,则(n+7)2﹣(n﹣3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.你能解答这个问题吗?20.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.(﹣)÷21.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)用含m,n的代数式表示所有裁剪线(图中虚线部分)的长度之和;(2)观察图形,发现代数式2m2+5mn+2n2可以因式分解为;(3)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求(m+n)2的值.22.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.23.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案与试题解析一.选择题(共9小题)1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤3【分析】本题主要考查分式有意义的条件:分母≠0.【解答】解:∵x﹣3≠0,∴x≠3.故选:C.2.下列各式中不是分式的是()A.B.C.D.【分析】根据分式的定义对四个选项进行逐一分析即可.【解答】解:A、分母中含有未知数,故是分式,故本选项错误;B、分母中不含有未知数,故不是分式,故本选项正确;C、分母中含有未知数,故是分式,故本选项错误;D、分母中含有未知数,故是分式,故本选项错误.故选:B.3.下列由左到右的变形中属于因式分解的是()A.24x2y=3x•8xy B.m2﹣2m﹣3=m(m﹣2)﹣3C.m2﹣2m﹣3=(m﹣3)(m+1)D.(x+3)(x﹣3)=x2﹣9【分析】根据因式分解的定义,逐个判断,得到正确结论.【解答】解:选项B和D都是和的形式,不是因式分解,选项A不是多项式的积的形式,不是因式分解;因为选项C是整式积的形式,符合因式分解的定义.故选:C.4.某校5名同学在“国学经典颂读”比赛中,成绩(单位:分)分别是86,95,97,90,88,这组数据的中位数是()A.97 B.90 C.95 D.88【分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答】解:将小明所在小组的5个同学的成绩重新排列为:86、88、90、95、97,所以这组数据的中位数为90分,故选:B.5.利用因式分解计算:2100﹣2101=()A.﹣2 B.2 C.2100D.﹣2100【分析】提取公因式2100,整理并计算即可.【解答】解:2100﹣2101=2100﹣2100•2=2100(1﹣2)=﹣2100.故选:D.6.把分式(x+y≠0)中的x,y都扩大3倍,那么分式的值()A.扩大为原来的3倍B.缩小为原来的C.扩大为原来的9倍D.不变【分析】把分式中的x换成3x,y换成3y,然后根据分式的基本性质进行化简即可.【解答】解:(x+y≠0)中的x,y都扩大3倍,那么分式的值扩大3倍,故选:A.7.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):则被遮盖的两个数据依次是()A.80,80 B.81,80 C.80,2 D.81,2【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【解答】解:根据题意得:80×5﹣(81+77+80+82)=80(分),则丙的得分是80分;众数是80,故选:A.8.从甲地到乙地有两条同样长的路,一条是平路,另一条的是上山,是下山,如果上山的速度为平路速度的,平路速度是下山速度的,那么从甲地到乙地()A.走山路快B.走平路快C.走山路与平路一样快D.哪个快不能确定【分析】本题中无路程量,可设为1;根据路程与速度、时间的等量关系可得代数式,解可得答案.【解答】解:设从甲地到乙地的路程为1,平路速度为x,则上山速度为x,下山的速度为2x,则走平路所用的时间:,走山路所用时间:+=;故选:C.9.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0 B.1 C.2 D.3【分析】根据题目中的式子,可以求得a﹣b、a﹣c、b﹣c的值,然后对所求式子变形,利用完全平方公式进行解答.【解答】解:∵a=2018x+2018,b=2018x+2019,c=2018x+2020,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣ac﹣bc=====3,故选:D.二.填空题(共5小题)10.已知x2+4mx+16能用完全平方公式因式分解,则m的值为±2 .【分析】利用完全平方公式的结构特征判断就确定出m的值.【解答】解:∵关于x的多项式x2﹣4mx+16能用完全平方公式进行因式分解,∴m=±2,故答案为:±2.11.一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是 5 .