21.4一次函数的应用(2)课后练习
冀教版八年级数学_21.4.1 建立一次函数模型解简单应用
感悟新知
知1-练
解:(1)y=30(60+x)=30x+1 800(x>0). (2)令30x+1 800=60×40,解得x=20,即当x=20时 ,变化后的长方形与原来的长方形的面积相等. (3)令30x+1 800>2×60×40,解得x>100,即当x> 100时,可以使变化后的长方形的面积比原来的长 方形面积的2倍还要大.
3 20
,
所以y= 3 x(x≥0). 20
(2)由题意可得,0≤ 3 x≤12,解得0≤x≤80. 20
故要使刹车距离不超过12 m,车速应保持在
知2-练
0~80 km/h的范围内.
感悟新知
2. 某市为鼓励市民节约用水,自来水公司采用分段 知2-练 收费标准收费,每月收取水费y(元)与用水量x(t)之间 的函数关系如图所示.
x/千册 6 8 y/万元 3.1 3.6
(1)求y(万元)与x(千册)之间的函数关系式. (2)当出版社投入成本4.1万元时,能印该书多少千册?
感悟新知
解:(1)设y与x之间的函数关系式为y=kx+b.将(6, 知1-练 6k b 3.1,
3.1),(8,3.6)分别代入,可得 8k b 3.6, k 0.25,
感悟新知
知1-练
7. 【中考·黄石】一食堂需要购买盒子存放食物,盒子 有A,B两种型号,单个盒子的容量和价格如表.现 有15升食物需要存放且要求每个盒子要装满,由于 A型号盒子正做促销活动:购买三个及三个以上可 一次性返还现金4元,则购买盒子所需要最少费用 为____2_9___元.
感悟新知
知识点 2 用一次函数解含图像的实际问题
第二十一章 一次函数
21.4 一次函数的应用
第1课时 建立一次函数模型 解简单应用
一次函数的应用练习题及答案
一次函数的应用练习题及答案一次函数是数学中一个非常基础且常见的函数类型,其形式为 y = ax + b。
在现实生活中,我们经常会遇到一次函数的应用场景。
本文将提供一些基于一次函数的应用练习题,并附带答案,希望能够帮助读者更好地理解一次函数的概念和应用。
练习题1:某公司的年工资总额与员工人数之间存在一次函数关系。
已知当公司的员工人数为100人时,年工资总额为500万元;当员工人数为200人时,年工资总额为800万元。
求该公司年工资总额与员工人数的一次函数表达式,并根据该函数回答以下问题:a) 当员工人数为300人时,年工资总额是多少?b) 当员工人数为0人时,年工资总额是多少?解答:设年工资总额为 y,员工人数为 x。
根据题意,我们可以列出两个方程:100a + b = 500200a + b = 800通过解这个方程组,我们可以得到 a 的值为 1.5,b 的值为 350。
因此,该公司的年工资总额与员工人数的一次函数表达式为 y = 1.5x + 350。
a) 当员工人数为 300 人时,将 x = 300 代入函数表达式中,可得年工资总额为 1.5 * 300 + 350 = 850 万元。
b) 当员工人数为 0 人时,将 x = 0 代入函数表达式中,可得年工资总额为 1.5 * 0 + 350 = 350 万元。
练习题2:某手机品牌的某款手机的售价与销量之间存在一次函数关系。
已知当该手机的销量为3000部时,售价为2000元/部;当销量为5000部时,售价为1500元/部。
求该手机的售价与销量的一次函数表达式,并根据该函数回答以下问题:a) 当销量为4000部时,售价是多少?b) 当销量为0部时,售价是多少?解答:设售价为 y,销量为 x。
根据题意,我们可以列出两个方程:3000a + b = 20005000a + b = 1500通过解这个方程组,我们可以得到 a 的值为 -0.1,b 的值为 500。
八年级数学下第二十一章一次函数21.4一次函数的应用21.4.2建立一次函数模型解双函数应用
感悟新知
3 某工厂有甲、乙两个净化水池,容积都是480 m3.注 知2-练 满乙池的水得到净化可以使用时,甲池未净化的水已 有192 m3.此时,乙池以10 m3/h的速度将水放出使用, 而甲池仍以8 m3/h的速度注水.设乙池放水为x h 时, 甲、乙两池中的水量用y m3表示.
(1)分别写出甲、乙两池中的水量y关于x的函数关系式及 自变量x的取值范围,并在同一直角坐标系中画出这 两个函数的图像.
A
14
20
B
10
8
感悟新知
(1)设从甲仓库运送到A港口的物资为x吨,求总费用y( 知2-讲 元)与x(吨)之间的函数关系式,并写出x的取值范围.
(2)求出最低总费用,并说明总费用最低时的调配方案.
导引:(1)第一步,先用含x的式子表示出从甲仓库运往B港口的物资的 吨数,以及从乙仓库运往A、B两港口的物资吨数;第二步, 根据运输的总费用等于四条运输路线的费用总和,便可求出总 费用y(元)与x(吨)之间的函数关系式;第三步,根据问题的实 际意义列出不等式组,即可求得x的取值范围. (2)根据一次函数的增减性及自变量的取值范围,即可确定总费 用最低时的物资调配方案和最低总费用.
知1-练
感悟新知
3. 【中考·葫芦岛】甲、乙两车从A城出发前往B城, 在整个行驶过程中,汽车离开A城的距离y(km)与 行驶时间t(h)的函数图像如图所示,下列说法正确 的有( D )
①甲车的速度为50 km/h ②乙车用了3 h到达B城 ③甲车出发4 h时,乙车追上甲车 ④乙车出发后经过1 h或3 h两车相距50 km A.1个 B.2个 C.3个 D.4个
第二十一章 一次函数
21.4 一次函数的应用
第2课时 建立一次函数模型 解双函数应用
初中数学一次函数及其应用2含答案
一次函数及其应用2一.选择题(共33小题)1.一次函数图象与y轴交于点(0,3),图象经过第四象限,下列函数解析式中符合题意的是()A.y=2x﹣3B.y=2x+3C.y=﹣2x﹣3D.y=﹣2x+3 2.对于函数y=﹣x+3,下列结论正确的是()A.当x>4时,y<0B.它的图象经过第一、二、三象限C.它的图象必经过点(﹣1,3)D.y的值随x值的增大而增大3.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.4.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x>O B.x>﹣1C.x<0D.x>25.把直线y=kx向上平移3个单位,经过点(1,5),则k值为()A.﹣1B.2C.3D.56.将直线y=﹣2x+1向上平移2个单位长度,所得到的直线解析式为()A.y=2x+1B.y=﹣2x﹣1C.y=2x+3D.y=﹣2x+37.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)8.一次函数y=(m+2)x﹣m+1,若y随x的增大而减小,且该函数的图象与x轴交点在原点右侧,则m的取值范围是()A.m>﹣2B.m<﹣2C.﹣2<m<1D.m<19.若一次函数y=(a﹣3)x﹣a的图象经过第二、三、四象限,则a的取值范围是()A.a≠3B.a>0C.a<3D.0<a<310.把一次函数y=2x+1的图象向下平移1个单位后得到一个新图象,则新图象所表示的函数的解析式是()A.y=2x﹣1B.y=2x+2C.y=2x D.y=2x﹣311.将直线L1:y=2x﹣2沿y轴向上平移4个单位的到L2,则L1与L2的距离为()A.B.C.D.12.已知(﹣1,y1),(1,y2)是直线y=﹣x+3上的两点,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定13.A点(﹣1,m)和点(0.5,n)是直线y=(k﹣1)x+b(0<k<1)上的两个点,则m,n关系为()A.m>n B.m≥n C.m≤n D.m<n14.甲、乙两辆塑料汽车同时沿直线轨道AC起作同方向的匀速运动,甲乙同时分别A,B 出发,沿轨道到达C处,已知甲的速度始终是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为S1,S2,S1,S2与t的函数关系如图,当两车的距离小于10米时,信号会产生相互干扰,那么t是下列哪个值时两车的信号在产生相互干扰()A.B.C.D.15.甲乙两人在同一条笔直的公路上步行从A地去往B地.已知甲、乙两人保持各自的速度匀速步行,且甲先出发,甲乙两人的距离y(千米)与甲步行的时间t(小时)的函数关系图象如图所示,下列说法:①乙的速度为7千米/时;②乙到终点时甲、乙相距8千米;③当乙追上甲时,两人距A地21千米;④A、B两地距离为27千米.其中错误的个数为()A.1个B.2个C.3个D.4个16.小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16min回到家中,设小明出发第tmin时的速度为vm/min,离家的距离为sm,v与t之间的函数关系如图所示,下列说法错误的是()A.小明出发第2分钟时离家200mB.跑步过程中,小明离家的最远距离为780mC.当2<t≤5时,s与t之间的函数表达式为s=160t﹣120D.小明出发第5分钟时,开始按原路返回17.在某次物理实验课上,小明同学测得在弹簧的弹性限度内弹簧的长度y与物体质量x的关系如下表,则y与x的关系式是()x/g0204060……y/cm10111213……A.y=x B.y=0.1x+10C.y=0.05x+10D.y=0.2x+10 18.甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的.施工时间/天123456789累计完成施工量/米3570105140160215270325380下列说法错误的是()A.甲队每天修路20米B.乙队第一天修路15米C.乙队技术改进后每天修路35米D.前七天甲,乙两队修路长度相等19.点(﹣2,6)在正比例函数y=kx图象上,下列各点在此函数图象上的为()A.(3,1)B.(﹣3,1)C.(1,3)D.(﹣1,3)20.直线不经过点()A.(﹣2,3)B.(0,0)C.(3,﹣2)D.(﹣3,2)21.已知一次函数y=3x+2上有两点M(x1,y1),N(x2,y2),若x1>x2,则y1、y2的关系是()A.y1>y2B.y1=y2C.y1<y2D.无法判断22.将直线y=2x经过平移可得到直线y=2(x+3)+4,平移方法正确的是()A.先向右平移3个单位,再向上平移4个单位B.先向右平移3个单位,再向下平移4个单位C.先向左平移3个单位,再向上平移4个单位D.先向左平移3个单位,再向下平移4个单位23.已知点(k,b)为第二象限内的点,则一次函数y=﹣kx+b的图象大致是()A.B.C.D.24.已知一次函数的函数表达式为y=kx+b,若k+b=﹣6,kb=5,则一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限25.已知点A(5,y1)和点B(4,y2)都在直线y=﹣7x+b上,则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.不能确定26.一次函数y=mx+n的图象如图所示,则下面结论正确的是()A.m<0,n>0B.m>0,n<0C.m<0,n<0D.m>0,n>0 27.已知一次函数y=x+b不过第二象限,则b的取值范围是()A.b<0B.b>0C.b≤0D.b≥028.若a、b为实数,且,则直线y=ax+b不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限29.将直线y=5x﹣1平移后,得到直线y=5x+7,则原直线()A.沿y轴向上平移了8个单位B.沿y轴向下平移了8个单位C.沿x轴向左平移了8个单位D.沿x轴向右平移了8个单位30.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶.已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需()分钟到达终点B.A.78B.76C.16D.1231.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x (min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②甲行走的速度是乙的1.5倍;③b=960;④a=34.以上结论正确的有()A.①④B.①②③C.①③④D.①②④32.一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)与放水时间t(分)有如下关系:放水时间(分)1234…水池中水量(m)38363432…下列结论中正确的是()A.y随t的增加而增大B.放水时间为15分钟时,水池中水量为8m3C.每分钟的放水量是2m3D.y与t之间的关系式为y=38﹣2t33.一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)与放水时间t(分)有如下关系:放水时间(分)1234…水池中水量38363432…(m3)下列结论中正确的是()A.y随t的增加而增大B.放水时间为15分钟时,水池中水量为8m3C.每分钟的放水量是2m3D.y与t之间的关系式为y=40t二.填空题(共7小题)34.正比例函数y=kx(k≠0)经过点(2,1),那么y随着x的增大而_____.(填“增大”或“减小”)35.把直线y=2x﹣1向上平移2个单位再向左平移3个单位,所得直线解析式为_____.36.在一次函数y=kx﹣2x+2中,y随x的增大而增大,则k的取值范围为_____37.直线y=(3m﹣1)x﹣m,函数y随x的增大而增大,且图象经过一,三,四象限,则m的取值范围是_____.38.若(m,n)在函数y=3x﹣7的图象上,3m﹣n的值为_____.39.若y与x的函数关系式为y=2x﹣2,当x=2时,y的值为_____.40.某汽车生产厂对其生产的A型汽车进行油耗试验:匀速行驶的汽车在行驶过程中,油箱的剩余油量y(升)与行驶时间(小时)之间的关系如下表;t(小时)0123…y(升)100928476…由表格中y与t的关系可知,当汽车行驶_____小时,油箱的剩余油量为28升.