超临界直流锅炉运行调整
超临界直流锅炉运行中过热度调整及控制分析
超临界直流锅炉运行中过热度调整及控制分析【摘要】:在机组正常运行中,由于参数的波动和给水流量、过热减温水量的不稳定性,常常会造成水冷壁出口过热度不稳定性波动。
在之前出现过机组升降负荷和高负荷期间过热度和主汽参数波动较大的现象,甚至出现主汽温和壁温经常超限异常,最后通过电科院对机组控制器的优化,主参数相对稳定。
但是过热度还是出现波动较大的问题,即对应负荷下给水调整相对缓慢或过快造成水冷壁出口过热度不稳定,特别是在满负荷时,由于给水接近上限冰冻较大,过热度稳定不下来,造成过热器减温水偏高。
现运行人员将水冷壁给水补偿控制和煤质修正两个控制器切手动进行人为干预调整,过热度等主参数相对稳定很多,参数稳定了但操作人员确增加了监盘负担。
现对机组正常运行中过热度调整及控制做以下分析【关键词】:过热度煤质修正给水补偿主汽压偏差1引言1.1过热度指的是分离器出口蒸汽温度与分离器出口蒸汽压力下的饱和温度的差值。
过热度的高和低反映水冷壁水-汽相变点的前或后。
锅炉转直流后,在负荷不变的情况下,过热度的高低反映出水冷壁吸热的多少。
2.过热度调整及控制与参数的关系分析2.1过热度控制与减温水量的关系2.1.1过热减温水是调节屏过出口蒸汽温度和主蒸汽温度的最直接手段,本厂锅炉设计满负荷过热减温水总量是140.4t/h(THA工况),一、二级减温水各70.2t/h,相同负荷下减温水量的大小反映出低过、屏过、高过的吸热量的大小。
2.1.2在机组负荷不变的情况下(即给水量不变),过热度高低和过热减温水量的大小直接反应出锅炉热负荷的分配,所以,过热度的控制和减温水的调整对改善水冷壁和过热器受热情况、防止金属超温、对主蒸汽温度调整有重要意义2.2过热度控制与总燃料量的关系2.2.1过热度是水煤比是否合适的反馈,过热度变小,说明水煤比偏大,过热度变大,说明水煤比偏小。
在运行操作时要注意积累过热度变化对减温水开度影响大小的经验值。
2.2.2水煤比、过热度是直流锅炉监视和调整的重要参数。
600MW超临界直流W火焰锅炉的燃烧调整
黄建钱
摘
彀姆与嫡嘎
6 0 0 MW 超临界直流 W 火焰锅炉的燃烧调整
( 威信 云投 粤 电扎西能源有限 公司 云南 威信 6 5 7 9 0 3 ) 要: 通 过了解 我} - 6 0 0 MW超临界直流w火焰锅 炉的运 行情况 以及对 已经投运 的同类型锅炉的表现 , 提出对6 0 0 M W超 临界直流w火焰锅炉 的燃 烧调整 的对策及建议, 优化我厂锅炉的燃烧 , 提 高效率 。 关键词 : 6 0 0 MW W火焰锅炉 燃烧 调整
碳量 , 提高了锅炉效率。 3 . 2调 整 制 粉 系 统 自 调试 以来,我厂制粉系统存在磨煤机 出口风温偏低、磨运行方式不
当、 磨煤机出 口 分离器易堵塞易引起超温等 问题。 3 . 2 . 1 提高磨煤机 出口风温 磨煤机出 口风温偏低, 会影响煤粉的着火并延长煤粉 的燃尽 时间, 造成 火焰 中心上移而引起超温及大渣和飞灰含碳量高等问题 。我厂调试初期 磨
1前言
挡板则关小至4 0 , - . 4 5 % , 前后墙风量 比 例约为1 . 3 : 1 。 并且炉膛两侧 的F 挡板较
我厂# 1 、 2 锅炉均 为东方锅炉厂生产 的 w 型6 o 0 Mw超临界直流锅 炉。 锅
炉共有2 4 只专门用于燃烧无烟煤 的双旋风煤粉浓缩燃烧器,前后拱各布置 1 2 只 。使用6 台正压直吹式双进双 出钢球磨煤机, 每 台磨煤机对应 四个燃烧
会超过5 5 0  ̄ C( 设计最高允许 温度为5 0 2 " C ) 。锅炉受热面的长期超温或短 时 严 重超温 , 带来 了锅炉受热面超温爆管以及 水冷壁 拉裂 的风 险。我 厂≠ { 1 、 2 锅炉均 出现 因受热面超温爆管而被迫停运 的情况。
超临界直流锅炉运行调整课件
详细描述
尾部烟道系统通常包括空气预热器、脱硫脱硝装置等部件。在超临界直流锅炉中 ,尾部烟道系统的设计应充分考虑烟气的温度和成分,以确保烟气处理的效果和 设备的正常运行。
风烟系统
总结词
风烟系统是锅炉的重要辅助系统,负责 输送燃料和空气,并排放燃烧产生的灰 渣。
VS
详细描述
风烟系统通常包括送风机、引风机、除尘 器等部件。在超临界直流锅炉中,风烟系 统的设计应充分考虑风量、风压的匹配和 灰渣的处理方式,以确保锅炉的稳定运行 和环保要求。
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
超临界直流锅炉运行 调整课件
目录
CONTENTS
• 引言 • 锅炉系统概述 • 运行调整原理 • 操作与维护 • 安全注意事项
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
01
引言
目的和背景
目的
本课件旨在帮助学员了解超临界 直流锅炉的运行调整,确保锅炉 安全、高效运行。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
02
锅炉系统概述
燃烧系统
总结词
燃烧系统是锅炉的核心部分,负责将燃料转化为热能,为汽水系统提供足够的 热量。
详细描述