【分析】先利用中位数的定义得到a=4,然后根据平均线的计算方法计算这组数据的平均数.【解答】解:∵整数a是这组数据中的中位数,∴a=4,∴这组数据的平均数=(2.2+3.3+4.4+4+11.1)=5.故答案为5.12.若,则= 2 .【分析】灵活运用完全平方和公式的变形,x2+y2=(x+y)2﹣2xy,直接代入计算即可.【解答】解:∵,∴=(x+)2﹣2=4﹣2=2.故应填:2.13.关于x的方程的解为x=1,则a=﹣3 .【分析】根据方程的解的定义,把x=1代入方程,即可得到一个关于a的方程,即可求解.【解答】解:根据题意得:=,去分母得:4(2a+3)=3(a﹣1),解得:a=﹣3.故答案是:﹣3.14.观察以下等式第1个等式:第2个等式:第3个等式:第4个等式:第5个等式:……按照以上规律,写出你猜想的第n个等式:.(用含n的等式表示).【分析】根据已知等式得出规律即可.【解答】解:第1个等式:第2个等式:第3个等式:第4个等式:第5个等式:……第n个等式为:,故答案为:三.解答题(共2小题)15.分解因式(1)a2b﹣b;(2)﹣2x3+12x2﹣18x.【分析】(1)首先提取公因式,进而利用平方差公式进行分解即可;(2)首先提取公因式,进而利用完全平方公式进行分解即可【解答】解:(1)a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1);(2)﹣2x3+12x2﹣18x=﹣2x(x2﹣6x+9)=﹣2x(x﹣3)2.16.计算下列各题(1).(2).【分析】(1)根据分式的运算法则即可求出答案;(2)根据分式的运算法则即可求出答案;【解答】解:(1)原式=b(a﹣b)•=ab2;(2)原式=•=;17.解分式方程(1).(2).【考点】B3:解分式方程.【专题】522:分式方程及应用;66:运算能力.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x+4=3x,解得:x=4,经检验x=4是分式方程的解;(2)去分母得:x2+2x﹣1=x2﹣4,解得:x=﹣1.5,经检验x=﹣1.5是分式方程的解.18.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 8890 97 95 90 95 88(1)根据上述数据,将下列表格补充完整.整理、描述数据:数据分析:样本数据的平均数、众数和中位数如下表得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为91 分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.【考点】V5:用样本估计总体;W2:加权平均数;W4:中位数;W5:众数.【专题】542:统计的应用.【分析】(1)由题意即可得出结果;(2)由20×50%=10,结合题意即可得出结论;(3)由20×30%=6,即可得出结论.【解答】解:(1)由题意得:90分的有5个;97分的有3个;出现次数最多的是90分,∴众数是90分;故答案为:5;3;90;(2)20×50%=10,如果该校想确定七年级前50%的学生为“良好”等次,则“良好”等次的测评成绩至少定为91分;故答案为:91;(3)估计评选该荣誉称号的最低分数为97分;理由如下:∵20×30%=6,∴估计评选该荣誉称号的最低分数为97分.19.学习了因式分解的知识后,老师提出了这样一个向题:设n为整数,则(n+7)2﹣(n﹣3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.你能解答这个问题吗?【考点】54:因式分解﹣运用公式法.【专题】512:整式;66:运算能力.【分析】直接利用平方差公式将原式变形进而得出答案.【解答】解:(n+7)2﹣(n﹣3)2=[(n+7)+(n﹣3)][(n+7)﹣(n﹣3)]=10(2n+4)=20(n+2),故(n+7)2﹣(n﹣3)2的值一定能被20整除.20.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.(﹣)÷【考点】6D:分式的化简求值.【专题】513:分式.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式=[﹣]÷=[﹣]÷=•=x+2∵x﹣2≠0,x﹣4≠0,∴x≠2且x≠4,∴当x=﹣1时,原式=﹣1+2=1.21.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)用含m,n的代数式表示所有裁剪线(图中虚线部分)的长度之和;(2)观察图形,发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(3)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求(m+n)2的值.【考点】59:因式分解的应用.【专题】11:计算题.【分析】(1)根据整式的加减混合运算法则计算;(2)根据图形的面积的不同的表示方法解答;(3)变形完全平方公式,代入计算即可.