中考数学复习考点知识与典型题解析01---垂直模型中的相似及变形

合集下载

2021年中考复习讲义初中几何典型模型一:一线三垂直模型

2021年中考复习讲义初中几何典型模型一:一线三垂直模型

初中数学典型模型之一: “三垂直模型”介绍总体解题思路:只要出现此典型图形,一般都要证三角形全等或相似,再根据全等或相似性质解题.(一)基本图形: 1.“三垂”例1.如图,矩形ABCD 中,E 在AD 上,且EF ⊥EC ,EF=EC ,DE=2,矩形的周长为16,则AE=__ 解析:如图1,典型的“三垂直模型”,由于有等边(EF=EC )先证△AEF ≌△DCE , ∴AE=DC ,∴AD-DC=2,∵AD+DC=8,∴AD=5,DC=3,∴AE=3例2.一块矩形木板ABCD ,长AD=3cm,宽AB=2cm,小虎将一块等腰直角三角板的一条直角边靠在顶点C 上,另一条直角边与AB 边交于点E ,三角板的直角顶点P 在AD 边上移动(不含端点A,D ),当线段BE 最短时,AP=_______解析:如图1,典型的“三垂直模型”,由于没有等边,先证△AEP ∽△DPC , ∴AP CD=AE PD。

当题目出现线段最值时,初三的数学中有两种解题方法:①几何论证方法;②代数论证方法-----通过设未知数,把几何中的线段关系转化成二次函数形式,运用二次函数求最值的方法解题;(详见“动态问题下求线段长”),此题可采用代数论证方法,设BE =y,AP =x ,∴x2=2−y 3−x, ∴y =x 2−3x +4=(x −32)2+74, ∴a =1>0 , ∴x =32时,y 最小值=742.两种变化图形(1)“交叉型”三垂直模型 (2)“L 型”三垂直模型A BC DEF 图1PA BCD E 证明:∵∠1+∠2=90°,∠2+∠A=90°,∴∠1=∠A 又∵∠B=∠C ,若其中有一组边相等,则证ABE ≅ECD;若没有边相等,则证ABE ~ECD;21AB CED证明:∵∠1+∠2=90°,∠2+∠A=90°,∴∠1=∠A 又∵∠B=∠C ,若其中有一组边相等,则证ABE ≅FCD;若没有边相等,则证ABE ~FCD;21A BF E DC(1)若有等边,则△ABE≌△BDC(AAS )(2)若无等边,则△ABE∽△BDC(AA )EDCBA例3.如图,已知正方形ABCD 的边长为4,点E 、F 分别在边AB 、BC 上,且AE=BF=1,则OC= .解析:求线段长,要么用勾股定理,要么用相似,不管走勾股定理,还是相似,都绕不过先求出∠DOC=90°,当把这个90°标在图形时,就出现“三垂直模型的变化图形—交叉型三垂直模型”,如图1,由于有等边(BC=CD ),先证△BCE ≌△CDF ,∴∠BCE =∠CDF ,∵∠BCE +∠OCD =90°,∴∠CDF +∠OCD =90°,∴∠DOC =90°;这时图形又出现了第二个典型图形:“双垂型图形”,如图2,便易得这个典型图形的一个典型的用途----两直角边的乘积会等于斜边乘以斜边上的高。

最全相似模型专题(中考数学必考)

最全相似模型专题(中考数学必考)

几何模型09——相似模型三角形相似是每一年中考必考的知识点,相似模型主要包括:“A”型和“X”型相似,母子模型相似(共边共角型),一线三等角,双垂直模型和旋转相似,中考命题者经常把这些模型放在圆,四边形,或函数图象当中,特别要留意母子模型相似的一种特殊情况:射影定理中的知二求四和一线三垂直(k型相似),下面对这些类型做如下总结:一、“A”型和“X”型相似例1.如图,在△ABC中,点D是AC上的点,且AD=2CD,过D作DE∥BC交AB于E,过D作DF∥AB交BC于F.(1)若BC=15,求线段DE的长.(2)若△ADE的面积为16,求△CDF的面积.变式1.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.变式2.如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.变式3.如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD于点E,交半圆O于点F.已知CE=12,BE=9.(1)求证:△COD∽△CBE.(2)求半圆O的半径r的长.变式4.如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.(1)求证:直线BC是⊙O的切线;(2)若AC=2CD,设⊙O的半径为r,求BD的长度.变式5.如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN 交AC于O.(1)求证:△COM∽△CBA;(2)求线段OM的长度.变式6.如图,已知AB为⊙O的直径,F为⊙O上一点,AC平分∠BAF且交⊙O于点C,过点C作CD⊥AF于点D,延长AB、DC交于点E,连接BC、CF.(1)求证:CD是⊙O的切线;(2)若AD=6,DE=8,求BE的长;变式7.如图,在△ABC中,∠C=90°,点O在CB上,⊙O经过点C,且与AB相切于点D,与CB的另一个交点为E.(1)求证:DE∥OA;(2)若AB=10,tan∠DEO=2,求⊙O的半径.例2.如图,在Rt△ABC中,∠A=90°,AC=9,BC=15.(1)求BC边上的高AD的长度;(2)正方形的一边FG在BC上,另两个顶点E、H分别在边AB、AC上,求正方形EFGH 的边长.(相似比等于高之比)例3.如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O于D、C 两点.求证:PA•PB=PD•PC(割线定理);变式1.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.变式2.如图,以△ABC 的边BC 为直径的⊙O 分别交AB ,AC 于点D ,E ,且点E 是的中点,连接DE .(1)求证:△ABC 是等腰三角形.(2)若BC =10,CE =6,求线段AD 的长.变式3.如图,在△ABC 中,AB =AC ,以AB 为直径的半圆O 分别交BC ,AC 于点D ,E ,连结EB ,OD ,DE .(1)求证:OD ⊥EB .(2)若DE =,AB =10,求AE 的长.例4.如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点,BD 与CE 交于点O ,连接DE . 求证:2OE CO OD BO ==变式1.如图,AB 、CD 相交于点O ,连接AC 、BD ,点E 、F 分别为AC 、BD 的中点,连接OE 、OF ,若∠A =∠D ,OA =OF =6,OD =9,求OE 的长.变式2.如图,已知圆O,弦AB、CD相交于点M.(1)求证:AM•MB=CM•MD;(相交弦定理)(2)若M为CD中点,且圆O的半径为3,OM=2,求AM•MB的值.变式3.如图,在⊙O中,弦AB、CD相交于点P,且PD<PC.(1)求证:△P AD∽△PCB;(2)若P A=3,PB=8,CD=10,求PD.例5.如图,过△ABC的边AC的中点D作直线交AB于E,交BC的延长线于F.求证:=;(梅捏劳斯定理特殊情况)变式1.如图,已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE.DE 交AC于点F,试证明:AB•DF=BC•EF.变式2.如图,△ABC中,D为BC的中点,过D的直线交AC于E,交AB的延长线于F.求证:=.变式3.如图,△ABC中,D是BC边的中点,过点D的直线交AB于点E,交AC的延长线于点F,且BE=CF.求证:AE=AF.二、共边共角型相似例1.如图,在△ABC中,D为BC边上的一点,且∠CAD=∠B.(1)求证:;(2)若AC=2,BC=4,设△ADC面积为S1,△ABD面积为S2,求证:S2=3S1.变式1.如图,在△ABC中,D为边AB上一点,∠ACD=∠B,若AC=6,BC=5,CD=4,求AD,AB的长.变式2.如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.变式3.如图,在Rt△ABC中,∠C=90°,以AB上一点O为圆心,OA的长为半径作⊙O,交AC、AB分别于D,E两点,连接BD,且∠A=∠CBD.若CD=1,BC=2,求AD 的长度.例2.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:AG2=GE•GF.变式1.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于点E,交BA的延长线于点F.(1)求证:PC2=PE•PF;(2)若菱形边长为8,PE=2,EF=6,求FB的长.例3.如图,CD是⊙O的切线,点C在直径AB的延长线上.(切割线模型)(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.变式1.如图,O为线段PB上一点,以O为圆心,OB长为半径的⊙O交PB于点A,点C 在⊙O上,连接PC,满足PC2=P A•PB.若AB=3P A,求的值.例4.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.(1)(射影定理)求证:AC2=AD•AB;BC2=BD•BA;CD2=AD•BD;(2)若AD=2,DB=8,求AC,BC,CD的长;(知二求四)(3)若AC=6,DB=9,求AD,CD,BC的长;(知二求四)(4)求证:AC•BC=AB•CD.(等面积法)变式1.如图,AB是⊙O的直径,点C是圆上一点,连接AC和BC,过点C作CD⊥AB于点D.若CD=4,BD=3,求⊙O的半径长.(直径所对的圆周角为直角)变式2.如图,在Rt△ABC中,∠BAC=90°,∠BAD=∠C,点D在BC边上,以AD为直径的⊙O交AB于点E,交AC于点F.已知:AB=6,AC=8,求AF的长.变式3.在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,点E是边BC的中点,连结DE.(1)求证:DE是⊙O的切线;(2)若AD=4,BD=9,求⊙O的半径.例4.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.(射影定理知二求四)(3)若AB=5CE,求tan∠ACB的值.(射影定理知二求四)变式1.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求证:DF是⊙O的切线;(2)若AC=2DE,求tan∠ABD的值.三、双垂直例1.如图,在矩形ABCD中,点E在边BC上,AF⊥DE,垂足为F,AD=4,CE=2,DE =2,求DF的长.变式1.如图,点P是正方形ABCD边AD上一点,Q是边BC延长线上一点,若AB=12,P A=5,PQ⊥BP.求CQ的长.变式2.如图,△ABC中,BD、CE分别是AC、AB边上的高,若AE=5,AD=6,CD=2.求EB的长.变式3.如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.四、一线三等角例1.已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;例2.如图,E是正方形ABCD的边AB上的点,过点E作EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)若AB=6,AE=2,求线段CF的长.变式1.如图,将一个直角的顶点P放在矩形ABCD的对角线BD上滑动,并使其一条直角边始终经过点A,另一条直角边与边BC相交于点E.且AD=8,DC=6,则=.五、旋转相似例1.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.变式1.如图,△ABC和△CEF中,AB=BC,CF=EF,∠CBA=∠CFE=90°,E在△ABC 内,∠CAE+∠CBE=90°,连接BF.(1)求证:△CAE∽△CBF;(2)若BE=1,AE=2,求EF的长.。

