高三物理一轮复习 第九章 电磁感应(第3课时)自感和涡流学案

合集下载

关于涡流的物理教案

关于涡流的物理教案

关于涡流的物理教案第一章:涡流的概念与产生教学目标:1. 让学生了解涡流的定义及其产生条件。

2. 让学生掌握涡流的产生原理。

教学内容:1. 涡流的定义:涡流是指在导体内部产生的交变电流。

2. 涡流的产生条件:闭合回路、交变磁场、导体。

3. 涡流的产生原理:根据法拉第电磁感应定律,当闭合回路中的磁通量发生变化时,回路中会产生感应电流。

教学活动:1. 引入涡流的概念,引导学生思考为什么会在导体内部产生电流。

2. 通过实验演示涡流的产生,让学生直观地了解涡流的形成过程。

3. 讲解涡流的产生条件,让学生明白何时会产生涡流。

4. 分析涡流的产生原理,引导学生运用法拉第电磁感应定律解释涡流的产生。

作业与练习:1. 让学生画出涡流的产生条件,并简要说明。

2. 给出一个实例,让学生判断其中是否产生了涡流。

第二章:涡流的效应教学目标:1. 让学生了解涡流引起的效应。

2. 让学生掌握涡流的热效应和磁效应。

教学内容:1. 涡流的热效应:涡流在导体中产生热量,导致导体温度升高。

2. 涡流的磁效应:涡流产生的磁场会对原磁场产生影响,导致磁场减弱。

教学活动:1. 引入涡流效应的概念,引导学生思考涡流会引起哪些现象。

2. 讲解涡流的热效应,让学生了解涡流如何产生热量。

3. 讲解涡流的磁效应,让学生了解涡流对磁场的影响。

4. 进行实验演示,让学生直观地了解涡流的效应。

作业与练习:1. 让学生分析一个实际应用中涡流效应的例子,如电烙铁、电炉等。

2. 让学生计算一个给定条件下涡流的热效应,如导体长度、截面积、交变磁场频率等。

第三章:涡流的防止与应用教学目标:1. 让学生了解涡流的防止方法。

2. 让学生掌握涡流的应用。

教学内容:1. 涡流的防止方法:采用绝缘材料、改变导体形状、使用磁性材料等。

2. 涡流的应用:电炉、电烙铁、变压器、感应加热等。

教学活动:1. 引入涡流防止的概念,引导学生思考如何减少涡流带来的影响。

2. 讲解涡流的防止方法,让学生了解各种防止手段的原理。

2015届高考物理一轮复习 9-2法拉第电磁感应定律自感涡流课件

2015届高考物理一轮复习 9-2法拉第电磁感应定律自感涡流课件

1.穿过闭合回路的磁通量 Φ 随时间 t 变化的图象分别如 图 9-2-1 甲~丁所示.下列关于回路中产生的感应电动势 的论述中正确的回路产生的感应电动势恒定不变 B.图乙中回路产生的感应电动势一直在变大 C.图丙中回路在 0~t1 时间内产生的感应电动势小于在 t1~t2 时间内产生的感应电动势 D.图丁中回路产生的感应电动势先变小后变大
解析:金属棒 MN 向右切割磁感线,产生感应电动势, 由右手定则可知,电阻中电流方向为 a→c.E1 = BLv , E2 = 2BLv,所以 E1∶E2=1∶2.综上所述,C 正确.
答案:C
图 9-2-3 3.如图 9-2-3 中半径为 r 的金属圆盘在垂直于盘面的 匀强磁场 B 中,绕 O 轴以角速度 ω 沿逆时针方向匀速转动, 则通过电阻 R 的电流的大小和方向是 ( 金属圆盘的电阻不 计)( )
解析: 根据法拉第电磁感应定律: 感应电动势等于磁通量的变化 率,得到在图甲中的磁通量不变,所以不会产生感应电动势,选项 A 错误. 由数学知识得图乙中的磁通量变化率是恒定的, 所以产生的感 应电动势是恒定的,选项 B 错误.图丙中回路在 0~t1 时间内与 t1~ t2 时间内磁通量的变化率都是恒定的, 故产生恒定的电动势, 但是 0~ t1 时间内的磁通量的变化率大于 t1~t2 时间内磁通量的变化率,所以 前一段时间产生的感应电动势大于后一段时间内产生的感应电动势, 选项 C 错误.图丁中的磁通量的变化率是先变小后变大,产生的感 应电动势也是先变小后变大.所以本题的正确选项应该为 D.
安培力
19 ,安培力的方向总是□
阻碍
导体
(2)电磁驱动:如果磁场相对于导体运动,在导体中会产 20 感应电流 使导体受到安培力的作用,安培力使导体运 生□ 动起来. 21 交流感应电动机就是利用□

(新课标)高考物理大一轮复习-第9章 电磁感应 第1节 电磁感应现象 楞次定律课件

(新课标)高考物理大一轮复习-第9章 电磁感应 第1节 电磁感应现象 楞次定律课件

A.若固定ab,使cd向右滑动,则abdc回路有电流,电流方 向为a→b→d→c→a
B.若ab、cd以相同的速度一起向右滑动,则abdc回路有电 流,电流方向为a→c→d→b→a
C.若ab向左、cd向右同时运动,则abdc回路中的电流为零 D.若ab、cd都向右运动,且两杆速度vcd>vab,则abdc回路 有电流,电流方向为a→c→d→b→a
感应电流方向判断的两点注意 (1)楞次定律可应用于磁通量变化引起感应电流的各种情况 (包括一部分导体切割磁感线运动的情况). (2)右手定则只适用于一段导体在磁场中做切割磁感线运动的 情景,是楞次定律的一种特殊情况.
考点三 “三定则、一定律”的理解及应用
1.“三个定则、一个定律”的应用对比:
名称
三、感应电流方向的判断 1.右手定则:伸开右手,使拇指与其余四个手 指 垂直 ,并且都与手掌在同一个平面内;让磁感 线从掌心垂直进入,并使拇指指向 导线运动 的方 向,这时四指所指的方向就是 感应电流 的方 向.如右图所示.
2.楞次定律 内容:感应电流具有这样的方向,即感应电流的磁场总要 阻碍 引起感应电流的 磁通量 的变化.
主干回顾 夯基固源 考点透析 题组冲关
课时规范训练
考纲展示 1.电磁感应现象 2.磁通量 3.法拉第电磁感 应定律 4.楞次定律
5.自感、涡流
要求 Ⅰ Ⅰ Ⅱ Ⅱ

复习定位
1.本章是高考考查的热点.考题既有选择 题又有计算题,选择题主要以电磁感应现 象的定性分析和图象问题等为主,计算题 主要以学科内的力、电综合题为主. 2.本章的复习应注意以下三点: (1)应用楞次定律和右手定则判断感应电流 的方向. (2)结合各种图象(如Φ-t图象、B-t图象和 i-t图象),考查感应电流的产生条件及其 方向的判定,导体切割磁感线产生感应电 动势的计算. (3)电磁感应现象与磁场、电路、力学等知 识的综合,以及电磁感应与实际相结合的 题目.

2023届高考物理一轮复习练习电磁感应Word版含解析

2023届高考物理一轮复习练习电磁感应Word版含解析

2023届高考物理:电磁感应一轮练习附答案高考:电磁感应(一轮)一、选择题。

1、电阻R、电容器C与一线圈连成闭合电路,条形磁铁位于线圈的正上方,N 极朝下,如图所示.在磁铁N极远离线圈上端的过程中,流过R的电流方向和电容器极板的带电情况是()A.从b到a,下极板带正电B.从a到b,下极板带正电C.从b到a,上极板带正电D.从a到b,上极板带正电2、(双选)如图甲所示,在倾斜角为θ的光滑斜面内分布着垂直于斜面的匀强磁场,以垂直于斜面向上为磁感应强度正方向,其磁感应强度B随时间变化的规律如图乙所示。

质量为m的矩形金属框从t=0时刻由静止释放,t3时刻的速度为v,移动的距离为L,重力加速度为g。

在金属框下滑的过程中,下列说法正确的是()甲乙A.t1~t3时间内金属框中的电流方向不变B.0~t3时间内金属框做匀加速直线运动C.0~t3时间内金属框做加速度逐渐减小的直线运动D.0~t3时间内金属框中产生的焦耳热为mgLsin θ-12m v23、(双选))如图甲所示是一种手摇发电的手电筒,内部有一固定的线圈和可来回运动的条形磁铁,其原理图如图乙所示.当沿图中箭头方向来回摇动手电筒过程中,条形磁铁在线圈内来回运动,灯泡发光.在此过程中,下列说法正确的是()A.增加摇动频率,灯泡变亮B.线圈对磁铁的作用力方向不变C.磁铁从线圈一端进入与从该端穿出时,灯泡中电流方向相反D.磁铁从线圈一端进入再从另一端穿出的过程中,灯泡中电流方向不变4、如图所示,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直。

金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面。

现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是()A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向5、(双选)如图所示,灯泡A、B与定值电阻的阻值均为R,L是自感系数较大的线圈,当S1闭合、S2断开且电路稳定时,A、B两灯亮度相同,再闭合S2,待电路稳定后将S1断开,下列说法中正确的是()A.B灯立即熄灭B.A灯将比原来更亮一下后熄灭C.有电流通过B灯,方向为c→dD.有电流通过A灯,方向为b→a6、如图所示,一个有界匀强磁场区域,磁场方向垂直纸面向外,一个矩形闭合导线框abcd沿纸面由位置1匀速运动到位置2。