燃烧系统通常包括燃烧器、炉膛、空气预热器等部件。在超临界直流锅炉中, 燃烧器通常采用分级燃烧技术,以提高燃烧效率并降低氮氧化物的排放。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
操作与维护
启动与停炉操作
浅谈600MW超临界直流炉启动过程中的运行调节
4 5 0 t / h左右 ) , 在 炉膛有限的热 负荷下尽可 能增 大产 汽量, 增加通 流
量 ,避免屏过 管壁超 温 ,防止 高温氧化皮脱 落。 同时在热 态清洗 阶 段 还可减 少给水在 分 离器的工质排放 ,减 少 了启 动疏水热损失 .加
快启动速度 。
( 6 )燃料量 的增加应平缓 ,尤其是增投制粉系统或油枪时 ,应 根据情况适 当降低其它运行制粉系 统的出力,并及时监视螺旋管圈 水冷壁金属温度的上升情况 ,严防炉 内热量上升过快造成超温 。 ( 7 ) 锅 炉低 负荷期 间由于存在水动 力不稳 定的可能性 ,应经常 查看各受热面壁温画面 ,不仅要确认各 点壁温值 在正常范围 内,还 要掌握各点壁温值的变化趋势 、变化速度及 引起 变化 的原因,及时 调整 。加 强对水冷壁金属温度 的监视 ,如出现水动力破坏 的现象时, 应立 即增加给 水量。 ( 8 )严格控制受热面蒸汽温度和金属温度 ,在任 何情况 下严禁 锅炉超温运行 ,对主/ 再汽金属温度按下列要求进行控制:高温 过热 器受热面金属温度不得超过6 0 0 " C; 屏式过 热器受 热面金属温度 不超 过5 7 6 ℃;高温 再热器 受热面金属温度不超过6 0 0 ℃;汽温要求服从 金属温度要求 。 ( 9 )加强受热面的热偏差监视和调整,防止受热面局部长期超 温运行 。分 隔屏 出口汽温偏 差控 制在1 0 ℃ 以内,过热器 出口蒸汽温
科 技 论 坛
浅谈 6 0 0 M W超临界直流炉启动过程 中的运行调节
王保皴
( 淮 南淮沪煤电有限公司 田集发 电厂 。安徽 淮南 2 3 2 0 0 1)
【 摘
要】 田集电厂一期工程 2 X 6 3 0 MW 机组 , 通过现 场运行
直流锅炉的特性及运行调整
直流锅炉的特性及运行调整(一)、直流锅炉的特点:水的临界点22.115MPa 374.15 C,大于这个压力,超临界机组。
蒸汽压力超过27MPa超超临界火电机组。
由于超临界压力下无法维持自然循环即不能采用汽包锅炉,直流锅炉成为唯一型式。
超临界机组不仅煤耗大大降低,污染物排污量也相应减少,经济效益十分明显。
超临界机组与亚临界汽包锅炉结构和工艺过程有着显著不同,其特点:1、超临界直流炉没有汽包环节,给水经加热、蒸发和变成过热蒸汽时一次性连续完成,随着运行工况不同,锅炉将运行在亚临界或超临界压力下,蒸发点会自发的在一个或多个加热区段内移动,汽水之间没有一个明确的分界点。
这要求更为严格保持各种比值的关系(如给水量/ 蒸汽量、燃料量/ 给水量及喷水量/ 给水量等)。
对直流锅炉来说,热水段、蒸发段和过热段受热面之间是没有固定界限的。
这是直流炉的运行特性与汽包炉有较大区别的基本原因。
2、由于没有储能作用的汽包环节,锅炉的蓄能显著减小,负荷调节的灵敏性好,可实现快速启停和调节负荷,适合变压运行。
但汽压对负荷变动反映灵敏,变负荷性能差,汽压维持比较困难。
3、直流炉由于汽水是一次完成,因而不象汽包炉那样。
汽包在运行中除作为汽水分离器外,还作为煤水比失调的缓冲器。
当煤水比失去平衡时,利用汽包中的存水和空间容积暂时维持锅炉的工质平衡关系,以保持各断受热面积不变。
(二)、直流炉的运行特性动态特性指给水量、燃料量、功率(调门开度)变化而其他条件不变情况下蒸汽流量、汽温、汽压的变化。
1 .给水量给水量扰动时,在其他条件不变的情况下,给水量增加。
由于壁面热负荷未变化,故热水段都要延长,蒸汽流量逐渐增大到扰动后的给水流量。
过渡过程中,由于蒸汽流量小于给水流量,所以工质贮存量不断增加。
随着蒸汽流量的逐渐增大和过热段的减小,出口过热汽温渐渐降低,但在汽温降低时金属放出贮热,对汽温变化有一定的减缓作用。
汽压则随着蒸汽流量的增大而逐渐升高。
600MW超临界锅炉调试介绍
600MW超临界锅炉调试介绍首先,在进行600MW超临界锅炉的调试前,需要进行准备工作。
首先是对锅炉的环境进行检查,确保周围没有明火和易燃物品。
然后对各个设备进行检查、清洁和润滑,确保设备运行正常。
接下来是对锅炉参数进行调整,包括炉膛温度、压力、流量等参数,以及煤粉、空气等供给量进行调整。
在调试过程中,需要注意以下几个方面:1.炉膛调试:首先要对炉膛进行预热,调整炉膛的温度和压力,使其达到设计要求。
然后进行炉膛的点火和燃烧调试,确保燃烧稳定、烟道温度合理,并进行适当的焚烧空气调整。
2.热交换器调试:对各个热交换器进行调试,包括空气预热器、锅炉水壁、过热器和再热器等。
调试过程中要注意调整热交换面积、温度、压力等参数,确保热交换效率高、传热均匀。
3.蒸汽调试:对蒸汽管道、阀门等进行检查和调试,确保蒸汽流量和压力达到设计要求。
同时要注意蒸汽的排放和回收,防止能源浪费。
4.控制系统调试:对锅炉的控制系统进行调试,包括炉温、压力、水位等参数的控制。
确保控制系统稳定可靠,能够自动控制锅炉运行。
5.安全保护调试:对锅炉的安全保护系统进行调试,包括过热保护、低水位保护等多重保护系统。
