第六章电力系统三相短路的分析计算4
无限大系统供电的三相短路电流计算步骤
无限大系统供电的三相短路电流计算步骤1. 概述在电力系统中,短路故障是一种严重的电力故障,会导致电力设备的损坏甚至火灾事故。
对于电力系统的短路电流进行准确的计算和分析至关重要。
2. 三相短路电流的定义三相短路电流是指在电力系统中,三相之间或者三相与地之间发生短路时产生的电流。
它是在短路点,三相导线之间或者与地之间的电压为零时的电流。
3. 三相短路电流计算的必要性在电力系统中,了解短路电流的大小对于设备的选型、保护装置的选择和系统的稳定运行具有重要意义。
进行三相短路电流的准确计算是非常重要的。
4. 三相短路电流计算的基本步骤根据电力系统的参数和拓扑结构,进行三相短路电流的计算需要进行以下基本步骤:4.1 收集系统参数首先需要收集电力系统中各个设备的参数,包括发电机、变压器、电缆、开关设备等的额定容量、短路阻抗、接线方式等信息。
4.2 绘制系统拓扑图根据收集到的系统参数,绘制出电力系统的拓扑结构图。
拓扑图的绘制需要清晰地表现出系统中各个设备的连接方式和电流的流向。
4.3 计算短路阻抗根据电力系统的拓扑结构和参数,计算出各个节点之间的等值短路阻抗。
这个步骤是进行短路电流计算的基础。
4.4 确定短路点根据拓扑结构图和短路阻抗的计算结果,确定系统中可能发生短路的点,即短路点。
4.5 进行短路电流计算在确定了短路点之后,可以使用各种方法进行短路电流的计算,如对称分量法、复功率法、节点分析法等。
4.6 考虑不对称短路在实际电力系统中,三相短路并不总是对称的,因此在计算短路电流时需要考虑不对称短路。
可以使用不对称系统等效电路进行计算。
4.7 分析计算结果根据计算得到的短路电流结果,对系统进行分析,评估设备的承受能力,选择合适的保护设备,做出相应的安全措施。
5. 结论三相短路电流的计算是电力系统设计、运行和维护中的重要内容。
在进行计算时,需要充分收集系统参数,绘制系统拓扑图,计算短路阻抗,确定短路点,进行短路电流计算,并最终分析计算结果。
电力系统三相短路的分析与计算
【例1】在图1所示网络中,设8.1;;100===M av B B K U U MVA S ,求K 点发生三相短路时的冲击电流、短路电流的最大有效值、短路功率?解:采用标幺值的近似计算法 ①各元件电抗的标幺值1008.03.610008.05.0222.13.03.631001004100435.0301001005.10121.01151004.0402*2**2*1=⨯⨯==⨯⨯⨯=⨯==⨯==⨯⨯=L N B R T L X I I X X X②从短路点看进去的总电抗的标幺值:7937.1*2***1*=+++=∑L R T L X X X X X③短路点短路电流的标幺值,近似认为短路点的开路电压f U 为该段的平均额定电压av U5575.01****===∑∑X X U I f f ④短路点短路电流的有名值kA I I I B f f 113.53.631005575.0*=⨯⨯=⨯=⑤冲击电流kA I i f M 01.13113.555.255.2=⨯==⑥最大有效值电流kA I I f M 766.7113.552.152.1=⨯==⑦短路功率MVA I I S S S B f B f f 75.551005575.0**=⨯=⨯=⨯=[例2] 电力系统接线如图2(a )所示,A 系统的容量不详,只知断路器B 1的切断容量为3500MV A ,C 系统的容量为100MV A ,电抗X C =0.3,各条线路单位长度电抗均为0.4Ω/km ,其他参数标于图中,试计算当f 1点发生三相短路时短路点的起始次暂态电流''1f I 及冲击电流i M ,(功率基准值和电压基准值取av B B U U MVA S ==,100)。
A(b)(c)1(d )图2 简单系统等值电路(a) 系统图 (b)、(c)、(d)等值电路简化解:采用电源电势|0|''1E ≈和忽略负荷的近似条件,系统的等值电路图如图7-7(b)所示。
三相短路分析及短路电流计算
三相短路分析及短路电流计算三相短路分析及短路电流计算是电力系统中一个重要的问题,在电力系统运行和设计中起着至关重要的作用。
理解和计算三相短路电流对于保护设备和系统的可靠性至关重要。
下面我将详细介绍三相短路分析及短路电流计算的内容。
1.三相短路分析三相短路是指三相电源之间或电源与负载之间发生短路故障,造成电流突然增加。
三相短路会导致电流剧增,电网负载增大,电网发电机负荷骤降。
因此,对于电力系统而言,短路是一种严重的故障。
短路的原因主要有以下几种:-外部因素,如雷击、设备故障等;-人为因素,如误操作、设备维护不当等。
