安徽省合肥市2017-2018学年七年级数学上学期第三次月考试卷
2017-2018学年第一学期9月月考 初一年级 数学 试卷及参考答案
元的
4 在数轴上表示 , 两数的点如图所示,则?列判断正确的是( ).
A. B.
第1页(共5页)
C. D.
5 在数轴上到 点的距离等于 个单位的点所表示的数是( ). A. B. C. 或 D. 或
6 如图 的三幅图分别是从不同方向看图 所示的工件立体图得到的平面图形,(不考虑尺寸)其中 正确的是 ( ).
,
,则
.
15 将两块直角三角尺的直角顶点重合为如图的位置,若
,则
.
16 某校阶梯教室共有座位 排,第一排有 个座位,后面每排都比前一排多一个座位,此阶梯教室
共有座位
个.
三、用心答一答(共52分)
17 计算:
.
18 先化简,再求值:
,其中
,
.
19 解方程:
.
第4页(共5页)
20 如图,
,延长 到 ,使
A. ①②③ B. ①③ C. ②③ D. ①②
几何体 图
从上面看
从左面看 图
从正面看
7 如图,钟表 时 分时,时针与分针所成的角的度数为( ).
A. B. C.
第2页(共5页)
D.
8 已知 A. B. C. D.
是关于 的方程
的解,则 的值是( ) .
9 某商店在某一时间内以每件 元的价格卖出两件衣服,其中一件盈利 商店卖这两件衣服后( ). A. 不赔不赚 B. 赚钱 C. 赔钱 D. 无法确定
, 是 的中点,求 的长度.
21 如图,在无阴影的方格中选出两个画出阴影,使它们与图中 个有阴影的正方形一起可以构成一 个正方体的表面展开图.(在图 和图 中任选一个进行解答,只填出一种答案即可)
图
七年级数学上册-期中、期末、月考真题-2017-2018学年安徽省宣城市宁国市(d片)城西学校等四校联考七年级(
2017-2018学年安徽省宣城市宁国市(d片)城西学校等四校联考七年级(上)期中数学试卷一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把这个正确的选项填在下面表格的相应位置)1.(3分)(2008•乐山)|3.14﹣π|的值为()A.0 B.3.14﹣πC.π﹣3.14 D.0.142.(3分)(2010秋•合浦县期末)下列各对数中互为相反数的是()A.32与﹣23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.(﹣3×2)2与23×(﹣3)3.(3分)(2017秋•宁国市期中)若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2017+2018b+c2019的值为()A.2017 B.2018 C.2019 D.04.(3分)(2017秋•宁国市期中)我国的国土面积是960万平方公里,其中960万,用科学记数法可表示为()A.9.6×102B.96×102 C.9.6×106D.9.6×1055.(3分)(2017秋•宁国市期中)数a的近似数为1.50,那么a的真实值的范围是()A.1.495<a<1.505 B.1.495≤a<1.505C.1.45<a<1.55 D.1.45≤a<1.556.(3分)(2017秋•宁国市期中)若X表示一个两位数,y表示一个三位数,把X放在y的左边,组成的五位数可表示为()A.X+y B.100X+y C.100 X+1000 y D.1000 X+y7.(3分)(2007春•锦江区校级期末)对于下列式子:①ab;②x2﹣xy﹣;③;④⑤m+n.以下判断正确的是()A.①③是单项式B.②是二次三项式C.①⑤是整式D.②④是多项式8.(3分)(2014秋•山西期末)将多项式4a2b+2b3﹣3ab2﹣a3按字母b的降幂排列正确的是()A.4a2b﹣3ab2+2b3﹣a3B.﹣a3+4a2b﹣3ab2+2b3C.﹣3ab2+4a2b﹣a3+2b3D.2b3﹣3ab2+4a2b﹣a39.(3分)(2015秋•铁力市期末)多项式2x﹣3y+4+3kx+2ky﹣k中没有含y的项,则k应取()A.k= B.k=0 C.k=﹣D.k=410.(3分)(2017秋•宁国市期中)下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.﹣7xy B.+7xy C.﹣xy D.+xy二、填一填,看看谁仔细(本大题共5个小题,每小题3分,共15分)11.(3分)(2017秋•宁国市期中)近似数6.20×108精确到位.12.(3分)(2010秋•肥西县期末)单项式﹣是次单项式,系数为.13.(3分)(2016秋•单县期末)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想:13+23+33+…103=.14.(3分)(2017秋•宁国市期中)如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为.15.(3分)(2016秋•宜春期末)如果代数式2x2+3x+7的值为8,那么代数式4x2+6x ﹣9的值是.三.解答题:16.(15分)(2017秋•宁国市期中)计算(1)﹣22+|5﹣8|+24÷(﹣3)×(2)(﹣﹣+)÷.(3)|﹣|+|﹣|+…+|﹣|.17.(8分)(2017秋•宁国市期中)若|3x+6|+(3﹣y)2=0,求多项式3y2﹣x2+(2x﹣y)﹣(x2+3y2)的值(先化简,再求值).18.(10分)(2017秋•宁国市期中)某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行驶记录(单位:千米)如下:+10,﹣2,+3,﹣1,+9,﹣3,﹣2,+11,+3,﹣4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每100千米耗油15升,求从出发到收工共耗油多少升.19.(10分)(2017秋•宁国市期中)某自行车厂一周计划生产700辆自行车,平均每天生产自行车100辆,由于各种原因,实际每天生产量与计划每天生产量相比有出入.下表是某周的自行车生产情况(超计划生产量为正、不足计划生产量为负,单位:辆):此题不难,但要仔细阅读哦!(1)根据记录可知前三天共生产自行车辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)若该厂实行按生产的自行车数量的多少计工资,即计件工资制.如果每生产一辆自行车就可以得人民币60元,超额完成任务,每超一辆可多得15元;若不足计划数的,每少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?20.(12分)(2017秋•宁国市期中)迪雅服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x>30).(1)若该客户按方案①购买,夹克需付款元,T恤需付款元(用含x的式子表示);若该客户按方案②购买,夹克需付款元,T恤需付款元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.2017-2018学年安徽省宣城市宁国市(d片)城西学校等四校联考七年级(上)期中数学试卷参考答案与试题解析一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把这个正确的选项填在下面表格的相应位置)1.(3分)(2008•乐山)|3.14﹣π|的值为()A.0 B.3.14﹣πC.π﹣3.14 D.0.14【分析】首先判断3.14﹣π的正负情况,然后利用绝对值的定义即可求解|.【解答】解:∵3.14﹣π<0,∴|3.14﹣π|=π﹣3.14.故选:C.【点评】此题主要考查了绝对值的定义,解题时先确定绝对值符号中代数式的正负再去绝对值符号.2.(3分)(2010秋•合浦县期末)下列各对数中互为相反数的是()A.32与﹣23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.(﹣3×2)2与23×(﹣3)【分析】只是符号不同的两个数称为互为相反数.互为相反数的两个数的和是0.【解答】解:32+(﹣23)≠0;﹣23+(﹣2)3≠0;﹣32+(﹣3)2=0;(﹣3×2)2+23×(﹣3)≠0.故互为相反数的是﹣32与(﹣3)2.故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.3.(3分)(2017秋•宁国市期中)若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2017+2018b+c2019的值为()A.2017 B.2018 C.2019 D.0【分析】根据已知求出a=﹣1,b=0,c=1,代入求出即可.【解答】解:∵a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,∴a=﹣1,b=0,c=1,∴a2017+2018b+c2019=(﹣1)2017+2018×0+12019=0.故选:D.【点评】本题考查了绝对值、倒数、负数和求代数式的值等知识点,能根据题意求出a、b、c的值是解此题的关键.4.(3分)(2017秋•宁国市期中)我国的国土面积是960万平方公里,其中960万,用科学记数法可表示为()A.9.6×102B.96×102 C.9.6×106D.9.6×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:960万用科学记数法表示9.6×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2017秋•宁国市期中)数a的近似数为1.50,那么a的真实值的范围是()A.1.495<a<1.505 B.1.495≤a<1.505C.1.45<a<1.55 D.1.45≤a<1.55【分析】根据四舍五入的方法可知1.50可能是后一位入1得到,也可能是舍去后一位得到,找到其最大值和最小值即可确定范围.【解答】解:当a舍去千分位得到1.50,则它的最大值不超过1.505;当a的千分位进1得到1.50,则它的最小值是1.495.所以a的范围是1.495≤a<1.505.故选B.【点评】主要考查了近似数的确定.本题需要注意的是得到1.50可能是舍也可能是入得到的,找到其最大值和最小值即可确定范围.6.(3分)(2017秋•宁国市期中)若X表示一个两位数,y表示一个三位数,把X放在y的左边,组成的五位数可表示为()A.X+y B.100X+y C.100 X+1000 y D.1000 X+y【分析】由y表示一个三位数,把x放在y的左边,也就是把x扩大1000倍,由此表示出这个五位数即可.【解答】解:这个五位数就可以表示为1000x+y.故选:D.【点评】此题考查列代数式,掌握整数的计数方法是解决问题的关键.7.(3分)(2007春•锦江区校级期末)对于下列式子:①ab;②x2﹣xy﹣;③;④⑤m+n.以下判断正确的是()A.①③是单项式B.②是二次三项式C.①⑤是整式D.②④是多项式【分析】分别根据单项式、多项式的次数与项数、整式及多项式的定义作答.【解答】解:式子①ab;②;③;④;⑤中,①是单项式,故A错误;②不是整式,不是多项式,故②错误;①⑤是整式,故C正确;⑤是多项式,故D错误.故选:C.【点评】本题考查了单项式、多项式及多项式的次数与项数、整式的定义.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式.多项式中次数最高的项的次数叫做多项式的次数.多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.单项式和多项式统称为整式.8.(3分)(2014秋•山西期末)将多项式4a2b+2b3﹣3ab2﹣a3按字母b的降幂排列正确的是()A.4a2b﹣3ab2+2b3﹣a3B.﹣a3+4a2b﹣3ab2+2b3C.﹣3ab2+4a2b﹣a3+2b3D.2b3﹣3ab2+4a2b﹣a3【分析】字母b的最高次数为3,然后按照字母b的指数从高到低进行排列即可.【解答】解:4a2b+2b3﹣3ab2﹣a3按字母b的降幂排列为2b3﹣3ab2+4a2b﹣a3.故选:D.【点评】本题主要考查了多项式,解题的关键是熟记按照某一个字母的指数从高到低进行排列叫按这个字母降幂排列.9.(3分)(2015秋•铁力市期末)多项式2x﹣3y+4+3kx+2ky﹣k中没有含y的项,则k应取()A.k= B.k=0 C.k=﹣D.k=4【分析】原式合并后,根据结果不含y,确定出k的值即可.【解答】解:原式=(3k+2)x+(2k﹣3)y+4﹣k,由结果不含y,得到2k﹣3=0,即k=.故选:A.【点评】此题考查了多项式,熟练掌握多项式的项的定义是解本题的关键.10.(3分)(2017秋•宁国市期中)下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.﹣7xy B.+7xy C.﹣xy D.+xy【分析】根据题意得出整式相加减的式子,再去括号,合并同类项即可.【解答】解:由题意得,被墨汁遮住的一项=(﹣x2+3xy﹣y2)﹣(﹣x2+4xy ﹣y2)﹣(﹣x2+y2)=﹣x2+3xy﹣y2+x2﹣4xy+y2+x2﹣y2=﹣xy.故选:C.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.二、填一填,看看谁仔细(本大题共5个小题,每小题3分,共15分)11.(3分)(2017秋•宁国市期中)近似数6.20×108精确到百万位.【分析】根据近似数的精确度求解.【解答】解:近似数6.20×108精确到百万位.故答案为百万.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.12.(3分)(2010秋•肥西县期末)单项式﹣是5次单项式,系数为﹣.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式﹣是5次单项式,系数为﹣.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π属于数字因数.13.(3分)(2016秋•单县期末)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想:13+23+33+…103=3025.【分析】由题意可知:从1开始的连续自然数的立方和等于这些数的和的平方,由此得出答案即可.【解答】解:∵13=12,13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2…∴13+23+33+…+103=(1+2+3+4+…+10)2=552=3025,故答案为:3025.【点评】本题考查数字变化规律,观察出从1开始的连续自然数的立方和等于这些数的和的平方是解题的关键.14.(3分)(2017秋•宁国市期中)如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为30.【分析】由题意可知,当n2﹣n>28时,则输出结果,否则返回重新计算.【解答】解:当n=3时,∴n2﹣n=32﹣3=6<28,返回重新计算,此时n=6,∴n2﹣n=62﹣6=30>28,输出的结果为30.故答案为:30.【点评】本题考查代数求值问题,涉及程序运算的知识,需要正确理解该程序的运算结构.15.(3分)(2016秋•宜春期末)如果代数式2x2+3x+7的值为8,那么代数式4x2+6x ﹣9的值是﹣7.【分析】观察题中的两个代数式2x2+3x和4x2+6x,可以发现4x2+6x=2(2x2+3x),因此由2x2+3x+7的值为8,求得2x2+3x=1,再代入代数式求值.【解答】解:∵2x2+3x+7=8,∴2x2+3x=1,∴4x2+6x﹣9=2(2x2+3x)﹣9=2﹣9=﹣7,故本题答案为:﹣7.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式2x2+3x的值,然后利用“整体代入法”求代数式的值.三.解答题:16.(15分)(2017秋•宁国市期中)计算(1)﹣22+|5﹣8|+24÷(﹣3)×(2)(﹣﹣+)÷.(3)|﹣|+|﹣|+…+|﹣|.【分析】(1)根据幂的乘方、绝对值、有理数的乘除法和加法可以解答本题;(2)先把除法转化为乘法,然后根据乘法分配律即可解答本题;(3)先去掉绝对值符号,然后根据有理数的加减法可以解答本题.【解答】解:(1)﹣22+|5﹣8|+24÷(﹣3)×=﹣4+3+24×(﹣)×=﹣4+3﹣=;(2)(﹣﹣+)÷=(﹣﹣+)×36==﹣27﹣8+15=﹣20.(3)|﹣|+|﹣|+…+|﹣|===.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(8分)(2017秋•宁国市期中)若|3x+6|+(3﹣y)2=0,求多项式3y2﹣x2+(2x﹣y)﹣(x2+3y2)的值(先化简,再求值).【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:由题意得:3x+6=0,3﹣y=0,∴x=﹣2 y=3,3y2﹣x2+(2x﹣y)﹣(x2+3y2)=3y2﹣x2+2x﹣y﹣x2﹣3y2=﹣2x2+2x﹣y,当x=﹣2,y=3时,﹣2x2+2x﹣y=﹣2×(﹣2)2+2×(﹣2)﹣3=﹣8﹣4﹣3=﹣15.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.18.(10分)(2017秋•宁国市期中)某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行驶记录(单位:千米)如下:+10,﹣2,+3,﹣1,+9,﹣3,﹣2,+11,+3,﹣4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每100千米耗油15升,求从出发到收工共耗油多少升.【分析】(1)求得记录的数的和,根据结果即可确定所处的位置;(2)求得记录的数的绝对值的和,乘以0.15即可求解.【解答】解:(1)由题意得:+10﹣2+3﹣1+9﹣3﹣2+11+3﹣4+6=30答:收工时,检修小组距出发地有30千米,在东侧;(2)由题意得:10+2+3+1+9+3+2+11+3+4+6=54,54×15÷100=8.1(升)答:共耗油8.1升.【点评】本题考查了正负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.19.(10分)(2017秋•宁国市期中)某自行车厂一周计划生产700辆自行车,平均每天生产自行车100辆,由于各种原因,实际每天生产量与计划每天生产量相比有出入.下表是某周的自行车生产情况(超计划生产量为正、不足计划生产量为负,单位:辆):此题不难,但要仔细阅读哦!(1)根据记录可知前三天共生产自行车303辆;(2)产量最多的一天比产量最少的一天多生产27辆;(3)若该厂实行按生产的自行车数量的多少计工资,即计件工资制.如果每生产一辆自行车就可以得人民币60元,超额完成任务,每超一辆可多得15元;若不足计划数的,每少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【分析】(1)根据有理数的加法,可得答案;(2)根据最多的减最少的,可得答案;(3)根据每辆自行车的价格乘以自行车的辆数,可得基本工资,根据超额的数量乘以每辆的奖金,可得奖金,根据每辆的扣款乘以少生产的辆数,可得扣款金额,根据有理数的加法,可得答案.【解答】解:(1)3×100+(8﹣2﹣3)=303;故答案为:303;(2)16﹣(﹣11)=27;故答案为:27;(3)8﹣2﹣3+16﹣9+10﹣11=9,(700+9)×60+(8+16+10)×15+(﹣2﹣3﹣9﹣11)×20=42540+510﹣500=42550(元).答:这一周的工资总额是42550元.【点评】本题考查了正数和负数,利用了有理数的加法得出生产数量,利用每辆自行车的价格乘以自行车的辆数.20.(12分)(2017秋•宁国市期中)迪雅服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x>30).(1)若该客户按方案①购买,夹克需付款3000元,T恤需付款50(x﹣30)元(用含x的式子表示);若该客户按方案②购买,夹克需付款2400元,T 恤需付款40x元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.【分析】(1)该客户按方案①购买,夹克需付款30×100=3000;T恤需付款50(x﹣30);若该客户按方案②购买,夹克需付款30×100×80%=2400;T恤需付款50×80%×x;(2)把x=40分别代入(1)中的代数式中,再求和得到按方案①购买所需费用=30×100+50(40﹣30)=3000+500=3500(元),按方案②购买所需费用=30×100×80%+50×80%×40=2400+1600=4000(元),然后比较大小;(3)可以先按方案①购买夹克30件,再按方案②只需购买T恤10件,此时总费用为3000+400=3400(元).【解答】解:(1)3000;50(x﹣30);2400;40x;(2)当x=40,按方案①购买所需费用=30×100+50(40﹣30)=3000+500=3500(元);按方案②购买所需费用=30×100×80%+50×80%×40=2400+1600=4000(元),所以按方案①购买较为合算;(3)先按方案①购买夹克30件,再按方案②购买T恤10件更为省钱.理由如下:先按方案①购买夹克30件所需费用=3000,按方案②购买T恤10件的费用=50×80%×10=400,所以总费用为3000+400=3400(元),小于3500元,所以此种购买方案更为省钱.【点评】本题考查了列代数式:利用代数式表示文字题中的数量之间的关系.也考查了求代数式的值.。
2017—2018学年度人教版七年级上数学月考试卷含答案
试卷第 2 页,总 4 页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… …………○…………外…………○…………装…………○…………订…………○…………线…………○…………
绝密★启用前
2017-2018 学年度第一学期 10 月月考试卷
命题人:李政铭
一、选择题 (每小题 3 分,共 30 分)
1.在下列选项中,具有相反意义的量是( )
A. 收入 20 元与支出 20 元 B. 6 个老师与 6 个学生
C. 走了 100 米与跑了 100 米 D. 向东行 30 米与向北行 30 米
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
数,b 是最大的负整数,c 是绝对值最小的有理数,请问:a,b,c 三数之
④
2③ ,读作“ 2 的圈3 次方”, 3 3 3 3 记作3 ,读作“ 3 的
圈 4 次方”.一般地,把 a a a ... a ( a 0 )记作 a⑧ 读作“ a 的圈 n 次方”
4
四、解答题 (每小题 7 分,共 21 分)
3
4 4 5 5
7.若 ,则 a 与 b 的关系是( )
A.a=b B.a=b C.a=b=0 D.a=b 或 a=-b
(2)李师傅将最后一名乘客送抵目的地时,他距离出发点多少米?
