RT8015资料
8015电源模块电路工作原理
电源模块是电子设备中常见的一个组成部分,它能够将电源输入转换为设备所需的稳定电压输出。
在各种电子设备中,电源模块都扮演着非常重要的角色。
电源模块的工作原理涉及到电路设计、电磁学、控制系统等多个领域的知识,下面我们就来详细介绍一下8015电源模块的工作原理。
一、8015电源模块的基本构成8015电源模块通常由输入端、输出端、控制电路和功率器件四部分组成。
其中输入端接收外部电源输入,输出端输出稳定的电压给设备使用,控制电路负责监测和调节输出电压,功率器件则负责电源的转换和稳定。
二、8015电源模块的工作原理1. 输入端稳压滤波当外部电源接入8015电源模块时,首先经过输入端的稳压滤波电路,这个电路主要作用是对输入的电压进行稳压和滤波处理,确保输入电压的稳定性和纯净性,以防止外部电压的波动和噪声对后续电路产生干扰。
2. 开关电源变换稳压滤波后的电压信号经过控制电路的调度,进入开关电源变换器。
开关电源变换器是8015电源模块的核心部件,它利用高频开关原理,将输入的直流电压转换成高频脉冲电压,再经过变压器和整流滤波电路得到稳定的直流输出电压。
3. 输出端稳压调节经过开关电源变换后的电压信号还需要经过稳压调节电路的调节,最终得到设备所需的稳定输出电压。
稳压调节电路具有过载保护、短路保护、过压保护等功能,能够确保输出电压的稳定性和安全性。
4. 反馈控制在整个电源模块工作过程中,控制电路不断监测输出电压的变化,并通过负反馈控制的方式调节开关电源的工作状态,从而实现对输出电压的精确调控。
这样可以保证在外部负载发生变化时,输出电压能够迅速恢复稳定。
三、8015电源模块的性能特点8015电源模块具有输出电压稳定、效率高、负载能力强、体积小等特点,具体表现在以下几个方面:1. 输出电压稳定性好:在外部电压波动较大或负载突然变化的情况下,输出电压能够保持稳定;2. 效率高:8015电源模块采用先进的开关电源技术,能够将能量转换得非常高效,减小能源的损耗,提高整个系统的能效;3. 负载能力强:在外部负载变化剧烈的情况下,能够迅速调整输出电压,确保设备正常工作;4. 体积小:8015电源模块采用集成化设计,功率器件和控制电路都集成在一块PCB板上,能够大大减小整个模块的体积。
ZXDU58_W121(V1.0)30A系列组合电源用户手册
3. 《ZXD1500(V4.0)30A 开关整流器用户手册》
该手册介绍 ZXD1500(V4.0)整流器的功能特点、性能参数、工作原理、 外形结构、安装调试、使用操作、日常维护和运输存储。本手册适用于安 装人员和操作维护人员。
请在安装、操作和维护前仔细阅读以上手册,并注意设备上的各种警示牌及警示 语句。所有的随机资料阅读完毕后请妥善保存,以便日后查阅。
南京能瑞低压集中器调试资料8015全载波汇总
南京能瑞8015集中器安装与调试一、安装接线图二、安装注意事项1、接线端子2、5、8、10对应的是A、B、C三项电压和零线,1、3端子是A相电流进出线;4、6端子是B相电流进出线;7、9端子是C相电流进出线;2、如果需要终端实现交采计量功能,电压电流需要都接上,不需要则只接A、B、C三项电压和零线即可。
3、安装手机卡和天线,同时记录卡号4、注意终端载波模块的厂家和电表载波模块的厂家要一致,如:终端载波模块的厂家为东软,则现场电表载波模块的厂家也必须是东软的。
5、记录终端的逻辑地址和资产号,及所带台区的电表资产信息,注意档案的正确性,不要出现终端和所带电表不一致情况。
三、主站建档在朗新186系统中建档,不做赘述,可以联系主站厂家。
四、主站调试在朗新186系统中建完档以后,同步到《用户用电信息采集系统》,从主站下发测量点配置信息,具体如何下发可以联系主站厂家。
通讯端口:31:表示载波(小无线)通讯协议:1:DL/T 645-199730:DL/T 645-2007(最多)2:交流采样装置通信协议通讯速率:DL/T 645-1997,1200DL/T 645-2007,2400用户大类:0:缺省值1:大型专变用户2:中小型专变用户3:三相一般工商业用户4:单相一般工商业用户5:居民用户(典型配置)6:公用配变考核计量点用户小类:0:缺省值1:单相智能电能表用户(典型配置)2:三相智能电能表用户重点用户:0:非重点用户(典型配置)1:重点用户五、下发任务下发日冻结任务和其它任务,具体下发哪些任务要结合当地的考核数据项来定,或者联系主站厂家。
六、现场终端档案读取(或者档案可以从主站导出来)主站导档案比较快捷,以下是从现场终端借助掌机导取档案步骤:1、新建终端开机—程序—确认—<gw376>—确认—终端参数—确认—确认—终端档案—确认,进入如下画面:然后进行终端信息输入:终端名称:输入终端逻辑地址行政区划:终端面板上的逻辑地址前四位终端地址:终端面板上的逻辑地址后四位输完之后点击确认—退出—退出—退出2、查询测量点档案库存开机—程序—确认—<gw376>—确认—电表参数—确认—终端列表—确认—选择对应台区终端—确认—电表参数—确认—查询测量点档案库存—确认—完成后点击13、查询测量点数据库存开机—程序—确认—<gw376>—确认—电表参数—确认—终端列表—确认—选择对应台区终端—确认—电表参数—确认—查询测量点数据库存—确认。
联想电脑主板
07 POWER Map
08 GPIO
09 RESERVE
10 CPU LGA 1155_1
11 CPU LGA 1155_2
12 CPU LGA 1155_3
13 CPU LGA 1155_4
14 XDP/80 PORT HEADER
15 DDR3 CHA DIMM 0
16 Number: 10085
PAGE TITLE
Quantity
01 Cover Page
D
02 BLOCK DIAGRAM
03 Power Delivery
04 POWER GOOD AND RESET DIAGRAM
05 CLOCKS DIAGRAM
06 Power Sequence
Dual PWM Design
SLP_S3#
P-MOSFET AO4407
12V_S0
Bead
LDO UZ1085
5V_Codec
V_1P8_SFR Imax=1.6A
PANEL POWER CPU POWER
PWM TPS54331
VTT_PWRGD
PWM NCP6131
5V_LVDS Imax=2.2A
SPI BUS
FCBGA 989PIN ?X?mm
PCIE Gen1 Interface
LAN 82579ML
SATA *1
SATA2.0 BUS
B
Slim ODD
25M
RJ45
D
14.318MHz 33MHz 24MHz or 48MHz 96MHz 100 MHz 120 MHz
PCH CLOCK Buffer
Title
单片机应用技术1 单片机硬件基础
复位电路
AT89S51最小系统之ROM选择
51单片机内部集成有4K字节的 程序存储器(标准型),可以外 接存储器芯片扩展容量。 EA=0时:不使用内部ROM, 外部地址从0开始。 EA=1时:内+外。超过内部 地址后自动使用外部ROM地址, 内外的地址连续。 根据程序编译后的代码长度考 虑选择不同内部ROM容量的单片 机型号。故EA固定为高电平。
AT:(美)ATMEL公司 P:(荷)Philips公司 STC:(大陆)宏晶科技 W:(台)华邦公司
0343:2003年43周制 造
AT89S51封装形式
PLCC44
TQFP44式封装。 PLCC44:特殊引脚芯片塑料封装,贴片封 装的一种,引脚在芯片底部向内弯曲,焊接 采用回流焊工艺,在调试时有插座可用。 TQFP44:薄四方扁平封装,低成本,低高 度引线框封装,适合用SMT表面安装技术。
PDIP40封装
端口的几个操作注意点
1.驱动能力不同,P0每引脚可以驱动8个TTL负载, 其余端口每引脚只能带4个。
2.P0口内部无上拉电阻,其余口有弱上拉,电路设计 时需要注意P0口漏极开路,做IO输出时,需外加上 拉电阻才会有高电平输出。
3.P0在做数据线时才是真正的双向口 P0-P3在做输入接口时,需要先置1再读入(打 开内部锁存器)
AT89S51
PDIP40 封装
AT89S51
PLCC44封装
注:NC表示该脚无用
AT89S51
TQFP44封装
注:NC表示该脚无用
AT89S51引脚功能
P0/P1/P2/P3:
4个并行端口,每口8脚,可做IO接口, 也可做第二功能;
IO功能:
输入输出引脚,用户灵活DIY
AD8015ARZ,AD8015ARZ-REEL7,AD8015AR, 规格书,Datasheet 资料
NOTES 1Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2Specification is for device in free air: 8-pin SOIC package: θJA = 155°C/W.