【解答】解:(1)图中所有裁剪线(虚线部分)长度之和为:2(m+2n)+2(2m+n)=6m+6n =6(m+n);(2)2m2+5mn+2n2可以因式分解为:(m+2n)(2m+n),故答案为:(m+2n)(2m+n);(3)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49.22.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【考点】B7:分式方程的应用.【专题】522:分式方程及应用.【分析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.23.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】12:应用题.【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【解答】解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有=,解得:x=30.经检验,x=30是原方程的解,x+10=30+10=40.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11.答:他们最多可购买11棵乙种树苗.。
2019-2020学年北京人大附中八年级(上)期中数学试卷
2019-2020学年北京人大附中八年级(上)期中数学试卷一、选择题(每小题分,共30分)1.(3分)下列倡导节约的图案中是轴对称图形的是()A.B.C.D.2.(3分)分式有意义,x的取值范围是()A.x≠2B.x≠﹣2C.x=2D.x=﹣2 3.(3分)在下列运算中,正确的是()A.a3•a4=a12B.(ab2)3=a6b6C.(a3)4=a7D.a4÷a3=a4.(3分)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确5.(3分)如图,AB=AC=5,DB=DC,若∠ABC为60°,则BE长为()A.5B.3C.2.5D.26.(3分)如图,△ABC中,点D在BC边上,将点D分别以AB、AC为对称轴,画出对称点E、F,并连接AE、AF.根据图中标示的角度,可得∠EAF的度数为()A.108B.115C.122D.1307.(3分)如图(一),在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b),把余下的部分剪成一个矩形(如图(二)),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.(a+b)2=a2+2ab+b2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b28.(3分)如图,AD是△ABC的角平分线,作AD的垂直平分线EF交BC的延长线于F.下列结论不一定成立的是()A.AF=DF B.∠BAF=∠ACFC.BF⊥AC D.S△ABD:S△ACD=AB:AC9.(3分)已知a,b,c是△ABC的三边长,且满足a2+c2=2b(a+c﹣b),则此三角形是()A.等边三角形B.等腰三角形C.直角三角形D.无法确定10.(3分)在坐标系xOy中,已知点A(3,1)关于x轴、y轴的对称点分别为P、Q.若坐标轴上的点M恰使△MAP、△MAQ均为等腰三角形,则满足条件的点有()A.4个B.5个C.8个D.9个二、填空题(每空2分,共18分)11.(2分)分式的值为0,则x的值是.12.(2分)(a﹣2)0=1,则a的取值范围为.13.(2分)计算32019×()2018=.14.(2分)若(x+1)(kx﹣2)的展开式中不含有x的一次项,则k的值是.15.(2分)如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为.16.(2分)已知m+n=5,mn=2,则m3n﹣2m2n2+mn3的值为.17.(2分)在△ABC中,AB=AC,AD⊥BC,∠CBE=30°,若以C为圆心,CB长为半径画圆交BE延长线于F,且EF=6,则BF=.18.(2分)如图等腰△ABC中,AB=AC,M为其底角平分线的交点,将△BCM沿CM折叠,使B点恰好落在AC边上的点D处,若DA=DM,则∠ABC的度数为.19.(2分)在等边△ABC中,M、N、P分别是边AB、BC、CA上的点(不与端点重合),对于任意等边△ABC,下面四个结论中:①存在无数个△MNP是等腰三角形;②存在无数个△MNP是等边三角形;③存在无数个△MNP是等腰直角三角形;④存在一个△MNP在所有△MNP中面积最小.所有正确结论的序号是.三、解答题(21,22题,每小题,4分22-27题,每小题8分28题6分,共52分)20.(8分)分解因式:(1)3ma2﹣3mb2(2)4ax2﹣4ax+a21.(8分)计算:(1)x(1﹣x)+(x﹣2)(x+3)(2)(a+5b)(a﹣5b)﹣(a+2b)222.