初三数学家庭作业 锐角三角函数
九年级数学锐角三角函数带答案
锐角三角函数及解直角三角形【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决及直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为依据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的学问解决问题.【学问网络】【考点梳理】考点一、锐角三角函数的概念如图所示,在△中,∠C =90°,∠A 所对的边记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边记为c ,叫做斜边.锐角A 的对边及斜边的比叫做∠A 的正弦,记作,即;锐角A 的邻边及斜边的比叫做∠A 的余弦,记作,即cos A bA c ∠==的邻边斜边;锐角A 的对边及邻边的比叫做∠A 的正切,记作,即tan A aA A b∠==∠的对边的邻边.同理;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边及角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数改变时,比值也随之改变. (2),,分别是一个完好的数学符号,是一个整体,不能写成,,B a b c,不能理解成及∠A,及∠A,及∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠),其正切应写成“∠”,不能写成“”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间改变时,,,>0.考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点诠释:(1)通过该表可以便利地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:假如知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)细致探讨表中数值的规律会发觉:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的依次正好相反,、、的值依次增大,其改变规律可以总结为:当角度在0°<∠A<90°之间改变时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在△中,∠90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在△中,∠90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a222(勾股定理).②锐角之间的关系:∠∠90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清晰、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤△两边两直角边(a,b)由求∠A,∠90°-∠A,斜边,始终角边(如c,a)由求∠A,∠90°-∠A,一边一角始终角边和一锐角锐角、邻边(如∠A,b)∠90°-∠A,,锐角、对边(如∠A,a)∠90°-∠A,,斜边、锐角(如c,∠A)∠90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的依次进展计算.2.若题中无特殊说明,“解直角三角形”即要求出全部的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的学问应用很广泛,关键是把实际问题转化为数学模型,擅长将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后依据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)依据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形学问解决实际问题时,常常会用到以下概念:(1)坡角:坡面及程度面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和程度间隔的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线及程度线所成的角中,视线中程度线上方的叫做仰角,在程度线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目的方向的程度角叫做方位角,如图①中,目的方向,,的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线及目的方向线所成的小于90°的程度角,叫做方向角,如图②中的目的方向线,,,的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特殊如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角学问,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非干脆解直角三角形的问题,要视察图形特点,恰当引协助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而依据条件选择适宜的方法求解.【典型例题】类型一、锐角三角函数的概念及性质1.(1)如图所示,在△中,若∠C=90°,∠B=50°,=10,则的长为( ).A.10·50° B.10·50° C.10·50° D.(2)如图所示,在△中,∠C=90°,=35,求的值.(3)如图所示的半圆中,是直径,且=3,=2,则的值等于.【思路点拨】(1)在直角三角形中,依据锐角三角函数的定义,可以用某个锐角的三角函数值和一条边表示其他边.(2)直角三角形中,某个内角的三角函数值即为该三角形中两边之比.知道某个锐角的三角函数值就知道了该角的大小,可以用比例系数k表示各边.(3)要求的值,可以将∠B转化到一个直角三角形中.【答案及解析】(1)选B.(2)在△,∠C=90°,.设=3k,则=5k(k>0).由勾股定理可得=4k,∴4432 cos tan5315k kA Bk k+=+=.(3)由已知,是半圆的直径,连接,可得∠=90°∠B=∠D,所以==.【总结升华】已知一个角的某个三角函数值,求同角或余角的其他三角函数值时,常用的方法是:利用定义,依据三角函数值,用比例系数表示三角形的边长;(2)题求时,还可以干脆利用同角三角函数之间的关系式2 2A =1,读者可自己尝试完成.举一反三:【变式】△中,∠90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,那么c 等于( ) (A) a cosA bsin B + (B) asin A bsin B + (C) (D) 【答案】 选B.过点C 作⊥于D,在△中, ,所以,同理,所以,又∠∠90°,所以,所以.类型二、特殊角的三角函数值2.解答下列各题: (1)化简求值:tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°;(2)在△中,∠C =9012sin cos A A -【思路点拨】第(2)题可以先利用关系式2 2A =1对根号内的式子进展变形,配成完全平方的形式. 【答案及解析】 解 (1)tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°311331112233--=-+=++(2)12sin cos A A -22sin cos 2sin cos A A A A =+-2(sin cos )|sin cos |A A A A =-=-,12sin cos A A -cos sin (045)sin cos (4590)A A A A A A -<⎧=⎨-<<⎩°≤°°°.【总结升华】由第(2)题可得到今后常用的一个关系式:1±2αα=(α±α)2. 例如,若设αα=t ,则. 举一反三: 【变式】若,cos sin βα=,(2α,β为锐角),求的值.【答案】∵,且2α为锐角,∴2α=60°,α=30°. ∴12cos sin 22βα===, ∴β=45°. ∴23tan()tan 3033β==°.3. (1)如图所示,在△中,∠=105°,∠A =30°,=8,求和的长;(2)在△中,∠=135°,∠A =30°,=8,如何求和的长? (3)在△中,=17,=26,锐角A 满意,如何求的长及△的面积? 若=3,其他条件不变呢?【思路点拨】第(1)题的条件是“两角一夹边”.由已知条件和三角形内角和定理,可知∠B =45°;过点C 作⊥于D ,则△是可解三角形,可求出的长,从而△可解,由此得解;第(2)题的条件是“两角一对边”;第(3)题的条件是“两边一夹角”,均可用类似的方法解决. 【答案及解析】解: (1)过点C 作⊥于D . ∵∠A =30°,∠=105°, ∴∠B =45°.∵·==· B , ∴sin 8sin 3042sin sin 45AC A BC B ===°°∴==··=830°42°=443+(2)作⊥的延长线于D ,则=434-,42BC = (3)作⊥于D ,则=25,ABC S =△204. 当=3时,∠为钝角,=25,36ABC S =△.【总结升华】对一个斜三角形,通常可以作一条高,将它转化为两个直角三角形,并且要尽量使直角三角形中含有特殊的锐角(如30°、45°、60°的角),然后通过解直角三角形得到原来斜三角形的边、角的大小.类型三、解直角三角形及应用4.如图所示,D 是上一点,且⊥于C ,:2:3ACD CDB S S =△△,, =18,求的值和的长.【思路点拨】解题的根本思路是将问题转化为解直角三角形的问题,转化的目的主要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程. 【答案及解析】解:作∥交于E ,则∠=∠=90°.∵,设=4k(k >0),则=5k ,由勾股定理得=3k . ∵△和△在边上的高一样, ∴=:2:3ACD CDB S S =△△. 即553533AC DE k k ==⨯=. ∴.∵=18, ∴54k =18,解得k =2. ∴2241241AD AC CD k =+==.∴==32=541 【总结升华】在解直角三角形时,常用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等.专题总结及应用一、学问性专题专题1:锐角三角函数的定义【专题解读】 锐角三角函数定义的考察多以选择题、填空题为主.例1 如图28-123所示,在△中,∠=90°,=1,=2,则下列结论正确的是 ( ) A . A 3 B . A =12C 3D . B 3分析 =BC AB =12, A =BC AC , B =BCAB =12.故选D.例2 在△中,∠C =90°,=35,则 A 等于 ( )A .35 B .45 C .34 D .43分析 在△中,设=3k ,=5k ,则=4k ,由定义可知 A =4433BC k AC k ==.故选D.分析 3,∴ A =35BC AB =.故填35.专题2 特殊角的三角函数值【专题解读】 要熟记特殊角的三角函数值.例4 计算|-3|+2 45°-1)0.分析 45°=2.解:原式=3+2-1+2.例5 计算-12⎛⎫- ⎪⎝⎭+(-1)2007- 60°.分析 60°=12.解:原式=12+3+(-1)-12=3-1=2.例6 计算||+( 60°- 30°)0分析 60°=12, 30,∴ 60°- 30°≠0,∴( 60°- 30°)0=1,+1十+1. 例7 计算312-⎛⎫⎪⎝⎭-(π-3.14)0-|1- 60°|-.分析 60解:原式=8-112=10.专题3 锐角三角函数及相关学问的综合运用【专题解读】 锐角三角函数常及其他学问综合起来运用,考察综合运用学问解决问题的实力. 例8 如图28-124所示,在△中,是边上的高,E 为边的中点,=14,=12, B =45. (1)求线段的长; (2)求∠的值. 分析 在△中,由=ADAB,可求得,从而求得.由直角三角形斜边上的中线等于斜边的一半,得=12=,则∠=∠C,所以求∠可以转化为求C. 解:(1)∵是边上的高,∴⊥在△中,B=ADAB.∵=12,B=45,∴=15,9.∵=14,∴=5.(2)在△中,∵=,∴=12=,∴∠=∠C∵C=ADDC=125,∴∠=C=125.例9 如图28-125所示,在△中,是边上的高,B=∠.(1)求证=;(2)若C=1213,=12,求的长.分析(1)利用锐角三角函数的定义可得=.(2)利用锐角三角函数及勾股定理可求得的长.证明:(1)∵是边上的高,∴⊥,∴∠=90°,∠=90°.在△和△中,∵B=ADBD,∠=ADAC,B=∠,∴ADBD=ADAC,∴=.解:(2)在△中,C=1213,设=12k,=13k,5k.∵=+,=,∴=13k+5k=18k.由已知=12,∴18k=12,k=23,∴=12k=12×23=8.例10 如图28-126所示,在△中,∠B=45°,∠C=30°,=30+分析过点A作⊥于D,把斜三角形转化为直角三角形,利用是两个直角三角形的公共边,设=x,把,用含x的式子表示出来,再由+=这一等量关系列方程,求得,则可在△中求得.解:过点A作⊥于D,设=x.在△中,=ADBD,∴=tan tan45AD ADB=︒=x,在△中,C=ADCD,∴=tanADC=tan30AD︒.又∵+=,=30+∴x=30+,∴x=30.在△中,B=AD AB,∴=30sin sin45ADB=︒.专题4 用锐角三角函数解决实际问题【专题解读】加强数学及实际生活的联络,进步数学的应用意识,培育应用数学的实力是当今数学改革的方向,围绕本章内容,纵观近几年各地的中考试题,及解直角三角形有关的应用问题逐步成为命题的热点,其主要类型有轮船定位问题、堤坝工程问题、建筑测量问题、高度测量问题等,解决各类应用问题时要留意把握各类图形的特征及解法.例13 如图28-131所示,我市某中学数学课外活动小组的同学利用所学学问去测量沱江流经我市某段的河宽.小凡同学在点A处观测到对岸C点,测得∠=45°,又在距A处60米远的B处测得∠=30°,请你依据这些数据算出河宽是多少?(结果保存小数点后两位)分析本题可作⊥,垂足为E,求出的长即为河宽.解:如图28-131所示,过点C作⊥于E,则即为河宽,设=x(米),则=x+60(米).在△中,30°=CEEB=60xx+,解得x=1)≈81.96(米).答:河宽约为81.96米.【解题策略】解本题的关键是设=x,然后依据=+列方程求解.例14 如图28-132所示,某边防巡逻队在一个海滨浴场岸边的A点处发觉海中的B点有人求救,便马上派三名救生员前去营救.1号救生员从A点干脆跳入海中;2号救生员沿岸边(岸边可以看成是直线)向前跑到C点再跳入海中;3号救生员沿岸边向前跑300米到离B点最近的D点,再跳入海中,救生员在岸上跑的速度都是6米/秒,在水中游泳的速度都是2米/秒.若∠=45°,∠=60°,三名救生员同时从A点动身,请说明谁先到达营救地点B.(1.41.7)分析在△中,已知∠A=45°和,可求,,在△中,可利用求出的和∠=60°求出,然后依据计算出的数据推断谁先到达.解:在△中,∠A=45°,∠D=90°,=300,∴==BDAD=45°,即=·45°=300.在△中,∠=60°,∠D=90°,∴==tan60BD︒=.1号救生员到达B点所用的时间为=210(秒),2号救生员到达B点所用的时间为=50+≈192(秒),3号救生员到达B点所用的时间为3006+3002=200(秒).∵192<200<210.∴2号求生员先到达营救地点B.【解题策略】本题为阅读理解题,题目中的数据比拟多,正确分析题意是解题的关键.例15 如图28-133所示,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在它的北偏东60°方向上,该货船航行30分钟后到达B处,此时再测得该岛在它的北偏东30°方向上;已知在C岛四周9海里的区域内有暗礁,若货船接着向正东方向航行,该货船有无触礁危急?试说明理由.分析本题可作⊥于点D,在△中求出即可.解:过点C作⊥,垂足为点D,由题意得∠=60°,∠=30°,∴∠=30°,∠=∠,∴==24×12=12(海里).在△中,=×60°=海里).∵9,∴货船接着向正东方向航行无触礁危急.【解题策略】此题事实上是通过⊙C(半径为9海里)及直线相离推断出无触礁危急.例16 如图28-134所示,某幢大楼顶部有一块广告牌,甲、乙两人分别在相距8米的A,B两处测得D点和C点的仰角分别为45°和60°,且A,B,F三点在一条直线上,若=15米,求这块广告牌的高度. 1.73,结果保存整数)分析由于=-,所以可分别在△和△中求,的长,从而得出结论.解:∵=8,=15,∴=23.在△中,∠=45°,∴==23.在△中,∠=60°,∴=·60°=∴=-=23≈3,即这块广告牌的高度约为3米.例17 如图28-135所示,某水库大坝的横断面是梯形,坝顶宽=2.5m,坝高4 m,背水坡的坡度是1:1,迎水坡的坡度是1:1.5,求坝底宽.分析坡度即坡角的正切值,所以分别过A,D两点向坝底引垂线,把梯形转化为两个直角三角形和一个矩形.解:过A作⊥于E,过D作⊥于F,由题意可知=1,C=1 1.5,在△中,=4,=AEBE=1,∴==4,在△中,==4,=11.5 DFCF,∴=1.5=1.5×4=6.又∵==2.5,∴=++=4+2.5+6=12.5.答:坝底宽为12.5 m.【解题策略】 背水坡是指,而迎水坡是指.例18 如图28-136所示,山顶建有一座铁塔,塔高=30m ,某人在点A 处测得塔底C 的仰角为20°,塔顶D 的仰角为23°,求此人距的程度间隔 .(参考数据: 20°≈0.342, 20°≈0.940, 20°≈0.364, 23°≈0.391, 23°≈0.921, 23°≈0.424)分析 要求的值,由于两个直角三角形中都只有角的已知条件,不能干脆求解,所以设为未知量,即用表示和,依据-==30,列出关于的方程.解:在△中,∠=20°,∴=∠= 20°.在△中,∠=23°,∴=∠= 23°.∴=-= 23°- 20°=( 23°- 20°).∴=tan 23tan 20CD ︒-︒≈300.4240.364-=500(m). 答:此人距的程度间隔 约为500 m .二、规律方法专题专题5 公式法【专题解读】 本章的公式许多,娴熟驾驭公式是解决问题的关键.例19 当0°<α<90°时,求的值.分析 由2α+2α=1,可得1-2α=2α解:∵2α+2α=1,∴2α=1-2α.|cos |cos αα==. ∵0°<a <90°,∴α>0.∴原式=cos cos αα=1. 【解题策略】 以上解法中,应用了关系式2α+2α=1(0°<α<90°),这一关系式在解题中常常用到,应当牢记,并敏捷运用.三、思想方法专题专题6 类比思想【专题解读】 求方程中未知数的过程叫做解方程,求直角三角形中未知元素的过程叫做解直角三角形,因此对解直角三角形的概念的理解可类比解方程的概念.我们可以像解方程(组)一样求直角三角形中的未知元素.例20 在△中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知a ,b ,解这个直角三角形.分析 已知两直角边长a ,b ,可由勾股定理c 求出c ,再利用 A =a c求出∠A ,进而求出∠B =90°-∠A .解:∵∠C =90°,∴a 2+b 2=c 2.∴c = 又∵ A =,∴∠A =30°.∴∠B =90°-∠A =60°.【解题策略】 除直角外,求出△中的全部未知元素就是解直角三角形.专题7 数形结合思想【专题解读】由“数”思“形”,由“形”想“数”,两者奇妙结合,起到互通、互译的作用,是解决几何问题常用的方法之一.例21 如图28-137所示,已知∠α的终边⊥,直线的方程为y=-33x+33,则α等于( )A.12B.22C.32D.33分析∵y=-33x+33,∴当x=0时,y=33,当y=0时,x=1,∴A(1,0),B,∴=33,=1,∴=22OB OA+=233,∴∠=12OBAB=. ∴⊥,∴∠α+∠=90°,又∵∠+∠=90°,∴∠α=∠.∴α=∠=12.故选A.专题8 分类探讨思想【专题解读】当结果不能确定,且有多种状况时,对每一种可能的状况都要进展探讨.例22 一条东西走向的高速马路上有两个加油站A,B,在A的北偏东45°方向上还有一个加油站C,C到高速马路的最短间隔是30 ,B,C间的间隔是60 .要经过C修一条笔直的马路及高速马路相交,使两路穿插口P到B,C的间隔相等,求穿插口P及加油站A的间隔.(结果可保存根号)解:①如图28-138(1)所示,在△中,∵=30,=60,∴∠B=30°.又=,∴∠=60°,∴=103.故=+=(30+103).②同理,如图28-138(2)所示,可求得=(30-103),故穿插口P及加油站A的间隔为(30+103)或(30-103).【解题策略】此题针对P点的位置分两种状况进展探讨,即点P在线段上或点P在线段的延长线上.专题9 转化思想例24 如图28-140所示,A,B两城市相距100 .现安排在这两座城市中间修筑一条高速马路(即线段),经测量,森林爱护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林爱护区的范围在以P点为圆心,50 为半径的圆形区域内.请问安排修筑的这条高速马路会不会穿越爱护区.为什么?(3 1.7322 1.414)解:过点P作⊥,C是垂足,则∠=30°,∠=45°,=· 30°,=· 45°,∵+=,∴· 30°+· 45°=100,∴+1)=100,∴=50(3≈50×(3-1.732)≈63.4>50.答:森林爱护区的中心及直线的间隔 大于爱护区的半径,所以安排修筑的这条高速马路不会穿越爱护区.例25 小鹃学完解直角三角形学问后,给同桌小艳出了一道题:“如图28-141所示,把一张长方形卡片放在每格宽度为12 的横格纸中,恰好四个顶点都在横格线上.已知α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(结果保存整数;参考数据: 36°≈0.6, 36°≈0.8, 36°≈0.7)解:作⊥l 于点E ,⊥l 于点F .∵α+∠=180°-∠=180°-90°=90°,∠+∠=90°,∴∠=α=36°.依据题意,得=24 ,=48 .在△中,α=BE AB , ∴=sin36BE ︒≈240.6=40(). 在△中,∠=DF AD , ∴=cos36DF ︒≈480.8=60(). ∴矩形的周长=2(40+60)=200().例26 如图28-142所示,某居民楼I 高20米,窗户朝南.该楼内一楼住户的窗台离地面间隔 为2米,窗户高1.8米.现安排在I 楼的正南方距1楼30米处新建一居民楼Ⅱ.当正午时刻太阳光线及地面成30°角时,要使Ⅱ楼的影子不影响I 楼全部住户的采光,新建Ⅱ楼最高只能盖多少米? 解:设正午时间线正好照在I 楼的一楼窗台处,此时新建居民楼Ⅱ高x 米.过C 作⊥l 于F ,在△中,=(x -2)米,=30米,∠=30°,∴ 30°=230x -,∴=2.答:新建居民楼Ⅱ最高只能建2)米.。
初三锐角三角函数知识点与典型例题
3 5 3 4
,那么 tanA 的值等于( D.