三.解答题(共10小题)41.已知函数y=(m﹣2)是y关于x的正比例函数.(1)求m的值;(2)求出该正比例函数图象向右平移一个单位所得到的函数解析式.42.已知一次函数y=(2m+1)x+3﹣m(1)若y随x的增大而减小,求m的取值范围;(2)若图象经过第一、二、三象限,求m的取值范围.43.一辆快递车从长春出发,走高速公路,途经伊通,前往靖宇镇送快递,到达后卸货和休息共用1h,然后开车按原速原路返回长春.这辆快递车在长春到伊通、伊通到靖宇的路段上分别保持匀速前进,这辆快递车距离长春的路程y(km)与它行驶的时间x(h)之间的函数图象如图所示.(1)快递车从伊通到长春的速度是_____km/h,往返长春和靖宇两地一共用时_____h.(2)当这辆快递车在靖宇到伊通的路段上行驶时,求y与x之间的函数关系式,并写出自变量x的取值范围.(3)如果这辆快递车两次经过同一个服务区的时间间隔为4h,直接写出这个服务区距离伊通的路程.44.如图,A(0,2),M(4,3),N(5,6),动点P从点A出发,沿y轴以每秒1个单位速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时、点M关于l的对称点落在坐标轴上.45.甲、乙两家采摘园的圣女果品质相同,售价也相同,节日期间,两家均推出优惠方案,甲:游客进园需购买60元门票,采摘的打六折;乙:游客进园不需购买门票,采摘超过一定数量后,超过部分打折,设某游客打算采摘x千克,在甲、乙采摘园所需总费用为y1、y2元,y1、y2与x之间的函数关系的图象如图所示.(1)分别求出y1、y2与x之间的函数关系式;(2)求出图中点A、B的坐标;(3)若该游客打算采摘10kg圣女果,根据函数图象,直接写出该游客选择哪个采摘园更合算.46.如图①,某容器由A、B、C三个长方体组成,其中A、B、C的底面积分别为25cm2、10cm2、5cm2,整个容器容积是长方体C的容积的4倍(容器各面的厚度均忽略不计),现以速度v(单位:cm3/s)均匀地向容器内注水,直至注满为止.图②是注水全过程中容器内的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.(1)在注水过程中,注满A所用的时间为_____s,再注满B又用了_____s.(2)求A的高度h A及注水的速度V t.(3)求注满容器所需时间及容器的高度47.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过部分的种子的价格打8折.(1)填写下表购买种子数量/千克0.51 1.52 2.53 3.54…付款金额/元________________________(2)写出付款金额y(元)与购买数量x(千克)之间的函数关系式,并画出图象.48.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达日的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=_____分钟时甲乙两人相遇,乙的速度为_____米/分钟;(2)求点A的坐标.49.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地的距离是_____千米;(2)两车行驶多长时间相距300千米?(3)求出两车相遇后y与x之间的函数关系式.50.如图所示OA、BA分别表示甲、乙两名学生在同一直线上沿相同方向的运动过程中,路程S(米)与时间t(秒)的函数关系图象,试根据图象回答下列问题.(1)出发时,乙在甲前面多少米处?(2)在什么时间范围内甲走在乙的后面?在什么时间他们相遇?在什么时间内甲走在乙的前面?一次函数及其应用2参考答案与试题解析一.选择题(共33小题)1.解:设一次函数表达式为:y=kx+b=kx+3,b=3,图象经过第四象限,则k<0,故选:D.2.解:A.当x>4时,y<0,符合题意;B.它的图象经过第一、二、四象限,不符合题意;C.它的图象必经过点(﹣1,4),不符合题意;D.y的值随x值的增大而减小,不符合题意;故选:A.3.解:∵函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴﹣b>0∴函数y=﹣bx+k的图象经过第一、二、三象限.故选:A.4.解:由图象可得,当y>0时,x的取值范围是x>﹣1,故选:B.5.解:直线y=kx(k≠0)的图象向上平移3个单位长度后的解析式为y=kx+3,将点(1,5)代入y=kx+3,得:5=k+3,∴k=2,∴平移后直线解析式为y=2x+3.故选:B.6.解:由“上加下减”的原则可知,把直线y=﹣2x+1上平移2个单位长度后所得直线的解析式为:y=﹣2x+12,即y=﹣2x+3故选:D.7.解:令y=0,则2﹣x=0,解得x=2,所以一次函数y=2﹣x与x轴的交点坐标是(2,0),故选:C.8.解:∵y随x的增大而减小,∴m+2<0,解得m<﹣2;又该函数的图象与x轴交点在原点右侧,所以图象过一、二、四象限,直线与y轴交点在正半轴,故﹣m+1>0.解得m<1.∴m的取值范围是m<﹣2.故选:B.9.解:∵一次函数y=(a﹣3)x﹣a的图象经过第二、三、四象限,∴,解得:0<a<3.故选:D.10.解:由“上加下减”的原则可知,把一次函数y=2x+1的图象向下平移1个单位后所得直线的解析式为:y=2x+1﹣1,即y=2x.故选:C.11.解:∵将直线L1:y=2x﹣2沿y轴向上平移4个单位的到L2,∴L2的解析式为:y=2x+2,∴L2:y=2x+2与y轴交于(0,2),如图,∵y=2x+2与x轴交于B(﹣1,0),与y轴交于A(0,2),y=2x﹣2与x轴交于F(1,0),与y轴交于E(0,﹣2),∴OB=OF,过O作OC⊥AB于C,反向延长OC交EF于D,∵AB∥EF,∴CD⊥EF,∴∠OCB=∠ODF=90°,∵∠BOC=∠DOF,∴△OBC≌△OFD,∴OC=OD,∵OA=2,OB=1,∴AB=,∴OC==,∴CD=,∴L1与L2的距离为,故选:D.12.解:∵k=﹣1<0,∴函数y随x增大而减小,∵﹣1<1,∴y1>y2.故选:A.13.解:∵0<k<1,∴直线y=(k﹣1)x+b中,k﹣1<0,∴y随x的增大而减小,∵﹣1<0.5,∴m>n.故选:A.14.解:乙的速度v2=120÷3=40(米/分),甲的速度v甲=40×1.5=60米/分.所以a==1分.设函数解析式为S1=kt+b,0≤t≤1时,把(0,60)和(1,0)代入得S1=﹣60t+60,1<t≤3时,把(1,0)和(3,120)代入得S1=60t﹣60;S2=40t,当0≤t<1时,S2+S1<10,即﹣60t+60+40t<10,解得t>2.5,因为0≤t<1,所以当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2﹣d1<10,即40t﹣(60t﹣60)<10,所以t>2.5,当2.5<t≤3时,两遥控车的信号会产生相互干扰.∵,∴时两车的信号在产生相互干扰.故选:C.15.解:①由题意,得甲的速度为:12÷4=3千米/时;设乙的速度为a千米/时,由题意,得(7﹣4)a=3×7,解得:a=7.即乙的速度为7千米/时,故①正确;②乙到终点时甲、乙相距的距离为:(9﹣4)×7﹣9×3=8千米,故②正确;③当乙追上甲时,两人距A地距离为:7×3=21千米.故③正确;④A,B两地距离为:7×(9﹣4)=35千米,故④错误.综上所述:错误的只有④.故选:A.16.解:由图象可得,小明出发第2分钟时离家:100×2=200(m),故选项A正确;跑步过程中,小明离家的最远距离为:[100×2+160×(5﹣2)+80×(16﹣5)]÷2=780(m),故选项B正确;当2<t≤5时,s与t之间的函数表达式为s=100×2+(t﹣2)×160=160t﹣120,故选项C正确;小明出发5分钟时,离家的距离为:160×5﹣120=680<780,故此时小明没有达到离家的最远距离,没有按原路返回,还要继续向前走,故选项D错误;故选:D.17.解:在弹簧的弹性限度内弹簧的长度y与物体质量x的关系为一次函数关系,设y与x的关系式为y=kx+b,把,代入,可得,解得,∴y与x的关系式为y=0.05x+10,故选:C.18.解:由题意可得,甲队每天修路:160﹣140=20(米),故选项A正确;乙队第一天修路:35﹣20=15(米),故选项B正确;乙队技术改进后每天修路:215﹣160﹣20=35(米),故选项C正确;前7天,甲队修路:20×7=140米,乙队修路:270﹣140=130米,故选项D错误;故选:D.19.解:将点(﹣2,6)代入函数表达式:y=kx得:6=﹣2k,解得:k=﹣3,故函数的表达式为:y=﹣3x,当x=1时,y=﹣3,当x=3时,y=﹣9,当x=﹣3时,y=9,当x=﹣1时,y=3,故选:D.20.解:A、当x=﹣2时,y=﹣×(﹣2)=≠3,故直线不经过点(﹣2,3);B、当x=0时,y=﹣×0=0,故直线经过点(0,0);C、当x=3时,y=﹣×3=﹣2,故直线经过点(3,﹣2);D、当x=﹣3时,y=﹣×(﹣3)=2,故直线经过点(﹣3,2).故选:A.21.解:k=3>0,故函数y随x的增大而增大,∵若x1>x2,则y1>y2,故选:A.22.解:将直线y=2x先向左平移3个单位,再向上平移4个单位,得到直线的解析式为y =2(x+3)+4,故选:C.23.解:∵点(k,b)为第二象限内的点,∴k<0,b>0,∴﹣k>0.∴一次函数y=﹣kx+b的图象经过第一、二、三象限,观察选项,C选项符合题意.故选:C.24.解:∵k+b=﹣6<0,kb=5>0,∴k<0,b<0,∴一次函数y=kx+b的图象经过第二、三、四象限,即一次函数的图象不经过第一象限,故选:A.25.解:∵﹣7<0,∴y随x的增大而减小,∵5>4,则y1<y2,故选:C.26.解:如图,∵该直线经过第二、四象限,∴m<0.又∵该直线与y轴交于正半轴,∴n>0.综上所述m<0,n>0.故选:A.27.解:一次函数y=x+b的图象不经过第二象限,则可能是经过一三象限或一三四象限,经过一三象限时,b=0;经过一三四象限时,b<0.故b≤0,故选:C.28.解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.29.解:∵将直线y=5x﹣1平移后,得到直线y=5x+7,而7﹣(﹣1)=8,∴原直线沿y轴向上平移了8个单位,故选:A.30.解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得10x+16×=16,解得x=千米/分钟,相遇后乙到达A站还需(16×)÷=2分钟,相遇后甲到达B站还需(10×)÷80分钟,当乙到达终点A时,甲还需80﹣2=78分钟到达终点B,故选:A.31.解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②错误;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故结论正确的有①④.故选:A.32.解:由表格可得,y随t的增加而减小,故选项A错误,放水时间为15分钟时,水池中水量为:40﹣(40﹣38)÷1×15=10m3,故选项B错误,每分钟的放水量是40﹣38=2m3,故选项C正确,y与t之间的关系式为y=40﹣(40﹣38)÷1×t=40﹣2t,故选项D错误,故选:C.33.解:设y与t之间的函数关系式为y=kt+b,将(1,38)、(2,36)代入y=kt+b,,解得:,∴y与t之间的函数关系式为y=﹣2t+40,D选项错误;∵﹣2<0,∴y随t的增大而减小,A选项错误;当t=15时,y=﹣2×15+40=10,∴放水时间为15分钟时,水池中水量为10m3,B选项错误;∵k=﹣2,∴每分钟的放水量是2m3,C选项正确.故选:C.二.填空题(共7小题)34.解:∵点(2,1)在正比例函数y=kx(k≠0)的图象上,∴k=,故y=x,则y随x的增大而增大.故答案为:增大.35.解:把直线y=2x﹣1向上平移2个单位再向左平移3个单位,所得直线解析式为y=2(x+3)﹣1+2=2x+7.故答案为:y=2x+7.36.解:∵一次函数y=kx﹣2x+2中,y随x的增大而增大,∴k﹣2>0,解得k>2.故答案为:k>2.37.解:根据题意可得:3m﹣1>0,﹣m<0,解得:m>,故答案为:m>,38.解:将点(m,n)坐标代入y=3x﹣7得:n=3m﹣7,即:3m﹣n=7,故答案为:7.39.解:把x=2代入y=2x﹣2,得y=2×2﹣2=2,故答案为2.40.解:由题意可得:y=100﹣8t,当y=28时,28=100﹣8t解得:t=9.故答案为:9.三.解答题(共10小题)41.解:(1)∵函数y=(m﹣2)是y关于x的正比例函数.∴m2﹣3=1,m﹣2≠0,解得:m=﹣2.(2)正比例函数y=﹣2x的图象向右平移一个单位后所得直线的解析式是:y=﹣2(x﹣1)=﹣2x+2,42.解:(1)由2m+1<0,可得m<﹣,∴当m<﹣时,y随着x的增大而减小;(2)由,可得﹣<m<3,∴当﹣<m<3时,函数图象经过第一、二、三象限.43.解:(1)快递车从伊通到长春的速度是:66÷0.6=110km/h;往返长春和靖宇两地一共用时间为:2.6×2+1=6.2小时;故答案为:110;6.2;(2)当这辆快递车在靖宇到伊通的路段上行驶时,设y与x之间的函数关系式为y=kx+b,由点A(3.6,246),B(5.6,66)得,解得,∴y=﹣90x+570(3.6≤x≤5.6);(3)(246﹣66)÷(2.6﹣0.6)×(4﹣1)×=135(km).246﹣135﹣66=45(km).答:这个服务区距离伊通的路程为45km.44.解:(1)当t=3时,点P的坐标为(0,5),则直线l的表达式为:y=﹣x+5;(2)当直线l过点M时,将点M的坐标代入直线l的表达式:y=﹣x+b得:3=﹣4+b,解得:b=7,t=5;当直线l过点N时,同理可得:t=9,故t的取值范围为:5<t<9;(3)①当点M′落在x轴上,如图,当点M关于l的对称点E′落在坐标轴上时,直线M′M交l于点H,设直线l交x轴于点G,则M′M⊥l,∠HM′G=45°=∠M′GH=∠HGM,即MG⊥x轴,故M′G=MG=3,则点G(4,0),则t=2;②当点M′落在y轴上,同理可得:t=1,故t=1或2.45.