(3)如果汽车耗油量为 0.3 升/千米,那么这天下午汽车共耗油多少升?
25.【概念学习】
规定:求若干个相同的有理数(均不等 0 )的除法运算叫做除方,如
2÷2÷2, 3 3 3 3 等.类比有理数的乘方,我们把 2 2 2 记作
合肥市七年级数学压轴题专题
合肥市七年级数学压轴题专题一、七年级上册数学压轴题1.如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,c满足|a+3|+(c﹣9)2=0,b=1.(1)a=,c=;(2)若将数轴折叠,使得A点与点C重合,则点B与数表示的点重合.(3)在(1)的条件下,若点P为数轴上一动点,其对应的数为x,求当x取何值时代数式|x﹣a|﹣|x﹣c|取得最大值,并求此最大值.(4)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点C处以2个单位/秒的速度也向左运动,在点Q到达点B后,以原来的速度向相反的方向运动,设运动的时间为t(秒),求第几秒时,点P、Q之间的距离是点C、Q之间距离的2倍?2.已知:b是最小的正整数,且a、b、c满足()250-++=,请回答问题.c a b(1)请直接写出a、b、c的值.a=b=c=(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到2x x x (请写出化简过程).之间运动时(即0≤x≤2时),请化简式子:1125(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.3.已知数轴上,M表示-10,点N在点M的右边,且距M点40个单位长度,点P,点Q是数轴上的动点.(1)直接写出点N所对应的数;(2)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发,以3个单位长度/秒向左运动,设点P、Q在数轴上的D点相遇,求点D的表示的数;(3)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发,以3个单位长度/秒向右运动,问经过多少秒时,P,Q两点重合?4.已知在数轴上,一动点P从原点出发向左移动4个单位长度到达点A,再向右移动7个单位长度到达点B.(1)求点A、B表示的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为9,若存在,写出点P 表示的数;若不存在,说明理由;(3)若小虫M从点A出发,以每秒0.5个单位长度沿数轴向右运动,另一只小虫N从点B 出发,以每秒0.2个单位长度沿数轴向左运动.设两只小虫在数轴上的点C 处相遇,点C 表示的数是多少?5.如图,在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,其中39a c ==、.若点A 与点B 之间的距离表示为AB a b ,点B 与点C 之间的距离表示为BC b c =-,点B 在点A C 、之间,且满足2BC AB = .(1)b = ; (2)若点M N 、分别从A 、C 同时出发,相向而行,点M 的速度是1个单位/秒,点N 的速度是2个单位秒,经过多久后M N 、相遇.(3)动点M 从A 点位置出发,沿数轴以每秒1个单位的速度向终点C 运动,设运动时间为t 秒,当点M 运动到B 点时,点N 从A 点出发,以每秒2个单位的速度沿数轴向C 点运动,N 点到达C 点后,再立即以同样的速度返回,运动到终点A ,问:在点N 开始运动后,M N 、两点之间的距离能否为2个单位?如果能,请求出运动的时间t 的值以及此时对应的M 点所表示的数;如果不能,请说明理由.6.如图,数轴上有A 、B 、C 、D 四个点,分别对应的数为a 、b 、c 、d ,且满足a ,b 是方程|9|1x +=的两根()a b <,2(16)c -与|20|d -互为相反数,(1)求a 、b 、c 、d 的值;(2)若A 、B 两点以6个单位长度秒的速度向右匀速运动,同时C 、D 两点以2个单位长度/秒向左匀速运动,并设运动时间为t 秒,问t 为多少时,6AC =?(3)在(2)的条件下,A 、B 、C 、D 四个点继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使B 与C 的距离是A 与D 的距离的4倍?若存在,求时间t ;若不存在,请说明理由.7.已知数轴上三点M ,O ,N 对应的数分别为1-,0,3,点P 为数轴上任意一点,其对应的数为x .(1)如果点P 到点M 、点N 的距离相等,那么x 的值是______.(2)数轴上是否存在点P ,使点P 到点M 、点N 的距离之和是8?若存在,求出x 的值;若不存在,请说明理由.(3)如果点P 以每分钟1个单位长度的速度从点O 向右运动,同时另一点Q 从点N 以每分钟2个单位长度的速度向左运动.设t 分钟时点P 和点Q 到点M 的距离相等,则t 的值为______.(直接写出答案)8.已知,A ,B 在数轴上对应的数分用a ,b 表示,且()220100a b -++=,数轴上动点P 对应的数用x 表示.(1)在数轴上标出A 、B 的位置,并直接写出A 、B 之间的距离;(2)写出x a x b -+-的最小值;(3)已知点C 在点B 的右侧且BC =9,当数轴上有点P 满足PB =2PC 时,①求P 点对应的数x 的值;②数轴上另一动点Q 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点Q 能移动到与①中的点P 重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动可以重合。
阜阳市颍上县西部片区五校联考七年级数学上学期第三次月考试卷
安徽省阜阳市颍上县西部片区五校联考2017-2018学年七年级数学上学期第三次月考试卷一、选择题(本题共10小题,每小题4分,满分40分)1.(4分)(2017秋•颍上县月考)﹣2的绝对值的相反数是()A.﹣2 B.﹣ C.2 D.2.(4分)(2017秋•颍上县月考)2015年全国教育经费执行情况统计公告发布,全国教育经费总投入为32806亿元,“32806亿”用科学记数法表示为( )A.3.2806×1011 B.3.2806×1012 C.3。
2806×1013D.3.2806×1014 3.(4分)(2017秋•颍上县月考)若a<0,则3a+5|a|等于()A.8a B.﹣8a C.﹣2a D.2a4.(4分)(2017秋•颍上县月考)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m+n的值是()A.2 B.0 C.﹣1 D.15.(4分)(2015秋•邵阳期末)若方程(m﹣3)x|m|﹣2=3y n+1+4是二元一次方程,则m,n的值分别为()A.2,﹣1 B.﹣3,0 C.3,0 D.±3,06.(4分)(2012•重庆)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.57.(4分)(2017秋•颍上县月考)如果方程组的解是方程3x﹣5y ﹣28=0的一个解,则a的值为()A.3 B.2 C.7 D.68.(4分)(2017秋•颍上县月考)关于多项式3x2﹣2x3y﹣4x﹣1,下列说法正确的是()A.它是三次四项式B.它的最高次项是﹣2x3yC.它的常数项是1 D.它的一次项系数是49.(4分)(2015•大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元 B.800元C.720元D.1080元10.(4分)(2008•菏泽)某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为( )A.26元B.27元C.28元D.29元二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2013秋•滦县期中)已知P是数轴上的一点﹣4,把P点向左移动3个单位后再向右移1个单位长度,那么P点表示的数是.12.(5分)(2017秋•颍上县月考)如图,按此规律,第n行的最后一个数字为.13.(5分)(2016秋•天桥区期末)的系数是,次数是.14.(5分)(2017秋•颍上县月考)已知a是整数,且a比0大,比10小,请你设法找出a的一些数值,使关于x的方程1﹣ax=﹣5的解是偶数,你找出的整数a的值是.三、(本题共2小题,每小题8分,满分16分)15.(8分)(2017秋•颍上县月考)计算:﹣24+×[﹣6+(﹣4)2]÷(﹣5)+(﹣1)2015.16.(8分)(2017秋•颍上县月考)化简:5(x2y﹣3x)﹣2(x﹣2x2y)+20x.四、(本题共2小题,每小题8分,满分16分)17.(8分)(2015秋•大观区校级期末)解方程:﹣=1.18.(8分)(2015•赤峰)解二元一次方程组:.五、(本题共2小题,每小题10分,满分20分)19.(10分)(2017秋•颍上县月考)已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,当x=3,y=﹣时,求2A﹣B的值.20.(10分)(2017秋•颍上县月考)|a+3|+(b﹣2)2=0,求a b的值.六、(本题满分12分)21.(12分)(2015秋•金堂县期末)某学校班主任暑假带领该班三好学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠;”乙旅行社说:“教师在内全部按票价的6折优惠;”若全部票价是240元;(1)如果有10名学生,应参加哪个旅行社,并说出理由;(2)当学生人数是多少时,两家旅行社收费一样多?七、(本题满分12分)22.(12分)(2017秋•颍上县月考)已知A=3x2﹣ax+6x﹣2,B=﹣3x2+4ax﹣7,若A+B的值不含x项,求a的值.八、(本题满分14分)23.(14分)(2014春•桑植县期末)某商场计划拨款9万元从厂家购进50台电视机,已知该厂有三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进两种不同型号的电视机50台,正好花去9万元,请你研究一下商场的进货方案;(2)某商场销售一台甲、乙、丙电视机,分别可获利150元,200元,250元,为使获利最多,应选择上述哪种进货方案?2017—2018学年安徽省阜阳市颍上县西部片区五校联考七年级(上)第三次月考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,满分40分)1.(4分)(2017秋•颍上县月考)﹣2的绝对值的相反数是( )A.﹣2 B.﹣ C.2 D.【分析】计算绝对值要根据绝对值的定义求解|﹣2|,然后根据相反数的性质得出结果.【解答】解:﹣2的绝对值是2,2的相反数是﹣2.故选:A.【点评】此题考查了绝对值和相反数,相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.(4分)(2017秋•颍上县月考)2015年全国教育经费执行情况统计公告发布,全国教育经费总投入为32806亿元,“32806亿”用科学记数法表示为()A.3。
2023-2024学年安徽省合肥市第五十中天鹅湖校区七年级(上)第一次月考数学试卷(含解析)
2023-2024学年安徽省合肥五十天中天鹅湖校区七年级(上)第一次月考数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在−112,12,−20,0,−(−5),−|+3|中,负数的个数有( )A. 2个B. 3 个C. 4 个D. 5 个2.把8−(+4)+(−6)−(−5)写成省略加号的和的形式是( )A. 8−4−6+5B. 8−4−6−5C. 8+(−4)+(−6)+5D. 8+4−6−53.如果一个有理数的绝对值等于它本身,那么这个数一定是( )A. 负数B. 负数和0C. 正数和0D. 正数4.下列各数中互为相反数的是 ( )A. −2.25与214B. 13与−0.33C. −12与0.2D. 5与−(−5)5.下列说法错误的是( )A. 所有的有理数都可以用数轴上的点表示B. 数轴上的原点表示零C. 在数轴上表示−3的点于表示+1的点的距离是2D. 数轴上表示−314的点,在原单位左边314个单位6.巴黎与北京的时差为−7时(正数表示同一时刻巴黎比北京时间早的时间(时)),如果北京时间是9月2日14:00,那么巴黎时间是( )A. 9月2日21:00B. 9月2日7:00C. 9月1日7:00D. 9月2日5:007.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2017所对应的点是( )A. 点AB. 点BC. 点CD. 点D8.已知数a,b,c的大小关系如图,下列说法:①ab+ac>0;②−a−b+c<0;③a|a|+b|b|+c|c|=−1;④|a−b|+|c+b|−|a−c|=−2b;⑤若x为数轴上任意一点,则|x−b|+|x−a|的最小值为a−b.其中正确结论的个数是( )A. 1B. 2C. 3D. 4二、填空题:本题共5小题,每小题3分,共15分。
七年级数学上册-期中、期末、月考真题-2017-2018学年安徽省六安市霍邱县七年级(上)期中数学试卷
2017-2018学年安徽省六安市霍邱县七年级(上)期中数学试卷一.选择题(本大题共有10小题,每小题4分,共计40分)1.(4分)(2017•六盘水)大米包装袋上(10±0.1)kg的标识表示此袋大米重()A.(9.9~10.1)kg B.10.1kg C.9.9kg D.10kg2.(4分)(2017秋•霍邱县期中)下列运算结果为正数的是()A.2﹣3 B.(﹣3)2C.0×(﹣2017)D.﹣3÷23.(4分)(2017秋•崆峒区期末)有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b|D.b+c>04.(4分)(2017•济宁)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.55.(4分)(2017•齐齐哈尔)作为“一带一路”倡议的重大先行项目,中国、巴基斯坦经济走廊建设进展快、成效显著.两年来,已有18个项目在建或建成,总投资额达185亿美元.185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×10126.(4分)(2017秋•霍邱县期中)下列运算正确的是()A.3a+2a2=5a3B.a2b﹣ab2=0C.2a2bc﹣ba2c=bca2D.2a3﹣3a3=a37.(4分)(2017秋•霍邱县期中)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,若设有x人,依据题意,所列方程正确的是.(注:明代时1斤=16两,故有“半斤八两”这个成语)()A.7x+4=9x﹣8 B.7x﹣4=9x+8 C.7(x+4)=9(x﹣8)D.7(x﹣4)=9(x+8)8.(4分)(2017•咸宁)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)9.(4分)(2017•无锡)若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣510.(4分)(2017•烟台)用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6 D.3n+3二.填空题(本题共有4小题,每小题5分,共计20分)11.(5分)(2017秋•霍邱县期中)是次单项式.12.(5分)(2017•江西)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为.13.(5分)(2017秋•霍邱县期中)x=1是关于x的方程2x﹣a=0的解,则a的值等于.14.(5分)(2016秋•朝阳区期末)如图,这是一个运算的流程图,输入正整数x的值,按流程图进行操作并输出y的值.例如,若输入x=10,则输出y=5.若输出y=3,则输入的x的值为.三.解答题(本大题共有9小题,共计90分)15.(8分)(2016秋•青龙县期末)把下列各数分类﹣3,0.45,,0,9,﹣1,﹣1,10,﹣3.14(1)正整数:{ …}(2)负整数:{ …}(3)整数:{ …}(4)分数:{ …}.16.(8分)(2017秋•霍邱县期中)计算:(1)3+(﹣11)﹣(﹣9)(2)(﹣+)÷(﹣).17.(10分)(2017秋•霍邱县期中)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,d的相反数是求代数式m2015+2016n+c2017+2018d的值.18.(10分)(2017秋•霍邱县期中)解方程:(1)﹣3(x﹣2)=4﹣2x(2)=1.19.(10分)(2017秋•全椒县期中)先化简,再求值:(2a2b﹣5ab+1)﹣(3ab+2a2b),其中a=﹣3,b=.20.(10分)(2017秋•霍邱县期中)在一条不完整的数轴上从左到右有点A,B,C,其中A到B的距离等于2个单位长度,其中B到C的距离等于1个单位长度,如图所示.