4 3
).
B.
4 5
C.
类型二 . 利用角度转化求值: 1.已知:如图, Rt △ ABC 中,∠ C = 90°. D 是 AC 边上一点, DE ⊥ AB 于 E 点. DE ∶ AE = 1 ∶ 2. 求: sin B、 cosB 、 tanB.
F
90 , AC
C
6 , D 为 AC 上一点,若
7. 如图 6 ,在等腰直角三角形
ABC 中,
C
tan DBA
1 5
,则
AD 的长为 ( )
A. C. 1
2
B D
.
2
.2 2
8. 如图 6 ,在 Rt △ ABC 中,∠ C=90 °, AC =8,∠ A 度数及边 BC 、 AB 的长 .
A
AD =
的顶点为 O ,它的一边在 x 轴的正半轴上,另一边 .
OA 上有
sin
4.( 2009 ・ 庆阳中考)如图,菱形 的面积 = cm .
2
ABCD 的边长为 10cm, DE ⊥ AB , sin A
3 5
,则这个菱形
5.( 2009 ・ 齐齐哈尔中考)如图, 径为
⊙ O 是 △ ABC 的外接圆, AD 是 ⊙O 的直径,若 ⊙ O 的半
(昌平) 1) . 计算: 2 cos 30
2 sin 45
tan 60 .
(朝阳) 2)计算: tan 60
sin 45
2
2 cos 30 .
( 2009 ・ 黄石中考)计算:
3 +(2 π - 1) -
-1
0
初三数学锐角三角函数含答案
初三数学锐角三角函数中考要求例题精讲模块一 三角函数基础一、锐角三角函数的定义如图所示,在Rt ABC △中,a 、b 、c 分别为A ∠、B ∠、C ∠的对边.(1)正弦:Rt ABC ∆中,锐角A 的对边与斜边的比叫做A ∠的正弦,记作sin A ,即sin aA c=. (2)余弦:Rt ABC ∆中,锐角A 的邻边与斜边的比叫做A ∠的余弦,记作cos A ,即cos b A c =. (3)正切:Rt ABC ∆中,锐角A 的对边与邻边的比叫做A ∠的正切,记作tan A ,即tan a A b=. 注意:① 正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义. ② sin A 、cos A 、tan A 分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为sin 与A 、cos 与A 、tan 与A 的乘积.③ 在直角三角形中,正弦、余弦、正切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边的比值,当这个锐角确定后,这些比值都是固定值.二、特殊角三角函数a A这些特殊角的三角函数值一定要牢牢记住! 三、锐角三角函数的取值范围在Rt ABC ∆中,90C ∠=︒,000a b c a c b c >>><<,,,,,又sin a A c =,cos b A c =,tan aA b=,所以 0sin 10cos 1tan 0A A A <<<<>,,. 四、三角函数关系 1.同角三角函数关系: 22sin cos 1A A +=,sin tan cos AA A= 2.互余角三角函数关系:(1) 任意锐角的正弦值等于它的余角的余弦值:()sin cos 90A A =︒-;(2) 任意锐角的余弦值等于它的余角的正弦值:()cos sin 90A A =︒-; (3) 任意锐角的正切值等于它的余角的余切值:()tan cot 90A A =︒-. 3.锐角三角函数值的变化规律:(1)A 、B 是锐角,若A >B ,则sin A >sin B ;若A <B ,则sin A <sin B(2) A 、B 是锐角,若A >B ,则cos A <cos B ;若A <B ,则cos A >cos B (3) A 、B 是锐角,若A >B ,则tan tan A B >;若A <B ,则tan tan A B < 【例1】 已知在ABC △中,A B ∠∠、是锐角,且5sin tan 22913A B AB cm ===,,,则ABC S =△ . 【解析】过C 作CD AB ⊥于D ,这样由三角函数定义得到线段的比:5sin tan 213CD CDA B AC BD====,, 设5132CD m AC m CD n BD n ====,,,,解题的关键是求出m n 、值.51222CD BD n m AD m ====, 所以529122922AB AD BD m m m =+=+==所以12101452ABC m CD S AB CD ===⋅=,,△ 小结:设ABC △中,a b c 、、为A B C ∠∠∠、、的对边,R 为ABC △外接圆的半径,不难证明:与锐角三角函数相关的几个重要结论:(1)111sin sin sin 222ABC S bc A ac B ab C ===△;(2)2sin sin sin a b c R A B C===. 【答案】145【巩固】如图,点A 在半径为R 的O 上,以A 为圆心,r 为半径作A ,设O 的弦PQ 与A 相切,求证PA QA ⋅为定值.【答案】证明线段乘积为定值,联想到三角形的面积,可以和三角函数联系起来.∵1sin 2APQ S PA QA A =⋅△,12APQ S r PQ =⋅△, ∴sin PA QA A r PQ ⋅⋅=⋅.在APQ △中,sin 2PQ A R =,∴2PQPA QA r PQ R⋅=⋅÷,∴2PA QA Rr ⋅=为定值.【例2】 求tan1tan2tan3tan89︒⋅︒⋅︒⋅⋅︒的值【答案】∵tan cot 1αα=,tan cot(90)αα=︒-∴tan1tan89tan1cot11︒︒=︒︒=,tan2tan88tan2cot 21︒︒=︒︒=, tan44tan46tan44cot 441︒︒=︒︒=,而tan451︒=,∴tan1tan2tan3tan891︒⋅︒⋅︒⋅⋅︒=.【巩固】化简:22sin cos sin 1tan sin cos αααααα++-- 【解析】原式()2222cos sin cos sin cos sin sin cos αααααααα+=+--22cos sin sin cos cos sin αααααα-==--. 【答案】sin cos αα-【例3】已知tan α1)221cos sin cos 1sin cos sin a ααααα-+-+(2090α︒<<︒).【答案】⑴221cos sin cos 1sin cos sin a ααααα-+-+()()222222sin sin sin sin cos sin sin cos sin cos cos 3cos cos cos sin cos cos cos sin cos sin sin αααααααααααααααααααααα⎛⎫+ ⎪++⎝⎭====+⎛⎫++ ⎪⎝⎭,1sin 2cos αα-=OQPA【巩固】已知tan 2α=,求4sin 2cos 5cos 3sin αααα-+.【答案】4sin 2cos 5cos 3sin αααα-+4sin 24226cos 3sin 532115cos αααα-⨯-===+⨯+.【例4】 已知α为锐角,且22sin 5cos 10αα-+=,求α的度数. 【答案】∵22sin cos 1αα+=∴22(1cos )5cos 10αα--+=,即:22cos 5cos 30αα+-=. ∴(2cos 1)(cos 3)0αα-+=. 解得:cos 3α=-或1cos 2α=. ∵0cos 1α≤≤,∴1cos 2α=,∴60α=︒. 【巩固】若α为锐角,且22cos 7sin 50αα+-=,求α的度数.【答案】由α为锐角,可知0sin 1α<<. 又由22cos 7sin 50αα+-=,22sin cos 1αα+=可知22sin 7sin 30αα-+=,解之得1sin 302αα=⇒=︒. 【例5】已知sin cos αα+(α为锐角),求作以1sin α和1cos α为两根的一元二次方程. 【解析】∵sin cos αα+=,两边平方得:22sin cos 2sin cos 2αααα++=又∵22sin cos 1αα+=,∴1sin cos 2αα⋅=.∴11sin cos sin cos sin cos αααααα++==112sin cos αα⋅= ∴以1sin α和1cos α为两根的一元二次方程为:220x -+=【答案】220x -+=【巩固】若方程222210x ax a -+-=的一个根是sin α,则它的另一个根必是cos α或cos α-. 【答案】不妨设方程的另一根为m ,由一元二次方程的根系关系可知sin m a α+=,21sin 2a m α-=, 故2(sin )1sin 2m m αα+-=,整理可得22sin (sin )1m m αα=+-,即22sin 1m α+=,又22sin cos 1αα+=,故cos m α=±.【巩固】已知:ABC △中,方程2(sin sin )(sin sin )(sin sin )0B A x A C x C B -+-+-=的两根相等,求证60B <︒. 【答案】两根相等则判别式为0,但是观察系数的规律,是否有其他的好办法呢?∵此方程系数之和为0,∴1x =必为此方程的根.又∵此方程两根相等,∴121x x ==,∴12sin sin 1sin sin C Bx x B A-==-.又由正弦定理,有c b b a -=-,∴2c ab +=. 再由余弦定理,有22222222()3()26212cos 22882c a a c c a ba c ca ca ca B caca ca ca ++-+-+--====≥.∴60B ︒≤,且等号不会成立,否则方程就不存在了.【巩固】在ABC △中,60A =︒,最大边与最小边的边长分别是方程2327320x x -+=的两个根,求ABC △的外接圆半径和内切圆的面积.【答案】题目中涉及到边长的关系,以及外接圆半径,这为正弦定理提供了便利条件.∵60A =︒,且显然此三角形有两边不等(即以已知方程为根的两边), ∴ABC △中,A 既不是最大角也不是最小角,不防设b 为最大边,c 为最小边, 由韦达定理,有3293b c bc +==,, 又由余弦定理,有:2222cos a b c bc A =+-222()3b c bc b c bc =+-=+- 813249=-=.∴7a =(7a =-舍去)又由正弦定理,有2sin aR A===∴7916a b c ++=+=. 1sin 2S bc A P r ==⋅(其中2a b cP ++=,r 为内切圆半径)即132822r =⨯,∴r =∴内切圆面积21ππ3S r ==.【例6】 若0°<θ<30°,且1sin 3km θ=+(k 为常数,且k <0),则m 的取值范是 . 【答案】∵0°<θ<30°∴sin 0°<sin θ<sin 30°,即0<sin θ<12∴0<13km +<12,所以1136km -<<,又因为0k <∴1163m k k<<-. 模块二 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形.二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切; 当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题. 六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等. 七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为hi l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. cb aC BA(3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位.【例7】 如图,某高层楼房与上海东方明珠电视塔隔江想望,甲、乙两学生分别在这楼房的A B ,两层,甲在A 层测得电视塔塔顶D 的仰角为α,塔底C 的俯角为β,乙在B 层测得塔顶D 的仰角为θ,由于塔底的视线被挡住,乙无法测得塔底的俯角,已知A B ,之间的高度差为a ,求电视塔高CD (用含a αβθ,,,的代数式表示)【解析】作AE CD ⊥于E ,BF CD ⊥于F ,设DE x = 在Rt ADE ∆中,由tan DE AE α=,得tan tan DE xAE αα==, 在Rt DBF ∆中,由tan DFBFθ=,得 tan tan DF x aBF θθ+==,因为AE BF =, 所以tan tan x x a αθ+=,解得tan tan tan a x αθα⋅=-,从而tan tan aAE θα=- 在Rt AEC ∆中,由tan EC AE β=,得tan tan tan tan a EC AE ββθα=⋅=- 所以()tan tan tan tan tan tan tan tan tan tan a a a CD DE EC αβαβθαθαθα+=+=+=--- 【答案】()tan tan tan tan a αβθα+-【例8】 一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5图(3)图(2)图(1)俯角仰角视线视线水平线铅垂线米的矩形. 现需将其整修并进行美化,方案如下:① 将背水坡AB 的坡度由1:0.75改为;② 用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花 .(1)求整修后背水坡面的面积;(2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?【答案】(1)作AE BC ⊥于E .∵ 原来的坡度是1:0.75,∴ 140.753AE EB == . 设4AE k =,3BE k =, ∴ 5AB k =, 又 ∵ 5AB =米, ∴1k =,则4AE =米 .设整修后的斜坡为AB ',由整修后坡度为,有AE EB =',∴∠AB E '=30°, ∴ 28AB AE '==米 . ∴ 整修后背水坡面面积为908720⨯=米2 . (2)将整修后的背水坡面分为9块相同的矩形,则每一区域的面积为80米2 .解法一:∵ 要依次相间地种植花草,有两种方案:第一种是种草5块,种花4块,需要20×5×80+25×4×80=16000元; 第二种是种花5块,种草4块,需要20×4×80+25×5×80=16400元 . ∴ 应选择种草5块、种花4块的方案,需要花费16000元 .解法二:∵ 要依次相间地种植花草,则必然有一种是5块,有一种是4块,而栽花的成本是每平方米25元,种草的成本是每平方米20元,∴ 两种方案中,选择种草5块、种花4块的方案花费较少 . 即:需要花费20×5×80+25×4×80=16000元 .【例9】 如图,在某海域内有三个港口A 、D 、C .港口C 在港口A 北偏东60︒方向上,港口D 在港口A北偏西60︒方向上.一艘船以每小时25海里的速度沿北偏东30︒的方向驶离A 港口3小时后到达B 点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B 处测得港口C 在B 处的南偏东75︒方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B 处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.DCBA【解析】连结AC、AD、BC、BD,延长AT,过B作BT AT⊥于T,AC与BT交于点E.过B作BP AC⊥于点P.由已知得90BAD∠=︒,30BAC∠=︒,32575AB=⨯=(海里),在BEP∆和AET∆中,90BPE ATE∠=∠=︒,AET BEP∠=∠,∴30EBP EAT∠=∠=︒.∵60BAT∠=︒,∴30BAP∠=︒,从而17537.52BP=⨯=(海里).∵港口C在B处的南偏东75︒方向上,∴45CBP∠=︒.在等腰Rt CBP∆中,BC==,∴BC<AB.BAD∆是Rt∆,∴BD AB>.综上,可得港口C离B点位置最近.∴此船应转向南偏东75︒方向上直接驶向港口C.设由B驶向港口C船的速度为每小时x海里,548)5÷⨯-<7,解不等式,得x>.答:此船应转向沿南偏东75︒的方向向港口C航行,且航行速度至少不低于每小时能保证船在抵达港口前不会沉没.【答案】此船应转向沿南偏东75︒的方向向港口C航行,且航行速度至少不低于每小时证船在抵达港口前不会沉没.【巩固】海面上B处有一货轮正在向正南方向航行,其航行路线是当它到达正南方C时,在驶向正西方的目的地A处,且200CA CB==海里,在AB中点O处有一客轮,其速度为货轮的一半,现在客轮要截住货轮取一件货物,于是选择某一航向行驶去截住货轮,那么当客轮截住客轮时至少航行了多少海里,它所选择了怎样的方向角?(路程保留整数海里,角度精确到度)【解析】如图,由题意可知,ABC∆为等腰直角三角形,假设客轮截住货轮的地点在BC边上时,过OD BC⊥于D,OD为客轮到达BC边的最短距离,即客轮航行的路程为OD,由货轮速度为客轮的2倍可知,货轮航行的距离为2OD BC=,即货轮此时到达了C点,∴客轮截住货轮的地点不可能在BC边上.∴客轮截住货轮的地点在AC 边上.设在AC 边上的F 点两船相遇,设客轮航行的距离为x ,即OE x =,则2BC CE x +=, ∴2200CE x =-,过O 作OF AC ⊥于F ,则11002OF BC ==海里,11002FC AC ==海里, ∴3002EF x =-在Rt DEF ∆中,222OF EF OE +=, 即222100(3002)x x +-=,解得x =1282x ≈,2118x ≈∴141OE OA ≤=∴1282x ≈不符合题意,∴118x ≈ 即当客轮截住货轮时,航行了118海里. 