中考数学专题复习全等三角形之垂直模型

中考数学专题复习全等三角形之垂直模型

中考数学专题复习全等三角形(垂直模型)学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、单选题1.如图,在△ABC 中,∠BAC =45°,CD ∠AB 于点D ,AE ∠BC 于点E ,AE 与CD 交于点F ,连接BF ,DE ,下列结论中:∠AF =BC ;∠∠DEB =45°,∠AE =CE +2BD ,∠若∠CAE =30°,则1AF BFAC+=,正确的有( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠∠2.如图,在平面直角坐标系中,点A 、B 分别在x 轴的负半轴和正半轴上,以AB 为边向上作正方形ABCD ,四边形OEFG 是其内接正方形,若直线OF 的表达式是y =2x ,则ABCDOEFGS S 正方形正方形的值为( )A .43B .85C .169D .943.如下图所示,在∠ABC 中,∠ACB=90°,AC=BC ,BE∠CE 于点E ,AD∠CE 于点D .DE=6cm ,AD=9cm ,则BE 的长是( )A .6cmB .1.5cmC .3cmD .4.5cm评卷人得分二、填空题 4.如图,在∠ABC 中,∠ACB =90°,以AC ,BC 和AB 为边向上作正方形ACED 和正方形BCMI 和正方形ABGF ,点G 落在MI 上,若AC +BC =7,空白部分面积为16,则图中阴影部分的面积是 _____.5.已知:如图,AE ∠AB ,且AE =AB ,BC ∠CD 且BC =CD ,根据图中所标注的数据,可求得阴影部分的面积为_______.6.如图,ABC 中,,90,(0,3), (1,0)AC BC ACB A C =∠=︒,则点B 的坐标为________.评卷人 得分三、解答题 7.如图1,在平面直角坐标中,点()0,A m ,(),0B m ,()0,m C -,其中0m >,点P 为线段OA 上任意一点,连接BP ,CE BP ⊥于E ,AD BP ⊥于D .(1)求证:AD BE =;(2)当3m =时,若点()3,0N -,请你在图1中连接CD ,EN 交于点Q .求证:EN CD ⊥;(3)若将“点P 为线段OA 上任意一点”,改为“点P 为线段OA 延长线上任意一点”,其他条件不变,连接CD ,EN CD ⊥,垂足为F ,交y 轴于点H ,交x 轴于点N ,请在图2中补全图形,求点N 的坐标(用含m 的代数式表示).8.如图,在ABC 中,AD BC ⊥,BE AC ⊥交AD 于点F ,且BD AD =.(1)求证:BDF ADC ≅.(2)若F 为AD 的中点,且1DC =.求AC 的长.9.如图1,正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF∠DE,垂足为点F,BF与CD相交于点G.(1)求证:∠BCG∠∠DCE;(2)如图2,连接BD,若BE=42,DG=22,求tan∠DBG的值.10.如图1,在ABC中,90ACB∠=︒,AC BC=,直线MN经过点C,且AD MN⊥于D,BE MN⊥于E.(1)由图1,证明:DE AD BE=+;(2)当直线MN绕点C旋转到图2的位置时,请猜想出DE,AD,BE的等量关系并说明理由;(3)当直线MN绕点C旋转到图3的位置时,试问DE,AD,BE又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).11.如图所示,ABC 中,AB AC =,90BAC ∠=︒,点D 为AB 上一点,过点B 作直线CD 的垂线,垂足为E ,连接AE ,过点A 作AE 的垂线交CE 于点F .(1)如图1,求AEC ∠的度数;(2)如图2,连接BF ,且15ABF EAB ∠-∠=︒,求证:2BF CF =;(3)如图3,在(2)的条件下,G 为DF 上一点,连接AG ,若AGD EBF ∠=∠,2AG =,求CF 的长.12.已知:Rt △ABC 中,∠ACB =90°,AC =BC .(1)如图1,点D 是BC 边上一点(不与点B ,C 重合),连接AD ,过点B 作BE ∠AD ,交AD 的延长线于点E ,连接CE .∠若∠BAD =α,求∠DBE 的大小(用含α的式子表示); ∠用等式表示线段EA ,EB 和EC 之间的数量关系,并证明.(2)如图2,点D 在线段BC 的延长线上时,连接AD ,过点B 作BE ∠AD ,垂足E 在线段AD 上,连接CE . ∠依题意补全图2;∠直接写出线段EA ,EB 和EC 之间的数量关系.13.已知:ABC 中,90ACB ∠=︒,AC CB =,D 为直线BC 上一动点,连接AD ,在直线AC 右侧作AE AD ⊥,且AE AD =.(1)如图1,当点D 在线段BC 上时,过点E 作EH AC ⊥于H ,连接DE .求证:EH AC =;(2)如图2,当点D 在线段BC 的延长线上时,连接BE 交CA 的延长线于点M .求证:BM EM =;(3)当点D 在直线CB 上时,连接BE 交直线AC 于M ,若25AC CM =,请求出ADB AEMS S △△的值.14.如图1所示,已知ABC 中,90,ACB AC BC ∠=︒=,直线m 经过点C ,过A 、B 两点分别作直线m 的垂线,垂足分别为E 、F .(1)如图1,当直线m 在A 、B 两点同侧时,求证:EF AE BF =+;(2)若直线m 绕点C 旋转到图2所示的位置时(BF AE <),其余条件不变,猜想AE,BF的关系如何?直接写出猜想结论,不需证明.15.如图,己知ABC中,AB AC=,90BAC∠=︒,分别过B、C向过A的直线作垂线,垂足分别为E、F.(1)如图1,过A的直线与斜边BC不相交时,直接写出线段EF、BE、CF的数量关系是______;(2)如图2,过A的直线与斜边BC相交时,探究线段EF、BE、CF的数量关系并加以证明;(3)在(2)的条件下,如图3,直线FA交BC于点H,延长BE交AC于点G,连接BF、FG、HG,若AHB GHC∠=∠,6EF CF==,2EH FH=,四边形ABFG的面积是90,求GHC的面积.16.在ABC中,AB BC=,90B∠=︒,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结E C.(1)如果点D在线段BC上运动,如图1:求证:BAD EDC∠=∠(2)如果点D在线段BC上运动,请写出AC与CE的位置关系.通过观察、交流,小明形成了以下的解题思路:过点E作EF BC⊥交直线BC于F,如图2所示,通过证明DEF ABD≌△△,可推证CEF△等腰直角三角形,从而得出AC与CE的位置关系,请你写出证明过程.(3)如果点D在线段CB的延长线上运动,利用图3画图分析,(2)中的结论是否仍然成若成立,请证明;若不成立,请说明理由.17.直线y kx k=+与x轴交于A,与y轴交于C点,直线BC的解析式为1y x kk=-+,与x轴交于B.(1)如图1,求点A的横坐标;(2)如图2,D为BC延长线上一点,过D作x轴垂线于点E,连接CE,若CD CA=,设ACE的面积为S,求S与k的函数关系式;(3)如图3,在(2)的条件下,连接OD交AC于点F,将CDF沿CF翻折得到△FCG,直线FG交CE于点K,若345ACE CDO∠-∠=︒,求点K的坐标.18.抛物线213:222L y x x=--与x轴交于、A B,与y交于C.(1)求,,A B C三点坐标,并直接写出ABC的面积;(2)将抛物线L绕平面内一点旋转180︒,得到L',点B的对应点为E,点C对应点为F,是否存在抛物线L',使得以,,,B C E F为顶点的四边形为矩形,且矩形面积为ABC面积的4倍?若存在,求出L'的表达式,若不存在请说明理由.19.如图,AB=BC,AB∠BC,AE∠BD于F,BC∠CD,求证:EC=AB-CD.20.如图,点C在线段BD上,且AB∠BD,DE∠BD,AC∠CE,BC=DE,求证:AB=CD.参考答案:1.B【解析】【分析】∠∠只要证明∠ADF∠∠CDB即可解决问题.∠如图1中,作DM∠AE于M,DN∠BC于N,易证∠DMF∠∠DNB,四边形DMEN是正方形,想办法证明AE−CE=BC+EF−EC=EF+BE=2DN<2BD,即可.∠如图2中,延长FE到H,使得FH=FB.连接HC、BH.想办法证明∠BFH是等边三角形,AC=AH即可解决问题.【详解】解:∠AE∠BC,∠∠AEC=∠ADC=∠CDB=90°,∠∠AFD=∠CFE,∠∠DAF=∠DCB,∠AD=DC,∠∠ADF∠∠CDB,∠AF=BC,DF=DB,故∠正确,∠∠DFB=∠DBF=45°,取BF的中点O,连接OD、OE.∠∠BDF=∠BEF=90°,∠OE=OF=OB=OD,∠E、F、D、B四点共圆,∠∠DEB=∠DFB=45°,故∠正确,如图1中,作DM∠AE于M,DN∠BC于N,∠∠ADF∠∠CDB,∠AFD CBD=,∠=∠,DF DB∠90∠=∠=︒,FMD BND∠∠DMF∠∠DNB,∠DM DN=,∠90∠=∠=∠=︒,DME MEN END∠四边形DMEN是矩形,∠DM DN=,∠四边形DMEN是正方形,∠MF=BN,EM=EN,∠EF+EB=EM−FM+EN+NB=2EM=2DN,∠AE−CE=BC+EF−EC=EF+BE=2DN<2BD,∠AE−CE<2BD,即AE<EC+2BD,故∠错误,如图2中,作DM∠AE于M,DN∠BC于N.∠∠DMF∠∠DNB,四边形DMEN是正方形,∠FM=BN,EM=EN=DN,∠EF+EB=EM−MF+EN+BN=2EN=2DN≤2BD,∠AE−EC=ADF+EF−EC=BC_EF−EC=EF+BE≤2BD,∠AE≤EC+2BD,故∠错误,如图2中,延长FE到H,使得FH=FB.连接HC、BH.∠∠CAE=30°,∠CAD=45°,∠ADF=90°,∠∠DAF=15°,∠AFD=75°,∠∠DFB=45°,∠∠AFB=120°,∠∠BFH=60°,∠FH=BF,∠∠BFH 是等边三角形,∠BF =BH ,∠BC ∠FH ,∠FE =EH ,∠CF =CH ,∠∠CFH =∠CHF =∠AFD =75°,∠∠ACH =75°,∠∠ACH =∠AHC =75°,∠AC =AH ,∠AF +FB =AF +FH =AH ,∠AF +BF =AC ,故∠正确,故选:B .【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考选择题中的压轴题.2.B【解析】【分析】根据正方形性质易得GBO FCG ≅,从而可得CG BO =、FC GB =,设OB =a ,BG =b ,可得F 点坐标为(,)a b a b -+,根据F 点在直线OF 上,可求出3a b =,然后即可根据正方形面积和勾股定理求出面积比.【详解】解:在正方形ABCD ,正方形OEFG 中,90OBG OGF GCF ∠=∠=∠=︒,FG OG =, ∠90OGB GOB OGB CGF ∠+∠=∠+∠=︒, ∠ GOB CGF ∠=∠,在GBO 和△FCG 中, OBG GCF GOB FGC OG FG ∠=∠⎧⎪∠=∠⎨⎪=⎩∠GBO FCG ≅(AAS )∠CG BO =、FC GB =,设CG BO a ==、FC GB b ==,∠BC BG CG a b =+=+,HF OB FC a b =-=-,∠点F 坐标为(,)a b a b -+,∠直线OF 的表达式是y =2x ,∠2()a b a b -=+,∠3a b =,∠2222()(3)16ABCD BC a b b S b b ==+=+=正方形,OEFG S 正方形=22222222(3)10OG OB BG a b b b b =+=+=+=,∠22168105ABCD OEFG S b S b ==正方形正方形, 故选B .【点睛】本题主要考查了一次函数与几何综合,解题关键是根据正方形性质求证GBO FCG≅(AAS ),从而用参数表示点F 坐标,再直线OF 解析式求出线段之间关系.3.C【解析】【分析】本题可通过全等三角形来求BE 的长.∠BEC 和∠CDA 中,已知了一组直角,∠CBE 和∠ACD 同为∠BCE 的余角,AC=BC ,可据此判定两三角形全等;那么可得出的条件为CE=AD ,BE=CD ,因此只需求出CD 的长即可.而CD 的长可根据CE 即AD 的长和DE 的长得出,由此可得解.【详解】解:∠∠ACB=90°,BE∠CE ,∠∠BCE+∠ACD=90°,∠BCE+∠CBE=90°;∠∠ACD=∠CBE ,又AC=BC ,∠∠ACD∠∠CBE ;∠EC=AD ,BE=DC ;∠DE=6cm ,AD=9cm ,则BE 的长是3cm .故选C .【点睛】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.4.995【解析】【分析】根据余角的性质得到FAC ABC ∠=∠,根据全等三角形的性质得到FAH ABN S S =,推出ABC FNCH S S ∆=四边形,根据勾股定理得到222AC BC AB +=,解方程组得到665ABC S =,接着由图可知空白部分为重叠部分,阴影部分为非重叠部分,所以2倍的空白部分与阴影部分面积和等于三个正方形与三角形面积和.结合665BC AC =即可得出结论.依此即可求解.【详解】解:如图,四边形ABGF 是正方形,90FAB AFG ACB ∴∠=∠=∠=︒,90FAC BAC FAC ABC ∴∠+∠=∠+∠=︒,FAC ABC ∴∠=∠,()FAH ABN ASA ∴≅,FAH ABN S S ∴=,3=ABC FNCH S S S ∴=四边形,∠316ABGF S S S =-=正方形空白,即216ABC AB S-=,21162AB AC BC ∴-⋅=, 在ABC 中,90ACB ∠=︒,222AC BC AB ∴+=,7AC BC +=,222()249AC BC AC BC AC BC ∴+=++⋅=,2249AB AC BC ∴+⋅=,665BC AC ∴⋅=, 阴影部分的面积和= 三个正方形面积+三角形面积-2倍空白部分面积=2222112()22AB AC BC AC BC AB AC BC +++-- 32AC BC =36625=⨯ 995=. 故答案为:995. 【点睛】 本题考查勾股定理的知识,有一定难度,解题关键是将勾股定理和正方形的面积公式进行灵活的结合和应用.5.50【解析】【分析】由AE ∠AB ,EF ∠FH ,BG ∠AG ,可以得到∠EAF =∠ABG ,而AE =AB ,∠EF A =∠AGB ,由此可以证明∠EF A ∠∠ABG ,所以AF =BG ,AG =EF ,同理证得∠BGC ∠∠DHC ,GC =DH ,CH =BG .故FH =F A +AG +GC +CH =3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.【详解】解:∠AE ∠AB 且AE =AB ,EF ∠FH ,BG ∠FH ,∠∠EAB =∠EF A =∠BGA =90°,∠∠EAF +∠BAG =90°,∠ABG +∠BAG =90°,∠∠EAF =∠ABG ,∠AE =AB ,∠EF A =∠AGB ,∠EAF =∠ABG ,∠∠EF A ∠∠ABG (AAS ),∠AF =BG ,AG =EF同理证得:∠BGC ∠∠DHC (AAS ),得GC =DH ,CH =BG故FH =F A +AG +GC +CH =3+6+4+3=16,故22AEF DHC EFHD S S SS =--梯形, 即:S 12=(6+4)×16﹣3×4﹣6×3=50. 故答案为:50.【点睛】此题考查了全等三角形的判定与性质、等腰直角三角形的性质,熟练掌握相关基本性质是解题的关键.6.(4,1)【解析】【分析】 如图,过点B 作BD ∠x 轴于D ,根据点A 、点C 坐标可得OA 、OC 的长,根据同角的余角相等可得∠OAC =∠DCB ,利用AAS 可证明∠OAC ∠∠DC B ,根据全等三角形的性质可得BD =OC ,CD =OA ,即可求出OD 的长,进而可得答案.【详解】如图,过点B 作BD ∠x 轴于D ,∠A (0,3),C (1,0),∠OA =3,OC =1,∠∠ACB =90°,∠∠OCA +∠DCB =90°,∠∠OAC +∠OCA =90°,∠∠OAC =∠DCB ,在∠OAC 和∠DC B 中,AOC CDB OAC DCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠OAC ∠∠DC B ,∠BD =OC =1,CD =OA =3,∠OD =OC +CD =4,∠点B 坐标为(4,1).故答案为:(4,1)【点睛】本题考查坐标与图形及全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题关键.7.(1)见解析;(2)见解析;(3)见解析,(),0m -【解析】【分析】(1)先根据点()0,A m ,(),0B m ,()0,C m -,得到OA OB OC m ===,则由三线合一定理得到,AB BC =,证明90ABC ∠=,推出CBE BAD ∠=∠即可证明ABD BCE ≅,得到AD BE =;(2)先根据点()3,0N -,得到3OA OB OC ON ====,则6AC BN ==,再证明DAC EBN ∠=∠,即可利用SAS 证明DAC EBN ≅△△得到ACD BNE ∠=∠,再由NGF CGO ∠=∠,可以推出90NFG COG ∠=∠=,即CD EN ⊥;(3)同样先证明CBE BAD ∠=∠,推出ABD BCE ≅,得到AD BE =,即可得到CAD NBE ∠=∠,再由90NOH CFH ∠=∠=,OHN FHC ∠=∠,得到ACD BNE ∠=∠,则ACD BNE ≅△△,推出2AC BN m ==.【详解】证明:(1)如图1,∠点()0,A m,(),0B m,()0,C m-,∠OA OB OC m===,∠OB AC⊥,∠AB BC=,∠∠AOB=∠AOC=90°,∠45BAC BCA ABO CBO∠=∠=∠=∠=,∠90ABC∠=,∠AD BP⊥,CE BP⊥,∠90ABC D CEB∠=∠=∠=∠90ABD CBE ABD BAD∠+∠=∠+∠=,∠CBE BAD∠=∠,∠()ABD BCE AAS≅,∠AD BE=;(2)如图2,由(1)得ABD BCE≅,∠AD BE=,∠3m=,点()3,0N-,∠3OA OB OC ON====,∠6AC BN==,∠CBE BAD∠=∠,45BAC CBO∠=∠=,∠BAD BAC CBE CBO∠-∠=∠-∠,∠DAC EBN∠=∠,又∠BE=AD,AC=BN,∠()DAC EBN SAS ≅△△∠ACD BNE ∠=∠, ∠NGF CGO ∠=∠,∠90NFG COG ∠=∠=,∠CD EN ⊥;(3)如图3,由(1)得OA OB OC m ===,AB BC =,45BAC CBO ∠=∠=,90ABC ∠=,∠AD BP ⊥,CE BP ⊥,∠90ABC ADB CEB ∠=∠=∠=,∠90ABD CBE ABD BAD ∠+∠=∠+∠=, ∠CBE BAD ∠=∠,∠()ABD BCE AAS ≅,∠AD BE =,∠BAC BAD CBO CBE ∠+∠=∠+∠,∠CAD NBE ∠=∠,∠EN CD ⊥,x 轴y ⊥轴,∠90NOH CFH ∠=∠=,∠OHN FHC ∠=∠,∠ACD BNE ∠=∠,∠()ACD BNE AAS ≅△△∠2AC BN m ==,∠点N 的坐标为(),0m -.【点睛】本题主要考查了坐标与图形,全等三角形的性质与判定,等腰直角三角形的性质与判定等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.8.(1)见解析;(2)5AC =【解析】【分析】(1)根据题意先推出∠CAD =∠FBD ,从而结合题意,利用“ASA ”证明即可; (2)结合(1)的结论以及题意,求出AD 的长度,然后根据勾股定理求出AC 即可得出结论.【详解】(1)证:∠AD BC ⊥,BE AC ⊥,∠∠BDF =∠ADC =∠FEA =90°,∠∠AFB =∠CAD +∠FEA =∠FBD +∠BDF ,∠∠CAD =∠FBD ,在△BDF 和△ADC 中,FBD CAD BD ADBDF ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∠()BDF ADC ASA ≌;(2)∠BDF ADC ≌,∠DF =DC ,∠F 为AD 的中点,1DC =,∠AD=2DF=2DC=2,∠在Rt△ADC中,225AC AD DC=+=,∠5AC=.【点睛】本题考查全等三角形的判定与性质,以及勾股定理解三角形,掌握全等三角形的判定与性质,熟练运用勾股定理是解题关键.9.(1)见解析;(2)12【解析】【分析】(1)由正方形的性质结合已知条件,利用ASA判定三角形全等即可;(2)过点G作GH∠BD垂足为H,由全等求得CG=CE,进一步结合图形求得BC和CG 的长,然后在RT∠BDC中求得GH和BH的长,最后在RT∠BHG中,利用tan∠DBG=HGBH,即可求得答案.【详解】(1)证明:∠四边形ABCD是正方形,∠∠BCG=∠DCE=90°,BC=CD,∠BF∠DE,∠∠DFG=∠BCG=90°,∠∠BGC=∠DGF,∠∠CBG=∠CDE.在∠BCG和∠DCE中,CBG CDE BC CDBCG DCE∠=∠⎧⎪=⎨⎪∠=∠⎩,∠∠BCG∠∠DCE,(2)解:过点G作GH∠BD垂足为H,∠∠BCG ∠∠DCE ,∠CG =CE ,∠BE =BC +CE =42,DG =CD ﹣CG =22,∠BC =CD =32,CG =CE =2,在RT ∠BDC 中,∠∠BCD =90°,∠BD =22CD BC +=()()2232326+=,∠∠DHG =45°,∠DHG =90°,DG =22,∠sin 45DH DG ︒==22, ∠DH =2,∠GH =DH =2,∠BH =BD ﹣DH ,∠BH =6﹣2=4,在RT ∠BHG 中,∠∠BHG =90°,∠tan∠DBG =HG BH, ∠tan∠DBG =12【点睛】本题考查三角形全等的证明,直角三角形中锐角三角函数的定义等相关知识点,熟练掌握数形结合思想解题是重点.10.(1)证明见解析;(2)DE AD BE =-,证明过程见解析;(3)DE BE AD =-,证明过程见解析【解析】【分析】(1)先证明∠ADC ∠∠CEB ,得到AD=CE ,DC=BE ,进而得到DE=CE+DC=AD+BE 即可;(2)同(1)中思路,证明∠ADC ∠∠CEB ,进而得到DE=CE -DC=AD -BE 即可;(3)同(1)中思路,证明∠ADC ∠∠CEB ,进而得到DE=DC -CE=BE -AD 即可.【详解】解:(1)证明:在ABC 中,∠90ACB ∠=︒,∠90ACD BCE ∠+∠=︒,∠AD MN ⊥,∠90ACD CAD ∠+∠=︒,∠BCE =∠∠CAD ,又∠AC BC =,90ADC CEB ∠=∠=,∠()≌ADC CEB AAS ,∠AD CE =,DC BE =,∠直线MN 经过点C ,∠DE CE DC AD BE =+=+;(2)DE ,AD ,BE 的等量关系为:DE AD BE =-,理由如下:∠AD MN ⊥于D ,BE MN ⊥于E∠90ADC BEC ACB ∠=∠=∠=︒,∠90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒, ∠CAD BCE ∠=∠,在ADC 和CEB △中90CAD BCE ADC BEC AC CB ∠=∠⎧⎪∠=∠=⎨⎪=⎩,∠()ADC CEB AAS △≌△∠CE AD =,CD BE =,∠DE CE CD AD BE =-=-;(3)当MN 旋转到图3的位置时,DE 、AD 、BE 所满足的等量关系是DE BE AD =-,理由如下:∠AD MN ⊥于D ,BE MN ⊥于E∠90ADC BEC ACB ∠=∠=∠=︒,∠90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒,∠CAD BCE ∠=∠,在ADC 和CEB △中90CAD BCE ADC BEC AC CB ∠=∠⎧⎪∠=∠=⎨⎪=⎩,∠()ADC CEB AAS △≌△∠CE AD =,CD BE =,∠DE CD CE BE AD =-=-.【点睛】本题考查了全等三角形的判定方法、等腰直角三角形的性质及等角的余角相等等知识点,熟练掌握三角形全等的判定方法是求解的关键.11.(1)45°;(2)见解析;(3)2【解析】【分析】(1)先证明,EAB FAC ∠=∠,AEB AFC ∠=∠再证明,ABE ACF ≅△△再利用全等三角形的性质结合等腰直角三角形的性质可得答案;(2)利用全等三角形的性质先求解60EBF ∠=︒,证明,BE CF = 再求解30EFB ∠=︒,从而可得结论;(3)如图,过A 作AM EF ⊥于,M 交BF 于,N 连接,EN 证明BEN 为等边三角形,再证明AGM ENM ≅△△,再利用全等三角形的性质可得答案.【详解】解:(1) 90BAC ∠=︒,,AE AF ⊥90,90,EAB DAF DAF FAC EAF ∴∠+∠=∠+∠=︒∠=︒,EAB FAC ∴∠=∠,BE CE ⊥90,BED ∴∠=︒90,AEB BED AEF AEF AFC ∴∠=∠+∠=︒+∠=∠ 即,AEB AFC ∠=∠∴ ABE ACF ≅,∴ AE AF =,45AEC ∠=︒.(2) ABE ACF ≅,,,ABE ACF BE CF ∴∠=∠=∴9045135,AEB AFC∠=∠=︒+︒=︒45,EBA EAB∴∠+∠=︒15ABF EAB∠-∠=︒,15,ABF EAB∴∠=︒+∠1560, EBF EBA ABF EBA EAB∴∠=∠+∠=∠+∠+︒=︒906030,BFE∴∠=︒-︒=︒∠2BF BE=,∠BE CF=,∠2BF CF=.(3)如图,过A作AM EF⊥于,M交BF于,N连接,EN ,,,AE AF AM EF AE AF=⊥⊥,,EM MF AM NE NF∴===30,NEF NFE∴∠=∠=︒60,ENB NEF NFE∴∠=∠+∠=︒60,EBN ENB∴∠=∠=︒∴BEN为等边三角形,120,ENF∠=︒∴12BE BN BF FN EN====,60,AGD EBF∠=∠=︒,AM EF⊥160,2ENM ENF ∴∠=∠=︒ ,90,60,AM EM AMG EMN AGM ENM =∠=∠=︒∠=∠=︒∴ AGM ENM ≅△△,∠2AG EN ==,∠2CF BE ==.【点睛】本题考查的是全等三角形的判定与性质,等腰三角形的性质,直角三角形斜边上的中线等腰斜边的一半,等边三角形的判定与性质,含30的直角三角形的性质,熟练的应用以上知识解题的关键.12.(1)∠∠DBE =45°﹣α;∠AE ﹣BE 2=EC ,证明见解析;(2)∠补全图形见解析;∠EB ﹣EA 2=EC .【解析】【分析】(1)∠根据等腰直角三角形的性质得到∠CAB =45°,即可求出∠CAD =45α-.根据三角形的内角和即可求出∠DBE =∠CAD =45α-;∠过点C 作CR ∠CE 交AE 于R ,然后证明∠ACR ∠∠BCE ,得到AR =BE ,CR =CE ,即可得到∠CER 是等腰直角三角形,ER 2=CE ,由此即可求解;(2)∠根据题目要求作图即可;∠过点C 作CF ∠CE ,交AD 的延长线于点F .根据三角形的内角和定理得到∠CAF =∠CBE ,证明∠ACF ∠∠BCE .根据全等三角形的性质有AF =BE ,CF =CE .根据等腰直角三角形的性质有EF =2EC .则有 AF -EA =2EC ,即可求出线段EA ,EB 和EC 之间的数量关系.【详解】解:(1)∠如图1中,∠∠ACB =90°,AC =BC ,∠∠CAB =45°,∠∠BAD =α,∠∠CAD =45°﹣α.∠∠ACB =90°,BE ∠AD ,∠ADC =∠BDE ,∠∠DBE =∠CAD =45°﹣α;∠结论:AE ﹣BE 2=EC .理由:如图,过点C 作CR ∠CE 交AE 于R .∠∠ACB =∠RCE =90°,∠∠ACR =∠BCE ,∠∠CAR +∠ADC =90°,∠CBE +∠BDE =90°,∠ADC =∠BDE ,∠∠CAR =∠CBE ,在∠ACR 和∠BCE 中,ACR BCE CA CBCAR CBE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ACR ∠∠BCE (ASA ),∠AR =BE ,CR =CE ,∠∠CER 是等腰直角三角形,∠ER 2=CE ,∠AE ﹣BE =AE ﹣AR =ER 2=EC .(2)∠补全图形,如图2所示:∠猜想:当D在BC边的延长线上时,EB﹣EA2=EC;理由如下:过点C作CF∠CE,交AD的延长线于点F,如图3所示:则∠ECF=90°,∠∠ACB=90°,∠∠ACD=90°,∠∠ECF+∠ACE=∠ACB+∠ACE,即∠ACF=∠BCE,∠∠CAF+∠ADB=90°,∠CBE+∠ADB=90°,∠∠CAF=∠CBE,在∠ACF和∠BCE中,ACF BCEAC BCCAF CBE∠=∠⎧⎪=⎨⎪∠=∠⎩,∠∠ACF∠∠BCE(ASA),∠AF=BE,CF=CE.∠∠ECF=90°,∠∠CEF 是等腰直角三角形,∠EF 2=EC ,即AF ﹣EA 2=EC .∠EB ﹣EA 2=EC .【点睛】考查等腰直角三角形的性质,三角形的内角和定理,全等三角形的判定与性质等,难度一般,掌握全等三角形的判定定理是解题的关键.13.(1)见解析;(2)见解析;(3)43或47 【解析】【分析】(1)由“AAS ”可证AHE DCA △≌△,可得EH =AC ,即可求证;(2)过点E 作EN AC ⊥,交CA 延长线于N ,由“AAS ”可证△≌△ANE DCA ,可得AC =EN =BC ,由“AAS ”可证△≌△ENM BCM ,可得BM =EM ;(3)5AC a =,2CM a =,分三种情况:当点D 在线段BC 上,点D 在线段BC 的延长线上,点D 在线段CB 的延长线上,由全等三角形的性质可求得相应线段的长,再由三角形的面积公式可求解.【详解】证明(1)∠AE AD ⊥,90ACB ∠=︒,∠90∠=︒-∠EAH CAD ,90∠=︒-∠ADC CAD ,EAH ADC ∴∠=∠, 在AHE 与DCA △中90AHE ACB EAH ADCAE AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()AHE DCA AAS ∴△≌△,EH AC ∴=;(2)如图2,过点E 作EN AC ⊥,交CA 延长线于N ,∠AE AD ⊥,90ACB ∠=︒, ∠90∠=︒-∠EAN CAD ,90∠=︒-∠ADC CAD , EAN ADC ∴∠=∠, 在ANE 与DCA △中, 90ANE DCA ENA ACD AN AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()△≌△∴ANE DCA AAS , EN AC ∴=,又∠AC BC =, EN BC ∴=,又在ENM 与BCM 中, 90EMN BMC N BCA EN BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()△≌△∴ENM BCM AAS , 则BM EM =; (3)如图,当点D 在线段BC 上时,∠25AC CM =,∠可设5AC a=,2CM a=,由(1)得:AHE DCA△≌△,则AH CD=,5===EH AC BC a,由∠90EHM BCM∠=∠=︒,BMC EMH∠=∠,∠MHE MCB△≌△(AAS),∠CM HM=,即2HM CM a==,∠522AH AC CM HM a a a a=--=--=,∠3AM AH HM a,CD AH a==,5EH AC a==,4BD BC CD a=-=,11454221133522△△⨯⨯⨯∴===⨯⨯⨯ADBAEMBD AC a aSS AM EH a a;如图,点D在CB延长线上时,过点E作EN AC⊥,交AC延长线于N,∠25AC CM=,∠可设5AC a=,2CM a=,∠EN AC⊥,AE AD⊥,∠90ANE EAD ACB∠=∠=∠=︒,∠90∠=︒-∠EAN CAD,90∠=︒-∠ADC CAD,EAN ADC∴∠=∠,在ANE与DCA△中,90ANE DCAENA ACDAN AD∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()△≌△∴ANE DCA AAS ,EN AC ∴=,AN CD = ,又∠AC BC =,EN BC ∴=,又在ENM 与BCM 中,90EMN BMC N BCA EN BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()△≌△∴ENM BCM AAS ,∠2==CM NM a ,5NE BC AC a === ,∠9AN AC CM MN a =++= ,7AM AC CM a =+= ,9AN CD a == ,∠4BD a =,11454221177522△△⨯⨯⨯∴===⨯⨯⨯ADBAEM BD AC a a S S AM EN a a , 点D 在BC 延长线上由图2得:AC CM < ,∠25AC CM =不可能,故舍去综上:ADB AEM S S △△的值为43或47 【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.14.(1)见解析;(2)EF AE BF =-,理由见解析;(3)EF BF AE =-,理由见解析【解析】【分析】(1)先证得90AEC BFC ∠=∠=︒,EAC FCB ∠=∠,根据AAS 证EAC FCB △≌△,推出CE BF =,AE CF =即可;(2)类比(1)证得对应的两个三角形全等,由此可推出CE BF =,AE CF =,再根据EF CF CE =-即可得到EF AE BF =-;(3)类比(1)证得对应的两个三角形全等,由此可推出CE BF =,AE CF =,再根据EF CE CF =-即可得到EF BF AE =-.【详解】(1)证明:AE EF ⊥,BF EF ⊥,90ACB ∠=︒,90AEC BFC ACB ∴∠=∠=∠=︒,90EAC ECA ∴∠+∠=︒,90ECA FCB ∠+∠=︒, EAC FCB ∴∠=∠,在EAC 和FCB 中,AEC CFB EAC FCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()EAC FCB AAS ∴△≌△,CE BF ∴=,AE CF =,∠EF CF CE =+,∠EF AE BF =+;(2)解:EF AE BF =-,理由如下: AE EF ⊥,BF EF ⊥,90ACB ∠=︒,90AEC BFC ACB ∴∠=∠=∠=︒,90EAC ECA ∴∠+∠=︒,90ECA FCB ∠+∠=︒, EAC FCB ∴∠=∠,在EAC 和FCB 中,AEC CFB EAC FCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()EAC FCB AAS ∴△≌△,CE BF ∴=,AE CF =,∠EF CF CE =-,∠EF AE BF =-;(3)解:EF BF AE =-,理由如下:AE EF ⊥,BF EF ⊥,90ACB ∠=︒,90AEC BFC ACB ∴∠=∠=∠=︒,90EAC ECA ∴∠+∠=︒,90ECA FCB ∠+∠=︒,EAC FCB ∴∠=∠,在EAC 和FCB 中,AEC CFB EAC FCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()EAC FCB AAS ∴△≌△,CE BF ∴=,AE CF =,∠EF CE CF =-,∠EF BF AE =-.【点睛】本题考查了全等三角形的判定与性质,主要涉及到了全等三角形的判定与性质,等量代换等知识点,难度不大,熟练掌握全等三角形的判定与性质是解决本题的关键.15.(1)数量关系为:EF =BE +CF ;(2)数量关系为:EF =BE -CF .证明见详解;(3)S △GHC =15.【解析】【分析】(1)数量关系为:EF =BE +CF .利用一线三直角得到∠BEA =∠AFC =90°,∠EBA =∠F AC ,再证∠EBA ∠∠FEC (AAS )可得BE =AF ,AE =CF 即可;(2)数量关系为:EF =BE -CF .先证∠BEA =∠AFC =90°,∠EBA +∠EAB =90°,∠EAB +∠F AC = =90°,可得∠EBA =∠F AC ,再证∠EBA ∠∠FEC (AAS ),可得BE =AF ,AE =CF 即可;(3)先由(2)结论EF = BE -CF ;6EF CF ==,求出BE =AF =12,由2EH FH =,可求FH =2,EH =4,利用对角线垂直的四边形面积可求BG =290180==1512AF ⨯,再求EG =3,AH = 10,分别求出S △ACF =12=36AF FC ⋅,S △HCF =162HF FC ⋅=,S △AGH =1152AH EG ⋅=,利用面积差即可求出.【详解】解:(1)数量关系为:EF =BE +CF .∠BE ∠EF ,CF ∠EF ,∠BAC =90°,∠∠BEA =∠AFC =90°,∠EBA +∠EAB =90°,∠EAB +∠F AC =180°-∠BAC =90°,∠∠EBA =∠FAC ,在△EBA 和△FEC 中,∠AEB CFA EBA FAC AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠EBA ∠△F AC (AAS ),∴BE =AF ,AE =CF ,∠EF =AF +AE =BE +CF ;(2)数量关系为:EF =BE -CF .∠BE ∠AF ,CF ∠AF ,∠BAC =90°,∠∠BEA =∠AFC =90°,∠EBA +∠EAB =90°,∠EAB +∠F AC = =90°,∠∠EBA =∠F AC ,在△EBA 和△FEC 中, ∠AEB CFA EBA FAC AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠EBA ∠△F AC (AAS ),∴BE =AF ,AE =CF ,∠EF =AF -AE =BE -CF ;(3)∠EF = BE -CF ;6EF CF ==,∠BE =AF =EF +CF =6+6=12,∠2EH FH =,EH +FH =EF =6,∠2FH +FH = 6,解得FH =2,∠EH =2FH =4,S 四边形ABFG =12AF BG ⋅=90,∠BG =290180==1512AF ⨯, ∠EG =BG -BE =15-12=3,AH =AE +EH =6+4=10,∠S △ACF =121126362AF FC ⋅=⨯⨯=,S △HCF =1126622HF FC ⋅=⨯⨯=,S △AGH =111031522AH EG ⋅=⨯⨯=, ∠S △GHC = S △ACF - S △HCF - S △AGH =36-6-15=15.【点睛】本题考查图形变换探究线段和差问题,感知,探究以及应用,三角形全等判定与性质,三角形面积,四边形面积,与三角形高有关的计算,掌握图形变换探究线段和差问题,感知,探究以及应用,三角形全等判定与性质,三角形面积,四边形面积,与三角形高有关的计算是解题关键.16.(1)见解析;(2)垂直,理由见解析;(3)成立,证明见解析【解析】【分析】(1)根据直角三角形的性质证明即可;(2)过点E 作EF BC ⊥交直线BC 于F ,如图2所示,通过证明DEF ABD ≌△△,可推证CEF △等腰直角三角形,从而得出AC 与CE 的位置关系;(3)如图3所示,过点E 作EF DC ⊥于F ,证明ABD DFE ≌△△,进一步可证明AC EC ⊥【详解】解:(1)证明:∠90B ∠=︒∠90BDA BAD ∠+∠=︒∠90ADE ∠=︒∠90BDA EDC ∠+∠=︒∠BAD EDC ∠=∠(2)垂直∠EF BC ⊥∠90EFD ∠=︒∠90B ∠=︒∠EFD B ∠=∠在ABD △和DFE △中 BAD FDE B DFEAD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∠()ABD DFE AAS ≌△△ ∠AB DF =,BD EF =∠AB BC =∠BC DF =,∠BC DC DF DC -=-即BD CF =.∠EF CF =又∠90EFC ∠=︒∠45ECF ∠=︒,且45ACB ∠=︒∠1809090ACE ∠=︒-︒=︒即AC CE ⊥.(3)(2)中的结论仍然成立如图3所示,过点E 作EF DC ⊥于F∠90ABD ∠=︒∠90EDF DAB ADB ∠=∠=︒-∠在ABD △和DFE △中DAB EDF ABD DFE AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∠()ABD DFE AAS ≌△△ ∠DB EF =,AB DF BC ==∠BC BF DF BF -=-即FC DB =∠FC EF =∠45DCE ∠=︒∠90ACE DCE ACB ∠=∠+∠=︒∠AC EC ⊥.【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,证明ABD DFE ≌△△是解本题的关键.17.(1)1-;(2)211(0)22S k k k =-≠;(3)459(,)1717-. 【解析】【分析】(1)令0y=,求x;(2)过点D作y轴的垂线,先证明90ACB∠=︒,再由K型全等,得E点坐标,即可求出S与k的函数关系式;(3)由等腰直角三角形和四点共圆把已知条件转化为简单的等量关系,得出2DOE ADE∠=∠,再利用垂直平分线性质构造2ADE AME∠=∠,通过解直角三角形求出求出k的值,再求点K的坐标.【详解】解:(1)∠直线y kx k=+与x轴交于A,与y轴交于C点,∠当0x=时,y k=;当0y=时,0kx k+=,得:1x=-,∠(0,)C k,(1,0)A-,∠点A的横坐标为1-.(2)过点D作DH y⊥轴于点H,∠DH OH⊥,CO AO⊥,∠DHC COA∠=∠,∠90HDC DCH∠+∠=︒,对直线BC:当0x=时,y k=,当0y=时,2x k=,∠()2,0B k,∠2OB k=,∠1OAOC k=,21OC kOB k k==,又∠90AOC COB∠=∠=︒,∠AOC COB△∽△,∠OAC OCB∠=∠,∠90OAC OCA∠+∠=︒,∠90OCB OCA,即:90ACB∠=︒,∠AC BD⊥,90DCA∠=︒,∠90DCH ACO∠+∠=︒,∠HDC OCA∠=∠,又∠DC CA=,∠()DHC COA AAS△≌△,∠DH OC=,CH AO=,∠(1,0)A-,(0,)C k,∠1CH OA==,DH CO k==,∠(,0)E k-,(,1)D k k-+,∠1()1AE k k=---=-+,∠21111(1)(0)2222S EA CO k k k k k=⋅⋅=⋅-⋅=-≠,(3)连接AD,过AD的中点N作NM AD⊥交DE于点M,连接AM,(3)连接AD,过AD的中点N作NM AD⊥交DE于点M,连接AM,DC AC⊥,DE OA⊥,90DEA DCA∴∠=∠=︒,∴在四边形AEDC中,180DEA DCA∠+∠=︒,180EAC EDC∠+∠=︒,∴点A、D、E、C四点共圆,AD为圆的直径,点N为圆心,ACE ADE∴∠=∠,MN是AD的中垂线,DM AM∴=,ADE DAM∴∠=∠,2AME ADE∴∠=∠,DC AC=,45ADC∴∠=︒,45CDO ADO∴∠=︒-∠,又345ACE CDO∠-∠=︒,3(45)45ADE ADO ∴∠-︒-∠=︒,即:390ADE ADO ∠+∠=︒,在EDO ∆中,90ADE ADO DOE ∠+∠+∠=︒,2DOE ADE AME ∴∠=∠=∠,设AM DM x ==,则:1ME DE DM k x =-=+-,222AE ME AM +=,222(1)(1)k k x x ∴-+++-=,解得:211k x k+=+, 212111k k ME k k k+∴=+-=++, DOE AME ∠=∠,tan tan DOE AME ∴∠=∠,∴DE AE OE ME =,即:1121k k k k k+-+=+, 解得:3k =,(0,3)C ∴,(3,4)D -,(3,0)E -,∴直线OD 的解析式为:43y x =-, 直线AC 的解析式为:33y x =+,直线EC 的解析式为:3y x , 由4333y x y x ⎧=-⎪⎨⎪=+⎩,解得:9131213x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴点9(13F -,12)13, 点D 和点G 关于点C 对称,(3,2)G ∴,∴直线GF 的解析式为:79248y x =+, 由379248y x y x =+⎧⎪⎨=+⎪⎩,解得:4517917x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴点K 的坐标为459(,)1717-. 【点睛】 本题主要考查了一次函数图象上点的坐标的求法、K 型全等的应用和四点共圆的判定、以及利用圆周角定理进行角的转化等知识,是一个代数几何综合题.对于比较复杂的条件,需要学生学会将复杂的条件转化为简单直接的条件,可以从等量关系,倍数关系入手. 18.(1)(1,0),(4,0)A B -,(0,2)C -,5ABC S=;(2)211522y x x =-++或2191322y x x =-+-,见解析. 【解析】【分析】(1)令y =0,令x =0,分别求出函数与坐标轴的交点即可;(2)设L '的解析式为:212y x bx c =-++,分两种情况讨论:点E 作EH y ⊥轴于点H ,过点F 作FG x ⊥轴于点G ,则FGB BOC CHE ≅≅,根据全等三角形的性质求得点E 、F 的坐标,代入旋转后的抛物线解析式即可.【详解】解:(1)则2132022x x --= 2340x x ∴--=(1)(4)0x x ∴+-=1x ∴=-或4x =(1,0),(4,0)A B ∴-令x =0,则y =-2,(0,2)C ∴-5,2AB OC ==5ABC S ∴=(2)存在,以B C E F 、、、为为顶点的四边形为矩形,且矩形面积为ABC 面积的4倍20BCEF S ∴=在Rt OCB 中,2,4OC OB ==2225BC OB OC∴=+=∴矩形的另一边长为202525÷=∴该矩形为正方形,根据旋转180︒,点B的对应点为E,点C对应点为F,如图,过点E作EH y⊥轴于点H,过点F作FG x⊥轴于点G,则FGB BOC CHE≅≅旋转180︒不改变抛物线的开口大小,但改变了开口方向,12a∴=-∴设L'的解析式为:212y x bx c=-++分两种情况讨论:第一种情况:如图,可求出点E的坐标为(2,2)-,点(2,4)F,将点E、F代入解析式中,得1422214242b cb c⎧-⨯-+=⎪⎪⎨⎪-⨯++=⎪⎩解得125bc⎧=⎪⎨⎪=⎩211522y x x∴=-++第二种情况:如图,可得(2,6),(6,4)E F --,将点E 、F 代入解析式中,得14262136642b c b c ⎧-⨯++=-⎪⎪⎨⎪-⨯++=-⎪⎩ 解得9213b c ⎧=⎪⎨⎪=-⎩ 2191322y x x ∴=-+- 综上,抛物线L '的表达式为:211522y x x =-++或2191322y x x =-+-. 【点睛】本题考查二次函数综合题、正方形的性质、旋转的性质、全等三角形的性质、分类讨论思想等知识,是重要考点,难度较大,掌握相关知识是解题关键.19.见解析【解析】【分析】利用ASA 证明出∠ABE ∠∠BCD ,在通过等量代换进行解答.【详解】证明:∠AB ∠BC ,CD ∠BC ,∠∠ABC =∠ACD =90°∠∠AEB +∠A =90°∠AE ∠BD∠∠BFE =90°∠∠AEB +∠FBE =90°∠∠A =∠FBE ,又∠AB =BC ,∠∠ABE ∠∠BCD ,∠AB =BC ,BE =CD ,∠EC =BC -BE =AB -CD【点睛】本题考查了三角形全等的判定及性质,解题的关键是掌握三角形的判定定理,再利用等量代换的思想来间接证明.20.详见解析【解析】【分析】根据AB ⊥BD ,DE ⊥BD ,AC ⊥CE ,可以得到90ABC CDE ACB ︒∠=∠=∠=, 90ACB ECD ︒∠+∠=,90ECD CED ︒∠+∠=,从而有ACB CED ∠=∠,可以验证ABC ∆和CDE ∆全等,从而得到AB =CD .【详解】证明:∠AB BD ⊥,DE BD ⊥,AC CE ⊥∠90ABC CDE ACB ︒∠=∠=∠=∠90ACB ECD ︒∠+∠=,90ECD CED ︒∠+∠=∠ACB CED ∠=∠在ABC ∆和CDE ∆中ACB CED BC DEABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∠ABC ∆∠CDE ∆故AB CD =.【点睛】本题主要考查了全等三角形的判定和性质,利用角边角判定三角形全等,其中找到两两互余的角之间的关系是解题的关键.。