短路的位置主要有以下几种:-发电机绕组内部;-输电线路中;-终端设备终端内部。
短路的类型主要有以下几种:-对地短路(单相接地短路、双相接地短路);-相间短路;-相对地短路;-三相短路。
短路电流是指在短路发生时,电路中的电流值。
短路电流的计算是电力系统设计、保护设备选择、线路容量选择的重要依据。
正确计算短路电流能够保证系统的安全运行。
短路电流的计算包括以下步骤:-确定故障位置和类型;-确定电路参数,包括发电机额定电流、负载电流、接地电阻等;-选择合适的计算方法,如对称分量法、复杂网络法、解耦法等;-根据选定的计算方法进行计算,并考虑系统运行时的各种条件,如电源电压波动、电源短路容量等;-对计算结果进行验证和分析,确保结果的准确性。
在进行短路电流计算时,还需要考虑以下几个因素:-各种设备的短路容量,包括母线、断路器、继电器等;-系统的整体阻抗和电流限制;-瞬时电流和持续电流的功率损耗;-预测设备短路容量的变化趋势。
总之,三相短路分析及短路电流计算对于电力系统的正常运行和设备的保护至关重要。
准确计算短路电流能够帮助电力系统工程师定位和解决故障,从而确保系统的安全运行。
电力系统分析课程设计-三相短路故障分析计算
目录摘要 (ii)一、基础资料 (3)1.电力系统简单结构图................................................ ....... . ..... .. ... . .... . .. . (3)2.电力系统参数 (3)3参数数据 (4)二、元件参数标幺值的计算及电力系统短路时的等值电路 (4)1.发电机电抗标幺值..................................................... ....... . ..... .. ... (4)2.负载电抗标幺值 (4)3变压器电抗标幺值 (4)4.线路电抗标幺值............................................. ........ ....... . ..... .. ... ... .. (4)5.电动机电抗标幺值........................................ ........ ....... . ..... .. ... ... .. (4)三、化简等值电路 (4)四、求出短路点的次暂态电流 (4)五、求出短路点冲击电流和短路功率 (4)六、设计心得............................................................. . . . . .. (20)七、参考文献............................................................. (21)电力系统课程设计《三相短路故障分析计算》电力系统发生三相短路故障造成的危害性是最大的。
作为电力系统三大计算之一,分析与计算三相短路故障的参数更为重要。
设计示例是通过两种不同的方法进行分析与计算三相短路故障的各参数,进一步提高短路故障分析与计算的精度和速度,为电力系统的规划设计、安全运行、设备选择、继电保护等提供重要依据。
电气工程概论第六章
a I a a Ib I 1 c
2
运算子
ae
j120
第五节
简单不对称短路计算
暂态
由上式可以得出正序、负序、零序三组对称分量
矩阵形式 可以用反变换求出 三相不对称的相量
I120 SIabc
Iabc S I120
1
第五节
简单不对称短路计算
暂态
第一节
概述
暂态
短路电流对电力系统将产生极大的危害,主 要有以下方面:
(1)短路电流的热效应使设备急剧发热,持续时间过长就可 能导致设备过热损坏; (2)短路电流将产生很大的电动力,可能使设备永久变形或 严重损坏; (3)短路将引起系统电压大幅度下降,严重影响用户的正常 工作; (4) 短路情况严重时,可能使电力系统的运行失去稳定, 造成电力系统解列,甚至崩溃,引起大面积停电; (5)不对称短路产生的不平衡磁场,会对附近的通讯系统及 弱电设备产生电磁干扰,影响正常工作。
暂态
在标幺制中,三相电路计算公式与单 相电路的计算公式完全相同。
工程计算中,通常选定功率基准值Sd和电压 基准值Ud,这时,电流和阻抗的基准值分别为
2 Ud Ud Zd 3I d S d Sd Id 3U d
S U I U Z I
第二节
标幺值
暂态
电力系统计算中有时采用一些物理量的相对 值来进行计算,这些相对值就叫作标幺值。
一、标幺值
有名值(任意单位) 标幺值 基准值(与有名值同单 位)