解:(1)由图得单价为300÷10=30(元),据题意,得y1=30×0.6x+60=18x+60当0≤x<10时,y2=30x,当x≥10时由题意可设y2=kx+b,将(10,300)和(20,450)分别代入y2=kx+b中,得,解得,故y2与x之间的函数关系式为y2=;(2)联立y2=18x+60,y2=30x,得,解得:,故A(5,150).联立y1=18x+60,y2=15x+150x,得解得,故B(30,600).(3)由(2)结合图象得,当5<x<30时,甲采摘园所需总费用较少.46.解:(1)由图象可知注满A所用的时间为10s,注满B又用了18﹣10=9s;故答案为10,8;(2)由A注满时水的体积和容器容积相等,可得10v t=25h A,∴v t=2.5h A,B注满时水的体积和容器容积相等,可得8v t=10(12﹣h A),∴h A=4,∴v t=10,∴A的高度为4cm,注水的速度为10cm3/s;(3)由整个容器容积是长方体C的容积的4倍,有25h A+10(12﹣h A)+5h C=4×5h C,∴h C=12,∴容器的高度为4+8+12=24cm;注满C容器所需时间为5×12÷10=6s,∴注满整个容器所需时间为18+6=24s.47.解:(1)由题意可得,当购买种子0.5千克时,需要付款:0.5×5=2.5(元),当购买种子1千克时,需要付款:1×5=5(元),当购买种子1.5千克时,需要付款:1.5×5=7.5(元),当购买种子2千克时,需要付款:2×5=10(元),当购买种子2.5千克时,需要付款:2×5+(2.5﹣2)×5×0.8=12(元),当购买种子3千克时,需要付款:2×5+(3﹣2)×5×0.8=14(元),当购买种子3.5千克时,需要付款:2×5+(3.5﹣2)×5×0.8=16(元),当购买种子4千克时,需要付款:2×5+(4﹣2)×5×0.8=18(元),故答案为:2.5,5,7.5,10,12,14,16,18;(2)当0≤x≤2时,y=5x,当x>2时,y=5×2+(x﹣2)×5×0.8=4x+2,即y=,函数图象如右图所示.48.解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40米/分钟,甲、乙两人的速度和为2400÷24=100米/分钟,乙的速度为:米/分钟.故答案为24,60;(2)乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).49.解:(1)由图象得:甲乙两地相距600千米;故答案为:600;(2)由题意得:慢车总用时10小时,∴慢车速度为(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时;设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2或6小时时,两车相距300千米;(3)由图象得:(小时),60×400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为y=.50.解:(1)由图象可得,出发时,乙在甲前面12米处;(2)由图象可得,甲的速度为:12÷1.5=8(米/秒),则当甲行驶64米时,用的时间为:64÷8=8(秒),由图可知,当在第8秒时,两人相遇,故当0≤t<8时,甲走在乙的后面,当t=8秒时,他们相遇,当t>8时,甲走在乙的前面.。
一次函数的应用+练习
一次函数的应用一、知识点: 1、一次函数的应用:用一次函数解决实际问题的步骤:(1)认真分析实际问题中变量之间的关系;(2)若具有一次函数关系,则建立一次函数的关系式;(3)利用一次函数的有关知识解题。
在一些具体生活问题中,常常数据较多,反映的内容也很复杂,如何把众多的信息组织起来是解题的核心,要认真读题,分析题意,理顺关系,寻求解题途径。
在实际生活问题中,如何应用一次函数知识解题,关键是建立一次函数关系式,然后再根据一次函数的性质,综合方程知识求解。
在一次函数应用的过程中,要注意结合实际,确定自变量的取值范围,求出对应的函数值时,也要结合实际舍去不符合题意的部分。
2、二元一次方程组的图象解法 ⑴一次函数与二元一次方程的关系:一般地,一次函数y=kx+b 图象上任意一点的坐标都是二元一次方程kx -y+b=0的解;以二元一次方程kx -y+b=0的解为坐标的点都在一次函数y=kx+b 的图象上。
⑵两个一次函数与二元一次方程组的解的关系:一般地,如果两个一次函数的图象有一个交点,那么交点的坐标就是相应的二元一次方程组的解。
所以解二元一次方程组除了代入法和加减法外还可以用图像法。
用图象法解二元一次方程组的步骤如下: ①把二元一次方程化成一次函数的形式;②在直角坐标系中画出两个一次函数的图像,并标出交点; ③交点坐标就是方程组的解。
二、举例:例1:填空题和选择题:1、方程组⎩⎨⎧+==-3214x y y x 的解是 ,则一次函数y=4x -1与y=2x+3的图象交点为 。
2、方程2x -y=2的解有 个,用x 表示y 为 ,此时y 是x 的 函数。
3、函数y=-2x+1与y=3x -9的图象交点坐标为 ,这对数是方程组 的解。
4、把3x+2y=11改为用含x 的代数式表示y ,5、函数y=3x -4与函数y=3232x 的图象交点坐标是6、已知A 、B 两地相距80km ,甲、乙两人沿一条公路从A 地出发到B 地,甲骑摩托车,乙骑电动车,MC 、OD 分别表示甲、乙两人离开A 地的距离s (km )与时间t (h )的函数关系式图象。
八年级数学下册第二十一章一次函数.一次函数的应用..一次函数的应用二课后练习新版冀教版
一次函数的应用1.(2017·上海)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案. 甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示. 乙公司方案:绿化面积不超过1 000平方米时,每月收取费用5 500元;绿化面积超过1 000平方米时,每月在收取5 500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y 与x 的函数表达式(不要求写出自变量的取值范围);(2)如果某学校目前的绿化面积是1 200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.解:(1)设y =kx +b ,则有⎩⎪⎨⎪⎧ b =400,100k +b =900,解得⎩⎪⎨⎪⎧ k =5,b =400,∴y =5x +400.(2)绿化面积是1 200平方米时,甲公司的费用为6 400元,乙公司的费用为5 500+4×200=6 300(元),∵6 300<6 400,∴选择乙公司的服务,每月的绿化养护费用较少.2.甲、乙两台机器共同加工一批零件,在加工过程中两台机器均改变了一次工作效率.从工作开始到加工完这批零件两台机器恰好同时工作6小时.甲、乙两台机器各自加工的零件个数y (个)与加工时间x (时)之间的函数图像分别为折线OA —AB 与折线OC —CD (如图所示).(1)求甲机器改变工作效率前每小时加工零件的个数;(2)求乙机器改变工作效率后y 与x 之间的函数关系式;(3)求这批零件的总个数.解:(1)80÷4=20(个),甲机器改变工作效率前每小时加工零件的个数为20个.(2)设关系式为y 乙=kx +b (k ≠0),将点(2,80),(5,110)代入得⎩⎪⎨⎪⎧ 2k +b =80,5k +b =110,解得⎩⎪⎨⎪⎧ k =10,b =60,∴y 乙=10x +60(2≤x ≤6),∴乙机器改变工作效率后y 与x 之间的函数关系式为y 乙=10x +60(2≤x ≤6).(3)设甲机器改变工作效率后y 与x 的关系式为y 甲=mx +n (m ≠0),将点(4,80),(5,110)代入得⎩⎪⎨⎪⎧ 4m +n =80,5m +n =110,解得⎩⎪⎨⎪⎧ m =30,n =-40,∴y 甲=30x -40(4≤x ≤6),当x =6时,y 甲=30×6-40=140,y 乙=10×6+60=120,140+120=260(个),∴这批零件的总个数是260个.3.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天后全部销售完.小明对销售情况进行了跟踪记录,并将记录情况绘成图像,日销售量y (单位:千克)与上市时间x (单位:天)的函数关系如图①所示,樱桃价格z (单位:元/千克)与上市时间x (单位:天)的函数关系如图②所示.(1)观察图像,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y (单位:千克)与上市时间x (单位:天)的函数关系式;(3)试比较第10天与第12天的销售金额哪天多.解:(1)120千克.(2)当0≤x ≤12时,设日销售量与上市时间的函数关系式为y =k 1x (k 1≠0).∵点(12,120)在y =k 1x (k 1≠0)的图像上,∴k 1=10.∴函数关系式为y =10x (0≤x ≤12).当12<x ≤20时,设日销售量与上市时间的函数关系式为y =k 2x +b (k 2≠0).∵点(12,120),(20,0)在y =k 2x +b (k 2≠0)的图像上,∴⎩⎪⎨⎪⎧ 12k 2+b =120,20k 2+b =0,解得⎩⎪⎨⎪⎧ k 2=-15,b =300.∴函数关系式为y =-15x +300(12<x ≤20).综上,y =⎩⎪⎨⎪⎧ 10x 0≤x ≤12,-15x +30012<x ≤20.(3)∵第10天和第12天在第5天和第15天之间,∴当5≤x ≤15时,设樱桃价格与上市时间的函数关系式为z =k 3x +b 1(k 3≠0). ∵点(5,32),(15,12)在z =k 3x +b 1(k 3≠0)的图像上,∴⎩⎪⎨⎪⎧ 5k 3+b 1=32,15k 3+b 1=12,解得⎩⎪⎨⎪⎧ k 3=-2,b 1=42,∴函数关系式为z =-2x +42(5≤x ≤15).当x =10时,y =10×10=100,z =-2×10+42=22,销售金额为100×22=2 200(元);当x =12时,y =120,z =-2×12+42=18,销售金额为120×18=2 160(元).∵2 200>2 160,∴第10天的销售金额多.。
《21.4一次函数的应用》作业设计方案-初中数学冀教版12八年级下册
《一次函数的应用》作业设计方案(第一课时)一、作业目标本作业旨在巩固学生对一次函数概念的理解,掌握一次函数图像与性质,并能够运用一次函数解决简单的实际问题。
通过本作业的学习,学生应能够独立完成一次函数的解析与运用,提高数学应用能力和逻辑思维能力。
二、作业内容1. 知识点回顾:复习一次函数的概念、性质及图像特点,包括正比例函数和一次函数的定义、表达式、图像及增减性。
2. 基础练习:选取典型例题,要求学生通过代入法、图解法等解决一次函数的基本问题,如根据已知条件求解函数表达式,计算函数值等。
3. 应用实践:设计实际问题场景,要求学生运用一次函数知识解决生活中的实际问题,如速度与时间的关系、距离与耗资的预算等。
学生需根据问题背景建立一次函数模型,并求解。
4. 拓展延伸:引导学生探索一次函数与其他数学知识的联系,如与方程、不等式等的关系,拓宽学生视野,培养数学兴趣。
三、作业要求1. 学生需在规定时间内独立完成作业,并保证答案的准确性和完整性。
2. 对于基础练习部分,学生需熟练掌握各种解题方法,确保计算无误。
3. 在应用实践部分,学生需认真分析问题背景,准确建立一次函数模型,并给出清晰的解题步骤和结果。
4. 拓展延伸部分,学生可自主探索,记录下自己的思考过程和发现,鼓励创新思维。
5. 作业需字迹工整,格式规范,体现出良好的学习习惯。
四、作业评价1. 教师将根据学生的作业完成情况,给予相应的评分和评价。
2. 对于基础练习部分,教师将重点评价学生的计算能力和解题方法的掌握情况。
3. 在应用实践部分,教师将评价学生问题分析的能力、函数模型的建立及解题步骤的合理性。
4. 拓展延伸部分,教师将关注学生的创新思维和自主探索能力,给予鼓励和指导。
五、作业反馈1. 教师将对每位学生的作业进行仔细批改,指出错误并给出修改建议。
2. 对于共性问题,教师将在课堂上进行讲解和示范,帮助学生纠正错误。
3. 鼓励学生之间互相交流学习,分享解题经验和思路。
九年级数学下册 第五章 一次函数(一次函数的应用(2))同步练习 试题
轧东卡州北占业市传业学校第五章一次函数<一次
函数的应用〔2〕>同步练习 教 "
2. 为了改善生态环境,某政府绿化荒地,方案第一年先植树万亩,以后每年植树1万亩,结果植树总数是
3.处。
4.如图是甲、乙两个施工队修筑某段高速公路的工程进展图,从图中可见, 工作效率更高,其中乙队的工作效率为 。
1题 3题 4题
5.某厂方案生产A 、B 两种产品共50件。
A 产品每件可获利润700元;B 产品每件可获利润1200元。
设生产两种产品的获利总额为y 〔元〕,写出y 与生产A 产品的件数x 之间的函数关系式。
6.某技工培训中心有合格钳工20名、车工30名。
现将这50名技工派往A 、B 两地工作,
两地的月工资情况如下:
〔1〕假设派往A 地x 名钳工,余下的技工全部派往B 地,试写出这50名技工的月工资总额
Y 〔元〕与x 之间的函数关系式,并写出x 的取值范围;
〔2〕假设派往A 地x 名车工,余下的技工全部派往B 地,试写出这50名技工的月工资总额
Y〔元〕与x之间的函数关系式,并写出x的取值范围;
7.某推出电脑上网包月制,每月收费y〔元〕与上网时间x〔小时〕的函数关系如图所示,其中线段BA//x轴,AC是射线。
〔1〕求x≥30时,y与x之间的函数关系式;
〔2〕假设某人4月份上网20小时,他应付费多少元?