(5分)先化简,再求值:(5x3+3x2﹣x)÷x+(x﹣1)2﹣7,其中6x2+x=1.23.(5分)下面是小康设计的“过直线外一点作这条直线的垂线”的尺规作图过程.已知直线l及直线l外一点P.求作:直线l的垂线,使它经过点P.做法:如图,①以P为圆心,以大于P到直线l的距离的长度为半径画弧,交直线l于A、B两点;②连接PA、PB;③作∠APB的角平分线PQ.直线PQ即为所求.根据小康设计的尺规作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵PA=,PQ平分∠APB,∴PQ⊥l()(填推理的依据)24.(5分)如图,AC和BD相交于点O,且AB∥DC,OA=OB.求证:OC=OD.25.(5分)阅读:在一次数学活动中,“揭秘”学习小组发现:53×57=302138×32=121684×86=722471×79=5609这组计算蕴含着简算规律:十位数字相同,个位数字和为10的两个两位数相乘,结果末两位的是个位数字的乘积前几位是十位数字与十位数字加一的乘积.小乐同学用所学知识做了如下解释:将相同的十位数字设为a,个位数字为b,d,则•=(10a+b)(10a+d)=100a2+10a(b+d)+bd,∵b+d=10∴原式=100a2+100a+bd=100a(a+1)+bd.(1)请你利用小组发现的规律计算:63×67=;(2)小乐同学进一步思考,个位数字相同,十位数字之和为10的两个两位数相乘会不会也有简算规律呢?于是,小乐计算了35×75=2625,83×23=1909,48×68=3264,17×97=1649,但是还是没有发现规律,你能帮助小乐发现规律,并用所学知识解释吗?26.(5分)如图,在四边形ABCD中,对角线BD平分∠ABC,∠A=120°,∠C=60°,AB=17,AD=12.(1)求证:AD=DC;(2)求四边形ABCD的周长.27.(5分)等腰△ABC中,AB=AC,∠ACB>60°,点D为边AC上一点,满足BD=BC,点E与点B位于直线AC的同侧,△ADE是等边三角形.(1)①请在图1中将图形补充完整;②若点D与点E关于直线AB轴对称,∠ACB=;(2)如图2所示,若∠ACB=80°,用等式表示线段BA、BD、BE之间的数量关系,并说明理由.28.(6分)在平面直角坐标系xOy中,我们称横纵坐标都是整数的点为整点,若坐标系内两个整点A(p,q)、B(m,n)(m≤n)满足关于x的多项式x2+px+q能够因式分解为(x+m)(x+n),则称点B是A的分解点.例如A(3,2)、B(1,2)满足x2+3x+2=(x+1)(x+2),所以B是A的分解点.(1)在点A1(5,6)、A2(0,3)、A3(﹣2,0)中,请找出不存在分解点的点:;(2)点P、Q在纵轴上(P在Q的上方),点R在横轴上,且点P、Q、R都存在分解点,若△PQR面积为6,请直接写出满足条件的△PQR的个数及每个三角形的顶点坐标;(3)已知点D在第一象限内,D是C的分解点,请探究△OCD是否可能是等腰三角形?若可能请求出所有满足条件的点D的坐标;若不可能,请说明理由.2019-2020学年北京人大附中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题分,共30分)1.(3分)下列倡导节约的图案中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.(3分)分式有意义,x的取值范围是()A.x≠2B.x≠﹣2C.x=2D.x=﹣2【解答】解:根据题意得:x+2≠0,解得:x≠﹣2.故选:B.3.(3分)在下列运算中,正确的是()A.a3•a4=a12B.(ab2)3=a6b6C.(a3)4=a7D.a4÷a3=a【解答】解:A、底数不变指数相加,即a3•a4=a7,故A错误;B、积得乘方等于每个因式分别乘方,再把所得的幂相乘,即(ab2)3=a3b6,故B错误;C、底数不变指数相乘,即(a3)4=a12,故C错误;D、底数不变指数相减,即a4÷a3=a,故D正确;故选:D.4.(3分)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【解答】解:如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.5.(3分)如图,AB=AC=5,DB=DC,若∠ABC为60°,则BE长为()A.5B.3C.2.5D.2【解答】解:∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,A在BC的垂直平分线上,∴BC=AB=5,∵DB=DC,∴点D在BC的垂直平分线上,∴AD垂直平分BC,∴BE=BC=2.5.故选:C.6.(3分)如图,△ABC中,点D在BC边上,将点D分别以AB、AC为对称轴,画出对称点E、F,并连接AE、AF.根据图中标示的角度,可得∠EAF的度数为()A.108B.115C.122D.130【解答】解:如图,∵D点分别以AB、AC为对称轴,画出对称点E、F,∴∠EAB=∠BAD,∠FAC=∠CAD,∵∠B=61°,∠C=54°,∴∠BAC=∠BAD+∠DAC=180°﹣61°﹣54°=65°,∴∠EAF=2∠BAC=130°,故选:D.7.