九年级数学相似三角形知识点总结及例题讲解

九年级数学相似三角形知识点总结及例题讲解

九年级数学相似三角形知识点总结及例题讲解相似三角形基本知识放缩与相似图形的放大或缩小称为图形的放缩运动。

当两个图形形状相同时,我们称它们为相似图形,或者简称相似性。

需要注意的是,相似图形强调形状相同,与它们的位置、颜色、大小等因素无关。

相似图形不仅仅指平面图形,也包括立体图形相似的情况。

我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的。

当两个图形形状和大小都相同时,这时是相似图形的一种特例——全等形。

相似多边形的性质如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

需要注意的是,当两个相似的多边形是全等形时,它们的对应边的长度比值为1.比例线段有关概念及性质比例线段的概念比指同一单位下两条线段的长度比较,若两线段的长度分别为m和n,则它们的比为a:b=m:n(或bn)。

比的前项为a,后项为b。

比例指两个比相等的式子,如比例线段的性质对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即比例线段的基本性质是两外项的积等于两内项积,即acbd=adbc。

比例线段还有反比性质、更比性质、合比性质等。

其中,反比性质指如果注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项、后项之间发生同样的和差变化比例仍成立。

例如:$\frac{b-ad-c}{ac}=\frac{bd}{a-b+c-d}=\frac{a+bc+d}{ac}$。

5.等比性质:若$\frac{a+c+e+\cdots+m}{a\cdot c\cdote\cdots m}=\frac{b+d+f+\cdots+n}{b\cdot d\cdot f\cdots n}$,其中$b+d+f+\cdots+n\neq 0$,则$\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\cdots=\frac{m}{n}$。

注意:(1)此性质的证明运用了“设$k$法”,这种方法是比例计算和变形中一种常用方法。

弦图与垂直模型-【压轴必刷】中考数学压轴大题之经典模型(全国通用)(解析版)

弦图与垂直模型-【压轴必刷】中考数学压轴大题之经典模型(全国通用)(解析版)