〔3〕假设某人5月份上网费为75元,那么他在该月份上网多少时间?。
《一次函数的应用》课后练习-02
《一次函数的应用》课后练习
1.如图的直线ABC为甲地向乙地打长途电话
所需付的话费y(元)与通话时间t(分钟)之Array间的函数关系的图象,当t≥3时,该图象的解
析式为;从图象可知,通话2分钟需
付电话费为元;通话7分钟需付电话
费元.
2、某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费。
(8分)(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式
①当用水量小于等于3000吨;②当用水量大于3000
吨。
(2)某月该单位用水3200吨,水费是元;若用水2800吨,水费元。
(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?
3.一农民带了若干自产的土豆进城出
售,为了方便,他带了一些零钱备用,
按市场价售出一些后,又降价出售,售
出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答农民自带的零钱是元;降价前他每千克土豆的出售的价格
是元;降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,那么他一共带了千克土豆。
4、某医药研究所开发了一种新药,在试
验药效时发现,如果成人按规定剂量服用,Array那么服药后2小时时血液中含药量最高,达
每毫升6微克,接着逐步衰减,10小时血
液中含药量为每毫升3微克,每毫升血液中
含药量y微克随时间x小时主变化如图所示,当成人按规定剂是服药后,
(1)分别求出x<2和x>2时y与x的函数关系式,
(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是
有效的,那么这个有效时间是多长?。
一次函数的应用(2)
1、确定两个变量是否构成一次函 数关系常用的方法: •通过实验获得数据; •根据数据画出函数的图象; •根据图象特征,判定函数类型; •用待定系数法求函数解析式。 2、运用函数的图象解决一些实 际问题
如果成人按规定剂量服用,那么服药后2小时时血液中含
探究二
药量最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰减, 10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y
(微克)随时间x(小时)的变化如图所示,当成人按规定剂量服 药后,(1)分别求出x≤2和x≥2时,y与x之间的函数关系
式。
(1)当销售量为6吨时,销售收入= 6000元元, 销售成本= 5000 元, 利润= 1000 元。 (2)当销售量为 4吨 时,销售收入等于销售成本。 销售收入和销售成本都是4000元 y元 l1 销售收入
6000 5000
l2 销售成本
4000
3000
2000
1000
O
1
2
3
5
6
x吨
(3)当销售量 大于4吨 时,该公司赢利(收入大于成本);
小 聪
小慧
解:设经过t时,小聪与小慧离“古刹” 的路程分别为S1、S2,由题意得:S1=36t, S2=26t+10
将这两个函数解析式画在同一个直角坐标系 上,观察图象,得 ⑴两条直线S1=36t, (1,36) S2=26t+10的交点坐标为 S(km) 这说明当小聪追上小慧 时,S1=S2=36 km,即 离“古刹”36km,已超 过35km,也就是说,他 们已经过了“草甸”
y 100 90 80 70 60 50 40 30 20 10 -2 0
(m)
y
一次函数的应用(2)
一次函数的应用(2)1.为了保护学生的视力,课桌椅的高度都是按一定的关系配套设计的.研究表明:假设课桌的高度为ycm,椅子的高度(不含靠背)为xcm,则y 应是x 的一次函数,下表列出两套符合条件的课桌椅的高度. (1)请确定y 与x 的函数关系式; (2)现有一把高42.0 cm 的椅子和一张高78.2 cm 的课桌,它们是否配套?请通过计算说明理由.2.声音在空气中传播的速度y(米/秒)是气温x(℃)的一次函数,下表列出了一组不同气温时的音速:(1)求y 与x 之间的函数关系式;(2)气温x=22℃时,某人看到烟花5秒后才听到声响,那么此人与燃放的烟花所在地约距多远?3.在某地,人们发现某种蟋蟀1分钟所叫次数与当地温度之间近似为一次函数关系.下面是蟋蟀所叫次数与温度变化情况对照表: (1)根据表中数据确定该一次函数的关系式; (2)如果蟋蟀1分钟叫了63次,那么该地当时的温度约为多少摄氏度?4.已知某山区的平均气温与该山的海拔高度的关系见下表:(1)若海拔高度用x(米)表示,平均气温用y(℃)表示,试写出y与x之间的函数关系式;(2)若某种植物适宜生长在18℃~20℃(包含18℃,也包含20℃)的山区,请问该植物适宜种植在海拔为多少米的山区?5.如图,大拇指与小拇指尽量张开时,两指间的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:(1)求出h与d之间的函数关系式;(2)某人身高为196cm,一般情况下他的指距应是多少?6.如图,某种旅行帽的帽沿接有两个塑料帽带,其中一个塑料帽带上有7个等距的小圆柱体扣,另一个帽带上扎有七个等距的扣眼,下表列出的是用第一扣分别去扣不同扣眼所测得帽圈直径的有关数据(单位:cm);⑴求帽圈直径y与扣眼号数x之间的一次函数关系式;⑵小强的头围约为68.94cm,他将第一扣扣到第4号扣眼,你认为松紧合适吗?7.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?8.我市某中学要印制本校高中招生的录取通知书,有两个印刷厂前来联系制作业务.甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元六折优惠.且甲、乙两厂都规定:一次印刷数至少是500份.(1)分别求两个印刷厂收费y(元)与印刷数量x(份)的函数关系式,并求出自变量x的取值范围;(2)如何根据印刷的数量选择比较合算的方案?如果这个中学要印制2000份录取通知书,那么应选择哪个厂?需要多少费用?9.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓球每盒定价5元,现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9折优惠,某班级需购球拍4付,乒乓球若干盒(不少于4盒)(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元);在乙店购买的付款数为y乙(元),分别写出y甲、y乙与x的函数关系式。
北师大版 八年级数学上册 一次函数的应用 习题2 一课一练(含答案)
4.4 一次函数的应用习题2一、选择题(共11小题).1.甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为xkg,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元.y1,y2与x之间的函数图象如图所示,则下列说法中错误的是( )A.甲园的门票费用是60元B.草莓优惠前的销售价格是40元/kgC.乙园超过5kg后,超过的部分价格优惠是打五折D.若顾客采摘12kg草莓,那么到甲园或乙园的总费用相同2.某公司为调动职工工作积极性,向工会代言人提供了两个加薪方案,要求他从中选择:方案一:是12个月后,在年薪20000元的基础上每年提高500元(第一年年薪20000元);方案二:是6个月后,在半年薪10000元的基础上每半年提高250元(第6个月末发薪水10000元)但不管是选哪一种方案,公司都是每半年发一次工资,如果你是工会代言人,认为哪种方案对员工更有利?( )A.方案一B.方案二C.两种方案一样D.工龄短的选方案一,工龄长的选方案二3.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元) 每次游泳收费(元)A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为( )A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡4.如图,购买一种苹果所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省( )A.4元B.3元C.2元D.1元5.广宇同学以每千克1.1元的价格从批发市场购进若干千克西瓜到周谷堆市场上销售,在销售了40千克之后,余下的打七五折全部售完,销售金额y(元)与售出西瓜的千克数x(千克)之间的关系如图所示,下列结论正确的是( )A.降价后西瓜的单价为2元/千克B.广宇一共进了50千克西瓜C.售完西瓜后广字获得的总利润为44元D.降价前的单价比降价后的单价多0.6元6.某电信公司有A、B两种计费方案:月通话费用y(元)与通话时间x(分钟)的关系,如图所示,下列说法中正确的是( )A.月通话时间低于200分钟选B方案划算B.月通话时间超过300分钟且少于400分钟选A方案划算C.月通话费用为70元时,A方案比B方案的通话时间长D.月通话时间在400分钟内,B方案通话费用始终是50元7.小卖部从批发市场购进一批杨梅,在销售了部分杨梅之后,余下的每千克降价3元,直至全部售完.销售金额y元与杨梅销售量x千克之间的关系如图所示.若销售这批杨梅一共赢利220元,那么这批杨梅的进价是( )A.10元/千克B.12元/千克C.12.5元/千克D.14.4元/千克8.A,B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系.对于下列说法:①乙晚出发1小时:②乙出发3小时后追上甲;③甲的速度是6千米/小时;④乙先到达B地.其中正确的个数是( )A.4个B.3个C.2个D.1个9.我市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )A.4小时B.4.3小时C.4.4小时D.5小时10.为了鼓励居民节约用水,某市决定实行两级收费制度,水费y(元)与用水量x(吨)之间的函数关系如图所示.若每月用水量不超过20吨(含20吨),按政府优惠价收费;若每月用水量超过20吨,超过部分按市场价4元/吨收费,那么政府优惠价是( )A.2.2元/吨B.2.4元/吨C.2.6元/吨D.2.8元/吨11.超市有A,B两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A型瓶3个或以上,一次性返还现金5元,设购买A型瓶x(个),所需总费用为y(元),则下列说法不一定成立的是( )型号A B单个盒子容量(升)2 3 单价(元)56A .购买B 型瓶的个数是(5−23x )为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为y =x +30D .小张买瓶子的最少费用是28元 二、填空题12.我国很多城市水资源缺乏,为了加强居民的节水意识,某自来水公司采取分段收费标准,某市居民月交水费y (元)与用水量x (吨)之间的关系如图所示,若某户居民4月份用水20吨,则应交水费 元.13.某市出租车计费方法如图所示,x (km )表示行驶里程,y (元)表示车费,乘车行驶6公里的车费是 元.14.某校初一年级68名师生参加社会实践活动,计划租车前往,租车收费标准如下:车型大巴车(最多可坐55人) 中巴车(最多可坐39人) 小巴车(最多可坐26人)每车租金 (元∕天)900800550则租车一天的最低费用为 元.15.如图所示,是某电信公司甲、乙两种业务:每月通话费用y(元)与通话时间x(分)之间的函数关系.某企业的周经理想从两种业务中选择一种,如果周经理每个月的通话时间都在100分钟以上,那么选择种业务合算.16.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,如果班级搞一次茶话会,一次购买26千克这种苹果需元.17.某市政府大力扶持大学生创业.小甬在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数:y=﹣10x+500.根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果小甬想要每月获得的利润不低于2000元,那么他每月的成本最少需要元.