确保锅炉在异常情况下能够及时停机,避免事故发生。
在进行600MW超临界锅炉的调试过程中,需要严格按照设计要求和操作规程进行操作,做好各项安全措施,确保人员和设备的安全。
同时要关注锅炉运行数据,及时调整参数,优化运行效率。
通过系统的调试和检验,确保锅炉正常运行,达到预期的发电效果。
总之,600MW超临界锅炉的调试是一个复杂而重要的工作,需要专业技术人员进行操作,并严格按照流程和规定进行调试,以确保锅炉运行安全稳定、高效节能。
通过调试过程的努力,将确保锅炉能够正常运行,为电力生产提供稳定可靠的保障。
350MW超临界机组直流锅炉的燃烧优化调整
350MW超临界机组直流锅炉的燃烧优化调整1. 引言1.1 背景介绍随着中国能源需求的不断增长和环保要求的提高,燃煤电厂在中国能源结构中扮演着重要角色。
而超临界机组直流锅炉作为燃煤电厂的核心设备之一,其燃烧效率对于整个电厂的运行和环保效果至关重要。
随着科技的不断发展,煤炭燃烧技术也在不断提升,为了实现更高效率、更清洁的燃烧,燃煤电厂需要不断进行燃烧优化调整。
本文将探讨350MW超临界机组直流锅炉的燃烧优化调整方法,帮助电厂提升燃烧效率,降低排放量,保证电厂的可持续运行。
通过研究超临界机组直流锅炉的燃烧特点、优化调整方法、参数调整策略,燃烧效率提升措施以及设备维护保养建议,我们可以更好地认识和掌握这一关键设备的运行特点和优化方向,为我国燃煤电厂的可持续发展贡献一份力量。
2. 正文2.1 超临界机组直流锅炉燃烧特点350MW超临界机组直流锅炉是一种高效环保的热力发电设备,燃烧特点主要表现在以下几个方面:首先是燃烧效率高,超临界机组直流锅炉采用先进的燃烧技术和高效的燃烧设备,能够充分燃烧燃料,提高热效率,降低燃料消耗,减少排放物的排放。
其次是燃烧稳定性好,通过合理设计燃烧系统和控制系统,能够保持燃烧过程的稳定性,避免燃烧不完全或爆炸等安全隐患。
超临界机组直流锅炉具有较好的适应性,能够适应不同种类和质量的燃料,如煤、油、天然气等,同时还能够应对负荷波动和气候变化的影响,保持稳定的运行状态。
超临界机组直流锅炉还具有较低的NOx和SOx排放,通过先进的脱硝和脱硫技术,可以有效降低对环境的影响,符合现代能源发展的要求。
超临界机组直流锅炉具有高效、环保、稳定的燃烧特点,是当前电力行业中较为理想的发电设备之一。
2.2 燃烧优化调整方法燃烧优化调整是保障锅炉高效运行的重要环节,其主要目的是使燃烧过程更加充分、稳定和高效。
在实际操作中,燃烧优化调整方法主要包括以下几个方面:1. 燃烧参数调整:燃烧参数是指燃烧在锅炉内的各个参数,如燃料供给量、空气供给量、风压等。
超临界直流锅炉主汽压力调整
超临界直流锅炉主汽压力调整摘要:超临界直流锅炉具有发电效率高、高负荷适应性强等优点,是未来大型锅炉发展的方向,汽温、汽压是直流锅炉的主要参数,因此研究其特性特别重要。
超临界直流锅炉是指主蒸汽压力超过22.12MPa的锅炉,通常额定汽压为24.2MPa。
超临界直流锅炉汽压控制主要通过增减锅炉燃烧率和给水量来调整,从而使锅炉蒸发量的变化与机组负荷变动相适应。
本文针对我厂350MW超临界直流锅炉运行中正常加减负荷、机组湿态运行、机组负荷波动过程中汽压调整和汽压的影响因素做了详细分析,并对事故处理情况下汽压调节进行个人讲述。
引言:随着电网调峰能力的加剧,各电厂为了避免响应速率受到考核和争取电网两个细则补偿,不断优化提高AGC响应速率,我厂在AGC方式下负荷大幅波动情况下,汽温、壁温极易超温,且AGC退出频繁。
我厂在AGC方式下减负荷过快时经常会出现主汽压力较负荷对应滑压函数值高1.5-2MPa以上,导致机组深度减负荷后锅炉管壁严重超温、再热汽温跌破510℃,或汽轮机调门开度小于38%,严重者小于33%中调门摆动参与负荷调节,AGC方式下快减负荷对汽压调节造成很大的困难。
因此,本论文在控制各项指标在正常范围的情况下,调整机组主汽压力,确保稳定经济。
1设备概况大唐延安热电厂一期工程装设2X350MW燃煤汽轮发电机组我厂锅炉由哈尔滨锅炉厂制造,型号为:HG-1125/25.4-YM1型,锅炉形式为超临界、一次中间再热、前后墙对冲燃烧、固态排渣、全钢全悬吊结构,紧身封闭布置、直流式煤粉锅炉。
2超临界锅炉汽压调整的意义汽轮发电机组因为在实际运行中处于变工况,此时进入汽轮机的蒸汽参数、流量、排汽装置真空的变化,将会引起各级的压力、温度效率发生变化,不仅影响汽轮机运行的经济性,还将影响汽轮机的安全性。
所以在日常运行中、应该认真监督汽轮机初终参数汽压汽温变化。
2.1蒸汽压力过高的危害:1.主蒸汽压力升高时,要维持负荷不变,需要减小调速汽阀的总开度,会引起调节级动叶过负荷,甚至可能被损坏;严重者会导致汽轮机中调门关闭参与负荷调节;2.末级叶片可能过负荷。
关于超临界直流锅炉的给水控制与汽温调节分析
关于超临界直流锅炉的给水控制与汽温调节分析摘要:随着对电力需求的不断提升,供电的要求越来越高,电力生产作为其中的重要环节,超临界直流锅炉取代了传统的燃煤机组,广泛应用于电力领域中,改善了环境污染的问题,有效提升了电力供应效率。
基于此,本文对超临界直流锅炉的给水控制和气温调节进行了深入探讨,为保证机组的稳定性运行提出几点建议。