在Rt OEF ∆中,100cos 0.8475118EOF ∠=≈ ∴32EOF ∠=︒∴客轮的航行方向应为南偏东32︒.【答案】客轮的航行方向应为南偏东32︒课堂检测1. (辽宁竞赛)如图,湖心岛上有一凉亭,现欲利用湖岸边的开阔平整地带,测量凉亭顶端到湖面所在平面的高度AB (见示意图),可供使用的工具有测倾器、皮尺.(1)请你根据现有条件,设计一个测量凉亭顶端到湖面所在平面的高度AB 的方案,画出测量方案的平面示意图,并将测量的数据标注在图形上(所测的距离用m ,n 表示,角用α,β表示,测倾器高度忽略不计);(2)根据你所测量的数据,计算凉亭到湖面的高度AB (用字母表示).F EDOC BA【解析】(1)如图所示,在点C 测得ACB α∠=,在点D 测得ADB β∠=,测得DC m =(2)在Rt ABC ∆中,设AB x =,tan x BC α=在Rt ABD ∆中,tan xBD β= BD BC m -=, 即tan tan x xm βα-= 解得tan tan tan tan x m αβαβ⋅=-【答案】(1)DC m =;(2)tan tan tan tan m αβαβ⋅-2. 化简:222tan1tan 2....tan89sin 1sin 2...sin 89︒⋅︒︒︒+︒++︒【解析】tan1tan2....tan89tan451︒⋅︒︒=︒=()()22222222sin 1sin 2...sin 89sin 1cos 1sin 2cos 2...sin 45︒+︒++︒=︒+︒+︒+︒++︒1894422=+=,故原式289=. 【答案】2893. 如图1、图2,是一款家用的垃圾桶,踏板AB (与地面平行)或绕定点P (固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持''AP A P BP B P ==,).通过向下踩踏点A 到'A (与地面接触点)使点B 上升到点'B ,与此同时传动杆BH 运动到''B H 的位置,点H 绕固定点D 旋转(DH 为旋转半径)至点'H ,从而使桶盖打开一个张角'HDH ∠.如图3,桶盖打开后,传动杆''H B 所在的直线分别与水平直线AB DH 、垂直,垂足为点M C 、,设''H C B M =.测得6cm 12cm '8cm AP PB DH ===,,.要使桶盖张开的角度'HDH ∠不小于60︒,那么踏板AB 离地面的高度至少等于多少cm ?(结果保留两位有效数字)【解析】过点'A 作'A N AB ⊥垂足为N 点,在Rt 'H CD ∆中, 若'HDH ∠不小于60︒, 则'3sin 60'H C H D ≥︒=, 即3''43H C H D ≥=, ∴''43B M H C =≥, ∵Rt 'Rt 'A NP B MP ∆∆∽ ∴''''A N A PB M B P=, ∴''643'23 3.5cm 'A P B M A N B P ⋅⨯=≥=≈,∴踏板AB 离地面的高度至少等于3.5cm .【答案】踏板AB 离地面的高度至少等于3.5cm课后作业1. 化简求值:1sin 1sin 1cos 1cos 1sin 1sin 1cos 1cos αααααααα⎛⎫⎛⎫-+-+-- ⎪⎪ ⎪⎪+-+-⎝⎭⎝⎭(090α︒<<︒) 【解析】原式()()()()222222221sin 1sin 1cos 1cos 1sin 1sin 1cos 1cos αααααααα⎡⎤⎡⎤-+-+⎢⎥⎢⎥=-⋅-⎢⎥⎢⎥----⎣⎦⎣⎦由090α︒<<︒可知,0cos 1α<<,0sin 1α<<.故原式1sin 1sin 1cos 1cos cos cos sin sin αααααααα-+-+⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭2sin 2cos 4cos sin αααα--=⋅=. 图3图2C MAA'P BB'HDH'H'DHB'BPA'A(图1)NCMA'PBB'HDH'【答案】42. 若045α︒<<︒,且sin cos αα=sin α的值. 【解析】方法1:由2263sin cos sin cos 256αααα==,结合22sin cos 1αα+=,可得 2226397sin (1sin )sin 2561616ααα-=⇒=或. 由045α︒<<︒可知221sin sin 452α<︒=,故27sin sin 16αα=⇒=. 方法2:由sin cos 2sin cos αααα=,结合22sin cos 1αα+=,可得sin cos αα+==cos sin αα-=,故sin α.3. (2011甘肃兰州)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图①在ABC △中,AB AC =,顶角A 的正对记作sadA ,这时=BCsadA AB=底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题: (1)60sad ︒= .(2)对于0180A ︒<<︒,∠A 的正对值sadA 的取值范围是 . (3)如图②,已知3sin 5A =,其中A ∠为锐角,试求sadA 的值.【解析】(1)1(2)02sadA <<(3)设53AB a BC a ==,,则4AC a =.在AB 上取4AD AC a ==,作DE AC ⊥于点E . 则312416164sin 4cos 44555555DE AD A a a AE AD A a a CE a a =⋅=⋅==⋅=⋅==-=,,,CD =图②图①C BAC B A∴CDsadAAC==EDCBA。
锐角三角形函数公式表
锐角三角形函数公式表锐角三角形是指其中的一个角小于90度的三角形。
在解决与锐角三角形相关的问题时,我们常常需要使用各种函数公式来求解。
本文将为您介绍一些与锐角三角形相关的函数公式,帮助您更好地理解和应用它们。
1. 正弦函数公式在锐角三角形中,正弦函数可以用来描述任意一个角的正弦值与其对边与斜边的比值。
正弦函数公式如下:sin A = a / c其中,A为锐角三角形的一个角,a为该角的对边长度,c为斜边的长度。
2. 余弦函数公式余弦函数可以用来描述锐角三角形中任意一个角的余弦值与其邻边与斜边的比值。
余弦函数公式如下:cos A = b / c其中,A为锐角三角形的一个角,b为该角的邻边长度,c为斜边的长度。
3. 正切函数公式正切函数可以用来描述锐角三角形中任意一个角的正切值与其对边与邻边的比值。
正切函数公式如下:tan A = a / b其中,A为锐角三角形的一个角,a为该角的对边长度,b为该角的邻边长度。
4. 余切函数公式余切函数可以用来描述锐角三角形中任意一个角的余切值与其邻边与对边的比值。
余切函数公式如下:cot A = b / a其中,A为锐角三角形的一个角,b为该角的邻边长度,a为该角的对边长度。
5. 正割函数公式正割函数可以用来描述锐角三角形中任意一个角的正割值与其斜边与邻边的比值。
正割函数公式如下:sec A = c / b其中,A为锐角三角形的一个角,c为斜边的长度,b为该角的邻边长度。
6. 余割函数公式余割函数可以用来描述锐角三角形中任意一个角的余割值与其斜边与对边的比值。
余割函数公式如下:csc A = c / a其中,A为锐角三角形的一个角,c为斜边的长度,a为该角的对边长度。
通过使用上述的函数公式,我们可以在解决与锐角三角形相关的问题时进行计算和推导。
这些函数公式在物理、工程、天文等领域具有广泛的应用,能够帮助我们求解各种实际问题。
需要注意的是,在使用这些函数公式时,我们需要确保所使用的角度单位与函数公式中的角度单位一致。
(完整版)初三锐角三角函数知识点与典型例题(可编辑修改word版)
锐角三角函数:知识点一:锐角三角函数的定义:一、锐角三角函数定义:在Rt△ABC 中,∠C=900, ∠A、∠B、∠C 的对边分别为a、b、c,则∠A 的正弦可表示为:sinA= ,∠A 的余弦可表示为cosA=∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数【特别提醒:1、sinA、∠cosA、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】例1.如图所示,在Rt△ABC 中,∠C=90°.①sin A =(②cos A =()=,对对)=,对对第 1 题图sin B =(cos B =()=;对对)=;对对③tan A =( )=,∠A对对对例2. 锐角三角函数求值:tan B =∠B对对对=.( )在Rt△ABC 中,∠C=90°,若a=9,b=12,则c=,sin A=,cos A=,tan A=,sin B=,cos B=,tan B=.例3.已知:如图,Rt△TNM 中,∠TMN=90°,MR⊥TN 于R 点,TN=4,MN=3.求:sin∠TMR、cos∠TMR、tan∠TMR.典型例题:类型一:直角三角形求值5 1. 已知 Rt △ABC 中, ∠C = 90︒, tan A = 3, BC = 12, 4求AC 、AB 和 cos B .2. 已知:如图,⊙O 的半径 OA =16cm ,OC ⊥AB 于 C 点, sin ∠AOC = 3⋅4求:AB 及 OC 的长.3. 已知:⊙O 中,OC ⊥AB 于 C 点,AB =16cm , sin ∠AOC = 3⋅5(1) 求⊙O 的半径 OA 的长及弦心距 OC ; (2) 求 cos ∠AOC 及 tan ∠AOC .4. 已知∠A 是锐角, sin A = 8 17,求cos A , tan A 的值对应训练:(西城北)3.在 Rt △ABC 中,∠ C =90°,若 BC =1,AB = ,则 tan A 的值为A.55B. 2 55C.12D .2(房ft )5.在△ABC 中,∠C =90°,sin A= 3,那么 tan A 的值等于().5A. 3 5B. 4 5C. 3 4D.4 3类型二. 利用角度转化求值:1. 已知:如图,Rt △ABC 中,∠C =90°.D 是 AC 边上一点,DE ⊥AB 于 E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .32.如图,直径为10的⊙A 经过点C(0对5) 和点O(0对0) ,与x 轴的正半轴交于点D,B 是y 轴右侧圆弧上一点,则cos∠OBC 的值为()1 3A.B.2 2C.3D.45 5yCAO D xB图 8图图3.(2009·孝感中考)如图,角的顶点为O,它的一边在x 轴的正半轴上,另一边OA 上有一点P(3,4),则sin=.4.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm,DE⊥AB,sin A =,则这个菱形5 的面积= cm2.5.(2009·齐齐哈尔中考)如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的3半径为2,AC = 2 ,则sin B 的值是()2 3 3 4A.B.C.D.3 24 3F2 3 6. 如图 4,沿 AE 折叠矩形纸片 ABCD ,使点 D 落在 BC 边的点 F 处.已知 AB = 8 , BC = 10 ,AB=8,则 tan ∠EFC 的值为 ( )ADE 3 4 34 BCA.B.C.D.43557. 如图 6,在等腰直角三角形∆ABC 中, ∠C = 90︒ , AC = 6 , D 为 AC 上一点,若tan ∠DBA = 15,则 AD 的长为()A.B . 2C.1 D . 28. 如图 6,在 Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线 AD = 1633求 ∠B 的度数及边 BC 、AB 的长.ACDB图 6类型三. 化斜三角形为直角三角形例 1 (2012•安徽)如图,在△ABC 中,∠A=30°,∠B=45°,AC=2 ,求 AB 的长.例 2.已知:如图,△ABC 中,AC =12cm ,AB =16cm , sin A = 1⋅3(1)求 AB 边上的高 CD ; (2)求△ABC 的面积 S ; (3)求 tan B .23 33例3.已知:如图,在△ABC 中,∠BAC=120°,AB=10,AC=5.求:sin∠ABC 的值.对应训练1.(2012•重庆)如图,在Rt△ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)2.已知:如图,△ABC 中,AB=9,BC=6,△ABC 的面积等于9,求sin B.3.ABC 中,∠A=60°,AB=6 cm,AC=4 cm,则△ABC 的面积是A.2 cm2B.4 cm2C.6 cm2D.12 cm2类型四:利用网格构造直角三角形例1 (2012•内江)如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为()1 5A.B.2 5C.1010D.2 55对应练习:1.如图,△ABC 的顶点都在方格纸的格点上,则sin A = .CA B2.如图,A、B、C 三点在正方形网络线的交点处,若将∆ABC 绕着点A 逆时针旋转得到∆AC' B',则tan B' 的值为1 1 1A. B. C.4 3 2D. 13.正方形网格中,∠AOB 如图放置,则tan∠AOB 的值是()A.52B.51C. D. 22特殊角的三角函数值锐角30°45°60°sincostan当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而例1.求下列各式的值.(昌平)1).计算:2 cos 30︒+ 2 sin 45︒- tan 60︒.(朝阳)2)计算:tan 60︒+ sin2 45︒- 2 cos 30︒.(2009·黄石中考)计算:3-1+(2π-1)0-3tan30°-tan45°3AO B33(石景ft)4.计算:⎛+ 2 cos 60︒+ sin 45︒-⎝⎫0tan 30︒⎪.2 ⎭tan 45︒+ sin 30︒ (通县)5.计算:;1- cos 60︒例2.求适合下列条件的锐角.(1)cos=12 (2)tan=3(3) s in 2=22(4) 6 cos(- 16 ) = 3(5)已知为锐角,且tan(+300)=,求tan的值(6)在∆ABC 中,若cos A -+(sin B -2)2= 0 ,∠A,∠B 都是锐角,求∠C 的度数.2例3. 三角函数的增减性1.已知∠A 为锐角,且sin A < 1,那么∠A 的取值范围是2A. 0°< A < 30°B. 30°< A <60°C. 60°< A < 90°D. 30°< A < 90°2.已知A 为锐角,且cos A < sin 300,则()A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90°例4. 三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE⊥AB 于E,BE=16cm,sin A =12⋅ 13123123求此菱形的周长.2. 已知:如图,Rt △ABC 中,∠C =90°, AC = BC=于 D 点,求:(1) ∠BAD ;(2) sin ∠BAD 、cos ∠BAD 和 tan ∠BAD .,作∠DAC =30°,AD 交 CB3. 已知:如图△ABC 中,D 为 BC 中点,且∠BAD =90°, tan ∠B =CAD 、tan ∠CAD .1 ,求:sin ∠CAD 、cos ∠34. 如图,在 Rt △ABC 中,∠C=90°, sin B = 3,点 D 在 BC 边上,DC= AC = 6,求 tan ∠BAD5的值.ABDC5.(本小题5 分)如图,△ABC 中,∠A=30°, tan B =2C, AC = 4 .求 AB 的长.AB解直角三角形:3 333 1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示):在 Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c ,①三边之间的等量关系: . ②两锐角之间的关系: .③边与角之间的关系:sin A = cos B =; cos A = sin B = ; tan A =1 =tan B1;tan A= tan B =.④直角三角形中成比例的线段(如图所示). 在 Rt △ABC 中,∠C =90°,CD ⊥AB 于 D . CD 2= ;AC 2= ; BC 2= ;AC ·BC = .类型一例 1.在 Rt △ABC 中,∠C =90°.(1)已知:a =35, c = 35 ,求∠A 、∠B ,b ;(2)已知: a = 2 , b = 2 ,求∠A 、∠B ,c ;(3)已知: sin A =2 , c = 6 ,求 a 、b ;3(4)已知: tan B = 3, b = 9, 2求 a 、c ;(5)已知:∠A =60°,△ABC 的面积 S = 12 3, 求 a 、b 、c 及∠B .2例2.已知:如图,△ABC 中,∠A=30°,∠B=60°,AC=10cm.求AB 及BC 的长.例3.已知:如图,Rt△ABC 中,∠D=90°,∠B=45°,∠ACD=60°.BC=10cm.求AD 的长.例4.