设点A,B,C所对应有理数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且,其中C到O的距离等于28个单位长度,求p.21.(10分)(2017秋•霍邱县期中)小颖家买了一套新房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)客厅的面积是m2;(2)用含x、y的式子表示这套房子的总面积;(3)当x=3.6,y=2时,若铺1m2地砖的平均费用为20元,那么铺地砖的总费用是多少元?22.(12分)(2017秋•苍溪县期末)我们规定,若关于x的一元一次方程ax=b 的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则该方程2x﹣4是差解方程.(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.23.(12分)(2016秋•龙湖区期末)从2开始,连续的偶数相加,它们和的情况如下表:(1)若n=8时,则S的值为.(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=.(3)根据上题的规律求102+104+106+108+…+200的值(要有过程)2017-2018学年安徽省六安市霍邱县七年级(上)期中数学试卷参考答案与试题解析一.选择题(本大题共有10小题,每小题4分,共计40分)1.(4分)(2017•六盘水)大米包装袋上(10±0.1)kg的标识表示此袋大米重()A.(9.9~10.1)kg B.10.1kg C.9.9kg D.10kg【分析】根据大米包装袋上的质量标识为“10±0.1”千克,可以求得合格的波动范围,从而可以解答本题.【解答】解:∵大米包装袋上的质量标识为“10±0.1”千克,∴大米质量的范围是:9.9~10.1千克,故选:A.【点评】本题考查正数和负数,解题的关键是明确题意,明确正数和负数在题目中的实际意义.2.(4分)(2017秋•霍邱县期中)下列运算结果为正数的是()A.2﹣3 B.(﹣3)2C.0×(﹣2017)D.﹣3÷2【分析】各式计算得到结果,即可做出判断.【解答】解:A、原式=﹣1,不符合题意;B、原式=9,符合题意;C、原式=0,不符合题意;D、原式=﹣1.5,不符合题意,故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(4分)(2017秋•崆峒区期末)有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b|D.b+c>0【分析】根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.【点评】本题考查了实数与数轴,利用数轴上点的位置关系得出a,b,c,d的大小是解题关键.4.(4分)(2017•济宁)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.5【分析】根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.【解答】解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.【点评】本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.5.(4分)(2017•齐齐哈尔)作为“一带一路”倡议的重大先行项目,中国、巴基斯坦经济走廊建设进展快、成效显著.两年来,已有18个项目在建或建成,总投资额达185亿美元.185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:185亿=1.85×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(4分)(2017秋•霍邱县期中)下列运算正确的是()A.3a+2a2=5a3B.a2b﹣ab2=0C.2a2bc﹣ba2c=bca2D.2a3﹣3a3=a3【分析】根据合并同类项方法,将所含字母相同,其相同字母的指数也相同的项的系数相加,逐项计算即可.【解答】解:A、3a和2a2不是同类项,不能合并,故A选项计算错误;B、a2b和﹣ab2不是同类项,不能合并,故B选项计算错误;C、2a2bc﹣ba2c=bca2,故C选项计算正确;D、2a3﹣2a3=0,故D选项计算错误;故选:C.【点评】本题主要考查合并同类项,解决此类问题时要注意两点:①要合并的项必须是同类项;②合并时,只要将其系数相加即可.7.(4分)(2017秋•霍邱县期中)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,若设有x人,依据题意,所列方程正确的是.(注:明代时1斤=16两,故有“半斤八两”这个成语)()A.7x+4=9x﹣8 B.7x﹣4=9x+8 C.7(x+4)=9(x﹣8)D.7(x﹣4)=9(x+8)【分析】根据题意列出方程求出答案.【解答】解:由题意可知:7x+4=9x﹣8故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是找出等量关系,本题属于基础题型.8.(4分)(2017•咸宁)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【解答】解:∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,∴2月份鸡的价格为24(1﹣a%),∵3月份比2月份下降b%,∴三月份鸡的价格为24(1﹣a%)(1﹣b%),故选:D.【点评】本题主要考查了列代数式的知识,解题的关键是掌握每个月份的数量增长关系.9.(4分)(2017•无锡)若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【分析】根据题中等式确定出所求即可.【解答】解:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选:B.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.10.(4分)(2017•烟台)用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6 D.3n+3【分析】解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【解答】解:∵第一个图需棋子3+3=6;第二个图需棋子3×2+3=9;第三个图需棋子3×3+3=12;…∴第n个图需棋子3n+3枚.故选:D.【点评】本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.二.填空题(本题共有4小题,每小题5分,共计20分)11.(5分)(2017秋•霍邱县期中)是5次单项式.【分析】根据单项式的次数等于各字母的指数和,直接解答即可.【解答】解:2+2+1=5,故答案为:5.【点评】本题主要考查单项式的相关定义,解决此题时,熟记单项式的次数是各字母的指数和是关键.12.(5分)(2017•江西)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为﹣3.【分析】根据有理数的加法,可得答案.【解答】解:图②中表示(+2)+(﹣5)=﹣3,故答案为:﹣3.【点评】本题考查了有理数的运算,利用有理数的加法运算是解题关键.13.(5分)(2017秋•霍邱县期中)x=1是关于x的方程2x﹣a=0的解,则a的值等于2.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:2﹣a=0,解得:a=2,故答案为:2【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.(5分)(2016秋•朝阳区期末)如图,这是一个运算的流程图,输入正整数x的值,按流程图进行操作并输出y的值.例如,若输入x=10,则输出y=5.若输出y=3,则输入的x的值为5或6.【分析】由运算流程图,根据输出y的值确定出x的值即可.【解答】解:若x为偶数,可得x=3,即x=6;若x为奇数,可得(x+1)=3,即x=5,故答案为:5或6【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三.解答题(本大题共有9小题,共计90分)15.(8分)(2016秋•青龙县期末)把下列各数分类﹣3,0.45,,0,9,﹣1,﹣1,10,﹣3.14(1)正整数:{ 9,10…}(2)负整数:{ ﹣3,﹣1…}(3)整数:{ ﹣3,﹣1,0,9,10…}(4)分数:{ 0.45,,﹣1,﹣3.14…}.【分析】根据有理数的分类,可得答案.【解答】解:(1)正整数:{9,10 …}(2)负整数:{﹣3,﹣1 …}(3)整数:{﹣3,﹣1,0,9,10 …}(4)分数:{0.45,,﹣1,﹣3.14 …},故答案为:9,10;﹣3,﹣1;﹣3,﹣1,0,9,10;0.45,,﹣1,﹣3.14.【点评】本题考查了有理数,利用有理数的分类是解题关键.16.(8分)(2017秋•霍邱县期中)计算:(1)3+(﹣11)﹣(﹣9)(2)(﹣+)÷(﹣).【分析】(1)根据有理数的加减法可以解答本题;(2)先把除法转化为乘法,再根据乘法分配律即可解答本题.【解答】解:(1)3+(﹣11)﹣(﹣9)=3+(﹣11)+9=1;(2)(﹣+)÷(﹣)=(﹣+)×(﹣)===.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(10分)(2017秋•霍邱县期中)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,d的相反数是求代数式m2015+2016n+c2017+2018d的值.【分析】根据题意得出m=﹣1,n=0,c=1,,再代入计算可得.【解答】解:由题意得:m=﹣1,n=0,c=1,,所以=﹣1+0+1+1=1.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和法则.18.(10分)(2017秋•霍邱县期中)解方程:(1)﹣3(x﹣2)=4﹣2x(2)=1.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】(1)解:去括号得﹣3x+6=4﹣2x,移项得﹣3x+2x=4﹣6,合并同类项得﹣x=﹣2,化未知数系数为得x=2;(2)解:去分母得2(x﹣1)﹣(3x﹣1)=10,去括号得2x﹣2﹣3x+1=10,移项得2x﹣3x=10+2﹣1,合并同类项得﹣x=11,化未知数系数为得x=30.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.19.(10分)(2017秋•全椒县期中)先化简,再求值:(2a2b﹣5ab+1)﹣(3ab+2a2b),其中a=﹣3,b=.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2a2b﹣5ab+1﹣3ab﹣2a2b=﹣8ab+1,当a=﹣3,b=时,原式=8+1=9.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.(10分)(2017秋•霍邱县期中)在一条不完整的数轴上从左到右有点A,B,C,其中A到B的距离等于2个单位长度,其中B到C的距离等于1个单位长度,如图所示.设点A,B,C所对应有理数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且,其中C到O的距离等于28个单位长度,求p.【分析】(1)先根据题意求出A、B、C对应的数,再求出p即可;(2)先根据题意求出A、B、C对应的数,再求出p即可.【解答】解:(1)以B为原点,点A,C分别对应的数为﹣2和1,p=﹣2+0+1=﹣1;以C为原点,点A,B分别对应的数为﹣3,﹣1,p=﹣3+(﹣1)+0=﹣4;(2)若原点O在数轴上点C的右边,且C到O的距离等于28个单位长度,则点A对应的数为﹣28﹣1﹣2=﹣31,点B对应的数为﹣28﹣1=﹣29,点B对应的数为﹣28,所以p=(﹣28﹣1﹣2)+(﹣28﹣1)+(﹣28)=﹣88.【点评】本题考查了数轴和有理数的计算,能分别求出A、B、C对应的数是解此题的关键.21.(10分)(2017秋•霍邱县期中)小颖家买了一套新房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)客厅的面积是5xy m2;(2)用含x、y的式子表示这套房子的总面积;(3)当x=3.6,y=2时,若铺1m2地砖的平均费用为20元,那么铺地砖的总费用是多少元?【分析】(1)根据图形中的数据可以用代数式表示出客厅的面积;(2)根据图形中的数据可以用代数式表示出这套房子的面积;(3)将x、y的值代入(2)中的代数式,求出代数式的值再乘以20即可解答本题.【解答】解:(1)由题意可得,客厅的面积是5y•x=5xy(m2),故答案为:5xy;(2)由图得,这套房子的总面积:5y•x+3y×(2+2)+2y+2×(5y﹣3y)=5xy+12y+2y+4y=5xy+18y (m2),答:这套房子的总面积是(5xy+18y)m2;(3)当x=3.6,y=2时,5xy+18y=5×3.6×2+18×2=72(m2),因为铺1m2地砖的平均费用为20元,所以铺地砖的总费用是72×20=1440(元),答:铺地砖的总费用是1440元.【点评】本题考查代数式求值、列代数式,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值,利用数形结合的思想解答.22.(12分)(2017秋•苍溪县期末)我们规定,若关于x的一元一次方程ax=b 的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则该方程2x﹣4是差解方程.(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.【分析】(1)求出方程的解,再根据差解方程的意义得出即可;(2)根据差解方程得出关于m的方程,求出方程的解即可.【解答】解:(1)∵3x=4.5,∴x=1.5,∵4.5﹣3=1.5,∴3x=4.5是差解方程;(2)∵关于x的一元一次方程5x=m+1是差解方程,∴m+1﹣5=,解得:m=.故m的值为.【点评】本题考查了一元一次方程的解的应用,能理解差解方程的意义是解此题的关键.23.(12分)(2016秋•龙湖区期末)从2开始,连续的偶数相加,它们和的情况如下表:(1)若n=8时,则S的值为72.(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=n (n+1).(3)根据上题的规律求102+104+106+108+…+200的值(要有过程)【分析】(1)根据表中的规律发现:若n=8时,则S的值为8×9,求得数值即可;(2)根据表中的规律发现:第n个式子的和是n(n+1);(3)首先确定有几个加数,由上述可得规律:加数的个数为最后一个加数÷2,据此解答.【解答】解:(1)当n=8时,S=8×9=72;故答案为:72;(2)根据特殊的式子即可发现规律,S=2+4+6+8+…+2n=2(1+2+3+…+n)=n(n+1);故答案为:n(n+1);(3)102+104+106+…+200=(2+4+6+...+102+...+200)﹣(2+4+6+ (100)=100×101﹣50×51=7550.【点评】本题主要考查了规律型问题:数字的变化,解题时注意根据所给的具体式子观察结果和数据的个数之间的关系.认真观察、仔细思考,善用联想是解决这类问题的方法.。
2017-2018学年安徽省淮南市西部片区七年级上学期月考(联考)数学试题答案和解析答案
19.计算(=-1 (2)x=-2 (3) (4)x=2 或 x=-1
20. (8分)解:
当 时,原式
21.(8分) 解: x=-2 m=1[]
22.(8分)解:设甲买x件, 1.2x+0.8(x+1)=8.8, x=4, x+1=5
方案二费用:20×25+(30+10-20)×25×80%=900(元)
故方案一省钱,[学_科_网Z_X_X_K]
(2)设学生人数为x人,
25×88%×(x+10)=25×20+25(x+10-2 0) ×80%
解得x=40,
2017~2018学年度七年级 第一学期第二次月考数学试卷答案
一、 精心选一选,本大题共10小题,每小 题3分 ,共30分.
1. A 2. D 3 . B 4. C 5. D 6. C 7. C 8. D 9. C 10. B
[]
二、认真填一填,本大题共8小题,每小题3分,共24分.
11.-512.213.-114. 515. 2016. 1617.-118. 143
[学#科#网]
23.解:设宿舍有x个房间,6x+4=8x -4 ,x=4,6x+4=28
24.解:情况1 :第一次相距 32.5千 米
设经过 小时两人相距32.5千米,根 据题意,得
,
解得 .
情况2:第二次相距32.5千米[]
设经过 小时两人相距32.5千米,根据题意,得
,
解得 .