关键词:超临界直流锅炉;给水控制;气温调节一、超临界机组的给水控制系统直流锅炉是多变量系统,直流锅炉的控制任务与汽包锅炉有很大差别,对于直流锅炉不能象汽包炉那样,将燃料、给水、汽温简单地分为3个控制系统,而是将给水量与燃料量的控制与一次汽温控制紧密地联系在一起,这是直流锅炉控制最突出的特点[1]。
二、汽水分离器水位控制我厂超临界机组采用内置式汽水分离器,锅炉启动点火前进行冷态冲洗,进入分离器的流量保持最低运行负荷50%MCR下的900t/h,冲洗排放经储水箱溢流阀排到疏水扩容器,然后排至锅炉排水管。
冷态冲洗合格后回收至凝汽器锅炉允许点火。
用炉水循环泵出口调门来控制省煤器入口保持30%BMCR流量,将锅炉上水旁路调门关回保持3-5%BMCR流量。
点火后随燃料量投入的增加,进入分离器的工质压力、温度和干度不断提高,汽水在分离器内实现分离。
蒸汽进入过热器系统,饱和水通过汽水分离器排入疏水扩容器实现工质回收。
随着压力上升,水冷壁汽水开始膨胀,分离器储水箱液位逐渐升高,这时可通过分离器储水箱小溢流阀排放控制水位,随着汽水膨胀的结束,分离器储水箱水位开始下降,分离器的正常水位由上水旁路调门、炉水循环泵出口调门和锅炉储水箱小溢流阀来控制,此时分离器为湿态运行,给水控制方式为分离器水位与最小给水流量控制。
当水冷壁出口(进入分离器)工质的干度提高到干饱和蒸汽后,汽水分离器已无疏水,转变成蒸汽联箱,锅炉切换到30%MCR下的干态运行(纯直流运行)。
锅炉在30%BMCR(本生负荷)以下为再循环运行方式。
超临界直流锅炉运行优化调整
超临界直流锅炉运行优化调整摘要:介绍超临界直流锅炉的启动系统结构,阐述了超临界直流锅炉在运行中出现的一些特点,做好优化调整,为超临界直流锅炉机组运行和调试提供理论基础。
关键词:超临界直流锅炉特点优化调整1、超临界锅炉概念超临界锅炉指锅炉内工质的压力在临界点以上的锅炉。
锅炉内的工质都是水,水的临界压力是:22.115MPA374.15℃;在这个压力和温度时,水和蒸汽转化汽化潜热等于零,不存在两相区,即水变成蒸汽是连续的,并以单相形式进行,就叫水的临界点,炉内工质压力低于这个压力就叫亚临界锅炉,大于这个压力就是超临界锅炉。
2、超临界直流锅炉启动系统结构启动系统要素:给水从给水泵来,经给水调节阀,流量孔板进入省煤器,水冷壁,启动系统由分离器,贮水箱,循环泵,循环流量孔和循环流量控制阀组成。
由水冷壁来的汽水混合物进入分离器,分离出来的蒸汽像传统锅炉那样进入过热器,分离出来的水返回贮水箱。
当锅炉准备启动时,下面的回路充满水,所有其他的回路尽可能保持干燥。
省煤器进口,省煤器,省煤器出口,下降管和供水管,炉膛水冷壁,折焰角下降管,折焰角回路,循环泵,去省煤器的再循环管。
3、超临界直流锅炉特点3.1超临界直流锅炉蒸发受热面内工质的流动是与省煤器、过热器中的工质流动一样,完全依靠给水泵产生的压头,工质在此压头的推动下顺次通过加热、蒸发、过热过程,水被逐渐加热、蒸发、过热,最后形成合格的过热蒸汽送往汽轮机。
当给水量、空气量、燃烧量和机组负荷有扰动时,这三个区就会发生移动。
3.2超临界直流锅炉蓄热能力小,在受到外部扰动时,自行保持负荷及参数的能力就较差,对扰动较敏感,因此要对调节系统提出更高的要求。
3.3超临界直流锅炉给水品质要求高,因为在蒸发区不排污,除了能溶于蒸汽的盐分被蒸汽带走外,给水中所含杂质将全部沉积在管壁上,因此对水处理一定要不断的加强严格把关,保证水品质的高质量。
3.4超临界直流炉水冷壁的安全性存在一定的问题,超临界直流锅炉蒸发管出口往往是接近饱和,甚至是微过热蒸汽,故管内发生膜态沸腾和结垢的可能性较大。
1000MW超超临界锅炉过再热汽温运行调整研究
1000MW超超临界锅炉过再热汽温运行调整研究摘要随着湖北能源集团襄阳宜城电厂#1机组投入商业运行,在保证机组安全的前提下,尽可能提高机组经济性显得越来越重要。
在#1机组的短暂运行时间期间,发现机组部分参数还没有达到设计值,尤其是过再热汽温与设计值仍存在一定的差距,本文在制粉系统优化试验(磨煤机热一次风调平试验、煤粉细度调整试验)、燃烧器配风调整试验(燃烧器内外二次风开度及燃尽风直、旋流强度调整)等均已完成的前提下,仅针对机组运行中运行人员可以操作的部分进行相关分析,经过对#1炉运行特性的观察分析及实际操作调整,最终得出在运行中采取哪些有效措施可以提高过、再热蒸汽温度参数,对于指导同类型机组运行调整具有重要的意义。
关键词:直流炉、前后墙对冲、再热汽温、再热器壁温、燃尽风、吹灰1设备概况湖北能源集团襄阳宜城电厂一期工程为2×1000MW超超临界湿冷机组,锅炉为东方锅炉DG2972/29.3-II8 型超超临界参数、变压运行直流锅炉,单炉膛、一次再热、平衡通风、固态排渣、前后墙对冲燃烧方式、燃煤Π型锅炉,#1炉出口蒸汽参数分别为29.3MPa/610/625℃;6台磨煤机分3层布置在前、后墙上;#1炉高温再热器及低温再热器采用SA-213T92,全负荷壁温推荐报警值均为649℃,低温再热器采用SA-213T92,全负荷壁温推荐报警值均为616℃。
经观察存在受热面壁温接近报警值,操控裕量小的常态问题,尤其是高再、低再壁温;为防止负荷及煤质波动造成管壁超温,往往控制高再管壁温度在639℃以下,低再壁温603℃以下,再热汽温平均值一般仅能达到在615℃。
#1炉设计煤种为陕煤化集团小保当煤矿煤炭。