高考物理总复习第九章 第2讲 法拉第电磁感应定律、自感、涡流

高考物理总复习第九章 第2讲 法拉第电磁感应定律、自感、涡流

1.(2011· 广东)将闭合多匝线圈置于仅随时间变化的磁场 中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势 和感应电流,下列表述正确的是( )
2013-11-27
有志者事竟成
12
高考复习· 物理
A.感应电动势的大小与线圈的匝数无关 B.穿过线圈的磁通量越大,感应电动势越大 C.穿过线圈的磁通量变化越快,感应电动势越大 D.感应电流产生的磁场方向与原磁场方向始终相同
高考复习· 物理
第九章 电磁感应
2013-11-27
有志者事竟成
1
高考复习· 物理
第二讲
法拉第电磁感应定律
自感
涡流
回扣教材
题型归类
误区反思
双基限时练
2013-11-27
有志者事竟成
2
高考复习· 物理
回扣教材•自主学习
2013-11-27
有志者事竟成
3
高考复习· 物理
知 识 梳 理
一、法拉第电磁感应定律 1.感应电动势. (1)定义:在电磁感应现象中产生的电动势.产生电动势的那 部分导体相当于电源,其电阻相当于电源的内阻. (2)产生条件:无论电路是否闭合,只要穿过电路的磁通量发 生变化,电路中就一定产生感应电动势. (3)方向:与等效电源内部的电流方向相同,由负极指向正 极.
2013-11-27
有志者事竟成
Hale Waihona Puke 4高考复习· 物理
2.法拉第电磁感应定律. (1)内容:电路中感应电动势的大小,跟穿过这一电路的 磁通量的变化率成正比. ΔΦ (2)公式:E=n . Δt ΔΦ (3)公式说明:①E由 决定,与ΔΦ和Δt的大小无关; Δt ΔB ②当ΔΦ仅由B的变化引起时,E=n S; Δt ΔS 当ΔΦ仅由S的变化引起时,E=nB ; Δt

人教版高三物理一轮复习课时训练第九章课时1法拉第电磁感应定律楞次定律自感涡流

人教版高三物理一轮复习课时训练第九章课时1法拉第电磁感应定律楞次定律自感涡流

课时1 法拉第电磁感应定律楞次定律自感涡流课时训练基础巩固1.下列四幅演示实验图中,实验现象能正确表述实验结论的是( B )A.图甲用磁铁靠近轻质铝环A,A会靠近磁铁B.图乙断开开关S,触点C不立即断开C.图丙闭合开关S时,电流表有示数,断开开关S时,电流表没有示数D.图丁铜盘靠惯性转动,手持磁铁靠近铜盘,铜盘转动加快解析:图甲用磁铁靠近轻质铝环A,由于A环中发生电磁感应现象,根据楞次定律可知,A将远离磁铁,故A错误;图乙断开开关S,由于B线圈中发生电磁感应现象阻碍电流的减小,因此线圈仍有磁性,触点C不立即断开,故B正确;图丙闭合开关S和断开开关S时均会发生电磁感应,因此电流表均有示数,故C错误;当转动铜盘时,磁铁靠近铜盘,导致铜盘切割磁感线,从而产生感应电流,出现安培力,由楞次定律可知,产生安培力导致铜盘转动受到阻碍,因此铜盘转动减慢,故 D 错误。

2.如图所示为感应式发电机,a,b,c,d是空间四个可用电刷与铜盘边缘接触的点,O1,O2是连接铜盘轴线导线的接线端,M,N是电流表的接线端。

现在将铜盘转动,能观察到感应电流的是( B )A.将电流表的接线端M,N分别连接a,c位置B.将电流表的接线端M,N分别连接O1,a位置C.将电流表的接线端M,N分别连接O1,O2位置D.将电流表的接线端M,N分别连接c,d位置解析:当铜盘转动时,其切割磁感线产生感应电动势,此时铜盘相当于电源,铜盘边缘和中心为电源的两个极,则要想观察到感应电流,M,N应分别连接电源的两个极,故B正确。

3.现代科学研究中常要用到高速电子,电子感应加速器就是电子加速的设备。

它的基本原理如图所示,上、下为电磁铁的两个磁极,磁极之间有一个环形真空室,电子在真空室中做圆周运动。

电磁铁线圈电流的大小、方向可以变化。

上图为侧视图,下图为真空室的俯视图,如果从上向下看,电子沿逆时针方向运动。

以下分析正确的是( A )C.当电磁铁线圈电流的方向与图示方向相反时,为使电子加速,电磁铁中的电流应该由小变大D.当电磁铁线圈电流的方向与图示方向一致时,为使电子加速,电磁铁中的电流应该由大变小解析:根据法拉第电磁感应定律可知,变化的磁场在真空室内形成感生电场,而电场能使电子加速,选项A正确;因洛伦兹力对电荷不做功,故选项B错误;当电磁铁线圈电流的方向与图示方向一致时,线圈中的电流增强,磁场就增大了,根据楞次定律,感生电场产生的磁场要阻碍它增大,所以感生电场为顺时针方向,即电流方向为顺时针,所以电子沿逆时针方向在电场力作用下加速运动,在洛伦兹力约束下做圆周运动,选项C,D错误。

第九章 第2单元 法拉第电磁感应定律 自感和涡流

第九章  第2单元  法拉第电磁感应定律  自感和涡流

又逐渐熄灭,所以C错误,D正确. 答案: BD
5.如图9-2-2所示,在竖直向下
的磁感应强度为B的匀强磁场中, 有两根水平放置、相距L且足够长 的平行金属导轨AB、CD,在导轨 图9-2-2
的A、C端连接一阻值为R的电阻,一根垂直于导轨放 置的金属棒ab,质量为m,导轨和金属棒的电阻及它 们间的摩擦不计,若用恒力F水平向右拉棒ab使之运 动,求金属棒ab的最大速度.
向下,大小为4.5×10-5T.一灵敏电压表连接在当地入海河
段的两岸,河宽100 m,该河段涨潮和落潮时有海水(视为 导体)流过.设落潮时,海水自西向东流,流速为2 m/s.下 列说法正确的是 A.电压表记录的电压为5 mV B.电压表记录的电压为9 mV C.河南岸的电势较高 ( )
D.河北岸的电势较高
5.电磁阻尼 当导体在磁场中运动时,感应电流会使导体受到安培力, 安培力的方向总是 阻碍 导体的运动的现象.
6.电磁驱动
如果磁场相对于导体转动,在导体中会产生感应电流, 感应电流使导体受到 安培力 的作用, 安培力 使导体 运动起来,这种作用称为电磁驱动. 交流电动机就是利用 电磁驱动 的原理制成的.
(1)分清求解感应电动势时用速度的平均值还是瞬时值.
(2)求解第(3)问时合理应用牛顿第二定律.
[解析]
1 2 (1)5 s 内的位移 x= at =25 m 2
x 5 s 内的平均速度 v = t =5 m/s 0+v5 (也可用 v = 求解) 2 故平均感应电动势 E =BL v =0.4 V.
解析:ab棒受恒力F作用向右加速运动产生感应电流,ab 棒在磁场中受安 培力F安,如右图所示.随着v↑→E↑→I↑→F安↑→F合 ↓→a↓,当ab棒所受合力为零时,加速 度为零,速度最大.此时 F- F安 = 0 ①

【南方凤凰台】2020届高三物理一轮复习 第9章 第2课时 法拉第电磁感应定律、自感和涡流导学案(无答案)

【南方凤凰台】2020届高三物理一轮复习 第9章 第2课时 法拉第电磁感应定律、自感和涡流导学案(无答案)