dB
40
dB
OUTPUT
Differential Offset
6
20
mV
Output Common-Mode Voltage
From Positive Supply
–1.5
–1.3
–1.1
V
Voltage Swing (Differential) Output Impedance
Positive Input Current, RL = ∞ Positive Input Current, RL = 50 Ω
Figure 2. Noise vs. Frequency (SO-8 Package with Added Capacitance)
LX8015G-rev0.1
LX8015G ______________________________________ _____________________________________ ______________________ One Cell Lithium-ion/Polymer Battery Protection ICGENERAL DESCRIPTIONThe LX8015G product is a high integration solution for lithium-ion/polymer battery protection.LX8015G contains advanced power MOSFET, high-accuracy voltage detection circuits and delay circuits.LX8015G is put into an SOP8-PP package and only one external component makes it an ideal solution in limited space of battery pack.LX8015G has all the protection functions required in the battery application including overcharging, overdischarging, overcurrent and load short circuiting protection etc. The accurate overcharging detection voltage ensures safe and full utilization charging. The low standby current drains little current from the cell while in storage.The device is not only targeted for digital cellular phones, but also for any otherLi-Ion and Li-Poly battery-powered information appliances requiring long-term battery life.FEATURES·Protection of Charger Reverse Connection·Protection of Battery Cell Reverse Connection·Integrate Advanced Power MOSFET with Equivalent of 33mΩ R DS(ON)·SOP8-PP Package·Only One External Capacitor Required·Over-temperature Protection ·Overcharge Current Protection ·Two-step Overcurrent Detection: -Overdischarge Current-Load Short Circuiting·Charger Detection Function·0V Battery Charging Function- Delay Times are generated inside ·High-accuracy Voltage Detection ·Low Current Consumption- Operation Mode:2.8μA typ.- Power-down Mode: 1.5μA typ. ·RoHS Compliant and Lead (Pb) FreeAPPLICATIONSOne-Cell Lithium-ion Battery PackLithium-Polymer Battery PackFigure 1. Typical Application CircuitORDERING INFORMATIONNote: “YW” is manufacture date code, “Y” means the year, “W” means the weekPIN CONFIGURATIONFigure 2. PIN ConfigurationPIN DESCRIPTIONABSOLUTE MAXIMUM RATINGS(Note: Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)ELECTRICAL CHARACTERISTICSTypicals and limits appearing in normal type apply for T A= 25o C, unless otherwise specifiedFigure 3. Functional Block Diagram FUNCTIONAL DESCRIPTIONThe LX8015G monitors the voltage andcurrent of a battery and protects it frombeing damaged due to overcharge voltage,overdischarge voltage, overdischarge current, and short circuit conditions by disconnecting the battery from the load or charger. These functions are required in order to operate the battery cell within specified limits.The device requires only one external capacitor. The MOSFET is integrated and its R DS(ON) is as low as33mΩtypical. Normal operating modeIf no exception condition is detected, charging and discharging can be carried out freely. This condition is called the normal operating mode.Overcharge ConditionWhen the battery voltage becomes higher than the overcharge detection voltage (V CU)during charging under normal condition and the state continues for the overcharge detection delay time (t CU) or longer, theLX8015G turns the charging control FET off to stop charging. This condition is called the overcharge condition. The overcharge condition is released in the following two cases:1, When the battery voltage drops below the overcharge release voltage (V CL), the LX8015G turns the charging control FET on and returns to the normal condition.2, When a load is connected and discharging starts, the LX8015G turns the charging control FET on and returns to the normal condition. The release mechanism is as follows: the discharging current flows through an internal parasitic diode of the charging FET immediately after a load is connected and discharging starts, and the VM pin voltage increases about 0.7 V (forward voltage of the diode) from the GND pin voltage momentarily. TheLX8015G detects this voltage and releases the overcharge condition. Consequently, in the case that the battery voltage is equal to or lower than the overcharge detection voltage (V CU), the LX8015G returns to the normal condition immediately, but in the case the battery voltage is higher than the overcharge detection voltage (V CU),the chip does not return to the normal condition until the battery voltage drops below the overcharge detection voltage (V CU) even if the load is connected. In addition, if the VM pin voltage is equal to or lower than the overcurrent detection voltage when a load is connected and discharging starts, the chip does not return to the normal condition.Remark If the battery is charged to a voltage higher than the overcharge detection voltage (V CU) andthe battery voltage does not drops below the overcharge detection voltage (V CU) even when a heavy load, which causes an overcurrent, is connected, the overcurrent do not work until the battery voltage drops below the overcharge detection voltage (V CU). Since an actual battery has, however, an internal impedance of several dozensof mΩ, and the battery voltage drops immediately after a heavy load which causes an overcurrent is connected, the overcurrent work. Detection of load short-circuiting works regardless of the battery voltage.Overdischarge ConditionWhen the battery voltage drops below the overdischarge detection voltage (V DL) during discharging under normal condition and it continues for the overdischarge detection delay time (t DL) or longer, theLX8015G turns the discharging controlFET off and stops discharging. This condition is called overdischarge condition. After the discharging control FET is turned off, the VM pin is pulled up by the R VMD resistorbetween VM and VDD in LX8015G. Meanwhile when VM is bigger than 1.5V (typ.) (the load short-circuiting detection voltage), the current of the chip is reduced to the power-down current (I PDN). This condition is called power-down condition. The VM and VDD pins are shorted by theR VMD resistor in the IC under the overdischarge and power-down conditions. The power-down condition is released when a charger is connected and the potential difference between VM and VDD becomes 1.3 V (typ.) or higher (load short-circuiting detection voltage). At this time, the FET is still off. When the battery voltage becomes the overdischarge detection voltage (V DL) or higher (see note), the LX8015G turns the FET on and changes to the normal condition from the overdischarge condition.Remark If the VM pin voltage is no less than the charger detection voltage (V CHA), when the battery under overdischarge condition is connected to a charger, the overdischarge condition is released (the discharging control FET is turned on) as usual, provided that the battery voltage reaches the overdischarge release voltage (V DU) or higher. Overcurrent ConditionWhen the discharging current becomes equal to or higher than a specified value (the VM pin voltage is equal to or higher than the overcurrent detection voltage) during discharging under normal condition and the state continues for the overcurrent detection delay time or longer, theLX8015G turns off the discharging control FET to stop discharging. This condition is called overcurrent condition. (The overcurrentincludes overcurrent, or load short-circuiting.)The VM and GND pins are shorted internally by the R VMS resistor under the overcurrent condition. When a load is connected, the VM pin voltage equals the VDD voltage due to the load.The overcurrent condition returns to the normal condition when the load is released and the impedance between the B+ and B- pins becomes higher than the automatic recoverable impedance. When the load is removed, the VM pin goes back to the GND potential since the VM pin is shorted the GND pin with the R VMS resistor. Detecting that the VM pin potential is lower than the overcurrent detection voltage(V IOV1), the IC returns to the normal condition.Abnormal Charge Current DetectionIf the VM pin voltage drops below the charger detection voltage (V CHA) during charging under the normal condition and it continues for the overcharge detection delay time (t CU) or longer, the LX8015G turns the charging control FET off and stops charging. This action is called abnormal charge current detection. Abnormal charge current detection works when the discharging control FET is on and the VM pin voltage drops below the charger detection voltage (V CHA). When an abnormal charge current flows into a battery in the overdischarge condition, the LX8015G consequently turns the charging control FET off and stops charging afterthe battery voltage becomes the overdischarge detection voltage and the overcharge detection delay time (t CU) elapses.Abnormal charge current detection is released when the voltage difference between VM pin and GND pin becomes lower than the charger detection voltage (V CHA) by separating the charger. Since the 0 V battery charging function has higher priority than the abnormal charge current detection function, abnormal charge current may not be detected by the product with the 0 V battery charging function while the battery voltage is low.Load Short-circuiting conditionIf voltage of VM pin is equal or below short circuiting protection voltage (V SHORT), the LX8015G will stop discharging and battery is disconnected from load. The maximum delay time to switch current off is t SHORT. This status is released when voltage of VM pin is higher than short protection voltage (V SHORT), such as when disconnecting the load.Delay CircuitsThe detection delay time for overdischarge current 2 and load short-circuiting starts when overdischarge current 1 is detected. As soon as overdischarge current 2 or load short-circuiting is detected over detection delay time for overdischarge current 2 or load short- circuiting, the LX8015G stops discharging. When battery voltage falls below overdischarge detection voltage due to overdischarge current, the LX8015G stop discharging by overdischarge current detection. In this case the recovery of battery voltage is so slow that if battery voltage after overdischarge voltage detection delay time is still lower than overdischargedetection voltage, the LX8015G shifts to power-down.Figure 4. Overcurrent delay time0V Battery Charging Function (1) (2) (3) This function enables the charging of a connected battery whose voltage is 0 V by self-discharge. When a charger having 0 V battery start charging charger voltage(V0CHA) or higher is connected between B+ and B- pins, the charging control FET gate is fixed to VDD potential. When the voltage between the gate and the source of the charging control FET becomes equal to or higher than the turn-on voltage by the charger voltage, the charging control FET is turned on to start charging. At this time, the discharging control FET is off and the charging current flows through the internal parasitic diode in the discharging control FET. If the battery voltage becomes equal to or higher than the overdischarge release voltage (V DU), the normal condition returns. Note(1) Some battery providers do not recommend charging of completely discharged batteries. Please refer to battery providers before the selection of 0 V battery charging function.(2) The 0V battery charging function has higher priority than the abnormal charge current detection function. Consequently, a product with the 0 V battery charging function charges a battery and abnormal charge current cannot be detected during the battery voltage is low (at most 1.8 V or lower).(3) When a battery is connected to the IC for the first time, the IC may not enter the normal condition in which discharging is possible. In this case, set the VM pin voltage equal to the GND voltage (short the VM and GND pins or connect a charger) to enter the normal condition.TIMING CHART 1.Overcharge and overdischarge detectionV V CU -V V DL +V V DL ONONCHARGEV DDV ov1V SS V VMFigure5-1 Overcharge and Overdischarge Voltage Detection2.Overdischarge current detectionV CU V CU -V HC V DL +V DH V DLONDISCHARGEOFFV DDV V ov2V ov1V SS(1)(4)(1)(1)(1)(4)(4)Figure5-2 Overdischarge Current DetectionRemark: (1) Normal condition (2) Overcharge voltage condition (3) Overdischarge voltage condition (4)Overcurrent condition3. Charger DetectionVV CU-VV DL+VV DLONV DDVMV SSVFigure5-3 Charger Detection4.Abnormal Charger DetectionVV CU-VV DL+VV DLONONCHARGEV DDVMV SSVFigure5-4 Abnormal Charger DetectionRemark: (1) Normal condition (2) Overcharge voltage condition (3) Overdischarge voltage condition (4)Overcurrent condition)TYPICAL APPLICATIONAs shown in Figure 6, the bold line is the high density current path which must be kept as short as possible. For thermal management, ensure that these trace widths are adequate. C is a decoupling capacitor which should be placed as close as possible to LX8015G.Fig 6 LX8015G in a Typical Battery Protection CircuitPrecautions• Pay attention to the operating conditions for input/output voltage and load current so that the power loss in LX8015G does not exceed the power dissipation of the package.• Do not apply an electrostatic discharge to this LX8015G that exceeds the performance ratings of the built-in electrostatic protection circuit.LX8015G ______________________________________ ____________________________________________ ________ ___________ - 11 -REV0.1 PACKAGE OUTLINE SOP8-EPAD PACKAGE OUTLINE AND DIMENSIONSIn order to increase the driver current capability of LX8015G and improve the temperature of package, Please ensure Epad and enough ground PCB to release energy.。
L7805CD2T-TR中文资料
SY58018UMGTR中文资料
Part Number
16 15 14 13 12 11 10 9 5 6 7 8
Package Type MLF-16 MLF-16 MLF-16 MLF-16
Operating Range Industrial Industrial Industrial Industrial
SY58018UMI
Q GND GND /Q
IN0 /IN0 IN1 /IN1
1 2 3 4
SY58018UMITR(2) SY58018UMG(3) SY58018UMGTR(2, 3)
16-Pin MLF®
Notes: 1. Contact factory for die availability. Dice are guaranteed at TA = 25°C, DC electricals only. 2. Tape and Reel. 3. Pb-Free package recommended for new designs.