其干燥无灰基挥发分高Vdaf 37.53%,灰熔点低1130℃,极易结焦。
故规定每日进行一次锅炉全面吹灰工作。
观察#1炉燃用设计煤种情况下,稳燃能力较强,故规定锅炉负荷≥500MW且燃烧稳定时,可进行高温区长吹灰器单吹工作;锅炉负荷≥600MW且燃烧稳定时,可进行高温区对吹工作。
超超临界直流锅炉参数精细化调节方法
超超临界直流锅炉参数精细化调节方法近几年,华东电网对发电机组有功功率的控制速率作出了明确的规定和考核标准,且发电厂本身节能提效的需求都使我们必须提高锅炉的参数调节精度。
针对这些要求文章就锅炉参数调节方法、各种工况下锅炉参数的分析,总结出一套超超临界机组精细化、系统化调节的方法。
标签:制粉系统;负荷;调节;汽温;惯性;过热度随着国家能源战略的引导,发展大容量、高参数的发电机组已成为未来火电发展趋势。
直流炉由于自身炉型特点,具有蓄热小、汽温汽压受负荷影响大等特点。
正常运行中能否稳定的调整主、再热汽温将直接影响到锅炉效率和煤耗,甚至影响设备安全。
文章以哈尔滨锅炉厂生产的HG-2000/26.25-YM3型660MW超超临界锅炉为例,阐述了在投产5年多的时间中总结积累的主、再热汽温的监视分析调整经验。
对于锅炉的调节多数人认为掺杂的变化因素多,工况延迟大很难细化和量化调节方法,文章就着力在这些难点上,让经验和方法更系统化,精细化,数量化,易于实践操作,从而能够广泛推广应用的一套从监视到分析到操作的方法。
1 简述锅炉参数调节和电网负荷要求的配合锅炉调节汽压汽温的惯性和电网AGC指令对负荷的速率变化要求之间的矛盾是我们直流锅炉参数调节的主要矛盾,而锅炉调节汽压汽温的惯性的主要原因是直吹式制粉系统的调节惯性较大,不利于机组精确地控制负荷。
首先我们简述一下直吹式制粉系统的调节惯性存在原因和解决办法:直吹式制粉系统与中间储仓式制粉系统相比较,最明显的缺点是送入炉膛的煤粉量不能直接调节。
直吹式制粉系统调整锅炉负荷的手段是改变给煤机的转速,即调节磨煤机的给煤量。
从调节指令发出,到最终发电出力变化,除了燃烧率变化→蒸发量变化→汽机作功变化的热力环节外,还包含磨煤机制粉出力变化这一个具有较大时间常数的惯性环节。
一般情况下石子煤量很少,Q4可以忽略不计。
在稳定平衡状态下,ΔQ3=0,所以Q2=Q1;但在给煤量变化的初期,由于磨煤机筒体的存储作用,稳定平衡状态尚未建立,ΔQ3≠0 Q2≠Q1,输出的煤粉量的变化就迟滞于给煤量的变化。
超临界机组直流锅炉运行工况分析
超临界机组直流锅炉运行工况分析第一部分超临界机组锅炉运行特点分析。
(2)第二部分直流锅炉工作原理剖析。
(4)第三部分燃料如何影响超临界机组工况。
(6)第四部分超临界机组工况下的水质要求。
(9)第五部分超临界机组工况下锅炉安全保障。
(12)第六部分超临界机组锅炉工况优化策略。
(14)第七部分超临界机组锅炉运行经济性探讨。
(18)第八部分超临界机组锅炉工况影响因素总结。
(22)第一部分超临界机组锅炉运行特点分析。
超临界机组锅炉运行特点分析超临界机组锅炉运行的特点主要体现在以下几个方面:1.高压力、高温运行。
超临界机组锅炉的运行压力一般在 22.1MPa以上,最高可达 35MPa 左右,运行温度一般在560℃以上,最高可达600℃以上。
锅炉运行在如此高的压力和温度下,不仅可以大大提高锅炉的热效率,而且还可以减少锅炉的体积和重量,从而降低锅炉的建设成本。
2.一次再热循环。
超临界机组锅炉一般采用一次再热循环,即蒸汽在锅炉内经过两次加热,第一次加热称为初次过热,第二次加热称为再热。
一次再热循环可以大大提高锅炉的热效率,使锅炉的蒸汽温度达到更高的水平,从而提高机组的发电效率。
3.采用炉膛水冷壁和对流受热面。
超临界机组锅炉的炉膛水冷壁与对流受热面采用不同材质的钢管,炉膛水冷壁采用低合金钢管,对流受热面采用高合金钢管。
这样做是为了适应不同温度区域对钢管材料的不同要求,提高锅炉的寿命和可靠性。
4.采用强制循环。
超临界机组锅炉采用强制循环,即利用循环泵将锅水从锅筒输送到锅炉的各受热面,然后将受热后的蒸汽输送到锅筒。
强制循环可以大大提高锅炉的传热效率,使锅炉的热效率达到更高的水平。
5.采用电除尘器。
超临界机组锅炉一般采用电除尘器,以去除锅炉烟气中的粉尘。
电除尘器可以大大减少锅炉烟气对环境的污染,提高鍋爐的環保性能。
6.采用脱硫脱硝装置。
超临界机组锅炉一般采用脱硫脱硝装置,以去除锅炉烟气中的二氧化硫和氮氧化物。
660MW 机组超超临界直流锅炉燃烧调整
660MW 机组超超临界直流锅炉燃烧调整摘要:目前,我国的电力能源主要来自于燃煤火力发电。
而一般情况下,火力发电电厂均面临着一个问题,即发电效率不高,存在较大的改善空间。
提升电厂发电效率的一个方法就是引进超超临界机组。
通过对比机组设计运行情况和实际运行情况分析发现,机组运行还存在许多需要改进之处。
对超超临界机组的设计和运行进行优化研究,更好的促进超超临界机组的高效运行和效率提升,本文针对锅炉燃烧调整问题对660MW超超临界锅炉运行进行分析改进,更好地提升了锅炉的运行稳定性和效率。
关键词:超超临界锅炉;燃烧调整;直流锅炉660MW超超临界机组作为电厂改扩建过程中的重要内容,但在实际660MW超超临界机组投入运行以来,直流锅炉在运行过程中存在着许多问题。