Z Z Z d ( R j X ) Z d R j X U U U d I I I d S S Sd ( P j Q) Sd P j Q
电力系统三相短路的分析与计算及三相短路的分类
第一节电力系统故障概述在电力系统的运行过程中,时常会发生故障,如短路故障、断线故障等。
其中大多数是短路故障(简称短路)。
所谓短路,是指电力系统正常运行情况以外的相与相之间或相与地(或中性线)之间的连接。
在正常运行时,除中性点外,相与相或相与地之间是绝缘的。
表7—1示出三相系统中短路的基本类型。
电力系统的运行经验表明,单相短路接地占大多数。
三相短路时三相回路依旧是对称的,故称为对称短路;其它几种短路均使三相回路不对称,故称为不对称短路。
上述各种短路均是指在同一地点短路,实际上也可能是在不同地点同时发生短路,例如两相在不同地点短路.产生短路的主要原因是电气设备载流部分的相间绝缘或相对地绝缘被损坏。
例如架空输电线的绝缘子可能由于受到过电压(例如由雷击引起)而发生闪络或由于空气的污染使绝缘子表面在正常工作电压下放电。
再如其它电气设备,发电机、变压器、电缆等的载流部分的绝缘材料在运行中损坏.鸟兽跨接在裸露的导线载流部分以及大风或导线覆冰引起架空线路杆塔倒塌所造成的短路也是屡见不鲜的.此外,运行人员在线路检修后未拆除地线就加电压等误操作也会引起短路故障。
电力系统的短路故障大多数发生在架空线路部分。
总之,产生短路的原因有客观的,也有主观的,只要运行人员加强责任心,严格按规章制度办事,就可以把短路故障的发生控制在一个很低的限度内。
表7-1 短路类型短路对电力系统的正常运行和电气设备有很大的Array危害。
在发生短路时,由于电源供电回路的阻抗减小以及突然短路时的暂态过程,使短路回路中的短路电流值大大增加,可能超过该回路的额定电流许多倍。
短路点距发电机的电气距离愈近(即阻抗愈小),短路电流愈大。
例如在发电机机端发生短路时,流过发电机定子回路的短路电流最大瞬时值可达发电机额定电流的10~15倍。
在大容量的系统中短路电流可达几万甚至几十万安培。
短路点的电弧有可能烧坏电气设备。
短路电流通过电气设备中的导体时,其热效应会引起导体或其绝缘的损坏.另一方面,导体也会受到很大的电动力的冲击,致使导体变形,甚至损坏。
第六章 短路故障分析与计算
发电机电压母线短路时,Ksh=1.9;
发电厂高压侧母线或发电机出线电抗器后发生短 路时,Ksh=1.85;
其它地点短路时,Ksh=1.8。
冲击电流主要用于校验电气设备和载流导体在短路 时的动稳定性。
6.3 无限大功率电源供电网络的 三相短路计算
2、最大有效值电流
任一时刻t的短路电流的有效值是指以时刻t为中心 的一个周期内短路全电流瞬时值的方均根值。
6.2 标幺制
一、标么制
有名值(任意单位) 标幺值= 基准值(与有名值同单位)
阻抗、电压、电流和功率的标幺值
Z Z Z d ( R jX ) Z d R jX U U U d I I I d S S S d ( P jQ) S d P jQ
6.2 标幺制
2、近似计算法 平均额定电压Uav :为了简化计算,取同一电压等级的 各元件最高额定电压与最低额定电压的平均值。 近似算法: 将由变压器联系的两侧网络的额定电压用网络的平 均额定值代替;
变压器的实际变比用变压器两侧网络的平均额定电 压之比代替。
6.2 标幺制
不同电压等级相应的平均额定电压:
L L
R R
6.3 无限大功率电源供电网络的三相 短路计算
k点短路后,与电源相连的回路中的电流应满足:
dia L Ri a U m sin( t ) dt
方程的解由两部分组成:
Um 周期分量 i p sin( t a ) I pm sin( t a ) Z
1 2 1 It ik dt (i pt inpt ) 2 dt T tT T tT
2 2
电力系统三相短路的分析计算
电力系统三相短路的分析计算
三相短路是指电力系统中三相导体之间发生短路故障,通常是由于设
备故障或外部原因引起的。
三相短路可能引起电流突然增大,电流过大很
容易导致设备的损坏或损坏。
因此,对三相短路进行及时的分析和计算非
常重要。
三相短路的分析计算主要包括以下几个方面:
1.短路电流计算:根据电力系统的拓扑结构和设备参数,通过计算和
仿真得到短路电流。
这是确定系统中短路故障的重要步骤,可以帮助工程
师了解系统中电流的大小和方向。
2.短路电流传播计算:根据系统中设备的参数,计算短路电流在系统
中的传播路径和传播过程。
这可以帮助工程师确定短路故障的类型和位置,以及各个设备受到的短路电流大小。
3.设备保护装置设定计算:根据短路电流的计算结果,确定设备保护
装置的动作时间和动作电流。