已知:如图,△ABC 中,∠A=30°,∠B=135°,AC=10cm.求AB 及BC 的长.类型二:解直角三角形的实际应用仰角与俯角:例1.(2012•福州)如图,从热气球C 处测得地面A、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100 米,点A、D、B 在同一直线上,则AB 两点的距离是()A.200 米B.200 米C.220 米D.100()米例2.已知:如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC=60°,∠DAE=45 °.点D 到地面的垂直距离DE 3 2m ,求点 B 到地面的垂直距离BC.例3(昌平)19.如图,一风力发电装置竖立在小ft顶上,小ft的高BD=30m.从水平面上一点C 测得风力发电装置的顶端A 的仰角∠DCA=60°,测得ft顶B 的仰角∠DCB=30°,求风力发电装置的高AB 的长.ADB E例4 .如图,小聪用一块有一个锐角为30 的直角三角板测量树C高,已知小聪和树都与地面垂直,且相距3AB 为1.7 米,求这棵树的高度.米,小聪身高例5.已知:如图,河旁有一座小ft,从ft顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50m.现需从ft顶A 到河对岸点C 拉一条笔直的缆绳AC,求ft的高度及缆绳AC 的长(答案可带根号).例5.(2012•泰安)如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20 米,到达点C,再次测得点A 的仰角为60°,则物体AB 的高度为()C.20 米D.米例6.(2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC)为30 米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8 秒,∠BAC=75°.(1)求B、C 两点的距离;(2)请判断此车是否超过了益阳大道60 千米/小时的限制速度?(计算时距离精确到1 米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,≈1.732,60 千米/小时≈16.7 米/秒)3A.10 米B.10 米33 3 3类型四. 坡度与坡角例.(2012•广安)如图,某水库堤坝横断面迎水坡 AB 的坡比是 1: ,堤坝高 BC=50m ,则应水坡面 AB 的长度是( ) A .100mB .100 mC .150mD .50 m类型五. 方位角1. 已知:如图,一艘货轮向正北方向航行,在点 A 处测得灯塔 M 在北偏西 30°,货轮以每小时 20 海里的速度航行,1 小时后到达 B 处,测得灯塔 M 在北偏西 45°,问该货轮 继续向北航行时,与灯塔 M 之间的最短距离是多少?(精确到 0.1 海里,1.732 )2.(2012•恩施州)新闻链接,据[侨报网讯]外国炮艇在南海追袭中国渔船被中国渔政逼退2012 年 5 月 18 日,某国 3 艘炮艇追袭 5 条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政 310” 船人船未歇立即追往北纬 11 度 22 分、东经 110 度 45 分附近海域护渔,保护 100 多名中国 渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.(见图 1)324解决问题如图 2,已知“中国渔政 310”船(A )接到陆地指挥中心(B )命令时,渔船(C )位于陆地指挥中心正南方向,位于“中国渔政 310”船西南方向,“中国渔政 310”船位于陆地指挥中心南偏东 60°方向,AB=海里,“中国渔政 310”船最大航速 20 海里/时.根据以上信息,请你求出“中国渔政 310”船赶往出事地点需要多少时间.综合题:三角函数与四边形:(西城二模)1.如图,四边形 ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2,6tan ∠BDC= 3.(1) 求 BD 的长; (2) 求 AD 的长.(2011 东一)18.如图,在平行四边形 ABCD 中,过点 A 分别作 AE ⊥BC 于点 E ,AF ⊥CD 于点 F .(1) 求证: ∠BAE =∠DAF ;(2) 若 AE =4,AF =,s in ∠BAE = 53 ,求 CF 的长.5三角函数与圆:1. 如图,直径为 10 的⊙A 经过点C (0对5) 和点O (0对0) ,与 x 轴的正半轴交于点 D ,B 是 y轴右侧圆弧上一点,则 cos ∠OBC 的值为()1 3 A.B .22C .3D . 45 5yC AOD xB图 8图图5 DO4(延庆)19. 已知:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接 AC 与⊙O 交于点 D, (1) 求证:∠AOD=2∠CC4 (2) 若 AD=8,tanC= ,求⊙O 的半径。
初中锐角三角函数
初中锐角三角函数正弦函数是指在锐角三角形中,对于任意角度A,正弦函数的值等于以A为角度的对边与斜边的比值。
正弦函数用符号“sin”表示。
余弦函数是指在锐角三角形中,对于任意角度A,余弦函数的值等于以A为角度的邻边与斜边的比值。
余弦函数用符号“cos”表示。
正切函数是指在锐角三角形中,对于任意角度A,正切函数的值等于以A为角度的对边与邻边的比值。
正切函数用符号“tan”表示。
这三个函数在数学中非常重要,应用广泛。
正弦函数和余弦函数的性质很相似。
它们的取值范围都在-1到1之间。
对于一个锐角三角形,从其中一条边的两个特定点A和B出发,我们可以定义经过点A和点B的直线与垂直边之间的夹角为θ,那么sinθ就等于点B到垂直边的距离与斜边的长度之比,cosθ等于点A到垂直边的距离与斜边的长度之比。
正切函数的性质则略有不同。
它的取值范围是正负无穷大。
其中,tanθ等于点B到垂直边的距离与点A到垂直边的距离的比值。
如果θ接近于90度(对应锐角三角形中的直角),tanθ的值将趋于无穷大。
初中锐角三角函数的运用非常广泛。
在几何学中,可以通过锐角三角函数来求解各种三角形的边长和角度大小。
在物理学和工程学中,锐角三角函数也被广泛用于计算机绘图、声音和光学等领域。
此外,在三角函数的应用中,人们还会用到其它一些相关的概念和运算,如正弦定理、余弦定理等。
总之,在中学教育中,锐角三角函数被认为是数学的基础知识之一、它的运用不仅帮助我们理解和解决各类几何问题,也为我们打开了更深入的数学和科学方面的研究之门。
通过掌握锐角三角函数的定义和性质,我们可以更好地理解三角学的概念和方法,并将它们应用到实际生活和学术领域中。
无论是数学还是物理、工程领域,锐角三角函数都是不可或缺的基础知识。
初三数学锐角三角函数试题答案及解析
初三数学锐角三角函数试题答案及解析1.(2014山东德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1︰2,则斜坡AB的长为()A.米B.米C.米D.24米【答案】B【解析】∵斜面坡度为1︰2,∴在Rt△ABC中,BC︰AC=1︰2,∴米,由勾股定理得米,故选B.2.(2013湖北十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A,B两点间的距离为________米.【答案】【解析】如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°-30°=45°,AC =30×25=750(米),∴米.在Rt△ABD中,易知∠B=30°,∴米.3.如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米的速度收绳.问:(1)未开始收绳子的时候,图中绳子BC的长度是多少米?(2)收绳8秒后船向岸边移动了多少米?(结果保留根号)【答案】见解析【解析】(1)在Rt△ABC中,,∴(米),∴绳子BC的长度是10米.(2)未收绳时,(米),收绳8秒后,绳子BC缩短了4米,只剩6米,这时,船与河岸的距离为(米),∴船向岸边移动的距离为米.4. (2014江苏无锡)如图,在□ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于________.【答案】【解析】如图,在直角△AOE中,,∴.又∵四边形ABCD是平行四边形,∴.5. (2014四川宜宾)规定:sin(-x)=-sinx,cos(-x)=cosx,sin(x+y)=sinx·cosy+cosx·siny.据此判断下列等式中成立的是________(写出所有正确的序号).①;②;③sin2x=2sinx·cosx;④sin(x-y)=sinx·cosy-cosx·siny.【答案】②③④【解析】①,故①错误;②sin75°=sin(30°+45°)=sin30°·cos45°+cos30°·sin45°,故②正确;③sin2x=sinx·cosx+cosx·sinx=2sinx·cosx,故③正确;④sin(x-y)=sinx·cos(-y)+cosx·sin(-y)=sinx·cosy-cosx·siny,故④正确.6. (2014浙江绍兴)某校九(1)班的同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图①,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求α的度数.(2)如图②,第二小组用皮尺量得EF的长为16米(E为护墙上的端点),EF的中点距离地面FB的高度为1.9米,请你求出E点距离地面FB的高度.(3)如图③,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P处测得旗杆顶端A的仰角为45°,向前走4米到达点Q处,测得A的仰角为60°,求旗杆的高度AE(精确到0.1米.参考数据:tan60°≈1.732,tan30°≈0.577,,).【解析】(1)∵BD=BC,∴∠CDB=∠DCB,∴α=2∠CDB=2×38°=76°.(2)设EF的中点为M,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,如图①.∴MN∥EH,又M为EF的中点,∴MN为△EFH的中位线,又∵MN=1.9米,∴EH=2MN=3.8米,∴E点距离地面FB的高度是3.8米.(3)延长AE,交PB于点C,如图②.设AE=x米,则AC=(x+3.8)米.∵∠APB=45°,∴PC=AC=(x+3.8)米.∵PQ=4米,∴CQ=x+3.8-4=(x-0.2)米.∵,∴,解得x≈5.7,即AE≈5.7米.答:旗杆的高度AE约为5.7米.7.(2014黑龙江大庆)如图,矩形ABCD中,,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=________.【答案】【解析】∵∠GAF=∠F=20°,∴∠AGC=∠ACG=40°,∴∠CAG=100°,∴∠DAC=60°,∴,∵,∴.8.如图所示,在△ABC中,∠C=90°,,D为AC上一点,∠BDC=45°,DC=6,求AB的长.【答案】15【解析】先解直角三角形BCD,求得BC=DC=6,再解直角三角形ABC,由正弦的定义可得,从而得.所以在较复杂的图形中求线段的长度时,有时要通过两次或更多次解直角三角形才能达到目的.因为∠C=90°,∠BDC=45°,所以∠DBC=45°,所以BC=DC=6.在Rt△ABC中,,所以,即AB的长为15.9. (2014江西抚州)如图①所示的晾衣架,支架的基本图形是菱形,其示意图如图②,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均为20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C,D两点间的距离.(2)当∠CED由60°变为120°时,点A向左移动了多少厘米?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据:,可使用科学计算器)【答案】(1)20cm(2)43.9cm(3)20≤x≤34.6【解析】(1)连接CD(如图①).∵CE=DE,∠CED=60°,∴△CED是等边三角形,∴CD=DE=20cm.(2)连接CD,根据题意得AB=BC=CD,当∠CED=60°时,AD=3CD=60cm.当∠CED=120°时,过点E作EH⊥CD于H(如图②),则∠CEH=60°,CH=HD.在Rt△CHE中,.∴(cm),∴cm,∴(cm).∴点A向左大约移动了103.9-60=43.9(cm).(3)连接CD,当∠CED=120°时,∠DEG=60°.又∵DE=EG,∴△DEG是等边三角形,∴DG=DE=20cm当∠CED=60°时(如图③),∠DEG=120°,过点E作EI⊥DG于点I.∵DE=EG.∴∠DEI=∠GEI=60°,DI=IG.在Rt△DIE中,,∴(cm).∴(cm).故x的取值范围是20≤x≤34.6.10. (2014贵州黔东南)某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校旗杆的高,小明站在点B处测得旗杆顶端E点的仰角为45°,小军站在点D处测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF.(结果精确到0.1米,参考数据:,)【答案】10.3米【解析】过点A作AM⊥EF于M,过点C作CN⊥EF于N,则MN=0.25米.∵∠EAM=45°,∴AM=ME.设AM=ME=x米,则CN=(x+6)米,EN=(x-0.25)米.∵∠ECN=30°,∴,解得x≈8.8,则EF=EM+MF≈8.8+1.5=10.3(米).∴旗杆的高EF约为10.3米.11.(2014四川广安)为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB的长为米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为,求休闲平台DE的长.(2)一座建筑物距离A点33米远(即AG=33米),小亮在D点处测得建筑物顶部H的仰角(即∠HDM)为30°.点B,C,A,G,H在同一个平面内,点C,A,G在同一条直线上,且HG⊥CG.问:建筑物的高GH为多少米?【答案】(1)米(2)米【解析】(1)∵FM∥CG,∴∠BDF=∠BAC=45°,∴BF=DF.∵斜坡AB的长为米,D是AB的中点,∴米,∴(米),∴BF=DF=30米.∵斜坡BE的坡比为,∴,∴(米),∴米.(2)由题意及(1)知CF=BF=AP=30米,又四边形MGCF为矩形,∴GM=FC=30米.设GH=x米,则MH=GH-GM=(x-30)米,DM=AG+AP=33+30=63(米).在Rt△DMH中,,即,解得.∴建筑物的高GH为米.12.(2014江苏镇江)如图,小明从点A出发,沿着坡角为α的斜坡向上走了0.65千米到达点B,,然后又沿着坡度为i=1︰4的斜坡向上走了1千米到达点C.问小明从A点到C点上升的高度CD是多少千米(结果保留根号)?【答案】【解析】如图,作BE⊥AD于E,BF⊥CD于F,则,∴.∵,∴设CF=x,则BF=4x,∴,∴.∵BE⊥AD,BF⊥CD,CD⊥AD,∴四边形BEDF是矩形,∴BE=DF.∴.答:小明从A点到C点上升的高度CD是千米.13.如图,在Rt△ABC中,∠C=90°,BC=8,,点D在BC上,且BD=AD.求AC 的长和cos∠ADC的值.【答案】4;【解析】在Rt△ABC中,∵BC=8,,∴AC=4.设AD=x,则BD=x,CD=8-x,由勾股定理,得(8-x)2+42=x2.解得x=5.∴.14.计算:(1);(2).【答案】(1)(2)1【解析】准确地掌握30°,45°,60°角的正弦、余弦、正切值是解题的关键.解:(1)(2).15.根据下列条件,求α的度数.(1)0°<α<90°,;(2)0°<α<90°,tan2α+2tanα-3=0.【答案】(1)60°(2)45°【解析】(1)因为,所以.又0°<α<90°,所以α=60°.(2)因为tan2α+2tanα-3=0,所以(tanα+3)·(tanα-1)=0,即tanα=-3或tanα=1,因为0°<α<90°,所以tanα>0,所以tanα=1,所以α=45°.16. (2014福建厦门)sin30°的值是( )A.B.C.D.1【答案】A【解析】直接根据特殊角的三角函数值进行计算即可..故选A.17. (2014贵州贵阳)在Rt△ABC中,∠C=90°,AC=12,BC=5,则sinA的值为( ) A.B.C.D.【答案】D【解析】如图所示,∵∠C=90°,AC=12,BC=5,∴,∴.18. (2014内蒙古包头)计算sin245°+cos30°·tan60°的结果是( )A.2B.1C.D.【答案】A【解析】原式.19.计算:(1).(2)cos245°+tan30°·sin60°=________.【答案】(1)2 (2)1【解析】(1).(2).20.用计算器求下列各式的值(结果保留小数点后四位):(1)sin89°;(2)cos45.32°;(3)tan60°25′41″;(4)sin67°28′35″.【答案】(1)0.9998 (2)0.7031 (3)1.7623 (4)0.9237【解析】(1)按键顺序为,显示结果为0.999847695,∴sin89°≈0.9998.(2)按键顺序为,显示结果为0.703146544,∴cos45.32°≈0.7031.(3)按键顺序为,显示结果为1.762327064,∴tan60°25′41″≈1.7623.(4)按键顺序为,显示结果为0.923721753,∴sin67°28′35″≈0.9237.。