投入运行中的660MW超超临界机组直流锅炉,其在燃烧器、排烟温度、制粉系统、再热器、排煤量等方面都存在着许多问题,对机组运行的经济性和安全性带来较大的影响。
所以需要针对机组运行过程中的基础数据入手,对直流锅炉进行一系列的试验来对锅炉的燃烧情况进行调整和优化,从而有效的解决660MW超超临界机组直流锅炉运行中存在的问题,确保锅炉燃烧参数能够保持正常值,进一步改善机组运行的经济性和安全性。
本文结合660MW超超临界直流锅炉进行分析,以燃烧调整为切入点对锅炉运行过程中的稳定性和经济性进行分析。
通过对燃烧初期和燃烧过程中的调整方式分析介绍,可以得出有效地提升锅炉运行经济性的手段,另外也为有效控制氮氧化物的排放提供依据。
2锅炉概况及运行特点某厂2×660MW超超临界锅炉为东方锅炉股份有限公司制造的DG2060/26.15-II1型国产超超临界变压本生直流锅炉,锅炉形式为一次再热、单炉膛、前后墙对冲燃烧、尾部双烟道结构、采用烟气挡板调节再热汽温、固态排渣、平衡通风、全钢构架、露天布置、全悬吊结构Π型炉。
水冷壁采用膜式水冷壁,下部水冷壁及灰斗采用螺旋管圈,上部水冷壁为垂直管屏。
论600MW超临界直流锅炉深度调峰技术及运行注意事项
论600MW超临界直流锅炉深度调峰技术及运行注意事项发布时间:2021-09-14T07:40:23.893Z 来源:《科技新时代》2021年6期作者:李亮[导读] 本文就针对600MW超临界直流锅炉的深度调峰来进行相关方面的讨论与研究。
内蒙古呼伦贝尔发电有限公司内蒙古呼伦贝尔市陈巴尔虎旗宝日希勒镇 021025摘要:近年来随着我国产业结构的不断调整,我国的的电力市场发生了非常明显的变化,这对于我国国家电网的深度调峰是一个巨大的挑战。
除此之外我国用电量的谷差也在逐年的增大,火电厂的深度调峰是必然的。
本文就关于600MW的超临界直流锅炉在深度调峰的时候所需要的的一些技术以及注意事项进行相关方面的讨论。
关键词:深度调峰、超临界、600MW;1.引言近年来我国经济的飞速发展以及科学技术的巨大进步,使得我国的整体国家实力得到了飞速的提升,国防力量逐渐增强,人民的生活也日益的富足。
在这些我们能够亲身体验的发展背后,电力系统的充足保障是必不可少的一个环节。
在我国随着经济与科技的飞速发展,无论是用电量还是发电量我国都是位于世界顶尖地位的,而在这些巨大的发电量的背后火力发电厂的发电量占据着绝大部分,这主要是由于我国的能源结构所决定的。
由于我国的一次能源煤炭较为丰富并且无论是发电形式上还是技术成熟度上以及便利性上,火力发电在相当一段时间里还会是我国主要的发电形式。
除了火力发电以外的一些其他新能源的发电形式,在实际的运行过程中往往有着一些自身无法解决的问题,受到自然环境的影响程度较大,不能够保证一直平稳的运行下去。
这也使得火力发电有时所承受的压力会变的较大,为了能够提高我火力发电运行的灵活性以及提高电网调峰和新能源的消纳能力,我国也提出了相关政策来推动火力发电机组的相关灵活性改造,并以此鼓励煤电机组参与到深度调峰中来,燃煤机组的深度调峰已成为了必要趋势。
本文就针对600MW超临界直流锅炉的深度调峰来进行相关方面的讨论与研究。
直流锅炉的控制和调节
600MW超临界机组的投产标志着我国火电机组的运行水平步入新境界,而直流锅炉也是大容量锅炉的发展方向之一。
众所周知,蒸汽温度过高可能导致受热面超温爆管,而蒸汽温度过低将使机组的经济性降低,严重时可能使汽轮机产生水冲击。
而这些现象在许多电厂均有发生,因此过热蒸汽温度与再热蒸汽温度直接影响到机组的安全性与经济性。
超临界直流锅炉的运行调节特性有别于汽包炉,煤水控制与汽温、汽压调节的配合更为密切。
下面针对襄樊电厂#5、#6机组所采用的SG1913/25.40-M957型号的锅炉,就机组启动至低负荷运行阶段,煤水控制与蒸汽参数调节浅谈一下自己的看法。
机组启动阶段:根据锅炉的型号不同,不同容量的锅炉其转干态直流运行的最低负荷有所不同,一般在25%~35% BMCR 之间,我厂为210MW左右负荷开始转干态,在湿态情况下,其运行方式与强制循环汽包炉是基本相同的。
汽水分离器及集水箱就相当于汽包,但是两者容积相差甚远,集水箱的水位变化速度也就更快。
由锅炉启动疏水泵将集水箱的水打至凝汽器,与给水共同构成最小循环流量。
其控制方式较之其它超临界直流锅炉有较大不同,控制更困难。
给水主要用于控制启动分离器水位,锅炉启动及负荷低于35%BMCR时,且分离器水位在6.2~7.2m之间时,由给水泵出口旁路调门和给水泵的转速共同来控制省煤器入口流量保证锅炉的最小循环流量574t/h,保证锅炉安全运行。
锅炉启动阶段汽温的调节主要依赖于燃烧主要控制,由旁路系统协助控制,通过投退油枪的数量及层次、调节炉前油压、减温水、高低旁的开度等手段来调节主再热蒸汽温度。
此阶段启动分离器水位控制已可投自动,但是大多数锅炉的水位控制逻辑还不够完善,只是单纯的控制一点水位,还没有投三冲量控制,当扰动较大时水位会产生较大的波动,甚至根本无法平衡。
此阶段要注意尽量避免太大的扰动,扰动过大及早解除自动,手动控制,以免造成顶棚过热器进入水。