这可以帮助工程师对电力系统的保护装置进
行设置和校验,确保系统中的设备在短路故障发生时能够及时动作,保护
设备的安全运行。
4.短路电流对设备的影响计算:根据短路电流的计算结果,分析短路
故障对系统中设备的影响。
这可以帮助工程师评估设备的稳定性和可靠性,确保设备能够在短路故障发生时正常运行。
总之,电力系统三相短路的分析计算是电力系统工程中的重要任务之一、通过对短路电流的计算和分析,可以帮助工程师了解系统中的故障状态,确定短路故障的类型和位置,并对设备的保护装置进行设置和校验,
以确保系统的安全运行。
第6章+电力系统三相短路故障分析
电力系统 的故障 复杂故障
又称横 向故障
简单故障
电力系统 短路故障
又称纵 向故障
属不对称 故障
电力系统 断相故障
6.1 电力系统故障原因及分类
2002年我国220kV电网输电线路故障统计表
故障类型 三相短路 两相短路 两相接地 单相接地 其它故障 故障次数 17 故障百分 1.14% 比 28 1.88% 91 6.12% 1319 88.7% 32 2.16%
U E k (0) I k (Z Z f ) (Z Z f )
若 直接接地短路 Z f 0 ,则: Z U E Ik k (0) Z
6.3.1.确定系统各元件的次暂态参数, 作出系统的等值电路
• 计算起始次暂态电流时, • 电力系统中所有静止元件(如电力线 路和变压器)的参数都与其稳态参数 相同, • 但旋转电机(如发电机、电动机和同 期调相机)的次暂态参数不同于其稳 态参数。
表6-3 短路分析时元件的近似模型
元件 模型 发电机 (调相机) 负荷 综合负荷 (大型电动 机) 变压器, 线路等 与稳态模 型相同, 近似计算 时可忽略 电阻。
/s
0.001 0.001 0.001
t=0.0025s短路 45 t=0.005s短路 90
-0.221 -0.445
6.2.3 短路冲击电流
• 短路电流可能出现的最大瞬时值称为 冲击电流,用iimp表示。 0 , • 电路原来处于空载,即 i0 0 则 I m
并假设短路后回路的感抗远大于电阻,则 有阻抗角 90o ,且短路时合闸角 0
三相短路故障虽然很少发生,但情况比较严重, 且三相短路时电力系统仍是三相对称的,称为 对称故障 ,本章分析三相短路故障。
电力系统三相短路的分析与计算
电力系统三相短路的分析与计算电力系统三相短路是指电力系统中发生的由于过大的电流流过电气设备、电缆、电缆接头、电线路等导体元件而引起的电气故障。
三相短路是一种严重的故障,可能导致设备损坏、事故发生甚至火灾爆炸。
因此,对电力系统三相短路进行准确分析和计算是非常重要的。
首先,我们来看一下三相短路的类型。
三相短路可以分为对称短路和不对称短路两种情况。
对称短路是指三相短路电流大小相等,相位相同的短路;不对称短路是指三相短路电流大小不等,相位差大于120度的短路。
接下来,我们介绍一下三相短路的分析方法。
三相短路的分析可以采用阻抗法、复数法和对称分量法等方法进行。
其中,阻抗法是最常用的一种方法。
阻抗法的基本原理是利用设备和导线的等效阻抗来分析三相短路。
首先,需要测量或查表得到电源电压、设备电流和电源电阻的值。
然后,根据欧姆定律和基尔霍夫定律,利用等效电路模型计算电路中电流和电压的数值。
最后,通过计算得到的电压和电流值,可以得出电力系统中设备的功率损耗、电流大小等信息。
接下来,我们来看一下三相短路计算的具体步骤。
首先,需要收集电力系统的相关信息,包括电源电压、设备电流、电源电阻等。
然后,根据短路的类型选择相应的计算方法。
对于对称短路,可以使用复数法进行计算;对于不对称短路,可以使用对称分量法进行计算。
在计算中,可以采用手动计算或使用专业软件进行模拟计算。
最后,根据计算结果对电力系统的安全性进行评估,并采取相应的措施进行处理。
三相短路的分析和计算是一项复杂的工作,需要对电力系统和相关理论有较深入的了解。
在实际工作中,应该高度重视电力系统的安全问题,采取相应的预防措施和应急措施,保障电力系统的正常运行和人员的安全。
同时,还需要不断学习和更新电力系统的相关知识,提高自身的技术水平。
总结起来,电力系统三相短路的分析与计算是一项重要的工作,需要掌握相应的理论和方法。
只有进行准确的分析和计算,才能及时发现电力系统中的故障,保障电力系统的安全和可靠运行。
6.4 电力系统三相短路的实用计算
6.4 电力系统三相短路的实用计算6.4.1 短路电流实用计算的基本假设与基本任务电力系统短路计算可分为实用的“手算”计算和计算机算法。
大型电力系统的短路计算一般均采用计算机算法进行计算。