初三数学家庭作业 锐角三角函数的简单运用
初三数学家庭作业第七章 锐角三角函数7.6 锐角三角函数的简单应用(3)一、知识要点1、如图,我们通常把坡面的铅直高度h 与水平宽度l 的比叫做_______,用字母i 表示,即lh i,坡度一般写成1:m 的形式(比的前项为1,后项可以是小数).2、坡角:___________________3、坡度与坡角(α)的关系:i =______,说明坡角越大,坡度也越小,坡面越陡.二、基础训练1、如图,防洪大堤的横断面是梯形,坝高AC 等于6m ,背水坡AB 的坡度i =1:2,则斜坡AB 的长为_____m (精确到0.1m )2、如图,河堤横断面为梯形,上底为4m ,堤高为6m ,斜坡AD 的坡比为1:3,斜坡CB 的坡角为45°,则河堤横断面的面积为( )A 、96m 2B 、48m 2C 、192m 2D 、84m 2第1题 第2题3、如图,某水坝的横断面是梯形ABCD ,坝顶宽BC =3m ,坝高15m ,斜坡AB 的坡度i =3:1,斜坡CD =25m ,坝长为5m ,求:(1)坝底AD 的宽;(2)建这一水坝需土多少方?4、水坝的横断面为梯形ABCD ,迎水坡AD 坡角为30°,背水坡BC 的坡度为1:1,坝顶AB 的宽为4m ,坝高为6m ,求:(1)坝底CD 的长;(精确到0.01m )(2)迎水坡AD 的坡度;(3)若将此1000m长的堤坝加高0.5m,需要多少方土?(精确到1m3)5、一段路基的横断面是直角梯形,如图(1)所示,已知原来坡面的坡角α的正弦值为0.6,现不改变土石方量,全部利用原有土石方进行坡面改造,使坡度变小,达到如图(2)所示的技术要求,试求出改造后坡面的坡度是多少?6、如图,小河的横断面是梯形,河床底宽6米,上口宽20米,斜坡BH的坡度i=1:1.5,斜坡AD的坡度i’=1:2.(1)求河深;(2)现将2000米长的小河加深0.5米,求土方量.三、能力提升1、如图,一个小球由地面沿着坡度i=1:2的坡面上前进了10m,此时小球距离地面的高度为()2、某水库大坝的横断面是梯形,坝内斜坡的坡度i=1:3,坝外斜坡的坡度i=1:1,则两个坡角的和为()A、90°B、60°C、75°D、105°3、某校教学楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC∥AD,斜坡AB长22m,坡角∠BAD=68°,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造,经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长(精确到0.1m).(2)为确保安全,学校计划改造时保持坡脚A不动,把坡顶B沿BC削进到F点处,问BF至少是多少米(精确到0.1m)?★4、沪杭高速公路拓宽宁波段工程进入全面施工阶段,在现有双向四车道的高速公路两侧经加宽形成双向八车道.如图,路基原横断面为等腰梯形ABCD,AD∥BC,斜坡DC的坡度为i1,在其一侧加宽DF=7.75m,点E、F分别在BC、AD的延长线上,斜坡FE的坡度为i2(i2<i1),设路基的高DM=hm,拓宽后横断面一侧增加的四边形DCEF的面积为Sm2.(1)已知i2=1:1.7,h=3m,求ME的长;(2)不同路段的i2、i1、h是不同的,请设计一个求面积S的公式(用含i1、i2、h的代数式表示)(通常把坡面的铅直高度h和水平宽度l的比叫做坡度,坡度常用字母i表示,即四、预习感知1、如图,一艘轮船向正东方向航行,上午9时测得它在灯塔P的南偏西30°方向,距离灯塔120海里的M处,上午11时到达这座灯塔的正南方向的N处,则这艘轮船在这段时间航行的平均速度是______海里/小时.第1题第2题2、如图,身高1.6m的小亮用一个锐角为30°的直角三角形测量树高,当他手托三角尺从点E后退10m到达点B时,他的视线刚好沿三角尺的斜边穿过树顶点C,这颗树高大约是_____m(精确到0.01米,可能用到的数据:2≈1.414,3≈1.732)。
初三数学寒假作业之锐角三角函数的基本概念
初三数学寒假作业之锐角三角函数的基本概念假期来了,大伙儿是不是专门快乐呀?然而小编提醒大伙儿:我们依旧个学生,要紧任务依旧学习哦!鉴于此,小编精心预备了这篇初三数学寒假作业之锐角三角函数的差不多概念,期望对您有所关心!一、基础知识1.(2009漳州中考)三角形在方格纸中的位置如图所示,则的值是( )A. B. C. D.2.(2021威海中考)在△ABC中,C=90,tanA= ,则sinB=( )A. B. C. D.二、能力提升1.(2021温州中考)如图,在中,是斜边上的中线,已知,,则的值是( )A. B. C. D.2.(2021泰安中考)如图,在中,,于,若,,则的值为( )(A) (B)(C)三、综合拓展1.(2009庆阳中考)如图,菱形ABCD的边长为10cm,DEAB,,则那个菱形的面积= cm2.2.(2009河北中考) 如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD = 24 m,OECD于点E.已测得sinDOE = .(1)求半径OD;(2)依照需要,水面要以每小时0.5 m的速度下降,那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录同时阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。
如此下去,除假期外,一年便能够积存40多则材料。
假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?则通过多长时刻才能将水排干?“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
九年级数学锐角三角函数(带答案)
锐角三角函数与解直角三角形之阿布丰王创作【考纲要求】锐角三角函数的界说、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、高档题呈现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题.【知识网络】【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A 的邻边,直角C所对的边AB记为c,叫做斜边.锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA aAc∠==的对边斜边;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA bAc∠==的邻边斜边;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即CabtanA aAA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中界说的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确按时,其比值不变,角的度数变动时,比值也随之变动.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个年夜写字母暗示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的界说知:当角度在0°<∠A<90°之间变动时,,,tanA>0.考点二、特殊角的三角函数值利用三角函数的界说,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点诠释:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值依次增年夜,其变动规律可以总结为:当角度在0°<∠A<90°之间变动时,①正弦、正切值随锐角度数的增年夜(或减小)而增年夜(或减小)②余弦值随锐角度数的增年夜(或减小)而减小(或增年夜).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角. 设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值. (2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地舆解.考点五、解直角三角形的罕见类型及解法已知条件解法步伐Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算. 2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题. (3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的谜底并检验谜底是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母暗示. 坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母暗示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指南方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别暗示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:西北方向指的是南偏东45°,西北方向指的是北偏东45°,西南方向指的是南偏西45°,西南方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的年夜小,最好画出它的示意图. 2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典范例题】类型一、锐角三角函数的概念与性质1.(1)如图所示,在△ABC中,若∠C=90°,∠B=50°,AB=10,则BC的长为( ).A.10·tan50°B.10·cos50°C.10·sin50° D.10 sin50°(2)如图所示,在△ABC中,∠C=90°,sinA=35,求cosA+tanB的值.(3)如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值即是________.【思路点拨】(1)在直角三角形中,根据锐角三角函数的界说,可以用某个锐角的三角函数值和一条边暗示其他边.(2)直角三角形中,某个内角的三角函数值即为该三角形中两边之比.知道某个锐角的三角函数值就知道了该角的年夜小,可以用比例系数k暗示各边.(3)要求sinB的值,可以将∠B转化到一个直角三角形中.【谜底与解析】(1)选B.(2)在△ABC,∠C =90°,3sin 5BC A AB==. 设BC =3k,则AB =5k(k >0). 由勾股定理可得AC =4k, ∴4432cos tan 5315k k A B k k +=+=.(3)由已知,AD 是半圆的直径,连接CD,可得∠ACD =90° ∠B =∠D,所以sinB =sinD =23AC AD =.【总结升华】已知一个角的某个三角函数值,求同角或余角的其他三角函数值时,经常使用的方法是:利用界说,根据三角函数值,用比例系数暗示三角形的边长;(2)题求cosA 时,还可以直接利用同角三角函数之间的关系式sin 2A+cos 2A =1,读者可自己检验考试完成. 举一反三:【变式】Rt △ABC 中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,那么c 即是( )(A) a cos A bsin B + (B)a sin A bsin B +(C) a b sin A sin B + (D)a bcos A sin B +【谜底】 选B.过点C 作CD ⊥AB 于D,在Rt △ACD 中,AD ADcos A AC b==,所以AD=bcosA,同理,BD=acosB,所以c=AB=AD+BD=bcosA+acosB,又∠A+∠B=90°,所以cosA=sinB,cosB=sinA,所以c=asinA+bsinB. 类型二、特殊角的三角函数值2.解答下列各题:(1)化简求值:tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°;(2)在△ABC 中,∠C =90°,12sin cos A A - 【思路点拨】第(2)题可以先利用关系式sin 2A+cos 2A =1对根号内的式子进行变形,配成完全平方的形式. 【谜底与解析】解 (1)tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°(2)12sin cos A A -2(sin cos )|sin cos |A A A A =-=-,12sin cos A A -cos sin (045)sin cos (4590)A A A A A A -<⎧=⎨-<<⎩°≤°°°.【总结升华】由第(2)题可获得今后经常使用的一个关系式:1±2sin αcos α=(sin α±cos α)2. 例如,若设sin α+cos α=t,则21sin cos (1)2t αα=-.举一反三: 【变式】若3sin 2α=,cos sin βα=α,β为锐角),求2tan()3β的值.【谜底】∵3sin22α,且2α为锐角,∴2α=60°,α=30°.∴12 cos sin22βα===,∴β=45°.∴23tan()tan3033β==°.3.(1)如图所示,在△ABC中,∠ACB=105°,∠A=30°,AC=8,求AB和BC的长;(2)在△ABC中,∠ABC=135°,∠A=30°,AC=8,如何求AB 和BC的长?(3)在△ABC中,AC=17,AB=26,锐角A满足12sin13A=,如何求BC的长及△ABC的面积?若AC=3,其他条件不变呢?【思路点拨】第(1)题的条件是“两角一夹边”.由已知条件和三角形内角和定理,可知∠B=45°;过点C作CD⊥AB于D,则Rt△ACD是可解三角形,可求出CD的长,从而Rt△CDB可解,由此得解;第(2)题的条件是“两角一对边”;第(3)题的条件是“两边一夹角”,均可用类似的方法解决.【谜底与解析】解: (1)过点C 作CD ⊥AB 于D . ∵∠A =30°,∠ACD =105°, ∴∠B =45°.∵AC ·sinA =CD =BC ·sin B, ∴sin 8sin 3042sin sin 45AC A BC B ===°°.∴AB =AD+BD =AC ·cosA+BC ·cosB =8cos30°+42cos45°=443+.(2)作CD ⊥AB 的延长线于D,则AB =434-,42BC =. (3)作BD ⊥AC 于D,则BC =25,ABC S =△204. 当AC =3时,∠ACB 为钝角,BC =25,36ABC S =△. 【总结升华】对一个斜三角形,通常可以作一条高,将它转化为两个直角三角形,而且要尽量使直角三角形中含有特殊的锐角(如30°、45°、60°的角),然后通过解直角三角形获得原来斜三角形的边、角的年夜小.类型三、解直角三角形及应用4.如图所示,D 是AB 上一点,且CD ⊥AC 于C,:2:3ACD CDB S S =△△,4cos 5DCB ∠=,AC+CD =18,求tanA 的值和AB 的长. 【思路点拨】解题的基本思路是将问题转化为解直角三角形的问题,转化的目标主要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程. 【谜底与解析】解:作DE ∥AC 交CB 于E,则∠EDC =∠ACD =90°.∵4cos 5CD DCE CE=∠=, 设CD =4k(k >0),则CE =5k,由勾股定理得DE =3k . ∵△ACD 和△CDB 在AB 边上的高相同, ∴AD:DB =:2:3ACD CDB S S =△△.即553533AC DE k k==⨯=.∴44tan 55CD k A AC k ===.∵AC+CD =18, ∴5k+4k =18,解得k =2.∴AD ==∴AB =AD+DB =AD+32AD =【总结升华】在解直角三角形时,经常使用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等. 专题总结及应用 一、知识性专题专题1:锐角三角函数的界说【专题解读】 锐角三角函数界说的考查多以选择题、填空题为主.例 1 如图28-123所示,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是 ( ) A.sinA =32B .tan A =12C .cos B =32D .tan B =3分析 sin A =BCAB=12,tan A =BC AC =33,cos B =BCAB =12.故选D.例 2 在△ABC 中,∠C =90°,cos A =35,则tan A 即是 ( ) A .35B .45C .34D .43分析 在Rt △ABC 中,设AC =3k ,AB =5k ,则BC =4k ,由界说可知tan A =4433BC k AC k ==.故选D.