(3分)如图(一),在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b),把余下的部分剪成一个矩形(如图(二)),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.(a+b)2=a2+2ab+b2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b2【解答】解:由题意可得:(a﹣b)(a+b)=a2﹣b2.故选:B.8.(3分)如图,AD是△ABC的角平分线,作AD的垂直平分线EF交BC的延长线于F.下列结论不一定成立的是()A.AF=DF B.∠BAF=∠ACFC.BF⊥AC D.S△ABD:S△ACD=AB:AC【解答】解:A、∵EF是AD的垂直平分线,∴AF=DF,故选项A不符合题意;B、∵AF=DF,∴∠DAF=∠ADF,∵AD是△ABC的角平分线,∴∠BAD=∠CAD,∵∠DAF=∠CAD+∠CAF,∠ADF=∠BAD+∠B,∴∠B=∠CAF,∵∠BAF=∠BAC+∠CAF,∠ACF=∠BAC+∠B,∴∠BAF=∠ACF,故选项B不符合题意;C、根据已知不能得出BF⊥AC,故选项C符合题意;D、∵AD是△ABC的角平分线,∴点D到AB和AC的距离相等,:S△ACD=AB:AC,∴S△ABD故选:C.9.(3分)已知a,b,c是△ABC的三边长,且满足a2+c2=2b(a+c﹣b),则此三角形是()A.等边三角形B.等腰三角形C.直角三角形D.无法确定【解答】解:∵a2+c2=2b(a+c﹣b),∴a2+c2+b2+b2﹣2ba﹣2bc=0,∴(a﹣b)2+(b﹣c)2=0,∴a=b=c,∴△ABC是等边三角形,故选:A.10.(3分)在坐标系xOy中,已知点A(3,1)关于x轴、y轴的对称点分别为P、Q.若坐标轴上的点M恰使△MAP、△MAQ均为等腰三角形,则满足条件的点有()A.4个B.5个C.8个D.9个【解答】解:如图,AQ=AM1,AQ=AM5,AQ=AM2,QA=QM4,AM3=QM3,故坐标轴上的点M恰使△MAP、△MAQ均为等腰三角形,则满足条件的点有5个,故选:B.二、填空题(每空2分,共18分)11.(2分)分式的值为0,则x的值是1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.12.(2分)(a﹣2)0=1,则a的取值范围为a≠2.【解答】解:(a﹣2)0=1,∴a﹣2≠0,a≠2,故答案为a≠2.13.(2分)计算32019×()2018=3.【解答】解:原式=(3×)2018×3=3.故答案为:3.14.(2分)若(x+1)(kx﹣2)的展开式中不含有x的一次项,则k的值是2.【解答】解:(x+1)(kx﹣2),=kx2﹣2x+kx﹣2,=kx2+(k﹣2)x﹣2,∵不含有x的一次项,∴k﹣2=0,解得:k=2.故答案为:2.15.(2分)如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为19cm.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19cm.16.(2分)已知m+n=5,mn=2,则m3n﹣2m2n2+mn3的值为34.【解答】解:∵m+n=5,mn=2,∴m3n﹣2m2n2+mn3=mn(m2﹣2mn+n2)=mn[(m+n)2﹣4mn]=2×(52﹣4×2)=2×(25﹣8)=2×17=34,故答案为:34.17.(2分)在△ABC中,AB=AC,AD⊥BC,∠CBE=30°,若以C为圆心,CB长为半径画圆交BE延长线于F,且EF=6,则BF=9.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD,∠ADB=90°,设BD=CD=x,则BC=2x,∴CF=BC=2x,∵∠CBE=30°,∴BE=x,∵EF=6,∴BF=6+x,过C作CH⊥BF于H,∴BF=2BH=2FH,∴BH=3+x,CH=BC=x,∵BH2+CH2=BC2,∴(3+x)2+x2=(2x)2,解得:x=(负值舍去),∴BF=6+x=9,故答案为:9.18.(2分)如图等腰△ABC中,AB=AC,M为其底角平分线的交点,将△BCM沿CM折叠,使B点恰好落在AC边上的点D处,若DA=DM,则∠ABC的度数为72°.【解答】解:∵M为其底角平分线的交点,∴AM平分∠BAC,∵AB=AC,∴∠ABC=∠ACB,设∠A=2x,则∠DAM=x,∠MBC=∠MCB=45°﹣x,∵DA=DM,∴∠DAM=∠DMA,由折叠的性质可得:∠MDC=∠MBC=45°﹣x,则∠ADM=180°﹣∠MDC=135°+x,在△ADM中,∠DAM+∠DMA+∠ADM=180°,即x+x+135°+x=180°,解得:x=18°,则∠A=2x=36°.∴∠ABC=72°,故答案为:72°.19.