在现场实用中为简化计算,常采用一定假设条件下的“手算”近似计算方法,短路电流实用计算所作的基本假设如下:①短路过程中发电机之间不发生摇摆,系统中所有发电机的电势同相位。
采用该假设后,计算出的短路电流值偏大。
②短路前电力系统是对称三相系统。
③不计磁路饱和。
这样,使系统各元件参数恒定,电力网络可看作线性网络,能应用叠加原理。
④忽略高压架空输电线路的电阻和对地电容,忽略变压器的励磁支路和绕组电阻,每个元件都用纯电抗表示。
采用该假设后,简化部分复数计算为代数计算。
⑤对负荷只作近似估计。
一般情况下,认为负荷电流比同一处的短路电流小得多,可以忽略不计。
计算短路电流时仅需考虑接在短路点附近的大容量电动机对短路电流的影响。
⑥短路是金属性短路,即短路点相与相或相与地间发生短接时,它们之间的阻抗是零。
在前面已介绍了在突然短路的暂态过程中,定子电流包含有同步频率周期分量、直流分量和二倍频率分量。
由于实际的同步发电机具有阻尼绕组或等效阻尼绕组,减小了、轴的不对称,使二倍频率分量的幅值很小,工程上通常可以忽略不计;定子直流分量衰减的时间常数很小,它很快按指数规律衰减到零。
因此,在工程实际问题中,主要是对短路电流同步频率周期分量进行计算,只有在某些情况下,如冲击电流和短路初期全电流有效值的计算中,才考虑直流分量的影响。
短路电流同步频率周期分量的计算,包括周期分量起始值的计算和任意时刻周期分量电流的计算。
周期分量起始值的计算并不困难,只需将各同步发电机用其次暂态电动势(或暂态电动势)和次暂态电抗(或暂态电抗)作为等值电势和电抗,短路点作为零电位,然后将网络作为稳态交流电路进行计算即可;而任意时刻周期分量电流要准确计算非常复杂,工程上常常采用的是运算曲线法,运算曲线是按照典型电路得到的的关系曲线,根据各等值电源与短路点的计算电抗和时刻t,即可由运算曲线查得。
电力系统三相短路电流的实用计算
然后相加即得短路点的电流
I "f
1 x1
1 x2
G ~
1
G ~
2
3
(a)
E" 1|0|
E" 2|0|
x" d1 1
x" d2
2
x x 13
23
3
x" d1 x1
x" d2
x2
x x 13 23
3
(b)
(c)
x1 x2
U f|0| U
f |0|
1 1
1
I" f
1
(正常情况)
(故障情况)
(d) 图3—2 简单系统等值电路 (a)系统图 (b)等值电路 (c)简化等值电路 (d)应用叠加定理的等值电路
(3)进行容量折算,把各电源点对短路点的转移阻抗归 算到各电源的额定容量下,得到的电抗称为各电源的计 算电抗。 (4)根据计算电抗查找运算曲线,得到各发电机向短路 点供给的短路电流标幺值,该标幺值的基准值是以各发 电机的额定功率和额定电压为基准。 (5)将各短路电流标幺值转化为有名值,短路点的电流
等于各短路电流之和。
2、计算的简化
实际系统可能有相当多的电源,在计算中可以把短路 电流变化规律相似的发电机合并,作为一个等值发电机 来进行计算。通常如果有两个以上相同类型的发电机接 在同一母线上,而这个母线不是短路点,这样的发电机 可以合并。
二、转移阻抗 1、概念
消去了中间节点的网络中,直接联系电源点和短路点 的阻抗是转移阻抗。那么根据戴维南定理,如果把所有 的转移阻抗并联,得到的是从短路点端口看进去的网络 等值电抗。 2、转移阻抗的求取 (1)网络化简法。针对等值网络进行化简,消去中间 节点,得到转移阻抗。 (2)单位电流法。这种方法不必消去中间节点,尤其适 用于辐射形网络。
第六章电力系统三相短路电流的实用计算作业
E3 − Va ′′ I LD = = 0.6299 x7
′′ ′ ′′ ′′ iimp = kim 2 I G −1 + kim 2 ( I 4′ − I LD ) + kimLD I LD = 1.85 × 2 × 1.1667 + 1.8 × 2 × (1.7876 − 0.6299) + 1.0 × 2 × 0.6299 = 6.8892 200 iimp有 = 6.8892 × = 6.918kA 3 × 115
12
′ Va = I 4′x8 = 0.4326 < 0.8 ⇒ LD要向f点提供短路电流
电力系统分析 第六章 作业解答
E1 ′′ G − 1 : I G −1 = = 1.1667 x11
′′ ′ ′′ I 有名 = I 4′+ I G −1 = 2 . 9543 ×
200 = 2 . 966 kA 3 × 115
xs ∗ = S NBK
I ps
SB SB − x∑ f ∗
=
10 10 400 − 0.075
= 0.0375
1 = = 8.8889 0.0375 + 0.075
此方法有问题 不能采用!! 不能采用!!