锅炉启动初期需要掌握好的几个关键点: 1 工质膨胀:工质膨胀产生于启动初期,水冷壁中的水开始受热初次达到饱和温度产生蒸汽阶段,此时蒸汽会携带大量的水进入分离器,造成贮水罐水位快速升高,锅炉有较大排放量,此过程较短一般在几十秒之内,具体数值及产生时间与锅炉点火前压力、温度、水温度、投入油枪的数量等有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要内容•1. 锅炉运行调整的任务•2. 超临界锅炉运行调整的方法和手段1. 锅炉运行调整的任务1. 锅炉运行调整的任务(1) 保证负荷(蒸发量)要求•(2) 保持蒸汽参数稳定–汽温–汽压•(3) 保证高燃烧效率•(4) 保证机组运行安全,延长使用寿命2. 超临界锅炉运行调整的方法和手段•(1) 负荷(蒸发量)控制的方法和手段•(2) 汽温调节的方法和手段•(3) 汽压调节的方法和手段•(4) 如何保证高燃烧效率•(5) 如何保证机组运行安全,延长使用寿命被控参数•(1)给水流量/蒸汽流量•因为给水系统和蒸汽系统是直接连通的,且由于超临界锅炉直流蓄热能力较小,给水流量和蒸汽流量比率的偏差过大将导致较大的汽压波动。
•(2)煤水比•稳定运行工况时,煤水比必须维持不变,以保证过热器出口汽温为设计值。
而在变动工况下,煤水比必须按一定规律改变,以便既充分利用锅炉蓄热能力,又按要求增减燃料,把锅炉热负荷调到与机组新的负荷相适应的水平.•(3)喷水流量/给水流量•超临界锅炉喷水仅能瞬时快速改变汽温.但不能始终维持汽温,因为过热受热面的长度和热焓都是不定的。
为了保持通过改变喷水流量来校正汽温的能力,控制系统必须不断地把喷水流量和总给水流量之比恢复到设计值。
•(4)送风量/给煤量(风煤比)•为了抑制NOx的产生,以及锅炉的经济、安全运行,需对各燃烧器的进风量进行控制,具体是通过各层燃烧器的二次风门和燃尽风门控制风量,每层风量根据负荷对应的风煤比来控制。
负荷(蒸发量)控制的方法和手段•控制手段:给水流量•给水系统和蒸汽系统是直接连通的,•给水流量=主蒸汽流量给水流量控制的目的•为了使锅炉过热器出口蒸汽温度达到期望值,锅炉给水流量控制系统负责向锅炉给水泵发出流量需求信号,使进入锅炉的给水量与锅炉的燃烧率相匹配。
当与锅炉启动系统配合时,在锅炉启动和低负荷运行期间,给水流量控制系统也负责维持炉膛水冷壁管中的流量不低于最小流量值。
炉膛给水流量低跳闸当通过炉膛水冷壁的水流量低于为防止水冷壁管过热所需的流量时,主燃料跳闸(MFT)系统将触发锅炉跳闸,具体来说就是,当炉膛水流量低于最小流量值的85%并经20秒延时,或低于最小流量值的70%并经1秒延时,锅炉应跳闸。
当炉膛水流量低于最小流量值时应报警。
选取中间测量值为了防止由于单个变送器故障而引起的自控失灵或误动作,应采用三个独立的、带温度和压力补偿的流量变送器来测量炉膛给水流量。
中间值选取系统将选取三个流量变送器信号的中间值用于控制和联锁。
此外,三个独立的流量测量值都应显示给运行人员,当任何一个测量值与中间值的偏差达到±3%时,应报警,并需查明原因,予以修复。
当任何一个变送器故障时,应选用其余两个变送器测量值中的较低值做为测量值使用。
相应于某一锅炉负荷需求,炉膛给水流量目标值等于该负荷对应的主蒸汽流量设计值减去减温水量设计值。
炉膛工质的焓增目标值等于该负荷对应的分离器出口设计焓值减去省煤器出口设计焓值,这些值经多重延迟补偿以考虑燃料量动态变化和锅炉金属储能时间常数对锅炉参数的影响。
将炉膛给水流量目标值(Kg/s)与焓增目标值(KJ/kg)相乘就得到炉膛吸热量目标值(KJ/s)。
将炉膛吸热量目标值经过锅炉金属储能变化的瞬态修正(锅炉金属储能变化与炉膛出口工质饱和温度变化率有关),再除以来自焓控制器的炉膛焓增需求值,就得出了实际的炉膛给水流量需求值。
为了保护炉膛水冷壁,实际的炉膛给水流量需求值不应低于炉膛最小流量值。
但在冷态清洗期间,最小流量的限制可以解除,运行人员可以根据需要将炉膛流量值设定成低于最小流量值。
一旦锅炉点火条件具备(MFT复位),则常规的最小流量值就被重新启用,以保证锅炉点火时炉膛水冷壁管中有足够的水流量。
由于锅炉启动系统无启动循环泵,锅炉点火时至少28.5%BMCR的给水直接由给水泵送入省煤器。
•炉膛给水量需求值与实测的炉膛给水量值之差,通过比例加积分的控制方式向锅炉给水泵控制发出给水流量需求信号。
(2) 汽温调节的方法和手段•1、过热汽温调节–煤水比作为粗调–喷水减温为细调•2、再热汽温调节–烟气挡板喷水辅助超临界机组汽温调整手段分析汽包炉机组中能够长期控制汽温的手段如减温喷水、燃烧器摆角在超临界机组中的作用已完全不同。
•(1)减温喷水引自进入锅炉的总给水量,它实质上是调整了工质流量在水冷壁和过热器之间的分配比例。
不同减温喷水量对直流炉各区段工质温度的影响改变了这些中间区段的热量/水量比值,因而区段内工质温度发生相应变化。
但因最终进入锅炉的总给水量未改变,燃水比未改变,稳态时锅炉出口过热汽温也不会改变。
3 过剩空气系数•过剩空气系数的变化直接影响锅炉的排烟损失。
影响对流受热面与辐射受热面的吸热比例。
当过剩空气系数增大时,除排烟损失增加、锅炉效率降低外,炉膛水冷壁吸热减少,造成过热器进口温度降低、屏式过热器出口温度降低;虽然对流过热器吸热量有所增加,但在煤水比不变的情况下,末级过热器出口汽温会有所下降。
过剩空气系数减小时的结果与增加时的相反。
若要保持过热汽温不变,则需重新调整煤水比。
