Appraisement of IEEE 802.11s based Mesh Networks with Mean Backoff Algorithm(IJMECS-V7-N10-3)
未来无线千兆网技术前瞻
802.11n的标准认证才尘埃落定,电子电气工程师协会(IEEE)就已经开始着手下一代标准的制定工作。
到2012年底,一个新的千兆无线Wi-Fi标准—802.11ac/ad 就将展现在我们面前。
届时,无线Wi-Fi也将继有线之后跨入千兆时代。
一直以来,无线网络技术(Wi-Fi)和标准前进的步伐就从未停止过。
从1999年802.11a诞生开始,到刚刚获得正式批准的802.11n,每一次的进步都是有目共睹的。
新的创新总是会时不时地出现:有的是来自供应商辅助技术的改进;有的是来自测试Wi-Fi产品的行业机构的灵感;有的则来自于802.11技术本身的不断完善。
这些进步看起来需要花费很长的时间,但是它们还是在用户翘首以盼更好的网络连接的等待中,一个一个地实现了。
那在802.11n之后,下一代无线W i-Fi标准会是谁呢?IEEE 802.11规范官方时间表有人说是802.11s Mes h,也有人说是802.11u。
但是,无论是802.11s Mesh ,还是802.11u,都不可能完全充当802.11n的替代者角色,最多只能算是802.11无线标准的一个扩展,它们的作用是充实802.11无线标准的肌肉,为无线最终替代有线打基础(关于802.11s Mes h无线标准我们已在本刊2010年1月下期做过介绍)。
毕竟,从无线标准的发展来看,速度的提升是一个明显的标志。
没有人会认为无线Wi-Fi的速度会最终定格在300Mbps,即使是802.11n 终极形态的450Mbps和600Mbps传输率在大多数人看来也不会是Wi-Fi发展的终点,这源自人们追求更高、更快的思想。
IEEE也一直对有线的速度高于无线耿耿于怀。
因此,在802.11n无线标准正式获得批准之后,IEEE就已经开始准备启动下一代无线标准的制定工作了。
即将发布的802.11s定义的网状架构使得无线网建立将比以前更加轻松从IEEE 802.11官方公布的时间表来看,无线Wi-Fi的下一次大提速,也就是802.11n的继任者出现时间将会是2012年底,新标准将被命名为802.11a c。
一种基于异构多核DSP的IEEE 802.11a接收端基带处理的研究和实现
一种基于异构多核DSP的IEEE 802.11a接收端基带处理的研究和实现徐力;王沁;史少波【期刊名称】《计算机应用研究》【年(卷),期】2012(029)001【摘要】现有基于异构多核DSP的IEEE 802.11 a接收端实现方法中DSP核空闲等待时间较长,不能充分体现多核DSP的高性能计算能力.结合多核DSP的特点,通过核内细粒度流水和核间粗粒度流水的方法,来提高多核DSP的执行效率,并在目标异构多核DSP上实现完整的IEEE 802.11a接收端基带处理.实验结果表明,该方法不仅能满足系统吞吐量和实时性,与类似工作相比还能保证较高的DSP核平均利用率.%Nowdays.the DSP core waiting time is longer in some IEEE 802. lla implementations based on multi-core DSP, which can not take full advantage of its high-performace computational capabilities. This paper combined the characteristics of multi-core DSP, using coarse-grained pipeline between DSP cores and fine-grained pipeline in single DSP core to enhance execution efficiency of multi-core DSP. It implemented on target heterogeneous mutli-core DSP with a complete IEEE 802. lla receiver baseband processing. The experiment show that this method not only guarantee the system throughput and real-time, but also improved the DSP core average utilization compared similar works.【总页数】5页(P241-245)【作者】徐力;王沁;史少波【作者单位】北京科技大学计算机与通信工程学院,北京100083;北京科技大学计算机与通信工程学院,北京100083;北京科技大学计算机与通信工程学院,北京100083【正文语种】中文【中图分类】TP393【相关文献】1.基于IEEE 802.11a的OFDM系统信道估计算法研究及实现 [J], 崔丽珍;孙瑞璇2.基于IEEE802.11a的OFDM基带处理器的FPGA设计与实现 [J], 梁赫西;闻辉;郑朝霞3.一种基于Q4401声码器的基带信号处理器的设计与实现 [J], 傅世友4.基于IEEE 802.11a的OFDM帧检测算法研究与FPGA实现 [J], 崔丽珍;曹成;赵晓燕5.基于802.11a的OFDM系统基带处理器的FPGA实现 [J], 刘奕;陶金;江隽文因版权原因,仅展示原文概要,查看原文内容请购买。