10 ′′ I 有名 = I ps = 8.146kA 此种方式适用于存在 已知系统的情况! 已知系统的情况! 3 × 6.3
2
电力系统分析
第六章 作业解答
X1
E1
X3 X2
X4 X5 X6
X7
x3 x4 x8 = = 0 .2 x3 + x4 + x5
E2
x8 = x9 = x10 = 0.2
X1 X8 X10 X7
电力系统分析第六章
2
~ Si
( b ) 移置后
图 3 − 28 两个负荷移置一处
将两个负荷移置一处,该处的位置由下式确定:
~ Si z ik = z ij ∗ 或 z kj = z ij ~ ~ ∗ Si + S j Si+ S j Sj
∗
3 消去节点法 • 消去节点法实际由两部分组成, 消去节点法实际由两部分组成,即负荷 移置和星-网变换 网变换。 移置和星 网变换。
1 a a2
1 1 1
& & F120 = SFabc
& & Fabc = S −1 F120
&a ( 0 ) = 1 ( I a + I b + I c ) & & & I 3
零序电流必须以中性线为通路。
二、对称分量法在不对称故障分析中的应用
在一个三相对称的元件中(例如线路、变压器和 发电机), 如果流过三相正序电流,则在元件上的三相 电压降也是正序的;负序零序同理. 对于三相对称的元件,各序分量是独立的,即正序电 压只与正序电流有关,负序零序也是如此. 以一回三相对称的线路为例说明
& Ui
& I1
& I2
i
& & & & I = I1 + I2 + L+ Il
& I 1 1 1 1 = = + +L+ = & U Z Σi Z 1i Z 2 i Z li
1 ∑1 Z m= mi
l
& E1
& E2
& El
& E∑ i
+
第6章+电力系统三相短路故障分析
Iimp 1.52I 1.52 6.46 9.82kA
• 短路功率。
S kt I *S B 1.175 100 117.5 MVA
总结 供电的电力系统三相短路解题的步骤
例6-3
6.3 电力系统三相短路的实用计算
三实 相用 短计 路算 1.计算起始次暂态电流 I ,用于校验断路 器的断开容量和继电保护整定计算。 2.运算曲线法,用于电气设备稳定校验
例6-1
• 解:由结果可见在不同时刻短路时,合闸相 角不同,且各相电流的非周期分量初值不同。
合闸相角/度 A t=0时短路 0 B -120 -75 -30 C 120 165 -150 0.954 0.954 0.954
I /kA
A 0.143
i (t ) /kA
B 0.323 0.477 0.351 C -0.466 -0.257 0.104
/s
0.001 0.001 0.001
t=0.0025s短路 45 t=0.005s短路 90
-0.221 -0.445
6.2.3 短路冲击电流
• 短路电流可能出现的最大瞬时值称为 冲击电流,用iimp表示。 0 , • 电路原来处于空载,即 i0 0 则 I m
并假设短路后回路的感抗远大于电阻,则 有阻抗角 90o ,且短路时合闸角 0
6.2.2 无限大容量电源供电的三相短路电流分析
• 由图6.1可以看出三相短路后电路仍然是三相 对称的,所以只研究其中一相(这里我们仍选 a相),根据基尔霍夫电压定律(KVL):
di R1i L1 U m sin t dt
其解就是短路电流
i i i Im sint Ce
电力系统三相短路的分析与计算及三相短路的分类
电力系统三相短路的分析与计算及三相短路的分类电力系统中,三相短路是指电力系统中三相导线之间发生短路现象,导致电力系统中产生大电流甚至爆炸的一种故障。
三相短路的分析与计算是电力系统运行和维护中非常重要的一项工作,可以帮助电力系统工程师及时发现并解决问题,确保电力系统的安全可靠运行。
三相短路的分析与计算主要包括以下几个方面:1.短路电流计算:短路电流是指在电力系统中出现短路时的电流大小。
短路电流的计算是分析短路故障的重要步骤,可以通过进行电力系统拓扑分析和电源参数测量等方法来得到准确的短路电流数值。
2.短路电压计算:电力系统中的短路电压是指在短路故障发生时,短路点之间的电压差。
短路电压的计算可以通过短路电流和系统的阻抗参数来得到,可以帮助判断短路故障的严重程度。
3.短路过程分析:短路过程分析是指对电力系统中短路故障的发展过程进行详细的分析,包括短路产生的原因、短路发展的路径等。
通过对短路过程的分析,可以帮助电力系统工程师找到故障点并及时解决。
4.短路保护设备设计:为了保护电力系统免受短路故障的影响,需要设计合理的短路保护设备。
短路保护设备设计包括选择合适的短路保护器件和设置合理的保护动作参数等。
三相短路可以分为以下几类:1.对地短路:对地短路是指系统其中一相或多相导线与大地之间发生短路。
对地短路会导致系统中出现过电压和过电流现象,严重时会引发设备损坏甚至火灾。
2.对相短路:对相短路是指发电系统的两个相之间产生短路。
对相短路会导致系统中产生高热现象,增加设备负荷,严重时会引发系统的瘫痪。
3.三相短路:三相短路是指系统的三个相之间全部发生短路。
三相短路会导致系统中产生非常高的短路电流,严重时会导致设备损坏和系统宕机。
总之,三相短路的分析与计算是电力系统安全运行的重要环节,通过详细的分析和计算,可以及时发现短路故障并采取相应的措施,确保电力系统的安全可靠运行。
三相短路过程分析和短路电流的计算方法
三相短路过程分析和短路电流的计算方法电力系统三相短路时,出现的短路冲击电流值为该短路点的极限值。