弦图与垂直模型解题策略模型1:垂直模型如图:∠D=∠BCA=∠E=90°,BC=AC.,结论:Rt△BCD≌Rt△CAE.模型分析说到三垂直模型,不得不说一下弦图,弦图的运用在初中直角三角形中占有举足轻重的地位,很多利用垂直求角,勾股定理求边长,相似求边长都会用到从弦图支离出来的一部分几何图形去求解.图①和图②就是我们经常会见到的两种弦图.三垂直图形变形如图③、图④,这也是由弦图演变而来的.模型2:弦图模型如图,在正方形ABCD中,BF⊥CG,CG⊥DH,DH⊥AE,AE⊥BF, 则:△ABE≌△BCF≌△CDG ≌△DAH.经典例题【例1】.(2021·全国·八年级专题练习)如图1,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上(不与点A,O重合)的一个动点,过点P作PE⊥PB且PE交边CD于点E.(1)求证:PE=PB;(2)如图2,若正方形ABCD的边长为2,过点E作EF⊥AC于点F,在点P运动的过程中,PF的长度是否发生变化?若不变,试求出这个不变的值;若变化,请说明理由;(3)用等式表示线段PC,PA,CE之间的数量关系.【答案】(1)见解析;(2)在P点运动的过程中,PF的长度不发生变化.PF的长为定值2;(3)PC=PA+ 2EC.理由见解析.【分析】(1)做辅助线,构建全等三角形,根据ASA证明△BMP≅△PNE即可求解.(2)如图,连接OB,通过证明△OBP≅△FPE,得到PF=OB,则PF为定值是2.(3)根据△AMP和△PCN是等腰直角三角形,得PA=2PM,PC=2NC,整理可得结论.【详解】(1)证明:如图①,过点P作MN∥AD,交AB于点M,交CD于点N.∵PB⊥PE,∴∠BPE=90°,∴∠MPB+∠EPN=90°.∵四边形ABCD是正方形,∴∠BAD=∠D=90°.∵AD∥MN,∴∠BMP=∠BAD=∠PNE=∠D=90,∵∠MPB+∠MB P=90°,∴∠EPN=∠MB P.在Rt△PNC中,∠PCN=45°,∴△PNC是等腰直角三角形,∴PN=CN,∴BM=CN=PN,∴△BMP≌△PNE(ASA),∴PB=PE.(2)解:在P点运动的过程中,PF的长度不发生变化.理由:如图2,连接OB.∵点O是正方形ABCD对角线AC的中点,∴OB⊥AC,∴∠AOB=90°,∴∠AOB=∠EFP=90°,∴∠OBP+∠BPO=90°.∴∠BPE=90°,∴∠BPO+∠OPE=90°,∴∠OBP=∠OPE.由(1)得PB=PE,∴△OBP≌△FPE(AAS),∴PF=OB.=2.∵AB=2,△ABO是等腰直角三角形,∴OB=22∴PF的长为定值2.(3)解:PC=PA+2EC.理由:如图1,∵∠BAC=45°,∴△AMP是等腰直角三角形,∴PA=2PM.由(1)知PM=NE,∴PA=2NE.∵△PCN是等腰直角三角形,∴PC=2NC=2(NE+EC)=2NE+2EC=PA+2EC.【点睛】本题主要考查了四边形综合应用,通过对三角形全等的证明找出边之间的关系,准确分析代换求解是解题的关键.【例2】.(2021·黑龙江·哈尔滨市第四十九中学校九年级阶段练习)正方形ABCD中,点E、F在BC、CD 上,且BE=CF,AE与BF交于点G.(1)如图1,求证AE⊥BF;(2)如图2,在GF上截取GM=GB,∠MAD的平分线交CD于点H,交BF于点N,连接CN,求证:AN+CN=2BN;【答案】(1)见解析;(2)见解析;【分析】(1)根据正方形的性质得AB=BC,∠ABC=∠BCD=90°,用SAS证明△ABE≌△BCF,得∠BAE =∠CBF,根据三角形内角和定理和等量代换即可得;(2)过点B作BH⊥BN,交AN于点H,根据正方形的性质和平行线的性质,用SAS证明△A GB≌△AGM,得∠BAG=∠MAG,根据角平分线性质得∠BHA=∠GAN=45°,则△HBN是等腰直角三角形,用SAS证明△ABH≌△CBN,得AH=CN,在Rt△HBN中,根据勾股定理即可得;【详解】解:(1)∵四边形ABCD 是正方形,∴AB=BC,∠ABC=∠BCD=90°,在△ABE和△BCF中,AB=BC∠ABE=∠BCFBE=CF∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠AEB+∠BAE=180°-∠ABC=180°-90°=90°,∴∠AEB+∠CBF=90°,∴∠E GB=180°-(∠AEB+∠CBF)=180°-90°=90°,∴AE⊥BF;(2)如图所示,过点B作BH⊥BN,交AN于点H,∵四边形ABCD是正方形,∴AB=AC,∠ABC=∠HBN=90°,∵∠HBN=∠HBA+∠ABN=90°,∠ABC=∠CBN+∠ABN=90°,∴∠HBA=∠CBN,由(1)得,AE⊥BF,∴∠A GB=∠AGM=90°,∴∠HBG=∠AGM=90°,∴HB⎳AE,∴∠BHA=∠EAN,在△A GB和△AGM中,AG=AG∠A GB=∠AGMGB=GM∴△A GB≌△AGM(SAS),∴∠BAG=∠MAG,∵AN平分∠DAM,∴∠DAN=∠MAN,∴∠BAG+∠MAG+∠MAN+∠DAN=90°,2∠MAG+2∠MAN=90°,∠MAG+∠MAN=45°,∠GAN=45°,∴∠BHA=∠GAN=45°,∴∠BNH=180°-∠HBN-∠BHA=180°-90°-45°=45°,∴△HBN是等腰直角三角形,∴BH=BN,在△ABH和△CBN中,BH=BN∠HBA=∠CBNAB=CB∴△ABH≌△CBN(SAS),∴AH=CN,在Rt△HBN中,根据勾股定理HN=BH2+BN2=2BN,∴AN+CN=AN+AH=HN=2BN;【点睛】本题考查了正方形的性质,全等三角形的判定与性质,三角形内角和定理,角平分线,等腰直角三角形的判定与性质,勾股定理和锐角三角函数,解题的关键是掌握并灵活运用这些知识点.【例3】.(2021·云南曲靖·八年级期末)如图1,在正方形ABCD中,E为BC上一点,连接AE,过点B作BG⊥AE于点H,交CD于点G.(1)求证:AE=BG;(2)如图2,连接AG、GE,点M、N、P、Q分别是AB、AG、GE、EB的中点,试判断四边形MNPQ的形状,并说明理由;(3)如图3,点F、R分别在正方形ABCD的边AB、CD上,把正方形沿直线FR翻折,使得BC的对应边B'C'恰好经过点A,过点A作AO⊥FR于点O,若AB'=1,正方形的边长为3,求线段OF的长.【答案】(1)见解析;(2)四边形MNPQ为正方形,理由见解析;(3)10 6【分析】(1)由四边形ABCD为正方形,可得∠ABC=∠BCD=90°,推得∠ABG+∠CBG=90°,由BG⊥AE,可得∠BAE+∠ABG=90°,可证△ABE≅△BCG ASA即可;(2)M、N为AB、AG中点,可得MN为△ABG的中位线,可证MN⎳BG,MN=12BG,由点M、N、P、Q分别是AB、AG、GE、EB的中点,可得PQ是△BEG的中位线,MQ为△ABE的中位线,NP为△AEG的中位线,可证PQ⎳BG,PQ=12BG,MQ⎳AE,MQ=12AE,NP⎳AE,NP=12AE,可证四边形MNPQ为平行四边形.再证四边形MNPQ为菱形,最后证MN⊥MQ即可;(3)延长AO交BC于点S,由对称性可得BF=B'F,AB'=BS=1,AO=SO,由勾股定理可求AS=10,可得AO=12AS=102,设AF=x,在Rt△AB'F中,12+(3-x)2=x2,解得x=53,在Rt△AOF中,可求OF=106.【详解】(1)证明:∵四边形ABCD为正方形,∴∠ABC=∠BCD=90°,∴∠ABG+∠CBG=90°,∵BG⊥AE,∴∠AHB=90°,∴∠BAE+∠ABG=90°,∴∠BAE=∠CBG,在△ABE与△BCG中,∠BAE=∠CBGAB=BC∠ABC=∠BCD,∴△ABE≅△BCG ASA,∴AE=BG.(2)解:四边形MNPQ为正方形,理由如下:∵M、N为AB、AG中点,∴MN为△ABG的中位线,∴MN⎳BG,MN=12BG,∵点M、N、P、Q分别是AB、AG、GE、EB的中点,∴PQ是△BEG的中位线,MQ为△ABE的中位线,NP为△AEG的中位线,,∴PQ⎳BG,PQ=12BG,MQ⎳AE,MQ=12AE,NP⎳AE,NP=12AE,∴MN=PQ,MQ=NP,∴四边形MNPQ为平行四边形.∵AE=BG,∴MN=MQ,∴四边形MNPQ为菱形,∵BG⊥AE,MQ⎳AE,∴MQ⊥BG,∵MN⎳BG,∴MN⊥MQ,∴四边形MNPQ为正方形.(3)解:延长AO交BC于点S,由对称性可知BF=B'F,AB'=BS=1,AO=SO,在Rt△ABS中,AS=AB2+BS2=10,∴AO=12AS=102,设AF=x,则BF=B'F=3-x,在Rt△AB'F中,12+(3-x)2=x2,x=53,∴AF=53,在Rt△AOF中,2=106.OF=AF2-AO2=53 2-102【点睛】本题考查正方形性质与判定,等角的余角性质三角形全等判定与性质,三角形中位线判定与性质,勾股定理,根据勾股定理建构方程,解拓展一元一次方程等知识,掌握以上知识是解题关键.【例4】.(2021·河南商丘·八年级期中)在平面直角坐标系中,点A的坐标为4,0,点B为y轴正半轴上的一个动点,以B为直角顶点,AB为直角边在第一象限作等腰Rt△ABC.(1)如图1,若OB=3,则点C的坐标为______;(2)如图2,若OB=4,点D为OA延长线上一点,以D为直角顶点,BD为直角边在第一象限作等腰Rt△BDE,连接AE,求证:AE⊥AB;(3)如图3,以B为直角顶点,OB为直角边在第三象限作等腰Rt△OBF.连接CF,交y轴于点P,求线段BP的长度.【答案】(1)点C(3,7);(2)证明见详解过程;(3)2.【分析】(1)如图1,过点C作CH⊥y轴,由“AAS”可证△ABO≌△BCH,可得CH=OB=3,BH=AO=4,可求解;(2)过点E作EF⊥x轴于F,由“AAS”可证△ABO≌△BCH,可得BO=DF=4,OD=EF,由等腰直角三角形的性质可得∠BAO=45°,∠EAF=∠AEF=45°,可得结论;(3)由(1)可知△ABO≌△BCG,可得BO=GC,AO=BG=4,再由“AAS”可证△CPG≌△FPB,可得PB=PG=2.(1)如图1,过点C作CH⊥y轴于H,∴∠CHB=∠ABC=∠AOB=90°,∴∠BCH+∠HBC=90°=∠HBC+∠ABO,∴∠ABO=∠BCH,在△ABO和△BCH中,∠CHB=∠AOB∠BCH=∠ABOBC=AB,∴△ABO≌△BCH(AAS),∴CH=OB=3,BH=AO=4,∴OH=7,∴点C(3,7),故答案为:(3,7);(2)过点E作EF⊥x轴于F,∴∠EFD=∠BDE=∠BOD=90°,∴∠BDO+∠EDF=90°=∠BDO+∠DBO,∴∠DBO=∠EDF,在△BOD和△DFE中,∠BOD=∠EFD∠DBO=∠EDFBD=ED,∴△BOD≌△DFE(AAS),∴BO=DF=4,OD=EF,∵点A的坐标为(4,0),∴OA=OB=4,∴∠BAO=45°,∵OA=DF=4,∴OD=AF=EF,∴∠EAF=∠AEF=45°,∴∠BAE=90°,∴BA⊥AE;(3)过点C作CG⊥y轴G,由(1)可知:△ABO≌△BCG,∴BO=GC,AO=BG=4,∵BF=BO,∠OBF=90°,∴BF=GC,∠CGP=∠FBP=90°,又∵∠CPG=∠FPB,∴△CPG≌△FPB(AAS),∴BP=GP,∴BP=12BG=2.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,添加恰当辅助线构造直角三角形是本题的关键.【例5】.(2021·黑龙江·哈尔滨市风华中学校九年级阶段练习)如图1,正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF⊥DE,垂足为点F,BF与CD相交于点G.(1)求证:△BCG≌△DCE;(2)如图2,连接BD,若BE=42,DG=22,求tan∠DBG的值.【答案】(1)见解析;(2)1 2【分析】(1)由正方形的性质结合已知条件,利用ASA判定三角形全等即可;(2)过点G作GH⊥BD垂足为H,由全等求得CG=CE,进一步结合图形求得BC和CG的长,然后在RT△BDC中求得GH和BH的长,最后在RT△BHG中,利用tan∠DBG=HGBH,即可求得答案.【详解】(1)证明:∵四边形ABCD是正方形,∴∠BCG=∠DCE=90°,BC=CD,∵BF⊥DE,∴∠DFG=∠BCG=90°,∵∠BGC=∠DGF,∴∠CBG=∠CDE.在△BCG和△DCE中,∠CBG=∠CDE BC=CD∠BCG=∠DCE,∴△BCG≌△DCE,(2)解:过点G作GH⊥BD垂足为H,∵△BCG≌△DCE,∴CG=CE,∵BE=BC+CE=42,DG=CD-CG=22,∴BC=CD=32,CG=CE=2,在RT△BDC中,∵∠BCD=90°,∴BD=CD2+BC2=322+322=6,∵∠DHG=45°,∠DHG=90°,DG=22,∴DHDG=sin45°=2 2,∴DH=2,∴GH=DH=2,∵BH=BD-DH,∴BH=6-2=4,在RT△BHG中,∵∠BHG=90°,∴tan∠DBG=HGBH,∴tan∠DBG=12【点睛】本题考查三角形全等的证明,直角三角形中锐角三角函数的定义等相关知识点,熟练掌握数形结合思想解题是重点.培优训练一、解答题1.(2022·江苏·八年级课时练习)如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)由图1,证明:DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,请猜想出DE,AD,BE的等量关系并说明理由;(3)当直线MN绕点C旋转到图3的位置时,试问DE,AD,BE又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).【答案】(1)证明见解析;(2)DE=AD-BE,证明过程见解析;(3)DE=BE-AD,证明过程见解析【分析】(1)先证明△ADC≌△CEB,得到AD=CE,DC=BE,进而得到DE=CE+DC=AD+BE即可;(2)同(1)中思路,证明△ADC≌△CEB,进而得到DE=CE-DC=AD-BE即可;(3)同(1)中思路,证明△ADC≌△CEB,进而得到DE=DC-CE=BE-AD即可.【详解】解:(1)证明:在△ABC中,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥MN,∴∠ACD+∠CAD=90°,∴∠BCE=∠CAD,又∵AC=BC,∠ADC=∠CEB=90∘,∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE,∵直线MN经过点C,∴DE=CE+DC=AD+BE;(2)DE,AD,BE的等量关系为:DE=AD-BE,理由如下:∵AD⊥MN于D,BE⊥MN于E∴∠ADC=∠BEC=∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ADC和△CEB中∠CAD=∠BCE∠ADC=∠BEC=90∘AC=CB,∴△ADC≌△CEB AAS∴CE=AD,CD=BE,∴DE=CE-CD=AD-BE;(3)当MN旋转到图3的位置时,DE、AD、BE所满足的等量关系是DE=BE-AD,理由如下:∵AD⊥MN于D,BE⊥MN于E∴∠ADC=∠BEC=∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ADC和△CEB中∠CAD=∠BCE∠ADC=∠BEC=90∘AC=CB,∴△ADC≌△CEB AAS∴CE=AD,CD=BE,∴DE=CD-CE=BE-AD.【点睛】本题考查了全等三角形的判定方法、等腰直角三角形的性质及等角的余角相等等知识点,熟练掌握三角形全等的判定方法是求解的关键.2.(2022·全国·八年级专题练习)如图所示,△ABC中,AB=AC,∠BAC=90°,点D为AB上一点,过点B作直线CD的垂线,垂足为E,连接AE,过点A作AE的垂线交CE于点F.(1)如图1,求∠AEC的度数;(2)如图2,连接BF,且∠ABF-∠EAB=15°,求证:BF=2CF;(3)如图3,在(2)的条件下,G为DF上一点,连接AG,若∠AGD=∠EBF,AG=2,求CF的长.【答案】(1)45°;(2)见解析;(3)2【分析】(1)先证明∠EAB=∠FAC, ∠AEB=∠AFC,再证明△ABE≅△ACF,再利用全等三角形的性质结合等腰直角三角形的性质可得答案;(2)利用全等三角形的性质先求解∠EBF=60°,证明BE=CF, 再求解∠EFB=30°,从而可得结论;(3)如图,过A作AM⊥EF于M, 交BF于N, 连接EN, 证明△BEN为等边三角形,再证明△AGM≅△ENM,再利用全等三角形的性质可得答案.【详解】解:(1)∵∠BAC=90°,AE⊥AF,∴∠EAB+∠DAF=∠DAF+∠FAC=90°,∠EAF=90°,∴∠EAB=∠FAC,∵BE⊥CE,∴∠BED=90°,∴∠AEB=∠BED+∠AEF=90°+∠AEF=∠AFC, 即∠AEB=∠AFC,∴△ABE≅△ACF,∴AE=AF,∠AEC=45°.(2)∵△ABE≅△ACF,∴∠ABE=∠ACF,BE=CF,∴∠AEB=∠AFC=90°+45°=135°,∴∠EBA+∠EAB=45°,∵∠ABF-∠EAB=15°,∴∠ABF=15°+∠EAB,∴∠EBF=∠EBA+∠ABF=∠EBA+∠EAB+15°=60°,∴∠BFE=90°-60°=30°,∴BF=2BE,∵BE=CF,∴BF=2CF.(3)如图,过A作AM⊥EF于M, 交BF于N, 连接EN,∵AE=AF,AM⊥EF,AE⊥AF,∴EM=MF=AM,NE=NF,∴∠NEF=∠NFE=30°,∴∠ENB=∠NEF+∠NFE=60°,∴∠EBN=∠ENB=60°,∴△BEN为等边三角形,∠ENF=120°,∴BE=BN=12BF=FN=EN,∵∠AGD=∠EBF=60°, AM⊥EF,∴∠ENM=12∠ENF=60°,∵AM=EM,∠AMG=∠EMN=90°,∠AGM=∠ENM=60°,∴△AGM≅△ENM,∴AG=EN=2,∴CF=BE=2.【点睛】本题考查的是全等三角形的判定与性质,等腰三角形的性质,直角三角形斜边上的中线等腰斜边的一半,等边三角形的判定与性质,含30°的直角三角形的性质,熟练的应用以上知识解题的关键.3.(2020·北京市第十三中学九年级期中)已知:Rt△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D是BC边上一点(不与点B,C重合),连接AD,过点B作BE⊥AD,交AD的延长线于点E,连接CE.①若∠BAD=α,求∠DBE的大小(用含α的式子表示);②用等式表示线段EA,EB和EC之间的数量关系,并证明.(2)如图2,点D在线段BC的延长线上时,连接AD,过点B作BE⊥AD,垂足E在线段AD上,连接CE.①依题意补全图2;②直接写出线段EA,EB和EC之间的数量关系.【答案】(1)①∠DBE=45°-α;②AE-BE=2EC,证明见解析;(2)①补全图形见解析;②EB-EA= 2EC.【分析】(1)①根据等腰直角三角形的性质得到∠CAB=45°,即可求出∠CAD=45∘-α.根据三角形的内角和即可求出∠DBE=∠CAD=45∘-α;②过点C作CR⊥CE交AE于R,然后证明△ACR≌△BCE,得到AR=BE,CR=CE,即可得到△CER 是等腰直角三角形,ER=2CE,由此即可求解;(2)①根据题目要求作图即可;②过点C作CF⊥CE,交AD的延长线于点F.根据三角形的内角和定理得到∠CAF=∠CBE,证明△ACF ≌△BCE.根据全等三角形的性质有AF=BE,CF=CE.根据等腰直角三角形的性质有EF=2EC.则有 AF-EA=2EC,即可求出线段EA,EB和EC之间的数量关系.【详解】解:(1)①如图1中,∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵∠BAD=α,∴∠CAD=45°-α.∵∠ACB=90°,BE⊥AD,∠ADC=∠BDE,∴∠DBE=∠CAD=45°-α;②结论:AE-BE=2EC.理由:如图,过点C作CR⊥CE交AE于R.∴∠ACB=∠RCE=90°,∴∠ACR=∠BCE,∵∠CAR+∠ADC=90°,∠CBE+∠BDE=90°,∠ADC=∠BDE,∴∠CAR=∠CBE,在△ACR和△BCE中,∠ACR=∠BCECA=CB∠CAR=∠CBE,∴△ACR≌△BCE(ASA),∴AR=BE,CR=CE,∴△CER是等腰直角三角形,∴ER=2CE,∴AE-BE=AE-AR=ER=2EC.(2)①补全图形,如图2所示:②猜想:当D 在BC 边的延长线上时,EB -EA =2EC ;理由如下:过点C 作CF ⊥CE ,交AD 的延长线于点F ,如图3所示:则∠ECF =90°,∵∠ACB =90°,∴∠ACD =90°,∴∠ECF +∠ACE =∠ACB +∠ACE ,即∠ACF =∠BCE ,∵∠CAF +∠ADB =90°,∠CBE +∠ADB =90°,∴∠CAF =∠CBE ,在△ACF 和△BCE 中,∠ACF =∠BCEAC =BC ∠CAF =∠CBE,∴△ACF ≌△BCE (ASA ),∴AF =BE ,CF =CE .∵∠ECF =90°,∴△CEF 是等腰直角三角形,∴EF =2EC ,即AF -EA =2EC .∴EB -EA =2EC .【点睛】考查等腰直角三角形的性质,三角形的内角和定理,全等三角形的判定与性质等,难度一般,掌握全等三角形的判定定理是解题的关键.4.(2021·四川省成都市七中育才学校七年级期中)已知:△ABC 中,∠ACB =90°,AC =CB ,D 为直线BC 上一动点,连接AD ,在直线AC 右侧作AE ⊥AD ,且AE =AD .(1)如图1,当点D 在线段BC 上时,过点E 作EH ⊥AC 于H ,连接DE .求证:EH =AC ;(2)如图2,当点D 在线段BC 的延长线上时,连接BE 交CA 的延长线于点M .求证:BM =EM ;(3)当点D在直线CB上时,连接BE交直线AC于M,若2AC=5CM,请求出S△ADBS△AEM的值.【答案】(1)见解析;(2)见解析;(3)43或47【分析】(1)由“AAS”可证△AHE≌△DCA,可得EH=AC,即可求证;(2)过点E作EN⊥AC,交CA延长线于N,由“AAS”可证△ANE≌△DCA,可得AC=EN=BC,由“AAS”可证△ENM≌△BCM,可得BM=EM;(3)AC=5a,CM=2a,分三种情况:当点D在线段BC上,点D在线段BC的延长线上,点D在线段CB的延长线上,由全等三角形的性质可求得相应线段的长,再由三角形的面积公式可求解.【详解】证明(1)∵AE⊥AD,∠ACB=90°,∴∠EAH=90°-∠CAD,∠ADC=90°-∠CAD,∴∠EAH=∠ADC,在△AHE与△DCA中∠AHE=∠ACB=90°∠EAH=∠ADCAE=AD,∴△AHE≌△DCA(AAS),∴EH=AC;(2)如图2,过点E作EN⊥AC,交CA延长线于N,∵AE⊥AD,∠ACB=90°,∴∠EAN=90°-∠CAD,∠ADC=90°-∠CAD,∴∠EAN=∠ADC,在△ANE与△DCA中,∠ANE=∠DCA=90°∠ENA=∠ACDAN=AD∴△ANE≌△DCA(AAS),∴EN=AC,又∵AC=BC,∴EN=BC,又在△ENM与△BCM中,∠EMN=∠BMC∠N=∠BCA=90°EN=BC∴△ENM≌△BCM(AAS),则BM=EM;(3)如图,当点D 在线段BC 上时,∵2AC =5CM ,∴可设AC =5a ,CM =2a ,由(1)得:△AHE ≌△DCA ,则AH =CD ,EH =AC =BC =5a ,由∵∠EHM =∠BCM =90° ,∠BMC =∠EMH ,∴△MHE ≌△MCB (AAS ),∴CM =HM ,即HM =CM =2a ,∴AH =AC -CM -HM =5a -2a -2a =a ,∴AM =AH +HM =3a ,CD =AH =a ,EH =AC =5a , BD =BC -CD =4a ,∴S △ADB S △AEM =12BD ×AC 12AM ×EH =12×4a ×5a 12×3a ×5a =43;如图,点D 在CB 延长线上时,过点E 作EN ⊥AC ,交AC 延长线于N ,∵2AC =5CM ,∴可设AC =5a ,CM =2a ,∵EN ⊥AC ,AE ⊥AD ,∴∠ANE =∠EAD =∠ACB =90° ,∴∠EAN =90°-∠CAD ,∠ADC =90°-∠CAD ,∴∠EAN =∠ADC ,在△ANE 与△DCA 中,∠ANE =∠DCA =90°∠ENA =∠ACDAN =AD∴△ANE ≌△DCA (AAS ),∴EN =AC ,AN =CD ,又∵AC =BC ,∴EN =BC ,又在△ENM 与△BCM 中,∠EMN =∠BMC∠N =∠BCA=90°EN =BC∴△ENM ≌△BCM (AAS ),∴CM =NM =2a ,NE =BC =AC =5a ,∴AN =AC +CM +MN =9a ,AM =AC +CM =7a ,AN =CD =9a ,∴BD =4a ,∴S △ADB S △AEM =12BD ×AC 12AM ×EN =12×4a ×5a 12×7a ×5a =47,点D 在BC 延长线上由图2得:AC <CM ,∴2AC =5CM 不可能,故舍去综上:S △ADB S △AEM的值为43 或47【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.5.(2022·江苏·八年级课时练习)在△ABC 中,AB =BC ,∠B =90°,点D 为直线BC 上的一个动点(不与B 、C 重合),连结AD ,将线段AD 绕点D 按顺时针方向旋转90°,使点A 旋转到点E ,连结EC .(1)如果点D 在线段BC 上运动,如图1:求证:∠BAD =∠EDC(2)如果点D 在线段BC 上运动,请写出AC 与CE 的位置关系.通过观察、交流,小明形成了以下的解题思路:过点E 作EF ⊥BC 交直线BC 于F ,如图2所示,通过证明△DEF ≌△ABD ,可推证△CEF 等腰直角三角形,从而得出AC 与CE 的位置关系,请你写出证明过程.(3)如果点D 在线段CB 的延长线上运动,利用图3画图分析,(2)中的结论是否仍然成若成立,请证明;若不成立,请说明理由.【答案】(1)见解析;(2)垂直,理由见解析;(3)成立,证明见解析【分析】(1)根据直角三角形的性质证明即可;(2)过点E 作EF ⊥BC 交直线BC 于F ,如图2所示,通过证明△DEF ≌△ABD ,可推证△CEF 等腰直角三角形,从而得出AC 与CE 的位置关系;(3)如图3所示,过点E 作EF ⊥DC 于F ,证明△ABD ≌△DFE ,进一步可证明AC ⊥EC【详解】解:(1)证明:∵∠B =90°∴∠BDA +∠BAD =90°∵∠ADE=90°∴∠BDA+∠EDC=90°∴∠BAD=∠EDC(2)垂直∵EF⊥BC∴∠EFD=90°∵∠B=90°∴∠EFD=∠B在△ABD和△DFE中∠BAD=∠FDE∠B=∠DFEAD=DE∴△ABD≌△DFE AAS∴AB=DF,BD=EF∵AB=BC∴BC=DF,∴BC-DC=DF-DC即BD=CF.∴EF=CF又∵∠EFC=90°∴∠ECF=45°,且∠ACB=45°∴∠ACE=180°-90°=90°即AC⊥CE.(3)(2)中的结论仍然成立如图3所示,过点E作EF⊥DC于F ∵∠ABD=90°∴∠EDF=∠DAB=90°-∠ADB在△ABD和△DFE中∠DAB=∠EDF∠ABD=∠DFEAD=DE∴△ABD≌△DFE AAS∴DB=EF,AB=DF=BC∴BC-BF=DF-BF即FC=DB∴FC=EF∴∠DCE=45°∴∠ACE=∠DCE+∠ACB=90°∴AC⊥EC.【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,证明△ABD≌△DFE是解本题的关键.6.(2021·黑龙江·哈尔滨市第四十七中学八年级开学考试)如图,已知△ABC中,AB=AC,∠BAC= 90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.(1)如图1,过A的直线与斜边BC不相交时,直接写出线段EF、BE、CF的数量关系是______;(2)如图2,过A的直线与斜边BC相交时,探究线段EF、BE、CF的数量关系并加以证明;(3)在(2)的条件下,如图3,直线FA交BC于点H,延长BE交AC于点G,连接BF、FG、HG,若∠AHB=∠GHC,EF=CF=6,EH=2FH,四边形ABFG的面积是90,求△GHC的面积.【答案】(1)数量关系为:EF=BE+CF;(2)数量关系为:EF=BE-CF.证明见详解;(3)S△GHC=15.【分析】(1)数量关系为:EF=BE+CF.利用一线三直角得到∠BEA=∠AFC=90°,∠EBA=∠FAC,再证△EBA≌△FEC(AAS)可得BE=AF,AE=CF即可;(2)数量关系为:EF=BE-CF.先证∠BEA=∠AFC=90°,∠EBA+∠EAB=90°,∠EAB+∠FAC= =90°,可得∠EBA=∠FAC,再证△EBA≌△FEC(AAS),可得BE=AF,AE=CF即可;(3)先由(2)结论EF=BE-CF;EF=CF=6,求出BE=AF=12,由EH=2FH,可求FH=2,EH=4,利用对角线垂直的四边形面积可求BG=2×90AF=18012=15,再求EG=3,AH=10,分别求出S△ACF=12AF⋅FC=36,S△HCF=12HF⋅FC=6,S△AGH=12AH⋅EG=15,利用面积差即可求出.【详解】解:(1)数量关系为:EF=BE+CF.∵BE⊥EF,CF⊥EF,∠BAC=90°,∴∠BEA=∠AFC=90°,∠EBA+∠EAB=90°,∠EAB+∠FAC=180°-∠BAC=90°,∴∠EBA=∠FAC,在△EBA和△FEC中,∵∠AEB=∠CFA ∠EBA=∠FAC AB=CA,∴△EBA≌△FAC(AAS),∴BE =AF ,AE =CF ,∴EF =AF +AE =BE +CF ;(2)数量关系为:EF =BE -CF .∵BE ⊥AF ,CF ⊥AF ,∠BAC =90°,∴∠BEA =∠AFC =90°,∠EBA +∠EAB =90°,∠EAB +∠FAC ==90°,∴∠EBA =∠FAC ,在△EBA 和△FEC 中,∵∠AEB =∠CFA∠EBA =∠FAC AB =CA,∴△EBA ≌△FAC (AAS ),∴BE =AF ,AE =CF ,∴EF =AF -AE =BE -CF ;(3)∵EF =BE -CF ;EF =CF =6,∴BE =AF =EF +CF =6+6=12,∵EH =2FH ,EH +FH =EF =6,∴2FH +FH =6,解得FH =2,∴EH =2FH =4,S 四边形ABFG =12AF ⋅BG =90,∴BG =2×90AF =18012=15,∴EG =BG -BE =15-12=3,AH =AE +EH =6+4=10,∵S △ACF =12AF ⋅FC =12×12×6=36,S △HCF =12HF ⋅FC =12×2×6=6,S △AGH =12AH ⋅EG =12×10×3=15,∴S △GHC =S △ACF -S △HCF -S △AGH =36-6-15=15.【点睛】本题考查图形变换探究线段和差问题,感知,探究以及应用,三角形全等判定与性质,三角形面积,四边形面积,与三角形高有关的计算,掌握图形变换探究线段和差问题,感知,探究以及应用,三角形全等判定与性质,三角形面积,四边形面积,与三角形高有关的计算是解题关键.7.(2021·江苏泰州·八年级期末)如图,正方形ABCD 边长为4,点G 在边AD 上(不与点A 、D 重合),BG 的垂直平分线分别交AB 、CD 于E 、F 两点,连接EG .(1)当AG =1时,求EG 的长;(2)当AG 的值等于时,BE =8-2DF ;(3)过G 点作GM ⊥EG 交CD 于M①求证:GB 平分∠AGM ;②设AG =x ,CM =y ,试说明16xy -4x -4y-1的值为定值.【答案】(1)178;(2)8-43(3)①见解析;②16xy -4x -4y-1=0,理由见解析【分析】(1)根据EF 是线段BG 的垂直平分线,BE =EG ,设EG =EB =x ,则AE =AB -BE =4-x ,再由勾股定理求解即可;(2)过点F 作FH ⊥AB 于H ,连接FB ,FG ,由BE =8-2DF ,CF =CD -DF =4-DF ,得到BE =2CF ,先证明四边形BCFH 是矩形,得到CF =HB ,则BH =EH =FC ,设AG =x ,BE =y ,则AE =4-y ,GD =4-x ,CF =12y ,DF =4-12y 由AE 2+AG 2=EG 2,GD 2+DF 2=GF 2,BC 2+FC 2=BF 2,可以得到4-y 2+x 2=y 2①,4-x 2+4-12y 2=42+12y 2②,联立①②求解即可得到答案;(3)①先证明∠EBG =∠E GB ,然后根据ABG +∠A GB =90°,∠E GB +∠BGM =90°,即可得到∠A GB =∠BGM ;②连接BM ,过点B 作BH ⊥GM ,由角平分线的性质得到BH =AB =4,由S 正方形ABCD =S △ABG +S △MB G +S △BCM +S △CDM =4×4=16,可以得到2x +2GM +2y +124-x 4-y =16,由勾股定理可以得到DM 2+GD 2=GM 即4-x 2+4-y 2=4-xy 4 ,最后解方程即可得到答案.【详解】解:(1)∵EF 是线段BG 的垂直平分线,∴BE =EG ,∵四边形ABCD 是正方形,且边长为4,∴AB =4,∠A =90°,设EG =EB =x ,则AE =AB -BE =4-x ,∵AE 2+AG 2=EG 2,∴4-x 2+12=x 2,解得x =178,∴EG =178;(2)如图所示,过点F 作FH ⊥AB 于H ,连接FB ,FG∵EF 是线段BG 的垂直平分线,∴BF =FG ,∵BE =8-2DF ,CF =CD -DF =4-DF ,∴BE =2CF ,∵四边形ABCD 是正方形,FH ⊥AB ,∴∠HBC =∠C =∠BHF =90°,∴四边形BCFH 是矩形,∴CF =HB ,∴BH =EH =FC ,设AG =x ,BE =y ,则AE =4-y ,GD =4-x ,CF =12y ,DF =4-12y ∵AE 2+AG 2=EG 2,GD 2+DF 2=GF 2,BC 2+FC 2=BF 2,∴4-y 2+x 2=y 2①,4-x 2+4-12y 2=42+12y 2②,联立①②解得x =8-43或x =8+43(舍去),∴当AG =8-43时,BE =8-2DF ,故答案为:8-43;(3)①∵EF 是线段BG 的垂直平分线,∴EG =BE ,∴∠EBG =∠E GB ,∵四边形ABCD 是正方形,EG ⊥GM ,∴∠A =∠EGM =90°,∴∠ABG +∠A GB =90°,∠E GB +∠BGM =90°,∴∠A GB =∠BGM ,∴BG 平分∠AGM ;②如图,连接BM ,过点B 作BH ⊥GM ,由(3)①得BG 平分∠AGM ,∴BH =AB =4,∵AG =x ,CM =y ,∴DG =4-x ,DM =4-y ,∵S 正方形ABCD =S △ABG +S △MB G +S △BCM +S △CDM =4×4=16,∴12AG ·AB +12GM ·BH +12CM ·BC +12DM ·GD =16,∴2x +2GM +2y +124-x 4-y =16,∴GM =4-xy 4,∵DM 2+GD 2=GM ,∴4-x 2+4-y 2=4-xy 4 ∴16-8x +x 2+16-8y +y 2=16-2xy +x 2y 216∴x +y 2-8x +y +16=x 2y 216,∴x +y -4 2=x 2y 216,∴x +y -4=±xy 4,当x +y -4=xy 4时,则4x +4y -16=xy ,∴y =16-4x 4-x =4(不符合题意),∴4x +4y -16=-xy∴16xy -4x -4y-1=0.【点睛】本题主要考查了正方形的性质,勾股定理,角平分线的性质,线段垂直平分线的性质,等腰三角形的性质与判定,三角形的面积等等,解题的关键在于能够熟练掌握相关知识进行求解.8.(2021·全国·八年级专题练习)已知,如图,在Rt △ABC 中,∠BAC =90°,∠ABC =45°,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边作正方形ADEF ,连接CF ,当点D 在线段BC 的反向延长线上,且点A ,F 分别在直线BC 的两侧时.(1)求证:△ABD ≌△ACF ;(2)若正方形ADEF 的边长为22,对角线AE ,DF 相交于点O ,连接OC ,求OC 的长度.【答案】(1)证明见解析; (2)OC =2【分析】(1)由题意易得AD =AF ,∠DAF =90°,则有∠DAB =∠FAC ,进而可证AB =AC ,然后问题可证;(2)由(1)可得△ABD ≌△ACF ,则有∠ABD =∠ACF ,进而可得∠ACF =135°,然后根据正方形的性质可求解.【详解】(1)证明:∵四边形ADEF 为正方形,∴AD =AF ,∠DAF =90°,又∵∠BAC =90°,∴∠DAB =∠FAC ,∵∠ABC =45°,∠BAC =90°,∴∠ACB =45°,∴∠ABC=∠ACB,∴AB=AC,∴△ABD≌△ACF(SAS);(2)解:由(1)知△ABD≌△ACF,∴∠ABD=∠ACF,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=135°,由(1)知∠ACB=45°,∴∠DCF=90°,∵正方形ADEF边长为22,∴DF=4,∴OC=12DF=12×4=2.【点睛】本题主要考查正方形的性质及等腰直角三角形的性质,熟练掌握正方形的性质及等腰直角三角形的性质是解题的关键.9.(2021·安徽安庆·八年级期末)如图1,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°(即∠EBE'=90°),得到△CBE′(点A的对应点为点C)延长AE交CE于点F,连接DE.(1)试判断四边形BE′FE的形状,并说明理由.(2)如图2,若DA=DE,请猜想线段CF于FE'的数量关系并加以证明.(3)如图1,若AB=17,CF=3,请直接写出DE的长.【答案】(1)正方形,理由见解析;(2)CF=FE',证明见解析;(3)5【分析】(1)由旋转的特征可得到∠E′=∠AEB=90°、∠EBE′=90°、BE′=BE,再由∠BEF=180°-∠AEB =90°,可判定四边形BE′FE是正方形;(2)过点D作DG⊥AE于点G,由DA=DE得AG=12AE,再证明△ADG≌△BAE,且由四边形BE′FE是正方形,得到FE′=AG=12CE′,可证得结论;(3)过点D作DG⊥AE于点G,由旋转及四边形BE′FE是正方形可得如下关系:AE=CE′=FE′+CF= FE′+3=BE+3,在Rt△BAE中根据勾股定理求出BE、AE的长,由(1)可知,△ADG≌△BAE,得到DG=BE,AG=BE,再由勾股定理求出DE的长.【详解】解:(1)四边形BE′FE是正方形.理由如下:由旋转得,∠E′=∠AEB=90°,∠EBE′=90°,∵∠BEF=180°-∠AEB=90°,∴四边形BE′FE是矩形,由旋转得,BE′=BE,∴四边形BE′FE是正方形.(2)CF=FE',证明:如图2,过点D作DG⊥AE于点G,则∠DGA=∠AEB=90°,∵DA=DE,∴AG=12AE,∵四边形ABCD是正方形,∴DA=AB,∠DAB=90°,∴∠BAE+∠DAG=90°,∵∠ADG+∠DAG=90°,∴∠ADG=∠BAE,在△ADG和△BAE中∠ADG=∠BAE∠AGD=∠AEBAD=AB,∴△ADG≌△BAE(AAS),∴AG=BE;∵四边形BE′FE是正方形,∴BE=FE′,∴AG=FE′,由旋转得,AE=CE′,∴12AE=12CE′,∴FE′=12AE=12CE′,∴CF=FE'.(3)如图3,过点D作DG⊥AE于点G,∵BE=FE′,CF=3,∴AE=CE′=FE′+CF=FE′+3=BE+3,∵AE2+BE2=AB2,且AB=17,∴(BE+3)2+BE2=(17)2,解得,BE=1或BE=-4(不符合题意,舍去),∴AE=1+3=4,由(2)得,△ADG≌△BAE,∴DG=AE=4,AG=BE=1,∴GE=AE-AG=4-1=3,∵∠DGE=90°,∴DE=DG2+GE2=42+32=5.【点睛】此题考查了正方形的性质与判定、旋转的性质、等腰三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,构造全等三角形.10.(2021·湖北鄂州·八年级期末)如图,四边形ABCD是正方形,点P是线段AB的延长线上一点,点M是线段AB上一点,连接DM,以点M为直角顶点作MN⊥DM交∠CBP的角平分线于N,过点C作CE⎳MN交AD于E,连接EM,CN,DN.(1)求证:DM=MN.(2)求证:EM⎳CN.(3)若AE=1,BN=32,求DN的长.【答案】(1)见解析;(2)见解析;(3)52【分析】(1)在边DA上截取线段DF,使DF=MB连MF,证明△MDF≌△N MB即可求解;(2)由(1)△MDF≌△N MB,证明四边形EMNC为平行四边形即可求解;(3)过N作NQ⊥AP垂足为Q,由(2)知,△EDC≌△MAD;得到AD-DE=AB-AM,AE=MB,BN平分∠CBP所以∠NBQ=45°,可知三角形NBQ是等腰直角三角形,再用勾股定理即可求出和MN和DN.【详解】(1)证明:在边DA上截取线段DF,使DF=MB连MF.∵四边形ABCD是正方形∴AB=BC=CD=AD;∠DAB=∠ABC=∠BCD=∠CDA=90°∴∠CBP=180°-∠ABC=90°∵BN平分∠CBP∴∠CBP=45°∴∠NBM=∠ABC+∠CBN=90°+45°=135°∵DF=MB,AD=AB∴AD-DF=AB-MB∴AF =AM在Rt △FAM 中,AF =AM ,∴∠AFM =∠AMF =45°∴∠MFD =180°-∠AFM =135°∴∠MFD =∠NBM∵∠DMN =90°∴∠N MB +∠DMA =180°-90°=90°∵∠DMA +∠MDF =90°∴∠N MB =∠MDF在△MDF 和△N MB 中∠MFD =∠NBADF =MB∠MDF =∠NMB∴△MDF ≌△N MB (ASA )∴DM =MN .(2)如图,设DM 与CE 的交点为H ,∵四边形ABCD 是正方形∴AD =DC ,∠DAM =∠CDE =90°∵∠DMN =90°,CE ⎳MN∴∠DHC =90°,∴∠HDC +∠DCH =90°∴∠HDC +∠ADM =90°∴∠DCE =∠ADM ,在△EDC 和△MAD 中,∠CDE =∠DAMAD =DC∠DCE =∠ADM∴△EDC ≌△MAD (ASA ).∴EC =DM 又DM =MN ,∴EC =MN 又EC ⎳MN .∴四边形EMNC 为平行四边形.∴EM ⎳CN .(3)解:如图所示,过N 作NQ ⊥AP 垂足为Q .由(2)知,△EDC ≌△MAD∴DE =MA ,又AD =AB∴AD -DE =AB -AM 即AE =MB =1∵BN平分∠CBP所以∠NBQ=45°,∴三角形NBQ是等腰直角三角形,在Rt△NBQ中,设BQ=x,则NQ=BQ=x,即x2+x2=(32)2,∴x=3.∴NQ=3,MQ=1+3=4,在Rt△MQN中,MN=32+42=5,又∵在Rt△DMN中,MN=5,DM=5,∴DN=52+52=52.【点睛】此题考查的是全等三角形的性质、等腰三角形的性质和判定和判定以及勾股定理的应用,掌握它们的性质和判定是解题的关键.11.(2022·广东·塘厦初中八年级期中)四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=4,CE=22,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是40°时,直接写出∠EFC的度数.【答案】(1)见解析;(2)22;(3)∠EFC=130°或40°【分析】(1)作EP⊥CD于P,EQ⊥BC于Q,证明Rt△EQF≌Rt△EPD,得到EF=ED,根据正方形的判定定理证明即可;(2)通过计算发现E是AC中点,点F与C重合,△CDG是等腰直角三角形,由此即可解决问题;(3)分两种情形:①如图3,当DE与AD的夹角为40°时,求得∠DEC=45°+40°=85°,得到∠CEF=5°,根据角的和差得到∠EFC=130°,②如图4,当DE与DC的夹角为40°时,根据三角形的内角和定理即可得到结论.【详解】(1)证明:如图1,作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF =∠PED ,在△EQF 和△EPD 中,∠QEF =∠PEDEQ =EP ∠EOF =∠EPD,∴△EQF ≌△EPD (ASA ),∴EF =ED ,∴矩形DEFG 是正方形;(2)如图2中,在Rt △ABC 中,AC =2AB =42,∵CE =22,∴AE =CE ,∴点F 与C 重合,此时△DCG 是等腰直角三角形,∴四边形DECG 是正方形,∴CG =CE =22;(3)①如图3,当DE 与AD 的夹角为40°时,∠DEC =45°+40°=85°,∵∠DEF =90°,∴∠CEF =5°,∵∠ECF =45°,∴∠EFC =130°,②如图4,当DE 与DC 的夹角为40°时,∵∠DEF =∠DCF =90°,∴∠EFC =∠EDC =40°,综上所述,∠EFC =130°或40°.【点睛】此题考查了正方形的判定以及性质,涉及了全等三角形的证明、等腰直角三角形等性质,熟练掌握相关基本性质是解题的关键.12.(2021·山西·八年级期末)综合与实践:如图1,在正方形ABCD 中,连接对角线AC ,点O 是AC 的中点,点E 是线段OA 上任意一点(不与点A ,O 重合),连接DE ,BE .过点E 作EF ⊥DE 交直线BC于点F.。