Precision Edge®
DESCRIPTION
The SY58018U is a 2.5V/3.3V precision, high-speed, 2:1 differential MUX capable of handling clocks up to 4GHz and data up to 5Gbps. The differential input includes Micrel’s unique, 3-pin input termination architecture that allows customers to interface to any differential signal (AC- or DC-coupled) as small as 100mV without any level shifting or termination resistor networks in the signal path. The outputs are 800mV, 100k compatible, LVPECL, with extremely fast rise/fall times guaranteed to be less than 110ps. The SY58018U operates from a 2.5V ±5% supply or a 3.3V ±10% supply and is guaranteed over the full industrial temperature range of –40°C to +85°C. For applications that require CML outputs, consider the SY58017U or for 400mV LVPECL outputs the SY58019U. The SY58018U is part of Micrel’s high-speed, Precision Edge® product line. All support documentation can be found on Micrel’s web site at .
常用开关电源芯片大全之欧阳育创编
常用开关电源芯片大全第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT31142.低功耗开关型DC-DC电源转换器ADP30003.高效3A开关稳压器AP15014.高效率无电感DC-DC电源转换器FAN56605.小功率极性反转电源转换器ICL76606.高效率DC-DC电源转换控制器IRU30377.高性能降压式DC-DC电源转换器ISL64208.单片降压式开关稳压器L49609.大功率开关稳压器L4970A10.1.5A降压式开关稳压器L497111.2A高效率单片开关稳压器L497812.1A高效率升压/降压式DC-DC电源转换器L597013.1.5A降压式DC-DC电源转换器LM157214.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV15.3A降压单片开关稳压器LM2576/LM2576HV16.可调升压开关稳压器LM257717.3A降压开关稳压器LM259618.高效率5A开关稳压器LM267819.升压式DC-DC电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低噪声升压式电源转换器LM275022.小型75V降压式稳压器LM500723.低功耗升/降压式DC-DC电源转换器LT107324.升压式DC-DC电源转换器LT161525.隔离式开关稳压器LT172526.低功耗升压电荷泵LT175127.大电流高频降压式DC-DC电源转换器LT176528.大电流升压转换器LT193529.高效升压式电荷泵LT193730.高压输入降压式电源转换器LT195631.1.5A升压式电源转换器LT196132.高压升/降压式电源转换器LT343333.单片3A升压式DC-DC电源转换器LT343634.通用升压式DC-DC电源转换器LT346035.高效率低功耗升压式电源转换器LT346436.1.1A升压式DC-DC电源转换器LT346737.大电流高效率升压式DC-DC电源转换器LT378238.微型低功耗电源转换器LTC175439.1.5A单片同步降压式稳压器LTC187540.低噪声高效率降压式电荷泵LTC191141.低噪声电荷泵LTC3200/LTC3200-542.无电感的降压式DC-DC电源转换器LTC325143.双输出/低噪声/降压式电荷泵LTC325244.同步整流/升压式DC-DC电源转换器LTC340145.低功耗同步整流升压式DC-DC电源转换器LTC340246.同步整流降压式DC-DC电源转换器LTC340547.双路同步降压式DC-DC电源转换器LTC340748.高效率同步降压式DC-DC电源转换器LTC341649.微型2A升压式DC-DC电源转换器LTC342650.2A两相电流升压式DC-DC电源转换器LTC342851.单电感升/降压式DC-DC电源转换器LTC344052.大电流升/降压式DC-DC电源转换器LTC344253.1.4A同步升压式DC-DC电源转换器LTC345854.直流同步降压式DC-DC电源转换器LTC370355.双输出降压式同步DC-DC电源转换控制器LTC373656.降压式同步DC-DC电源转换控制器LTC377057.双2相DC-DC电源同步控制器LTC380258.高性能升压式DC-DC电源转换器MAX1513/MAX151459.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX152460.高效率40V升压式DC-DC电源转换器MAX1553/MAX155461.高效率升压式LED电压调节器MAX1561/MAX159962.高效率5路输出DC-DC电源转换器MAX156563.双输出升压式DC-DC电源转换器MAX1582/MAX1582Y64.驱动白光LED的升压式DC-DC电源转换器MAX158365.高效率升压式DC-DC电源转换器MAX1642/MAX164366.2A降压式开关稳压器MAX164467.高效率升压式DC-DC电源转换器MAX1674/MAX1675/MAX167668.高效率双输出DC-DC电源转换器MAX167769.低噪声1A降压式DC-DC电源转换器MAX1684/MAX168570.高效率升压式DC-DC电源转换器MAX169871.高效率双输出降压式DC-DC电源转换器MAX171572.小体积升压式DC-DC电源转换器MAX1722/MAX1723/MAX172473.输出电流为50mA的降压式电荷泵MAX173074.升/降压式电荷泵MAX175975.高效率多路输出DC-DC电源转换器MAX180076.3A同步整流降压式稳压型MAX1830/MAX183177.双输出开关式LCD电源控制器MAX187878.电流模式升压式DC-DC电源转换器MAX189679.具有复位功能的升压式DC-DC电源转换器MAX194780.高效率PWM降压式稳压器MAX1992/MAX199381.大电流输出升压式DC-DC电源转换器MAX61882.低功耗升压或降压式DC-DC电源转换器MAX62983.PWM升压式DC-DC电源转换器MAX668/MAX66984.大电流PWM降压式开关稳压器MAX724/MAX72685.高效率升压式DC-DC电源转换器MAX756/MAX75786.高效率大电流DC-DC电源转换器MAX761/MAX76287.隔离式DC-DC电源转换器MAX8515/MAX8515A88.高性能24V升压式DC-DC电源转换器MAX872789.升/降压式DC-DC电源转换器MC33063A/MC34063A90.5A升压/降压/反向DC-DC电源转换器MC33167/MC3416791.低噪声无电感电荷泵MCP1252/MCP125392.高频脉宽调制降压稳压器MIC220393.大功率DC-DC升压电源转换器MIC229594.单片微型高压开关稳压器NCP1030/NCP103195.低功耗升压式DC-DC电源转换器NCP1400A96.高压DC-DC电源转换器NCP140397.单片微功率高频升压式DC-DC电源转换器NCP141098.同步整流PFM步进式DC-DC电源转换器NCP142199.高效率大电流开关电压调整器NCP1442/NCP1443/NCP1444/NCP1445100.新型双模式开关稳压器NCP1501101.高效率大电流输出DC-DC电源转换器NCP1550102.同步降压式DC-DC电源转换器NCP1570103.高效率升压式DC-DC电源转换器NCP5008/NCP5009 104.大电流高速稳压器RT9173/RT9173A105.高效率升压式DC-DC电源转换器RT9262/RT9262A106.升压式DC-DC电源转换器SP6644/SP6645107.低功耗升压式DC-DC电源转换器SP6691108.新型高效率DC-DC电源转换器TPS54350109.无电感降压式电荷泵TPS6050x110.高效率升压式电源转换器TPS6101x111.28V恒流白色LED驱动器TPS61042112.具有LDO输出的升压式DC-DC电源转换器TPS6112x 113.低噪声同步降压式DC-DC电源转换器TPS6200x114.三路高效率大功率DC-DC电源转换器TPS75003115.高效率DC-DC电源转换器UCC39421/UCC39422116.PWM控制升压式DC-DC电源转换器XC6371117.白光LED驱动专用DC-DC电源转换器XC9116118.500mA同步整流降压式DC-DC电源转换器XC9215/XC9216/XC9217119.稳压输出电荷泵XC9801/XC9802120.高效率升压式电源转换器ZXLB16001.2 线性/低压差稳压器121.具有可关断功能的多端稳压器BAXXX122.高压线性稳压器HIP5600123.多路输出稳压器KA7630/KA7631124.三端低压差稳压器LM2937125.可调输出低压差稳压器LM2991126.三端可调稳压器LM117/LM317127.低压降CMOS500mA线性稳压器LP38691/LP38693128.输入电压从12V到450V的可调线性稳压器LR8129.300mA非常低压降稳压器(VLDO)LTC3025130.大电流低压差线性稳压器LX8610131.200mA负输出低压差线性稳压器MAX1735132.150mA低压差线性稳压器MAX8875133.带开关控制的低压差稳压器MC33375134.带有线性调节器的稳压器MC33998135.1.0A低压差固定及可调正稳压器NCP1117136.低静态电流低压差稳压器NCP562/NCP563137.具有使能控制功能的多端稳压器PQxx138.五端可调稳压器SI-3025B/SI-3157B139.400mA低压差线性稳压器SPX2975140.五端线性稳压器STR20xx141.五端线性稳压器STR90xx142.具有复位信号输出的双路输出稳压器TDA8133143.具有复位信号输出的双路输出稳压器TDA8138/TDA8138A144.带线性稳压器的升压式电源转换器TPS6110x145.低功耗50mA低压降线性稳压器TPS760xx146.高输入电压低压差线性稳压器XC6202147.高速低压差线性稳压器XC6204148.高速低压差线性稳压器XC6209F149.双路高速低压差线性稳压器XC64011.3 基准电压源150.新型XFET基准电压源ADR290/ADR291/ADR292/ADR293151.低功耗低压差大输出电流基准电压源MAX610x152.低功耗1.2V基准电压源MAX6120153.2.5V精密基准电压源MC1403154.2.5V/4.096V基准电压源MCP1525/MCP1541155.低功耗精密低压降基准电压源REF30xx/REF31xx156.精密基准电压源TL431/KA431/TLV431A第2章AC-DC转换器及控制器1.厚膜开关电源控制器DP104C2.厚膜开关电源控制器DP308P3.DPA-Switch系列高电压功率转换控制器DPA423/DPA424/DPA425/DPA4264.电流型开关电源控制器FA13842/FA13843/FA13844/FA138455.开关电源控制器FA5310/FA53116.PWM开关电源控制器FAN75567.绿色环保的PWM开关电源控制器FAN76018.FPS型开关电源控制器FS6M07652R9.开关电源功率转换器FS6Sxx10.降压型单片AC-DC转换器HV-2405E11.新型反激准谐振变换控制器ICE1QS0112.PWM电源功率转换器KA1M088013.开关电源功率转换器KA2S0680/KA2S088014.电流型开关电源控制器KA38xx15.FPS型开关电源功率转换器KA5H0165R16.FPS型开关电源功率转换器KA5Qxx17.FPS型开关电源功率转换器KA5Sxx18.电流型高速PWM控制器L499019.具有待机功能的PWM初级控制器L599120.低功耗离线式开关电源控制器L659021.LINK SWITCH TN系列电源功率转换器LNK304/LNK305/LNK30622.LINK SWITCH系列电源功率转换器LNK500/LNK501/LNK52023.离线式开关电源控制器M51995A24.PWM电源控制器M62281P/M62281FP25.高频率电流模式PWM控制器MAX5021/MAX502226.新型PWM开关电源控制器MC4460427.电流模式开关电源控制器MC4460528.低功耗开关电源控制器MC4460829.具有PFC功能的PWM电源控制器ML482430.液晶显示器背光灯电源控制器ML487631.离线式电流模式控制器NCP120032.电流模式脉宽调制控制器NCP120533.准谐振式PWM控制器NCP120734.低成本离线式开关电源控制电路NCP121535.低待机能耗开关电源PWM控制器NCP123036.STR系列自动电压切换控制开关STR8xxxx37.大功率厚膜开关电源功率转换器STR-F665438.大功率厚膜开关电源功率转换器STR-G865639.开关电源功率转换器STR-M6511/STR-M652940.离线式开关电源功率转换器STR-S5703/STR-S5707/STR-S570841.离线式开关电源功率转换器STR-S6401/STR-S6401F/STR-S6411/STR-S6411F 442.开关电源功率转换器STR-S651343.离线式开关电源功率转换器TC33369~TC3337444.高性能PFC与PWM组合控制集成电路TDA16846/TDA1684745.新型开关电源控制器TDA1685046.“绿色”电源控制器TEA150447.第二代“绿色”电源控制器TEA150748.新型低功耗“绿色”电源控制器TEA153349.开关电源控制器TL494/KA7500/MB375950.Tiny SwitchⅠ系列功率转换器TNY253、TNY254、TNY25551.Tiny SwitchⅡ系列功率转换器TNY264P~TNY268G52.TOP Switch(Ⅱ)系列离线式功率转换器TOP209~TOP22753.TOP Switch-FX系列功率转换器TOP232/TOP233/TOP23454.TOP Switch-GX系列功率转换器TOP242~TOP25055.开关电源控制器UCX84X56.离线式开关电源功率转换器VIPer12AS/VIPer12ADIP57.新一代高度集成离线式开关电源功率转换器VIPer53第3章功率因数校正控制/节能灯电源控制器1.电子镇流器专用驱动电路BL83012.零电压开关功率因数控制器FAN48223.功率因数校正控制器FAN75274.高电压型EL背光驱动器HV8265.EL场致发光背光驱动器IMP525/IMP5606.高电压型EL背光驱动器/反相器IMP8037.电子镇流器自振荡半桥驱动器IR21568.单片荧光灯镇流器IR21579.调光电子镇流器自振荡半桥驱动器IR215910.卤素灯电子变压器智能控制电路IR216111.具有功率因数校正电路的镇流器电路IR216612.单片荧光灯镇流器IR216713.自适应电子镇流器控制器IR252014.电子镇流器专用控制器KA754115.功率因数校正控制器L656116.过渡模式功率因数校正控制器L656217.集成背景光控制器MAX8709/MAX8709A18.功率因数校正控制器MC33262/MC3426219.固定频率电流模式功率因数校正控制器NCP165320.EL场致发光灯高压驱动器SP440321.功率因数校正控制器TDA4862/TDA486322.有源功率因数校正控制器UC385423.高频自振荡节能灯驱动器电路VK05CFL24.大功率高频自振荡节能灯驱动器电路VK06TL第4章充电控制器1.多功能锂电池线性充电控制器AAT36802.可编程快速电池充电控制器BQ20003.可进行充电速率补偿的锂电池充电管理器BQ20574.锂电池充电管理电路BQ2400x5.单片锂电池线性充电控制器BQ2401xB接口单节锂电池充电控制器BQ2402x7.2A同步开关模式锂电池充电控制器BQ241008.集成PWM开关控制器的快速充电管理器BQ29549.具有电池电量计量功能的充电控制器DS277010.锂电池充电控制器FAN7563/FAN756411.2A线性锂/锂聚合物电池充电控制器ISL629212.锂电池充电控制器LA5621M/LA5621V13.1.5A通用充电控制器LT157114.2A恒流/恒压电池充电控制器LT176915.线性锂电池充电控制器LTC173216.带热调节功能的1A线性锂电池充电控制器LTC173317.线性锂电池充电控制器LTC173418.新型开关电源充电控制器LTC198019.开关模式锂电池充电控制器LTC400220.4A锂电池充电器LTC400621.多用途恒压/恒流充电控制器LTC400822.4.2V锂离子/锂聚合物电池充电控制器LTC405223.可由USB端口供电的锂电池充电控制器LTC405324.小型150mA锂电池充电控制器LTC405425.线性锂电池充电控制器LTC405826.单节锂电池线性充电控制器LTC405927.独立线性锂电池充电控制器LTC406128.镍镉/镍氢电池充电控制器M62256FP29.大电流锂/镍镉/镍氢电池充电控制器MAX150130.锂电池线性充电控制器MAX150731.双输入单节锂电池充电控制器MAX1551/MAX155532.单节锂电池充电控制器MAX167933.小体积锂电池充电控制器MAX1736B接口单节锂电池充电控制器MAX181135.多节锂电池充电控制器MAX187336.双路输入锂电池充电控制器MAX187437.单节锂电池线性充电控制器MAX189838.低成本/多种电池充电控制器MAX190839.开关模式单节锂电池充电控制器MAX1925/MAX192640.快速镍镉/镍氢充电控制器MAX2003A/MAX200341.可编程快速充电控制器MAX712/MAX71342.开关式锂电池充电控制器MAX74543.多功能低成本充电控制器MAX846A44.具有温度调节功能的单节锂电池充电控制器MAX8600/MAX860145.锂电池充电控制器MCP73826/MCP73827/MCP7382846.高精度恒压/恒流充电器控制器MCP73841/MCP73842/MCP73843/MCP73844 647.锂电池充电控制器MCP73861/MCP7386248.单节锂电池充电控制器MIC7905049.单节锂电池充电控制器NCP180050.高精度线性锂电池充电控制器VM7205。