第2课时 法拉第电磁感应定律、自感和涡流【考纲解读】1.能应用法拉第电磁感应定律E =n ΔΦΔt和导线切割磁感线产生电动势公式E =Blv 计算感应电动势.2.会判断电动势的方向,即导体两端电势的高低.3.理解自感现象、涡流的概念,能分析通电自感和断电自感. 【知识要点】一.法拉第电磁感应定律的应用 1.感应电动势(1)感应电动势:在 中产生的电动势.产生感应电动势的那部分导体就相当于 ,导体的电阻相当于 .(2)感应电流与感应电动势的关系:遵循 定律,即I =E R +r. 2.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt 和线圈的 共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系. (2)当ΔΦ仅由B 的变化引起时,则E =n ΔB·SΔt;当ΔΦ仅由S 的变化引起时,则E =nB·ΔS Δt ;当ΔΦ由B 、S 的变化同时引起时,则E =n B 2S 2-B 1S 1Δt ≠n ΔB·ΔSΔt. 3.磁通量的变化率ΔΦΔt 是Φ-t 图象上某点切线的斜率.二.导体切割磁感线产生感应电动势的计算1.公式E =Blv 的使用条件(1) 磁场.(2)B 、l 、v 三者相互 . (3)如不垂直,用公式E =Blvsin θ求解,θ为B 与v 方向间的夹角. 2.“瞬时性”的理解(1)若v为瞬时速度,则E为感应电动势.(2)若v为平均速度,则E为感应电动势.3.切割的“有效长度”公式中的l为有效切割长度,即导体在与v垂直的方向上的投影长度.图4中有效长度分别为:图4甲图:l=cd sin β;乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,l=2R;沿v2方向运动时,l=0;沿v3方向运动时,l=R.三.自感现象的理解1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做.(2)表达式:E=L ΔI Δt.(3)自感系数L的影响因素:与线圈的、形状、以及是否有铁芯有关.2.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向,阻碍电流的,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向,阻碍电流的,使其缓慢地减小.线圈就相当于电源,它提供的电流从原来的IL逐渐变小.3.自感现象的四大特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.【典型例题】例1.如图所示,匀强磁场中有一矩形闭合线圈abcd,线圈平面与磁场垂直.已知线圈的匝数N=100,边长ab=1.0 m、bc=0.5 m,电阻r=2 Ω.磁感应强度B在0~1 s内从零均匀变化到0.2 T.在1~5 s内从0.2 T均匀变化到-0.2 T,取垂直纸面向里为磁场的正方向.求:(1)0.5 s时线圈内感应电动势的大小E和感应电流的方向;(2)在1~5 s内通过线圈的电荷量q;(3)在0~5 s内线圈产生的焦耳热Q.例2.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200 cm2,线圈的电阻r=1 Ω,线圈外接一个阻值R=4 Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示.下列说法中正确的是( )A.线圈中的感应电流方向为顺时针方向B.电阻R两端的电压随时间均匀增大C.线圈电阻r消耗的功率为4×10-4 WD.前4 s内通过R的电荷量为4×10-4 C例3.如图所示,水平放置的粗糙U形框架上接一个阻值为R的电阻,放在垂直纸面向里、磁感应强度大小为B的匀强磁场中,一个半径为L、质量为m的半圆形硬导体AC在水平向右的恒定拉力F作用下,由静止开始运动距离d后速度达到v,半圆形硬导体AC的电阻为r,其余电阻不计.下列说法正确的是( )A.此时AC两端电压为UAC=2BLvB.此时AC两端电压为UAC =2BLvRR+rC.此过程中电路产生的电热为Q=Fd-12 mv2D.此过程中通过电阻R0的电荷量为q=2BLdR+r例4.如图所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的灯泡,E是一内阻不计的电源.t=0时刻,闭合开关S,经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过灯泡D1和D2的电流,规定图中箭头所示的方向为电流正方向,以下各图中能定性描述电流I随时间t变化关系的是( )【拓展训练】1.(2020·江苏·1)如图所示,一正方形线圈的匝数为n,边长为a,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt时间内,磁感应强度的方向不变,大小由B均匀地增大到2B.在此过程中,线圈中产生的感应电动势为( )A.Ba22Δt B.nBa22ΔtC.nBa2ΔtD.2nBa2Δt2.(2020·安徽·20)英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场.如图所示,一个半径为r的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场B,环上套一带电荷量为+q的小球,已知磁感应强度B随时间均匀增加,其变化率为k,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是( )A.0 B.12r2qkC.2πr2qk D.πr2qk3.如图所示,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度v向右匀速滑动,MN中产生的感应电动势为E1;若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2.则通过电阻R的电流方向及E1与E2之比E1∶E2分别为( )A.c→a,2∶1 B.a→c,2∶1 C.a→c,1∶2 D.c→a,1∶24.如图所示,线圈L的自感系数很大,且其直流电阻可以忽略不计,L1、L2是两个完全相同的小灯泡,开关S闭合和断开的过程中,灯L1、L2的亮度变化情况是(灯丝不会断)( )A.S闭合,L1亮度不变,L2亮度逐渐变亮,最后两灯一样亮;S断开,L2立即熄灭,L1逐渐变暗B.S闭合,L1亮度不变,L2很亮;S断开,L1、L2立即熄灭C.S闭合,L1、L2同时亮,而后L1逐渐熄灭,L2亮度不变;S断开,L2立即熄灭,L1亮一下再熄灭D.S闭合,L1、L2同时亮,而后L1逐渐熄灭,L2则逐渐变得更亮;S断开,L2立即熄灭,L1亮一下再熄灭5.磁场在xOy平面内的分布如图所示,其磁感应强度的大小均为B,方向垂直于xOy平面,相邻磁场区域的磁场方向相反,每个同向磁场区域的宽度均为L,整个磁场以速度v沿x轴正方向匀速运动.若在磁场所在区间内放置一由n匝线圈组成的矩形线框abcd,线框的bc=LB 、ab=L,LB略大于L,总电阻为R,线框始终保持静止.求:(1)线框中产生的总电动势大小和导线中的电流大小;(2)线框所受安培力的大小和方向.。

高考物理一轮复习:9.2《法拉第电磁感应定律、自感和涡流》教学案(含答案)

高考物理一轮复习:9.2《法拉第电磁感应定律、自感和涡流》教学案(含答案)

第2讲法拉第电磁感应定律 自感和涡流考纲下载:1.法拉第电磁感应定律(Ⅱ) 2.自感、涡流(Ⅰ)主干知识·练中回扣——忆教材 夯基提能1.法拉第电磁感应定律(1)感应电动势 ①概念:在电磁感应现象中产生的电动势; ②产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关; ③方向判断:感应电动势的方向用楞次定律或右手定则判断。

(2)法拉第电磁感应定律 ①内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比;②公式:E =n ΔΦΔt ,其中n 为线圈匝数,ΔΦΔt 为磁通量的变化率。

(3)导体切割磁感线时的感应电动势①导体垂直切割磁感线时,感应电动势可用E =Blv 求出,式中l 为导体切割磁感线的有效长度;②导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势E =Blv =12Bl 2ω (平均速度等于中点位置的线速度12l ω)。

2.自感、涡流(1)自感现象 ①概念:由于导体本身的电流变化而产生的电磁感应现象称为自感。

②自感电动势a .定义:在自感现象中产生的感应电动势叫做自感电动势;b .表达式:E =L ΔI Δt; ③自感系数La .相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关;b .单位:亨利(H ),1 mH =10-3 H ,1 μH =10-6 H 。