影响燃水比稳态和动态调节的因素如下:•2.1 燃烧率与给水量的配合•燃水比不是恒定不变的,它必须随负荷的改变而改变。
如上式:•式中iht为主蒸汽焓值,kJ/kg;ifw为给水焓值,kJ/kg;F为燃料量,t/h;W 为给水量,t/h;Q为燃料低位发热量,kJ/kg;η为锅炉效率。
•锅炉给水温度随负荷的增加而升高,因此ifw也随之升高;机组定压运行时,主蒸汽温度和压力为定值,即iht为一定值;Q 和η可视为常数,因此燃水比是随负荷的升高而减小的。
无论是定压还是滑压运行,这一公式都是计算静态燃水比与负荷关系的基本公式。
•另一方面,燃料量和给水量在负荷改变时按燃水比进行调整,但二者对汽温的动态影响是不同的。
为减小负荷动态调整过程中的汽温波动,还必须对负荷调整产生的燃料量指令和给水量指令分别设置动态校正环节,保证燃料量和给水量的动态匹配。
在湿态运行期间,通过炉膛的工质流量是固定的,此时过热器减温器的运行类似于汽包炉的减温器运行,用它来控制汽温的升高。
•在直流运行区,过热器减温器仅用作瞬时的汽温控制,而长期的汽温控制是通过给水流量控制调节燃料/给水比来实现的。
在直流运行区,每级减温器的温降都控制在一个目标值,这样当汽温在整定值时,就能使减温水量维持在设计值,使减温器能对每个方向的汽温偏差都作出响应。
主蒸汽温度偏差信号主要用于第二级减温器,因为第二级减温器对主汽温度的控制最灵敏。
第二级减温器喷水量的变化将引起第二级减温器温降的变化,为了将第二级减温器的温降控制在其目标值,第一级减温器喷水量就要做相应变化,从而使第二级减温喷水量恢复到其正常值。
同样,第一级减温器喷水量的变化将引起第一级减温器温降的变化,为了将第一级减温器的温降控制在其目标值,给水控制子系统的焓修整控制器(或称温度控制器)就要调整给水量(即给水流量调节燃料/给水比),使第一级减温器的喷水量回到其正常值。
减温器调节阀故障减温器调节阀故障(包括动力丧失或信号丧失)将导致阀门失控。
为了减温器控制目标,将调节阀故障定义为:•模拟输出需求信号低劣•需求信号与位置反馈背离•整定值与过程变量背离•调节阀处于手动并列的两只减温器调节阀任一只故障时,为适应故障调节阀对应减温器的温差,将改变另一只调节阀来控制其对应减温器的温差。
•故障减温器蒸汽温度控制函数提供了向故障级减温器上游的蒸汽温度控制单元转移的功能。
第二级减温器故障时,将把末级过热器出口汽温控制转移到第一级减温器;第一级减温器故障时,将把第二级减温器温降控制转移到焓修整控制器控制;如果两级减温器均故障时,将把末级过热器出口汽温的控制转移到焓修整控制器控制。
运行人员应根据一级或两级减温故障情况来调整最大的负荷变化率。
沙河锅炉再热汽温的调节•再热汽温用烟气调温挡板和喷水减温器来控制。
烟气调温挡板能改变锅炉尾部竖井中过热器侧和再热器侧的烟气流通比例。
在低负荷时,增加再热器侧的烟气流通量可使再热汽温达到设计值。
减少再热器侧的烟气流通量可减少再热器喷水量。
再热器减温喷水量控制•再热器减温喷水量采用单冲量控制回路控制,即只根据再热器出口汽温的变化来调节减温水控制阀。
任何时候,只要再热器出口汽温超过整定值,减温水调节阀就打开,而只要减温水调节阀开启,调温挡板就开始动作,通过减少再热器侧的烟气量、增加过热器侧的烟气量来减少或取消再热器喷水量。
在再热器减温喷水调节阀前设有喷水关断阀。
在以下任一情况时,喷水关断阀将自动关闭:•再热器减温喷水需求值要求喷水调节阀关闭时;•锅炉负荷需求小于25%MCR时;•触发MFT时。
•如果锅炉负荷需求大于25%BMCR,且调节阀开度需求大于0%时,喷水关断阀将自动打开。
在MFT发生时再热器减温喷水关断阀联锁关闭,在下列任一条件具备后,再热器减温喷水关断阀必须由运行人员复位打开:•MFT复位;•锅炉负荷需求大于25%BMCR时;•调节阀开度需求大于0%时。
调温挡板控制•调温挡板控制是基于经再热汽温修正的一个前馈信号。
由于风量能很好地反映锅炉的烟气量,因此风量就被用作这个前馈信号。
图6示出了锅炉负荷和调温挡板开度的典型关系。
在低负荷时,再热器侧挡板全开,而过热器侧挡板设在其最小开度位置。
随着负荷增加,当再热汽温达到设计值时,过热器侧挡板开始开大。
当过热器侧挡板达到约70%开度时,它对烟气的分配就不再起作用,且只要再有一个很小的开度要求,它就会全开。
因此一般当过热器侧挡板达到其有效控制的极限位置时,再热器侧挡板就开始关闭以减少再热器侧的烟气量,而增加过热器侧的烟气量。
再热器侧挡板将持续关小直到控制目标达到或关到其最小开度位置。
•为了防止再热器侧的过高烟速和磨损,过热器侧挡板设定了一个最小开度限制,见图6。
这个最小开度限制是负荷的函数,而风量又用作负荷的前馈信号。
为了维持预期的再热汽温,挡板的前馈需求要经过过热器出口汽温和再热器出口汽温的修正,然后再发出要求挡板以固定速率增加开度或减小开度的信号。
当再热汽温低时,会发出减小过热器侧挡板开度的信号,当再热汽温高时(减温器投运),会发出增加过热器侧挡板开度的信号。
当再热汽温满足要求后,挡板就跟随修正过的前馈程序运行。
为了减少汽机在低负荷时的热应力,两侧挡板的控制要尽量使过热汽温和再热汽温之差在35℃以内,如过热汽温比再热汽温高35℃,则应发出关小过热器侧挡板的信号。