PD80F01x系列_中文资料_数据手册
Rev1.20
第1页
2020-7-27
Pdmicro Technology Ltd
PD80F01X
目录
特性..................................................................................................................................................................................1
2.1. 地址映射................................................................................................................................................................. 9 2.1.1. SFR,BANK0................................................................................................................................................. 9 2.1.2. SFR,BANK1............................................................................................................................................... 10 2.1.3. TMR0,地址 0x01........
RT8015BGQW-BGSP佳瑞得电子
DS8015B-02 January 2010Featuresz High Efficiency : Up to 95%z Low R DS(ON) Internal Switches : 110m Ωz Programmable Frequency : 300kHz to 2MHz z No Schottky Diode Requiredz 0.8V Reference Allows for Low Output Voltage z Forced Continuous Mode Operationz Low Dropout Operation : 100% Duty Cycle z Power Good Output Voltage Indicator zRoHS Compliant and Halogen FreeApplicationsz Portable Instrumentsz Battery-Powered Equipment z Notebook Computersz Distributed Power Systems z IP PhoneszDigital CamerasGeneral DescriptionThe RT8015B is a high efficiency synchronous, step down DC/DC converter. Its input voltage range is from 2.6V to 5.5V and provides an adjustable regulated output voltage from 0.8V to 5V while delivering up to 3A of output current.The internal synchronous low on resistance power switches increase efficiency and eliminate the need for an external Schottky diode. The switching frequency is set by an external resistor. The 100% duty cycle provides low dropout operation extending battery life in portable systems. Current mode operation with external compensation allows the transient response to be optimized over a wide range of loads and output capacitors.The RT8015B is operated in forced continuous PWM Mode which minimizes ripple voltage and reduces the noise and RF interference.The 100% duty cycle in Low Dropout Operation further maximize battery life.The RT8015B is available in the WDFN-10L 3x3 and SOP-8 (Exposed Pad) packages.Ordering InformationPin Configurations(TOP VIEW)WDFN-10L 3x33A, 2MHz, Synchronous Step-Down ConverterNote :Richtek Green products are :` RoHS compliant and compatible with the current require-ments of IPC/JEDEC J-STD-020.` Suitable for use in SnPb or Pb-free soldering processes.SHDN/RTGND PGNDLX COMP FBPGOOD PVDDVDD LXSHDN/RTGND LX PGNDCOMP FB PVDDVDD SOP-8 (Exposed Pad)Marking InformationFor marking information, contact our sales representative directly or through a Richtek distributor located in your area, otherwise visit our website for detail.G : Green (Halogen Free with Commer- rcial Standard)Functional Pin DescriptionTypical Application CircuitTable 1. Recommended Component SelectionV IN OUTDS8015B-02 January 2010Function Block DiagramLayout GuideCOMPFBPlace the input and output capacitors as close to the compensation components as close to the IC as possible.OperationMain Control LoopThe RT8015B is a monolithic, constant-frequency, current mode step-down DC/DC converter. During normal operation, the internal top power switch (P-Channel MOSFET) is turned on at the beginning of each clock cycle. Current in the inductor increases until the peak inductor current reach the value defined by the voltage on the COMP pin. The error amplifier adjusts the voltage on the COMP pin by comparing the feedback signal from a resistor divider on the FB pin with an internal 0.8V reference. When the load current increases, it causes a reduction in the feedback voltage relative to the reference. The error amplifier raises the COMP voltage until the average inductor current matches the new load current. When the top power MOSFET shuts off, the synchronous power switch (N-MOSFET) turns on until either the bottom current limit is reached or the beginning of the next clock cycle.The operating frequency is set by an external resistor connected between the RT pin and ground. The practical switching frequency can range from 300kHz to 2MHz.Dropout OperationWhen the input supply voltage decreases toward the output voltage, the duty cycle increases toward the maximum on-time. Further reduction of the supply voltage forces the main switch to remain on for more than one cycle eventually reaching 100% duty cycle.The output voltage will then be determined by the input voltage minus the voltage drop across the internal P-Channel MOSFET and the inductor.Low Supply OperationThe RT8015B is designed to operate down to an input supply voltage of 2.6V. One important consideration at low input supply voltages is that the R DS(ON) of the P-Channel and N-Channel power switches increases. The user should calculate the power dissipation when the RT8015B is used at 100% duty cycle with low input voltages to ensure that thermal limits are not exceeded.Slope Compensation and Inductor Peak Current Slope compensation provides stability in constant frequency architectures by preventing sub-harmonic oscillations at duty cycles greater than 50%. It is accomplished internally by adding a compensating ramp to the inductor current signal. Normally, the maximum inductor peak current is reduced when slope compensation is added. In the RT8015B, however, separated inductor current signals are used to monitor over current condition. This keeps the maximum output current relatively constant regardless of duty cycle.Short-Circuit ProtectionWhen the output is shorted to ground, the inductor current decays very slowly during a single switching cycle. A current runaway detector is used to monitor inductor current. As current increasing beyond the control of current loop, switching cycles will be skipped to prevent current runaway from occurring.DS8015B-02 January 2010Absolute Maximum Ratings (Note 1)zSupply Input Voltage, VDD, PVDD ----------------------------------------------------------------------------−0.3V to 6Vz LX Pin Switch Voltage --------------------------------------------------------------------------------------------−0.3V to (PVDD + 0.3V)<200ns ---------------------------------------------------------------------------------------------------------------−5V to 7.5Vz Other I/O Pin Voltages -------------------------------------------------------------------------------------------−0.3V to (VDD + 0.3V)z LX Pin Switch Current --------------------------------------------------------------------------------------------4A z Power Dissipation, P D @ T A = 25°CSOP-8 (Exposed Pad)-------------------------------------------------------------------------------------------1.333W WDFN-10L 3x3-----------------------------------------------------------------------------------------------------1.429W z Package Thermal Resistance (Note 2)SOP-8 (Exposed Pad), θJA -------------------------------------------------------------------------------------75°C/W SOP-8 (Exposed Pad), θJC -------------------------------------------------------------------------------------15°C/W WDFN-10L 3x3, θJA -----------------------------------------------------------------------------------------------70°C/W WDFN-10L 3x3, θJC -----------------------------------------------------------------------------------------------8.2°C/W z Junction T emperature ---------------------------------------------------------------------------------------------150°C z Lead Temperature (Soldering, 10 sec.)-----------------------------------------------------------------------260°C z Storage T emperature Range ------------------------------------------------------------------------------------−65°C to 150°C z ESD Susceptibility (Note 3)HBM (Human Body Mode)--------------------------------------------------------------------------------------2kV MM (Machine Mode)----------------------------------------------------------------------------------------------200VElectrical Characteristics(V DD = 3.3V, T A = 25°C, unless otherwise specified)To be continuedRecommended Operating Conditions (Note 4)z Supply Input Voltage ----------------------------------------------------------------------------------------------2.6V to 5.5V z Junction T emperature Range ------------------------------------------------------------------------------------ −40°C to 125°C zAmbient T emperature Range ------------------------------------------------------------------------------------ −40°C to 85°CNote 1. Stresses listed as the above "Absolute Maximum Ratings"may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.Note 2.