(2)涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的漩涡,所以叫涡流。

巩固小练1.判断正误(1)线圈中磁通量越大,产生的感应电动势越大。

(×)(2)线圈中磁通量变化越大,产生的感应电动势越大。

(×)(3)线圈中磁通量变化越快,产生的感应电动势越大。

(√)(4)线圈中的电流越大,自感系数也越大。

(×)(5)磁场相对导体棒运动时,导体棒中也能产生感应电动势。

(√)(6)对于同一线圈,电流变化越快,线圈中的自感电动势越大。

高考物理一轮复习 9.3互感 自感与涡流学案

高考物理一轮复习 9.3互感 自感与涡流学案

第 3 课时 互感 自感与涡流基础知识归纳1.互感现象一个线圈中的 电流变化 时,所引起的磁场的变化在另一个线圈中产生 感应电动势 的现象叫做互感现象.这种感应电动势叫做互感电动势.2.自感现象由于 导体本身的电流发生变化 而产生的电磁感应现象.在自感现象中产生的电动势,叫做 自感电动势 .3.自感电动势的大小和方向对于同一线圈来说,自感电动势的大小取决于本身电流变化的快慢,其方向总 阻碍导体中原来电流的变化 .公式:E 自=L tI ∆∆ 4.自感系数也叫自感或电感,由线圈的大小、形状、匝数及是否有铁芯决定,线圈越长、单位长度的匝数越多、横截面积越大,自感系数越大,若线圈中加有铁芯,自感系数会更大.单位:亨利(H).5.涡流(1)定义:当线圈中的电流随时间变化时,线圈附近的任何导体中都会产生 感应电流 ,电流在导体内形成闭合回路,很像水的旋涡,把它叫做涡电流,简称涡流.(2)特点:整块金属的电阻很小,涡流往往很大.6.电磁阻尼与电磁驱动(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力总是阻碍导体的运动,这种现象称为 电磁阻尼 .(2)电磁驱动:磁场相对于导体转动,在导体中会产生感应电流,感应电流使导体受到安培力,安培力使导体运动,这种作用称为 电磁驱动 .重点难点突破一、自感现象与互感现象的区别与联系1.区别:(1)互感现象发生在靠近的两个线圈间,而自感现象发生在一个线圈导体内部;(2)通过互感可以使能量在线圈间传递,而自感现象中,能量只能在一个线圈中储存或释放.2.联系:两者都是电磁感应现象.三、断电实验中,线圈中的电流有可能比原来的大吗不可能.因为电磁感应现象中,自感电动势也只能阻碍线圈中电流减小,而不能“阻止”,只是减慢了电流减小的速度,但最终结果还是要减小,所以断电实验中,线圈中的电流不可能比原来的大.四、涡流的产生机理处在磁场中的导体,只要磁场变化就会引起导体中的磁通量的变化,导体中就有感应电动势,这一电动势在导体内部构成回路,导体内就有感应电流.因为这种电流像水中的旋涡,所以称为涡流.在大块的金属内部,由于金属块的电阻很小,所以涡电流很大,能够产生很大的热量.严格地说,在变化的磁场中的一切导体内都有涡流产生,只是涡电流的大小有区别,所以一些微弱的涡电流就被我们忽视了.五、电磁阻尼和电磁驱动电磁阻尼是导体与磁场相对运动时,感应电流使导体受到的安培力总是阻碍它们的相对运动,利用安培力阻碍导体与磁场间的相对运动就是电磁阻尼.磁电式仪表的指针能够很快停下,就是利用了电磁阻尼.“磁悬浮列车利用涡流减速”其实也是一种电磁阻尼.电磁驱动是导体与磁场相对运动时,感应电流使导体受到的安培力总是阻碍它们的相对运动,应该知道安培力阻碍磁场与导体的相对运动的方式是多种多样的.当磁场以某种方式运动时(例如磁场转动),导体中的安培力阻碍导体与磁场间的相对运动而使导体跟着磁场动起来(跟着转动),这就是电磁驱动.典例精析1.互感现象【例1】如图所示,两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如图所示方向绕中心转动的角速度发生变化时,B中产生如图所示的方向的感应电流,则( )A.A 可能带正电且转速减小B.A 可能带正电且转速增大C.A 可能带负电且转速减小D.A 可能带负电且转速增大【解析】本题考查楞次定律,解题关键是考虑到产生B 中感应电流的原因有两种可能情形,即穿过B 环的磁通量向外减少,或者穿过B 环的磁通量向里增加.由题目所给的条件可以判断,感应电流的磁场方向垂直于纸面向外,根据楞次定律,原磁场的方向与感应电流的磁场相同时,磁通量是减少的,环A 应该做减速运动,产生逆时针方向的电流,应该带负电,故选项C 是正确的,同理可得B 是正确的.【答案】BC【思维提升】根据电流强度的定义,转速变化必将引起A 的等效电流变化,从而使B 中磁通量发生改变而产生感应电流,再结合楞次定律可判断.2.自感现象【例2】如图所示,L 为自感系数较大的线圈,电路稳定后小灯泡正常发光,当断开开关S 的瞬间会有( )A.灯A立即熄灭B.灯A慢慢熄灭C.灯A突然闪亮一下再慢慢熄灭D.灯A突然闪亮一下再突然熄灭【解析】本题中,当开关S断开时,由于通过自感线圈的电流从有变到零,线圈将产生自感电动势,但由于线圈L与灯A在S断开后不能形成闭合回路,故在开关断开后通过灯A的电流为零,灯立即熄灭.【答案】A【思维提升】有自感电动势并不一定有电流,因为必须要闭合回路才能使电流形成通路. 【拓展1】如图所示是测定自感系数很大的线圈L直流电阻的电路,L两端并联一个电压表,用来测自感线圈的直流电压,在测量完毕后,将电路拆开时应先( B )A.断开S1B.断开S2C.拆除电流表D.拆除电阻R【解析】若先断开S1,会在电压表两端产生一较大自感电动势,有可能烧毁电压表,先拆除电流表及电阻R会发生同样的情况,故应选B.3.涡流现象【例3】著名物理学家弗曼曾设计过一个实验,如图所示.在一块绝缘板上中部安一个线圈,并接有电源,板的四周有许多带负电的小球,整个装置支撑起来.忽略各处的摩擦,当电源接通的瞬间下列关于圆盘的说法中,正确的是( )A.圆盘将逆时针转动B.圆盘将顺时针转动C.圆盘不会转动D.无法确定圆盘是否会动【解析】瞬间增强的磁场会在周围产生一个顺时针的旋涡电场,负电荷受到逆时针方向的电场力,带动圆盘逆时针转动,而负电荷的这种定向运动则形成了顺时针的环形电流,故选项A正确.【答案】A【思维提升】涡流现象是电磁感应现象的一种特殊情况,实际上是产生了一个旋涡电场,使导体中的自由电荷受电场力发生了定向移动.【拓展2】如图所示是利用高频交流电焊接自行车零件的原理示意图,其中外圈A是通高频交变电流的线圈,B是自行车零件,a是待焊接口,焊接时接口两端接触在一起.当A中通有交变电流时,B中会产生感应电流,使得接口处金属熔化焊接起来.(1)试分析说明,焊接的快慢与交变电流的频率有什么关系.(2)试分析说明,为什么焊接过程中,接口a处被熔化而零件的其他部分并不很热?【解析】(1)A中交变电流的频率越高,B中磁通量的变化率越大,产生的感应电动势越大,感应电流I越大,所以电流热功率P=I2R也越大,焊接得越快.(2)B中各处电流大小相等,但接口a处电阻大,电流热功率大,而其他部分电阻小,电流热功率小,所以接口a处已被熔化而零件的其他部分并不很热.易错门诊4.电磁阻尼【例4】如图所示,一闭合金属圆环用绝缘细线挂于O点,将圆环拉离平衡位置并释放,圆环摆动过程中经过有界的水平匀强磁场区域,A、B为该磁场的竖直边界.若不计空气阻力,则( )A.圆环向右穿过磁场后,还能摆至原来的高度B.在进入和离开磁场时,圆环中均有感应电流C.圆环进入磁场后离平衡位置越近速度越大,感应电流也越大D.圆环最终将静止在平衡位置【错解】BD.如图所示,当圆环从1位置开始下落,进入和摆出磁场和摆出磁场时(即2位置和3位置),由于有磁通量变化,圆环上产生感应电流,选项B正确;由于金属圆环自身存在内阻,所以必然有热量产生(即有能量损失).因此,圆环不会再摆到4位置,选项A错误;当圆环进入磁场后,穿过环内的磁通量不再发生变化,无感应电流产生,选项C错误;由于每次通过磁场都有能量损失,所以圆环最终将静止在平衡位置,D选项正确.【错因】物体有惯性,人的思维也有惯性.这位同学忘记了分析当圆环仅在匀强磁场内摆动时,穿过圆环内的磁通量的变化情况,导致选择错误.可见,在分析物理问题时,要严格按照物理规律成立的条件进行.【正解】如题图所示,当圆环从1位置开始下落,进入和摆出磁场时(即2和3位置),由于圆环内磁通量发生变化,所以有感应电流产生.同时,金属圆环本身有内阻,必然有能量的转化,即有能量的损失.因此圆环不会摆到4位置.随着圆环进出磁场,其能量逐渐减少,圆环摆动的振幅越来越小.当圆环只在匀强磁场中摆动时,圆环内无磁通量的变化,无感应电流产生,无机械能向电能的转化.题意中不存在空气阻力,摆线的拉力垂直于圆环的速度方向,拉力对圆环不做功,所以系统的能量守恒,所以圆环最终将在A、B间来回摆动.【答案】B【思维提升】把握涡流产生的条件及由于涡流使系统机械能损失对结果的影响.。