分析 在Rt △ABC 中,BC =222254AB AC -=-=3,∴sin A =35BC AB =.故填35.专题2 特殊角的三角函数值【专题解读】 要熟记特殊角的三角函数值.例4 计算|-3|+2cos 45°-(3-1)0.分析 cos 45°=2 2.解:原式=3+2×22-1=2+2.例5 计算-12⎛⎫- ⎪⎝⎭+9+(-1)2007-cos 60°.分析 cos 60°=1 2.解:原式=12+3+(-1)-12=3-1=2.例6 计算|-2|+(cos 60°-tan 30°)0+8.分析 cos 60°=12,tan 30°=33,∴cos 60°-tan 30°≠0,∴(cos 60°-tan 30°)0=1,解:原式=2+1十+22=32+1.例7 计算312-⎛⎫⎪⎝⎭-(π-3.14)0-|1-tan 60°|-132-.分析 tan 60°=3.解:原式=8-1-3+1+3+2=10.专题3 锐角三角函数与相关知识的综合运用【专题解读】锐角三角函数常与其他知识综合起来运用,考查综合运用知识解决问题的能力.例8 如图28-124所示,在△ABC中,AD是BC边上的高,E为AC边的中点,BC=14,AD=12,sin B=45.(1)求线段DC的长;(2)求tan∠EDC的值.分析在Rt△ABD中,由sin B=ADAB,可求得BD,从而求得CD.由直角三角形斜边上的中线即是斜边的一半,得DE=12AC=EC,则∠EDC=∠C,所以求tan∠EDC可以转化为求tan C.解:(1)∵AD是BC边上的高,∴AD⊥BC在Rt△ABD中,sin B=AD AB.∵AD=12,sin B=45,∴AB=15,∴BD=22AB AD-=221512-=9.∵BC=14,∴CD=5.(2)在Rt△ADC中,∵AE=EC,∴DE=12AC=EC,∴∠EDC=∠C∵tan C=ADDC=125,∴tan∠EDC=tan C=125.例9 如图28-125所示,在△ABC中,AD是BC边上的高,tan B=cos∠DAC.(1)求证AC=BD;(2)若sin C=1213,BC=12,求AD的长.分析 (1)利用锐角三角函数的界说可得AC=BD.(2)利用锐角三角函数与勾股定理可求得AD的长.证明:(1)∵AD是BC边上的高,∴AD⊥BC,∴∠ADB=90°,∠ADC=90°.在Rt△ABD和Rt△ADC中,∵tan B=ADBD,cos∠DAC=ADAC,tan B=cos∠DAC,∴ADBD=ADAC,∴AC=BD.解:(2)在Rt△ADC中,sin C=1213,设AD=12k,AC=13k,∴CD=22AC AD=5k.∵BC=BD+CD,AC=BD,∴BC=13k+5k=18k.由已知BC=12,∴18k=12,k=2 3,∴AD=12k=12×23=8.例10 如图28-126所示,在△ABC中,∠B=45°,∠C=30°,BC=30+303,求AB的长.分析过点A作AD⊥BC于D,把斜三角形转化为直角三角形,利用AD是两个直角三角形的公共边,设AD=x,把BD,DC用含x的式子暗示出来,再由BD+CD=BC这一等量关系列方程,求得AD,则AB 可在Rt△ABD中求得.解:过点A作AD⊥BC于D,设AD=x.在Rt△ADB中,tan B=ADBD,∴BD=tan tan45AD ADB=︒=x,在Rt△ADC中,tan C=ADCD,∴CD=tanADC=tan30AD︒=3x.又∵BD+CD=BC,BC=30+303,∴x+3x=30+303 ,∴x=30.在Rt△ABD中,sin B=AD AB,∴AB=30sin sin45ADB=︒=3022=302.专题4 用锐角三角函数解决实际问题【专题解读】加强数学与实际生活的联系,提高数学的应用意识,培养应用数学的能力是现今数学改革的方向,围绕本章内容,纵观近几年各地的中考试题,与解直角三角形有关的应用问题逐步成为命题的热点,其主要类型有轮船定位问题、堤坝工程问题、建筑丈量问题、高度丈量问题等,解决各类应用问题时要注意掌控各类图形的特征及解法.例13 如图28-131所示,我市某中学数学课外活动小组的同学利用所学知识去丈量沱江流经我市某段的河宽.小凡同学在点A处观测到对岸C点,测得∠CAD=45°,又在距A处60米远的B处测得∠CBA=30°,请你根据这些数据算出河宽是几多?(结果保管小数点后两位)分析本题可作CE⊥AB,垂足为E,求出CE的长即为河宽.解:如图28-131所示,过点C作CE⊥AB于E,则CE即为河宽,设CE=x(米),则BE=x+60(米).在Rt△BCE中,tan30°=CEEB,即33=60xx+,解得x=30(3+1)≈81.96(米).答:河宽约为81.96米.【解题战略】解本题的关键是设CE=x,然后根据BE=AB+AE列方程求解.例14 如图28-132所示,某边防巡逻队在一个海滨浴场岸边的A点处发现海中的B点有人求救,便立即派三名救生员前去营救.1号救生员从A点直接跳入海中;2号救生员沿岸边(岸边可以看成是直线)向前跑到C 点再跳入海中;3号救生员沿岸边向前跑300米到离B点最近的D 点,再跳入海中,救生员在岸上跑的速度都是6米/秒,在水中游泳的速度都是2米/秒.若∠BAD=45°,∠BCD=60°,三名救生员同时从A点动身,请说明谁先达到营救地址B.(参考数据2≈1.4,3≈1.7)分析在Rt△ABD中,已知∠A=45°和AD,可求AB,BD,在Rt△BCD中,可利用求出的BD和∠BCD=60°求出BC,然后根据计算出的数据判断谁先达到.解:在Rt△ABD中,∠A=45°,∠D=90°,AD=300,∴AB=AD300cos4522=︒=3002.BDAD=tan 45°,即BD=AD·tan 45°=300.在Rt△BCD中,∠BCD=60°,∠D=90°,∴BC=300sin6032BD=︒=2003,CD=tan60BD︒=3003=1003 .1号救生员达到B点所用的时间为30022=1502≈210(秒),2号救生员达到B点所用的时间为3001003200362-+=50+25033≈192(秒),3号救生员达到B点所用的时间为3006+3002=200(秒).∵192<200<210.∴2号求生员先达到营救地址B.【解题战略】本题为阅读理解题,题目中的数据比力多,正确分析题意是解题的关键.例15 如图28-133所示,某货船以24海里/时的速度将一批重要物资从A处运往正西方向的M处,在点A处测得某岛C在它的北偏东60°方向上,该货船航行30分钟后达到B处,此时再测得该岛在它的北偏东30°方向上;已知在C岛周围9海里的区域内有暗礁,若货船继续向正西方向航行,该货船有无触礁危险?试说明理由.分析本题可作CD⊥AM于点D,在Rt△BCD中求出CD即可.解:过点C作CD⊥AM,垂足为点D,由题意得∠CBD=60°,∠CAB=30°,∴∠ACB=30°,∠CAB=∠ACB,∴BC=AB=24×12=12(海里).在Rt△BCD中,CD=BC×sin 60°=63(海里).∵63>9,∴货船继续向正西方向航行无触礁危险.【解题战略】此题实际上是通过⊙C(半径为9海里)与直线AM相离判断出无触礁危险.例16 如图28-134所示,某幢年夜楼顶部有一块广告牌CD,甲、乙两人分别在相距8米的A,B两处测得D点和C点的仰角分别为45°和60°,且A,B,F三点在一条直线上,若BE=15米,求这块广告牌的高度.(3≈1.73,结果保管整数)分析由于CD=CE-DE,所以可分别在Rt△AED和Rt△BEC中求DE,CE的长,从而得出结论.解:∵AB=8,BE=15,∴AE=23.在Rt△AED中,∠DAE=45°,∴DE=AE=23.在Rt△BEC中,∠CBE=60°,∴CE=BE·tan 60°=153,∴CD=CE-DE=153-23≈3,即这块广告牌的高度约为3米.例17 如图28-135所示,某水库年夜坝的横断面是梯形,坝顶宽AD=2.5m,坝高 4 m,背水坡的坡度是1:1,迎水坡的坡度是1:1.5,求坝底宽BC.分析坡度即坡角的正切值,所以分别过A,D两点向坝底引垂线,把梯形转化为两个直角三角形和一个矩形.解:过A作AE⊥BC于E,过D作DF⊥BC于F,由题意可知tan B=1,tan C=1 1.5,在Rt△ABE中,AE=4,tan B=AEBE=1,∴BE=AE=4,在Rt△DFC中,DF=AE=4,tan C=11.5 DFCF,∴CF=1.5DF×4=6.又∵EF=AD=2.5,∴BC=BE+EF+FC=4+2.5+6=12.5.答:坝底宽BC为12.5 m.【解题战略】背水坡是指AB,而迎水坡是指CD.例18 如图28-136所示,山顶建有一座铁塔,塔高CD=30m,某人在点A处测得塔底C的仰角为20°,塔顶D的仰角为23°,求这人距CD的水平距离AB.(参考数据:sin 20°≈0.342,cos 20°≈0.940,tan 20°≈0.364,sin 23°≈0.391,cos 23°≈0.921,tan 23°≈0.424)分析要求AB的值,由于两个直角三角形中都只有角的已知条件,不能直接求解,所以设AB为未知量,即用AB暗示BD和BC,根据BD -BC=CD=30,列出关于AB的方程.解:在Rt△ABC中,∠CAB=20°,∴BC =AB tan ∠CAB =AB tan 20°.在Rt △ABD 中,∠DAB =23°,∴BD =AB tan ∠DAB =AB tan 23°.∴CD =BD -BC =AB tan 23°-AB tan 20°=AB (tan 23°-tan 20°).∴AB =tan 23tan 20CD ︒-︒≈300.4240.364-=500(m).答:这人距CD 的水平距离AB 约为500 m .二、规律方法专题专题5 公式法【专题解读】 本章的公式很多,熟练掌握公式是解决问题的关键.例19 当0°<α<90°时,的值. 分析 由sin 2α+cos 2α=1,可得1-sin 2α=cos 2α解:∵sin 2α+cos 2α=1,∴cos 2α=1-sin 2α.|cos |cos αα==. ∵0°<a <90°,∴cos α>0. ∴原式=cos cos αα=1.【解题战略】 以上解法中,应用了关系式sin 2α+cos 2α=1(0°<α<90°),这一关系式在解题中经经常使用到,应当牢记,并灵活运用.三、思想方法专题专题6 类比思想【专题解读】求方程中未知数的过程叫做解方程,求直角三角形中未知元素的过程叫做解直角三角形,因此对解直角三角形的概念的理解可类比解方程的概念.我们可以像解方程(组)一样求直角三角形中的未知元素.例20 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,已知ab,解这个直角三角形.分析已知两直角边长a,b,可由勾股定理c求出c,再利用sin A=ac求出∠A,进而求出∠B=90°-∠A.解:∵∠C=90°,∴a2+b2=c2.∴c又∵sin A=12ac==,∴∠A=30°.∴∠B=90°-∠A=60°.【解题战略】除直角外,求出Rt△ABC中的所有未知元素就是解直角三角形.专题7 数形结合思想【专题解读】由“数”思“形”,由“形”想“数”,两者巧妙结合,起到互通、互译的作用,是解决几何问题经常使用的方法之一.例21 如图28-137所示,已知∠α的终边OP⊥AB,直线AB的方程为y=-33x+33,则cosα即是( )A.12 B.22C.32 D.33分析∵y=-33x+33,∴当x=0时,y=33,当y=0时,x=1,∴A(1,0),B30,3⎛⎫⎪⎪⎝⎭,∴OB=33,OA=1,∴AB=22OB OA+=233,∴cos∠OBA=12OBAB=. ∴OP⊥AB,∴∠α+∠OAB=90°,又∵∠OBA+∠OAB=90°,∴∠α=∠OBA.∴cosα=cos∠OBA=12.故选A.专题8 分类讨论思想【专题解读】当结果不能确定,且有多种情况时,对每一种可能的情况都要进行讨论.例22 一条工具走向的高速公路上有两个加油站A,B,在A的北偏东45°方向上还有一个加油站C,C到高速公路的最短距离是30 km,B,C间的距离是60 km.要经过C修一条笔直的公路与高速公路相交,使两路交叉口P到B,C的距离相等,求交叉口P与加油站A的距离.(结果可保管根号)解:①如图28-138(1)所示,在Rt△BDC中,∵CD=30,CB=60,∴∠B=30°.又PC=PB,∴∠CPD=60°,∴DP=103.故AP=AD+DP=(30+103)km.②同理,如图28-138(2)所示,可求得AP=(30-103)km,故交叉口P与加油站A的距离为(30+103)km或(30-103)km.【解题战略】此题针对P点的位置分两种情况进行讨论,即点P在线段AB上或点P在线段BA的延长线上.专题9 转化思想例24 如图28-140所示,A,B两城市相距100km.现计划在这两座城市中间修筑一条高速公路(即线段AB),经丈量,森林呵护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林呵护区的范围在以P点为圆心,50 km为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越呵护区.为什么?(参考数据:3≈1.732,2≈1.414)解:过点P作PC⊥AB,C是垂足,则∠APC=30°,∠BPC=45°,AC=PC·tan 30°,BC=PC·tan 45°,∵AC+BC=AB,∴PC·tan 30°+PC·tan 45°=100,∴(33+1)PC=100,∴PC=50(3-3)≈50×(3-1.732)≈63.4>50.答:森林呵护区的中心与直线AB 的距离年夜于呵护区的半径,所以计划修筑的这条高速公路不会穿越呵护区.例25 小鹃学完解直角三角形知识后,给同桌小艳出了一道题:“如图28-141所示,把一张长方形卡片ABCD 放在每格宽度为12 mm 的横格纸中,恰好四个极点都在横格线上.已知α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(结果保管整数;参考数据:sin 36°≈0.6,cos 36°≈0.8,tan 36°≈0.7)解:作BE ⊥l 于点E ,DF ⊥l 于点F .∵α+∠DAF =180°-∠BAD =180°-90°=90°,∠ADF +∠DAF =90°,∴∠ADF =α=36°.根据题意,得BE =24 mm,DF =48 mm .在Rt △ABE 中,sin α=BE AB , ∴AB =sin36BE ︒≈240.6=40(mm).在Rt △ADF中,cos ∠ADF =DFAD , ∴AD =cos36DF ︒≈480.8=60(mm).∴矩形ABCD 的周长=2(40+60)=200(mm).例26 如图28-142所示,某居民楼I 高20米,窗户朝南.该楼内一楼住户的窗台离空中距离CM 为2米,窗户CD 高1.8米.现计划在I 楼的正南方距1楼30米处新建一居民楼Ⅱ.当正午时刻太阳光线与空中成30°角时,要使Ⅱ楼的影子不影响I 楼所有住户的采光,新建Ⅱ楼最高只能盖几多米?解:设正午时光线正好照在I 楼的一楼窗台处,此时新建居民楼Ⅱ高x 米.过C 作CF ⊥l 于F ,在Rt △ECF 中,EF =(x -2)米,FC =30米,∠ECF =30°,∴tan 30°=230x ,∴=2.答:新建居民楼Ⅱ最高只能建2)米.。
锐角三角函数锐角三角函数
03
证明方法
利用正弦定理和余弦定理,将边的关 系转化为角的关系,再利用三角函数 的性质推导得出。
05
锐角三角函数的作图及演 示
利用计算器或计算机软件绘制锐角三角函数图像
总结词
通过使用计算器或计算机软件,我们可以 轻松地绘制出锐角三角函数的图像。
详细描述
首先,我们需要输入锐角的角度值,然后 在计算器或计算机软件中选择对应的三角 函数(正弦、余弦或正切)。这样,我们 就可以得到一个关于角度的函数值。将这 些值在坐标系中表示,就可以形成锐角三 角函数的图像。
证明方法
通过正弦定理将角的关系转化为 边的关系,再利用勾股定理推导 得出。
正切定理的公式及证明
01
02
总结词
详细描述
正切定理是指在一个三角形中,任意 两边长度的比值等于这两边所夹角的 正切值与第三边所对应角的正切值的 比值。
正切定理的公式为 tan(A)/tan(B) = c/b。其中,A、B、C 分别代表与三 边相对应的角度,a、b、c 分别代表 三角形的三边长。
求边长
已知直角三角形的一个锐角和对应的边长,可以应用锐角三 角函数来求解另一条边长。例如,在直角三角形ABC中,已 知角A为30度,对应边a为10单位长度,那么对应边b的长度 可以通过应用三角函数求解。
在实际问题中求解角度或边长
地球定位
在地球上定位一个点,需要知道该点与北极的夹角和该点到北极的距离。这些信息可以通过应用锐角 三角函数来求解。
余弦定理
对于任意三角形ABC,有cosA = (b² + c² - a²) / (2bc),其中a、b、c分别是三角形的三边长度。这表明一个 角的余弦值等于由该角两边长度和它们夹角所确定的三角形的另一边的平方与两邻边平方和的差与两邻边的积 之比。
初三锐角三角函数知识点总结、典型例题、练习.docx
sin B
余
cos A
A的邻边
cos A
b
0 cos A 1
sin2
A
cos2A 1
弦
斜边
c
(∠A为锐角)
正
tan A
A的对边
tan A
a
tan A 0
切
A的邻边
b
(∠A为锐角)
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦
值。
由A
B
B
90
对
得
B
90
A
斜边
c
sin A
C
A
B
2.正方形网格中,∠AOB如图放置,则
tan∠AOB的值是(
A
)
5
2
5
1
A.5
B.