25.解:(1)方案一费用:(10+30)×25×88%=880(元),
2017-2018学年人教版数学七年级(上册)第一次月考试卷及答案
2017-2018学年七年级(上)第一次月考数学试卷一、选择题:(每题3分,共30分)1.将图中的三角形绕虚线旋转一周,所得的几何体是()A.B.C.D.2.在数轴上,原点两旁与原点等距离的两点所表示的数的关系是()A.相等 B.互为倒数 C.互为相反数D.不能确定3.中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104 C.67.5×103 D.675×1024.下列各组数中,不相等的一组是()A.﹣(+7),﹣|﹣7| B.﹣(+7),﹣|+7|C.+(﹣7),﹣(+7)D.+(+7),﹣|﹣7|5.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A.3或13 B.13或﹣13 C.3或﹣3 D.﹣3或136.如果|a|=﹣a,下列成立的是()A.a>0 B.a<0 C.a≥0 D.a≤07.若一个数的绝对值是5,则这个数是()A.5 B.﹣5 C.±5 D.以上都不对8.比较(﹣4)3和﹣43,下列说法正确的是()A.它们底数相同,指数也相同B.它们底数相同,但指数不相同C.它们所表示的意义相同,但运算结果不相同D.虽然它们底数不同,但运算结果相同9.小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()A.B.C.D.10.若0<a<1,则a,,a2从小到大排列正确的是()A.a2<a<B.a<<a2C.<a<a2D.a<a2<二、填空题(每小题3分,共30分)11.﹣的绝对值是,﹣的相反数是,﹣的倒数是.12.最大的负整数与最小的正整数的和是.13.若|a﹣6|+|b+5|=0,则a+b的值为.14.数轴上和表示﹣7的点的距离等于3的点所表示的数是.15.若|x﹣2|=5,|y|=4,且x>y,则x+y的值为.16.若“方框”表示运算x﹣y+z+w,则“方框”的运算结果是=.17.已知p是数轴上的一点﹣4,把p点向左移动3个单位后再向右移1个单位长度,那么p点表示的数是.18.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有个.19.观察下列数据,按某种规律在横线上填上适当的数:1,﹣,,﹣,,,…20.由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是个.三、解答题:(共60分)21.画出如图所示几何体的三视图.22.计算:(1)﹣43÷5×(2)(﹣12)﹣5+(﹣14)﹣(﹣39)(3)(﹣2)2×7﹣(﹣3)×6﹣|﹣5|(4)﹣153×0.75+0.53×﹣3.4×0.75.23.把下列各数分别表示在数轴上,并用“<”号把它们连接起来.﹣0.5,0,﹣|﹣|,﹣(﹣3),2.24.如图,这是一个小立方块所搭几何体的俯视图,正方形中的数字表示在该位置小立方块的个数.请你画出它的主视图和左视图.25.观察流花河的水文资料(单位:米),完成下列问题(1)如果取河流的警戒水位作为0点,那么图中的其他数据可以分别记作什么?(2)表是小明记录的今年雨季流花河一周内的水位变化情况(上周末的水位达到警戒水①本周哪一天流花河的水位最高?哪一天水位最低?它们位于警戒水位之上还是之下?与警戒水位的距离分别是多少?②与上周末相比,本周末流花河水位是上升了还是下降了?参考答案与试题解析一、选择题:(每题3分,共30分)1.将图中的三角形绕虚线旋转一周,所得的几何体是()A.B.C.D.【考点】点、线、面、体.【分析】上面的直角三角形旋转一周后是一个圆锥,下面的直角三角形旋转一周后也是一个圆锥.所以应是圆锥和圆锥的组合体.【解答】解:由题意可知,该图应是圆锥和圆锥的组合体.故选C.2.在数轴上,原点两旁与原点等距离的两点所表示的数的关系是()A.相等 B.互为倒数 C.互为相反数D.不能确定【考点】相反数;数轴.【分析】根据互为相反数的定义和数轴解答.【解答】解:在数轴上,原点两旁与原点等距离的两点所表示的数的关系是:互为相反数.故选C.3.中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104 C.67.5×103 D.675×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将67500用科学记数法表示为:6.75×104.故选:B.4.下列各组数中,不相等的一组是()A.﹣(+7),﹣|﹣7| B.﹣(+7),﹣|+7|C.+(﹣7),﹣(+7)D.+(+7),﹣|﹣7|【考点】绝对值;相反数.【分析】根据绝对值,可得绝对值表示的数,根据去括号,可得答案.【解答】解:+(+7)=7,﹣=﹣7,故D正确,故选:D.5.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A.3或13 B.13或﹣13 C.3或﹣3 D.﹣3或13【考点】绝对值.【分析】绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.有理数的减法运算法则:减去一个数,等于加这个数的相反数.【解答】解:∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.6.如果|a|=﹣a,下列成立的是()A.a>0 B.a<0 C.a≥0 D.a≤0【考点】绝对值.【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【解答】解:如果|a|=﹣a,即一个数的绝对值等于它的相反数,则a≤0.故选D.7.若一个数的绝对值是5,则这个数是()A.5 B.﹣5 C.±5 D.以上都不对【考点】绝对值.【分析】∵|+5|=5,|﹣5|=5,∴绝对值等于5的数有2个,即+5和﹣5,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于5的数有2个,分别位于原点两边,关于原点对称.【解答】解:根据绝对值的定义得,绝对值等于5的数有2个,分别是+5和﹣5.故选C.8.比较(﹣4)3和﹣43,下列说法正确的是()A.它们底数相同,指数也相同B.它们底数相同,但指数不相同C.它们所表示的意义相同,但运算结果不相同D.虽然它们底数不同,但运算结果相同【考点】有理数的乘方.【分析】(﹣4)3表示三个﹣4的乘积,﹣43表示3个4乘积的相反数,计算得到结果,即可做出判断.【解答】解:比较(﹣4)3=(﹣4)×(﹣4)×(﹣4)=﹣64,﹣43=﹣4×4×4=﹣64,底数不相同,表示的意义不同,但是结果相同,故选D.9.小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()A.B.C.D.【考点】几何体的展开图.【分析】本题考查了正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【解答】解:根据题意及图示只有A经过折叠后符合.故选:A.10.若0<a<1,则a,,a2从小到大排列正确的是()A.a2<a<B.a<<a2C.<a<a2D.a<a2<【考点】实数大小比较.【分析】首先根据条件设出符合条件的具体数值,然后根据负数小于一切正数,两个负数比较大小,两个负数绝对值大的反而小即可解答.【解答】解:∵0<a<1,∴设a=,=2,a2=,∵<<2,∴a2<a<.故选A.二、填空题(每小题3分,共30分)11.﹣的绝对值是,﹣的相反数是,﹣的倒数是﹣.【考点】倒数;相反数;绝对值.【分析】根据负数的绝对值是它的相反数,可得一个负数的绝对值;根据只有符号不同的两个数互为相反数,可得一个数的相反数;根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣的绝对值是,﹣的相反数是,﹣的倒数是﹣,故答案为:,,﹣.12.最大的负整数与最小的正整数的和是0.【考点】有理数.【分析】最小的正整数是1,最大的负整数是﹣1,所以最大的负整数与最小的正整数的和是0【解答】解:由题可知:∵最小的正整数是1,最大的负整数是﹣1;∴两者的和就是1﹣1=0∴最大的负整数与最小的正整数的和是013.若|a﹣6|+|b+5|=0,则a+b的值为1.【考点】非负数的性质:绝对值.【分析】由非负数的性质可知a=6,b=﹣5,然后利用有理数的加法法则求得a+b的值即可.【解答】解:∵|a﹣6|+|b+5|=0,∴a=6,b=﹣5.∴a+b=6+(﹣5)=1.故答案为:1.14.数轴上和表示﹣7的点的距离等于3的点所表示的数是﹣10或﹣4.【考点】数轴.【分析】分数在﹣7的左边和右边两种情况讨论求解.【解答】解:若在﹣7的左边,则﹣7﹣3=﹣10,若在﹣7的右边,则﹣7+3=﹣4,综上所述,所表示的数是﹣10或﹣4.故答案为:﹣10或﹣4.15.若|x﹣2|=5,|y|=4,且x>y,则x+y的值为11,3,﹣7.【考点】有理数的加法;绝对值.【分析】利用绝对值的代数意义及x与y的大小,确定出x与y的值,即可求出x+y的值.【解答】解:∵|x﹣2|=5,|y|=4,且x>y,∴x﹣2=5或x﹣2=﹣5,y=4或﹣4,解得:x=7,y=4;x=7,y=﹣4;x=﹣3,y=﹣4,则x+y的值为11,3,﹣7.故答案为:11,3,﹣7.16.若“方框”表示运算x﹣y+z+w,则“方框”的运算结果是=﹣8.【考点】有理数的加减混合运算.【分析】利用题中的新定义计算即可得到结果.【解答】解:根据题意得:“方框”=﹣2﹣3+3﹣6=﹣8,故答案为:﹣8.17.已知p是数轴上的一点﹣4,把p点向左移动3个单位后再向右移1个单位长度,那么p点表示的数是﹣6.【考点】数轴.【分析】根据题意,分析可得,实际将P向左平移2个单位,结合数轴可得答案.【解答】解:根据题意,把p点向左移动3个单位后再向右移1个单位长度,实际将P向左平移2个单位,则p点表示的数是﹣4﹣2=﹣6,故答案为﹣6.18.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有8个.【考点】数轴.【分析】根据数轴的单位长度,判断墨迹盖住部分的整数.【解答】解:由图可知,左边盖住的整数数值是﹣2,﹣3,﹣4,﹣5;右边盖住的整数数值是1,2,3,4;墨迹盖住部分的整数共有4+4=8个.故答案为:8.19.观察下列数据,按某种规律在横线上填上适当的数:1,﹣,,﹣,,﹣,…【考点】规律型:数字的变化类.【分析】分子是从1开始的连续奇数,分母是从1开始连续自然数的平方,奇数位置为正,偶数位置为负,第n个数为(﹣1)n+1,由此代入求得答案即可.【解答】解:数列为:1,﹣,,﹣,,﹣,.故答案为:,﹣,.20.由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是7个.【考点】由三视图判断几何体.【分析】根据几何体主视图,在俯视图上表上数字,即可得出搭成该几何体的小正方体最多的个数.【解答】解:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故答案为:7.三、解答题:(共60分)21.画出如图所示几何体的三视图.【考点】作图-三视图.【分析】主视图有3列,每列小正方形数目分别为1,3,2;左视图有2列,每列小正方形的数目分别为3,1;俯视图有2行,每行小正方形的数目为2,2.【解答】解:如图所示:.22.计算:(1)﹣43÷5×(2)(﹣12)﹣5+(﹣14)﹣(﹣39)(3)(﹣2)2×7﹣(﹣3)×6﹣|﹣5|(4)﹣153×0.75+0.53×﹣3.4×0.75.【考点】有理数的混合运算.【分析】(1)先计算乘方,再将除法转化为乘法,再计算乘法可得;(2)按照加减顺序从左到右依次计算可得;(3)先计算乘方和绝对值,再计算乘法、加法和减法;(4)先提取公因式0.75后计算括号内的加减法,再计算乘法即可.【解答】解:(1)原式=﹣64××=﹣;(2)原式=﹣17+(﹣14)+39=﹣31+39=8;(3)原式=4×7+3×6﹣5=28+18﹣5=46﹣5=41;(4)原式=﹣153×0.75+0.53×0.75﹣3.4×0.75=0.75×(﹣153+0.53﹣3.4)=0.75×(﹣149.07)=﹣111.8025.23.把下列各数分别表示在数轴上,并用“<”号把它们连接起来.﹣0.5,0,﹣|﹣|,﹣(﹣3),2.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出来,再比较即可.【解答】解:把各数表示在数轴上为:用“<”号把它们连接起来为:﹣|﹣|<﹣0.5<0<2<﹣(﹣3).24.如图,这是一个小立方块所搭几何体的俯视图,正方形中的数字表示在该位置小立方块的个数.请你画出它的主视图和左视图.【考点】作图-三视图;由三视图判断几何体.【分析】主视图有3列,每列小正方形数目分别为2,3,4;左视图有2列,每列小正方形数目分别为4,2;依此画出图形即可求解.【解答】解:如图所示:25.观察流花河的水文资料(单位:米),完成下列问题(1)如果取河流的警戒水位作为0点,那么图中的其他数据可以分别记作什么?(2)表是小明记录的今年雨季流花河一周内的水位变化情况(上周末的水位达到警戒水位).①本周哪一天流花河的水位最高?哪一天水位最低?它们位于警戒水位之上还是之下?与警戒水位的距离分别是多少?②与上周末相比,本周末流花河水位是上升了还是下降了?【考点】正数和负数.【分析】(1)取河流的警戒水位作为0点,根据有理数的加减法,可得图中的其他数据;(2)①求出流花河一周内的水位,再进行有理数的大小比较,可得答案;②用本周末流花河水位与上周末的水位比较,可得答案.【解答】解:(1)如果取河流的警戒水位33.4米作为0点,那么最高水位记作35.3﹣33.4=1.9米,平均水位记作22.6﹣33.4=﹣10.8米,最低水位记作11.5﹣33.4=﹣21.9米;①离分别是0.2+0.81=1.01米,0.2米.②由于34>33.4,所以与上周末相比,本周末流花河水位是上升了.2016年11月28日。
2017-2018学年人教版数学七年级上期末模拟试卷(1)含答案解析
B.最大的负整数是﹣ 1
C.有理数包括正有理数和负有理数
D.一个有理数的平方总是正数
3.(2017?扬州)若数轴上表示﹣ 1 和 3 的两点分别是点 A 和点 B,则点 A 和点 B
之间的距离是(
)
A .﹣ 4
B.﹣ 2
C.2
D. 4
4.( 2017?长春) 3 的相反数是(
)
A .﹣ 3
B.﹣
C.
A .90°B. 120° C. 160° D. 180° 【分析】 因为本题中∠ AOC 始终在变化,因此可以采用 “设而不求 ”的解题技巧进 行求解. 【解答】 解:设∠ AOD=a ,∠ AOC=9°0 +a,∠ BOD=9°0 ﹣a, 所以∠ AOC +∠ BOD=9°0 +a+90°﹣a=180°. 故选 D. 二.填空题(每小题 3 分,共 24 分) 13.(2017?冷水滩区一模)若∠ α补角是∠ α余角的 3 倍,则∠ α= 45° . 【分析】 分别表示出∠ α补角和∠ α余角,然后根据题目所给的等量关系, 列方程 求出∠ α的度数. 【解答】 解:∠ α的补角 =180°﹣ α, ∠α的余角 =90°﹣α, 则有: 180°﹣ α=3(90°﹣α), 解得: α=45°. 故答案为: 45°. 14.(2017?枣庄阴平质检)已知∠ AOB=70°,∠ BOC=20°,OE 为∠ AOB 的平分
25.(12 分)(2017?岳阳) 我市某校组织爱心捐书活动,准备将一批捐赠的书打包
寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的
,结果打了
16 个包还多 40 本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书 一起,刚好又打了 9 个包,那么这批书共有多少本?
安徽省合肥市瑶海区2023-2024学年七年级下学期期末数学试题+答案
即 最小值为 .
∵ , ,
∴ ,
所以当点 与点 重合时, 最大为 ,即最大值为 ,
故答案为 , .
五、(本大题共2小题,每小题10分,满分20分)
19、【答案】(1)2;
(2)
【小问1详解】
解:由题意,方格网中格点正方形的面积是 ,则 ,
∴ ,
∴点B表示的数为 ,
故答案为: .
【小问2详解】
(1)求青椒和豆角的批发单价;
(2)销售第一天,青椒和豆角的零售价分别为 元 千克, 元 千克,求该经营户当天全部售完批发的青椒和豆角后一共获利多少元;
(3)第二天,该经营户到批发市场得知,青椒和豆角的批发单价不变,于是该经营户用 元批发青椒和豆角共 千克,但在运输过程中青椒损坏了 %,而豆角没有损坏,仍按昨天的零售价销售,要想当天售完所有蔬菜后,所获利润不低于第一天利润的 倍,那么该蔬菜经营户应该如何给青椒定价?(精确到 元)
∴ ,
∵不等号左右两边同时加上相同的数,不等号方向不发生改变,
∴ ,
故 符合题意.
、∵ ,但不知两数的正负,负数没有算术平方根,
∴ 不一定成立,
故 不符合题意,
故选 .