θJA is measured in natural convection at T A = 25°C on a high-effective thermal conductivity four-layer test board of JEDEC 51-7 thermal measurement standard. The measurement case position of θJC is on the exposed pad of the packages.Note 3. Devices are ESD sensitive. Handling precaution is recommended.Note 4. The device is not guaranteed to function outside its operating conditions.Note 5. The specifications over the -40°C to 85°C operation ambient temperature range are assured by design, characterization and correlation with statistical process controls.DS8015B-02 January 2010Typical Operating CharacteristicsQuiescent Current vs. Input Voltage3603703803904004104204304404502.533.544.555.5Input Voltage (V)Q u i e s c e n t C u r r e n t (u A )Output Voltage vs. Load Current2.4562.4602.4642.4682.4722.4762.4802.4842.4882.4920.00.51.01.52.02.53.0Load Current (A)O u t p u t V o l t a g e (V)Peak Current Limit vs. Input Voltage2.02.53.03.54.04.55.03.53.7544.254.54.7555.255.5Input Voltage (V)C u r r e n t L i m i t (A)Frequency vs. Temperature0.981.001.021.041.061.08-50-25255075100125Temperature F r e q u e n c y (M H z )(°C)Quiescent Current vs. Temperature380390400410420430440450-50-25255075100125Temperature Q u i e s c e n t C u r r e n t (u A )(°C)Efficiency vs. Load Current0.010.1110Load Current (A)E f f i c i e n c y (%)Output Voltage vs. Temperature3.223.243.263.283.303.323.34-50-25255075100125Temperature O u t p u t V o l t a g e (V )(°C)UVPTime (4μs/Div)I LX (5A/Div)V LX (5V/Div)V IN = 5V, V OUT = 1.05VV OUT (1V/Div)PGOOD (5V/Div)Load Transient ResponseTime (100μs/Div)I LOAD (1A/Div)V OUT_ac (100mV/Div)V IN = 5V, V OUT = 2.5V I OUT = 0A to 3AOutput RippleTime (400ns/Div)I LX (2A/Div)V LX (5V/Div)V IN = 5V, V OUT = 2.5V I OUT = 3AV OUT_ac (10mV/Div)Start up with No Load Time (400μs/Div)V LX (5V/Div)V IN = 5V, V OUT = 10.5V, I OUT = 0AV OUT (1V/Div)V IN (5V/Div)PGOOD (5V/Div)Start up with Heavy LoadTime (400μs/Div)V IN = 5V, V OUT = 1.05V, I OUT = 3AV LX (5V/Div)V OUT (1V/Div)V IN (5V/Div)PGOOD (5V/Div)DS8015B-02 January 2010Application InformationThe basic RT8015B application circuit is shown in Typical Application Circuit. External component selection is determined by the maximum load current and begins with the selection of the inductor value and operating frequency followed by C IN and C OUT .Output Voltage ProgrammingThe output voltage is set by an external resistive divider according to the following equation :Figure 1. Setting the Output Voltage⎟⎠⎞⎜⎝⎛+×=R2R11V V REF OUT Soft-StartThe RT8015B contains an internal soft-start clamp that gradually raises the clamp on the COMP pin. The full current range becomes available on COMP after 2048switching cycles as shown in Figure 2.Figure 2. Soft-StartPower Good OutputThe power good output is an open-drain output and requires a pull up resistor. When the output voltage is 12.5% above or 12.5% below its set voltage, PGOOD will be pulled low. It is held low until the output voltage returns to within the allowed tolerances once more. In soft start, PGOOD is actively held low and is allowed to transition high until soft start finished over and the output voltage reaches 87.5% of its set voltage.Operating FrequencySelection of the operating frequency is a tradeoff between efficiency and component size. High frequency operation allows the use of smaller inductor and capacitor values.Operation at lower frequency improves efficiency by reducing internal gate charge and switching losses but requires larger inductance and/or capacitance to maintain low output ripple voltage.The operating frequency of the RT8015B is determined by an external resistor that is connected between the RT pin and ground. The value of the resistor sets the ramp current that is used to charge and discharge an internal timing capacitor within the oscillator. The RT resistor value can be determined by examining the frequency vs. RT curve. Although frequencies as high as 2MHz are possible,the minimum on-time of the RT8015B imposes a minimum limit on the operating duty cycle. The minimum on-time is typically 110ns. Therefore, the minimum duty cycle is equal to 100 x 110ns x f(Hz).Figure 300.511.522.52004006008001000R OSC ٛ)F r e q u e n c y(M H z )OSC (k ΩV where V REF equals to 0.8V typical.The resistive divider allows the FB pin to sense a fraction of the output voltage as shown in Figure 1.Time (1ms/Div)I LX (1A/Div)V OUT(500mV/Div)V IN (2V/Div)V IN = 5V, V OUT = 1.05V, I OUT = 2AThe output ripple is highest at maximum input voltagesince ΔI L increases with input voltage. Multiple capacitors placed in parallel may be needed to meet the ESR and RMS current handling requirements. Dry tantalum, special polymer, aluminum electrolytic and ceramic capacitors are all available in surface mount packages. Special polymer capacitors offer very low ESR but have lower capacitance density than other types. Tantalum capacitors have the highest capacitance density but it is important to only use types that have been surge tested for use in switching power supplies. Aluminum electrolytic capacitors have significantly higher ESR but can be used in cost sensitive1V V V VI I OUTININ OUTOUT(MAX)RMS −=⎦⎤⎢⎣⎡+Δ≤ΔOUT L OUT 8fC 1ESR I V Inductor Core SelectionOnce the value for L is known, the type of inductor must be selected. High efficiency converters generally cannot afford the core loss found in low cost powdered iron cores,forcing the use of more expensive ferrite or mollypermalloy cores. Actual core loss is independent of core size for a fixed inductor value but it is very dependent on the inductance selected. As the inductance increases, core losses decrease. Unfortunately, increased inductance requires more turns of wire and therefore copper losses will increase.Ferrite designs have very low core losses and are preferred at high switching frequencies, so design goals can concentrate on copper loss and preventing saturation.Ferrite core material saturates “hard ”, which means that inductance collapses abruptly when the peak design current is exceeded.This result in an abrupt increase in inductor ripple current and consequent output voltage ripple.Do not allow the core to saturate!Different core materials and shapes will change the size/current and price/current relationship of an inductor. T oroid or shielded pot cores in ferrite or permalloy materials are⎥⎦⎤⎢⎣⎡−⎥⎦⎤⎢⎣⎡Δ×=IN(MAX)OUT L(MAX)OUT V V 1I f V L Having a lower ripple current reduces the ESR losses inthe output capacitors and the output voltage ripple. Highest efficiency operation is achieved at low frequency with small ripple current. This, however, requires a large inductor. A reasonable starting point for selecting the ripple current is ΔI = 0.4(I MAX ). The largest ripple current occurs at the highest V IN . To guarantee that the ripple current stays below a specified maximum, the inductor value should be chosen according to the following equation :Inductor SelectionFor a given input and output voltage, the inductor value and operating frequency determine the ripple current. The ripple current ΔI L increases with higher V IN and decreases with higher inductance.