2023年高考物理一轮复习讲义——法拉第电磁感应定律、自感和涡流

2023年高考物理一轮复习讲义——法拉第电磁感应定律、自感和涡流

第2讲 法拉第电磁感应定律、自感和涡流目标要求 1.理解法拉第电磁感应定律,会应用E =n ΔΦΔt 进行有关计算.2.会计算导体切割磁感线产生的感应电动势.3.了解自感现象、涡流、电磁驱动和电磁阻尼.考点一 法拉第电磁感应定律的理解及应用1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关. 2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比. (2)公式:E =n ΔΦΔt ,其中n 为线圈匝数.(3)感应电流与感应电动势的关系:I =ER +r.(4)说明:E 的大小与Φ、ΔΦ无关,决定于磁通量的变化率ΔΦΔt.1.Φ=0,ΔΦΔt不一定等于0.( √ )2.穿过线圈的磁通量变化越大,感应电动势也越大.( × ) 3.穿过线圈的磁通量变化越快,感应电动势越大.( √ )4.线圈匝数n 越多,磁通量越大,产生的感应电动势也越大.( × )1.若已知Φ-t 图像,则图线上某一点的切线斜率为ΔΦΔt.2.当ΔΦ仅由B 的变化引起时,E =n ΔB ·SΔt ,其中S 为线圈在磁场中的有效面积.若B =B 0+kt ,则ΔBΔt=k .3.当ΔΦ仅由S 的变化引起时,E =nB ΔSΔt.4.当B 、S 同时变化时,则E =n B 2S 2-B 1S 1Δt ≠n ΔB ·ΔSΔt .求瞬时值是分别求出动生电动势E 1和感生电动势E 2并进行叠加.考向1 判断感应电动势的方向及变化情况例1 (多选)(2018·全国卷Ⅲ·20)如图(a),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧.导线PQ 中通有正弦交流电i ,i 的变化如图(b)所示,规定从Q 到P 为电流正方向.导线框R 中的感应电动势( )A .在t =T4时为零B .在t =T2时改变方向C .在t =T2时最大,且沿顺时针方向D .在t =T 时最大,且沿顺时针方向 答案 AC解析 在t =T 4时,i -t 图线斜率为0,即磁场变化率为0,由E =ΔΦΔt =ΔBΔt S 知,E =0,A 项正确;在t =T 2和t =T 时,i -t 图线斜率的绝对值最大,在t =T2和t =T 时感应电动势最大.在T 4到T2之间,电流由Q 向P 减弱,导线在R 处产生垂直纸面向里的磁场,且磁场减弱,由楞次定律知,R 产生的感应电流的磁场方向也垂直纸面向里,即R 中感应电动势沿顺时针方向,同理可判断在T 2到3T 4之间,R 中电动势也为顺时针方向,在34T 到T 之间,R 中电动势为逆时针方向,C 项正确,B 、D 项错误. 考向2 感应电动势、感应电流的计算例2 (多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内( )A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为B 0rS4t 0ρD .圆环中的感应电动势大小为B 0πr 24t 0答案 BC解析 在0~t 0时间内,磁感应强度减小,根据楞次定律可知感应电流的方向为顺时针,圆环所受安培力方向水平向左;在t 0~t 1时间内,磁感应强度反向增大,感应电流的方向仍为顺时针,圆环所受安培力方向水平向右,所以选项A 错误,B 正确;根据法拉第电磁感应定律得E =ΔΦΔt =12πr 2·B 0t 0=B 0πr 22t 0,由R =ρl S 可得R =ρ2πr S ,根据闭合电路欧姆定律可得I =ER =B 0rS4t 0ρ,所以选项C 正确,D 错误. 考点二 导体切割磁感线产生的感应电动势1.导体平动切割磁感线 (1)有效长度公式E =Bl v 中的l 为导体两端点连线在垂直于速度方向上的投影长度.如图,导体的有效长度分别为:图甲:l =cd sin β.图乙:沿v 方向运动时,l =MN .图丙:沿v 1方向运动时,l =2R ;沿v 2方向运动时,l =R . (2)相对速度E =Bl v 中的速度v 是导体相对磁场的速度,若磁场也在运动,应注意速度间的相对关系. 2.导体转动切割磁感线如图,当长为l 的导体在垂直于匀强磁场(磁感应强度为B )的平面内,绕一端以角速度ω匀速转动,当导体运动Δt 时间后,转过的弧度θ=ωΔt ,扫过的面积ΔS =12l 2ωΔt ,则E =ΔΦΔt =B ΔS Δt =12Bl 2ω.1.公式E =Bl v 中的l 是导体棒的总长度.( × )2.磁场相对导体棒运动,导体棒中也可能产生感应电动势.( √ ) 考向1 有效长度问题例3 (多选)如图,光滑水平面上两虚线之间区域内存在垂直于纸面向里的范围足够大的匀强磁场,磁感应强度大小为B .边长为a 的正方形导线框PQMN 沿图示速度方向进入磁场,当对角线PM 刚进入磁场时线框的速度大小为v ,方向与磁场边界成45°角,若线框的总电阻为R ,则( )A .PM 刚进入磁场时线框中的感应电流大小为Ba v RB .PM 刚进入磁场时线框所受安培力大小为B 2a 2vRC .PM 刚进入磁场时两端的电压为Ba vRD .PM 进入磁场后线框中的感应电流逐渐变小 答案 AD解析 PM 刚进入磁场时有效的切割长度等于a ,产生的感应电动势为E =Ba v ,感应电流为I =E R =Ba vR ,方向沿逆时针,故A 正确;NM 边所受的安培力大小为F 1=BIa =B 2a 2v R ,方向垂直NM 斜向下,PN 边所受的安培力大小为F 2=BIa =B 2a 2v R,方向垂直PN 斜向下,线框所受安培力大小F =F 12+F 22=2B 2a 2v R ,故B 错误;PM 两端的电压为U =I ·R 2=Ba v2,故C 错误;PM 进入磁场后,有效切割长度逐渐减小,感应电动势逐渐减小,感应电流逐渐减小,故D 正确.考向2 平动切割磁感线例4 (多选)(2017·全国卷Ⅱ·20)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m 、总电阻为0.005 Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界平行,如图(a)所示.已知导线框一直向右做匀速直线运动,cd 边于t =0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是( )A .磁感应强度的大小为0.5 TB .导线框运动的速度的大小为0.5 m/sC .磁感应强度的方向垂直于纸面向外D .在t =0.4 s 至t =0.6 s 这段时间内,导线框所受的安培力大小为0.1 N 答案 BC解析 由题图(b)可知,导线框经过0.2 s 全部进入磁场,则速度v =l t =0.10.2 m/s =0.5 m/s ,选项B 正确;由题图(b)可知,cd 边切割磁感线产生的感应电动势E =0.01 V ,根据E =Bl v 得,B =E l v =0.010.1×0.5 T =0.2 T ,选项A 错误;根据右手定则及正方向的规定可知,磁感应强度的方向垂直于纸面向外,选项C 正确;在t =0.4 s 至t =0.6 s 这段时间内,导线框中的感应电流I =E R =0.010.005 A =2 A, 所受的安培力大小为F =BIl =0.2×2×0.1 N =0.04 N ,选项D 错误.考向3 转动切割磁感线例5 如图所示,半径为r 的金属圆盘在垂直于盘面向里的磁感应强度为B 的匀强磁场中,绕O 轴以角速度ω沿逆时针方向匀速运动,则通过电阻R 的电流的方向和大小是(金属圆盘的电阻不计)( )A .由c 到d ,I =Br 2ωRB .由d 到c ,I =Br 2ωRC .由c 到d ,I =Br 2ω2RD .由d 到c ,I =Br 2ω2R答案 D解析 由右手定则,圆盘相当于电源,其电流方向为从边缘指向圆心,所以通过电阻R 的电流的方向是由d 到c ;而金属圆盘产生的感应电动势E =12Br 2ω,由I =ER 知通过电阻R 的电流大小是I =Br 2ω2R,D 正确.考点三 自感现象自感现象(1)概念:当一个线圈中的电流变化时,它所产生的变化的磁场在线圈本身激发出感应电动势.这种现象称为自感,由于自感而产生的感应电动势叫作自感电动势. (2)表达式:E =L ΔIΔt.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.1.线圈中电流越大,自感系数也越大.( × )2.对于同一个线圈,电流变化越快,线圈中的自感电动势也越大.( √ ) 3.自感电动势总是阻止原电流的变化.( × )1.通电自感和断电自感的比较电路图器材要求A1、A2同规格,R=R L,L较大L很大(有铁芯)通电时在S闭合瞬间,灯A2立即亮起来,灯A1逐渐变亮,最终一样亮灯A立即亮,然后逐渐变暗达到稳定断电时回路电流减小,灯泡逐渐变暗,A1电流方向不变,A2电流反向①若I2≤I1,灯泡逐渐变暗;②若I2>I1,灯泡闪亮后逐渐变暗.两种情况下灯泡中电流方向均改变总结自感电动势总是阻碍原电流的变化2.分析自感问题的三个技巧例6(2017·北京卷·19)图甲和图乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈.实验时,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同.下列说法正确的是()A.图甲中,A1与L1的电阻值相同B.图甲中,闭合S1,电路稳定后,A1中电流大于L1中电流C.图乙中,变阻器R与L2的电阻值相同D.图乙中,闭合S2瞬间,L2中电流与变阻器R中电流相等答案 C解析断开开关S1瞬间,线圈L1产生自感电动势,阻碍电流的减小,通过L1的电流反向通过灯A1,灯A1突然闪亮,随后逐渐变暗,说明I L1>I A1,即R L1<R A1,故A错;题图甲中,闭合开关S1,电路稳定后,因为R L1<R A1,所以A1中电流小于L1中电流,故B错;题图乙中,闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同,说明变阻器R与L2的电阻值相同,故C对;闭合开关S2瞬间,通过L2的电流增大,由于电磁感应,线圈L2产生自感电动势,阻碍电流的增大,则L2中电流与变阻器R中电流不相等,故D错.考点四涡流电磁阻尼和电磁驱动1.涡流现象(1)涡流:块状金属放在变化磁场中,或者让它在非均匀磁场中运动时,金属块内产生的漩涡状感应电流.(2)产生原因:金属块内磁通量变化→感应电动势→感应电流.2.电磁阻尼当导体在磁场中运动时,感应电流会使导体受到安培力,安培力总是阻碍导体的运动.3.电磁驱动如果磁场相对于导体转动,在导体中会产生感应电流使导体受到安培力而运动起来.1.电磁阻尼体现了能量守恒定律.(√)2.电磁阻尼阻碍相对运动,电磁驱动促进二者相对运动.(×)例7如图所示,关于涡流的下列说法中错误的是()A.真空冶炼炉是利用涡流来熔化金属的装置B.家用电磁炉锅体中的涡流是由恒定磁场产生的C.阻尼摆摆动时产生的涡流总是阻碍其运动D.变压器的铁芯用相互绝缘的硅钢片叠成能减小涡流答案 B例8(2017·全国卷Ⅰ·18)扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是()答案 A解析感应电流产生的条件是闭合回路中的磁通量发生变化.