[荐]初三数学上第三章图形的相似-必考知识点总结

[荐]初三数学上第三章图形的相似-必考知识点总结

初三数学上第三章图形的相似-必考知识点总结图形的相似第三章图形的相似1、成比例线段①线段的比•如果选用同一个长度单位量的两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成•四条线段a、b、c、d中,如果a与b的比等于c与d的比,即•那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.②注意点:•a:b=k,说明a是b的k倍•由于线段a、b的长度都是正数,所以k是正数•比与所选线段的长度单位无关,求出时两条线段的长度单位要一致•除了a=b之外,a:b≠b:a•比例的基本性质:若则ad=bc; 若ad=bc, 则2、平行线分线段成比例平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l1 // l2 // l3 ,则3. 黄金分割如图1,点C把线段AB分成两条线段AC和BC,如果那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.黄金分割点是最优美、最令人赏心悦目的点.4.相似多边形①含义:•一般地,形状相同的图形称为相似图形.•对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.②注意点:•在相似多边形中,最为简单的就是相似三角形.•对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.•全等三角形是相似三角的特例,这时相似比等于1.注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.•相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.•相似三角形周长的比等于相似比.•相似三角形面积的比等于相似比的平方.•相似多边形的周长等于相似比;面积比等于相似比的平方.5、探索三角形相似的条件①相似三角形的判定方法:②平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

专题04 垂直模型知识精讲-冲刺2021年中考几何专项复习

专题04 垂直模型知识精讲-冲刺2021年中考几何专项复习

垂直模型1.在三角形中,若题目中已经有一边的高了,常作另一边上的高,然后用同角的余角相等证明角相等.例:如图,在△ABC中,AD⊥BC于点D,过点B作BE⊥AC交AC于点E,交AD于点F,则∠CBE=∠CAD,∠AFE=∠C=∠BFD.除了能得到角度间的关系外,还可以通过构造相似三角形来证明线段成比例或者用于求线段的长度.2.在四边形中,如果有高线,可以再作垂线,构造特殊的四边形或者直角三角形.例:如图,在四边形ABCD中,AB⊥BC,DC⊥BC,过点D作DE⊥BC,垂足为点E,则四边形BCDE为矩形,△ADE为直角三角形.3.在直角三角形中,常作斜边上的高,利用同角(等角)的余角相等,可得到相似三角形.例:如图,在Rt△ABC中,∠ACB=90°,过点C作CD⊥AB于点D,则∠A=∠DCB,∠B=∠ACD,△ABC∽△CBD∽△ACD.4.若题中已有直线的垂线时,可再作已知直线的垂线,得到两条平行线.例:如图,在△ABC中,AF⊥BC于点F,过AB上一点D作DE⊥BC于点E,则DE∥AF,∠BDE=∠BAF,∠ADE+∠BAF=180°,△BDE∽△BAF.5. 若存在过一条直线上两点同时向另一条直线作垂线,可以再作一条垂线,构造一组平行线,利用平行线等分线段定理解决问题.6. 当两条互相垂直的弦的交点恰好在圆上,构成90°的圆周角,可构造直径.例:如图,点A在圆O上,∠BAC=90°,连接BC,则BC就是圆O的直径.7. 当圆中有互相垂直的弦时,经常作直径所对的圆周角,可以得到垂直于同一条直线的两条直线,利用平行弦所夹的弧相等来解决问题.例:在圆O中,弦AB⊥CD于点E,连接CO并延长交圆O于点F,连接DF,则FD⊥CD,FD∥AB,.8. 当圆中有和弦垂直的线段时,作直径所对的圆周角,可以得到直角三角形,通过相似三角形来解决问题.例:如图,△ABC内接于圆O,CD⊥AB于点D,连接CO并延长交圆O于点E,连接AE,则△ACE∽△DCB.。

2023年中考数学----《相似综合》知识点总结与专项练习题(含答案解析)

2023年中考数学----《相似综合》知识点总结与专项练习题(含答案解析)

2023年中考数学----《相似综合》知识点总结与专项练习题(含答案解析)知识点总结1. 比例的性质:①基本性质:两内项之积等于量外项之积。

即若d c b a ::=,则ad bc =。

②合比性质:若d c b a =,则dd c b b a +=+。

③分比性质:若d c b a =,则dd c b b a −=−。

④合分比性质:若d c b a =,则dc d c b a b a −+=−+。

⑤等比性质:若n m d c b a ===...,则n m d c b a n d b m c a ====++++++.........。

2. 平行线分线段成比例:三条平行线被两条直线所截,所得的对应线段成比例。

即如图:有EFDE BC AB =; DFDE AC AB =; DFEF AC BC =。

推论:①平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

②如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

③平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。

3. 相似三角形的性质:①相似三角形的对应角相等,对应边的比相等。

对应边的比叫做相似比。

②相似三角形的周长比等于相似比,面积比等于相似比的平方。

相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比。

4.相似三角形的判定:①平行线法判定:平行于三角形一边的直线与三角形的另两边或另两边的延长线相交所构成的三角形与原三角形相似。

②对应边判定:三组对应边的比相等的两个三角形相似。

③两边及其夹角判定法:两组对应边的比相等,且这两组对应边的夹角相等的两个三角形相似。

④两角判定:有两组角(三组角)对应相等的两个三角形相似。

练习题1.如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.【分析】根据等腰三角形的性质可得∠C=∠CEB=∠AED,由AD⊥BE可得∠D=∠ABC=90°,即可得△ADE∽△ABC.【解答】证明:∵BE=BC,∴∠C=∠CEB,∵∠CEB =∠AED ,∴∠C =∠AED ,∵AD ⊥BE ,∴∠D =∠ABC =90°,∴△ADE ∽△ABC .2.如图,在△ABC 与△A ′B ′C ′中,点D 、D ′分别在边BC 、B ′C ′上,且△ACD ∽△A ′C ′D ′,若 ,则△ABD ∽△A ′B ′D ′. 请从①''''=D C D B CD BD ;②''''=D C B A CD AB ;③∠BAD =∠B ′A ′D ′这3个选项中选择一个作为条件(写序号),并加以证明.【分析】利用相似三角形的判定:两角对应相等的两个三角形相似可证明.【解答】解:③.理由如下:∵△ACD ∽△A ′C ′D ′,∴∠ADC =∠A 'D 'C ',∴∠ADB =∠A 'D 'B ',又∵∠BAD =∠B ′A ′D ′,∴△ABD ∽△A 'B 'D '.同理,选①也可以.故答案是:③(答案不唯一).3.如图所示,在等腰三角形ABC 中,AB =AC ,点E ,F 在线段BC 上,点Q 在线段AB 上,且CF =BE ,求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.【分析】(1)根据等腰三角形的性质得到∠B=∠C,利用SAS证明△ACE≌△ABF,根据全等三角形的性质即可得解;(2)利用全等三角形的性质,结合题意证明△ACE∽AFQ,△CAF∽△BFQ,根据相似三角形的性质即可得解.【解答】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF﹣EF=BE﹣EF,即CE=BF,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ•AB,AC=AB,∴=,∴△ACE∽△AFQ,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴=,即CF•FQ=AF•BQ.4.如图,在矩形ABCD中,AB=8,AD=4,点E是DC边上的任一点(不包括端点D,C),过点A作AF⊥AE交CB的延长线于点F,设DE=a.(1)求BF的长(用含a的代数式表示);(2)连接EF交AB于点G,连接GC,当GC∥AE时,求证:四边形AGCE是菱形.【分析】(1)根据矩形的性质可得∠ADE=∠ABF,∠∠DAE+∠BAE=90°,结合题干AF⊥AE可得∠BAF+∠BAE=90°,进而可得∠DAE=∠BAF,进而可得△ADE∽△ABF,利用相似三角形的性质可得BF的长度;(2)先根据AG∥CE,GC∥AE进而可得四边形AGCE是平行四边形,通过勾股定理可得GF2、EF2、AE2,再过点G作GM⊥AF于点M,易得△MGF∽△AEF,进而利用相似三角形的性质可得GM的长,即可得GM=GB,进而可得GF是∠AFB的角平分线,最后利用角平分线得性质可得EA=EC,即可得平行四边形AGCE是菱形.【解答】(1)解:∵四边形ABCD是矩形,∴∠ADE=∠ABF=∠BAD=90°,∴∠DAE+∠BAE=90°,∵AF⊥AE,∴∠BAF+∠BAE=90°,∴∠DAE=∠BAF,∴△ADE∽△ABF,∴,即,∴BF=2a,(2)证明:∵四边形ABCD是矩形,∴AG∥CE,∵GC∥AE,∴四边形AGCE是平行四边形.∴AG=CE=8﹣a,∴BG=AB﹣AG=8﹣(8﹣a)=a,在Rt△BGF中,GF2=a2+(2a)2=5a2,在Rt△CEF中,EF2=(2a+4)2+(8﹣a)2=5a2+80,在Rt△ADE中,AE2=42+a2=16+a2,如图,过点G作GM⊥AF于点M,∴GM∥AE,∴△MGF∽△AEF,∴,∴,∴=,∴GM =a ,∴GM =BG ,又∵GM ⊥AF ,GB ⊥FC ,∴GF 是∠AFB 的角平分线,∴EA =EC ,∴平行四边形AGCE 是菱形.5.如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF .已知四边形BFED 是平行四边形,41=BC DE . (1)若AB =8,求线段AD 的长.(2)若△ADE 的面积为1,求平行四边形BFED 的面积.【分析】(1)证明△ADE ∽△ABC ,根据相似三角形对应边的比相等列式,可解答;(2)根据相似三角形面积的比等于相似比的平方可得△ABC 的面积是16,同理可得△EFC 的面积=9,根据面积差可得答案.【解答】解:(1)∵四边形BFED 是平行四边形,∴DE ∥BF ,∴DE ∥BC ,∴△ADE ∽△ABC ,∴==,∵AB=8,∴AD=2;(2)∵△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为1,∴△ABC的面积是16,∵四边形BFED是平行四边形,∴EF∥AB,∴△EFC∽△ABC,∴=()2=,∴△EFC的面积=9,∴平行四边形BFED的面积=16﹣9﹣1=6.6.如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.【分析】(1)根据两角相等可得两三角形相似;(2)根据(1)中的相似列比例式可得结论.【解答】(1)证明:∵四边形ABCD为菱形,∴∠ACD=∠BCA,∵∠ACD=∠ABE,∴∠BCA=∠ABE,∵∠BAC=∠EAB,∴△ABC∽△AEB;(2)解:∵△ABC∽△AEB,∴=,∵AB=6,AC=4,∴=,∴AE==9.7.如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.【分析】(1)根据矩形的性质和角平分线的定义,求得∠3=∠6,从而求证BF⊥AC;(2)根据相似三角形的判定进行分析判断;(3)利用相似三角形的性质分析求解.【解答】(1)证明:如图,在矩形ABCD中,OD=OC,AB∥CD,∠BCD=90°,∴∠2=∠3=∠4,∠3+∠5=90°,∵DE=BE,∴∠1=∠2,又∵BE平分∠DBC,∴∠1=∠6,∴∠3=∠6,∴∠6+∠5=90°,∴BF⊥AC;(2)解:与△OBF相似的三角形有△ECF,△BAF理由如下:∵∠1=∠3,∠EFC=∠BFO,∴△ECF∽△OBF,∵DE=BE,∴∠1=∠2,又∵∠2=∠4,∴∠1=∠4,又∵∠BFA=∠OFB,∴△BAF∽△OBF;(3)解:在矩形ABCD中,∠4=∠3=∠2,∵∠1=∠2,∴∠1=∠4.又∵∠OFB=∠BFA,∴△OBF∽△BFA.∵∠1=∠3,∠OFB=∠EFC,∴△OBF∽△ECF.∴,∴,即3CF=2BF,∴3(CF+OF)=3CF+9=2BF+9,∴3OC=2BF+9∴3OA=2BF+9①,∵△ABF∽△BOF,∴,∴BF2=OF•AF,∴BF2=3(OA+3)②,联立①②,可得BF=1±(负值舍去),∴DE=BE=2+1+=3+.8.如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,点E为BC边上的动点(不与B、C重合,过点E作直线AB的垂线,垂足为F,连接DE、DF.(1)求证:△ABM∽△EBF;(2)当点E为BC的中点时,求DE的长;(3)设BE=x,△DEF的面积为y,求y与x之间的函数关系式,并求当x为何值时,y有最大值,最大值是多少?【分析】(1)利用两个角对应相等的三角形全等即可证明△ABM∽△EBF;(2)过点E作EN⊥AD于点N,可得四边形AMEN为矩形,从而得到NE=AM=4,AN=ME,再由勾股定理求出BM=3,从而得到ME=AN=2,进而得到DN=8,再由勾股定理,即可求解;(3)延长FE交DC的延长线于点G.根据,可得,再证得△ABM∽△ECG,可得,从而得到,再根据三角形的面积公式,得到函数关系式,再根据二次函数的性质,即可求解.【解答】(1)证明:∵EF⊥AB,AM是BC边上的高,∴∠AMB=∠EFB=90°,又∵∠B=∠B,∴△ABM∽△EBF;(2)解:过点E作EN⊥AD于点N,如图:在平行四边形ABCD中,AD∥BC,又∵AM是BC边上的高,∴AM⊥AD,∴∠AME=∠MAN=∠ANE=90°,∴四边形AMEN为矩形,∴NE=AM=4,AN=ME,在Rt△ABM中,,又∵E为BC的中点,∴,∴ME=AN=2,∴DN=8,在Rt△DNE中,;(3)解:延长FE交DC的延长线于点G,如图:∵sin B==,∴,∴EF=x,∵AB∥CD,∴∠B=∠ECG,∠EGC=∠BFE=90°,又∵∠AMB=∠EGC=90°,∴△ABM∽△ECG,∴,∴,∴GC=(10﹣x),∴DG=DC+GC=5+(10﹣x),∴y=EF•DG=×x•[5+(10﹣x)]=﹣x2+x=﹣(x﹣)2+,∴当x=时,y有最大值为,答:y=﹣x2+x,当x=时,y有最大值为.9.【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.【类比探究】如图2,△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°.连接BD ,CE .请直接写出CE BD 的值.【拓展提升】如图3,△ABC 和△ADE 都是直角三角形,∠ABC =∠ADE =90°,且43==DE AD BC AB .连接BD ,CE . (1)求CEBD 的值; (2)延长CE 交BD 于点F ,交AB 于点G .求sin ∠BFC 的值.【分析】【问题呈现】证明△BAD CAE ,从而得出结论;【类比探究】证明△BAD ∽△CAE ,进而得出结果;【拓展提升】(1)先证明△ABC ∽△ADE ,再证得△CAE ∽△BAD ,进而得出结果;(2)在(1)的基础上得出∠ACE =∠ABD ,进而∠BFC =∠BAC ,进一步得出结果.【解答】【问题呈现】证明:∵△ABC 和△ADE 都是等边三角形,∴AD =AE ,AB =AC ,∠DAE =∠BAC =60°,∴∠DAE ﹣∠BAE =∠BAC ﹣∠BAE ,∴∠BAD =∠CAE ,∴△BAD ≌△CAE (SAS ),∴BD =CE ;【类比探究】解:∵△ABC 和△ADE 都是等腰直角三角形,∴==,∠DAE =∠BAC =45°,∴∠DAE ﹣∠BAE =∠BAC ﹣∠BAE ,∴∠BAD =∠CAE ,∴△BAD ∽△CAE ,∴==;【拓展提升】解:(1)∵==,∠ABC =∠ADE =90°,∴△ABC ∽△ADE ,∴∠BAC =∠DAE ,,∴∠CAE =∠BAD ,∴△CAE ∽△BAD ,∴==;(2)由(1)得:△CAE ∽△BAD ,∴∠ACE =∠ABD ,∵∠AGC =∠BGF ,∴∠BFC =∠BAC ,∴sin ∠BFC ==.10.如图,在矩形ABCD 中,AB =6,BC =4,点M 、N 分别在AB 、AD 上,且MN ⊥MC ,点E 为CD 的中点,连接BE 交MC 于点F .(1)当F 为BE 的中点时,求证:AM =CE ;(2)若BF EF=2,求ND AN的值;(3)若MN ∥BE ,求NDAN 的值. 【分析】(1)根据矩形的性质,利用AAS 证明△BMF ≌△ECF ,得BM =CE ,再利用点E 为CD 的中点,即可证明结论;(2)利用△BMF ∽△ECF ,得,从而求出BM 的长,再利用△ANM ∽△BMC ,得,求出AN 的长,可得答案;(3)首先利用同角的余角相等得∠CBF =∠CMB ,则tan ∠CBF =tan ∠CMB ,得,可得BM 的长,由(2)同理可得答案.【解答】(1)证明:∵F 为BE 的中点,∴BF =EF ,∵四边形ABCD 是矩形,∴AB ∥CD ,AB =CD∴∠BMF =∠ECF ,∵∠BFM =∠EFC ,∴△BMF ≌△ECF (AAS ),∴BM =CE ,∵点E 为CD 的中点,∴CE =DE ,∴BM =CE =DE ,∵AB =CD ,∴AM =CE ;(2)解:∵∠BMF =∠ECF ,∠BFM =∠EFC ,∴△BMF∽△ECF,∴,∵CE=3,∴BM=,∴AM=,∵CM⊥MN,∴∠CMN=90°,∴∠AMN+∠BMC=90°,∵∠AMN+∠ANM=90°,∴∠ANM=∠BMC,∵∠A=∠MBC,∴△ANM∽△BMC,∴,∴,∴,∴DN=AD﹣AN=4﹣=,∴;(3)解:∵MN∥BE,∴∠BFC=∠CMN,∴∠FBC+∠BCM=90°,∵∠BCM+∠BMC=90°,∴∠CBF=∠CMB,∴tan∠CBF=tan∠CMB,∴,∴,∴,∴=,由(2)同理得,,∴,解得AN=,∴DN=AD﹣AN=4﹣=,∴=.11.在四边形ABCD中,∠BAD的平分线AF交BC于F,延长AB到E使BE=FC,G是AF的中点,GE 交BC于O,连接GD.(1)当四边形ABCD是矩形时,如图1,求证:①GE=GD;②BO•GD=GO•FC.(2)当四边形ABCD是平行四边形时,如图2,(1)中的结论都成立.请给出结论②的证明.【分析】(1)连接CG,过点G作GJ⊥CD于点J.证明△EAG≌△DAG(SAS),可得EG=DG,∠AEG =∠ADG,再证明△OBE∽△OGC,推出=,可得结论;(2)过点D作DT⊥BC于点T,连接GT.证明△EAG≌△DAG(SAS),推出EG=DG,∠AEG=∠ADG,再证明△OBE∽△OGT,推出=,可得结论.【解答】(1)证明:连接CG,过点G作GJ⊥CD于点J.∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,AD=BC,∵AF平分∠BAD,∴∠BAF=∠DAF=45°,∴∠AFB=∠BAF=45°,∴BA=BF,∵BE=CF,∴AE=AB+BE=BF+CF=BC=AD,∵AG=AG,∴△EAG≌△DAG(SAS),∴EG=DG,∠AEG=∠ADG,∵AD∥FC,AG=GF,∴DJ=JC,∵GJ⊥CD,∴GD=GC,∴∠GDC=∠GCD,∵∠ADC=∠BCD=90°,∴∠ADG=∠GCO,∴∠OEB=∠OCG,∵∠BOE=∠GOC,∴△OBE∽△OGC,∴=,∵GC=GD,BE=CF,∴BO•GD=GO•FC;(2)解:过点D作DT⊥BC于点T,连接GT.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAG=∠AFB,∵AF平分∠DAB,∴∠DAG=∠BAF,∴BAF=∠AFB,∴AE =AB +BE =BF +CF =BC =AD , ∵AG =AG ,∴△EAG ≌△DAG (SAS ), ∴∠AEG =∠ADG , ∵AD ∥FT ,AG =GF , ∴DJ =JT , ∵GJ ⊥DT , ∴GD =GT , ∴∠GDT =∠GTD , ∵∠ADT =∠BTD =90°, ∴∠ADG =∠GTO , ∴∠OEB =∠OTG , ∵∠BOE =∠GOT , ∴△OBE ∽△OGT , ∴=,∵GT =GD ,BE =CF , ∴BO •GD =GO •FC . 12.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是△ABC 的角平分线,可证CDBDAC AB =.小慧的证明思路是:如图2,过点C 作CE ∥AB ,交AD 的延长线于点E ,构造相似三角形来证明CDBDAC AB =.(1)请参照小慧提供的思路,利用图2证明:CDBDAC AB =; 应用拓展:(2)如图3,在Rt △ABC 中,∠BAC =90°,D 是边BC 上一点.连接AD ,将△ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处. ①若AC =1,AB =2,求DE 的长;②若BC =m ,∠AED =α,求DE 的长(用含m ,α的式子表示).【分析】(1)证明△CED ∽△BAD ,由相似三角形的性质得出,证出CE =CA ,则可得出结论;(2)①由折叠的性质可得出∠CAD =∠BAD ,CD =DE ,由(1)可知,,由勾股定理求出BC=,则可求出答案;②由折叠的性质得出∠C =∠AED =α,则tan ∠C =tan α=,方法同①可求出CD =,则可得出答案.【解答】(1)证明:∵CE ∥AB , ∴∠E =∠EAB ,∠B =∠ECB , ∴△CED ∽△BAD , ∴,∵∠E =∠EAB ,∠EAB =∠CAD , ∴∠E =∠CAD , ∴CE =CA ,(2)解:①∵将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处,∴∠CAD=∠BAD,CD=DE,由(1)可知,,又∵AC=1,AB=2,∴,∴BD=2CD,∵∠BAC=90°,∴BC===,∴BD+CD=,∴3CD=,∴CD=;∴DE=;②∵将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处,∴∠CAD=∠BAD,CD=DE,∠C=∠AED=α,∴tan∠C=tanα=,由(1)可知,,∴tanα=,∴BD=CD•tanα,又∵BC=BD+CD=m,∴CD•tanα+CD=m,∴CD=,∴DE =.13.【基础巩固】(1)如图1,在△ABC 中,D ,E ,F 分别为AB ,AC ,BC 上的点,DE ∥BC ,BF =CF ,AF 交DE 于点G ,求证:DG =EG .【尝试应用】(2)如图2,在(1)的条件下,连结CD ,CG .若CG ⊥DE ,CD =6,AE =3,求BCDE的值. 【拓展提高】(3)如图3,在▱ABCD 中,∠ADC =45°,AC 与BD 交于点O ,E 为AO 上一点,EG ∥BD 交AD 于点G ,EF ⊥EG 交BC 于点F .若∠EGF =40°,FG 平分∠EFC ,FG =10,求BF 的长.【分析】(1)证明△AGD ∽△AFB ,△AFC ∽△AGE ,根据相似三角形的性质得到=,进而证明结论;(2)根据线段垂直平分线的性质求出CE ,根据相似三角形的性质计算,得到答案;(3)延长GE 交AB 于M ,连接MF ,过点M 作MN ⊥BC 于N ,根据直角三角形的性质求出∠EFG ,求出∠MFN =30°,根据直角三角形的性质、勾股定理计算即可. 【解答】(1)证明:∵DE ∥BC , ∴△AGD ∽△AFB ,△AFC ∽△AGE , ∴=,=,∴=,∵BF =CF , ∴DG =EG ;(2)解:∵DG=EG,CG⊥DE,∴CE=CD=6,∵DE∥BC,∴△ADE∽△ABC,∴===;(3)解:延长GE交AB于M,连接MF,过点M作MN⊥BC于N,∵四边形ABCD为平行四边形,∴OB=OD,∠ABC=∠ADC=45°,∵MG∥BD,∴ME=GE,∵EF⊥EG,∴FM=FG=10,在Rt△GEF中,∠EGF=40°,∴∠EFG=90°﹣40°=50°,∵FG平分∠EFC,∴∠GFC=∠EFG=50°,∵FM=FG,EF⊥GM,∴∠MFE=∠EFG=50°,∴∠MFN=30°,∴MN=MF=5,∴NF==5,∵∠ABC=45°,∴BN=MN=5,∴BF=BN+NF=5+5.14.如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.(1)求证:△AEF∽△DCE;(2)如图2,连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.①求AG+GM的最小值;②当AG+GM取最小值时,求线段DE的长.【分析】(1)由矩形的性质及直角三角形的性质证出∠DCE=∠AEF,根据相似三角形的判定可得出结论;(2)①连接AM,由直角三角形的性质得出MB=CM=GM=,则点G在以点M为圆心,3为半径的圆上,当A,G,M三点共线时,AG+GM=AM,此时,AG+GM取得最小值,由勾股定理求出AM=5,则可得出答案;②方法一:过点M作MN∥AB交FC于点N,证明△CMN∽△CBF,由相似三角形的性质得出,设AF=x,则BF=4﹣x,得出MN=BF=(4+x),证明△AFG∽△MNG,得出比例线段,列出方程,解得x=1,求出AF=1,由(1)得,设DE=y,则AE=6﹣y,得出方程,解得y=3+或y=3﹣,则可得出答案.方法二:过点G作GH∥AB交BC于点H,证明△MHG∽△MBA,由相似三角形的性质得出,求出GH=,MH=,证明△CHG∽△CBF,得出,求出FB=3,则可得出AF=1,后同方法一可求出DE的长.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠CED+∠DCE=90°,∵EF⊥CE,∴∠CED+∠AEF=90°,∴∠DCE=∠AEF,∴△AEF∽△DCE;(2)解:①连接AM,如图2,∵BG⊥CF,∴△BGC是直角三角形,∵点M是BC的中点,∴MB=CM=GM=,∴点G在以点M为圆心,3为半径的圆上,当A,G,M三点不共线时,由三角形两边之和大于第三边得:AG+GM>AM,当A,G,M三点共线时,AG+GM=AM,此时,AG+GM取得最小值,在Rt△ABM中,AM===5,∴AG+GM的最小值为5.②如图3,过点M作MN∥AB交FC于点N,∴△CMN∽△CBF,∴,设AF=x,则BF=4﹣x,∴MN=BF=(4﹣x),∵MN∥AB,∴△AFG∽△MNG,∴,由(2)可知AG+GM的最小值为5,即AM=5,又∵GM=3,∴AG=2,∴,解得x =1, 即AF =1, 由(1)得,设DE =y ,则AE =6﹣y , ∴,解得:y =3+或y =3﹣, ∵0<6,0<3﹣<6, ∴DE =3+或DE =3﹣.15.已知矩形ABCD ,点E 为直线BD 上的一个动点(点E 不与点B 重合),连接AE ,以AE 为一边构造矩形AEFG (A ,E ,F ,G 按逆时针方向排列),连接DG .(1)如图1,当1==AE AGAB AD 时,请直接写出线段BE 与线段DG 的数量关系与位置关系; (2)如图2,当2==AEAGAB AD 时,请猜想线段BE 与线段DG 的数量关系与位置关系,并说明理由;(3)如图3,在(2)的条件下,连接BG ,EG ,分别取线段BG ,EG 的中点M ,N ,连接MN ,MD ,ND ,若AB =5,∠AEB =45°,请直接写出△MND 的面积.【分析】(1)证明△BAE ≌△DAG ,进一步得出结论; (2)证明BAE ∽△DAG ,进一步得出结论;(3)当点E在线段BD上时,解斜三角形ABE,求得BE=3,根据(2)可得DG=6,从而得出三角形BEG的面积,可证得△MND≌△MNG,△MNG与△BEG的面积比等于1:4,进而求得结果;同理可得点E在DB的延长线时的情形.【解答】解:(1)由题意得:四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAD﹣∠DAE=∠EAG﹣∠DAE,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∠ABE=∠ADG,∴∠ADG+∠ADB=∠ABE+∠ADB=90°,∴∠BDG=90°,∴BE⊥DG;(2)BE=,BE⊥DG,理由如下:由(1)得:∠BAE=∠DAG,∵==2,∴△BAE∽△DAG,∴,∠ABE=∠ADG,∴∠ADG+∠ADB=∠ABE+∠ADB=90°,∴∠BDG=90°,∴BE⊥DG;(3)如图,当B在线段BD上时,作AH⊥BD于H,∵tan∠ABD=,∴设AH=2x,BH=x,在Rt△ABH中,x2+(2x)2=()2,∴BH=1,AH=2,在Rt△AEH中,∵tan∠AEB=,∴,∴EH=AH=2,∴BE=BH+EH=3,∵BD==5,∴DE=BD﹣BE=5﹣3=2,由(2)得:,DG⊥BE,∴DG=2BE=6,∴S△BEG===9,在Rt△BDG和Rt△DEG中,点M是BG的中点,点N是CE的中点,∴DM=GM=,∵NM=NM,∴△DMN≌△GMN(SSS),∵MN是△BEG的中位线,∴MN∥BE,∴△BEG∽△MNG,∴=()2=,∴S△MND=S△MNG=S△BEG=,如图,同上可得:BE=EH﹣BH=2﹣1=1,DG=2BE=2,∴=1,∴S△BEG=,综上所述:△DMN的面积是或.。