5
C.2
D. 2
O
B
类型五:取特殊角三角函数的值
1).计算:2 cos302 sin 45tan 60.
2)计算:tan60sin2452 cos30.
3)计算:3-1+(2π-1)0-3tan30°-tan45°
3
0
4).计算:
1
2 cos 60 sin 45
3tan 30.
2
2
5).计算:
tan 45 sin
30;
1 cos60
类型六:解直角三角形的实际应用
例1.如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球
C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()
视线
铅垂线
仰角
九年级数学《锐角三角函数》习题(含答案)
九年级数学《锐角三角函数》测试题及答案 一、选择题 1. 4sin tan 5ααα=若为锐角,且,则为 ( ) 933425543A B C D . . . . 2.在Rt △ABC 中,∠C = 90°,下列式子不一定成立的是( )A .sinA = sinB B .cosA=sinBC .sinA=cosBD .∠A+∠B=90°3.直角三角形的两边长分别是6,8,则第三边的长为( )A .10B .22C .10或27D .无法确定4.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( )A .c =sin a A B .c =cos a A C .c = a ·tanA D .c = tan a A 5、 45cos 45sin +的值等于( )A. 2B. 213+C. 3D. 16.在Rt △ABC 中,∠C=90°,tan A=3,AC 等于10,则S △ABC 等于( )A. 3B. 300C. 503D. 15 7.当锐角α>30°时,则cos α的值是( )A .大于12B .小于12C .大于32D .小于32 8.小明沿着坡角为30°的坡面向下走了2米,那么他下降( ) A .1米 B .3米 C .23 D .233 9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=( )(A )4 (B )5 (C )23 (D )83310.已知Rt △ABC 中,∠C=90°,tanA=43,BC=8,则AC 等于( ) A .6 B .323C .10D .12 二、填空题11.计算2sin30°+2cos60°+3tan45°=_______.12.若sin28°=cos α,则α=________.13.已知△ABC 中,∠C=90°,AB=13,AC=5,则tanA=______.14.某坡面的坡度为1:3,则坡角是_______度.15.在△ABC 中,∠C =90°,AB =10cm ,sinA =54,则BC 的长为_______cm . 16.如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为A.82米B.163米C.52米D.70米17.如图,小鸣将测倾器安放在与旗杆AB 底部相距6m 的C 处,量出测倾器的高度CD =1m ,测得旗杆顶端B 的仰角α=60°,则旗杆AB 的高度为 .(计算结果保留根号)(16题) (17题)三、解答题18.由下列条件解直角三角形:在Rt △ABC 中,∠C=90°:(1)已知a=4,b=8, (2)已知b=10,∠B=60°.(3)已知c=20,∠A=60°. (4) (2)已知a=5,∠B=35°19.计算下列各题.(1)s in 230°+cos 245°+2sin60°·tan45°; (2)22cos 30cos 60tan 60tan 30︒+︒︒⨯︒+ sin45°四、解下列各题20.如图所示,平地上一棵树高为5米,两次观察地面上的影子,•第一次是当阳光与地面成45°时,(45︒30︒BAD C第二次是阳光与地面成30°时,第二次观察到的影子比第一次长多少米?21.如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,•为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A 在C 北偏西30°方向,B 在C 的东北方向,从C 处连接两岸的最短的桥长多少?(精确到0.1)22. 如图,点A 是一个半径为300米的圆形森林公园的中心,在森林公园附近有B 、C 两个村庄,现要在B 、C 两村庄之间修一条长为1000米的笔直公路将两村连通,经测得∠ABC=45o ,∠ACB=30o ,问此公路是否会穿过该森林公园?请通过计算进行说明。
初三锐角三角函数知识点总结、典型例题、练习(精选)
三角函数专项复习锐角三角函数知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如以下图,在Rt △ABC 中,∠C 为直角,那么∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、0°、30°、45°、60°、90°特殊角的三角函数值(重要)当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
6、正切的增减性:当0°<α<90°时,tan α随α的增大而增大,7、解直角三角形的定义:边和角〔两个,其中必有一边〕→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量防止使用中间数据和除法) A90B 90∠-︒=∠︒=∠+∠得由B A对边邻边C8、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
仰角铅垂线水平线视线视线俯角(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东45°〔东北方向〕 , 南偏东45°〔东南方向〕, 南偏西45°〔西南方向〕, 北偏西45°〔西北方向〕。
初中数学 什么是锐角三角函数
初中数学什么是锐角三角函数锐角三角函数是初中数学中重要的概念之一。
它们是用来描述锐角三角形中角度和边长之间的关系的函数。
在学习锐角三角函数之前,我们需要了解一些基本的三角概念。
首先,让我们回顾一下锐角三角形的定义。
锐角三角形是指其中的角度都小于90度的三角形。
在锐角三角形中,我们可以将其中一个锐角定义为A,并将其对边的长度定义为a,邻边的长度定义为b,斜边的长度定义为c。
基于这些定义,我们可以引入三个常用的锐角三角函数,它们分别是正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
这些函数可以用来描述锐角三角形中角度和边长之间的关系。
1. 正弦函数(sin):正弦函数是指角A的对边与斜边的比值,也就是a/c。
我们用sin(A)来表示正弦函数,其值为sin(A) = a/c。
2. 余弦函数(cos):余弦函数是指角A的邻边与斜边的比值,也就是b/c。
我们用cos(A)来表示余弦函数,其值为cos(A) = b/c。
3. 正切函数(tan):正切函数是指角A的对边与邻边的比值,也就是a/b。
我们用tan(A)来表示正切函数,其值为tan(A) = a/b。
这些函数可以帮助我们计算锐角三角形中的各个边长和角度。
例如,已知锐角三角形中的某一个角度和一个边长,我们可以使用正弦函数、余弦函数或正切函数来计算其他边长或角度。
除了以上三个基本的锐角三角函数,还存在它们的倒数函数,即余割函数(csc)、正割函数(sec)和余切函数(cot)。
这些函数与正弦函数、余弦函数和正切函数的关系如下:1. 余割函数(csc):余割函数是正弦函数的倒数,即csc(A) = 1/sin(A)。
2. 正割函数(sec):正割函数是余弦函数的倒数,即sec(A) = 1/cos(A)。
3. 余切函数(cot):余切函数是正切函数的倒数,即cot(A) = 1/tan(A)。
这些倒数函数可以在某些特定问题中发挥作用,但在初中数学中的重点通常是正弦函数、余弦函数和正切函数。
九年级数学锐角三角函数(带答案)
锐角三角函数与解直角三角形之马矢奏春创作创作时间:二零二一年六月三十日【考纲要求】1.理解锐角三角函数的界说、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、高档题呈现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题.【知识网络】【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A 的邻边,直角C所对的边AB记为c,叫做斜边.锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即.同理;;.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中界说的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确按时,其比值不变,角的度数变动时,比值也随之变动.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个年夜写字母暗示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的界说知:当角度在0°<∠A<90°之间变动时,,,tanA >0.考点二、特殊角的三角函数值利用三角函数的界说,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点诠释:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、、、的值依次为0、、、、1,而、、、、的值的顺序正好相反,、、的值依次增年夜,其变动规律可以总结为:当角度在0°<∠A<90°之间变动时,①正弦、正切值随锐角度数的增年夜(或减小)而增年夜(或减小)②余弦值随锐角度数的增年夜(或减小)而减小(或增年夜).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角. 设在Rt△ABC 中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值. (2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地舆解.考点五、解直角三角形的罕见类型及解法已知条件解法步伐Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算. 2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题. (3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的谜底并检验谜底是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母暗示. 坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母暗示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指南方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别暗示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:西北方向指的是南偏东45°,西北方向指的是北偏东45°,西南方向指的是南偏西45°,西南方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的年夜小,最好画出它的示意图. 2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典范例题】类型一、锐角三角函数的概念与性质1.(1)如图所示,在△ABC中,若∠C=90°,∠B=50°,AB=10,则BC的长为( ).A.10·tan50° B.10·cos50° C.10·sin50° D.(2)如图所示,在△ABC中,∠C=90°,sinA=,求cosA+tanB的值.(3)如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值即是________.【思路点拨】(1)在直角三角形中,根据锐角三角函数的界说,可以用某个锐角的三角函数值和一条边暗示其他边.(2)直角三角形中,某个内角的三角函数值即为该三角形中两边之比.知道某个锐角的三角函数值就知道了该角的年夜小,可以用比例系数k暗示各边.(3)要求sinB的值,可以将∠B转化到一个直角三角形中.【谜底与解析】(1)选B.(2)在△ABC,∠C=90°,.设BC=3k,则AB=5k(k>0).由勾股定理可得AC=4k,∴.(3)由已知,AD是半圆的直径,连接CD,可得∠ACD=90°∠B=∠D,所以sinB=sinD=.【总结升华】已知一个角的某个三角函数值,求同角或余角的其他三角函数值时,经常使用的方法是:利用界说,根据三角函数值,用比例系数暗示三角形的边长;(2)题求cosA时,还可以直接利用同角三角函数之间的关系式sin2 A+cos2 A=1,读者可自己检验考试完成.举一反三:【变式】Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,那么c即是( )(A) (B)(C) (D)【谜底】选B.过点C作CD⊥AB于D,在Rt△ACD中, ,所以AD=bcosA,同理,BD=acosB,所以c=AB=AD+BD=bcosA+acosB,又∠A+∠B=90°,所以cosA=sinB,cosB=sinA,所以c=asinA+bsinB.类型二、特殊角的三角函数值2.解答下列各题:(1)化简求值:;(2)在△ABC中,∠C=90°,化简.【思路点拨】第(2)题可以先利用关系式sin2 A+cos2 A=1对根号内的式子进行变形,配成完全平方的形式.【谜底与解析】解 (1)(2)∵,∴.【总结升华】由第(2)题可获得今后经常使用的一个关系式:1±2sinαcosα=(sinα±cosα)2.例如,若设sinα+cosα=t,则.举一反三:【变式】若,,(2α,β为锐角),求的值.【谜底】∵,且2α为锐角,∴2α=60°,α=30°.∴,∴β=45°.∴.3.(1)如图所示,在△ABC中,∠ACB=105°,∠A=30°,AC=8,求AB和BC的长;(2)在△ABC中,∠ABC=135°,∠A=30°,AC=8,如何求AB 和BC的长?(3)在△ABC中,AC=17,AB=26,锐角A满足,如何求BC的长及△ABC的面积?若AC=3,其他条件不变呢?【思路点拨】第(1)题的条件是“两角一夹边”.由已知条件和三角形内角和定理,可知∠B=45°;过点C作CD⊥AB于D,则Rt△ACD是可解三角形,可求出CD的长,从而Rt△CDB可解,由此得解;第(2)题的条件是“两角一对边”;第(3)题的条件是“两边一夹角”,均可用类似的方法解决.【谜底与解析】解: (1)过点C作CD⊥AB于D.∵∠A=30°,∠ACD=105°,∴∠B=45°.∵AC·sinA=CD=BC·sin B,∴.∴AB=AD+BD=AC·cosA+BC·cosB=8cos30°+cos45°=.(2)作CD⊥AB的延长线于D,则AB=,.(3)作BD⊥AC于D,则BC=25,204.当AC=3时,∠ACB为钝角,BC=25,.【总结升华】对一个斜三角形,通常可以作一条高,将它转化为两个直角三角形,而且要尽量使直角三角形中含有特殊的锐角(如30°、45°、60°的角),然后通过解直角三角形获得原来斜三角形的边、角的年夜小.类型三、解直角三角形及应用4.如图所示,D是AB上一点,且CD⊥AC于C,,,AC+CD=18,求tanA的值和AB的长.【思路点拨】解题的基本思路是将问题转化为解直角三角形的问题,转化的目标主要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程.【谜底与解析】解:作DE∥AC交CB于E,则∠EDC=∠ACD=90°.∵,设CD=4k(k>0),则CE=5k,由勾股定理得DE=3k.∵△ACD和△CDB在AB边上的高相同,∴AD:DB=.即.∴.∵AC+CD=18, ∴5k+4k=18,解得k=2.∴.∴AB=AD+DB=AD+AD=.【总结升华】在解直角三角形时,经常使用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等.专题总结及应用一、知识性专题专题1:锐角三角函数的界说【专题解读】锐角三角函数界说的考查多以选择题、填空题为主.例 1 如图28-123所示,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是 ( )A.sin A=B.tan A=C.cosB= D.tan B=分析 sinA==,tan A==,cos B==.故选D.例 2 在△ABC中,∠C=90°,cosA=,则tan A即是( )A.B.C.D.分析在Rt△ABC中,设AC=3k,AB=5k,则BC=4k,由界说可知tan A=.故选D.分析在Rt△ABC中,BC==3,∴sin A=.故填.专题2 特殊角的三角函数值【专题解读】要熟记特殊角的三角函数值.例4 计算|-3|+2cos 45°-(-1)0.分析cos 45°=.解:原式=3+2×-1=+2.