(2分)在等边△ABC中,M、N、P分别是边AB、BC、CA上的点(不与端点重合),对于任意等边△ABC,下面四个结论中:①存在无数个△MNP是等腰三角形;②存在无数个△MNP是等边三角形;③存在无数个△MNP是等腰直角三角形;④存在一个△MNP在所有△MNP中面积最小.所有正确结论的序号是①②③.【解答】解:如图1中,满足AM=BN=PC,可证△PMN是等边三角形,这样的三角形有无数个.如图2中,当NM=NP,∠MNP=90°时,△MNP是等腰直角三角形,这样的三角形有无数个(见图3).故①②③正确,△PNM的面积不存在最小值.故答案为①②③.三、解答题(21,22题,每小题,4分22-27题,每小题8分28题6分,共52分)20.(8分)分解因式:(1)3ma2﹣3mb2(2)4ax2﹣4ax+a【解答】解:(1)原式=3m(a2﹣b2)=3m(a+b)(a﹣b);(2)原式=a(4x2﹣4x+1)=a(2x﹣1)2.21.(8分)计算:(1)x(1﹣x)+(x﹣2)(x+3)(2)(a+5b)(a﹣5b)﹣(a+2b)2【解答】解:(1)原式=x﹣x2+x2+3x﹣2x﹣6=2x﹣6;(2)原式=a2﹣25b2﹣(a2+4b2+4ab)=a2﹣25b2﹣a2﹣4b2﹣4ab=﹣29b2﹣4ab.22.(5分)先化简,再求值:(5x3+3x2﹣x)÷x+(x﹣1)2﹣7,其中6x2+x=1.【解答】解:原式=5x2+3x﹣1+x2﹣2x+1﹣7=6x2+x﹣7,当6x2+x=1时,原式=1﹣7=﹣6.23.(5分)下面是小康设计的“过直线外一点作这条直线的垂线”的尺规作图过程.已知直线l及直线l外一点P.求作:直线l的垂线,使它经过点P.做法:如图,①以P为圆心,以大于P到直线l的距离的长度为半径画弧,交直线l于A、B两点;②连接PA、PB;③作∠APB的角平分线PQ.直线PQ即为所求.根据小康设计的尺规作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵PA=,PQ平分∠APB,∴PQ⊥l(等腰三角形底边上的高线与顶角平分线互相重合)(填推理的依据)【解答】解:(1)如图所示,直线PQ即为所求.(2)证明:∵PA=PB,PQ平分∠APB,∴PQ⊥l(等腰三角形底边上的高线与顶角平分线互相重合).故答案为:PB,等腰三角形底边上的高线与顶角平分线互相重合.24.(5分)如图,AC和BD相交于点O,且AB∥DC,OA=OB.求证:OC=OD.【解答】证明:∵AO=BO,∴∠A=∠B,∵DC∥AB,∴∠D=∠B,∠C=∠A,∴∠C=∠D,∴CO=DO.25.(5分)阅读:在一次数学活动中,“揭秘”学习小组发现:53×57=302138×32=121684×86=722471×79=5609这组计算蕴含着简算规律:十位数字相同,个位数字和为10的两个两位数相乘,结果末两位的是个位数字的乘积前几位是十位数字与十位数字加一的乘积.小乐同学用所学知识做了如下解释:将相同的十位数字设为a,个位数字为b,d,则•=(10a+b)(10a+d)=100a2+10a(b+d)+bd,∵b+d=10∴原式=100a2+100a+bd=100a(a+1)+bd.(1)请你利用小组发现的规律计算:63×67=4221;(2)小乐同学进一步思考,个位数字相同,十位数字之和为10的两个两位数相乘会不会也有简算规律呢?于是,小乐计算了35×75=2625,83×23=1909,48×68=3264,17×97=1649,但是还是没有发现规律,你能帮助小乐发现规律,并用所学知识解释吗?【解答】解:(1)由规律得,63×67=100×6×(6+1)+3×7=4200+21=4221,故答案为:4221;(2)规律:个位数字相同,十位数字和为10的两个两位数相乘,结果末两位的是个位数字的平方(或乘积),前几位是十位数字的乘积与与个位数字的和.理由:设将相同的个位数字设为m,十位数字分别为p,q,则p+q=10,∴•=(10p+m)(10q+m)=100pq+10pm+10qm+m2=100pq+10m(p+q)+m2=100pq+100m+m2=100(pq+m)+m2,即:个位数字相同,十位数字和为10的两个两位数相乘,结果末两位的是个位数字的平方(或乘积),前几位是十位数字的乘积与与个位数字的和.26.(5分)如图,在四边形ABCD中,对角线BD平分∠ABC,∠A=120°,∠C=60°,AB=17,AD=12.(1)求证:AD=DC;(2)求四边形ABCD的周长.【解答】证明:(1)在BC上取一点E,使BE=AB,连接DE.∵BD平分∠ABC,∴∠ABD=∠CBD.在△ABD和△EBD中,∴△ABD≌△EBD(SAS);∴DE=AD=12,∠BED=∠A,AB=BE=17,∵∠A=120°,∴∠DEC=60°.∵∠C=60°,∴∠DEC=∠C.∴DE=DC,∴AD=DC.(2)∵∠C=60°,DE=DC,∴△DEC为等边三角形∴EC=CD=AD.∵AD=12,∴EC=CD=12,∴四边形ABCD的周长=17+17+12+12+12=70.27.