⎥⎦⎤⎢⎣⎡−⎥⎦⎤⎢⎣⎡×=ΔIN OUT OUT L V V 1L f V I small and don't radiate energy but generally cost more than powdered iron core inductors with similar characteristics. The choice of which style inductor to use mainly depends on the price vs. size requirements and any radiated field/EMI requirements.C IN and C OUT SelectionThe input capacitance, C IN , is needed to filter the trapezoidal current at the source of the top MOSFET. To prevent large ripple voltage, a low ESR input capacitor sized for the maximum RMS current should be used. RMS current is given by :This formula has a maximum at V IN = 2V OUT , where I RMS = I OUT /2. This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief. Choose a capacitor rated at a higher temperature than required.Several capacitors may also be paralleled to meet size or height requirements in the design.The selection of C OUT is determined by the effective series resistance (ESR) that is required to minimize voltage ripple and load step transients, as well as the amount of bulk capacitance that is necessary to ensure that the control loop is stable. Loop stability can be checked by viewing the load transient response as described in a later section.The output ripple, ΔV OUT , is determined by :DS8015B-02 January 2010applications provided that consideration is given to ripple current ratings and long term reliability. Ceramic capacitors have excellent low ESR characteristics but can have a high voltage coefficient and audible piezoelectric effects.The high Q of ceramic capacitors with trace inductance can also lead to significant ringing.Using Ceramic Input and Output CapacitorsHigher values, lower cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. However, care must be taken when these capacitors are used at the input and output. When a ceramic capacitor is used at the input and the power is supplied by a wall adapter through long wires, a load step at the output can induce ringing at the input, V IN . At best, this ringing can couple to the output and be mistaken as loop instability. At worst, a sudden inrush of current through the long wires can potentially cause a voltage spike at V IN large enough to damage the part.Checking Transient ResponseThe regulator loop response can be checked by looking at the load transient response. Switching regulators take several cycles to respond to a step in load current. When a load step occurs, V OUT immediately shifts by an amount equal to ΔI LOAD(ESR), where ESR is the effective series resistance of C OUT . ΔI LOAD also begins to charge or discharge C OUT generating a feedback error signal used by the regulator to return V OUT to its steady state value.During this recovery time, V OUT can be monitored for overshoot or ringing that would indicate a stability problem.The COMP pin external components and output capacitor shown in Typical Application Circuit will provide adequate compensation for most applications.Efficiency ConsiderationsThe efficiency of a switching regulator is equal to the output power divided by the input power times 100%. It is often useful to analyze individual losses to determine what is limiting the efficiency and which change would produce the most improvement. Efficiency can be expressed as :Efficiency = 100% − (L1+ L2+ L3+ ...) where L1, L2, etc.are the individual losses as a percentage of input power.Although all dissipative elements in the circuit produce losses, two main sources usually account for most of the losses: V DD quiescent current and I 2R losses.The V DD quiescent current loss dominates the efficiency loss at very low load currents whereas the I 2R loss dominates the efficiency loss at medium to high load currents. In a typical efficiency plot, the efficiency curve at very low load currents can be misleading since the actual power lost is of no consequence.1. The V DD quiescent current is due to two components :the DC bias current as given in the electrical characteristics and the internal main switch and synchronous switch gate charge currents. The gate charge current results from switching the gate capacitance of the internal power MOSFET switches. Each time the gate is switched from high to low to high again, a packet of charge ΔQ moves from V DD to ground. The resulting ΔQ/Δt is the current out of V DD that is typically larger than the DC bias current. In continuous mode, I GATECHG = f(QT+QB) where QT and QB are the gate charges of the internal top and bottom switches.Both the DC bias and gate charge losses are proportional to V DD and thus their effects will be more pronounced at higher supply voltages.2. I 2R losses are calculated from the resistances of the internal switches, RSW and external inductor RL. In continuous mode, the average output current flowing through inductor L is “chopped ” between the main switch and the synchronous switch. Thus, the series resistance looking into the LX pin is a function of both top and bottom MOSFET R DS(ON) and the duty cycle (D) as follows :R SW = R DS(ON)TOP x D + R DS(ON)BOT x (1"D) The R DS(ON)for both the top and bottom MOSFETs can be obtained from the Typical Performance Characteristics curves. Thus,to obtain I 2R losses, simply add RSW to RL and multiply the result by the square of the average output current.Other losses including C IN and C OUT ESR dissipative losses and inductor core losses generally account for less than 2% of the total loss.Layout ConsiderationsFollow the PCB layout guidelines for optimal performance of RT8015B.`A ground plane is recommended. If a ground plane layer is not used, the signal and power grounds should be segregated with all small-signal components returning to the GND pin at one point that is then connected to the PGND pin close to the IC. The exposed pad should be connected to GND.`Connect the terminal of the input capacitor(s), C IN , as close as possible to the PVDD pin. This capacitor provides the AC current into the internal power MOSFETs.`LX node is with high frequency voltage swing and should be kept within small area. Keep all sensitive small-signal nodes away from the LX node to prevent stray capacitive noise pick-up.`Flood all unused areas on all layers with copper.Flooding with copper will reduce the temperature rise of powercomponents. You can connect the copper areas to any DC net (PVDD, VDD, VOUT , PGND, GND, or any other DC rail in your system).Current LimitRT8015B has cycle by cycle current limiting control. The current limit circuit employs a “peak ” current sensing algorithm. If the magnitude of the current sense signal is above the current limit threshold, the controller will turn off high side MOSFET and turn on low side MOSFET.Under Voltage Protection (UVP)The output voltage can be continuously monitored for under voltage protection. When the output voltage is less than 25% of its set voltage threshold, the under voltage protection circuit will be triggered to terminate switching operation and the controller will be latched unless VDD POR is detected again. During soft-start, the UVP will be blanked until soft-start finish.Thermal ConsiderationsFor continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :P D(MAX) = (T J(MAX) − T A ) / θJAwhere T J(MAX) is the maximum junction temperature, T A is the ambient temperature, and θJA is the junction to ambient thermal resistance.For recommended operating condition specifications of the RT8015B, the maximum junction temperature is 125°C and T A is the ambient temperature. The junction to ambient thermal resistance, θJA , is layout dependent. For SOP-8(Exposed Pad) packages, the thermal resistance, θJA , is 75°C/W on a standard JEDEC 51-7 four-layer thermal test board. For WDFN-10L 3x3 packages, the thermal resistance, θJA , is 70°C/W on a standard JEDEC 51-7four-layer thermal test board. The maximum power dissipation at T A = 25°C can be calculated by the following formulas :P D(MAX) = (125°C − 25°C) / (75°C/W) = 1.333W for SOP-8 (Exposed Pad) packageP D(MAX) = (125°C − 25°C) / (70°C/W) = 1.429W for WDFN-10L 3x3 packageFigure 4. Derating Curves for RT8015B Package The maximum power dissipation depends on the operating ambient temperature for fixed T J(MAX) and thermal resistance, θJA . For the RT8015B packages, the derating curves in Figure 4 allow the designer to see the effect of rising ambient temperature on the maximum power dissipation.0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.50255075100125Ambient Temperature (°C)M a x i m u m P o w e r D i s s i p a t i o n (W )DS8015B-02 January 2010Figure 5Figure 6`Connect the FB pin directly to the feedback resistors.The resistor divider must be connected between V OUT and GND.Recommended component selection for Typical ApplicationTable 1. InductorsTable 2. Capacitors for C IN and C OUTW-Type 10L DFN 3x3 PackageDS8015B-02 January Richtek Technology CorporationHeadquarter5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C.Tel: (8863)5526789 Fax: (8863)5526611Richtek Technology CorporationTaipei Office (Marketing)8F, No. 137, Lane 235, Paochiao Road, Hsintien City Taipei County, Taiwan, R.O.C.Tel: (8862)89191466 Fax: (8862)89191465Email: marketing@Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.HM(Bottom of Package)8-Lead SOP (Exposed Pad) Plastic Package。
高频开关电源主要磁性元件的设计