三相短路电流通常是选择和校验一二次设备的重要依据。
本文对三相短路过程进行了理论分析,采用多种方法计算三相短路电流,仿真结果验证了电路三要素法不能直接应用于交流激励源作用下的过渡过程分析。
标签:三相短路,短路电流计算0.引言电力系统发生三相短路的概率很小,但是当系统发生三相短路时,电流值是发生短路故障的地点可能出现的最大值。
该短路电流值的大小与短路地点的位置有关系,与短路回路中的导体阻抗大小有关系,还与电力系统中电源的短路阻抗有关系。
三相短路电流主要用于校验该电力网络中的电气设备和导线的热稳定度和动稳定度。
因此,在某一电压等级的电力网络中计算三相短路电流时,通常假定该网络中发生最不理想的状况,即在可能出现最大三相短路电流的地点发生短路。
1.三相短路的过程发生三相短路前,电力系统是处于正常运行的状态,即已达到负荷稳定的正弦稳态,此稳态为电力系统的初始状态。
当由于某种原因电力系统中某一点发生三相短路,其短路的过程等效为电力系统中的阻抗突变,使得电力系统由原来的负荷稳态向三相短路稳态过渡,即三相短路过程为大阻抗稳态向小阻抗稳态切换。
在这个过程中,阻抗发生突变,但由于回路中存在储能元件,电流不能突变。
因此,三相短路的过渡过程是其短路电流在短时间内剧增的过程。
2.短路电流的计算电力系统中进行三相短路电流的计算时s,作如下假定:(1)电力系统为无限大容量或電力系统的电源阻抗非常小,即使在三相短路时其母线上的电压也能基本维持不变。
(2)电力系统短路切换前后其阻抗都为简单的阻感性。
由于电源、电力线路、变压器和用电设备大都是阻感性,因此这个假定是合理的。
(3)假设短路前电力系统中的阻抗为短路后电力系统的阻抗为A.电路三要素法由以上假定可知,三相短路电流的计算为一阶线性电路的求解,可以尝试应用电路三要素法分析。
电路三要素即初始值、稳态值和时间常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k 1 e0.01/Ta im
kim为冲击系数,实用计算时,短路发生在发电机 电压母线时kim=1.9;短路发生在发电厂高压母 线时kim=1.85;在其它地点短路kim=1.8。
图6-4 非周期分量有最大可能值时的短路电流波形图
二、迭加原理的应用
在图示网络中,假定节点1,2,……n为电源节点,电
流以流入网络为正
E1
1 I1
1 I1i
Ei
i Ii
线
性
Ei
n In
网 络
Ei
i Iii
线 性
n Ini
网 络
a
b
图b表示第i个电势源单独作用时的电流分布。 IIi— —i ——表表示示第第ij个个电电势势源源单单独独作作用用从时从节节点点i流i流出入网络网络的的电流电流
其主要作用是校验电气设备的电动力稳定度。
非周期电流有最大初值的条件应为:
(1) 相量差 Im IPm 有最大可能值; (2) 相量差 Im IPm 在t=0时与时间轴平行。
一般电力系统中,短路回路的感抗比电阻大得多, 即 L R ,故可近似认为 90 。因此,非周期电 流有最大值的条件为:短路前电路空载(Im=0),并 且短路发生时,电源电势过零(α=0)。
线 性
If
En
j 1 j f
1 Z jf
E Z ff
I E
i
Z if
E i
I nn
网 络
在此情况下,第i个电源送到短路点的电流也就等于该电源点的电流 I,i
电流 I与i 短路电流 之If 比称为第i个电源的电流分布系数。
ci
Ii If
EZ if
EZ ff
Z ff
Z if
n
c I Z 1 i
四、短路容量
短路容量也称为短路功率,它等于短路电流有效 值同短路处的正常工作电压(一般用平均额定电 压)的乘积,即
S 3U I
t
av t
用标幺值表示时
St
3U av It 3U B I B
It IB
It
短路容量主要用来校验开关的切断能力。
第五节 电力系统三相短路的实用计算
一、三相短路实用计算的基本假设
ij
那么第i个节点的电流 I可 表示为 i
I I n I
i
ii
ij
j 1
ji
E1
I 11
Ei
I
i
i
线 性
网
En
n In
络
Ii Iii n Iij j 1 ji
1 I1i
Ei
i Iii
线 性 网
络
n Ini
➢ 如果每一个电流分量都用产生它的电势同某种阻抗的比值
来表示
Ii Iii n Iij j 1 ji
1
1
f
2
2
f
c I/ I或c=c c
4
4
f
4
1
2
c I/ I
3
3
f
Z1 f
Z f
c1
Z2 f
Z f c2
Z3 f
Z
f
c3
四. 网络的等值变换
(1)星网变换
设网络的某一部分可以表示为由节点1和另外n-1个节点组 成的星型电路,节点1同n-1个节点中的每一个都有一条支 路相接。
3
i
3
③人为误操作,如运行人员带负荷拉刀闸,线路或设 备检修后未拆除地线就加上电压引起短路。
④挖沟损伤电缆,鸟兽跨接在裸露的载流部分等。
三、短路的危害
(1)电流剧增:设备发热增加,若短路持续时间较长,可 能使设备过热甚至损坏;由于短路电流的电动力效应, 导体间还将产生很大的机械应力,致使导体变形甚至 损坏。
(2)电压大幅度下降,对用户影响很大。 (3)当短路发生地点离电源不远而持续时间又较长时,并
列运行的发电机可能失去同步,破坏系统运行的稳定 性,造成大面积停电,这是短路最严重的后果。 (4)发生不对称短路时,三相不平衡电流会在相邻的通讯 线路感应出电动势,影响通讯.