(5分)等腰△ABC中,AB=AC,∠ACB>60°,点D为边AC上一点,满足BD=BC,点E与点B位于直线AC的同侧,△ADE是等边三角形.(1)①请在图1中将图形补充完整;②若点D与点E关于直线AB轴对称,∠ACB=75°;(2)如图2所示,若∠ACB=80°,用等式表示线段BA、BD、BE之间的数量关系,并说明理由.【解答】解:(1)①根据题意,补全图形如图1所示,②当点D与点E关于直线AB轴对称时,∴AB⊥DE,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAC=∠DAE=30°,∵AB=AC,∴∠ACB=(180°﹣∠BAC)=75°,故答案为75°;(2)如图2,在BA上取一点F,使BF=BD,DE与AB的交点记作点H,∵△ADE是等边三角形,∴AD=ED,∠EAD=∠AED=60°,在△ABC中,AB=AC,∠ACB=80°,∴∠ABC=∠ACB=80°,∴∠BAC=180°﹣∠ACB﹣∠ABC=20°,∴∠BAE=∠DAE﹣∠BAC=40°,在△BCD中,BC=BD,∴∠BDC=∠ACB=80°,∴∠DBC=180°﹣∠ACB﹣∠BDC=20°,∴∠ABD=∠ABC﹣∠DBC=60°,∵BF=BD,∴△BDF是等边三角形,∵∠AED=∠ABD=60°,∠AHE=∠BHD,∴∠BDE=∠BAE=40°,∴∠BDF=60°,BD=FD=BF,∴∠ADF=180°﹣∠BDC﹣∠BDF=40°,∵DE=AD,∴△BDE≌△FDA(SAS),∴FA=BE,∴BA=BF+FA=BD+BE.28.(6分)在平面直角坐标系xOy中,我们称横纵坐标都是整数的点为整点,若坐标系内两个整点A(p,q)、B(m,n)(m≤n)满足关于x的多项式x2+px+q能够因式分解为(x+m)(x+n),则称点B是A的分解点.例如A(3,2)、B(1,2)满足x2+3x+2=(x+1)(x+2),所以B是A的分解点.(1)在点A1(5,6)、A2(0,3)、A3(﹣2,0)中,请找出不存在分解点的点:A2;(2)点P、Q在纵轴上(P在Q的上方),点R在横轴上,且点P、Q、R都存在分解点,若△PQR面积为6,请直接写出满足条件的△PQR的个数及每个三角形的顶点坐标;(3)已知点D在第一象限内,D是C的分解点,请探究△OCD是否可能是等腰三角形?若可能请求出所有满足条件的点D的坐标;若不可能,请说明理由.【解答】解:(1)对于A1(3,2),x2+3x+2=(x+1)(x+2),故B1(1,2)是A1的分解点.对于A3(﹣2,0),x2﹣2x=x(x﹣2),故B3(0,﹣2)是A3的分解点.点A2不存在分解点.故答案为A2.(2)∵P,Q在纵轴上,P,Q都存在分解点,∴P,Q的纵坐标只能是0,﹣1,﹣4,﹣16,当R1(1,0)时,∵△PQR的面积为6,∴PQ=12,∵P在Q的上方,∴P1(0,﹣4),Q1(0,﹣16),同法当R2(﹣1,0)时,可得P2(0,﹣4),Q2(0,﹣16),当R3(3,0)时,可得P3(0,0),Q3(0,﹣4),不符合题意;当R4(﹣3,0)时,可得P4(0,0),Q4(0,﹣4),不符合题意;当R5(4,0)时,可得P5(0,﹣1),Q5(0,﹣4),当R6(﹣4,0)时,可得P6(0,﹣1),Q6(0,﹣4),当R7(12,0)时,可得P7(0,0),Q7(0,﹣1),不符合题意;当R8(﹣12,0)时,可得P8(0,﹣1),Q8(0,﹣4),综上所述,△PQR的个数为4.(3)如图,设D(m,n),则m,n是正整数,∵(x+m)(x+n)=x2+(m+n)x+mn且D为C的分解点,∴C(m+n,mn).当m=1时,D(1,n),C(n+1,n),此时OC>OD>CD,不可能构成等腰三角形.当m≠1时,则m+n>m,mn>m,则点C必在直线x=m,y=n相交直线的右上角区域,此时OC>OD,OC>CD,若△OCD为等腰三角形,只可能OD=CD,如图,过C作CN⊥直线y=n,过点D作DM⊥x轴于M.在Rt△ODM和Rt△CDN中,DM=DN=n,若OD=CD,则Rt△ODM≌Rt△CDN(HL),∴DM=CN,即m=mn﹣n,此式子可以化为(m﹣1)(n﹣1)=1,∵m,n为正整数,∴m=2,n=2,即D(2,2),C(4,4),此时O,C,D共线,△OCD不存在,综上所述,△OCD不可能为等腰三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年八年级上学期数学期中考试试卷新版
一、单选题 (共10题;共20分)
1. (2分)若a、b、c是△ABC的三边的长,则化简|a﹣b﹣c|﹣|b﹣c﹣a|+|a+b﹣c|=()
A . a+b+c
B . ﹣a+3b﹣c
C . a+b﹣c
D . 2b﹣2c
2. (2分) (2018九上·大连月考) 三角形两边的长分别是和,第三边的长是一元二次方程的一个实数根,则该三角形的周长是()
A .
B . 或
C .
D . 或
3. (2分)下列三角形:
①有两个角等于60°的三角形;
②有一个角等于60°的等腰三角形;
③三个外角(每个顶点处各取一个外角)都相等的三角形;
④一腰上的中线也是这条腰上的高的等腰三角形.