在A图中,系统振动时,紫铜薄板随之上下及左右振动,在磁场中的部分有时多有时少,磁通量发生变化,产生感应电流,受到安培力,阻碍系统的振动;在B图中,只有紫铜薄板向左振动才产生感应电流,而上下振动和向右振动无感应电流产生;在C图中,无论紫铜薄板上下振动还是左右振动,都不会产生感应电流;在D图中,只有紫铜薄板左右振动才产生感应电流,而上下振动无感应电流产生,故选项A正确,B、C、D错误.课时精练1.(2022·陕西榆林市高三模拟)水平放置的玻璃板上方有一用细线悬挂的可自由旋转的小磁针,下方有一水平放置的铜圆盘.圆盘的轴线与小磁针悬线在同一直线上,初始时小磁针与圆盘均处于静止状态.当圆盘绕轴沿逆时针方向(俯视)匀速转动时,下列说法正确的是()A.小磁针不动B.小磁针沿逆时针方向(俯视)转动C.小磁针沿顺时针方向(俯视)转动D.由于穿过圆盘的磁通量没有变化,圆盘中没有感应电流答案 B解析铜圆盘上存在许多小的闭合回路,当圆盘转动时,穿过小的闭合回路的磁通量发生变化,回路中产生感应电流(涡流),此电流产生的磁场导致磁针沿逆时针方向(俯视)转动,构成电磁驱动.2.如图,线圈L的自感系数极大,直流电阻忽略不计;D1、D2是两个二极管,当电流从“+”流向“-”时能通过,反之不通过;R0是保护电阻,则()A.闭合S之后,B灯慢慢变亮B.闭合S之后,A灯亮且亮度不变C.断开S瞬时,A灯闪一下再慢慢熄灭D.断开S瞬时,B灯闪一下再慢慢熄灭答案 D解析闭合S瞬间,A灯支路二极管正向导通,因此A灯亮,B灯支路二极管不能导通,因此不亮,之后线圈自感阻碍逐渐减小,从自感线圈流过的电流逐渐增大,A灯逐渐熄灭,故A、B错误;断开S瞬间,线圈L产生与原电流方向相同的自感电流,可通过D2,故B灯闪一下再慢慢熄灭,电流不能通过D1,故A灯不亮,故C错误,D正确.3.如图所示,在某次阅兵盛典上,我国预警机“空警-2000”在通过天安门上空时机翼保持水平,以4.5×102 km/h的速度自东向西飞行.该机的翼展(两翼尖之间的距离)为50 m,北京地区地磁场向下的竖直分量大小为4.7×10-5 T,则()A.两翼尖之间的电势差为2.9 VB.两翼尖之间的电势差为1.1 VC.飞机左方翼尖的电势比右方翼尖的电势高D.飞机左方翼尖的电势比右方翼尖的电势低答案 C解析飞机的飞行速度为 4.5×102km/h=125 m/s,飞机两翼尖之间的电动势为E=Bl v=4.7×10-5×50×125 V≈0.29 V,A、B项错误;飞机从东向西飞行,磁场竖直分量向下,根据右手定则可知,飞机左方翼尖的电势高于右方翼尖的电势,C项正确,D项错误.4.(多选)如图甲,在虚线所示的区域有竖直向上的匀强磁场,面积为S的单匝金属线框放在磁场中,线框上开有一小口与磁场外阻值为R 的小灯泡相连.若金属框的总电阻也为R ,磁场随时间变化关系如图乙,则下列说法正确的是( )A .b 端电势较高B .线框cd 边受到的安培力方向向左C .ab 间电压大小为B 0S2t 0D .0~t 0时间内小灯泡的电功率为B 02S 24Rt 02答案 CD解析 由楞次定律可得感应电流的方向为逆时针,金属线框相当于电源,通过R 的电流方向为a →b ,即a 端电势高,故A 错误;根据左手定则可知,线框cd 边受到的安培力方向向右,故B 错误;穿过线框的感应电动势大小为E =n ΔΦΔt =2B 0-B 0t 0·S =B 0St 0,由闭合电路欧姆定律可得I =E R +R ,则电阻R 两端的电压为U =IR =B 0S2t 0,故C 正确;由电功率的计算表达式有P=I 2R =B 02S 24Rt 02,故D 正确.5.(2022·上海浦东华师大二附中高三模拟)如图所示,由均匀导线制成的半径为R 的圆环,以速度v 匀速进入一磁感应强度大小为B 的匀强磁场.当圆环运动到图示位置(∠aOb =90°)时,a 、b 两点的电势差U ab 为( )A.2BR vB.22BR v C .-24BR v D .-324BR v答案 D解析 有效切割长度即a 、b 连线的长度,如图所示由几何关系知有效切割长度为2R,所以产生的电动势为E=BL v=B·2R v,电流的方向为a→b,所以U ab<0,由于在磁场部分的阻值为整个圆的14,所以U ab=-34B·2R v=-324BR v,故选D.6.磁电式仪表的基本组成部分是磁体和线圈.缠绕线圈的骨架常用铝框,铝框、指针固定在同一转轴上.线圈未通电时,指针竖直指在表盘中央;线圈通电时发生转动,指针随之偏转,由此就能确定电流的大小.如图所示,线圈通电时指针向右偏转,在此过程中,下列说法正确的是()A.俯视看线圈中通有逆时针方向的电流B.穿过铝框的磁通量减少C.俯视看铝框中产生顺时针方向的感应电流D.使用铝框做线圈骨架能够尽快使表针停在某一刻度处答案 D解析由左手定则可知,俯视看线圈中通有顺时针方向的电流,选项A错误;因为线圈在水平位置时磁通量为零,则线圈转动时,穿过铝框的磁通量增加,根据楞次定律可知,俯视看铝框中产生逆时针方向的感应电流,选项B、C错误;当铝框中产生感应电流时,铝框受到的安培力与运动方向相反,故起到了阻尼作用,则使用铝框做线圈骨架能够尽快使表针停在某一刻度处,故D正确.7.如图,直角三角形金属框abc放置在匀强磁场中,磁感应强度大小为B,方向平行于ab边向上.当金属框绕ab边以角速度ω逆时针转动时,a、b、c三点的电势分别为φa、φb、φc.已知bc边的长度为l.下列判断正确的是()A .φa >φc ,金属框中无电流B .φb >φc ,金属框中电流方向沿a →b →c →aC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a →c →b →a答案 C解析 穿过金属框的磁通量始终为零,没有发生变化,故金属框中无电流,B 、D 项错误;bc 边切割磁感线的等效速度为12lω,根据右手定则知φb <φc ,故U bc =-12Bl 2ω,C 项正确;ac 边切割磁感线,根据右手定则得φa <φc ,A 项错误.8.(多选)如图所示,匀强磁场中有a 、b 两个闭合线圈,它们用同样的导线制成,匝数均为n ,线圈半径r a =2r b .磁场方向与两线圈所在平面垂直,磁感应强度B 随时间均匀增大.两线圈中产生的感应电动势分别为E a 和E b ,感应电流分别为I a 和I b .不考虑两线圈间的相互影响.下列说法中正确的是( )A .E a ∶E b =2∶1,感应电流均沿顺时针方向B .E a ∶E b =4∶1,感应电流均沿逆时针方向C .I a ∶I b =2∶1,感应电流均沿逆时针方向D .I a ∶I b =1∶2,感应电流均沿顺时针方向 答案 BC解析 磁场垂直于纸面向里,磁感应强度增大,穿过线圈的磁通量增加,由楞次定律可知,线圈中的感应电流沿逆时针方向;设导线的电阻率为ρ,横截面积为S ,由电阻定律可知,线圈电阻R =ρL S =ρn ·2πr S .由法拉第电磁感应定律可知,感应电动势E =n ΔΦΔt =nS ′ΔB Δt =n πr 2ΔBΔt ,则感应电动势之比E a E b =r a 2r b 2=(21)2=41,A 错误,B 正确;由闭合电路欧姆定律可知,感应电流I =E R =rS 2ρ·ΔB Δt ,电流之比I a I b =r a r b =21,C 正确,D 错误. 9.如图所示,在半径为R 的圆形区域内存在垂直于平面向里的匀强磁场,磁感应强度为B ,圆外无磁场.一根长为2R 的导体杆ab 水平放置,a 端处在圆形磁场的下边界,现使杆绕a 端以角速度ω逆时针匀速旋转180°,在旋转过程中( )A .b 端的电势始终高于a 端B .ab 杆的电动势最大值E =BR 2ωC .全过程中,ab 杆平均电动势E =BR 2ωD .当杆旋转θ=120°时,ab 间电势差U ab =12BR 2ω答案 C解析 根据右手定则,a 端相当于电源正极,b 端为负极,故A 错误;当导体杆ab 和直径重合时,切割磁感线的有效长度l =2R ,此时产生的感应电动势最大,ab 杆切割磁感线产生的感应电动势为E =12Bl 2ω=2BR 2ω,故B 错误;根据法拉第电磁感应定律可知,全过程中,ab杆平均电动势为E =ΔΦΔt =BR 2ω,故C 正确;当θ=120°时,ab 杆切割磁感线的有效长度l ′=3R ,ab 杆切割磁感线产生的感应电动势为E ′=12Bl ′2ω=32BR 2ω,故D 错误.10.如图所示,某小组利用电流传感器(接入电脑,图中未画出)记录灯泡A 和自感元件L 构成的并联电路某时刻在断电瞬间各支路电流随时间的变化情况,i 1表示小灯泡中的电流,i 2表示自感元件中的电流(已知开关S 闭合时i 2>i 1),则下列图像中正确的是( )答案 C解析 当开关S 断开后,自感元件与灯泡形成回路,自感元件阻碍自身电流变化,自感元件产生的感应电流仍沿着原来方向,大小从i 2开始不断减小,灯泡的电流反向,大小与自感元件电流相等,故C 正确,A 、B 、D 错误.11.如图所示,匀强磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合,磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0,使该线框从静止开始绕过圆心O 且垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置不变,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔBΔt的大小应为( )A.ωB 0πB.2ωB 0πC.4ωB 0πD.ωB 02π答案 A解析 若要产生的电流相等,则产生的感应电动势应相等.设半圆半径为L ,从静止开始绕圆心O 以角速度ω匀速转动时,线框中产生的感应电动势大小为E 1=12B 0L 2ω;当磁感应强度大小随时间线性变化时,根据法拉第电磁感应定律得E 2=ΔΦΔt =ΔB ·S Δt =ΔB Δt ·12πL 2,由E 1=E 2可得ΔB Δt =ωB 0π,故B 、C 、D 错误,A 正确.12.(多选)如图甲所示,足够长的光滑金属导轨处在垂直于导轨平面向里的匀强磁场中,其磁感应强度B 随时间t 的变化图像如图乙所示.导轨左端接有一个电阻值恒为R 的灯泡.从0时刻开始,垂直于导轨的导体棒ab 在水平外力F 的作用下从导轨的左端沿导轨以速度v 水平向右匀速运动.导体棒ab 的长度为l ,导体棒运动过程中与导轨接触良好,导体棒与导轨的电阻均不计.在导体棒ab 向右运动的过程中,下列说法正确的是( )A .灯泡亮度不变B .灯泡逐渐变亮C .在t 0时刻,F =2B 02l 2v RD .在t 0时刻,F =B 02l 2vR答案 BC解析 由题图乙可知,在t 时刻磁感应强度的大小为B =B 0t 0t ,所以在t 时刻回路中由于导体棒运动产生的动生电动势为E 1=Bl v =B 0l v tt 0,在t 时刻回路中由于磁感应强度变化产生的感生电动势为E 2=S ΔB Δt =l v tB 0t 0,根据右手定则和楞次定律可知,这两个电动势是同方向的,所以回路中的总电动势为E =E 1+E 2=2B 0l v tt 0,因此回路中的总电动势随时间增大,所以灯泡逐渐变亮,故A 错误,B 正确;在t 0时刻,回路中的总电动势为E ′=2B 0l v t 0t 0=2B 0l v ,回路中的电流为I =E ′R =2B 0l v R ,ab 棒受到的安培力大小为F ′=B 0Il =2B 02l 2vR ,由于ab 棒匀速运动,所以ab 棒受力平衡,因此水平外力大小为F =F ′=2B 02l 2vR,故C 正确,D 错误.。