4、【答案】D
【详解】解:A、 ,原计算错误,不符合题意;
B、 ,原计算错误,不符合题意;
C、 ,原计算错误,不符合题意;
D、 ,原计算正确,符合题意,
【详解】(1)第一个长方形的周长为: ,
第二个长方形的周长为: ,
∵
,
∵ ,
∴ ,
∴ ,即 ,
∴ ,
∴第一个长方形的周长大于第二个长方形的周长;
(2)∵ ,
∴ , ,
∴
,
安徽省合肥市包河区2023-2024学年七年级上学期期末数学模拟试题
安徽省合肥市包河区2023-2024学年七年级上学期期末数学模拟试题一、单选题1.12022-的倒数是( )A .12022B .12022-C .2022-D .20222.下列说法中正确的是( )A .312x π的系数是12B .225y x y xy -+的次数是7C .4不是单项式D .2xy -与4yx 是同类项3.2022年北京冬奥会计划于2月4日开幕.作为2022年北京冬奥会雪上项目的主要举办地,张家口市崇礼区建成7家大型滑雪场,拥有169条雪道,共162000米.数字162000用科学记数法表示为( ) A .316210⨯B .416.210⨯C .51.6210⨯D .60.16210⨯4.实数,a b 在数轴上的对应点的位置如图所示.下列结论正确的是( )A .a b >B .a b >-C .a b ->D .a b -<5.如图是正方体的展开图,每个面都有汉字,折叠成立方体图形后“我”的对面是( )A .博B .才C .校D .园6.果园里有荔枝树150棵,龙眼树50棵,芒果树200棵.若画出它们的扇形统计图,则芒果树所占扇形圆心角的度数为( ) A .180︒B .120︒C .37.5︒D .12.5︒7.若关于x ,y 的二元一次方程组59x y kx y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k的值为( )A .34B .34-C .43D .43-8.某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( ) A .7161328x y x y +=⎧⎨+=⎩B .()72161328x y x y ⎧+-=⎨+=⎩C .()71613228x y x y +=⎧⎨+-=⎩D .()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩二、填空题9.在直线MN 上取A 、B 两点,使10cm AB =,再在线段AB 上取一点C ,使2c m =AC ,P 、Q 分别是AB AC 、的中点,则PQ =cm .10.若多项式||22(2)1m n xy n x y -+-+是关于x ,y 的三次多项式,则mn =.11.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则17!18!=. 12.算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图:表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.示例如下:67286708.战国时代,中国人已经有了正负数的概念,并用红算筹代表正数,黑算筹代表负数.则(整体为黑色)与(整体为红色)的和是.13.如图,把一长方形纸片ABCD 的一角沿AE 折叠,点D 的对应点D '落在∠BAC 内部.若2CAE BAD ∠=∠',且15CAD ∠'=︒,则∠DAE 的度数为.三、解答题14.先化简求值:()()2222533--+a b ab ab a b ,其中12a =,13b =. 15.解方程3157146y y ---=. 16.某中学为了丰富学生校园生活,满足学生的多元文化需求,促进学生身心健康和谐发展,学校开展了丰富多彩的社团活动,该校开展的社团活动有5个类别,他们分别是A :动漫社团,B :轮滑社团,C :音乐社团,D :诗歌社团,E :书法社团,每个学生必须参加且只能参加一个类别的社团活动.该校七年级某同学在学习完“数据的收集、整理与描述”知识后,想通过所学知识分析全校500名同学参加社团活动的情况,于是他在该校随机抽取40名同学开展了一次调查统计分析,过程如下:收集数据:记录40名同学参加社团活动的类别情况如下: B ,E ,B ,A ,E ,C ,C ,C ,B ,B , A ,C ,E ,D ,B ,A ,B ,E ,C ,A , D ,D ,B ,B ,C ,C ,A ,A ,E ,B , C ,B ,D ,C ,A ,C ,C ,A ,C ,E . 整理数据:列统计表、绘扇形图如下: 参加社团活动的人数统计表请根据上面的统计分析的过程和结果,解答下列问题:(1)写出m、n、a的值;(2)求社团“D:诗歌社团”所在的扇形图的圆心角的度数;(3)估计全校参加“D:诗歌社团”和“E:书法社团”的人数.17.某校数学实践小组就近期人们比较关注的五个话题:“A.5G通讯;B.民法典;C.北斗导航;D.数字经济;E.小康社会”,对某小区居民进行了随机抽样调查,每人只能从中选择一个本人最关注的话题,根据调查结果绘制了如图两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)数学实践小组在这次活动中,调查的居民共有人;(2)将上面的最关注话题条形统计图补充完整;(3)最关注话题扇形统计图中的a=,话题D所在扇形的圆心角是度;(4)假设这个小区居民共有10000人,请估计该小区居民中最关注的话题是“民法典”的人数大约有多少?18.如图1,O 为直线AB 上一点,过点O 作射线OC ,使50BOC ∠=︒.现将一个直角三角板的直角顶点放在点O 处,一边OD 与射线OB 重合,如图2.(1)EOC ∠=______;(2)如图3,将三角板DOE 绕点O 逆时针旋转一定角度,此时OC 是∠BOE 的平分线,求BOD ∠的度数;(3)将三角板DOE 绕点O 逆时针旋转,在OE 与OA 重合前,是否有某个时刻满足13COD AOE ∠=∠如果有,求此时BOD ∠的度数;如果没有,请说明理由.19.如图,线段24AB =,动点P 从A 出发,以每秒2个单位的速度沿射线AB 运动,M 为AP 的中点.(1)出发多少秒后,2PB AM =?(2)当P 在线段AB 上运动时,试说明2BM BP -为定值.(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:MN ①长度不变;MA PN +②的值不变.选择一个正确的结论,并求出其值.20.十一期间,各大商场掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元?21.已知数轴上两点A,B对应的数分别为﹣8和4,点P为数轴上一动点,若规定:点P 到A的距离是点P到B的距离的3倍时,我们就称点P是关于A→B的“好点”.(1)若点P到点A的距离等于点P到点B的距离时,求点P表示的数是多少;(2)①若点P运动到原点O时,此时点P关于A→B的“好点”(填是或者不是);②若点P以每秒1个单位的速度从原点O开始向右运动,当点P是关于A→B的“好点”时,求点P的运动时间;(3)若点P在原点的左边(即点P对应的数为负数),且点P,A,B中,其中有一个点是关于其它任意两个点的“好点”,请直接写出所有符合条件的点P表示的数.。
安徽省合肥市第四十五中学长丰路校区2023-2024学年七年级上学期期中数学试题
安徽省合肥市第四十五中学长丰路校区2023-2024学年七年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .ab bc+B .()()-+-c b d d a c C .ad cb cd+-D .ad cb-10.如图是含x 的代数式按规律排列的前4行,依此规律,当x 为2时,第10行第10项的值为()A .1024B .1034C .2048D .2068二、填空题(1)若数轴上点M 表示3-,点N 表示1,点1D ,2D M ,N 的“欢乐点”为点;(2)已知P 为数轴上一动点,若点N 是点P ,M 的“为.三、解答题15.计算:(1)用“>”或“<”填空:b c +________0(2)化简:b c a b a c +++--19.已知多项式()3m A m x =-(1)求m 的值;(2)若多项式()2214B x y xy =-从滨湖世纪城站出发,最后在A 站结束服务活动.如果规定向南为正,向北为负,阿威当天的乘车站数按先后顺序依次记录如下(单位:站):534521341+-+--+-++,,,,,,,,.(1)请通过计算说明A 站是哪一站?(2)若相邻两站之间的平均距离约为2千米,求这次阿威志愿服务期间乘坐公交车行进的总路程约是多少千米?22.“双十一”期间,某电商城销售一种平板电脑和智能手写笔,平板电脑每台定价3000元,智能手写笔每支定价800元.商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台平板电脑送一支智能手写笔;方案二:平板电脑和智能手写笔都按定价的90%付款.现某客户要到该实场购买平板电脑6台,智能手写笔x 支()6x >.(1)若该客户按方案一购买,能付款_______元(用含x 的代数式表示),若该客户按方案二购买,需付款_______元.(用含x 的代数式表示)(2)若10x =,通过计算说明此时按哪种方案购买较为合算?(3)当10x =时,如果两种方案可以同时使用,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?23.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,其中b 是最小的正整数,且多项式32222359x xy x y -+-+的最高次项的系数为a ,常数项为c .(1)=a ______,b =______,c =______;(2)若将数轴折叠,使得点A 与点C 重合,则点B 与某数表示的点重合,求出此数:(3)若点A 、点B 和点C 分别以每秒2个单位长度、1个单位长度和3个单位长度的度在数轴上同时向左运动,设运动时间为t 秒,①当点C 在点B 右侧时,AB =______,BC =______(用含t 的代数式表示)②小明同学发现:2m AB BC ⋅-的值是个定值,求此时m 的值.。
安徽省合肥市蜀山区2024-2025学年七年级上学期第一次月考数学试题(含答案解析)
安徽省合肥市蜀山区2024-2025学年七年级上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2-的相反数是()A .2B .2-C .12D .12-2.把()()()()12834--+--++写成省略括号的和的形式应为()A .12834---+B .12834--++C .12834-+++D .12834---3.下列计算正确的是()A .235-+=B .()1818⎛⎫-÷-= ⎪⎝⎭C .()236-=-D .()743---=-4.计算()()2024202511-+-等于()A .2B .0C .1-D .2-5.下列各题中,数值相等的是()A .32和23B .()26-和26-C .()47--和47D .()32-和32-6.下列说法中,不正确的是()A .0是绝对值最小的数.B .绝对值是它本身的数是正数.C .相反数是它本身的数是0D .平方是它本身的数是0与1.7.已知a 、b 互为相反数,c 、d 互为倒数,x 等于4的2次方,则式子()2cd a b x x --+的值为()A .23B .45C .48D .328.在()2024--,2024--,0,3524⎛⎫- ⎪⎝⎭,22024-,202-各数中,负数的个数是()A .6个B .5个C .4个D .3个9.有理数a 在数轴上的位置如图所示,下列各数中,可能在0到1之间的是()A .|a|-1B .|a|C .-aD .a +110.如果0a b c ++=,且||||||a b c >>,那么下列式子可能成立的是()A .0c >,0a <B .0b <,0c >C .0b >,0c <D .0b =二、填空题11.若5a =-,则a =.12.比较大小:32-213-.(用“>”“=”或“<”填空).13.已知|2||3|0x y -+-=,则x y +=.14.已知a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 表示倒数等于本身的数,则a b c d --+的值为.15.设a 是不为1的有理数,我们把11a-称为a 的差倒数.如−2的差倒数是()11123=--,2的差倒数是1112=--.已知125a a =,是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,则2024a 的值为.三、解答题16.(1)7.38.2 5.1 1.2-+-+(2)()151104⎡⎤⎣⎦----(3)52100.5339⎛⎫-⨯-÷⎪⎝⎭(4)1341114272856⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭(5)()()32140.515--⨯----(6)()32222 2.4323⎡⎤⎛⎫⎡⎤--⨯⨯--- ⎪⎢⎥⎣⎦⎝⎭⎣⎦17.把下列各数填入相应的大括号内:()()211,4,0.01,0,2,7,,1,3355----+---正数集合:{};负数集合:{};整数集合:{};分数集合:{};非负整数集合:{}18.在数轴上表示下列各数,并把它们用“<”连接起来.-(+4)、1、-(-3.5)、0、-∣-2∣、12-19.某粮食加工厂从生产的粮食中抽出20袋检查质量,以每袋50千克为标准,将超过的千克数记为正数,不足的千克数记为负数,结果记录如下:与标准质量的偏差:单位(千克)0.7-0.5-0.2-00.4+0.5+0.7+袋数1345331问:这20袋大米共超重或不足多少千克?总质量为多少千克?20.小明同学在查阅大数学家高斯的资料时,知道了高斯如何求1+2+3+…+100.小明于是对从1开始连续奇数的和进行了研究,发现如下式子:第1个等式:211=;第2个等式:2132+=;第3个等式:21353++=探索以上等式的规律,解决下列问题:(1)13549++++=…(2);(2)完成第n 个等式的填空:2135()n ++++=…;(3)利用上述结论,计算51+53+55+ (109)21.足球比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果以球门线为基准,向前记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m ):7+,3-,8+,4+,6-,8-,14+,15-.(假定开始计时时,守门员正好在球门线上)(1)守门员最后是否回到球门线上?(2)假设守门员每跑1米消耗0.1卡路里的能量,守门员在这段时间内共消耗了多少卡路里的能量?(3)如果守门员离开球门线的距离超过10m (不包括10m ),则对方球员挑射极可能造成破门.问:在这一时间段内,对方球员有几次挑射破门的机会?简述理由.22.如图,数轴上的点A ,B ,C 分别表示3,1,2--,点P 是数轴上一动点.(1)若动点P 从点B 出发以每秒3个单位长度的速度沿数轴向右运动,经过5秒后,点P 到点A,B,C的距离之和为多少?(2)若点P先向左平移3个单位长度,再向右平移5个单位长度,平移后点P与点A之间的距离和点B,C之间的距离相等,则平移前点P表示的数是多少?(3)若动点M以每秒1个单位长度的速度从点A出发,动点N以每秒2个单位长度的速度从点C同时出发且与点M相向而行,多少秒后动点M与N重合,重合时的点到点B的距离是多少?参考答案:题号12345678910答案ABDBDBCCAA1.A【分析】本题考查相反数的定义,只有符号不同的两个数叫做互为相反数.根据相反数的定义解答即可.【详解】解:2-的相反数是2.故选:A .2.B【分析】根据有理数的加减法法则及去括号直接进行求解.【详解】解:根据去括号法则,把()()()()12834--+--++写成省略括号的和的形式为12834--++.故选B .【点睛】本题主要考查有理数的加减法,熟练掌握有理数的加减法是解题的关键.3.D【分析】根据有理数的运算法则依次计算然后逐一判断即可.【详解】A :231-+=,故选项错误;B :()1111888864⎛⎫⎛⎫⎛⎫-÷-=-⨯-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选项错误;C :()239-=,故选项错误;D :()743---=-,故选项正确;故选:D.【点睛】本题主要考查了有理数的运算,熟练掌握相关运算法则是解题关键.4.B【分析】本题主要考查有理数的乘方运算,熟练掌握有理数的乘方是解题的关键;根据有理数的乘方可进行求解.【详解】解:()()2024202511110-+-=-=;故选B .5.D【分析】本题考查了有理数的乘方运算,相反数的意义,掌握计算是解题的关键.据有理数的乘方运算,相反数的意义,分别计算求解即可.【详解】解:A 、328=,239=,由89≠知,本选项不符合题意;B 、()2636-=,2636-=-,由3636≠-知,本选项不符合题意;C 、()4477--=-,与47不相等,本选项不符合题意;D 、()328-=-,382-=-,故()32-和32-相等,本选项符合题意.故选:D .6.B【分析】此题分别考查了相反数、绝对值等定义和平方运算,分别利用这几个定义或运算法则即可解决问题.根据相反数、绝对值等定义和平方运算依次判断即可.【详解】解:A 、0是绝对值最小的数,故选项正确,不符合题意;B 、绝对值等于本身的数有正数和0,故选项错误,符合题意;C 、相反数是它本身的数是0,故选项正确,不符合题意;D 、平方是它本身的数是0与1,故选项正确,不符合题意;故选:B .7.C【分析】本题考查已知式子的值,求代数式的值,涉及相反数、倒数、平方运算.互为相反数的两个数和为0,互为倒数的两个数积为1,4的2次方为16,据此解题.【详解】解:由题意得,0a b +=,1cd =,2416x ==,()2cd a b x x--+()1016216=-⨯+⨯1632=+48=.故选:C .8.C【分析】本题考查负数的判断,根据相反数的概念、绝对值的性质、负数的奇数次幂等相关知识点正确判断是解题关键.根据负数的相反数为正、绝对值的意义、幂的运算等相关原则,进行计算分析即可.【详解】解:()20242024--=,为正数;20242024--=-,为负数;0,既不是正数,也不是负数;34(5125212)438-=-,为负数;22024-,为负数;202-,为负数所以负数个数为4个.