(成本=进价×销售量)三、解答题18.2017年“中国移动”公司提供两种通讯收费方案供客户选择.根据以上信息,解答下列问题:(1)设通话时间为x分钟,方案一的通讯费用为y1元,方案二的通讯费用为y2元,分别求出y、y2关于x的函数表达式.1(2)请你通过计算说明如何选用通讯收费方案更合算.(3)小明的爸爸每月的通话时间约为500分钟,应选用哪种通讯收费方案.19.现有下面两种移动电话计费方式:方式一方式二月租费/(元/月) 30 0本地通话费/(元/min) 0.30 0.40(1)以x(单位:分钟)表示通话时间,y(单位:元)表示通话费用,分别就两种移动电话计费方式写出y关于x的函数解析式;(2)何时两种计费方式费用相等;(3)直接写出如何选择这两种计费方式更省钱.20.某工厂计划生产A、B两种产品共50件,已知A产品成本2000元/件,售价2300元/件;B种产品成本3000元/件,售价3500元/件,设该厂每天生产A种产品x件,两种产品全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本140000元,那么该厂生产的两种产品全部售出后最多能获利多少元?21.某单位要印刷一批宣传材料,在甲印刷厂不管一次印刷多少页,每页收费0.1元,在乙印刷厂,一次印刷页数不超过20时,每页收费0.12元;一次印刷页数超过20时,超过部分每页收费0.09元.设该单位需要印刷宣传材料的页数为x(x>20,且x为整数),在甲印刷厂实际付费为y1(元),在乙印刷厂实际付费为y2(元).(1)分别求出y1,y2与x的函数关系式.(2)你认为选择哪家印刷厂印刷这批宣传材料较好,为什么?22.福州电信公司开设了A、B两种市内移动通信业务:A种使用者每月需缴18元月租费,然后每通话1分钟,再付话费0.1元:B种使用者不缴月租费,每通话1分钟,付话费0.3元,若一个月内通话时间为x分钟,A、B两种的费用分别为y1和y2元.(1)试分别写出y1、y2与x之间的函数关系式;(2)每月通话时间为多长时,开通A种业务和B种业务费用一样.23.甲、乙两个药店销售同一种口罩,在甲药店,不论一次购买数量是多少,价格均为3元/个;在乙药店,一次性购买数量不超过100个时,价格为3.5元/个;一次性购买数量超过100个时,其中100个的价格仍为3.5元/个,超过100个的部分的价格为2.5元/个.(1)根据题意填表:一次性购买数量(个) 50 100 150甲药店花费(元) 300乙药店花费(元) 350(2)当一次性购买多少个口罩时,在乙药店购买比在甲药店购买可以节约100元?24.某图书借阅室提供两种租书方式:一种是零星租书,每册收费1元;另一种是会员租书,会员卡费用为每季度10元,租书费每册0.5元,小亮经常来租书,若每季度租书数量为x册.(1)写出零星租书方式每季度应付金额y1(元)与租书数量x(册)之间的函数关系式;(2)写出会员卡租书方式每季度应付金额y2(元)与租书数量x(册)之间的函数关系式;(3)请分析小亮选取哪种租书方式更合算?答案一、选择题1.D.2.B.3.C.4.C.5.C.6.D.7.A.8.B.9.C.10.C.11.C.二、填空题12.44.13.14.14.1450.15.甲.16.4283.17.3600.三、解答题18.(1)根据题意知,y1={40(0≤x≤50) 0.1x+40(x>50).y2=0.2x(x≥0);(2)当0≤x≤50时,y1=40>y2,选择方案二合算;当x>50时:①y1>y2,即0.1x+45>0.2x,解得x<450,选择方案二合算;②y1=y2,即0.1x+40=0.2x,解得x=400,选择两种方案一样合算;③y1<y2,即0.1x+40<0.2x,解得x>450,选择方案一合算.综上所述,当通话时间小于400分钟,选择方案二合算;当通话时间为400分钟,选择两种方案一样合算;当通话时间大于400分钟,选择方案一合算;(3)由于500>400,所以小明的爸爸选用通讯收费方案一合算.19.(1)由题意可得,方式一中y关于x的函数解析式是y=0.30x+30,方式二中y关于x的函数解析式是y=0.40x;(2)令0.30x+30=0.40x,解得,x=100,即通话100分钟时两种计费方式费用相等;(3)由(2)和表格中的数据可知,当x>100时,选择方式一更省钱,当x<100时,选择方式二更省钱,当x=100时,两种方式一样.20.(1)由题意可得,y=(2300﹣2000)x+(3500﹣3000)(50﹣x)=﹣200x+25000,即y与x的函数表达式为y=﹣200x+25000;(2)∵该厂每天最多投入成本140000元,∴2000x+3000(50﹣x)≤140000,解得,x≥10,∵y=﹣200x+25000,∴当x=10时,y取得最大值,此时y=23000,答:该厂生产的两种产品全部售出后最多能获利23000元.21.(1)由题意得,y1=0.1x,y2=20×0.12+0.09(x﹣20)=0.09x+0.6,∴y1,y2与x的函数关系式分别为y1=0.1x,y2=0.09x+0.6;(2)当x>20时,由y1<y2得,0.1x<0.09x+0.6,解得,x<60,由y1=y2得,0.1x=0.09x+0.6,解得,x=60,由y1>y2得 0.1x>0.09x+0.6,解得,x>60,∴当x=60时,甲、乙两个印刷厂收费相同,当20<x<60时,甲印刷厂费用少,当x>60时,乙印刷厂费用少.22.(1)由题意可得,y=0.1x+18(x≥0),1y=0.3x(x≥0);2(2)令0.1x+18=0.3x,解得:x=90,答:每月通话时间为90分钟时,开通A种业务和B种业务费用一样.23.(1)故答案为:150,450,175,475;(2)设购买x(x>100)个口罩时,在乙药店购买比在甲药店购买可以节约y元,根据题意得:y=3x﹣[2.5(x﹣100)+3.5×100]=0.5x﹣100,当y=100时,0.5x﹣100=100,解得x=400.答:当一次性购买400个口罩时,在乙药店购买比在甲药店购买可以节约100元.24.(1)∵零星租书每册收费1元,∴零星租书方式每季度应付金额y1(元)与租书数量x(册)之间的函数关系式为:y1=x;(2)∵在会员卡租书中,租书费每册0.5元,x册就是0.5x元,加上办卡费10元,∴会员卡租书方式每季度应付金额y2(元)与租书数量x(册)之间的函数关系式为:y2=0.5x+10;(3)当y1=y2时,x=10+0.5x,解得:x=20当y1>y2时,x>10+0.5x,解得x>20当y1<y2时,x<10+0.5x,解得x<20综上所述,当小亮每季借书少于20册时,采用零星方式租书合算;当每季租书20册时,两种方式费用一样;当每季租书多于20册时,采用会员租书的方式更合算.。
一次函数的应用(二)
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。
根据图象回答下列问题: 1)哪条线表示B到海岸的距离 与追赶时间之间的关系? (交流) 2)A、B哪个速度快?
6000
5000 4000 3000
做了本题后你有什么 体会或收获?(交流)
1、当同一直角坐标系中出 现多个函数图象时,一定 要注意对应的关系。 2、根据函数的的图象的确 定该函数的类型.
2000
1000 0 1 2 3 4 5 6
x/吨
4、做一做
我边防局接到情报,近海处有一可疑船只A正向公海 方向行使。边防局迅速派出快艇B追赶(如图(1)), 图(2)中L1、L2分别表示两船相对海岸的距离S(海 里)与追赶时间t(分)之间的关系。
一次函数的应用(二)
学习目标: 1、提高学生的读图能力,解决与两个一次函数 相关的图象信息题。 2、进一步培养学生数形结合思想,以及分析、解 决问题的能力,提高思维能力。 3、通过小组合作学习,培养学生探究意识。
重点:读懂图象,并从图象中获取已知条件解决问题。 难点:同一坐标的两个函数的联系。
1、想一想:
s/海里 9 8 7 6 5 4 3 2 1
0
海 岸
B (1)
公
L2
A
海
L1
t/分
( 2)
2
4
6
8
10
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。
一次函数的应用 练习题(带答案
一次函数的应用 题集一、一次函数与实际应用(1)(2)(3)1.某周六上午小明从家出发,乘车小时到郊外某基地参加社会实践活动.在基地活动小时后,因家里有急事,他立即按原路以千米/时的平均速度步行返回,同时爸爸开车从家出发沿同一路线接他,在离家千米处与小明相遇.接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为小时,小明离家的路程(千米)与(小时)之间的函数图象如图所示.(小时)(千米)小明去基地乘车的平均速度是 千米/时,爸爸开车的平均速度是 千米/时.求线段所表示的函数关系式,不用写出自变量的取值范围.问小明能否在中午前回到家?若能,请说明理由;若不能,请算出中午时他离家的路程.【答案】(1)(2)(3) ;.不能在前回家,此时离家的距离为千米.【解析】(1)观察图象可知:小明去基地乘车小时后离基地的距离为千米,(2)(3)因此小明去基地乘车的平均速度是千米/小时;在返回时小明以千米/时的平均速度步行,行驶千米后遇到爸爸,∵两个人同时走,小明走了小时,即爸爸也走了小时,∴他爸爸在小时内行驶了千米,故爸爸开车的平均速度应是千米/小时.设线段所表示的函数关系式为,易得,,∴,解得,∴.小明从家出发到回家一共需要时间:(小时),从经过小时已经过了,∴不能在前回家,此时离家的距离:(千米).【标注】【知识点】函数图象与实际问题(1)(2)12(3)2.,两地相距千米,甲车从地出发匀速行驶到地,乙车从地出发匀速行驶到地.乙车行驶小时后,甲车出发,两车相向而行.设行驶时间为小时(),甲、乙两车离地的距离分别为,千米,,与之间的函数关系图象如图所示,根据图象解答下列问题:小时千米图小时千米图求,与的函数关系式.乙车出发几小时后,两车相遇?相遇时,两车离地多少千米?设行驶过程中,甲、乙两车之间的距离为千米,在图的直角坐标系中,已经画出了与之间的部分函数图象.图中点的坐标为,则.求与的函数关系式,并在图中补全整个过程中与之间的函数图象.【答案】(1)(2)12(3),.乙车出发小时后两车相遇,两车相遇时,两车相距地千米.当时,,当时,.画图见解析.【解析】(1)(2)12(3)设,,由图象可知,时,,时,,∴,,∴.由图象可知,,,时,,∴,,∴.故与的关系式分别为:,.两车相遇时,甲乙两车距地距离相等,∴,∴,∴.将代入中得.故乙车出发小时后两车相遇,两车相遇时,两车相距地千米.由图可知,乙车速度为(千米/小时).过程中甲车在地,乙车在行驶.时,甲乙两车相距千米.时,甲乙两车相距(千米).∴.由图可知,甲车速度为(千米/小时).由()可知甲乙两车在时相遇.∴当时,,当时,.,故整个过程中与函数图象如下图所示:小时千米【标注】【知识点】一元一次方程的行程问题-相遇问题(1)(2)(3)3.在一条直线上依次有、、三个港口,甲、乙两船同时分别从、港口出发,沿直线匀速驶向港,最终到达港.设甲、乙两船行驶后,与港的距离分别为、,、与的函数关系如图所示.甲乙填空:、两港口间的距离为 , .求图中点的坐标.若两船的距离不超过时能够相互望见,求甲、乙两船可以相互望见时的取值范围.【答案】(1)(2)(3); .或.【解析】(1)、两港口间距离,又由于甲船行驶速度不变,(2)(3)故,则.故答案为:;.由点求得,.当时,由点,求得,.当时,,解得,.此时.所以点的坐标为.根据题意知甲、乙两船的速度分别为小时、小时,①当时,根据题意可知甲船开始出发到达港这段时间,甲乙两船的距离从逐渐缩小,两船行驶时,乙船在甲船的前方:处,所以这段时间内,两船不能相互望见;②当时,乙船在甲船的前方(直至追上).依题意,,解得,即时,甲、乙两船可以相互望见;③当时,甲船在乙船的前方依题意,,解得,即时,甲、乙两船可以相互望见;④当时,甲船已经到达港,而乙船继续行驶向甲船靠近,依题意,,解得,即,甲、乙两船可以相互望见.综上所述,当或时,甲、乙两船可以相互望见.【标注】【知识点】一次函数的依据图象解决实际问题4.某地为了鼓励市民节约用水,采取阶梯分段收费标准,共分三个梯段,吨为基本段,吨为极限段,超过吨为较高收费段,且规定每月用水超过吨时,超过的部分每吨元,居民每月应交水费(元)是用水量(吨)的函数,其图象如图所示:(1)(2)(3)吨元求出基本段每吨水费,若某用户该月用水吨,问应交水费多少元?写出与的函数解析式.若某月一用户交水量元,则该用户用水多少吨?【答案】(1)(2)(3)元..吨.