高频开关电源主要磁性元件的设计引言在电力直流系统中,由于普遍采用高频模块,对于高频模块的设计是功率越来越大,而体积却是越来越小,这就对其设计提出了一个关键的问题,那就是如何解决磁性元件的损耗及发热问题。
高频开关电源中大量使用各种各样的磁性元件,如输入/输出共模电感,功率变压器,饱和电感以及各种差模电感。
各种磁性元器件对磁性材料的要求各不相同,如差模电感希望μ值适中,但线性度好,不易饱和;共模电感则希望μ值要高,频带宽;功率变压器则希望μ值要适中,温度稳定好,剩磁小,损耗低等。
在非晶材料出现以前,共模电感主要采用高μ值(6K~10K)Mn-Zn合金,差模电感多采用铁粉芯或开气隙铁氧体材料,变压器则采用铁氧体材料等。
这些材料应用技术成熟,种类也很丰富,并有各种各样的产品形状供选择。
随着非晶材料的出现和技术不断成熟,在开关电源设计中,非晶材料表现出许多其它材料无法比拟的优点。
几种常用磁性材料基本性能比较如表1。
1 主变压器的设计对于高频开关电源的主要发热元件,主变压器的设计尤其重要,其尺寸的大小和材料的选择更是重要。
1)主变压器的磁芯必须具备以下几个特点(1)低损耗;(2)高的饱和磁感应强度且温度系数小;(3)宽工作温度范围;(4)μ值随B值变化小;(5)与所选用功率器件开关速度相应的频响。
早前高频变压器一般选用铁氧体磁芯,下面对VITROPERM500F铁基超微晶磁芯与德国西门子公司生产的N67系列铁氧体磁芯的性能进行较,见图1。
从以上图表可以看出两者有以下区别:(1)相同工作频率(200kHz以下),非晶材料损耗明显低于铁氧体,工作频率越低,工作B值越高,非晶材料优势越明显。
但在250kHz以上频段,铁氧体损耗要明显低于非晶材料。
(2)非晶材料损耗随温度变化量大大低于铁氧体,降低了变压器热设计的难度。
(3)非晶材料导磁率随温度变化量大大低于铁氧体,降低了变压器设计的难度,提高了电源运行的稳定性和可靠性。
IC 代码及代换型号查询(参考资料)
CODES:DJ= - RT8202AGQWDJ- - RT8202APQWDK- - RT8204PQW WQFN 3x3-16JL= - RT8204AGQW WQFN 3x3-16FR= - RT8204BGQW WQFN 3x3-16H6= - RT8204CGQW WQFN 3x3-16CJ= - RT8205AGQWCK= - RT8205BGQWCL= - RT8205CGQWCB= - RT8205DGQWDT= - RT8205EGQWEM= - RT8205LGQW [RT8205AGQW]EN= - RT8205MGQW [RT8205CGQW]CP= - RT8207GQWDH= - RT8207AGQWEF= - RT8207LGQWJ7= - RT8207MGQWDS= - RT8223BGQW LDO Output: 70mA11= - RT8223NGQW LDO Output: 100mA [RT8223BGQW] 20 - RT8223PZQW LDO Output: 100mA [RT8223BGQW] EP= - RT8223LGQW LDO Output: 100mA [RT8223AGQW] EQ= - RT8223MGQW LDO Output: 100mA [RT8223BGQW]FF= - RT8208AGQWFG= - RT8208BGQWH8= - RT8208DGQW30= - RT8208EGQW31= - RT8208FGQWFH= - RT8209AGQW WQFN-16L 3x3A0= - RT8209BGQW WQFN-14L 3.5x3.5A3= - RT8209EGQW WQFN-14L 3.5x3.5JX= - RT8209LGQW WQFN-16L 3x3A8= - RT8209MGQW WQFN-14L 3.5x3.5K0= - RT8209NGQWA6= - RT8209PGQWEL= - RT8015ADZ= - RT8113CZ= - RT8561AGQWD9= - RT9716AGQWC7= - RT9293-20replacements:ISL6236 = RT8206A = PM6686ISL6237 = RT8206BISL6268 = APW7138TPS51117 = RT8209BTPS51116 = RT8207ISL6227 = APW7108TPS51125 = RT8205B = UP6182TPS51123 = RT8223MISL6251 = G5209P2805MF = G5933G86-631-A2 = G86-621 = G86-620 = G86-630 = G86-603 = G86-920 G86-920-A2 = G86-921-A2GF-GO7200-N-A3 = GF-GO7300T-N-A3GF-GO7300-N-A3 = GF-GO7300T-N-A3GF-GO7400-N-A3 = GF-GO7400T-N-A3QD-NVS-110M-N-A3 = QD-NVS-110MT-N-A3G86-740-A2 = G86-741-A2GM45 = GL40HM55 = HM57HM65 = HM67216-8018 = 216-8020216-4026 > 216-4024 > 216-4022216PABGA13F = 216PACGA14F216PBCGA15FG = 216PBCGA15F216QMAKA14FG = 216RMAKA14FG216RMAKA14FG = 216QMAKA14FG216MJBKA15FG = 216MJBKA11FG216PNAKA13FG = 216PMAKA12FG216PQAKA12FG = 216PQAKA13FG216PQAKA13FG = 216PQAKA12FG216PMAKA13FG = 216PMAKA12FG216PLAKB26FG = 216PLAKB24FG216CPIAKA13FL = 216CPIAKA13F216BS2BFA22H = 216BS2BFB23H216DCP4ALA12FG = 216ECO4ALA13FG 216MSA4ALA12FG = 216MCA4ALA12FG 216MPA4AKA21HK = 216MPA4AKA22HK 216-0674024 = 216-0674026216-0707007 = 216-0707001216-0707001 = 216-0707011216-0707005 = 216-0707009216-0707009 = 216-0707005216-0707011 = 216-0707001218S4PASA14G = 218S4PASA13G218S4EASA31HK = 218S4EASA32HK 215NSA4ALA12FG = 216MSA4ALA12FG 216-0772003 = 216-0772000IT8500E = IT8502E = IT8512EWPCE775 = WPC773WPC8763 = WPC8769SMSC KBC1098 = SMSC MEC1308RT8205A = TPS51125ISL6236 = RT8206A = PM6686ISL6268 = APW7138TPS51117 = RT8209BTPS51116 = RT8207ISL6227 = APW7108 TPS51125 = RT8205B = UP6182TPS51123 = RT8223MP2805MF = G5933SN608090 = ISL6237 = 51427 RT8206BISL6237 = MAX17020 = MAX8778 = TPS51427 = RT8206B PM6686 = TPS17020UP1585QQAG (EM = EC) = TPS51123A = RT8223P ( EQ=XX) MAX8734A = RT8203MAX 8724 = MAX1908ISL88731= BQ24745ISL 6266 = ISL 6262ISL 62883 = ISL 62882ALC883 = ALC660RT8223 = 51123(DH=CH)= (DH=CA)= RT8207W8769 = W8763SN608090 =ISL6237 = 51427 = RT8206BIT8500E = IT8502 = IT8512ISL6266 = ISL6262ISL62883 = ISL628823RT8223 = RT8205ITE8502E = ITE8512EITE8512EKXS= ITE8512EKXOISL6237 = MAX17020 = MAX8778 = TPS51427 = RT8206B PM6686 = TPS17020UP1585QQAG (EM EC) = TPS51123A = RT8223P(EQ=)ISL88731=BQ24745RT8206B = ISL 62373MAX8734A = RT82032J493 (G966-93) = RT9018B (DELL VASTRO 1015)KB926QF D3 = KB926QF COKB3926QF D3= KB3926QFRT8205(A) = TPS51125(EF = DE 41J) = RT8207LGQW(CJ=CL 40W) = TPS51125KB3310QF-A0 = KB3310QF-B0 Asus All-in-One PC ET1602CKB3310QF-C1 = KB3310QF-B0 Asus EeePC 900KB3926QF-A1 = KB3926QF-A2 Quanta AT3KB3926QF-C0 = KB926QF-D3 HP DV5KB3926QF-C0 = KB3926QF-D2 Quanta OP6, QT6KB3930QF-A2 = KB930QF-A1 Quanta R23KB926QF-B1 = KB926QF-C0 Compal LA-3551PKB926QF-B1 = KB926QF-D3 Compal LA-6552PKB926QF-D3 = KB926QF-C0 Lenovo G550 - Compal LA-5082PKB926QF-E0 = KB926QF-C0 Compal LA-6061PKB926QF-E0 = KB926QF-D3 Compal LA-6311P, Lenovo G555 (LA-5972P)KB926QF= KB926QF-D2 Compal LA-6421P, LA-6221PWPCE773 = WPCE775WPC8763LDG = WPC8769LDG WistronBiwa, Aspire 5920G - Quanta ZD1WPC8769LA0DG = WPC8769LDG Alienware M15x - Quanta MX3NPCE781LA0DX = NPCE781BA0DXNPCE781LA0DX = NPCE783LA0DX Quanta ZQ1NPCE795GA0DX = NPCE795LA0DX Quanta ZYGIT8500E = IT8502E Asus K50IJIT8502E = IT8500E Asus K40AB, K40C, K50C, K50ABIT8502E = IT8512E Asus K50IJIT8512E = IT8500E Acer 6920IT8511TE-BXS = IT8510TE-GXA Asus X51R/RLMEC1300-NU = MEC1308-NU Samsung R530 (BREMEN-L3, 1.0,BREMEN-L4, r1.4), Samsung R519 (BONN-L)TPS 51125A = RT8205BGQW =(CK=CD C47)RT8209A = FH=CG CU1RT8204C = H6=CH JOXRT8205 = TPS51125SN10504 =SN0608098 RHBRMAX 8724 = MAX1908(EF= DE) = UP6163AG (1.5V)isl 6266 = isl 6262isl 62883 = isl 628823rt 8223 = rt 8205i/o ite 8502e = ite 8502eite8512eite8512e kxs= ite8512e kxoISL6237 = MAX17020 = MAX8778 = TPS51427 = RT8206BPM6686 = TPS17020UP1585QQAG (marked EM EC) = TPS51123A = RT8223P(marked EQ=) Charger ISL88731=BQ247451: RT8206B = ISL 623732: MAX8734A = RT820323: J493 (G966-93) = RT9018B (DELL VASTRO 1015)4: I/O... KB926QF D3 = KB926QF COKB3926QF D3= KB3926QFRT8205(A) = TPS51125%Ef=de 41j ------------------- rt8207lgqwcj=cl 40w ------------------- tps51125Microcontrollers (KBC, SUPER I/O, EC, etc) interchangeabilityTable interchangeability multicontrollers1EC1 Replacement EC2 PlatformKB3310QF-A0 > KB3310QF-B0 Asus All-in-One PC ET1602CKB3310QF-C1 > KB3310QF-B0 Asus EeePC 900 (KB3926QF-A1 > KB3926QF-A2 Quanta AT3KB3926QF-C0 > KB926QF-D3 HP DV5KB3926QF-C0 <-> KB3926QF-D2 Quanta OP6, QT6KB3930QF-A2 > KB930QF-A1 Quanta R23KB926QF-B1 > KB926QF-C0 Compal LA-3551PKB926QF-B1 > KB926QF-D3 Compal LA-6552PKB926QF-D3 > KB926QF-C0 Lenovo G550 - Compal LA-5082PKB926QF-E0 > KB926QF-C0 Compal LA-6061PKB926QF-E0 > KB926QF-D3 Compal LA-6311P, Lenovo G555 (LA-5972P)KB926QF-E0 > KB926QF-D2 Compal LA-6421P, LA-6221PWinbond1WPCE773 <-> WPCE775WPC8763LDG <-> WPC8769LDG WistronBiwa, Aspire 5920G - Quanta ZD1WPC8769LA0DG > WPC8769LDG Alienware M15x - Quanta MX3 (Maddog 2.5)nuvoTon,NPCE781LA0DX > NPCE781BA0DXNPCE781LA0DX > NPCE783LA0DX Quanta ZQ1NPCE795GA0DX > NPCE795LA0DX Quanta ZYGITEIT8500E > IT8502E Asus K50IJIT8502E > IT8500E Asus K40AB, K40C, K50C, K50ABIT8502E <-> IT8512E Asus K50IJIT8512E > IT8500E Acer 6920IT8511TE-BXS > IT8510TE-GXA Asus X51R/RLSMSC2MEC1300-NU <-> MEC1308-NU Samsung R530 (BREMEN-L3, 1.0, BREMEN-L4, r1.4), Samsung R519 (BONN-L)ISL62882<->ISL62883。
中频变压器大全
-收音机中频变压器(中周)结构图及应用注意事项中频变压器(俗称中周),是超外差式晶体管收音机中特有的一种具有固定谐振回路的变压器,但谐振回路可在一定范围内微调,以使接入电路后能达到稳定的谐振频率(465kHz)。
微调借助于磁心的相对位置的变化来完成。
收音机中的中频变压器大多是单调谐式,结构较简单,占用空间较小。
由于晶体管的输入、输出阻抗低,为了使中频变压器能与晶体管的输入、输出阻抗匹配,初级有抽头,且具有圈数很少的次级耦合线圈。
双调谐式的优点是选择性较好且通频带较宽,多用在高性能收音机中。
晶体管收音机中通常采用两级中频放大器,所以需用三只中周进行前后级信号的耦合与传送。
实际电路中的中周常用BZ1、BZ2、BZ3符号表示。
在使用中不能随意调换它们在电路中的位置。
振荡线圈(中波)的外形和中周相似,它和相应的元器件组成晶体管收音机的变频级。
采用等容双连(270pF×2),同时调节输入调谐回路的谐振频率与本机振荡电路的本振频率,保证在整个接收波段范围内都有:f振-f信=465kHz。
常用型号为LTF-2-1(初级144+8.5匝,次级11.5匝)和LTF-2-3(初级4.5+82匝,次级8匝)。
最后提及一点:调谐中应尽可能采用无感改刀调谐。
每次调整中频变压器或振荡线圈的磁帽范围不要过大,用力要注意,以防磁帽破裂半导体超外差式收音机用中频变压器收音机中频变压器的结构如图a所示,它一般由磁心、线圈、底座、支架、磁帽及屏蔽罩组成。
由于使用磁心和磁帽构成闭合磁路,使得变压器具有高Q值和小体积的特点,而且只要调节磁帽就可改变电感量的大小。
半导体超外差式收音机中频变压器结构收音机中的中频放大器工作频率为465kHz,用谐振回路作为负载,采用LC并联谐振方法,使回路在谐振时阻抗最大。
回路产生的谐振电压用中频变压器鹅合到下一级电路。
半导体收音饥使用的中频变压器有单调回路中频变压器和双调谐中频变压器两种,它们的电路如图b所示。
RT9167-33GB富佳维
AOZ8015DIL;中文规格书,Datasheet资料