故选:C 9.A【分析】根据数轴得出-2<a <-1,再逐个判断即可.【详解】解:A 、∵从数轴可知:-2<a <-1,∴|a|-1大约0<|a|-1<1,故本选项符合题意;B 、∵从数轴可知:-2<a <-1,∴|a|>1,故本选项不符合题意;C 、∵从数轴可知:-2<a <-1,∴-a >1,故本选项不符合题意;D 、∵从数轴可知:-2<a <-1,∴a+1<0,故本选项不符合题意;故选A .【点睛】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出-2<a <-1是解此题的关键.10.A【分析】此题考查了有理数的加法,以及绝对值.根据不等式||||||a b c >>及等式0a b c ++=,利用特殊值法,验证即得到正确答案.【详解】解:由题目答案可知a ,b ,c 三数中只有两正一负或两负一正两种情况,如果假设两负一正情况合理,要使0a b c ++=成立,则必是0b <、0c <、0a >,否则0a b c ++≠,但题中并无此答案,则假设不成立.于是应在两正一负的答案中寻找正确答案,若a ,b 为正数,c 为负数时,则:a b c +>,0∴++≠a b c ,若a ,c 为正数,b 为负数时,则:a c b +>,只有A 符合题意.故选:A .11.5或5-【分析】本题考查绝对值的意义,熟练掌握绝对值的意义,是解题的关键.根据5a =-,得到5a =±.【详解】解:∵55a =-=,∴5a =或5a =-,故答案为:5或5-.12.>【分析】根据负数比较大小的方法求解即可.两个负数比较大小,绝对值大的反而小.【详解】解:∵32<123--,∴32->213-.故答案为:>.【点睛】此题考查了比较负数大小,解题的关键是熟练掌握比较负数大小的方法.两个负数比较大小,绝对值大的反而小.13.5【分析】根据绝对值的非负性可进行求解.【详解】解:∵|2||3|0x y -+-=,∴20,30x y -=-=,∴2,3x y ==,∴5x y +=;故答案为5.【点睛】本题主要考查代数式的值及绝对值的非负性,熟练掌握绝对值的非负性是解题的关键.14.3或1/1或3【分析】根据题意得:1,1,0,1a b c d ==-==±,然后代入求值即可.【详解】解:根据题意得:1,1,0,1a b c d ==-==±,当1d =时,()11013a b c d --+=---+=,当1d =-时,()()11011a b c d --+=---+-=,故答案为:3或1.【点睛】本题考查了整数、绝对值、倒数、有理数的加减法,熟练掌握各定义和运算法则是解题关键.15.14-【分析】本题考查了定义新运算,数字规律,根据差倒数的计算方法,分别求出12345a a a a a ,,,,值,找出规律即可求解.【详解】解:根据题意,15a =,211154a ==--,3141514a ==⎛⎫-- ⎪⎝⎭,415415a ==-,511154a ==--,∴每三个循环一次,∵202436742÷= ,∴2024a 的值为14-,故答案为:14-.16.(1)3-;(2)0;(3)14;(4)50;(5)1;(6) 1.6-【分析】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握与运用.(1)利用有理数的加减法计算即可;(2)利用有理数的加减法计算,注意去括号变号;(3)先计算小括号的减法,再进行乘法除法计算,需将除法化为乘法运算;(4)将除法化为乘法,利用分配律进行计算;(5)先计算乘方和化简绝对值,然后计算乘法,最后进行减法计算;(6)先计算乘法和乘法运算,然后计算小括号内的加减运算,最后进行乘法运算.【详解】解:(1)7.38.2 5.1 1.2-+-+()()7.3 5.18.2 1.2=-+++12.49.4=-+3=-;(2)()151104⎡⎤⎣⎦----()15114=---⎡⎤⎣⎦()15114=-+1515=-0=;(3)52100.5339⎛⎫-⨯-÷⎪⎝⎭512932310⎛⎫=-⨯-⨯⎪⎝⎭534936610⎛⎫=-⨯-⨯⎪⎝⎭5193610=⨯⨯14=;(4)1341114272856⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭()()()()134156565656142728=⨯--⨯-+⨯--⨯-484322=-+-+50=;(5)()()32140.515--⨯----186=-+-1=;(6)()32222 2.4323⎡⎤⎛⎫⎡⎤--⨯⨯--- ⎪⎢⎥⎣⎦⎝⎭⎣⎦()()22 1.698=--⨯-+⎡⎤⎣⎦()1.61=⨯-1.6=-.17.()112,7,,355--;()2,4,0.01,13----+-;()()4,0,7,1,3--+---;211,0.01,2,355--;()0,7,3--【分析】本题考查了有理数的分类,熟练掌握正数,负数,非负整数,分数,整数的概念是解题关键,注意0既不是正数,也不是负数,是非负数,在有理数分类时,能化简的要化简.根据正数,负数,非负整数,分数,整数的定义分类即可.【详解】解:44--=-,()11+-=-,()33--=,∴正数有()112,7,,355--,负数有()2,4,0.01,13----+-,整数有()()4,0,7,1,3--+---,分数有211,0.01,2,355--,非负整数有()0,7,3--,故答案为:()112,7,,355--;()2,4,0.01,13----+-;()()4,0,7,1,3--+---;211,0.01,2,355--;()0,7,3--.18.见解析,-(+4)<-∣-2∣<12-<0<1<-(-3.5)【分析】先在数轴上表示出各数,再由数轴左边的数小于右边的数进行排序即可.【详解】解:(4)=4-+-;-(-3.5)=3.5;-∣-2∣=-2;如图所示:用“<”连接为:1(4)|2|01(3.5)2-+<--<-<<<--.【点睛】本题考查了有理数的大小比较,正确化简各数并在数轴上表示出各数是解题关键.19.20袋粮食共超重0.4千克,总质量为1000.4千克【分析】此题考查正数和负数的应用,有理数的混合运算,解题关键是注意表格中的数据的处理,尤其是袋数要注意.根据题目中给出的信息和表格,可以算出这20袋大米实际质量与标准质量的偏差之和与0比较,可得是否超重或不足.求总质量,先求20袋粮食的总质量,再加上超出部分即可.【详解】解:()()()()()()10.730.540.20530.430.510.70.4⨯-+⨯-+⨯-+⨯+⨯++⨯++⨯+=(千克),∴20袋粮食共超重0.4千克,∴总质量为:20500.41000.4⨯+=(千克)答:20袋粮食共超重0.4千克,总质量为1000.4千克.20.(1)25;(2)2n -1;(3)2400.【分析】(1)根据题目中的规律,写出答案即可.(2)根据题目中的规律,反推答案即可.(3)利用规律通式,代入计算即可.【详解】(1)由题意规律可以得,连续奇数的和为中间相的平方,所以13549++++= (2)2149252+⎛⎫= ⎪⎝⎭.(2)设最后一项为x ,由题意可推出:12x n +=,x =2n-1.(3)根据上述结论,51+53+55+…+109=(1+3+5+···+109)-(1+3+5+···+49)=552-252=2400.【点睛】本题为找规律题型,关键在于通过题意找到规律.21.(1)守门员最后不能回到球门线上(2)6.5(3)5【分析】(1)将记录的数字相加,即可求解;(2)利用记录的数字的绝对值的和,再乘以0.1即可;(3)求出每次离球门的距离,再判断即可.【详解】(1)解:7384681415=1-++--+-,答:守门员最后不能回到球门线上;(2)解:()73846814150.1=6.5+-+++-+-++-⨯(卡路里),答:守门员在这段时间内共消耗了6.5卡路里.(3)解:根据题意可得,守门员每次离开球门线的距离7、4、12、16、10、2、16、1,∴对方球员有5次挑射破门的机会.【点睛】本题考查正负数的实际应用,熟练掌握正负数是一对具有相反意义的量及有理数的加减混合运算法则是解题的关键.22.(1)点P 到点A ,B ,C 的距离之和为44(2)平移前点P 表示的数为2-或8-(3)53秒后动点M 与N 重合,重合时的点到点B 的距离是13【分析】本题主要考查数轴上的两点距离及一元一次方程的应用,熟练掌握数轴上两点距离及行程问题是解题的关键;(1)根据数轴上两点距离及路程=速度×时间可进行求解;(2)设平移前点P 表示的数是x ,然后根据题意可列方程进行求解;(3)根据相遇路程=速度和×相遇时间及数轴上两点距离可进行求解.【详解】(1)解:由题意得:点P 经过运动后所表示的数是15314-+⨯=,∴点P 到点A 、B 、C 的距离之和为()()14314114244--+--+-=;(2)解:设平移前点P 表示的数是x ,由题意得:()()35321x -+--=--解得:2x =-或8x =-,即平移前点P 表示的数为2-或8-;(3)解:设t 秒后动点M 与N 重合,由题意可得:35t =,解得:53t =,∴此时动点M 所表示的数为543133-+⨯=-,∴此时该点与点B 之间的距离为41133⎛⎫---= ⎪⎝⎭.。
2017年七年级数学上10月学生学习能力试题
2017 年七年级数学上10 月学生学习能力试题2017 学年第一学期月考七年级数学试题卷(命题人:沈国锋审查人:黄程)2017 年 10 月考试说明:1.全卷共23 题,满分为120 分。
考试时间100 分钟。
2.所有答案请答在答卷上,做在试题卷上的答案视同无效。
3.答题前,一定在答题卷的密封区内填写班级、姓名、考号。
一、选择题(每题 3 分)1.-3的相反数是()2. 以下四个数中,是负数的是()A. B. - a . D.3﹒以下各式能够写成a﹣b+的是()A.a﹣( +b)﹣( +) B . a﹣( +b)﹣(﹣).a+(﹣ b) +(﹣) D . a+(﹣ b)﹣( +)4.小华作业本中有四道计算题:①0﹣(﹣ 5)=﹣5 ②﹣ 9-3= ﹣6③ ④(﹣ 36)÷(﹣ 9) =4.此中他计算有误的是()A.①②④ B .①③④.①②③ D .②③④5.a,b对应点的地点以下图,把﹣a, b ,0 依据从小到大的次序摆列,正确的选项是()A.﹣ a< b< 0B. 0<﹣ a< b .b<0<﹣ aD.0< b< -a6.以下说法不正确的选项是:()①a 必定是正数;② 0 的倒数是 0 ;③最大的负整数-1 ;④只有负数的绝对值是它的相反数;⑤倒数等于自己的有理数只有 1A. ①②③④B.①③④⑤.②③④⑤ D.①②④⑤7.某种部件,注明要求是φ 20(φ 表示直径,单位:毫米),则以下部件的直径合格的是()A﹒19.50 B ﹒20.2 ﹒19.95 D ﹒20.058.若,互为相反数,,互为倒数,的绝对值等于,则的值是()A.1或3B.-1或3.1或-3D.-1或-39.已知 |a| =5, |b| =2,且 |a -b| = b-a,则 a+ b 的值为()A.3或 7B.-3或-7 .-3 或 7D.3或-710.已知 ab<0 ,则的值是()A. 0B.2.2或0D.﹣2或0二、填空题(每题 4 分)11.假如把“收入 500 元”记作 +500 元,那么“支出 100 元”记作 _________.12.用“<”、“>”或“=”号填空:①- 59 0 ,② 3.14π ③ 0.375,④ ______ .13.两个有理数之积是-1 ,已知一个数是,则另一个数是.14.在数轴上,到表示 -2 的点距离小于 3 的点所表示的数中所有的整数之和是 __________15.用黑白两种颜色的正方形纸片,按黑色纸片数渐渐加 1 的规律拼成一列图案:(1)第 4 个图案中有白色纸片张,( 2)第2017 个图案中有白色纸片________张16.已知a、 b、为三个不相等的整数,且,则这三个数的和的最大值等于.三.解答题( 6+8+8+10+10+12+12=66 分)17.直接写出答案 (6 分)① -7+4=② -=③ 0-(-9)=④-9-2+ ( -7 ) = ⑤ = ⑥ -3.14+ =18. 把以下各数分别填在相应的横线上( 每空 2 分,共 8 分),,,,,,,,π负有理数:分数:是负数而不是整数:是整数而不是负数:19(此题 8 分)(. 1)在数轴上表示以下各数:,,,,,并用“<”号把它们连结起.(2)依据( 1)中的数轴,找出大于的最小整数和小于的最大整数,并求出它们的和.20.计算以下各题(每题2分,共 10 分)(1) (-7)+(-3)-(-4)+|-5| ﹒(2)21.( 10 分)某企业股票上周五在股市收盘价(收市时的价钱)为每股 25.8 元股,在接下的一周交易日内,老何记下该股票每天收盘价比前一天的涨跌状况(记上升为正,单位:元)﹒礼拜一二三四五每股涨跌(元) +2-0.5+1.5-1.8+0.8依据上表回答以下问题:(1)礼拜二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价和最廉价分别是多少元?(3)已知老安在周一收盘时买进该企业股票1000 股,在周四以收盘价钱将所有股票卖出。
2017-2018学年河南省许昌市七年级上第三次月考数学试卷含答案解析
2017-2018学年河南省许昌市七年级(上)第三次月考数学试卷一、选择题(每题3分,共计30分)1.(3分)的绝对值是()A.3 B.﹣3 C.D.2.(3分)下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④(﹣2)2,计算结果为负数的个数有()A.4个 B.3个 C.2个 D.1个3.(3分)下列各式中,不是同类项的是()A.x2y和x2y B.﹣ab和ba C.﹣1和3 D.x2y和xy34.(3分)下列式子:x2﹣1,,,0,﹣5x中,整式的个数是()A.5个 B.4个 C.3个 D.2个5.(3分)下列各式是一元一次方程的是()A.﹣3x﹣y=0 B.2x=0 C.2+=3 D.3x2+x=86.(3分)已知数a,b在数轴上对应点的位置如图所示,则下列结论不正确的是()A.a+b<0 B.a﹣b>0 C.ab<0 D.>07.(3分)已知代数式x+2y的值是3,则代数式3x+6y+1的值是()A.7 B.4 C.10 D.98.(3分)把6.965四舍五入取近似值,下列说法正确的是()A.6.96(精确到0.01) B.6.9(精确到0.1)C.7.0(精确到0.1)D.7(精确到0.1)9.(3分)若有45人参加运土劳动,有30根扁担可供使用,抬土的两人用一根扁担,挑土的一人用一根扁担,应安排多少人抬,多少人挑,可使扁担和人数相配不多不少?若设有x人挑土,则可列出方程是()A.2x﹣(30﹣x)=45 B.x+=30 C. +(45﹣x)=30 D.30﹣x=45﹣x 10.(3分)参加医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是()住院医疗费(元)报销率(%)不超过500元的部分0超过500~1000元的部分60超过1000~3000元的部分80…A.1000元B.1250元C.1500元D.2000元二、填空题(每小题3分,共30分)11.(3分)哈市地铁3号线二期工程需要建设资金264亿元,将26400000000用科学记数法表示为.12.(3分)的系数是.13.(3分)已知(a﹣2)x|a|﹣1+4=0是关于x的一元一次方程,则a=.14.(3分)若3x m﹣5y与x3y n是同类项,则m﹣n=.15.(3分)如果x=﹣2是方程kx+k﹣1=0的解,则k=.16.(3分)有一张数学竞赛练习卷,共有25道选择题,做对一道给4分,做错一道扣1分,某同学全部做完练习题,共得75分,问他一共选对了道题.17.(3分)用同样规格的黑白两种颜色的正方形瓷砖按如图方式铺地板,则第n 个图形中需要黑色瓷砖块(用含n的代数式表示).18.(3分)一家商店将某种微波炉按原价提高40%后标价,又以8折优惠卖出,结果每台微波炉比原价多赚了180元,这种微波炉原价是元.19.(3分)已知A、B两地相距108千米,甲、乙两人分别从A、B两地同时出发,相向而行.甲的速度为每小时14千米,乙的速度为每小时22千米,经过小时,两人相距36千米.20.(3分)为了节约用水,某市规定:每户居民每月用水不超过10立方米,按每立方米4元收费;超过10立方米,则超过部分按每立方米8元收费.如果某户居民十月份缴纳水费72元,则该户居民十月份实际用水为立方米.三、解答题(共60分)21.(12分)计算或化简(1)(﹣14)﹣(﹣7)+(﹣5)+(﹣12)(2)﹣22+[14﹣(﹣3)×2]÷4(3)2(3a2+4b)+3(﹣6a2﹣5b)(4)3(x3+2x2﹣1)﹣(3x3+4x2﹣2)22.(6分)先化简再求值:5x2y﹣4xy2+[3xy2﹣(4x2y﹣xy2)],其中x=﹣2,y=﹣3.23.(9分)解方程(1)﹣5x=﹣x+1(2)4﹣3(2﹣x)=5x(3)=+1.24.(5分)某罐头厂用白铁皮做罐头盒,每张铁皮可制作盒身16个或盒底40个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成配套罐头盒?25.(8分)“十一”期间,某校组织部分师生开展“亲近大自然”社会实践活动,需租用某种客车若干辆,如果每辆车坐20人,有10人没座位,如果每辆车坐25人,那么有一辆车空余10个座位,其余车刚好坐满.(1)求参加社会实践活动的师生有多少人.(2)在(1)条件下,当师生到达实验地点时天色已晚,准备住宾馆,该处的宾馆三人间每间150元/天,双人间每间140元/天,该校师生住了一些三人间和双人间,若每间客房住满,且一天花去的住宿费为4860元,求该校师生住了三人间和双人间客房多少间?26.(10分)某仓库将运进货物记为正,运出货物记为负,一周进出数的记录如表(单位:吨)星期一星期二星期三星期四星期五星期六星期日合计+180﹣160+170+150﹣200230表中星期五与星期六的进出数被墨水涂污了.(1)星期五与星期六两天合计的库存量是增加了还是减少了?增加或减少了多少吨?(2)若星期五比星期六的进出数大290,则星期五、星期六的进出数各是多少?(3)在(2)的条件下,仓库用载重量为25吨的大卡车运货物,每辆每次运费240元,求这一周共需运费多少元?27.(10分)如图,在一条笔直的海岸上有一个港口O,现在以O为原点,水流方向为正方向,作一个数轴,一天早上一艘海防巡逻艇从港口O出发逆流航行,18分钟后到达点A位置,此时监测到一艘可疑商船在下游点B位置正逆流驶向港口O,并测得A、B之间的距离为60千米,已知巡逻艇在静水中的速度是每小时55千米,商船在静水中的速度是每小时25千米,若水流的速度是每小时5千米.