【解析】(1)(2)∵用水吨交水费元,∴基本段每吨水费元,∴若某用户该月用水吨,应交水费元.分三种情况:①当时,易得;②当时,设,∵,在直线上,∴,解得,∴;③当时,设,∵,在直线上,∴,解得,∴.综上所述,与的函数解析式为.(3)若某月一用户交水量元,设该用户用水吨.∵用水吨交水费元,用水吨交水费元,而,∴.由题意,得,解得.答:若某月一用户交水量元,则该用户用水吨.【标注】【能力】运算能力【知识点】一元一次方程的梯度计价问题【知识点】有理数乘除法与实际问题【知识点】一次函数与实际问题【思想】函数思想【思想】方程思想(1)(2)(3)5.某市按阶梯电价进行收费,阶梯电价收费标准为:若每月用电量为度及以下,收费标准为元/度,若每月用电量超过度,收费标准由两部分组成:①度按元/度收费,②超出度的部分按元/度收费.如果月用电量用(度)来表示,实付金额用(元)来表示,请分别写出这两种情况实付金额与月用电量之间的函数关系式.若小芳和小华家一个月的实际用电量分别为度和度,则实付金额分别为多少元?按照阶梯电价方案的规定,一居民家某月电费为元,请你计算这个家庭本月的实际用电量.【答案】(1)(2)(3).实付金额分别为元、元.这个家庭本月的实际用电量是度.【解析】(1)根据度时,按元/度收费,(2)(3)则当时,;根据超出度的部分按元/度收费得:当时,;故函数关系式为:.小芳家用电量是 度,则实付金额是:(元);小华家用电量是 度,则实付金额是:(元).答:实付金额分别为元、元.设这个家庭本月的实际用电量度,根据题意得:解得:,答:这个家庭本月的实际用电量是度.【标注】【知识点】一次函数与实际问题(1)(2)(3)6.在某次抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要台,乙地需要台;、两省获知情况后慷慨相助,分别捐赠该型号挖掘机台和台并将其全部调往灾区.如果从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元;从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元.设从省调往甲地台挖掘机,、两省将捐赠的挖掘机全部调往灾区共耗资万元.省捐赠台省捐赠台甲灾区需台乙灾区需台请直接写出与之间的函数关系式及自变量的取值范围.若要使总耗资不超过万元,有哪几种调运方案?怎样设计调运方案能使总耗资最少?最少耗资多少万元?【答案】(1)(2)(3)( ).两种.方案二可使总耗资最少为万元.【解析】(1)(2)(3) 省省台数(台)耗资(万元)台数(台)耗资(万元)甲区乙区或由上表可知化简得,又∵,,,∴自变量的取值范围为.,得,∵为整数且,∴,.∴调运方案有两种,如下列:方案一:甲乙方案二:甲乙由可知随的增大而减小,∴当时,,∴()问中的方案二可使总耗资最少为万元.【标注】【知识点】一次函数与实际问题(1)7.育才中学需要购置某种仪器,方案:到商家购买,每件元;方案:学校自己制作,每件元,另外需付制作工具的租用费元.设购置仪器件,方案与方案的费用(单位:元)分别为,.分别写出,的函数表达式.(2)(3)当购置仪器多少件时,两种方案的费用相同?若方案便宜,则仪器件数范围是多少?【答案】(1)(2)(3),.件..【解析】(1)(2)(3)(,且为整数),(,且为整数).依题意,得,即,解得,∴当购置的仪器为件时,两种方案的费用相同.∵,∴,解得.∴当需要的仪器件数为整数且时,选择方案便宜.【标注】【知识点】一次函数与实际问题【知识点】不等式组的方案选择问题二、一次函数与三角形面积(1)(2)8.已知一次函数的图象与轴交于点,且与正比例函数的图象相交于点,求:求点的坐标.求出这两个函数的图象与轴围成的的面积.【答案】(1)(2)..【解析】(1)(2)由题意知,,解得,,∴点的坐标为.令,则,∴,∴.【标注】【知识点】一次函数与面积(1)(2)9.如图,在平面直角坐标系中,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与交于点.分别求出点,点的坐标.求四边形的面积.【答案】(1)(2),..【解析】(1)∵直线上所有点的坐标都是二元一次方程的解,∴当时,,(2)∴点的坐标为:,∵直线上所有点的坐标都是二元一次方程的解,∴时,,∴点的坐标为:.作轴于,,解得,∴点的坐标为,则四边形的面积四边形的面积的面积.【标注】【知识点】一次函数与面积10.在平面直角坐标系中,为坐标原点,已知及在第一象限的动点,且.则当时,点的坐标为 .【答案】【解析】∵,∴.∴∵∴.得:.∴,∴时,点坐标为.【标注】【知识点】一次函数与面积(1)(2)(3)(4)11.如图,直线的解析表达式为:,且与轴交于点,直线经过点、,直线,交于点.求点的坐标.求直线的解析表达式.求的面积.在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.【答案】(1)(2)(3)(4).直线的解析表达式为...【解析】(1)(2)(3)由,令,得,∴,∴.设直线的解析表达式为,,由图象知:、,、,代入表达式,∴,∴,∴直线的解析表达式为.由,(4)∴,∴,∵,∴.与底边都是,面积相等所以高相等,高就是点到直线的距离,即纵坐标的绝对值,则到距离,∴纵坐标的绝对值,点不是点,∴点纵坐标是,∵,,∴,∴,∴.【标注】【知识点】公式法求面积12.如图直线与轴、轴分别交于、两点,以线段为边在第一象限内作等腰直角,且,如果在第二象限内有一点,且的面积与的面积相等,求的值.【答案】【解析】∵直线与轴、轴分别交于、两点,∴,,,∴,又∵,∴,解得.【标注】【知识点】一次函数与面积,,三、一次函数与线段最值(1)(2)13.如图,一次函数的图象与、轴分别交于点、.求该函数的解析式.为坐标原点,设、的中点分别为、,为上一动点,求的最小值,并求取得最小值时点的坐标.【答案】(1)(2),点坐标为.【解析】(1)(2)将、代入得,.∴解析式为:.设点关于点的对称点为,连接、,则.∴,即、、共线时,的最小值是.连接,在中,;易得点坐标为.【标注】【知识点】一次函数与轴对称最值问题14.直角坐标系中,有两个点,,在轴上找一个点,在轴上找一点,使四边形的周长最短,此时点的坐标为.【答案】【解析】如图设所在直线的表达式为.由于、在直线上,有解得∴所在直线表达式为,它与轴交于.【标注】【知识点】四边形周长最小15.在平面直角坐标系中,点,点,在轴上存在一个点,直线上存在点,使得四边形的周长最小,求满足条件的、两点的坐标.xy OABCD【答案】,.【解析】将点、分别关于轴,对称到、,直线与轴,的交点即为、点,求得直线的解析式为,得:,.故答案为:,.【标注】【知识点】一次函数与轴对称最值问题(1)(2)16.如图,在直角坐标系中,,,点是轴正半轴上的一个动点.当点到,两点的距离相等时,求点的坐标.当点到,两点的距离之和最小时,求点的坐标,并求出此时的值.【答案】(1)(2)..【解析】(1)如图作的中垂线与轴交于,过作轴于,∵,∴,,∵,∴,设,则,又∵,,,,(2)∴,即,,得,∴.如图,作关于轴对称点,连接交于,则即为所求,∵,∴且,设所在直线解析式为()代入,得,∴,∴直线,∴当,,∴,.【标注】【知识点】一次函数与轴对称最值问题17.如图,直线的函数表达式为,且与轴交于点,直线经过点且与交于点,已知点的横坐标是.(1)(2)求点和点的坐标.在轴上求点的坐标,使得最小.【答案】(1)(2),..【解析】(1)(2)对于直线,令,得到,∴,∵点的横坐标为,∴.作点关于轴的对称点,连接交轴于,此时的值最小,设最小的解析式为,则有,解得,∴直线的解析式为,∴.A. B.C.D.18.如图,在中,,,点在边上,且,点为的中点,点为边上的动点,当点在上移动时,使四边形周长最小的点的坐标为( ).【答案】C 【解析】∵在中,,,∴,,∵,点为的中点,∴,,∴,,作关于直线的对称点,连接交于,则此时,四边形周长最小,,∵直线的解析式为,设直线的解析式为,∴,解得:,∴直线的解析式为,解得,∴.故选.19.如图,已知点坐标为,点坐标为,在直线上有一点,满足轴,连接,,当线段位于何位置时,线段最短?求出的最小值,并求出点坐标.【答案】最小值是;点坐标为【解析】'坐标为,解析式为:,点坐标为,点坐标为,.【标注】【知识点】一次函数与轴对称最值问题,20.如图,平面直角坐标系中,已知点的坐标为,点的坐标为时,在轴上另取两点,,且.线段在轴上平移,线段平移至何处时,四边形的周长最小?求出此时点的坐标.【答案】.【解析】如图,过点作轴的平行线,并且在这条平行线上截取线段,使,作点关轴的对称点,连接,交轴于点,在轴上截取线段,则此时四边形的周长最小.∵,∴,∵,∴,设直线的解析式为,则,解得.∴直线的解析式为,当时,,解得.故线段平移至如图所示位置时,四边形的周长最小,此时点的坐标为,∴点的坐标为.【标注】【知识点】一次函数与轴对称最值问题(1)(2)(3)21.如图,一次函数的图象与轴和轴分别交于点和,再将沿直线对折,使点与点重合、直线与轴交于点,与交于点.点的坐标为 ,点的坐标为 .在直线上是否存在点使得的面积为?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.求的长度.【答案】(1)(2)(3) ;存在,或..【解析】(1)已知函数为,∴令,则,(2)(3)令,则,∴,.∵,,∴以为底,则的高为,即点到的距离为,又∵点在,∴,∴或,∴或.在折叠后,,所以.因为,设,,则.在中,,由勾股定理知,即,去括号得,整理得,解得.故.【标注】【知识点】一次函数与直角三角形结合。
一次函数的应用含答案
一次函数的应用1.如图,是某工程队修路的长度y(单位:m)与修路时间t(单位:天)之间的函数关系.该工程队承担了一项修路任务,任务进行一段时间后,工程队提高了工作效率,则该工程队提高效率前每天修路的长度是()米.A.150B.110C.75D.702.早上9点,甲车从A地出发去B地,20分钟后,乙车从B地出发去A地.两车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图,下列描述不正确的是()A.AB两地相距240千米B.乙车平均速度是90千米/小时C.乙车在12:00到达A地D.甲车与乙车在早上10点相遇3.甲、乙两个草莓采摘园为吸引顾客,在草莓售价相同的条件下,分别推出下列优惠方案:进入甲园,顾客需购买门票,采摘的草莓按六折优惠;进入乙园,顾客免门票,采摘草莓超过一定数量后,超过的部分打折销售,活动期间,某顾客的草莓采摘量为x千克,若在甲园采摘需总费用y1元,在乙园采摘需总费用y2元.y1、y2与x之间的函数图象如图所示,则下列说法中错误的是()A.乙园草莓优惠前的销售价格是30元/千克B.甲园的门票费用是60元C.乙园超过5千克后,超过部分的价格按五折优惠D.顾客用280元在甲园采摘草莓比到乙园采摘更多4.学过一次函数的知识后,某数学兴趣小组通过实验估计某液体的沸点,经过几次测量,得到如下数据当加热80s时,该液体沸腾,则其沸点温度是()时间t(单位:S)0102030液体温度y(单位:°C)15253545A.100°C B.90°C C.85°C D.95°C5.某市乘出租车需付车费y(元)与行车里程x(千米)之间函数关系的图象如图所示,那么该市乘出租车超过2千米但不超过5千米时,每千米的费用是()A.1元B.1.1元C.1.2元D.2.5元6.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为()A.20kg B.25kg C.28kg D.30kg7.王老师一家自驾游去了离家170千米的黄山,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,他们出发2小时时,离目的地还有()千米.A.40B.60C.110D.1308.一个有进水管与出水管的容器,从某时刻开始的4min 内只进水不出水,在随后的8min 内既进水又出水,之后只出水不进水,每分的进水量和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图.则下列说法正确的是( )A .进水管每分钟的进水量为4LB .当4<x ≤12时,y =54x +12 C .出水管每分钟的出水量为54LD .水量为15L 的时间为3min 或16min9.小明从家出发到商场购物后返回,如图表示的是小明离家的路程s (m )与时间t (min )之间的函数关系,已知小明购物用时30min ,返回速度是去商场的速度的1.2倍,则a 的值为( )A .46B .48C .50D .5210.