中考数学知识点全等三角形专题之垂直模型

中考数学知识点全等三角形专题之垂直模型

垂直模型考点一:利用垂直证明角相等1.如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD;(2)若AC=12 cm,求BD的长.2.如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E.图(1) 图(2) 图(3)(1)试说明: BD=DE+CE.(2) 若直线AE绕A点旋转到图(2)位置时(BD<CE), 其余条件不变, 问BD与DE、CE的关系如何?写结论,并说明理由.(3) 若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何? 写出结论,可不说明理由.3.直线CD 经过的顶点C ,CA=CB .E 、F 分别是直线CD 上两点,且. (1)若直线CD 经过的内部,且E 、F 在射线CD 上,请解决下面两个问题:①如图1,若90,90BCA α∠=∠=oo,则 (填“”,“”或“”号); ②如图2,若,若使①中的结论仍然成立,则 与 应满足的关系是 ;(2)如图3,若直线CD 经过的外部,,请探究EF 、与BE 、AF 三条线段的数量关系,并给予证明.考点2:利用角相等证明垂直1. 已知BE ,CF 是△ABC 的高,且BP=AC ,CQ=AB ,试确定AP 与AQ 的数量关系和位置关系.BCA ∠BEC CFA α∠=∠=∠BCA ∠EF BE AF -><=0180BCA <∠<ooα∠BCA ∠BCA ∠BCA α∠=∠ABCE F DDAB CE F ADFC EB图1图2 图3DQPE F A2. 如图,在等腰R t△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(2)求证:AD⊥CF;(3)连接AF,试判断△ACF的形状.变式:如图所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.A3. 如图1,已知ADC 和EDG 都是等腰直角三角形上,连接AE ,GC . (1)试猜想AE 与GC 有怎样的位置关系,并证明你的结论;(2)将EDG 绕点D 按顺时针方向旋转30°,如图2,连接AE 和GC .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.4.如图1,ABC ∆的边BC 在直线l 上,,AC BC ⊥且,AC BC =EFP ∆的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =(1) 在图1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的 数量关系和位置关系;(2) 将EFP ∆沿直线l 向左平移到图2的位置时,EP 交AC 于点Q ,连接,AP BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP ∆沿直线l 向左平移到图3的位置时,EP 的延长线交AC 的延长线于点Q,连结,AP BQ ,你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.图1 图GEC。

2023年九年级相似三角形知识点总结及例题讲解

2023年九年级相似三角形知识点总结及例题讲解
若两个图形形状与大小都相似,这时是相似图形旳一种特例——全等形.
3.相似多边形旳性质:假如两个多边形是相似形,那么这两个多边形旳对应角相等,对应边旳长度成比例。
注意:当两个相似旳多边形是全等形时,他们旳对应边旳长度旳比值是1.
知识点二:比例线段有关概念及性质
(1)有关概念
1、比:选用同一长度单位量得两条线段。a、b旳长度分别是m、n,那么就说这两条线段旳比是a:b=m:n(或 )
②两个位似图形旳位似中心只有一种。
③两个位似图形也许位于位似中心旳两侧,也也许位于位似中心旳一侧。
④位似比就是相似比。
2)性质:①位似图形首先是相似图形,因此它具有相似图形旳一切性质。
②位似图形是一种特殊旳相似图形,它又具有特殊旳性质,位似图形上任意一对对应点到位似中心旳距离等于位似比(相似比)。
③每对位似对应点与位似中心共线,不通过位似中心旳对应线段平行。
3.推论旳逆定理:假如一条直线截三角形旳两边(或两边旳延长线)所得旳对应线段成比例.那么这条直线平行于三角形旳第三边. (即运用比例式证平行线)
4.定理:平行于三角形旳一边,并且和其他两边相交旳直线,所截旳三角形旳三边与原三角形三边对应成比例.
5.平行线等分线段定理:三条平行线截两条直线,假如在一条直线上截得旳线段相等,难么在另一条直线上截得旳线段也相等。
三角形相似旳鉴定定理:
鉴定定理1:假如一种三角形旳两个角与另一种三角形旳两个角对应相等,那么这两
个三角形相似.简述为:两角对应相等,两三角形相似.(此定理用旳最多)
鉴定定理2:假如一种三角形旳两条边和另一种三角形旳两条边对应成比例,并且夹
角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.

中考数学难点突破与经典模型精讲练全等三角形中的一线三垂直模型(解析版)

中考数学难点突破与经典模型精讲练全等三角形中的一线三垂直模型(解析版)