(1)求A、B两点表示的数分别是多少;(2)当巡逻艇发现可疑商船后立刻改变航向,自A向B顺流航行,准备在商船进港前对其进行检查,求巡逻艇将在距离港口O多少千米处拦截到商船?(3)在(2)的条件下,当巡逻艇返回到港口O时,商船发现了巡逻艇,于是立即掉头逃跑,巡逻艇继续演OB方向追击商船,问巡逻艇自O处开始用多少小时追上了商船,此时商船所在的位置表示的数为多少?2017-2018学年河南省许昌市七年级(上)第三次月考数学试卷参考答案与试题解析一、选择题(每题3分,共计30分)1.(3分)的绝对值是()A.3 B.﹣3 C.D.【解答】解:|﹣|=.故﹣的绝对值是.故选:C.2.(3分)下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④(﹣2)2,计算结果为负数的个数有()A.4个 B.3个 C.2个 D.1个【解答】解:①﹣(﹣2)=2;②﹣|﹣2|=﹣2;③﹣22=﹣4;④(﹣2)2=4.其中负数有2个.故选:C.3.(3分)下列各式中,不是同类项的是()A.x2y和x2y B.﹣ab和ba C.﹣1和3 D.x2y和xy3【解答】解:A、x2y和x2y所含字母相同,并且相同字母的指数也相同,是同类项,与要求不符;B、﹣ab和ba所含字母相同,并且相同字母的指数也相同,是同类项,与要求不符;C、几个常数项也是同类项,故﹣1和3是同类项,与要求不符;D、x2y和xy3相同字母的指数不相同,不是同类项,与要求相符.故选:D.4.(3分)下列式子:x2﹣1,,,0,﹣5x中,整式的个数是()A.5个 B.4个 C.3个 D.2个【解答】解:x2﹣1,,0,﹣5x是整式,共4个,故选:B.5.(3分)下列各式是一元一次方程的是()A.﹣3x﹣y=0 B.2x=0 C.2+=3 D.3x2+x=8【解答】解:A、该方程中含有2个未知数,不是一元一次方程,故本选项错误;B、该方程符合一元一次方程的定义,故本选项正确;C、该方程属于分式方程,故本选项错误;D、该方程的未知数的最高次数是2,不是一元一次方程,故本选项错误.故选:B.6.(3分)已知数a,b在数轴上对应点的位置如图所示,则下列结论不正确的是()A.a+b<0 B.a﹣b>0 C.ab<0 D.>0【解答】解:由数轴得:a>0,b<0,且|a|<|b|,则a+b<0,a﹣b>0,ab<0,<0.选项中错误的只有D.故选:D.7.(3分)已知代数式x+2y的值是3,则代数式3x+6y+1的值是()A.7 B.4 C.10 D.9【解答】解:∵x+2y=3,∴3x+6y+1=3(x+2y)+1=3×3+1=10.故选:C.8.(3分)把6.965四舍五入取近似值,下列说法正确的是()A.6.96(精确到0.01) B.6.9(精确到0.1)C.7.0(精确到0.1)D.7(精确到0.1)【解答】解:6.965≈6.97(精确到0.01);6.965≈7.0(精确到0.1).故选:C.9.(3分)若有45人参加运土劳动,有30根扁担可供使用,抬土的两人用一根扁担,挑土的一人用一根扁担,应安排多少人抬,多少人挑,可使扁担和人数相配不多不少?若设有x人挑土,则可列出方程是()A.2x﹣(30﹣x)=45 B.x+=30 C. +(45﹣x)=30 D.30﹣x=45﹣x 【解答】解:若设有x人挑土,则抬土人数为(45﹣x),根据题意,得:x+=30,故选:B.10.(3分)参加医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是()住院医疗费(元)报销率(%)不超过500元的部分0超过500~1000元的部分60超过1000~3000元的部分80…A.1000元B.1250元C.1500元D.2000元【解答】解:设住院医疗费是x元,由题意得:500×60%+80%(x﹣1000)=1100,解得:x=2000.答:住院费是2000元.故选:D.二、填空题(每小题3分,共30分)11.(3分)哈市地铁3号线二期工程需要建设资金264亿元,将26400000000用科学记数法表示为 2.64×1010.【解答】解:将26400000000用科学记数法表示为2.64×1010,故答案为:2.64×1010.12.(3分)的系数是.【解答】解:根据单项式系数的定义,单项式的系数为﹣.13.(3分)已知(a﹣2)x|a|﹣1+4=0是关于x的一元一次方程,则a=﹣2.【解答】解:根据题意得:,解得:a=﹣2,故答案是:﹣2.14.(3分)若3x m﹣5y与x3y n是同类项,则m﹣n=7.【解答】解:∵3x m﹣5y与x3y n是同类项,∴m﹣5=3,n=1,∴m=8.n=1,∴m﹣n=8﹣1=7.故答案为:7.15.(3分)如果x=﹣2是方程kx+k﹣1=0的解,则k=﹣1.【解答】解:把x=﹣2代入方程,得:﹣2k+k﹣1=0,解得:k=﹣1.故填﹣1.16.(3分)有一张数学竞赛练习卷,共有25道选择题,做对一道给4分,做错一道扣1分,某同学全部做完练习题,共得75分,问他一共选对了20道题.【解答】解:设他一共选对了x道题,则选错了(25﹣x)道题,根据题意得:4x﹣(25﹣x)=75,解得:x=20.答:他一共选对了20道题.故答案为:20.17.(3分)用同样规格的黑白两种颜色的正方形瓷砖按如图方式铺地板,则第n 个图形中需要黑色瓷砖(3n+1)块(用含n的代数式表示).【解答】解:第一个图形有黑色瓷砖3+1=4块.第二个图形有黑色瓷砖3×2+1=7块.第三个图形有黑色瓷砖3×3+1=10块.…第n个图形中需要黑色瓷砖3n+1块.故答案为:(3n+1).18.(3分)一家商店将某种微波炉按原价提高40%后标价,又以8折优惠卖出,结果每台微波炉比原价多赚了180元,这种微波炉原价是1500元.【解答】解:设这种微波炉原价为x元,根据题意得:(1+40%)x•80%﹣x=180,解得:x=1500,故答案为:1500.19.(3分)已知A、B两地相距108千米,甲、乙两人分别从A、B两地同时出发,相向而行.甲的速度为每小时14千米,乙的速度为每小时22千米,经过2或4小时,两人相距36千米.【解答】解:设经过x小时,相遇前两人相距36千米,依题意得:(14+22)x+36=108,解得x=2或:(14+22)x﹣36=108,解得x=4综上所述,经过2或4小时,两人相距36千米.故答案是:2或4.20.(3分)为了节约用水,某市规定:每户居民每月用水不超过10立方米,按每立方米4元收费;超过10立方米,则超过部分按每立方米8元收费.如果某户居民十月份缴纳水费72元,则该户居民十月份实际用水为14立方米.【解答】解:∵10×4=40(元),40<72,∴则该户居民十月份实际用水超过10立方米.设该户居民十月份实际用水为x立方米,根据题意得:10×4+8(x﹣10)=72,解得:x=14.故答案为:14.三、解答题(共60分)21.(12分)计算或化简(1)(﹣14)﹣(﹣7)+(﹣5)+(﹣12)(2)﹣22+[14﹣(﹣3)×2]÷4(3)2(3a2+4b)+3(﹣6a2﹣5b)(4)3(x3+2x2﹣1)﹣(3x3+4x2﹣2)【解答】解:(1)原式=﹣14+7﹣5﹣12=﹣24;(2)原式=﹣4+5=1;(3)原式=6a2+8b﹣18a2﹣15b=﹣12a2﹣7b;(4)原式=3x3+6x2﹣3﹣3x3﹣4x2+2=2x2﹣1.22.(6分)先化简再求值:5x2y﹣4xy2+[3xy2﹣(4x2y﹣xy2)],其中x=﹣2,y=﹣3.【解答】解:原式=5x2y﹣4xy2+3xy2﹣4x2y+xy2=x2y,当x=﹣2,y=3时,原式=12.23.(9分)解方程(1)﹣5x=﹣x+1(2)4﹣3(2﹣x)=5x(3)=+1.【解答】解:(1)去分母得:10﹣30x=﹣21x+6,移项得:﹣30x+21x=6﹣10,合并同类项得:﹣9x=﹣4,系数化为1得:x=.(2)去括号得:4﹣6+3x=5x,移项得:3x﹣5x=﹣4+6,合并同类项得:﹣2x=2,系数化为1得:x=﹣1.(3)去分母得:2(2x﹣1)=3(x+2)+6,去括号得:4x﹣2=3x+6+6,移项得4x﹣3x=6+6+2,系数化为1得:x=14.24.(5分)某罐头厂用白铁皮做罐头盒,每张铁皮可制作盒身16个或盒底40个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成配套罐头盒?【解答】解:设用x张铁皮制作盒身,则用(108﹣x)张铁皮制作盒底,可以正好制成配套罐头盒,根据题意得:2×16x=40(108﹣x),解得:x=60,∴108﹣x=48.答:用60张铁皮制作盒身,用48张铁皮制作盒底,可以正好制成配套罐头盒.25.(8分)“十一”期间,某校组织部分师生开展“亲近大自然”社会实践活动,需租用某种客车若干辆,如果每辆车坐20人,有10人没座位,如果每辆车坐25人,那么有一辆车空余10个座位,其余车刚好坐满.(1)求参加社会实践活动的师生有多少人.(2)在(1)条件下,当师生到达实验地点时天色已晚,准备住宾馆,该处的宾馆三人间每间150元/天,双人间每间140元/天,该校师生住了一些三人间和双人间,若每间客房住满,且一天花去的住宿费为4860元,求该校师生住了三人间和双人间客房多少间?【解答】解:(1)设参加社会实践活动的师生有x人,,解得,x=90,答:参加社会实践活动的师生有90人;(2)设该校师生住了三人间a间,双人间b间,,解得,,答:该校师生住了三人间24间,双人间9间.26.(10分)某仓库将运进货物记为正,运出货物记为负,一周进出数的记录如表(单位:吨)星期一星期二星期三星期四星期五星期六星期日合计+180﹣160+170+150﹣200230表中星期五与星期六的进出数被墨水涂污了.(1)星期五与星期六两天合计的库存量是增加了还是减少了?增加或减少了多少吨?(2)若星期五比星期六的进出数大290,则星期五、星期六的进出数各是多少?(3)在(2)的条件下,仓库用载重量为25吨的大卡车运货物,每辆每次运费240元,求这一周共需运费多少元?【解答】解:(1)设星期五星期六进出数合计为x吨180﹣160+170+150+x﹣200=230解得:x=90答:星期五与星期六两天合计的库存量是增加了,增加了90吨;(2)设星期六的进出数为y吨,则星期六的进去数为(y+290)吨y+y+290=90所以y=﹣100即星期五的进出数是190吨,星期六的进出数是﹣100吨.(3)因为|+180|+|﹣160|+|+170|+|+150|+|190|+|﹣100|+|﹣200|=180+160+170+150+190+100+200=1150.(1150÷25)×240=46×240=11040.答:这一周共需运费11040元27.(10分)如图,在一条笔直的海岸上有一个港口O,现在以O为原点,水流方向为正方向,作一个数轴,一天早上一艘海防巡逻艇从港口O出发逆流航行,18分钟后到达点A位置,此时监测到一艘可疑商船在下游点B位置正逆流驶向港口O,并测得A、B之间的距离为60千米,已知巡逻艇在静水中的速度是每小时55千米,商船在静水中的速度是每小时25千米,若水流的速度是每小时5千米.(1)求A、B两点表示的数分别是多少;(2)当巡逻艇发现可疑商船后立刻改变航向,自A向B顺流航行,准备在商船进港前对其进行检查,求巡逻艇将在距离港口O多少千米处拦截到商船?(3)在(2)的条件下,当巡逻艇返回到港口O时,商船发现了巡逻艇,于是立即掉头逃跑,巡逻艇继续演OB方向追击商船,问巡逻艇自O处开始用多少小时追上了商船,此时商船所在的位置表示的数为多少?【解答】解:(1)(55﹣5)×=15(千米),60﹣15=45(千米).答:A点表示的数为15,B点表示的数为45.(2)巡逻艇拦截到商船的时间为60÷(55+5+25﹣5)=(小时),相遇处离港口O的距离为(55+5)×﹣15=30(千米).答:巡逻艇将在距离港口O30千米处拦截到商船.(3)当巡逻艇返回到港口O时,商船离港口O的距离为45﹣(25﹣5)×[15÷(55+5)]=40(千米).设巡逻艇自O处开始用x小时追上了商船,根据题意得:(55+5)x﹣(25+5)x=40,解得:x=,∴(55+5)x=80.答:巡逻艇自O处开始用1小时追上了商船,此时商船所在的位置表示的数为80.。
中考强化训练2022年安徽省合肥市中考数学第三次模拟试题(含答案详解)
2022年安徽省合肥市中考数学第三次模拟试题 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、已知函数y =kx +b 的图象如图所示,则函数y =﹣bx +k 的图象大致是( ) A .B .C .D . 2、ABC 中,∠A,∠B,∠C 的对边分别记为a ,b ,c ,由下列条件不能判定ABC 为直角三角形的是( )·线○封○密○外A .∠A+∠B=∠CB .∠A:∠B:∠C=1:2:3C .a 2=c 2﹣b 2D .a :b :c=3:4:6 3、下列各数中,无理数的个数是( )3.1415926 ,π-,1之间依次多1个8) A .1个B .2个C .3个D .4个 4、在式子1a ,20y π,334ab c ,56x +,78x y +,109x y +中,分式的个数有( ) A .2 B .3 C .4 D .55、等腰三角形的一个底角是40,则它的顶角是A .40B .70C .100D .1406、若 ( x 2+ mx + 4)( x 2- 3x + n ) 展开后不含 x 3和 x 项,则 m n=( ) A .-34 B .34 C .- 43 D .437、如图,点E 在BC 的延长线上,下列条件不能..判断//AB CD 的是( )A .5B ∠=∠ B .12∠=∠C .180B BCD ∠+∠=︒ D .34∠=∠8、角平分线的作法(尺规作图)①以点O 为圆心,任意长为半径画弧,交OA 、OB 于C 、D 两点;②分别以C 、D 为圆心,大于CD 长为半径画弧,两弧交于点P ;③过点P 作射线OP ,射线OP 即为所求.角平分线的作法依据的是( )A .SSSB .SASC .AASD .ASA9、等腰三角形的一边等于3,一边等于6,则它的周长为( )A .12B .12或15C .15或18D .15 10、已知241x +加上一个单项式后能成为一个整式的完全平方,给出下面五个单项式①4x ,②2x -,③24x -,④44x ,⑤-1其中,正确的个数共有( )A .1个B .2个C .3个D .4个 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分)1、如图,////AB GH CD ,点H 在BC 上,AC 与BD 交于点G ,2AB =,3CD =,则GH 的长为 .2、如果一个角的补角是150°,那么这个角的余角是_________°.3、边长为a 的正三角形的面积等于________4、七边形的内角和是__________.5、O ,T ,T ,F ,F ,S ,S ,E 是正整数英文的第一个字母,请你细心观察后填写后两个____,____.三、解答题(5小题,每小题10分,共计50分)1、求不等式()414123x x +++≥的所有自然数解 ·线○封○密○外2、(1)352123x x +-= ; (2)0.4320.20.5x x +--= 3、因式分解(1) (a + b )2- 2a - 2b + 1 (2) 9(1 - x )2- 12(1 - x 2)+ 4(1 + x )24、解方程:2x 13+=x 24+-1. 5、在ABC 中,,90AB CB ABC ︒=∠=,F 为AB 延长线上一点,点E 在BC 上,且AE CF =.(1)求证:Rt ABE Rt CBF ≅△△(2)若30EAB ︒∠=,求BFC ∠度数.-参考答案-一、单选题1、A【分析】根据一次函数与系数的关系,由函数y =kx+b 的图象位置可得k >0,b <0,然后根据系数的正负判断函数y =﹣bx+k 的图象位置.【详解】解:∵函数y =kx +b 的图象经过第一、三、四象限,∴k >0,b <0,∴﹣b >0∴函数y =﹣bx +k 的图象经过第一、二、三象限.故选:A .【点睛】本题考查了一次函数与系数的关系:由于y =kx+b 与y 轴交于(0,b ),当b >0时,(0,b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴. k >0,b >0⇔y =kx+b 的图象在一、二、三象限; k >0,b <0⇔y =kx+b 的图象经过一、三、四象限; k <0,b >0⇔y =kx+b 的图象经过一、二、四象限; k <0,b <0⇔y =kx+b 的图象经过二、三、四象限. 2、D 【分析】 由三角形内角和定理及勾股定理的逆定理进行判断即可. 【详解】 解:A 、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形; B 、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形; C 、由a 2=c 2−b 2,得a 2+b 2=c 2,符合勾股定理的逆定理,是直角三角形; D 、32+42≠62,不符合勾股定理的逆定理,不是直角三角形. 故选:D . 【点睛】 本题考查了直角三角形的判定,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. ·线○封○密·○外3、D【解析】【分析】根据无理数的概念结合有理数的概念逐一进行判断即可.【详解】,是有理数;3.1415926 是有理数;π-是无理数;,是有理数;是无理数;0.1818818881……(两个1之间依次多1个8)是无理数,所以无理数有4个,故选D.【点睛】本题考查了无理数,初中范围内学习的无理数有三类:①π类,如2π,3π等;②开方开不尽的0.1010010001…,等.4、B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:分式有:1a ,56x+,109xy+共3个.故选B.【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以20yπ不是分式,是整式.5、C【分析】根据三角形的内角和是180度,用180°减去2个底角的度数,可以求出顶角的度数.【详解】解:∵一个等腰三角形的一个底角是40°,∴另一个底角也是40°,∴顶角为:180°-40°×2=180°-80°=100°故选C. 【点睛】 本题考查了三角形的内角和公式以及等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键. 6、B 【分析】 先利用多项式乘法法则把多项式展开,根据展开后不含x 3和x 项,则含x 3和x 项的系数为0,由此可得关于m 、n 的方程组,解方程组求出m 、n 的值即可求得答案. 【详解】 解:原式=x 4−3x 3+nx 2+mx 3−3mx 2+mnx +4x 2−12x +4n =x 4+(m −3)x 3+(−3m +n +4)x 2+(mn −12)x +4n .由题意得m −3=0,mn −12=0, 解得m =3,n =4. ∴m n =34 故选B. 【点睛】·线○封○密○外本题考查了多项式相乘法则以及多项式的项的定义.注意当要求多项式中不含有哪一项时,应让这一项的系数为0.7、D【分析】直接利用平行线的判定方法分别判断得出答案.【详解】解:A 、当∠5=∠B 时,AB ∥CD ,不合题意;B 、当∠1=∠2时,AB ∥CD ,不合题意;C 、当∠B +∠BCD =180°时,AB ∥CD ,不合题意;D 、当∠3=∠4时,AD ∥CB ,符合题意;故选:D .【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.8、A【分析】根据角平分线的作法步骤,连接CP 、DP ,由作图可证△OCP ≌△ODP ,则∠COP =∠DOP ,而证明△OCP ≌△ODP 的条件就是作图的依据.【详解】 解:如下图所示:连接CP 、DP ·线○在△OCP与△ODP中,由作图可知:OC OD CP DP OP OP=⎧⎪=⎨⎪=⎩∴△OCP≌△ODP(SSS)故选:A.【点睛】本题考查了角平分线的求证过程,从角平分线的作法中寻找证明三角形全等的条件是解决本题的关键。