声音在空气中传播的速度(简称声速)v (m /s )与空气温度t (℃)满足一次函数的关系(如表格所示),则下列说法错误的是( )温度t /℃ … ﹣20 ﹣10 0 10 20 30 … 声速v /(m /s )…318324330336342348……A .温度越高,声速越快B .当空气温度为20℃时,声速为342m /sC .声速v (m /s )与温度t (℃)之间的函数关系式为v =35t +330 D .当空气温度为40℃时,声速为350m /s11.物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)间有下表的关系.下列说法不正确的是()x/kg01234y/cm1517192123A.因变量y是自变量x的一次函数B.当弹簧长度为18cm时,所挂物体的质量为0.5kgC.随着所挂物体重量的增加,弹簧长度逐渐变长D.所挂物体的重量每增加1kg,弹簧长度增加2cm12.如图,落落同学从家沿着笔直的公路去跑步锻炼,她离开家的距离y(米)与时间t(分钟)的函数关系式的图象如图所示,下列结论中不正确的是()A.整个进行过程花了40分钟B.整个进行过程共跑了2700米C.在途中停下来休息了5分钟D.返回时休息后的速度比去的时候小60米/分13.某校增设了多种体育选修课来锻炼学生的体能,小颖从教学楼以1米/秒的速度步行去操场上乒乓球课,她从教学楼出发的同时小华从操场以5米/秒的速度跑步回教学楼拿球拍,再立刻以原速度返回操场上乒乓球课.已知小颖、小华之间的距离y(米)与出发时间x (秒)的部分函数图象,则下列说法错误的是()A.点C对应的横坐标表示小华从操场到教学楼所用的时间B.x=30时两人相距120米C.小颖、小华在75秒时第二次相遇D.CD段的函数解析式为y=﹣4x+40014.如图1是某湖最深处的一个截面图,湖水面下任意一点A的压强P(单位:cmHg)与其离水面的深度h(单位:m)的函数解析式为P=ah+P0,其图象如图2所示,其中P0为湖水面大气压强,a为常数且a>0,点M的坐标为(34.5,342),根据图中信息分析,下列结论正确的是()A.湖水面大气压强为76.0cmHgB.函数解析式P=ah+P0中P的取值范围是P<342C.湖水深20m处的压强为256cmHgD.P与h的函数解析式为P=8h+66(0≤h≤34.5)15.声音在空气中传播的速度v(简称声速)与空气温度t的关系(如下表所示),则下列说法错误的是()温度t/℃﹣20﹣100102030声速v/(m/s)318324330336342348 A.温度越高,声速越快B.在这个变化过程中,自变量是温度t,t是v的函数C.当空气温度为20℃,声速为342m/sD.声速v与温度t之间的关系式为v=35t+33016.小明同学在一次学科综合实践活动中发现,某品牌鞋子的长度ycm与鞋子的码数x之间满足一次函数关系,下表给出y与x的一些对应值:码数x26303442长度ycm18202226根据小明的数据,可以得出该品牌38码鞋子的长度为()A.24cm B.25cm C.26cm D.38cm17.美美在研究物体吸热与放热知识时,用相同的电加热器分别对质量为0.2kg的水和0.3kg的另一种液体进行加热,得到实验数据如图所示.下列说法错误的是()18的关系,并画出图象(AC是线段,射线CD平行于x轴),下列说法错误的是()19.李强一家自驾车到离家500km的九寨沟旅游,出发前将油箱加满油.如表记录了轿车行驶的路程x(km)与油箱剩余油量y(L)之间的部分数据:下列说法不正确的是()轿车行驶的路程x/km0100200300400…油箱剩余油量y/L5042342618…A.该车的油箱容量为50L B.该车每行驶100km耗油8LC.油箱剩余油量y(L)与行驶的路程x(km)之间的关系式为y=50﹣8xD.当李强一家到达九寨沟时,油箱中剩余10L油20.弹簧挂物体会伸长,测得弹簧长度y(cm)(最长为20cm)与所挂物体质量x(kg)之间有下面的关系,下列说法不正确的是()x/kg01234…y/cm88.599.510…A.y与x的函数表达式为y=8+0.5xB.所挂物体质量为6kg时,弹簧长度为11cmC.y与x的函数表达式中一次项系数表示“所挂物体质量每增加1kg弹簧伸长的长度”D.挂30kg物体时,弹簧长度为23cm一次函数的应用参考答案一.选择题(共20小题)1.C; 2.D; 3.D; 4.D; 5.A; 6.A; 7.A; 8.D; 9.D; 10.D;11.B;12.B;13.D;14.D;15.B;16.A;17.C;18.B;19.C;20.D;。
长丰县第八中学八年级数学下册第二十一章一次函数21.4一次函数的应用典型例题一素材新版冀教版
典型例题(一)一次函数解析式的一般形式是y=kx+b(k≠0),利用这一关系式可以解决一些实际问题或几何题.现举例说明如下.例1 某种储蓄的月利率是0.36%,今存入本金100元,求本息和(本金与利息的和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(1998年宁夏回族自治区中考题)分析∵利息=本金×月利率×月数,∴y=100+100×0.36%×x=100+0.36x.当x=5时,y=100+0.36×5=101.8,即5个月后的本息和为101.8元.例2 托运行李P千克(P为整数)的费用为C,已知托运第一个1千克需付2元,以后每增加1千克(不足1千克按1千克计)需增加费用5角,则计算托运行李费用C的公式是______,托运重量为28.4千克的行李需付______元.(1996年安徽省中考题)分析由题意知C=2+0.5(P-1).(P为自然数)根据题意,28.4千克应按29千克计算,则当P=29时,C=2+0.5(29-1)=16(元).例3 如图,在直角梯形ABCD中,∠C=45°,上底AD=3,下底BC=5,P是CD上任意一点,若PC用x表示,四边形ABPD的面积用y表示.(2)当四边形ABPD的面积是梯形ABCD面积的一半时,求点P的位置.分析 (1)过D,P分别作DE⊥BC,PF⊥BC,垂足为E,F.∵∠C=45°,∴DE=EC=BC-AD=5-3=2.在Rt△PFC中,PC=x,∠C=45°,(2)当四边形ABPD的面积是梯形面积一半时,则例4 A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台,已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元.(1)设B市运往C村机器x台,求总运费W关于x的函数关系式;(2)若要求总运费不超过9000元,共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?分析由已知条件填出下表:(1)依题意得函数式:W=300x+500(6-x)+400(10-x)+800[8-(6-x)]=200x+8600.∴x=0,1,2,共有3种调运方案.(3)当x=0时,总运费最低,即从A市调10台给C村,调2台给D村,从B市调6台给D 村,为总运费最低的调运方案,最低运费为8600元.(安徽省太湖县大山中学张水华)11.1.3 三角形的稳定性通过观察和操作得到三角形具有稳定性,四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的应用.重、难点:了解三角形稳定性在生产、生活中的实际应用.一、自学指导自学:自学课本P6-7页,掌握三角形的稳定性及应用,完成下列填空.(5分钟) 将准备好的木条做成的三角形木架、四边形木架取出进行操作并观察:(1)如图①,扭动三角形木架,它的形状会改变吗?(2)如图②,扭动四边形木架,它的形状会改变吗?总结归纳:由上面的操作我们发现,三角形木架的形状不会改变,而四边形木架的形状会改变. (3)如图③,斜钉一根木条的四边形木架的形状不会改变.想一想其中的道理是什么? 总结归纳:三角形是具有稳定性的图形,而四边形没有稳定性. 二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P7页练习题第1题.2.请例举生活中关于三角形的稳定性与四边形的不稳定性的应用实例.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1 要使四边形不变形,最少需要加1条线段,五边形最少需要加2条线段,六边形最少需要加3条线段……n 边形(n >3)最少需要加(n -3)条线段才具有稳定性.点拨精讲:过一点把一个多边形分成若干个三角形最少需要几条线段.探究 2 等腰三角形一腰上的中线将此等腰三角形分成9 cm ,15 cm 两部分,求此等腰三角形的周长是多少?解:设等腰三角形的腰长为x cm ,底边长为y cm ,依题意得,当x >y 时,⎩⎪⎨⎪⎧x +12x =15,y +12x =9,解得⎩⎪⎨⎪⎧x =10,y =4;当x <y 时,⎩⎪⎨⎪⎧x +12x =9,y +12x =15,解得⎩⎪⎨⎪⎧x =6,y =12,∵6+6=12,不符合三角形的三边关系,故舍去.∴此三角形的周长为10+10+4=24(cm ).答:此等腰三角形的周长为24 cm .点拨精讲:此题用到分类思想,同时要考虑三角形的三边关系.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.课本P9页第10题.2.下列图形具有稳定性的有(C)A.梯形B.长方形C.三角形D.正方形3.体育馆屋顶的横梁用钢筋焊出了无数个三角形,是因为:三角形具有稳定性.4.已知AD,AE分别是△ABC的中线、高,且AB=5 cm,AC=3 cm,则△ABD与△ADC 的周长之差为2_cm;△ABD与△ADC的面积关系是相等.5.如图,D是△ABC中BC边上的一点,DE∥AC交AB边于E,DF∥AB交AC边于F,且∠ADE=∠ADF.求证:AD是△ABC的角平分线.证明:∵DE∥AC,DF∥AB,∴∠ADE=∠DAC,∠ADF=∠DAB,又∵∠ADE=∠ADF,∴∠DAC=∠DAB,∴AD是△ABC的角平分线.(1分钟)三角形的稳定性与四边形的不稳定性在日常生活中非常常用.(学生总结本堂课的收获与困惑)(2分钟)(12分钟)第五章二元一次方程组二元一次方程与一次函数(一)一、教材分析《二元一次方程与一次函数》是北师大版教科书八年级(上)第五章第六节内容.本节内容共安排2个课时完成,本节课为第1课时.该节内容是二元一次方程(组)与一次函数及其图像的综合应用.通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力.本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.二、学情分析学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会“数”和“形”间的相互转化,从中使学生进一步感受到“数”的问题可以通过“形”来解决,“形”的问题也可以通过“数”来解决.三、目标分析1.教学目标•知识与技能目标(1)初步理解二元一次方程和一次函数的关系;(2)掌握二元一次方程组和对应的两条直线之间的关系;(3)掌握二元一次方程组的图像解法.•过程与方法目标(1)教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.•情感与态度目标(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.2.教学重点(1)二元一次方程和一次函数的关系;(2)二元一次方程组和对应的两条直线的关系.3.教学难点数形结合和数学转化的思想意识.四、教法学法1.教法学法启发引导与自主探索相结合.2.课前准备教具:多媒体课件、三角板.学具:铅笔、直尺、练习本、坐标纸.五、教学过程本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立“方程与函数图像”的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.第一环节: 设置问题情境,启发引导内容:1.方程x+y=5的解有多少个?0,5;x y =⎧⎨=⎩5,0;x y =⎧⎨=⎩2,3x y =⎧⎨=⎩是这个方程的解吗? 2.点(0,5),(5,0),(2,3)在一次函数y =5+-x 的图像上吗?3.在一次函数y=5+-x 的图像上任取一点,它的坐标适合方程x+y=5吗?4.以方程x+y =5的解为坐标的所有点组成的图像与一次函数y =5+-x 的图像相同吗?