其中是等边三角形的有()
A . ①②③
B . ①②④
C . ①③
D . ①②③④
4. (2分) (2015九上·武昌期中) 平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()
A . (3,﹣2)
B . (2,3)
C . (﹣2,﹣3)
D . (2,﹣3)
5. (2分)(2017·营口模拟) 下列图形中,是轴对称图形,但不是中心对称图形的是()
A .
B .
C .
D .
6. (2分)(2019·鄞州模拟) 三角形的两边长分别是4,7,则第三边长不可能是()
A . 4
B . 6
C . 10
D . 12
7. (2分) (2016八上·兖州期中) 如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()
A . 140米
B . 150米
C . 160米
D . 240米
8. (2分) (2019八上·天台月考) 用直角三角板,作△ 的高,下列作法正确的是
A .
B .
C .
D .
9. (2分) (2018八上·柳州期末) 如图,线段AC与BD交于点0,且OA=OC,请添加一个条件,使△AOB≌△COD,这个条件是()
A . AC=BD
B . OD=OC
C . ∠A=∠C
D . OA=OB
10. (2分) (2016八上·滨州期中) 如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB 交BC于D,DE⊥AB于E且AB=6cm,则△DEB的周长为()cm.
A . 6
B . 8
C . 10
D . 12
二、填空题 (共10题;共18分)
11. (1分) (2017七下·南江期末) 如图,在△ABC中,∠C=70°,沿图中虚线截去∠C,则∠1+∠2=________.
12. (1分) (2019七下·泰兴期中) 如图,CE⊥AF,垂足为E,CE与BF相交于点D,∠F=45°,∠DBC=105°,则∠C=________.
13. (1分) (2019八上·嘉荫期中) 如图,已知∠1=∠2,若以“SAS”为依据,使△ABC≌△BAD,还要添加条件是________.
14. (1分)已知Rt△ABC,∠B=60°,AB=1,把斜边BC放在直角坐标系的x轴上,且顶点A在反比例函数y=的图象上,则点C的坐标为________.
15. (5分) (2018八上·临安期末) 如图,在平面直角坐标系中,点P(﹣1,2)关
于直线x=1的对称点的坐标为________.
16. (1分) (2017七下·桥东期中) 三角形的线段中能将一个三角形的面积分成相等两部分的是________.
17. (1分) (2019七上·西安月考) 上午9点30分时,时钟的时针和分针所夹的较小的角是________度.
18. (5分) (2017九上·大庆期中) 已知点A(-4,m)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点的坐标为________.
19. (1分) (2019八上·下陆月考) 如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=________度.
20. (1分) (2018九上·宁都期中) 如图,⊙O的直径垂直于弦CD,垂足为E,∠A=15°,半径为2,则CD的长为 ________.
三、解答题 (共10题;共55分)
21. (5分)(2019·陕西模拟) 如图,已知∠AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN(保留作图痕迹,不写作法)
22. (5分)如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC 的延长线上,求证:AE=CF.
23. (10分) (2018九上·宜城期中) 如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.
(1)在图1中,画出一个与△ABC成中心对称的格点三角形;
(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;
(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.
24. (5分) (2018八下·昆明期末) 如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.求证:AE=CF.
25. (5分) (2019八下·许昌期中) 如图,是的边的中点,连接并延长交的延长线于,若,求的长.
26. (5分) (2018八上·广东期中) 已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.
27. (5分) (2019八上·台安月考) 如图,点A、C在直线EF上,BC=AD,AB=CD,AE=CF.求证:∠E=∠F.
28. (5分) (2019八上·渝中期中) 如图,在△ABC中,∠A=72°,∠BCD=31°,CD 平分∠ACB.
(1)求∠B的度数;
(2)求∠ADC的度数.
29. (5分) (2018八上·罗山期末) 如图,在□ABCD中,AE⊥BD于E,CF⊥BD于F,连接AF,CE.求证:AF=CE.
30. (5分)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF.
(1)求证:△ABE≌△CBF;
(2)若∠CAE=15°,AE=2,求△ACF的周长.
参考答案
一、单选题 (共10题;共20分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
7、答案:略
8、答案:略
9、答案:略
10、答案:略
二、填空题 (共10题;共18分)
11、答案:略
12、答案:略
13、答案:略
14、答案:略
15、答案:略
16、答案:略
17、答案:略
18、答案:略
19、答案:略
20、答案:略
三、解答题 (共10题;共55分)
21、答案:略
22、答案:略
23、答案:略
24、答案:略
25、答案:略
26、答案:略
27、答案:略
28、答案:略
29、答案:略
30、答案:略
第11 页共11 页。