例5 计算-++(-1)2007-cos 60°.分析cos 60°=.解:原式=+3+(-1)-=3-1=2.例6 计算|-|+(cos 60°-tan 30°)0+.分析cos 60°=,tan 30°=,∴cos 60°-tan 30°≠0,∴(cos 60°-tan 30°)0=1,解:原式=+1十+2=3+1.例7 计算-(π-3.14)0-|1-tan 60°|-.分析tan 60°=.解:原式=8-1-+1++2=10.专题3 锐角三角函数与相关知识的综合运用【专题解读】锐角三角函数常与其他知识综合起来运用,考查综合运用知识解决问题的能力.例8 如图28-124所示,在△ABC中,AD是BC边上的高,E为AC边的中点,BC=14,AD=12,sin B=.(1)求线段DC的长;(2)求tan∠EDC的值.分析在Rt△ABD中,由sinB=,可求得BD,从而求得CD.由直角三角形斜边上的中线即是斜边的一半,得DE=AC=EC,则∠EDC=∠C,所以求tan∠EDC可以转化为求tan C.解:(1)∵AD是BC边上的高,∴AD⊥BC在Rt△ABD中,sin B=.∵AD=12,sin B=,∴AB=15,∴BD===9.∵BC=14,∴CD=5.(2)在Rt△ADC中,∵AE=EC,∴DE=AC=EC,∴∠EDC=∠C∵tan C==,∴tan∠EDC=tan C=.例9 如图28-125所示,在△ABC中,AD是BC边上的高,tan B=cos∠DAC.(1)求证AC=BD;(2)若sin C=,BC=12,求AD的长.分析 (1)利用锐角三角函数的界说可得AC=BD.(2)利用锐角三角函数与勾股定理可求得AD的长.证明:(1)∵AD是BC边上的高,∴AD⊥BC,∴∠ADB=90°,∠ADC=90°.在Rt△ABD和Rt△ADC中,∵tan B=,cos∠DAC=,tan B=cos∠DAC,∴=,∴AC=BD.解:(2)在Rt△ADC中,sin C=,设AD=12k,AC=13k,∴CD==5k.∵BC=BD+CD,AC=BD,∴BC=13k+5k=18k.由已知BC=12,∴18k=12,k=,∴AD=12k=12×=8.例10 如图28-126所示,在△ABC中,∠B=45°,∠C=30°,BC=30+30,求AB的长.分析过点A作AD⊥BC于D,把斜三角形转化为直角三角形,利用AD是两个直角三角形的公共边,设AD=x,把BD,DC用含x的式子暗示出来,再由BD+CD=BC这一等量关系列方程,求得AD,则AB 可在Rt△ABD中求得.解:过点A作AD⊥BC于D,设AD=x.在Rt△ADB中,tanB=,∴BD==x,在Rt△ADC中,tan C=,∴CD===x.又∵BD+CD=BC,BC=30+30,∴x+x=30+30,∴x=30.在Rt△ABD中,sin B=,∴AB===30.专题4 用锐角三角函数解决实际问题【专题解读】加强数学与实际生活的联系,提高数学的应用意识,培养应用数学的能力是现今数学改革的方向,围绕本章内容,纵观近几年各地的中考试题,与解直角三角形有关的应用问题逐步成为命题的热点,其主要类型有轮船定位问题、堤坝工程问题、建筑丈量问题、高度丈量问题等,解决各类应用问题时要注意掌控各类图形的特征及解法.例13 如图28-131所示,我市某中学数学课外活动小组的同学利用所学知识去丈量沱江流经我市某段的河宽.小凡同学在点A处观测到对岸C点,测得∠CAD=45°,又在距A处60米远的B处测得∠CBA=30°,请你根据这些数据算出河宽是几多?(结果保管小数点后两位)分析本题可作CE⊥AB,垂足为E,求出CE的长即为河宽.解:如图28-131所示,过点C作CE⊥AB于E,则CE即为河宽,设CE=x(米),则BE=x+60(米).在Rt△BCE中,tan30°=,即=,解得x=30(+1)≈81.96(米).答:河宽约为81.96米.【解题战略】解本题的关键是设CE=x,然后根据BE=AB+AE列方程求解.例14 如图28-132所示,某边防巡逻队在一个海滨浴场岸边的A点处发现海中的B点有人求救,便立即派三名救生员前去营救.1号救生员从A点直接跳入海中;2号救生员沿岸边(岸边可以看成是直线)向前跑到C 点再跳入海中;3号救生员沿岸边向前跑300米到离B点最近的D 点,再跳入海中,救生员在岸上跑的速度都是6米/秒,在水中游泳的速度都是2米/秒.若∠BAD=45°,∠BCD=60°,三名救生员同时从A点动身,请说明谁先达到营救地址B.(参考数据≈1.4,≈1.7)分析在Rt△ABD中,已知∠A=45°和AD,可求AB,BD,在Rt△BCD中,可利用求出的BD和∠BCD=60°求出BC,然后根据计算出的数据判断谁先达到.解:在Rt△ABD中,∠A=45°,∠D=90°,AD=300,∴AB==300.=tan 45°,即BD=AD·tan 45°=300.在Rt△BCD中,∠BCD=60°,∠D=90°,∴BC==200,CD===100 .1号救生员达到B点所用的时间为=150≈210(秒),2号救生员达到B点所用的时间为=50+≈192(秒),3号救生员达到B点所用的时间为+=200(秒).∵192<200<210.∴2号求生员先达到营救地址B.【解题战略】本题为阅读理解题,题目中的数据比力多,正确分析题意是解题的关键.例15 如图28-133所示,某货船以24海里/时的速度将一批重要物资从A处运往正西方向的M处,在点A处测得某岛C在它的北偏东60°方向上,该货船航行30分钟后达到B处,此时再测得该岛在它的北偏东30°方向上;已知在C岛周围9海里的区域内有暗礁,若货船继续向正西方向航行,该货船有无触礁危险?试说明理由.分析本题可作CD⊥AM于点D,在Rt△BCD中求出CD即可.解:过点C作CD⊥AM,垂足为点D,由题意得∠CBD=60°,∠CAB=30°,∴∠ACB=30°,∠CAB=∠ACB,∴BC=AB=24×=12(海里).在Rt△BCD中,CD=BC×sin 60°=6(海里).∵6>9,∴货船继续向正西方向航行无触礁危险.【解题战略】此题实际上是通过⊙C(半径为9海里)与直线AM相离判断出无触礁危险.例16 如图28-134所示,某幢年夜楼顶部有一块广告牌CD,甲、乙两人分别在相距8米的A,B两处测得D点和C点的仰角分别为45°和60°,且A,B,F三点在一条直线上,若BE=15米,求这块广告牌的高度.(≈1.73,结果保管整数)分析由于CD=CE-DE,所以可分别在Rt△AED和Rt△BEC中求DE,CE的长,从而得出结论.解:∵AB=8,BE=15,∴AE=23.在Rt△AED中,∠DAE=45°,∴DE=AE=23.在Rt△BEC中,∠CBE=60°,∴CE=BE·tan 60°=15,∴CD=CE-DE=15-23≈3,即这块广告牌的高度约为3米.例17 如图28-135所示,某水库年夜坝的横断面是梯形,坝顶宽AD=2.5m,坝高 4 m,背水坡的坡度是1:1,迎水坡的坡度是1:1.5,求坝底宽BC.分析坡度即坡角的正切值,所以分别过A,D两点向坝底引垂线,把梯形转化为两个直角三角形和一个矩形.解:过A作AE⊥BC于E,过D作DF⊥BC于F,由题意可知tanB=1,tan C=,在Rt△ABE中,AE=4,tanB==1,∴BE=AE=4,在Rt△DFC中,DF=AE=4,tanC=,∴CF=1.5DF=1.5×4=6.又∵EF=AD=2.5,∴BC=BE+EF+FC=4+2.5+6=12.5.答:坝底宽BC为12.5 m.【解题战略】背水坡是指AB,而迎水坡是指CD.例18 如图28-136所示,山顶建有一座铁塔,塔高CD=30m,某人在点A处测得塔底C的仰角为20°,塔顶D的仰角为23°,求这人距CD的水平距离AB.(参考数据:sin 20°≈0.342,cos 20°≈0.940,tan 20°≈0.364,sin 23°≈0.391,cos 23°≈0.921,tan 23°≈0.424)分析要求AB的值,由于两个直角三角形中都只有角的已知条件,不能直接求解,所以设AB为未知量,即用AB暗示BD和BC,根据BD -BC=CD=30,列出关于AB的方程.解:在Rt△ABC中,∠CAB=20°,∴BC=ABtan∠CAB=ABtan 20°.在Rt△ABD中,∠DAB=23°,∴BD=ABtan∠DAB=ABtan 23°.∴CD=BD-BC=ABtan 23°-ABtan 20°=AB(tan 23°-tan 20°).∴AB=≈=500(m).答:这人距CD的水平距离AB约为500 m.二、规律方法专题专题5 公式法【专题解读】本章的公式很多,熟练掌握公式是解决问题的关键.例19 当0°<α<90°时,求的值.分析由sin2α+cos2α=1,可得1-sin2α=cos2α解:∵sin2α+cos2α=1,∴cos2α=1-sin2α.∴.∵0°<a<90°,∴cosα>0.∴原式==1.【解题战略】以上解法中,应用了关系式sin2α+cos2α=1(0°<α<90°),这一关系式在解题中经经常使用到,应当牢记,并灵活运用.三、思想方法专题专题6 类比思想【专题解读】求方程中未知数的过程叫做解方程,求直角三角形中未知元素的过程叫做解直角三角形,因此对解直角三角形的概念的理解可类比解方程的概念.我们可以像解方程(组)一样求直角三角形中的未知元素.例20 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,已知a=,b=,解这个直角三角形.分析已知两直角边长a,b,可由勾股定理c=求出c,再利用sin A=求出∠A,进而求出∠B=90°-∠A.解:∵∠C=90°,∴a2+b2=c2.∴c=.又∵sin A=,∴∠A=30°.∴∠B=90°-∠A=60°.【解题战略】除直角外,求出Rt△ABC中的所有未知元素就是解直角三角形.专题7 数形结合思想【专题解读】由“数”思“形”,由“形”想“数”,两者巧妙结合,起到互通、互译的作用,是解决几何问题经常使用的方法之一.例21 如图28-137所示,已知∠α的终边OP⊥AB,直线AB的方程为y=-x+,则cosα即是( )A. B.C. D.分析∵y=-x+,∴当x=0时,y=,当y=0时,x=1,∴A(1,0),B,∴OB=,OA=1,∴AB==,∴cos∠OBA=. ∴OP⊥AB,∴∠α+∠OAB=90°,又∵∠OBA+∠OAB=90°,∴∠α=∠OBA.∴cosα=cos∠OBA=.故选A.专题8 分类讨论思想【专题解读】当结果不能确定,且有多种情况时,对每一种可能的情况都要进行讨论.例22 一条工具走向的高速公路上有两个加油站A,B,在A的北偏东45°方向上还有一个加油站C,C到高速公路的最短距离是30 km,B,C间的距离是60 km.要经过C修一条笔直的公路与高速公路相交,使两路交叉口P到B,C的距离相等,求交叉口P与加油站A的距离.(结果可保管根号)解:①如图28-138(1)所示,在Rt△BDC中,∵CD=30,CB=60,∴∠B=30°.又PC=PB,∴∠CPD=60°,∴DP=10.故AP=AD+DP=(30+10)km.②同理,如图28-138(2)所示,可求得AP=(30-10)km,故交叉口P与加油站A的距离为(30+10)km或(30-10)km.【解题战略】此题针对P点的位置分两种情况进行讨论,即点P在线段AB上或点P在线段BA的延长线上.专题9 转化思想例24 如图28-140所示,A,B两城市相距100km.现计划在这两座城市中间修筑一条高速公路(即线段AB),经丈量,森林呵护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林呵护区的范围在以P点为圆心,50 km为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越呵护区.为什么?(参考数据:≈1.732,≈1.414)解:过点P作PC⊥AB,C是垂足,则∠APC=30°,∠BPC=45°,AC=PC·tan 30°,BC=PC·tan 45°,∵AC+BC=AB,∴PC·tan 30°+PC·tan 45°=100,∴(+1)PC=100,∴PC=50(3-)≈50×(3-1.732)≈63.4>50.答:森林呵护区的中心与直线AB的距离年夜于呵护区的半径,所以计划修筑的这条高速公路不会穿越呵护区.例25 小鹃学完解直角三角形知识后,给同桌小艳出了一道题:“如图28-141所示,把一张长方形卡片ABCD放在每格宽度为12 mm的横格纸中,恰好四个极点都在横格线上.已知α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(结果保管整数;参考数据:sin 36°≈0.6,cos 36°≈0.8,tan 36°≈0.7)解:作BE⊥l于点E,DF⊥l于点F.∵α+∠DAF=180°-∠BAD=180°-90°=90°,∠ADF+∠DAF=90°,∴∠ADF=α=36°.根据题意,得BE=24 mm,DF=48 mm.在Rt△ABE中,s inα= ,∴AB=≈=40(mm).在Rt△ADF中,cos∠ADF=,∴AD=≈=60(mm).∴矩形ABCD的周长=2(40+60)=200(mm).例26 如图28-142所示,某居民楼I高20米,窗户朝南.该楼内一楼住户的窗台离空中距离CM为2米,窗户CD高1.8米.现计划在I楼的正南方距1楼30米处新建一居民楼Ⅱ.当正午时刻太阳光线与空中成30°角时,要使Ⅱ楼的影子不影响I楼所有住户的采光,新建Ⅱ楼最高只能盖几多米?解:设正午时光线正好照在I楼的一楼窗台处,此时新建居民楼Ⅱ高x米.过C作CF⊥l于F,在Rt△ECF中,EF=(x-2)米,FC=30米,∠ECF=30°,∴tan 30°=,∴=10+2.答:新建居民楼Ⅱ最高只能建(10+2)米.创作时间:二零二一年六月三十日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学家庭作业
第七章 锐角三角函数
本章复习
一、知识要点
1、在Rt △ABC 中,∠C =90°,BC =a ,AC =b ,AB =c ,则sinA =_____,cosA =______,tanA =_________
2、填表:
3、在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,则下列关系: (1)两个锐角的关系:_______________ (2)边的关系:__________________ (3)边与角的关系:________________
4、_____________________________叫做解直角三角形. 二、基础训练
1、如图,将三角板的直角顶点放置在直线AB 上的点O 处,使斜边CD ∥AB ,则∠α的余弦值为______
3、sin 260°+cos 245°-tan45°+cos30°·tan30°=_______
4、如图,飞机A 在目标B 的正上方1000m 处,飞行员测得地面目标C 的俯角为30°,则地面目标B 、C 之间的距离是_____m
5、升国旗时,某同学站在离旗杆底部24m 处行注目礼,当国旗升至旗杆顶端时,该同学的视线的仰角为30°,若两眼离地面1.5m ,则旗杆高度约为_____m (3≈1.732,精确到0.1m )
6、如图,梯形ABCD 中,AD ∥BC ,AD =1,BC =4+3,∠B
=45°∠C =60°,则该梯形的高h =______
8、tan30°的值等于()
9、sin60°的值等于()
10、在△ABC中,∠C=90°,∠A、∠B、∠C的对边是a、b、c,那么()
A、b=a·tanA
B、b=c·sinA
C、a=c·cosB
D、c=a·sinA
11、在Rt△ABC中,∠C=90°,下列各式中正确的是()
A、sinA=sinB
B、tanA=tanB
C、sinA=cosB
D、cosA=cosB
12、在平面直角坐标系中点A(sin30°,cos30°)在()
A、第一象限
B、第二象限
C、第三象限
D、第四象限
13、如图,在离地面高度5m处引拉线固定电线杆,拉线和地面成60°角,则拉线AC的长是()
14、如图,要测量出旗杆顶端旗帜的宽度EF,需测出()
A、α、β
B、α、β、AB
C、α、β、B
D、AC D、α、β、AB、AC
第13题第14题
16、在Rt△ABC中,∠C=90°,∠A=60°,∠A的平分线AM的长为15cm,求直角边
AC和斜边AB的长.
17、如图,革命老区人民在高度为120米的山顶上修建一座烈士纪念碑,在山脚下A处测得碑顶D的仰角∠BAD=60°,碑底C的仰角∠BAC=45°,求纪念碑的高度CD(结果保留根号).
18、如图,在港口A的正东15海里处有一观测站B,一艘货船从A处向正北方向航行,当货船航行到C处时,从观测站B测得货船的方向为北偏西60°,0.5h后,货船到达D处,
此时从B处测得货船的方向为北偏西45°,求货船航行的速度(精确到1海里,3≈1.73)
19、有一段防洪大堤,其横断面为梯形ABCD(如图),AB∥CD,斜坡AD的坡度为i1=1:1.2,斜坡BC的坡度为i2=1:0.8,大堤顶宽为6米,为了增强抗洪能力,现将大坝加高,加高部分的横断面为梯形DCFE,EF∥CD,点E、F分别在AD、BC延长线上,当新大坝顶宽EF为3.8米,大堤加高了几米?
三、能力提升
20、如图1,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等边三角形,E是AB的
中点,连结CE并延长交AD于F.
(1)求证:① △AEF ≌△BEC ;② 四边形BCFD 是平行四边形;
(2)如图2,将四边形ACBD 折叠,使D 与C 重合,HK 为折痕,求sin ∠ACH 的值.
图1
A
B
C
D E
F
30°
图2
A
B
C
D
K
H
30°。