由此得到本节课的第一个知识点:二元一次方程和一次函数的图像有如下关系:(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y=5+-x 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.效果:以“问题串”的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.第二环节 自主探索方程组的解与图像之间的关系内容:1.解方程组5,2 1.x y x y +=⎧⎨-=⎩2.上述方程移项变形转化为两个一次函数y=5+-x 和y=2x 1-,在同一直角坐标系内分别作出这两个函数的图像.3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.意图:通过自主探索,使学生初步体会“数”(二元一次方程)与“形”(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了“数”的问题可以转化为“形”来处理,反之“形”的问题可以转化成“数”来处理,培养了学生的创新意识和变式能力.第三环节 典型例题探究方程与函数的相互转化内容:例1 用作图像的方法解方程组22,2 2.x y x y -=-⎧⎨-=⎩例2 如图,直线1l 与2l 的交点坐标是 .意图:设计例1进一步揭示“数”的问题可以转化成“形”来处理,但所求解为近似解.通过例2,让学生深刻感受到由“形”来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把“形”的问题转化成“数”来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.第四环节 反馈练习内容:1.已知一次函数5-=kx y 与b x y +=3的图像的交点为)3,2(-p ,则_________,==b k .2.已知一次函数a x y +=2与b x y +-=的图像都经过点A (—2,0),且与y 轴分别交于B ,C 两点,则ABC s ∆的面积为( ).(A )4 (B )5 (C )6 (D )73.求两条直线23-=x y 与42+-=x y 和x轴所围成的三角形面积.4.如图,两条直线1l 与2l 的交点坐标可以看作哪个方程组的解?意图:4个练习,意在及时检测学生对本节知识的掌握情况.效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.第五环节 课堂小结内容:以“问题串”的形式,要求学生自主总结有关知识、方法:1.二元一次方程和一次函数的图像的关系;(1)以二元一次方程的解为坐标的点都在相应的函数图像上;(2)一次函数图像上的点的坐标都适合相应的二元一次方程.2.方程组和对应的两条直线的关系:(1)方程组的解是对应的两条直线的交点坐标;(2)两条直线的交点坐标是对应的方程组的解;3.解二元一次方程组的方法有3种:(1)代入消元法;(2)加减消元法;(3)图像法.要强调的是由于作图的不准确性,由图像法求得的解是近似解.意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.效果:充分展示知识的发生、发展及应用过程.对同学的回答,教师给予点评,对回答得好的学生教师给予表扬、鼓励.第六环节作业布置习题7.7附:板书设计六、教学反思本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.第五章二元一次方程组二元一次方程与一次函数(二)一、教材分析《二元一次方程与一次函数》是义务教育课程标准北师大版实验教科书八年级(上)第五章《二元一次方程组》第六节,本节内容安排了2个学时完成,本节课为第2学时.主要是通过对作图像方法与代数方法的比较,探索利用二元一次方程组确定一次函数的表达式.这一内容是上一课时内容的自然发展,上一课时探索了函数与方程之间的关系,并获得了方程组的图像解法,本节课研究利用二元一次方程组确定一次函数的表达式,这样更为全面地理解函数与方程、图形与代数表达式之间的关系,从而发展学生数形结合的意识。
《21.4一次函数的应用》作业设计方案-初中数学冀教版12八年级下册
《一次函数的应用》作业设计方案(第一课时)一、作业目标本作业设计旨在通过一次函数的应用实例,使学生能够:1. 理解一次函数的概念及其图像特征;2. 掌握一次函数在实际问题中的建模与应用;3. 培养学生的逻辑思维能力和解决实际问题的能力。
二、作业内容作业内容主要包括一次函数的基本知识复习和实际问题的应用练习。
1. 一次函数基本知识复习:(1)一次函数的定义及图像特征;(2)一次函数的增减性;(3)一次函数的解析式及其求解。
2. 实际应用练习:(1)利用一次函数解决实际问题,如距离-时间问题、费用-数量问题等;(2)根据给定条件,建立一次函数模型,并求解未知量;(3)对实际问题进行建模的思路及过程分析。
三、作业要求1. 学生需认真复习一次函数的基本知识,并熟练掌握其应用;2. 针对实际问题,学生需独立思考,尝试建立一次函数模型,并求解;3. 作业中需注明解题思路和过程,以及最终答案;4. 作业需按时完成,不得抄袭他人作品;5. 学生在完成作业后,需进行自我检查和修正。
四、作业评价1. 评价标准:(1)知识掌握程度:学生对一次函数基本知识的理解和掌握情况;(2)应用能力:学生将一次函数应用于实际问题中的能力和思路;(3)解题过程:学生的解题步骤是否清晰,思路是否正确;(4)作业态度:学生是否按时完成作业,是否有抄袭现象。
2. 评价方式:(1)教师批改:教师根据评价标准,对学生的作业进行批改和评分;(2)同学互评:学生之间可以互相交换作业,进行互评,互相学习;(3)自我评价:学生完成作业后,进行自我评价,反思自己的不足之处。
五、作业反馈1. 教师根据批改情况,对全体学生的作业进行总结和反馈,指出存在的问题和不足之处;2. 对于优秀作业,教师可在课堂上进行展示和表扬,鼓励学生继续努力;3. 对于存在问题较多的学生,教师可进行个别辅导和指导,帮助学生解决问题;4. 作业反馈应及时进行,以便学生及时了解自己的学习情况,进行调整和改进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.4一次函数的应用(2)课后练习
1、(2019·石家庄新华区期末)如图,1l 反映了某公司产品的销售收入与销售量的关系;2l 反映了该公司产品的销售成本与销售量的关系。
根据图像判断,该公司盈利时,销售量( )
A .小于12件
B .等于12件
C .大于12件
D .不低于12件
2、(
2019·唐山玉田县期末)在20km 的环湖越野赛中,甲、乙两选手的行程y (km )随时
间x (h )变化的图像如图所示。
根据图中提供的信息,下列说法中错误的有( ) ①出发后1h ,两人行程均为10km ;②出发后1.5h ,甲的行程比乙多2km ;③两人相遇前,甲的速度小于乙的速度;④甲比乙先到达终点。
A .1个
B .2个
C .3个
D .4个
3、我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg 到5000kg (含2000kg 和5000kg )的客户有两种销售方案(客户只能选择其中一种方案):
方案A :每千克5.8元,由基地免费送货;
方案B :每千克5元,客户需支付运费2000元.
(1)请分别写出按方案A 、方案B 购买这种苹果的应付款y (元)与购买量x (kg )之间的函数表达式;
(2)求购买量x 在什么范围时,选用方案A 比方案B 付款少;
(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案。
4、(2019·秦皇岛海港区模拟)已知A ,B 两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线由A 地到B 地匀速前行,甲、乙行进的路程s (千米)与x (小时)的函数图像如图所示。
(1)乙比甲晚出发 小时;
(2)在整个运动过程中,甲、乙两人之间的距离
随x 的增大而增大时,求x 的取值范围。
第1题 第2题
第4题
5、(2019·石家庄正定县期末)甲、乙两列火车分别从A ,B 两城同时匀速驶出,甲车开往B 城,乙车开往A 城.由于墨迹遮盖,图中提供的是两车距B 城的路程甲s (千米),乙s (千米)与行驶时间t (时)的函数图像的一部分。
(1)分别求出甲s ,乙s 与t 的函数关系式(不必写出t 的取值范围);
(2)求A ,B 两城之间的距离,及t 为何值时两车相遇;
(3)当两车相距300千米时,求t 的值。
6、(2016·绥化中考)周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图所示的是她们距乙地的路程y (km )与小芳离家时间x (h )的函数图像。
(1)小芳骑车的速度为 km/h ,H 点坐标为 ;
(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?
(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),则小芳比预计时间早几分钟到达乙地?
第6题 第5题
参考答案:
1、C ;
2、B ;
3、解:(1)方案A :y =5.8x 。
方案B :y =5x +2000。
(2)由题意,得5.8x <5x +2000,解得:x <2500。
∴当购买量x 的取值范围为2000≤x <2500时,选用方案A 比方案B 付款少。
(3)他应选择方案B 。
4、解:(1)1;
(2)在整个运动过程中,甲、乙两人之间的距离随x 的增大而增大时,有两种情况: 一是甲出发,乙还未出发时:此时0≤x ≤1;
二是乙追上甲后,直至乙到达终点时:
设甲的函数表达式为y =kx ,由图像可知(4,20)在函数图像上,代入得20=4k , ∴k =5。
∴甲的函数表达式为y =5x 。
设乙的函数表达式为y =x k 1+b ,将(1,0),(2,20)代入,得:
⎩⎨⎧+=+=b
k b k 2200,解得:⎩⎨⎧-==2020b k ,∴乙的函数表达式为y =20x -20。
联立⎩⎨⎧-==20205x y x y ,解得:⎪⎩
⎪⎨⎧==32034y x 。
故x 的取值范围是:0≤x ≤1或34≤x ≤2。
5、解:(1)设甲s 与t 的函数关系式是甲s =kt +b ,则
⎩⎨⎧=+=+603420t k t k ,解得:⎩
⎨⎧=-=600180b k 。
∴甲s 与t 的函数关系式是甲s =-180t +600。
设乙s 与t 的函数关系式是乙s =at ,则120=a ×1,解得:a =120。
∴乙s 与t 的函数关系式是:乙s =120t 。
(2)将t =0代入甲s =-180t +600,得:甲s =600;
令甲s =乙s ,得-180t +600=120t ,解得:t =2。
∴A ,B 两城之间的距离是600千米,t =2时两车相遇。
(3)由题意,得乙甲s s -=300,即300120600180=-+-t t ,
解得1t =1,2t =3。
∴当两车相距300千米时,t 的值是1或3。
6、解:(1)由函数图像可以得出小芳家距离甲地的路程为10 km ,花费时间为0.5 h ,故小芳骑车的速度为10÷0.5=20(km/h ),
由题意可得出点H 的纵坐标为20,横坐标为34+61=23,故点H 的坐标为(2
3,20)。
(2)设直线AB 的解析式为1y =1k x +1b ,将点A (0,30),B (0.5,20)分别代入得: ⎩⎨⎧=+=205.030111b k b ,解得:⎩⎨⎧=-=30201
1b k ,∴1y =﹣20x +30。
由题意知AB ∥CD ,∴设直线CD 的解析式为2y =﹣20x +2b ,
将点C (1,20)代入得2b =40,故2y =﹣20x +40,
设直线EF 的解析式为3y =3k x +3b ,将点E ,H 分别代入得3k =﹣60,3b =110, ∴3y =﹣60x +110,令2y =3y 得:x =1.75,
当x =1.75时,2y =﹣20×1.75+40=5∴点D 坐标为(1.75,5),30﹣5=25(km ), 答:小芳出发1.75小时后被妈妈追上,此时距家25 km 。
(3)将y =0代入直线CD 解析式有﹣20x +40=0,解得x =2,
将y =0代入直线EF 的解析式有﹣60x +110=0,解得x =611, 2﹣
611=6
1(h ),即10分钟,故小芳比预计时间早10分钟到达乙地。