General DescriptionThe AOZ8015 is a 6-line device integrating EMI filtering with ESD protection for each line. It is designed tosuppress unwanted EMI/RFI signals and provide electro-static discharge (ESD) protection in portable electronic equipment. This state-of-the-art device utilizes AOS leading edge Trench Vertical Structure [TVS]2 ™technology for superior clamping performance and filter attenuation over the full operating display range. The AOZ8015 has been optimized for protection of color LCD displays and CCD camera lines in cellular phones and other portable consumer electronic devices.The AOZ8015 consists of six identical circuitscomprised of TVS diodes for ESD protection, and a resistor–capacitor network for EMI/RFI filtering. A series resistor value of 100Ω and a capacitance value of 20pF are used to achieve -30dB minimum attenuation from 800MHz to 3.0GHz. The TVS diodes provide effective suppression of ESD voltages in excess of ±17kV (air discharge) and ±17kV (contact discharge). This exceeds IEC 61000-4-2, level 4 ESD immunity test.The AOZ8015 comes in an RoHS compliant, 1.35mm x 3.0mm DFN package and is rated over a -40°C to +85°C ambient temperature range.Features●6 lines for EMI filtering and ESD protection:– Exceeds IEC 61000-4-2, level 4 (ESD) immunity test – ±17kV (air discharge) and ±17kV (contact discharge)●Trench Vertical Structure [TVS]2 ™ based technology used to achieve excellent ESD clamping & filter performance over the full operating display range ●Filter performance: -30db attenuation from 800MHz to 3.0GHz●Low operating voltage: 5.0V●Capacitance stability over wide range of voltages and temperatures●DFN package 1.35mm x 3.0mm ●Pb-Free device ●Greeen productApplications●EMI filtering and ESD protection for data lines ●LCD displays, camera interface, I/O interface ●Portable handheld devices, cell phones, PDA phonesElectrical Schematic (each channel)Figure 1.Ordering InformationAOS Green Products use reduced levels of Halogens, and are also RoHS compliant.Please visit /web/quality/rohs_compliant.jsp for additional information.Pin ConfigurationPin DescriptionPart NumberAmbient Temperature Range Package EnvironmentalAOZ8015DIL-40°C to +85°C DFN-12RoHS Compliant Green ProductPin NumberPin NamePin Function1,12CH 1Channel 1 Connections 2, 11CH 2Channel 2 Connections 3, 10CH 3Channel 3 Connections 4, 9CH 4Channel 4 Connections 5, 8CH 5Channel 5 Connections 6, 7CH 6Channel 6 Connections Exposed PadGNDCommon Ground ConnectionAbsolute Maximum RatingsExceeding the Absolute Maximum ratings may damage the device.Notes:1. IEC 61000-4-2 discharge with C Discharge = 150pF, R Discharge = 330Ω.2. Human Body Discharge per MIL-STD-883, Method 3015 C Discharge = 100pF, R Discharge = 1.5k Ω.Electrical CharacteristicsT A = 25°C unless otherwise specified.Notes:3. The working peak reverse voltage, V RWM , should be equal to or greater than the DC or continuous peak operating voltage level.4. V BR is measured at the pulse test current I T .5. Measurements performed using a 100ns Transmission Line Pulse (TLP) system.6. Total capacitance is equal to 2 x C CH .7. Measured at 25°C, V R = 2.5V, f = 1.0MHz.8. Guaranteed by design.ParameterRatingStorage Temperature (T S )-65°C to +150°C ESD Rating per IEC61000-4-2, contact (1)±17kV ESD Rating per IEC61000-4-2, air (1)±17kV ESD Rating per Human Body Model (2)±30kVSymbolParameterConditionsMin.Typ.Max.UnitsV RWM Reverse Working Voltage (3)(8)5.0V V BR Reverse Breakdown Volt-ageI T = 1mA (4)678V I R Reverse Leakage Current V RWM = 3.3V0.1µA V CL Signal Clamp Voltage I LOAD = 12A, positive clamp (5)(8)I LOAD = 12A, negative clamp (5)(8)11-10VR CH Total Series Resistance I R = 20mA90100110ΩC CH Channel Capacitance Input to Ground (6)(7)(8)182022pF f CCut-off Frequency Measured with 50Ω source and 50Ω load termination100MHz Attenuation from 800MHz to 3.0GHzMeasured with 50Ω source and 50Ω load termination-30dBPart MarkingAs used herein:1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.This data sheet contains preliminary data; supplementary data may be published at a later date. Alpha & Omega Semiconductor reserves the right to make changes at any time without notice. LIFE SUPPORT POLICYALPHA & OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.分销商库存信息: AOSAOZ8015DIL。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SHDN/RT GND LX PGND 2 3 8 GND 9 6 4 5 7 COMP FB VDD PVDD
Ordering Information
RT8015 Package Type SP : SOP-8 (Exposed Pad-Option 2) Lead Plating System P : Pb Free G : Green (Halogen Free and Pb Free)
Features
l l l l l l l l
High Efficiency : Up to 95% Low RDS(ON) Internal Switches : 110mΩ Programmable Frequency : 300kHz to 2MHz No Schottky Diode Required 0.8V Reference Allows Low Output Voltage Forced Continuous Mode Operation Low Dropout Operation : 100% Duty Cycle RoHS Compliant and 100% Lead (Pb)-Free
Applications
l l l l l l
Portable Instruments Battery-Powered Equipment Notebook Computers Distributed Power Systems IP Phones Digital Cameras
Pin Configurations
FB 7 COMP 8
1 SHDN/RT
GND 2, Exposed Pad (9)
Note : Using all Ceramic Capacitors Recommended Component for Different Output Voltage Applications
VOUT 3.3V 2.5V 1.8V 1.2V
L1 (uH) COUT (uF) 2.2 2.2 1.0 1.0 22 22 22 22
R1 (kΩ) 750 510 300 120
R2 (kΩ) 240 240 240 240
RCOMP (kΩ) CCOMP (nF) 13 13 7.5 7.5 1 1 1.5 1.5
Functional Pin Description
Note : Richtek products are :
}
SOP-8 (Exposed Pad)
RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. Suitable for use in SnPb or Pb-free soldering processes.
Int-SS 0.9V 0.7V Control Leabharlann ogicDriver LX
NISEN POR 0.4V NMOS I Limit
PGND
VREF
OTP
GND
VDD
DS8015-03 March 2011
3
RT8015
Operation
Main Control Loop The RT8015 is a monolithic, constant-frequency, current mode step-down DC/DC converter. During normal operation, the internal top power switch (P-Channel MOSFET) is turned on at the beginning of each clock cycle. Current in the inductor increases until the peak inductor current reach the value defined by the voltage on the COMP pin. The error amplifier adjusts the voltage on the COMP pin by comparing the feedback signal from a resistor divider on the FB pin with an internal 0.8V reference. When the load current increases, it causes a reduction in the feedback voltage relative to the reference. The error amplifier raises the COMP voltage until the average inductor current matches the new load current. When the top power MOSFET shuts off, the synchronous power switch (N-Channel MOSFET) turns on until either the bottom current limit is reached or the beginning of the next clock cycle. The operating frequency is set by an external resistor connected between the RT pin and ground. The practical switching frequency can range from 300kHz to 2MHz. Power Good comparators will pull the PGOOD output low if the output voltage comes out of regulation by 12.5%. In an over-voltage condition, the top power MOSFET is turned off and the bottom power MOSFET is switched on until either the over-voltage condition clears or the bottom MOSFET's current limit is reached. Frequency Synchronization The internal oscillator of the RT8011 can be synchronized to an external clock connected to the SYNC pin. The frequency of the external clock can be in the range of 300kHz to 2MHz. For this application, the oscillator timing resistor should be chosen to correspond to a frequency that is about 20% lower than the synchronization frequency. Dropout Operation When the input supply voltage decreases toward the output voltage, the duty cycle increases toward the maximum on-time. Further reduction of the supply voltage forces the main switch to remain on for more than one cycle eventually reaching 100% duty cycle.
2, 9 (Exposed Pad) 3 4 5 6 7
GND
LX PGND PVDD VDD FB
2
DS8015-03 March 2011
RT8015
Function Block Diagram
SHDN/RT
SD ISEN OSC COMP 0.8V FB EA Output Clamp OC Limit Slope Com PVDD
}
DS8015-03 March 2011
1
RT8015
Typical Application Circuit
RT8015 VIN 2.6V to 5.5V CIN 22uF ROSC 332k 5 PVDD 6 VDD 4 PGND LX 3 L1 2.2uH R1 510k RCOMP 13k CCOMP 1nF R2 240k COUT 22uF VOUT 2.5V/2A
Pin No. 1 Pin Name SHDN/RT Pin Function Oscillator Resistor Input. Connecting a resistor to ground from this pin sets the switching frequency. Forcing this pin to VDD causes the device to be shut down. Signal Ground. All small-signal components and compensation components should connect to this ground, which in turn connects to PGND at one point. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation. Internal Power MOSFET Switches Output. Connect this pin to the inductor. Power Ground. Connect this pin close to the (−) terminal of CIN and COUT. Power Input Supply. Decouple this pin to PGND with a capacitor. Signal Input Supply. Decouple this pin to GND with a capacitor. Normally V DD is equal to PVDD. Feedback Pin. Receives the feedback voltage from a resistive divider connected across the output. Error Amplifier Compensation Point. The current comparator threshold increases 8 COMP with this control voltage. Connect external compensation elements to this pin to stabilize the control loop.