安徽省合肥市中学科大附中2025届数学七上期末监测试题含解析
安徽省合肥市中学科大附中2025届数学七上期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.(﹣2)3表示()A.2乘以﹣3 B.2个﹣3相加C.3个﹣2相加D.3个﹣2相乘2.如图是由五个相同的小立方块搭成的几何体,这个几何体的主视图(从正面看)是()A.B.C.D.3.如图,根据流程图中的程序,当输出y的值为1时,输入x的值为()A.8-B.8 C.8-或8 D.4-4.下列生活实例中,数学原理解释错误的一项是( )A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D .从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短5.若33a a -=-+,则a 的取值范围是( )A .3a ≤B .3a <C .3a ≥D .3a >6.如图,把一张长方形的纸片沿着EF 折叠,点C 、D 分别落在M 、N 的位置,且∠MFB=12∠MFE, 则∠MFB=( )A .30°B .36°C .45°D .72°7.下列各对数中,数值相等的是 ( )A .23和32B .(﹣2)2和﹣22C .2和|﹣2|D .和8.2019的相反数是( )A .12019B .﹣2019C .12019-D .20199.数轴上与表示﹣1的点距离10个单位的数是( )A .10B .±10C .9D .9或﹣1110.一枚六个面分别标有16-个点的骰子,将它抛掷三次得到不同的结果,看到的情形如图所示,则图中写有“?”一面上的点数是( )A .6B .2C .3D .1二、填空题(本大题共有6小题,每小题3分,共18分)11.若一个角的补角比它的余角的4倍少15,则这个角的度数为______.12.如图所示,甲从A 点以66m /min 的速度,乙从B 点以76m /min 的速度,同时沿着边长为100m 的正方形按A →B →C →D →A …的方向行走.当乙第一次追上甲时,在正方形的______边上.(用大写字母表示)13.如图,已知线段30AB cm =,点D 是线段AB 上一点.且12BD cm =,点C 是线段AD 的中点.则线段BC 的长为__________cm .14.已知船在静水中的速度是a 千米/小时,水流速是b 千米/小时,则顺流航行5小时比逆流航行 3小时多航行了_______千米.15.如图,已知O 为直线AB 上一点,OC 平分,4,AOD BOD DOE COE β∠∠=∠∠=,则∠BOE 的度数为 ______. (用含β的式子表示)16.数轴上点A 距原点3个单位,将点A 向左移动7个单位,再向右移动2个单位到达B 点,则点B 所表示的数是_____.三、解下列各题(本大题共8小题,共72分)17.(8分)如图,某地方政府决定在相距50km 的A 、B 两站之间的公路旁E 点,修建一个土特产加工基地,且使C 、D 两村到E 点的距离相等,已知DA ⊥AB 于A ,CB ⊥AB 于B ,DA=30km ,CB=20km ,那么基地E 应建在离A 站多少千米的地方?18.(8分)某校七年级学生在农场进行社会实践劳动时,采摘了黄瓜和茄子共80千克,了解到采摘的这部分黄瓜和茄子的种植成本共184元,还了解到如下信息:黄瓜的种植成本是2元/千克,售价是3元/千克;茄子的种植成本是2.4元/千克,售价是4元/千克.(1)求采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子全部卖出可赚多少元?19.(8分)如图,点A ,B 在长方形的边上.(1)用圆规和无刻度的直尺在长方形的内部作∠ABC =∠ABO ;(保留作图痕迹,不写作法)(2)在(1)的条件下,若BE 是∠CBD 的角平分线,探索AB 与BE 的位置关系,并说明理由.20.(8分)如图,438624,AOB BOC '∠=︒∠=,,OD 为AOC ∠的平分线,求BOD ∠的度数21.(8分)已知28,36a b ==,且b a >,求+a b 的值. 22.(10分)已知a b c d ,,,都是有理数,现规定一种新的运算:,,a b ad bc c d =-,例如:1,214-23-23,4=⨯⨯= (1)计算-1,2-3,5(2)若,261,2x x -=+,求x 的值. 23.(10分)已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?24.(12分)如图,O 是直线AB 上一点,OD 平分∠BOC,∠COE=90°.若∠AOC=40°,求∠DOE 的度数.参考答案一、选择题(每小题3分,共30分)1、D【解析】根据乘方的定义求解可得.【详解】(﹣2)3表示3个﹣2相乘,故选D .【点睛】本题考查了有理数的乘方,解题的关键是掌握有理数乘方的定义:求n 个相同因数积的运算,叫做乘方.2、A【分析】这个几何体的主视图有3列:小正方形的个数依次是1、1、2,据此解答即可.【详解】解:这个几何体的主视图是:.故选:A .【点睛】本题考查了几何体的三视图,属于基础题目,掌握解答的方法是关键.3、C【分析】根据流程,把输出的函数值分别代入函数解析式求出输入的x 的值即可.【详解】∵输出y 的值为1∴①当1x ≤时,1512x +=,解得8x =-,符合题意; ②当1x >时,1512x -+=,解得8x =,符合题意;∴输入的x的值为8-或8故选:C.【点睛】此题主要考查函数值求解,比较简单,注意分两种情况代入求解.4、A【分析】根据垂线段最短、直线和线段的性质即可得到结论.【详解】解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短,正确.故选A.【点睛】考查了垂线段最短,直线和线段的性质,熟练掌握各性质是解题的关键.5、A【分析】根据负数的绝对值是其相反数,0的绝对值是0可知,a-1≤0,则a≤1.【详解】解:由|a-1|=1-a,根据绝对值的性质可知,a-1≤0,a≤1.故选A.【点睛】本题考查不等式的基本性质,尤其是非负数的绝对值等于它本身,非正数的绝对值等于它的相反数.6、B【分析】根据图形折叠后边的大小,角的大小不变的特点找出角的大小关系进行解答即可.【详解】在长方形ABCD中,纸片沿着EF折叠∴∠CFE=∠MFE∠MFB=12∠MFE∠CFE+∠MFE+∠MFB=180︒∴2∠MFB+2∠MFB+∠MFB =180︒5∠MFB=180︒∴∠MFB=36︒故选B【点睛】此题重点考察学生对图形折叠的认识,把握折叠后的图形性质是解题的关键.7、C【解析】选项A,,数值不相等;选项B,(﹣2)2=4,﹣22 =﹣4,数值不相等;选项C,|﹣2|=2,数值相等;选项D,,,数值不相等,故选C.点睛:解决此类题目的关键是熟记有理数的乘方法则.负数的奇数次幂是负数,负数的偶数次幂是正数;正数的任何次幂都是正数.8、B【分析】直接利用相反数的定义分析得出答案.【详解】解:1的相反数是﹣1.故选:B.【点睛】本题考查相反数的定义,解题的关键是掌握相反数的定义.9、D【分析】根据数轴上两点间的距离可得答案.提示1:此题注意考虑两种情况:要求的点在-1的左侧或右侧.提示2:当要求的点在已知点的左侧时,用减法;当要求的点在已知点的右侧时,用加法.【详解】与点-1相距10个单位长度的点有两个:①-1+10=9;②-1-10=-1.故选D.【点睛】本题主要考查数轴上两点间的距离及分类讨论思想.考虑所求点在已知点两侧是解答本题关键.10、A【分析】根据正方体及其表面展开图,得出和点“1”相邻的四个面是“2”、“3”、“4”、“5”,推出“1”点对面是“6”点,正方体是图中第三种位置关系时,从相邻面和相对面分析,用排除法选出正确答案.【详解】解:根据前两个正方体图形可得出和“1”点相邻的四个面是“2”、“3”、“4”、“5”,当正方体是第三种位置关系时,“1”和“6”在正方体上下两面,∵“1”不在上面,∴“6”在上面,故选:A.【点睛】本题考查了正方体相对两面上的数字,理解正方体展开图,从相邻面和相对面进行分析是解题关键.二、填空题(本大题共有6小题,每小题3分,共18分)11、1【解析】根据补角和余角的定义,利用这个角的补角的度数=它的余角的度数×4−15作为相等关系列方程,解方程即可.【详解】解:设这个角为x ,则它的补角为(180°−x ),余角为(90°−x ),由题意得:180°−x =4(90°−x )−15,解得x =1°.即这个角为1°.故答案为:1.【点睛】本题主要考查了余角、补角的定义以及一元一次方程的应用.解题的关键是能准确地从题中找出各个量之间的数量关系,列出方程,从而计算出结果.互为余角的两角的和为90°,互为补角的两角的和为180°.12、AD【分析】根据题意可得:乙第一次追上甲时所走的路程=甲走的路程+3×100,设所用的时间为x min ,由此等量关系可列方程,则可求出追到时的时间,再求出路程.根据路程计算沿正方形所走的圈数,即可得出结论.【详解】解:设乙第一次追上甲时,所用的时间为x min ,依题意得:76x =66x +3×100解得:x =30,∴乙第一次追上甲时,甲所行走的路程为:30×66=1980m ,∵正方形边长为100m ,周长为400m ,∴当乙第一次追上甲时,将在正方形AD 边上.故答案为:AD .【点睛】本题考查了一元一次方程的应用,解决此题的关键是要求出它们相遇时的路程,然后根据路程求沿正方形所行的圈数,即可知道在哪一边上.13、1【分析】根据中点平分线段长度即可求得BC 的长.【详解】∵30AB cm =,12BD cm =∴301218AD AB BD cm =-=-=∵点C 是线段AD 的中点∴1118922CD AD cm ==⨯= ∴91221BC CD BD cm =+=+=故答案为:1.【点睛】本题考查了线段的长度问题,掌握中点平分线段长度是解题的关键.14、28a b +【分析】由题意得,顺流速度为+a b 千米/小时,逆流速度为-a b 千米/小时,根据距离公式列式求解即可.【详解】()()53a b a b +--5533a b a b =+-+28a b =+故答案为:28a b +.【点睛】本题考查了航行距离的问题,掌握距离公式是解题的关键.15、2703β︒-【分析】先求出1804AOD DOE ∠=-∠,利用角平分线的性质求出∠COD=19022AOD DOE ∠=-∠,由∠=COE β得到90DOE β∠=-,再根据4BOD DOE ∠=∠推出∠BOE 的度数.【详解】∵180AOD BOE ∠+∠=,4BOD DOE ∠=∠,∴ 1804AOD DOE ∠=-∠,∵OC 平分∠AOD ,∴∠COD=19022AOD DOE ∠=-∠, ∵∠COE=∠COD+∠DOE ,且∠=COE β,∴902DOE DOE β-∠+∠=,∴90DOE β-∠=,∴90DOE β∠=-,∵4BOD DOE ∠=∠,∠BOD=∠BOE+∠DOE ,∴∠BOE=3∠DOE=2703β︒-︒-.故答案为:2703β【点睛】此题考查平角的定义,角平分线的性质,几何图形中角度的和差计算.16、﹣2或﹣1【解析】分析:根据题意可以求得点A表示的数,从而可以得到点B表示的数,本题得以解决.详解:由题意可得,点A表示的数是3或-3,∴当A为3时,点B表示的数为:3-7+2=-2,当A为-3时,点B表示的数为:-3-7+2=-1,故答案为:-2或-1.点睛:本题考查数轴,解答本题的关键是明确数轴的特点,利用数轴的知识解答.三、解下列各题(本大题共8小题,共72分)17、20千米【分析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.【详解】解:设基地E应建在离A站x千米的地方.则BE=(50﹣x)千米在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D两村到E点的距离相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E应建在离A站20千米的地方.考点:勾股定理的应用.18、(1)采摘黄瓜20千克,茄子60千克;(2)这些采摘的黄瓜和茄子全部卖出可赚116元.-千克,然后根据“采摘的这部分黄瓜和茄子的种植成本共184元”【分析】(1)设采摘黄瓜x千克,则采摘茄子(80)x列出方程进一步求解即可;(2)先将每千克的黄瓜与茄子的利润算出来,然后再算总共的利润即可.【详解】(1)设采摘黄瓜x 千克,则采摘茄子(80)x -千克,依题意,得:2 2.4(80)184x x +-=,解得:20x ,∴8060x -=.答:采摘黄瓜20千克,茄子60千克.(2)(32)20(4 2.4)60116-⨯+-⨯=(元)答:这些采摘的黄瓜和茄子全部卖出可赚116元.【点睛】本题主要考查了一元一次方程的实际应用,熟练掌握相关方法是解题关键.19、(1)如图所示,∠ABC 即为所求作的图形;见解析;(2)AB 与BE 的位置关系为垂直,理由见解析.【分析】(1)根据角平分线定义即可在长方形的内部作ABC ABO ∠=∠;(2)根据(1)的条件下,BE 是CBD ∠的角平分线,即可探索AB 与BE 的位置关系.【详解】如图所示,(1)∠ABC 即为所求作的图形;(2)AB 与BE 的位置关系为垂直,理由如下:∵∠ABC =∠ABO =12∠OBC ∵BE 是∠CBD 的角平分线,∴∠CBE =12∠CBD ∴∠ABC +∠CBE =12(∠ABC +∠CBD )=12⨯180°=90° ∴AB ⊥BE .所以AB 与BE 的位置关系为垂直.【点睛】本题考查了作图-复杂作图、矩形的性质,角平分线的定义,解决本题的关键是根据角平分线的定义准确画图. 20、21°42′【分析】首先求得∠AOC 的度数,根据角平分线的定义求得∠AOD ,然后根据∠BOD=∠AOD-∠AOB 求解.【详解】∵∠AOB=43°,∠BOC=86°24′,∴∠AOC=43°+86°24′=129°24′,∵OD 平分∠AOC ,∴∠AOD=12∠AOC=129°24′÷2=64°42′, ∴∠BOD=∠AOD- ∠AOB=64°42′-43°=21°42′.【点睛】本题考查了角度的计算,正确理解角平分线的定义,求得∠AOD 是关键.21、-14或-2【分析】先根据绝对值的性质和平方求出a,b 的值,然后根据b a >最终确定a,b 的值,然后代入+a b 中即可求解.【详解】因为 a =8,b 2=36所以 8,6a b =±=±由 b>a ,得8,6a b =-=±所以 a+b = 6+(-8)=-2 或a+b = -6+(-8)=-14综上所述,+a b 的值为-14或-2【点睛】本题主要考查代数式求值,根据绝对值和平方的性质求出a,b 的值是解题的关键.22、(1)1;(2)1x =.【分析】(1)根据题中的新定义计算即可求出值;(2)已知等式利用题中的新定义化简,计算即可求出x 的值.【详解】(1)根据题中的新定义得:原式()1523=-⨯-⨯-56=-+1=;(2)由题中的新定义化简得:()()2216x x --⨯+=,去括号得:2226x x ++=,移项合并得:44x =,解得:1x =.【点睛】本题考查了解一元一次方程,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.23、(1)A 、B 位置见解析,A 、B 之间距离为30;(2)2或-6;(3)第20次P 与A 重合;点P 与点B 不重合.【分析】(1)点B 距离原点10个单位长度,且位于原点左侧,得到点B 表示的数,再根据平移的过程得到点A 表示的数,在数轴上表示出A 、B 的位置,根据数轴上两点间的距离公式,求出A 、B 之间的距离即可;(2)设P 点对应的数为x ,当P 点满足PB=2PC 时,得到方程,求解即可;(3)根据第一次点P 表示-1,第二次点P 表示2,点P 表示的数依次为-3,4,-5,6…,找出规律即可得出结论.【详解】解:(1)∵点B 距离原点10个单位长度,且位于原点左侧,∴点B 表示的数为-10,∵将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,∴点A 表示的数为20,∴数轴上表示如下:AB 之间的距离为:20-(-10)=30;(2)∵线段OB 上有点C 且6BC =,∴点C 表示的数为-4,∵2PB PC =,设点P 表示的数为x , 则1024x x +=+,解得:x=2或-6,∴点P 表示的数为2或-6;(3)由题意可知:点P 第一次移动后表示的数为:-1,点P 第二次移动后表示的数为:-1+3=2,点P 第三次移动后表示的数为:-1+3-5=-3,…,∴点P 第n 次移动后表示的数为(-1)n •n ,∵点A 表示20,点B 表示-10,当n=20时,(-1)n•n=20;当n=10时,(-1)n•n=10≠-10,∴第20次P与A重合;点P与点B不重合.【点睛】本题考查的是数轴,绝对值,数轴上两点之间的距离的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系.24、20°【解析】试题分析:根据∠AOC的度数求出∠BOC的度数,根据角平分线的性质得出∠COD的度数,然后根据∠DOE=∠COE-∠COD来进行求解.试题解析:∵∠AOC=40°∴∠BOC=180°-∠AOC =140°∵OD平分∠BOC ∴∠COD=12∠BOC=70°∵∠COE=90°∴∠DOE=∠COE-∠COD =20°考点:角度的计算、角平分线的性质.。