专题03 全等三角形中的一线三垂直模型【模型展示】【已知】如图,ABC ∆为等腰直角三角形,DE CE DE AD ⊥⊥, 【证明】由BAD CBE ABD CBE ABD BAD ∠=∠⇒︒=∠+∠︒=∠+∠90,90,同理BCE ABD ∠=∠,在ABD ∆和BCE ∆中,⇒⎪⎪⎩⎪⎪⎨⎧∠=∠=∠=∠BCEABD BCAB CBE BAD ABD BCE ∆≅∆.,ABD BCE DE AD CE ∆≅∆=+【模型证明】BE△MN于E,则有以下结论成立:△△ADC△△CEB;△DE=AD+BE【证明】:△证明:△AD△DE,BE△DE,△△ADC=△BEC=90°,△△ACB=90°,△△ACD+△BCE=90°,△DAC+△ACD=90°,△△DAC=△BCE,在△ADC和△CEB中△△ADC△△CEB(AAS).△证明:由(1)知:△ADC△△CEB,△AD=CE,CD=BE,△DC+CE=DE,△DE=AD+BE.【结论二】(其他形状一线三垂直)△DE=AD﹣BE△DE =BE ﹣AD【题型演练】一、单选题1.一天课间,顽皮的小明同学拿着老师的等腰直角三角板玩,不小心将三角板掉到两根柱子之间,如图所示,这一幕恰巧被数学老师看见了,于是有了下面这道题:如果每块砖的厚度a =8cm ,则DE 的长为( )A .40cmB .48cmC .56cmD .64cm【答案】C【详解】由等腰直角三角形的性质可得△ACB =90°,AC =CB ,因此可以考虑证明△ACD 和△CBE 全等,可以证明DE 的长为7块砖的厚度的和.【分析】解:由题意得△ADC =△CEB =△ACB =90°,AC =CB ,△△ACD =90°﹣△BCE =△CBE ,在△ACD 和△CBE 中, ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ACD △△CBE (AAS ),△CD =BE =3a ,AD =CE =4a ,△DE =CD +CE =3a +4a =7a ,△a =8cm ,△7a =56cm ,△DE =56cm ,故选C .【点睛】本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.2.如图,点P ,D 分别是△ABC 边BA ,BC 上的点,且4BD =,60ABC ∠=︒.连结PD ,以PD 为边,在PD 的右侧作等边△DPE ,连结BE ,则△BDE 的面积为( )A .B .2C .4D .【答案】A【分析】要求BDE ∆的面积,想到过点E 作EF BC ⊥,垂足为F ,因为题目已知60ABC ∠=︒,想到把ABC ∠放在直角三角形中,所以过点D 作DG BA ⊥,垂足为G ,利用勾股定理求出DG 的长,最后证明GPD FDE ∆≅∆即可解答.【详解】解:过点E 作EF BC ⊥,垂足为F ,过点D 作DG BA ⊥,垂足为G ,在Rt BGD 中,4BD =,60ABC ∠=︒,30BDG ∴∠=︒,122BG BD ∴==,GD ∴PDE ∆是等边三角形,60PDE ∴∠=︒,PD DE =,180120PDB EDF PDE ∴∠+∠=︒-∠=︒,60ABC ∠=︒,180120PDB BPD ABC ∴∠+∠=︒-∠=︒,BPD EDF ∴∠=∠,90PGD DFE ∠=∠=︒,()GPD FDE AAS ∴∆≅∆,GD EF ∴==BDE ∴∆的面积12BD EF =⋅,142=⨯⨯=,故选:A .【点睛】本题考查了等边三角形的性质,全等三角形、勾股定理,解题的关键是根据题目的已知条件并结合图形添加适当的辅助线.3.如图,AC =CE ,△ACE =90°,AB △BD ,ED △BD ,AB =6cm ,DE =2cm ,则BD 等于( )A .6cmB .8cmC .10cmD .4cm【答案】B【分析】根据题意证明ABC CDE △≌△即可得出结论.【详解】解:△AB △BD ,ED △BD ,△90ABC CDE ∠=∠=︒,△△ACE =90°,△90ACB DCE ∠+∠=︒,△90ACB BAC ∠+∠=︒,△BAC DCE ∠=∠,在ABC 和CDE △中,90ABC CDE BAC DCE AC CE ∠=∠=︒⎧⎪∠=∠⎪⎨⎪⎪⎩=, △()ABC CDE AAS ≌,△6cm AB CD ==,2cm BC DE ==,△268cm BD BC CD =+=+=,故选:B .【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理以及性质定理是解本题的关键.二、填空题4.如图,已知ABC 是等腰直角三角形,△ACB =90°,AD △DE 于点D ,BE △DE 于点E,且点C 在DE 上,若AD =5,BE =8,则DE 的长为_____.【答案】13【分析】先根据AD △DE ,BE △DE ,△ADC =△CEB =90°,则△DAC +△DCA =90°,△ABC 是等腰直角三角形,△ACB =90°,可得AC =CB ,推出△DAC =△ECB ,即可证明△DAC △△ECB 得到CE =AD =5,CD =BE =8,由此求解即可.【详解】解:△AD △DE ,BE △DE ,△△ADC =△CEB =90°,△△DAC +△DCA =90°,△△ABC 是等腰直角三角形,△ACB =90°,△△DCA +△BCE =90°,AC =CB△△DAC =△ECB ,△△DAC △△ECB (AAS ),△CE =AD =5,CD =BE =8,△DE =CD +CE =13,故答案为:13.【点睛】本题主要考查了全等三角形的性质与判定,垂线的定义,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.5.如图所示,ABC 中,,90AB AC BAC =∠=︒.直线l 经过点A ,过点B 作BE l ⊥于点E ,过点C 作CF l ⊥于点F .若2,5==BE CF ,则EF =__________.【答案】7【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【详解】解:△BE △l ,CF △l ,△△AEB =△CF A =90°.△△EAB +△EBA =90°.又△△BAC =90°,△△EAB +△CAF =90°.△△EBA =△CAF .在△AEB 和△CF A 中△△AEB =△CF A ,△EBA =△CAF ,AB =AC ,△△AEB △△CF A .△AE =CF ,BE =AF .△AE +AF =BE +CF .△EF =BE +CF .△2,5==BE CF ,△257EF =+=;故答案为:7.【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是熟练掌握所学的知识,正确的证明三角形全等.三、解答题6.已知:如图,AB △BD ,ED △BD ,C 是BD 上的一点,AC △CE ,AB =CD ,求证:BC =DE .【答案】见解析【分析】根据直角三角形全等的判定方法,ASA 即可判定三角形全等.【详解】证明:△AB △BD ,ED △BD ,AC △CE (已知)△△ACE =△B =△D =90°(垂直的意义)△△BCA +△DCE +△ACE =180°(平角的意义)△ACE =90°(已证)△△BCA +△DCE =90°(等式性质)△△BCA +△A +△B =180°(三角形内角和等于180°)△B =90°(已证)△△BCA +△A =90°(等式性质)△△DCE =△A (同角的余角相等)A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,△△ABC △△CDE (ASA )△BC =DE (全等三角形对应边相等)【点睛】本题考查了全等三角形的判定和性质;熟练掌握三角形全等的判定定理是解题的关键.7.在△ABC 中,△ACB =90°,AC =BC ,直线MN 经过点C ,且AD △MN 于D ,BE △MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:△△ADC △△CEB ;△DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,AD =5,BE =2,求线段DE 的长.【答案】(1)△证明见解析;△证明见解析;(2)DE =3【分析】(1)△由已知可知,AD △MN ,BE △MN ,得到90ADC CEB ∠=∠=︒,再根据三角形内角和与平角性质,得到CAD BCE ∠=∠,即可证明ADC CEB △≌△(AAS );△根据ADC CEB △≌△,得到AD CE =,DC BE =,即可证明DE =AD +BE .(2)由已知可知,AD △MN ,BE △MN ,得到90ADC CEB ∠=∠=︒,再根据90CAD ACD ∠+∠=︒、90ACD BCE ∠+∠=︒,得到CAD BCE ∠=∠,可证明ADC CEB △≌△,得到CE AD =,CD BE =,即可求出DE 长.(1)△证明:△AD △MN ,BE △MN ,90ACB ∠=︒△90ADC CEB ACB ∠=∠=∠=︒,△180CAD ADC ACD ∠+∠+∠=︒,180ACD ACB BCE ∠+∠+∠=︒,△CAD BCE ∠=∠,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ADC CEB △≌△(AAS );△证明:△ADC CEB △≌△,△AD CE =,DC BE =,△DE CE DC AD BE =+=+;(2)证明:△AD △MN ,BE △MN ,△90ADC CEB ∠=∠=︒,△90CAD ACD ∠+∠=︒,△90ACB ∠=︒,△90ACD BCE ∠+∠=︒△CAD BCE ∠=∠,在ADC △和CEB △中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ADC CEB △≌△(AAS ),△5CE AD ==,2CD BE ==,△523DE CE CD =-=-=.【点睛】本题主要考查了三角形全等的判定与性质,根据已知准确找到符合全等的条件是解题关键.8.(1)课本习题回放:“如图△,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E , 2.5cm AD =, 1.7cm DE =.求BE 的长”,请直接写出此题答案:BE 的长为________.(2)探索证明:如图△,点B ,C 在MAN ∠的边AM 、AN 上,AB AC =,点E ,F 在MAN ∠内部的射线AD 上,且BED CFD BAC ∠=∠=∠.求证:ABE CAF ∆∆≌.(3)拓展应用:如图△,在ABC ∆中,AB AC =,AB BC >.点D 在边BC 上,2CD BD =,点E 、F 在线段AD 上,BED CFD BAC ∠=∠=∠.若ABC ∆的面积为15,则ACF ∆与BDE ∆的面积之和为________.(直接填写结果,不需要写解答过程)【答案】(1)0.8cm ;(2)见解析(3)5【分析】(1)利用AAS 定理证明△CEB △△ADC ,根据全等三角形的性质解答即可;(2)由条件可得△BEA =△AFC ,△4=△ABE ,根据AAS 可证明△ABE △△CAF ; (3)先证明△ABE △△CAF ,得到ACF ∆与BDE ∆的面积之和为△ABD 的面积,再根据2CD BD =故可求解.【详解】解:(1)△BE △CE ,AD △CE ,△△E =△ADC =90°,△△EBC +△BCE =90°.△△BCE +△ACD =90°,△△EBC =△DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△CEB △△ADC (AAS ),△BE =DC ,CE =AD =2.5cm .△DC =CE −DE ,DE =1.7cm ,△DC =2.5−1.7=0.8cm ,△BE =0.8cm故答案为:0.8cm ;(2)证明:△△1=△2,△△BEA =△AFC .△△1=△ABE +△3,△3+△4=△BAC ,△1=△BAC ,△△BAC =△ABE +△3,△△4=△ABE .△△AEB =△AFC ,△ABE =△4,AB =AC ,△△ABE △△CAF (AAS ).(3)△BED CFD BAC ∠=∠=∠△△ABE +△BAE =△F AC +△BAE =△F AC +△ACF△△ABE =△CAF ,△BAE =△ACF又AB AC =△△ABE △△CAF ,△ABE CAF S S =△ACF ∆与BDE ∆的面积之和等于ABE ∆与BDE ∆的面积之和,即为△ABD 的面积, △2CD BD =,△ABD 与△ACD 的高相同 则13ABD ABC S S =△△=5 故ACF ∆与BDE ∆的面积之和为5故答案为:5.【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.9.问题背景:(1)如图△,已知ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E ,易证:DE =______+______.(2)拓展延伸:如图△,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠,请求出DE ,BD ,CE 三条线段的数量关系,并证明.(3)实际应用:如图△,在ACB △中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点A 的坐标为()6,3-,请直接写出B 点的坐标.【答案】(1)BD ;CE ;证明见详解;(2)DE=BD+CE ;证明见详解;(3)点B 的坐标为()1,4B .【分析】(1)根据全等三角形的判定和性质得到AE BD =,AD CE =,结合图形解答即可; (2)根据三角形内角和定理、平角的定义证明ABD CAE ∠=∠,证明ABD CAE ≌,根据全等三角形的性质得到AE BD =,AD CE =,结合图形解答即可;(3)根据AEC CFB ≌,得到3CF AE ==,4BF CE OE OC ==-=,根据坐标与图形性质解答即可.【详解】(1)证明:△BD m ⊥,CE m ⊥,△90ADB CEA ∠=∠=︒,△90BAC ∠=︒,△90BAD CAE ∠+∠=︒,△90BAD ABD ∠+∠=︒,△ CAE ABD ∠=∠,在ADB 和CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ADB CEA ≌,△AE BD =,AD CE =,△DE AE AD BD CE =+=+,即:DE BD CE =+,故答案为:BD ;CE ;(2)解:数量关系:DE BD CE =+ ,证明:在ABD 中,180ABD ADB BAD ∠=︒-∠-∠,△180CAE BAC BAD ∠=︒-∠-∠,BDA AEC ∠=∠,△ABD CAE ∠=∠,在ABD 和CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== △ABD CAE ≌,△AE BD =,AD CE =,△DE AD AE BD CE =+=+;(3)解:如图,作AE x ⊥轴于E ,BF x ⊥轴于F ,由(1)可知,AEC CFB ≌,△3CF AE ==,4BF CE OE OC ==-=,△1OF CF OC =-=,△点B 的坐标为()1,4B .【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.10.如图,在ABC 中,AB BC =.(1)如图△所示,直线NM 过点B ,AM MN ⊥于点M ,⊥CN MN 于点N ,且90ABC ∠=︒.求证:MN AM CN =+.(2)如图△所示,直线MN 过点B ,AM 交MN 于点M ,CN 交MN 于点N,且AMB ABC BNC ∠=∠=∠,则MN AM CN =+是否成立?请说明理由.【答案】(1)见解析;(2)MN AM CN =+仍然成立,理由见解析【分析】(1)首先根据同角的余角相等得到BAM CBN ∠=∠,然后证明()AMB BNC AAS ≅△△,然后根据全等三角形对应边相等得到AM BN =,BM CN =,然后通过线段之间的转化即可证明MN AM CN =+;(2)首先根据三角形内角和定理得到MAB CBN ∠=∠,然后证明()AMB BNC AAS ≅△△,根据全等三角形对应边相等得到MN MB BN =+,最后通过线段之间的转化即可证明MN AM CN =+.【详解】证明:(1)△AM MN ⊥,⊥CN MN ,△90AMB BNC ∠=∠=︒,△90ABM BAM ∠+∠=︒,△90ABC ∠=︒,△90ABM CBN ,△BAM CBN ∠=∠,在AMB 和BNC 中,AMB BNC BAM CBN AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△()AMB BNC AAS ≅△△,△AM BN =,BM CN =,△BN MB MN +=,△MN AM CN =+;(2)MN AM CN =+仍然成立,理由如下:△180AMB MAB ABM ABM ABC CBN ∠+∠+∠=∠+∠+∠=︒,△AMB ABC ∠=∠,△MAB CBN ∠=∠,在AMB 和BNC 中,AMB BNC BAM CBN AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△()AMB BNC AAS ≅△△,△AM BN =,NC MB =,△MN MB BN =+,△MN AM CN =+.【点睛】此题考查了全等三角形的性质和判定,同角的与相等,三角形内角和定理等知识,∠=∠.解题的关键是根据同角的余角相等或三角形内角和定理得到BAM CBN11.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足△BDA =△AEC=△BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.【答案】(1)DE=BD+CE.(2)DE=BD+CE仍然成立,证明见解析【分析】(1)由△BDA=△BAC=△AEC=90°得到△BAD+△EAC=△BAD+△DBA=90°,进而得到△DBA=△EAC,然后结合AB=AC得证△DBA△△EAC,最后得到DE=BD+CE;(2)由△BDA=△BAC=△AEC=α得到△BAD+△EAC=△BAD+△DBA=180°﹣α,进而得到△DBA=△EAC,然后结合AB=AC得证△DBA△△EAC,最后得到DE=BD+CE.(1)解:DE=BD+CE,理由如下,△△BDA=△BAC=△AEC=90°,△△BAD+△EAC=△BAD+△DBA=90°,△△DBA=△EAC,△AB=AC,△△DBA△△EAC(AAS),△AD=CE,BD=AE,△DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,△△BDA=△BAC=△AEC=α,△△BAD +△EAC =△BAD +△DBA =180°﹣α,△△DBA =△EAC ,△AB =AC ,△△DBA △△EAC (AAS ),△BD =AE ,AD =CE ,△DE =AD +AE =BD +CE ;【点睛】本题是三角形综合题,考查了全等三角形的判定与性质、直角三角形的性质,解题的关键是熟练掌握全等三角形的判定与性质.12.如图,90,ABC FA AB ∠=⊥于点A ,点D 在直线AB 上,,AD BC AF BD ==.(1)如图1,若点D 在线段AB 上,判断DF 与DC 的数量关系和位置关系,并说明理由;(2)如图2,若点D 在线段AB 的延长线上,其他条件不变,试判断(1)中结论是否成立,并说明理由.【答案】(1)DF =DC ,DF △DC ;理由见解析(2)成立,理由见解析【分析】(1)先证△ADF △△BCD ,得DF =DC ,ADF BCD ∠=∠,再证△FDC =90°即可得垂直; (2)先证△ADF △△BCD ,得DF =DC ,ADF BCD ∠=∠,再证△FDC =90°即可得垂直.(1)解:△90,ABC FA AB ∠=⊥,△90ABC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩,△△ADF △△BCD ,△DF =DC ,ADF BCD ∠=∠,△△BDC +△BCD =90°,△△BDC +△ADF =90°,△△FDC =90°,即DF △DC .(2)△90,ABC FA AB ∠=⊥,△90DBC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩,△△ADF △△BCD ,△DF =DC ,ADF BCD ∠=∠,△△BDC +△BCD =90°,△△BDC +△ADF =90°,△△FDC =90°,即DF △DC .【点睛】本题考查全等三角形的判定与性质,解题关键是能判断哪两个三角形全等.13.(1)如图1,已知:在△ABC 中,△BAC =90°,AB =AC ,直线m 经过点A ,BD △直线m ,CE △直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有△BDA =△AEC =△BAC =α,其中α为任意钝角,请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.【答案】(1)见解析;(2)成立,见解析【分析】(1)根据AAS 可证明△ADB △△CEA ,可得AE =BD ,AD =CE ,可得DE =BD +CE .(2)由已知条件可知△BAD +△CAE =180α︒-,△DBA +△BAD =180α︒-,可得△DBA =△CAE ,结合条件可证明△ADB △△CEA ,同(1)可得出结论.【详解】(1)如图1,△ BD △ 直线m ,CE △直线m ,△△BDA =△CEA =90°,△△BAC =90°,△△BAD +△CAE =90°△△BAD +△ABD =90°,△△CAE =△ABD ,在△ADB 和△CEA 中,BDA CEA CAE ABD AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△ADB △△CEA (AAS ),△AE =BD ,AD =CE ,△DE =AE +AD =BD +CE ;(2)如图2,△△BDA =△BAC =α,△△DBA +△BAD =△BAD +△CAE =180α︒-,△△DBA =△CAE ,在△ADB 和△CEA 中,BDA CEA CAE ABD AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△ADB △△CEA (AAS ),△AE =BD ,AD =CE ,△DE =AE +AD =BD +CE ;【点睛】本题主要考查了全等三角形的判定和性质,由条件证明三角形全等得到BD =AE ,CE =AD 是解题的关键.14.在直线m 上依次取互不重合的三个点,,D A E ,在直线m 上方有AB AC =,且满足BDA AEC BAC α∠=∠=∠=.(1)如图1,当90α=︒时,猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2,当0180α<<︒时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE 的面积之和.【答案】(1)DE =BD +CE(2)DE =BD +CE 仍然成立,理由见解析(3)△FBD 与△ACE 的面积之和为4【分析】(1)由△BDA =△BAC =△AEC =90°得到△BAD +△EAC =△BAD +△DBA =90°,进而得到△DBA =△EAC ,然后结合AB =AC 得证△DBA △△EAC ,最后得到DE =BD +CE ;(2)由△BDA =△BAC =△AEC =α得到△BAD +△EAC =△BAD +△DBA =180°﹣α,进而得到△DBA =△EAC ,然后结合AB =AC 得证△DBA △△EAC ,最后得到DE =BD +CE ;(3)由△BAD >△CAE ,△BDA =△AEC =△BAC ,得出△CAE =△ABD ,由AAS 证得△ADB △△CAE ,得出S △ABD =S △CEA ,再由不同底等高的两个三角形的面积之比等于底的比,得出S △ABF 即可得出结果.(1)解:DE =BD +CE ,理由如下,△△BDA =△BAC =△AEC =90°,△△BAD +△EAC =△BAD +△DBA =90°,△△DBA =△EAC ,△AB =AC ,△△DBA △△EAC (AAS ),△AD =CE ,BD =AE ,△DE =AD +AE =BD +CE ,故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立,理由如下,△△BDA =△BAC =△AEC =α,△△BAD +△EAC =△BAD +△DBA =180°﹣α,△△DBA =△EAC ,△AB =AC ,△△DBA △△EAC (AAS ),△BD =AE ,AD =CE ,△DE =AD +AE =BD +CE ;(3)解:△△BAD <△CAE ,△BDA =△AEC =△BAC ,△△CAE =△ABD ,在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ABD △△CAE (AAS ),△S △ABD =S △CAE ,设△ABC 的底边BC 上的高为h ,则△ABF 的底边BF 上的高为h ,△S △ABC =12BC •h =12,S △ABF =12BF •h ,△BC =3BF ,△S △ABF =4,△S △ABF =S △BDF +S △ABD =S △+S △ACE =4,△△FBD 与△ACE 的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质,三角形的面积,解题的关键是熟练掌握全等三角形的判定与性质.15.在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C 且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:△ADC △CEB △;△DE AD BE =+;(2)当直线MN 烧点C 旋转到图2的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)△证明见解析;△证明见解析(2)证明见解析(3)DE BE AD =-(或者对其恒等变形得到AD BE DE =-,BE AD DE =+),证明见解析【分析】(1)△根据AD MN ⊥,BE MN ⊥,90ACB ∠=︒,得出CAD BCE ∠=∠,再根据AAS即可判定ADC CEB ∆≅∆;△根据全等三角形的对应边相等,即可得出CE AD =,CD BE =,进而得到DE CE CD AD BE =+=+;(2)先根据AD MN ⊥,BE MN ⊥,得到90ADC CEB ACB ∠=∠=∠=︒,进而得出CAD BCE ∠=∠,再根据AAS 即可判定ADC CEB ∆≅∆,进而得到CE AD =,CD BE =,最后得出DE CE CD AD BE =-=-;(3)运用(2)中的方法即可得出DE ,AD ,BE 之间的等量关系是:DE BE AD =-或恒等变形的其他形式.(1)解:△AD MN ⊥,BE MN ⊥,90ADC ACB CEB ∴∠=∠=︒=∠,90CAD ACD ∴∠+∠=︒,90BCE ACD ∠+∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆;△ADC CEB ∆≅∆,CE AD ∴=,CD BE =,DE CE CD AD BE ∴=+=+;(2)证明:AD MN ⊥,BE MN ⊥,90ADC CEB ACB ∴∠=∠=∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆;CE AD ∴=,CD BE =,DE CE CD AD BE ∴=-=-;(3)证明:当MN 旋转到题图(3)的位置时,AD ,DE ,BE 所满足的等量关系是:DE BE AD =-或AD BE DE =+或BE AD DE =+.理由如下:AD MN ⊥,BE MN ⊥,90ADC CEB ACB ∴∠=∠=∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆,CE AD ∴=,CD BE =,DE CD CE BE AD ∴=-=-(或者对其恒等变形得到AD BE DE =+或BE AD DE =+).【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质的综合应用,解题时注意:全等三角形的对应边相等,同角的余角相等,解决问题的关键是根据线段的和差关系进行推导,得出结论.16.(1)如图1,在△ABC 中,△BAC =90°,AB =AC ,直线m 经过点A ,BD △直线m ,CE △直线m ,垂足分别为点D 、E .求证:△ABD △△CAE ;(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有△BDA =△AEC =△BAC =α,其中α为任意锐角或钝角.请问结论△ABD △△CAE 是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D ,E 是D ,A ,E 三点所在直线m 上的两动点(D ,A ,E 三点互不重合),点F 为△BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD ,CE ,若△BDA =△AEC =△BAC ,求证:△DEF 是等边三角形.【答案】(1)见详解;(2)成立,理由见详解;(3)见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得90BDA CEA ∠=∠=︒,而90BAC ∠=︒,根据等角的余角相等得CAE ABD ∠=∠,然后根据“AAS ”可判断ADB CEA ∆∆≌;(2)利用BDA BAC α∠=∠=,则180DBA BAD BAD CAE ∠∠∠∠α+=+=︒-,得出CAE ABD ∠=∠,然后问题可求证;(3)由题意易得,60BF AF AB AC ABF BAF FAC ===∠=∠=∠=︒,由(1)(2)易证ADB CEA ∆∆≌,则有AE BD =,然后可得FBD FAE ∠=∠,进而可证DBF EAF ∆∆≌,最后问题可得证.【详解】(1)证明:BD ⊥直线m ,CE ⊥直线m ,90BDA CEA ∴∠=∠=︒,90BAC ∠=︒,90BAD CAE ∴∠+∠=︒,90BAD ABD ∠+∠=︒,CAE ABD ∴∠=∠,在ADB ∆和CEA ∆中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆∆≌;解:(2)成立,理由如下:α∠=∠=BDA BAC ,180α∴∠+∠=∠+∠=︒-DBA BAD BAD CAE ,CAE ABD ∴∠=∠,在ADB ∆和CEA ∆中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆∆≌;(3)证明:△△ABF 和△ACF 均为等边三角形,△,60BF AF AB AC ABF BAF FAC ===∠=∠=∠=︒,△△BDA =△AEC =△BAC =120°,△180120DBA BAD BAD CAE ∠+∠=∠+∠=︒-︒,△CAE ABD ∠=∠,△()ADB CEA AAS ∆∆≌,△AE BD =,△,FBD FBA ABD FAE FAC CAE∠=∠+∠∠=∠+∠,△FBD FAE∠=∠,△DBF EAF∆∆≌(SAS),△,FD FE BFD AFE=∠=∠,△60BFA BFD DFA AFE DFA DFE∠=∠+∠=∠+∠=∠=︒,△△DFE是等边三角形.【点睛】本题主要考查全等三角形的判定与性质及等边三角形的性质与判定,熟练掌握全等三角形的判定与性质及等边三角形的性质与判定是解题的关键.17.已知△ABC中,△ACB=90°,AC=BC.BE、AD分别与过点C的直线垂直,且垂足分别为D,E.学习完第十二章后,张老师首先让同学们完成问题1:如图1,若AD=2.5cm,DE=1.7cm,求BE的长;然后,张老师又提出问题2:将图1中的直线CE绕点C旋转到△ABC的外部,BE、AD与直线CE的垂直关系不变,如图2,猜想AD、DE、BE三者的数量关系,并给予证明.【答案】BE的长为0.8cm;DE=AD+BE.【分析】如图1,由“AAS”可证△ACD△△CBE,可得AD=CE=2.5cm,BE=CD,由线段的和差关系可求解;如图2,由“AAS”可证△ACD△△CBE,可得AD=CE,BE=CD,即可求解.【详解】解:如图1,△△ACB=△BEC=△ADC=90°,△△ACD+△BCE=90°=△ACD+△CAD,△△BCE=△CAD,在△ACD和△CBE中,BEC ADCBCE CADBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ACD△△CBE(AAS),△AD=CE=2.5cm,BE=CD,△DE=1.7cm,△BE =CD =CE -DE =2.5-1.7=0.8cm ,△BE 的长为0.8cm ;如图2,DE =AD +BE ,理由如下:△△ACB =△BEC =△ADC =90°,△△ACD +△BCE =90°=△ACD +△CAD ,△△BCE =△CAD ,在△ACD 和△CBE 中,BEC ADC BCE CAD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ACD △△CBE (AAS ),△AD =CE ,BE =CD ,△DE =AD +BE .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,灵活运用这些性质解决问题是解题的关键.18.在△ABC 中,△ACB =90°,AC =BC ,且AD △MN 于D ,BE △MN 于E .(1)直线MN 绕点C 旋转到图(1)的位置时,求证:DE =AD +BE ;(2)当直线MN 绕点C 旋转到图(2)的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系(不写证明过程);(3)当直线MN 绕点C 旋转到图(3)的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系(不写证明过程).【答案】(1)证明见详解(2)DE +BE =AD .理由见详解(3)DE =BE -AD (或AD =BE -DE ,BE =AD +DE 等).理由见详解.【分析】(1)根据题意由垂直得△ADC =△BEC =90°,由同角的余角相等得:△DAC =△BCE ,因此根据AAS 可以证明△ADC △△CEB ,结合全等三角形的对应边相等证得结论;(2)由题意根据全等三角形的判定定理AAS 推知△ACD △△CBE ,然后由全等三角形的对应边相等、图形中线段间的和差关系以及等量代换证得DE +BE =AD ;(3)由题意可知DE 、AD 、BE 具有的等量关系为:DE =BE -AD (或AD =BE -DE ,BE =AD +DE等).证明的方法与(2)相同.(1)证明:如图1,△AD △MN ,BE △MN ,△△ADC =△BEC =90°,△△DAC +△ACD =90°,△△ACB =90°,△△ACD +△BCE =90°,△△DAC =△BCE ,在△ADC 和△CEB 中,△ADC BEC DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ADC △△CEB ;△DC =BE ,AD =EC ,△DE =DC +EC ,△DE =BE +AD .(2)解:DE +BE =AD .理由如下:如图2,△△ACB =90°,△△ACD +△BCE =90°.又△AD △MN 于点D ,△△ACD +△CAD =90°,△△CAD =△BCE .在△ACD 和△CBE 中,90ADC CEB CAD BCEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, △△ACD △△CBE (AAS ),△CD =BE ,AD =CE ,△DE +BE =DE +CD =EC =AD ,即DE +BE =AD .(3)解:DE =BE -AD (或AD =BE -DE ,BE =AD +DE 等).理由如下:如图3,易证得△ADC △△CEB ,△AD =CE ,DC =BE ,△DE=CD-CE=BE-AD,即DE=BE-AD.【点睛】本题属于几何变换综合题,考查等腰直角三角形和全等三角形的性质和判定,熟练掌握全等三角形的四种判定方法是关键:SSS、SAS、AAS、ASA;在证明线段的和与差时,利用全等三角形将线段转化到同一条直线上得出结论.。

【万能解题模型】12 一线三垂直模型及其变形的应用(课件)中考数学

【万能解题模型】12 一线三垂直模型及其变形的应用(课件)中考数学

(2)(1)中的结论不成立,MN=BN-AM. 理由如下:∵AM ⊥M N,BN⊥M N, ∴∠AM C =∠C NB=90°. ∵∠ACB=90°, ∴∠M AC +∠AC M =90°,∠NC B+∠AC M =90°. ∴∠M AC =∠NC B. 又∵AC =BC ,∴△AM C ≌△C NB(AAS). ∴AM =C N,M C=NB. ∵M N=C M -C N,∴M N=BN-AM .
应用一:“全等型”三垂直基本应用
1.如图 1,在△ABC 中,∠ACB=90°,AC=BC,过点 C 在△ABC 外作直线 MN,AM⊥MN 于点 M,BN⊥MN 于点 N.
(1)求证:MN=AM+BN. (2)如图 2,若过点 C 在△ABC 内作直线 MN,AM⊥MN 于点 M,BN ⊥MN 于点 N,则(1)中的结论是否仍然成立?请说明理由.
5.如图,等腰直角△ABC 的直角边长为 3,P 为斜边 BC 上一点, 且 BP=1,D 为 AC 上一点.若∠APD=45°,
3 2-1
则 CD 的长为 3

6.如图,在梯形 ABCD 中,AB∥CD,∠B=∠C=90°,点 F 在 BC 边上,AB=8,CD=2,BC=10.若△ABF 与△FCD 相似,则 CF 的长为 2或8 .
解:(1)证明:∵AM⊥MN,BN⊥MN, ∴∠AMC=∠CNB=90°. ∵∠ACB=90°, ∴∠MAC+∠ACM=90°,∠NCB+∠ACM=90°. ∴∠MAC=∠NCB. 又∵AC =BC ,∴△AM C≌△C NB(AAS). ∴AM =C N,M C=NB. ∵M N=NC +C M ,∴M N=AM +BN.
万能解题题型12 “一线三垂直”模型及其变形的应用
模型 1 “全等型”的一线三垂直模型

人教版初三数学第27章《相似》总结与习题

人教版初三数学第27章《相似》总结与习题

初中数学九年级知识点总结:27相似一、知识框架二、知识点、概念总结 1. 相似:每组图形中的两个图形形状相同,大小不同,具有相同形状的图形叫相似图形。

相似图形强调图形形状相同,与它们的位置、颜色、大小无关。

相似图形不仅仅指平面图形,也包括立体图形相似的情况。

我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.2.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。

互为相似形的三角形叫做相似三角形相似形的识别:对应边成比例,对应角相等。

成比例线段(简称比例线段):对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a (或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。

黄金分割:用一点P 将一条线段AB 分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618…。

这种分割称为黄金分割,分割点P 叫做线段AB 的黄金分割点,较长线段叫做较短线段与全线段的比例中项。

3.相似三角形的判定方法:根据相似图形的特征来判断。

(对应边成比例,对应角相等)○1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;○2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;○4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;○4.直角三角形相似判定定理:○1.斜边与一条直角边对应成比例的两直角三角形相似。

○2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。

5. 一定相似的三角形(1)两个全等的三角形一定相似。

垂直模型中的相似及变形

垂直模型中的相似及变形

1第五级(下)·第7讲·提高-尖子班·教师版题型一 模型中的相似 巩固练习【练习1】【解析】 ∵四边形PNMQ 为正方形∴PN BC ∥∴APN ABC △∽△设边长为aAE PN AD BC= 即8080120a a -= ∴48a =(毫米)答:边长为48毫米.题型二 模型中的相似 巩固练习 【练习2】【解析】 D .【练习3】【解析】 1213,513,14425. 【练习4】【解析】 A因为3AD =,2DE =,则AE 2AD AE AB =∴AB =∴AED CAB △∽△,∴AE DE AC AB =,AB DE AC AE = AB , 复习巩固 7垂直模型中的相似及变形2 第五级(下)·第7讲·提高-尖子班·教师版则根据AB AC =92AC =,故选A . 【练习5】【解析】 根据题意易得:B DAC ∠=∠,EDB ADF ∠=∠,所以DBE DAF △∽△BE BD AF AD =,∴AF BE AD BD=.【练习6】【解析】 ∵90BAC ∠=︒,AD BC ⊥∴90BAC ADB ∠=∠=︒又ABD ABC ∠=∠∴ABD CBA △∽△ ∴AB BD BC AB=,即2AB BD BC =⋅ 又∵ABE △为直角三角形,AF BE ⊥ ∴90BAE AFB ∠=∠=︒又ABF ABE ∠=∠∴FBA ABE △∽△ ∴AB BE BF AB=,即2AB BF BE =⋅ ∴BD BC BF BE ⋅=⋅.【练习7】【解析】 ⑴ 8y -;⑵ 可证ADE ABC △∽△ ∴AE DE AC BC= ∴848x y -= ∴82y x =-()04x <<⑶ ()()228282228S x x x x x =-=-=--+当2x =时,S 取到最大值为8.题型三 三垂直的应用 巩固练习【练习8】3 第五级(下)·第7讲·提高-尖子班·教师版P A B C DEF G【解析】 如图,设()08BP x x =<<,则12PG x =-.∵AP EP ⊥,∴90APB EPG ∠+∠=°. 又90EPG PEG ∠+∠=°, ∴APB PEG ∠=∠.又∵90B G ∠=∠=︒.∴ABP PGE △∽△ ∴AB PG PB EG =.即4128x x -=. 解得14x =,28x =(不符合题意,舍去). ∴4x =,即4BP =.当4BP =时,8PG =,∴AP =PE =113222APE S AP PE =⋅=⨯△.。