2015届高三物理大一轮复习:9-2 法拉第电磁感应定律 自感 涡流

2015届高三物理大一轮复习:9-2 法拉第电磁感应定律 自感 涡流

4.(单选)有一个匀强磁场边界是EF,在EF右侧无磁场,左 侧是匀强磁场区域,如图 9-2- 2甲所示.现有一个闭合 的金属线框以恒定速度从 EF 右侧水平进入匀强磁场区 域.线框中的电流随时间变化的i-t图象如图乙所示,则 可能的线框是下列四个选项中的 ( ).
E 解析 由图乙可知,电流先是均匀增加,后均匀减小,又 i=R Blv = R ∝l,所以金属线框切割磁感线的有效长度应先是均匀增 加,后均匀减小,A 项符合;B、C 项线框中间部分进入磁场 后切割磁感线的有效长度不变;D 项切割磁感线的有效长度不 是均匀地增加和减小.
答案 A
5.(2013·黄冈中学月考)(多选)如图9-2-3所示,一个正方
形金属框放在表面是绝缘且光滑的斜面顶端,自静止开始
沿斜面下滑,下滑过程中穿过一段边界与斜面底边 BB′平 行的匀强磁场,已知金属框的边长 L小于磁场的宽度 d.则 关于金属框进入磁场过程中可能做的运动,下列说法正确 的是 ( ).
1 2 Bl ω (平均速度等于中点位置的线速度 1 lω). = _______ 2 2
判断正误,正确的划“√”,错误的划 “×”.
(1)线圈中磁通量越大,产生的感应电动势越大.(
(2)线圈中磁通量变化越大,产生的感应电动势越大. ( (3)线圈中磁通量变化越快,产生的感应电动势越大. ( 大. 答案 (1)× (2)× (3)√ (4)× (
2.决定感应电动势 E 大小的因素 ΔΦ E 的大小由 和线圈的匝数共同决定. Δt
特别提示
①E 的大小与Φ、ΔΦ的大小无必然联系.
ΔΦ ②Φ=0 时, 不一定为零. Δt
【典例1】
(2013·江苏卷,13)如图9-2-5所示,匀强磁场中有一矩 形闭合线圈abcd,线圈平面与磁场垂直.已知线圈的匝数 N=100,边长ab=1.0 m、bc=0.5 m,电阻r=2 Ω.磁感应 强度B在0~1 s内从零均匀变化到0.2 T.在1~5 s内从0.2

2020年高考物理一轮复习热点题型归纳与变式演练:法拉第电磁感应定律、自感和涡流

2020年高考物理一轮复习热点题型归纳与变式演练:法拉第电磁感应定律、自感和涡流

2020届高考物理一轮复习热点题型归纳与变式演练专题26 法拉第电磁感应定律、自感和涡流【专题导航】目录热点题型一 法拉第电磁感应定律的理解和应用 .................................................................................................. 1 热点题型二 导体棒切割磁感线产生感应电动势 .. (3)导体平动切割磁感线问题 ................................................................................................................................. 4 导体旋转切割磁感线问题 ................................................................................................................................. 5 热点题型三 应用法拉第电磁感应定律求解感应电荷量问题 ................................................................................ 7 热点题型四 自感和涡流 ......................................................................................................................................... 9 【题型演练】 (11)【题型归纳】热点题型一 法拉第电磁感应定律的理解和应用 1.对法拉第电磁感应定律的理解(1)感应电动势的大小由线圈的匝数和穿过线圈的磁通量的变化率ΔΦΔt 共同决定,而与磁通量Φ的大小、变化量ΔΦ的大小没有必然联系.(2)磁通量的变化率ΔΦΔt 对应Φ -t 图线上某点切线的斜率.2.应用法拉第电磁感应定律的三种情况(1)磁通量的变化是由面积变化引起时,ΔΦ=B ΔS ,则E =n B ΔSΔt ;(2)磁通量的变化是由磁场变化引起时,ΔΦ=ΔBS ,则E =n ΔBSΔt;(3)磁通量的变化是由于面积和磁场变化共同引起的,则根据定义求,ΔΦ=|Φ末-Φ初|,E =n|B 2S 2-B 1S 1|Δt≠n ΔB ΔSΔt. 【例1】(2019·全国卷Ⅰ)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图a 中虚线MN 所示。

高考物理一轮复习专题十电磁感应考点2法拉第电磁感应定律自感和涡流教案

高考物理一轮复习专题十电磁感应考点2法拉第电磁感应定律自感和涡流教案

考点二 法拉第电磁感应定律 自感和涡流基础点知识点1 法拉第电磁感应定律 1.感应电动势(1)概念:在电磁感应现象中产生的电动势。

(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。

(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。

2.法拉第电磁感应定律(1)内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。

(2)公式:E =n ΔΦΔt,其中n 为线圈匝数。

(3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I =ER +r。

3.导体切割磁感线时的感应电动势(1)垂直切割:E =Blv ,式中l 为导体切割磁感线的有效长度。

(2)不垂直切割:E =Blv sin θ,式中θ为v 与B 的夹角。

(3)匀速转动:导体棒在垂直匀强磁场方向以角速度ω绕一端转动切割磁感线时,E =12B ωl 2。

知识点2 自感 涡流1.自感现象:由于通过导体自身的电流发生变化而产生的电磁感应现象。

2.自感电动势(1)定义:在自感现象中产生的感应电动势。

(2)表达式:E =L ΔIΔt 。

(3)自感系数L①相关因素:与线圈的大小、形状、圈数以及是否有铁芯等因素有关。

②单位:亨利(H),常用单位还有毫亨(mH)、微亨(μH)。

1 mH =10-3H,1μH =10-6H 。

3.涡流:当线圈中的电流发生变化时,在它附近的导体中产生的像水的旋涡一样的感应电流。

(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的相对运动。

(2)电磁驱动:如果磁场相对于导体转动,在导体中产生的感应电流使导体受到安培力的作用而运动起来。

(3)电磁阻尼和电磁驱动的原理体现了楞次定律的推广应用。

重难点一、法拉第电磁感应定律的理解1.磁通量Φ、磁通量的变化量ΔΦ、磁通量的变化率ΔΦΔt 的比较(1)磁通量的变化是由面积变化引起时,ΔΦ=B ·ΔS ,则E =n ΔSΔt·B 。

9.2法拉第电磁感应定律 自感 涡流

9.2法拉第电磁感应定律 自感 涡流

课题2 法拉第电磁感应定律 自感 涡流知识与技能目标:1、熟悉电磁感应现象的两种情况感生和动生2、学会运用电磁感应定律的规律解题〖导 学 过 程〗知识点回顾一、法拉第电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.(2)产生条件:穿过回路的 发生改变,与电路是否闭合无关. (3)方向判断:感应电动势的方向用 或右手定则判断. 2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的 成正比. (2)公式:E = 其中n 为 .(3)感应电流与感应电动势的关系:遵循闭合电路的欧姆定律,即I = .(4)说明:①当ΔΦ仅由B 的变化引起时,则E = ;当ΔΦ仅由S 的变化引起时,则E =n ;当ΔΦ由B 、S 的变化同时引起时,则E =n ≠n ΔB ·ΔSΔt .②磁通量的变化率ΔΦΔt 是Φ-t 图像上某点切线的3.导体切割磁感线时的感应电动势(1)导体垂直切割磁感线时,感应电动势可用E = 求出,式中l 为导体切割磁感线的有效长度; (2)导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势E =Bl = (平均速度等于中点位置的线速度12lω).二、自感、涡流 1.自感现象(1)概念:由于导体本身的 变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做 电动势. (2)表达式:E =(3)自感系数L 的影响因素:与线圈的 、形状、 以及是否有铁芯有关. 2.涡流现象(1)涡流:块状金属放在 磁场中,或者让它在磁场中运动时,金属块内产生的旋涡状感应电流. (2)产生原因:金属块内 变化→感应电动势→感应电流.新授:一、法拉第电磁感应定律的理解和应用1.求解感应电动势常见情况2.应用注意点公式E =n ΔΦΔt 的应用,ΔΦ与B 、S 相关,可能是ΔΦΔt =B ΔS Δt ,也可能是ΔΦΔt =S ΔB Δt ,当B =kt 时,ΔΦΔt=kS .【例1】 轻质细线吊着一质量为m =0.42 kg 、边长为L =1 m 、匝数n =10的正方形线圈,其总电阻为r =1 Ω。

【名师讲解】高三物理一轮复习:九 电磁感应(49张PPT)

【名师讲解】高三物理一轮复习:九 电磁感应(49张PPT)