四、计算短路电流的目的
短路电流计算结果 •是选择电气设备(断路器、互感器、瓷瓶、母线、 电缆等)的依据; •是电力系统继电保护设计和整定的基础; •是比较和选择发电厂和电力系统电气主接线图的 依据,根据它可以确定限制短路电流的措施。
E Z ff I
f
E Z1 f I1
c1
I1 If
E/ E/
Z 1f
Z ff
Z ff
Z1 f
c2
I2 If
E/ Z2 f E/ Z ff
Z ff Z2 f
c3
I3 I
E/ Z3 f E/ Z
f
ff
Z ff Z
3f
Z2 f
E I2
Z3 f
E I3
Z 1f
Z ff c
1
Z2 f
Z ff c2
pR L
Ta —非周期分量电流衰减的时间常数
Ta
1 p
L R
积分常数的求解 短路的全电流可表示为:
短路前电流 i iP iaP IPm sin(t ) Cet /Ta i Im sin(t )
t=0短路电流 不突变
I m sin( ) I Pm sin( ) C
C iaP0 I m sin( ) I Pm sin( )
(1)电势都同相位:短路过程中各发电机之间不发生摇 摆,并认为所有发电机的电势都同相位。
(2)负荷近似估计:或当作恒定电抗,或当作某种临时 附加电源,视具体情况而定。
(3)不计磁路饱和:系统各元件的参数都是恒定的,可 以应用叠加原理。
(4)对称三相系统:除不对称故障处出现局部的不对称以 外,实际的电力系统通常都当做是对称的。
n
Z 1 1 ff
Z j1
j f jf
1 I1i
Ei
i Iii
线 性
I
n
E f
E j
网
n Ini
络
f
j 1 j f
Z
fj
I fi f
三. 电流分布系数
(1) 电流分布系数的基本概念
图中,如果所有电源电势都相等,即:
E E E E
1
2
n
只有短路点 Ef 可0得:以及
E1
1 I1
Ei
i Ii
I Z i1
i f
n i
i 1 i f
f
n ffi 1 i f源自if电流分布系数示意图
c1
I1 If
c2
I2 If
……
ci
Ii If
电流分布系数的特点:
因为 I1 I2 I4
I1 I2 I3 If
所以 c1 c2 c4
I1 If
I2 If
I3 If
c1
c2
c3
1
(2) 分布系数与转移阻抗之间的关系
Z j1
ji ji
Ei
I ii
i
线 性
网
n Ini
络
➢ 公式说明,节点i的输入阻抗等于
➢ 节点i对其它所有电源节点的转移阻抗的并联值。
➢
将
Ei Z
jn代1 ZE入i
ii
ji ji
Ii 得ZEi
n j 1
Ej Z
ii
ji ij
I
n
E E
i
j
i
j 1 ji
Z ij
当网络中存在节点f为短路点时,只要把短路点当做电势 等于零的电源点即可。短路点的输入阻抗为:
(5)纯电抗表示:忽略高压输电线的电阻和电容,忽略变压 器的电阻和励磁电流(三相三柱式变压器的零序等值电路除 外),加上所有发电机电势都同相位的条件,这就避免了复 数运算。
(6)金属性短路:短路处相与相(或地)的接触往往经过一 定的电阻(如外物电阻、电弧电阻、接触电阻等),这种电 阻通常称为“过渡电阻”。所谓金属性短路,就是不计过渡 电阻的影响,即认为过渡电阻等于零的短路情况。
y 31
I31
yi1 Ii1
1
y
y
21
n1
星网变换
y23
2
I
21
n I
n1
2
y3i y
3n
y 2i y2n
i y
in
n
3
i
I31
y31
yi1 Ii1
1
y21
yn1
➢由图根据基尔霍夫定律 可得:
n
Ik1
n
yk1 (Uk
U1 )
0
k 2
k 2
2
I21
In1
n ➢由此解出:
E , 0其余电源节点电势均为零时,等于电势 j
与E从j
节点i流出网络的电流 之I比ij
Z E I
ij
j ij
➢ 根据互易定理: Zij Z ji
1 I1i
➢ 在图中根据基尔霍夫电流定律可知
I n或者I
ii
ji
E i
n
E i
j 1
Z ji
1 ➢ 由此
Z 1 Z ii
ii
n
j1 ji
ji
2 apt
(6-11)
短路电流最大有效值出现在第一周期,其中心为:t=0.01s
Iap
I e0.01/Ta Pm
(kim
1)IPm
k 1 e0.01/Ta im
短路电流的最大有效值:
Iim