中考数学相似形知识点汇总

中考数学相似形知识点汇总

中考数学相似形知识点汇总一、比例线段1、比:选用同一长度单位量得两条线段。

a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或nm b a =) 2、比的前项,比的后项:两条线段的比a :b 中。

a 叫做比的前项,b 叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如d c b a = 4、比例外项:在比例dc b a =(或a :b =c :d )中a 、d 叫做比例外项。

5、比例内项:在比例dc b a =(或a :b =c :d )中b 、c 叫做比例内项。

6、第四比例项:在比例dc b a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为ab b a =(或a:b=b:c 时,我们把b 叫做a 和d 的比例中项。

8、比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做成比例线段,简称比例线段。

9、比例的基本性质:如果a :b =c :d 那么ad =bc 逆命题也成立,即如果ad =bc ,那么a :b =c :d10、比例的基本性质推论:如果a :b=b :d 那么b 2=ad ,逆定理是如果b 2=ad 那么a :b=b :c 。

说明:两个论是比积相等的式子叫做等积式。

比例的基本性质及推例式与等积式互化的理论依据。

11、合比性质:如果d c b a =,那么dd c b b a +=+ 12.等比性质:如果n m d c b a === ,(0≠+++m d b ),那么b a n d b m c a =++++++ 说明:应用等比性质解题时常采用设已知条件为k ,这种方法思路单一,方法简单不易出错。

13、黄金分割把一条线段分成两条线段,使较长的线段是原线段与较小的线段的比例中项,叫做把这条线段黄金分割。

专题 “一线三垂直”模型及其变形的应用(知识解读)-中考数学(全国通用)

专题  “一线三垂直”模型及其变形的应用(知识解读)-中考数学(全国通用)

专题04 “一线三垂直”模型及其变形的应用(知识解读)【专题说明】一线三垂直问题,通常问题中有一线段绕某一点旋转90°,或者问题中有矩形或正方形的情况下考虑,作辅助线,构造全等三角形形或相似三角形,建立数量关系使问题得到解决。

【方法技巧】模型1 “全等型”一线三垂直模型如图一,∠D=∠BCA=∠E=90°,BC=AC 。

结论:Rt △BDC ≌Rt △CEA图1应用:(1)通过证明全等实现边角关系的转化,便于解决对应的几何问题;(2)平面直角坐标系中有直角求点的坐标,可以考虑作辅助线构造“三垂直”作辅助线的程序:过直角顶点再直角外部作水平线或竖直线,过另外两个顶点向上述直线作垂线段,即可得到“三垂直”模型。

如下图所示模型2 “相似型”一线三垂直模型如图2,ABD ADE C B ∆⇒∠=∠=∠∽DCE ∆(一线三直角)C D E BA应用:(1)“相似型”三垂直基本应用(2)平面直角坐标系中构造“相似型”三垂直。

作辅助线方法和模型1一样(3)平面直角坐标系中运动成直角【典例分析】【应用1 “全等型”三垂直基本应用】【典例1】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.【变式1-1】如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD等于()A.6cm B.8cm C.10cm D.4cm【变式1-2】在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l 的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE 的长;(2)规律探究:(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC.【应用2 平面直角坐标系中构造“全等型”三垂直】【典例2】已知:在平面直角坐标系中,A为x轴负半轴上的点,B为y轴负半轴上的点.(1)如图1,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,若OA=2,OB=4,求C点的坐标;(2)如图2,若点A的坐标为(﹣2,0),点B的坐标为(0,﹣m),点D的纵坐标为n,以B为顶点,BA为腰作等腰Rt△ABD.当B点沿y轴负半轴向下运动且其他条件都不变时,整式4m+4n﹣9的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图3,若OA=OB,OF⊥AB于点F,以OB为边作等边△OBM,连接AM交OF 于点N,若AN=m,ON=n,请直接写出线段AM的长.【变式2-1】如图所示,在平面直角坐标系中,等腰Rt△ABC的直角顶点C在x轴上,点A 在y轴上,若点B坐标为(6,1),则点A坐标为()A.(4,0)B.(5,0)C.(0,4)D.(0,5)【变式2-2】如图,在△PMN中,PM=PN,PM⊥PN,P(0,2),N(2,﹣2),则M的坐标是()A.(﹣2,0)B.(﹣2,0)C.(﹣2,0)D.(﹣4,0)【应用3 “相似型”三垂直基本应用】【典例3】已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:=;(2)若OP与P A的比为1:2,求边AB的长.【变式3】如图,在矩形ABCD中,E,F,G分别在AB,BC,CD上,DE⊥EF,EF⊥FG,BE=3,BF=2,FC=6,则DG的长是()A.4B.C.D.5【应用4 平面直角坐标系中构造“相似型”三垂直】【典例4】如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+2与y轴交于点A,与x轴交于点B,且OB=2OA.(1)如图1,求直线的解析式;(2)如图2,点P在第三象限的直线AB上,点C在点A上方的y轴上,连接PC、BC,PC交x轴于点N,且tan∠APC=,设点P的横坐标为t,△ABC的面积为S,求S与t的函数关系;(3)如图3,在(2)的条件下,点D在y轴的负半轴上,点E为AB的中点,连接DE、PD,AD=ON,当∠PDE=∠PCD时,求点D的坐标.【变式4】(2022•禅城区二模)如图,抛物线经过原点O,对称轴为直线x=2且与x轴交于点D,直线l:y=﹣2x﹣1与y轴交于点A,与抛物线有且只有一个公共点B,并且点B在第四象限,直线l与直线x=2交于点C.(1)连接AD,求证:AD⊥AC.(2)求抛物线的函数关系式.(3)在直线l上有一点动点P,抛物线上有一动点Q,当△PBQ是以PQ为斜边的等腰直角三角形时,直接写出此时点P的坐标.【应用5平面直角坐标系中运动成直角】【典例5】如图,已知抛物线y=﹣x2+与x轴交于点A、B,与y轴交于点C.(1)则点A的坐标为,点B的坐标为,点C的坐标为;(2)设点P(x1,y1),Q(x2,y2)(其中x1>x2)都在抛物线上,若x1+x2=1,请证明:y1>y2;(3)已知点M是线段BC上的动点,点N是线段BC上方抛物线上的动点,若∠CNM =90°,且△CMN与△OBC相似,试求此时点N的坐标.【变式5】(2022•碑林区校级四模)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+c 交x轴于点A(﹣5,0),B(﹣1,0),交y轴于点C(0,5).(1)求抛物线C1的表达式和顶点D的坐标.(2)将抛物线C1关于y轴对称的抛物线记作C2,点E为抛物线C2上一点若△DOE是以DO为直角边的直角三角形,求点E的坐标.专题04 “一线三垂直”模型及其变形的应用(知识解读)【专题说明】一线三垂直问题,通常问题中有一线段绕某一点旋转90°,或者问题中有矩形或正方形的情况下考虑,作辅助线,构造全等三角形形或相似三角形,建立数量关系使问题得到解决。

初中数学垂直模型中的相似及变形

初中数学垂直模型中的相似及变形

垂直模型中的相似及变形题型一:模型中的相似模型中的相似【例1】如图,在一场羽毛球比赛中,站在场内M处的运动员林丹把球从N点击到了对方场内的点B,已知网高OA=1.52米,OB=4米,OM=5米,则林丹起跳后击球点N离地面的距离MN= 米.【解析】提示:△ABO∽△NBM,答案:3.42【巩固1】如图,ABC△是一块锐角三角形余料,边长120BC=毫米,高80AD=毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?【解析】∵四边形PNMQ为正方形∴PN BC∥,∴APN ABC△∽△设边长为a,AE PNAD BC=,即8080120a a-=∴48a=(毫米),答:边长为48毫米.MNOABNMPQEDCBA题型二:模型中的相似【例2】 如图,CD 是Rt ABC △斜边AB 上的高,如果两条直角边43AC BC =∶∶,则AD BD =∶ .【解析】 由题意222AC BC AB +=,4AC x =,3BC x =,则5AB x =,5AD x BD =-, 又ABC CBD △∽△,BC BDAB BC =,2BC AB BD =⋅,()235x x BD =⋅,95BD x =, 则916555AD x x x =-=,∴16916955AD BD x x ==∶∶∶.【例3】 如图,已知ABC △中,AB AC >,BD 是AC 边上中线,CE 是AB 边上的中线,且BD CE⊥于G 点,GF BC ⊥于F 点,若GF =,6BC =,求AB 的长.【解析】 连结ED ,∵BDCE GF BC ⊥⊥,,∴2GF BF FC =⋅,即8BF FC ⋅=, ∵6BF FC +=,BF CF >,则4BF =,2FC =,∴BG =,GC =∵BD 是AC 边中线,CE 是AB 边中线,∴12ED BC ED BC =,∥, ∴12EG ED GC BC ==,∴12EG GC == 在Rt BEG △中,22224327BE BG GE =+=+=,∴BE =BA D CBAG FE DC∴AB =【巩固2】 如图,Rt ABC △中,90BAC ∠=︒,AD BC ⊥于D ,E 是AC 上任意一点,连结BE ,过A 作AF BE ⊥于F ,求证:BD BC BF BE ⋅=⋅.【解析】 ∵90BAC ∠=︒,AD BC ⊥∴90BAC ADB ∠=∠=︒ 又ABD ABC ∠=∠ ∴ABD CBA △∽△∴AB BDBC AB =,即2AB BD BC =⋅ 又∵ABE △为直角三角形,AF BE ⊥ ∴90BAE AFB ∠=∠=︒ 又ABF ABE ∠=∠ ∴FBA ABE △∽△ ∴AB BEBF AB=,即2AB BF BE =⋅ ∴BD BC BF BE ⋅=⋅.【巩固3】 如图,在Rt ABC △中,90C =︒∠,4BC =,8AC =.点D 在斜边AB 上,分别作DE AC ⊥,DF BC ⊥,垂足分别为E 、F ,得四边形DECF .设DE x =,DF y =.⑴ 用含y 的代数式表示AE 为 ;⑵ 求y 与x 之间的函数关系式,并求出x 的取值范围;⑶ 设四边形DECF 的面积为S ,求S 与x 之间的函数关系式,并求出S 的最大值.【解析】 ⑴ 8y -;⑵ 可证ADE ABC △∽△,∴AE DE AC BC =,∴848x y-= ∴82y x =-()04x <<⑶ ()()228282228S x x x x x =-=-=--+ 当2x =时,S 取到最大值为8.题型三:三垂直的应用三垂直模型中包括三垂直全等和三垂直相似,在解题的过程中要善于发现和使用,并要学会BAE DCFF ED CB A根据具体情况构造三垂直模型.【例4】 如图,一个边长分别为3cm 、4cm 、5cm 的直角三角形的一个顶点与正方形的顶点B 重合,另两个顶点分别在正方形的两条边AC 、DC 上,那么这个正方形的面积是 .【解析】抓住相似模型CEF DBE △∽△.CEF DBE △∽△,∴43BD BE CE EF == 设4BD a =,3CE a =,∴DE a =在Rt BDE △中,222BD DE BE +=,221616a a =+,∴21617a = 正方形的面积为25617.【例5】 如图,梯形ABCD 中,AD ∥BC ,6AB DC AD ===,70ABC ∠=,点E F , 分别在线段AD DC ,上,且110BEF ∠=,若3AE =,求DF 长.【解析】在梯形OBCD 中,AD ∥BC , AB DC =,70ABC ∠=,∴180********D A ABC ∠=∠=︒-∠=︒-︒=︒ ∴18011070DFE DEF ∠+∠=︒-︒=︒∵110BEF ∠=,∴18011070AEB DEF ∠+∠=︒-︒=︒ ∴DFE ∠AEB =∠,∴△DFE ∽△AEB ,∴DF EDAE AB=即:336DF = 解得:32DF =. 【例6】 如图,在矩形ABCD 中,E 为AD 中点,EF EC ⊥交AB 于F ,连结()FC AB AE >.⑴AEF △与ECF △是否相似?若相似,证明你的结论;若不相似,请说明理由.E DCBA543F B C FD EA⑵设ABk BC=,是否存在这样的k 值,使得AEF △与BFC △相似, 若存在,证明你的结论,并求出k 的值;若不存在,说明理由.【解析】 ⑴ 相似.在矩形ABCD 中,90A D ∠=∠=°.因为EF EC ⊥,A 、D 、E 共线,所以90AEF DEC ∠+∠=°.又∵90DEC DCE ∠+∠=°,∴AEF DCE ∠=∠ ∴AEF DCE △∽△,∴EF AFEC DE=∵AE DE =,∴EF AFEC AE=又∵90A FEC ∠=∠=°,∴AEF ECF △∽△⑵ 存在,由于90180AEF AFE CFE AFE BFC ∠=-∠<-∠-∠=∠°°, ∴只能是AEF BCF △∽△,AEF BCF ∠=∠.由⑴知AEF DCE ECF △∽△∽△,∴30AEF DCE ECF FCB ∠=∠=∠=∠=°.∴2AB CD CD BC BC DE ===.即k .反过来,在k =时,DE CD 30DCE ∠=°,30AEF DCE ∠=∠=°, 30ECF AEF ∠=∠=°,∴90303030BCF AEF ∠=--==∠°°°°.∴AEF BCF △∽△.【巩固4】 如图,矩形ABCD 中,4AB =,8BC =,将矩形ABCD 绕点C 顺时针旋转90°得到矩FEDCB A形CGEF .点P 为线段BC 上一点(不包括端点),且AP EP ⊥,求APE △的面积.GFEDCB AP AB CDEFG【解析】 如图,设()08BP x x =<<,则12PG x =-.∵AP EP ⊥,∴90APB EPG ∠+∠=°.又90EPG PEG ∠+∠=°, ∴APB PEG ∠=∠.又∵90B G ∠=∠=︒.∴ABP PGE △∽△ ∴AB PG PB EG =.即4128xx -=. 解得14x =,28x =(不符合题意,舍去). ∴4x =,即4BP =.当4BP =时,8PG =,∴AP =PE =113222APE S AP PE =⋅=⨯=△.相似三角形经典模型总结一、模型介绍:⑴ A 字型与反A 字型;A字型反A字型⑵8字型与反8字型;8字型反8字型⑶双垂直模型与母子型;双垂直模型母子型⑷三垂直模型与一线三等角模型;三垂直模型一线三等角模型⑸手拉手相似模型;手拉手相似模型二、模型联系:。

备战中考数学——相似的综合压轴题专题复习及答案解析

备战中考数学——相似的综合压轴题专题复习及答案解析

备战中考数学——相似的综合压轴题专题复习及答案解析一、相似真题与模拟题分类汇编(难题易错题)1.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P 是MN上一点,求△PDC周长的最小值.【答案】(1)解:结论:CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴ = = ,∴CF=2DG(2)解:作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意:CD=AD=10,ED=AE=5,DG= ,EG= ,DH= = ,∴EH=2DH=2 ,∴HM= =2,∴DM=CN=NK= =1,在Rt△DCK中,DK= = =2 ,∴△PCD的周长的最小值为10+2 .【解析】【分析】(1)结论:CF=2DG.理由如下:根据正方形的性质得出AD=BC=CD=AB,∠ADC=∠C=90°,根据中点的定义得出AD=CD=2DE,根据同角的余角相等得出∠CDF=∠DEG,从而判断出△DEG∽△CDF,根据相似三角形对应边的比等于相似比即可得出结论;(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK,由题意得CD=AD=10,ED=AE=5,DG=,EG=,根据面积法求出DH的长,然后可以判断出△DEH相似于△GDH,根据相似三角形对应边的比等于相似比得出EH=2DH=,再根据面积法求出HM的长,根据勾股定理及矩形的性质及对称的性质得出DM=CN=NK= 1,在Rt△DCK中,利用勾股定理算出DK的长,从而得出答案。

2023年中考数学常见几何模型全归纳之模 相似模型-母子型(共角共边模型)和A(X)字型(解析版)

2023年中考数学常见几何模型全归纳之模  相似模型-母子型(共角共边模型)和A(X)字型(解析版)
(1)证明∶∵∠ACB=90°,AC=BC,CD是中线,
∴∠BCD=∠ACD=45°,∠BCE=∠ACF= 90°,∴∠DCE=∠DCF= 135°
∵在△DCE与△DCF中,
,∴ ,∴DE=DF;
(2)证明∶∵∠DCE= ∠DCF= 135°∴∠CDF+∠F=180°-135°=45°,
∵∠CDF+∠CDE=45°,∴∠F=∠CDE,
【详解】∵∠B=∠ACD,∠A=∠A,
∴△ACD∽△ABC,∴ ,
∵ ,∴ ,
∴ ,
∴△ADC与△ACB的周长比1:2,故选:B.
【点睛】本题主要考查了相似三角形的判定与性质,证明△ACD∽△ABC是解答本题的关键.
2.(2022·陕西汉中·九年级期末)如图, 是等腰直角 斜边 的中线,以点 为顶点的 绕点 旋转,角的两边分别与 、 的延长线相交,交点分别为点 、 , 与 交于点 , 与 交于点 ,且 .(1)如图1,若 ,求证: ;(2)如图2,若 ,求证: ;
1.(2022·湖南怀化·中考真题)如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=2,则S△ABC=_____.
【答案】8
【分析】根据三角形中位线定理求得DE∥BC, ,从而求得△ADE∽△ABC,然后利用相似三角形的性质求解.
【详解】解:∵D、E分别是AB、AC的中点,则DE为中位线,
∴ ,∴ ∴ ,
∵ ,DE=BF,∴ ,
∴ ,∴ ,
∵ , ,∴ ,
∵ ,∴ ,
∴ .
【点睛】本题考查了相似三角形,熟练掌握相似三角形的面积比等于相似比的平方、灵活运用平行条件证明三角形相似并求出相似比是解题关键.
3.(2022·浙江宁波·中考真题)(1)如图1,在 中,D,E,F分别为 上的点, 交 于点G,求证: .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
△ ⑶ 如图, CD 是 Rt ABC 斜边 AB 上的高,如果两条直角边
A
∶ ∶ ∶ AC BC = 4 3 ,则 AD BD = _______.
△ △ 25
⑴ 答案不唯一, ABC 和 CBD , 9 ;⑵ C;
∶ ⑶ 16 9
C
D
B
C 2
1
D
B
C
D
B
由题意 AC2 + BC2 = AB2 , AC = 4x , BC = 3x ,
米.
⑶ 如图,为估算某河的宽度,在河对岸边选定一个目标点 A ,在近岸取点
B , C , D ,使得 AB ⊥ BC , CD ⊥ BC ,点 E 在 BC 上,并且点 A , E ,
D 在同一条直线上,若测得 BE = 20 m , EC = 10 m , CD = 20 m ,则河的
宽度 AB 等于
A. 60 m
B. 40 m
C. 30 m
D. 20 m
⑷ 如图,正方形 ABCD 中, E 为 AB 的中点, AF ⊥ DE 于点 O ,
第 3 页 共 20 页
N A
O
M
A
B EC D
AO 则 DO 等于( )
25
1
A. 3 B. 3
2 C. 3
1 D. 2
⑸ 如图 1,用形状相同、大小不等的三块直角三角形木板,恰好能拼成如图 2 所示的四边形 ABCD .若 AE = 4 , CE = 3BE ,那么这个四边形的面积是_____________.
林丹把球从 N 点击到了对方场内的点 B,已知网高
OA=1.52 米,OB=4 米,OM=5 米,则林丹起跳后击球点 N
B
[中~国教#育出& %版网@ ]
离地面的距离 MN=
米.
⑵ 如右图,小华为了测量所住楼房的高度,他请来同学帮
忙,测量了同一时刻他自己的影长和楼房的影长分别是 0.5 米和15
米.已知小华的身高为1.6 米,那么他所住楼房的高度为
能,试说明理由.
, ⑴ 设长方形零件 PQMN 的边 PN = a PQ = x ,则 AE = 80 − x . ∥ ∵ PN BC
△ ∽△ △ ∽△ ∴ APN ABC , APE ABD
PN = AP AE = AP ∴ BC AB , AD AB
PN = AE
∴ BC
AD
[来源%:中~# &教*网 ]
为直角三角形的条件的个数是( )
∠ ∠ ∠ ∠ CD = DB
① 1 = A ; ② AD CD ; ③ B + 2 = 90° ;
∶ ∶ ∶ ∶ ④ BC AC AB = 3 4 5 ;
⑤ AC ⋅ BD = AC ⋅ CD
A
[中国教 育&出^ *@版网 #]
A.1
B.2
C.3
D.4
[来#^&源 *:@中 教网]
第 2 页 共 20 页
所以这个长方形零件 PQMN 面积 S 的最大值是 2400mm2 .

S△ ABC

− 2S最大值
= 1 ×120 × 80 − 2 × 2400 = 0
2

∴从理论上说,恰能拼成一个与长方形 PQMN 大小一样的长方形.
△ 拼法:作 ABC 的中位线 PN ,分别过 P 、N 作 BC 的垂线,垂足分别为 Q 、M ,过 A 作 BC 的
A
D
图1
图 B E 2
C
⑴ C;⑵ 48 ;%@ 网#]
题型二:模型
中的相似
思路导航
△ 在 Rt ABC 中, ∠BAC = 90° , AD ⊥ BC 于 D ,
A
B
D
则在这个图形中,我们可以得到 3 个直角三角形,
△ ∽△ ∽△ 这 3 个直角三角形两两相似,即 ABD CAD CBA
a = 80 − x
a = 120 − 3 x
∴ 120 80 ,解得
2
G P BQ
所以长方形 PQMN 的面积
S
=
ax
=
x 120

3 2
x
=

3 2
x2
+ 120 x
=

3 2
(
x

40)2
+
2400
AH E
N DM C

x
=

2
120 × −
3 2
=
40
时,
a
=
60

S最大值 = 40 × 60 = 2400 (mm 2 ).
, , 个顶点 P N 分别在 AB AC 上.
⑴求这个长方形零件 PQMN 面积 S 的最大值; [来源:@#z%zste~*p .com]
△ ,△ ,△ ⑵在这个长方形零件 PQMN 面积最大时,能否将余下的材料 APN BPQ NMC 剪下再拼
成(不计接缝用料及损耗)与长方形 PQMN 大小一样的长方形?若能,试给出一种拼法;若不
△ ≌△ △ ≌△ 平行线,交 QP 、 MN 的延长线于 G 、 H ,易知 PBQ PAG , NMC NHA ,所以将
△ ,△ △ ,△ PBQ NMC 剪下拼接到 PAG NHA 的位置,即得四边形 PNHG ,此四边形即为与长方
形零件 PQMN 面积最大时大小一样的长方形.
典题精练
⑴ 如图,在一场羽毛球比赛中,站在场内 M 处的运动员
中考数学复习考点知识与典型题解析
---垂直模型中的相似及变形
知识互联网
题型一:模型 中的相似
思路导航
模型中的相似
第 1 页 共 20 页
[来源:*& ^中教% 网#]
例题精讲
△ 如 图 , ABC 是 一 块 锐 角 三 角 形 余 料 , 边
P BQ
A E
N DM C
BC = 120 mm ,
高 AD = 80 mm,要把它加工成长方形零件 PQMN ,使长方形 PQMN 的边 QM 在 BC 上,其余两
典题精练
[中国教^ @育出~ &版网% ]
△ ∠ ⑴如图,在 Rt ABC 中, C 为直角,CD ⊥ AB 于点 D ,BC = 3 ,AB = 5 ,
A
写出其中的一对相似三角形是________和 _________;并写出它的面积
比__________________.
△ △ ⑵ 如图, ABC 中, CD ⊥ AB 于 D ,一定能确定 ABC
C
进而可以得到 3 组比例关系,这 3 组比例关系中,有 3 个比例式比较特殊:
BD = AD
AB = BD
CA = CD
⑴ AD CD ;⑵ CB BA ;⑶ CB CA ,
这 3 个比例式转化为乘积式为:
第 4 页 共 20 页
⑴ AD2 = BD ⋅ CD ;⑵ AB2 = BD ⋅ BC ;⑶ AC2 = CD ⋅ CB , 这就是著名的“射影定理”
则 AB = 5x , AD = 5x − BD ,
△ ∽△ 又 ABC
相关文档
最新文档