B.图②中回路产生的感应电动势一直在变大.
C.图③中回路在0~t1时间内产生的感应电动势小于在t1~t2时 间内产生的感应电动势。 D.图④中回路产生的感应电动势先变小再变大。
φ φ φ
φ
t O O
t O t1 t2
t
O
t
题型二:公式E=BLVsinθ与E=nΔΦ/Δt的应用
【练习3】如图所示,矩形线圈abcd由n=50匝组 成,ab边长L1=0.4m,bc边长L2 =0.2m,整个线圈的 电阻R=2Ω,在B=0.1T的匀强磁场中,以短边中点 的连线为轴转动,ω=50rad/s,求: (1)线圈从图示位置转动900过程中的平均电动势; (2)线圈转过900时的瞬时电动势. 12.7V 【练习4】 (资料第161页例题4)如图所示,长 为6m的导体AB在磁感强度B=0.1T的匀强磁场 中,以AB上的一点O为轴,沿着顺时针方向旋 转。角速度ω=5rad/s,O点距A端为2m,求AB 的电势差
为 4×10-4 Wb;磁通量的平均变化率为 8×10-3 Wb/s;线圈 中的感应电动势的大小为
1.6
V.
【练习2】 (教学案第284页练习3)穿过闭合回路的磁通量φ随时
间t变化的图象分别如图①~④所示,下列关于回路中产生的感
应电动势的论述,正确的是 (
D

A.图①中回路产生的感应电动势恒定不变.
(1)b a
nB0 r22 I 3R t 0
nB0t1r22 2n 2 2 B02 r24t1 Q (2)q 2 9 Rt 0 3Rt 0
【练习6】如图所示,光滑导轨宽0.4 m,ab金属棒长0.5m,均匀
变化的磁场垂直穿过其面,方向如图,磁场的变化如图所示, 金属棒ab的电阻为1Ω,导轨电阻不计,自t=0时,ab棒从导轨 最左端,以v=1m/s的速度向右匀速运动,则( AB A.1s末回路中的电动势为1.6V )

高考物理一轮复习:40 法拉第电磁感应定律 自感、涡流

高考物理一轮复习:40 法拉第电磁感应定律 自感、涡流

高考物理一轮复习:40 法拉第电磁感应定律自感、涡流姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图所示为“研究电磁感应现象”的实验装置。

如果在闭合开关时发现灵敏电流计的指针向右偏转一下,那么合上开关后()A . 灵敏电流计指针一直在右边某一位置保持不动B . 线圈A插入线圈B后将滑动变阻器的滑片迅速向右拉时灵敏电流计指针向右偏转一下C . 将线圈A迅速抽出线圈B时,灵敏电流计指针将向右偏转一下D . 线圈A插入线圈B后,将开关断开,灵敏电流计指针将向右偏转一下2. (2分) (2019高二下·深圳期中) 交流发电机发电示意图如图所示,线圈转动过程中,下列说法正确的是()A . 转到图甲位置时,通过线圈的磁通量变化率最大B . 转到图乙位置时,线圈中产生的感应电动势为零C . 转到图丙位置时,线圈中产生的感应电流最大D . 转到图丁位置时,AB边感应电流方向为A→B3. (2分) (2019高二上·牡丹江期末) 如图所示,条形磁铁正上方放置一矩形线框,线框平面水平且与条形磁铁平行.则线框由N极端匀速平移到S极端的过程中,线框中的感应电流的情况是()A . 线框中始终无感应电流B . 线框中始终有感应电流C . 线框中开始有感应电流,当线框运动到磁铁中部时无感应电流,过中部后又有感应电流D . 线框中开始无感应电流,当线框运动到磁铁中部时有感应电流,过中部后又无感应电流4. (2分)(2019·榆林模拟) 如图所示,线圈abcd固定于分布均匀的磁场中,磁场方向垂直线圈平面。

当磁场的磁感应强度B随时间t变化时,ab边受到的安培力恒定不变。

则下列磁感应强度B随时间t变化的图象中可能正确的是()A .B .C .D .5. (2分) (2019高二下·亳州月考) 如图甲所示,单匝闭合线圈固定在匀强磁场中,t=0时刻磁感线垂直线圈平面向里,磁感应强度随时间变化如图乙所示,线圈面积,电阻。

第九章电磁感应教材

第九章电磁感应教材
解:这是一道基本练习题,要注意计算中所用的边长是L1还是L2,还应该思考一下这些物理量与速度v之间有什么关系。

⑵ ⑶
⑷ ⑸ 与v无关
特别要注意电热Q和电荷q的区别,其中 与速度无关!
例2:如图所示,竖直放置的U形导轨宽为L,上端串有电阻R(其余导体部分的电阻都忽略不计)。磁感应强度为B的匀强磁场方向垂直于纸面向外。金属棒ab的质量为m,与导轨接触良好,不计摩擦。从静止释放后ab保持水平而下滑。试求ab下滑的最大速度vm
⑵线圈的转动轴与磁感线垂直。如图,矩形线圈的长、宽分别为L1、L2,所围面积为S,向右的匀强磁场的磁感应强度为B,线圈绕图示的轴以角速度ω匀速转动。线圈的ab、cd两边切割磁感线,产生的感应电动势相加可得E=BSω。如果线圈由n匝导线绕制而成,则E=nBSω。从图示位置开始计时,则感应电动势的瞬时值为e=nBSωcosωt。该结论与线圈的形状和转动轴的具体位置无关(但是轴必须与B垂直)。
例5:如图所示,矩形线圈abcd质量为m,宽为d,在竖直平面内由静止自由下落。其下方有如图方向的匀强磁场,磁场上、下边界水平,宽度也为d,线圈ab边刚进入磁场就开始做匀速运动,那么在线圈穿越磁场的全过程,产生了多少电热?
③如图所示,虚线圆a内有垂直于纸面向里的匀强磁场,虚线圆a外是无磁场空间。环外有两个同心导线圈b、c,与虚线圆a在同一平面内。当虚线圆a中的磁通量增大时,穿过线圈b、c的磁通量各如何变化?在相同时间内哪一个变化更大?
(与②的情况不同,b、c线圈所围面积内都只有向里的磁通量,且大小相同。因此穿过它们的磁通量和磁通量变化都始终是相同的。)
例2.金属矩形线圈abcd在匀强磁场中做如图6所示的运动,线圈中有感应电流的是:(A)
例3.恒定的匀强磁场中有一圆形的闭合导体线圈,线圈平面垂直于磁场方向,当线圈在此磁场中作下列哪种运动时,线圈中能产生感应电流的是:(C)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章:电磁感应第3课时:自感和涡流
考点复习:备注:考点一:涡流
一、考点梳理
1、当线圈中的电流发生变化时,在它附近的任何导体中都会产生,
这种电流像水中的旋涡,所以叫涡流
2、涡流的特点、防护与利用
(1)磁场频率越高,涡流越大
(2)电机和变压器内的铁芯用相互绝缘的薄硅钢片叠合而成,以避免涡流的影响;
(3)冶炼金属的高频感应炉是利用涡流原理制成的。

考点二:自感
一、考点梳理
1、定义:由于导体本身的电流发生变化而产生的电磁感应现象。

2、自感现象产生的原因:导体中电流变化,引起自身磁通量的变化。

3、自感电动势
(1)定义:在自感现象中产生的感应
电动势叫自感电动势。

(2)自感电动势的作用:阻碍导体中
原来电
流的变化。

a 、导体中原电流增大时,自感电动势阻碍它增大。

b 、导体中原电流减小时,自感电动势阻碍它减小。

C 、“阻碍”不是“阻止”,电流还是变化的。

4、影响自感电动势大小的因素: 、 。

5、决定线圈自感系数的因素: 、 、 、
6、自感系数的单位: ,符号是 。

二、例题
1、有关自感现象,下列叙述中正确的是 ( )
A 有铁芯的多匝金属线圈中,通过的电流强度不变时,无自感发生,线圈的自感系数为零
B 导体中所通电流发生变化时,产生的自感电动势总是阻碍导体中原来电流的变化
C 线圈中所通电流越大,产生的自感电动势也越大
D 线圈中所通电流变化越大,产生的自感电动势也越大
2、如图所示,电路中A 、B 是规格相同的灯泡,L 是电阻可忽略不计的电感线圈,那么( )
I E L t ∆=∆
A .合上S ,A、B一起亮,然后A变暗后熄灭
B.合上S,B先亮,A逐渐变亮,最后A、B一样

C.断开S,A立即熄灭,B由亮变暗后熄灭
D.断开S,B立即熄灭,A闪亮一下后熄灭
3、如图所示电路中,L是一电阻可忽略不计的电感线圈,a、b为L上的左右两端点,A、B、C为完全相同的三个灯泡,原来电键K是闭合的,三个灯泡均在发光。

某时刻将电键K打开,则下列说法正确的是( )
A.a点电势高于b点,A灯闪亮后缓慢熄灭
B.b点电势高于a点,B、C灯闪亮后缓慢熄灭
C.a点电势高于b点,B、C灯闪亮后缓慢熄灭
D.b点电势高于a点,B、C灯不会闪亮只是缓慢熄灭
4、如图所示,A、B、C是三个完全相同的灯泡,L是一个自感系数较大的线圈(直流电阻可忽略不计).则( )
A.S闭合时,A灯立即亮,然后逐渐熄灭
B.S闭合时,B灯立即亮,然后逐渐熄灭
C.电路接通稳定后,三个灯亮度相同
D.电路接通稳定后,S断开时,C灯立即熄灭
5、如图11所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的灯泡,E是一内阻不计的电源.t=0时刻,闭合开关S,经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过灯泡D1和D2的电流,规定图中箭头所示的方向为电流正方向,以下各图中能定性描述电流I随时间t变化关系的是( )。

相关文档
最新文档