深入浅出谈11n无线以太网
深入浅出谈WLAN新技术802.11n自动化产品市场经理孙林宝菲尼克斯电气(中国)投资有限公司Abstract: Since IEEE 802.11 standard came into the world especially from 2008, WLAN are facing a rapid development period in industry Automation market. With the development of IT-technology push, WLAN are improving information of manufacturing industry, optimizing the efficiency, and creating the new productivity.摘要:上个世纪末802.11标准横空出世,尤其2008年以来在工业控制领域,WLAN正面临一个快速成长的时代。
WLAN技术跟随整个IT技术一起,提升制造业信息化,推动生产效率的提高,为工业企业“创造”生产力!Key words: IEEE 802.11a/b/g/n、SISO、MIMO、OFDM、WLAN在当今工业控制领域已经广泛了各式各样的无线技术,如:WLAN、蓝牙、WirelessHART、GSM/GPRS、Trusted wireless、ZigBee等,而WLAN广泛用于控制层与监控层之间的高速、可靠通讯,随着802.11n产品技术的推出,必将进一步扩大WLAN的应用范围,为汽车、冶金、物流、港口、机械制造等行业实现全面的信息集成、监控扫清最后的障碍。
本文将对802.11n的重要新技术、新产品及应用作详细的阐述。
何为IEEE 802.11n,它有什么样新特性?为工业自动化应用带来什么新的机会?IEEE 802.11n:Wi-Fi联盟在802.11a/b/g后面的一个无线传输标准协议,在当今各种无线局域网技术交织的战国时代,WLAN、蓝牙、HomeRF、UWB等竞相绽放,但IEEE 802.11系列的WLAN是应用最广泛的。
80211r原理明细
总述IEEE802.11r(Fast BSSTransition)定义了STA在同一移动域(MD)中的AP 之间漫游时的交互细则,提供了实现BSS快速转换的标准。
协议描述的主要方法为:STA第一次与MD内的AP关联时,利用802.1x认证获得的主会话密钥(MSK,由于该密钥为认证者和申请者共享,也成为成对主密钥(PMK))和MD内各个AP的R1KH_ID计算出不同的PMK R1分发给MD内的其它AP;发生切换时,STA直接利用发送到目标AP上的PMK R1协商出成对临时密钥(PTK)和组临时密钥(GTK),以此缩短切换时间,避免再进行耗时的802.1x认证。
协议主要描述了四个部分的内容:密钥管理、新增的信息元素、FT初始化关联和快速切换协议。
密钥管理部分提出了三层密钥结构及其计算方法;新增的信息元素部分给出了MDIE、FTIE、TIE等元素的定义;FT初始化关联部分描述了第一次关联时密钥生成和分发的过程;快速切换协议部分描述了快速漫游过程和由PMKR1计算PTK和GTK的过程。
初始化关联部分和快速切换协议部分分为RSN(Robust SecurityNet)网络和non RSN网络进行描述。
快速切换协议分为两种,FT协议(FT Protocol)和带资源请求的FT协议(FT Resource Request Protoc01)。
每种协议的切换方式又可以分为两种,Over-the-Air方式和Over-the —DS 方式。
一.提示1.本文档主要研究支持RSN(802.11i)的无线局域网下的快速切换为主。
2.IEEE文档里提到的802.11r标准是基于自治式WLAN,而不是集中式WLAN,因此实现时会和标准有一定差别3.同样的,HostAPD模块里对802.11r的实现也会标准不同。
二.802.11i:强健安全性网络2.1:RSN简介除了TKIP和CCMP,80211i还定义了强健安全性网络(RSN)的标准,主要定义密钥的产生与分配方式.链路层加密协议使用了两种密钥.成对密钥(pairwise key) 用来保护工作站与AP;间往来的数据.组密钥(group key) 用来保护AP和所关联的工作站之间的广播帧或组播帧成对主密钥产生于身份验证(802.1x或者PSK),组密钥则是AP动态产生并分配给工作站的。
IEEE 802.11体系结构的组件(3)
4 IEEE 802.11体系结构的组件4.1高通量(HT)STAIEEE 802.11 HT STA提供PHY和MAC功能,可支持100Mb/s或更高的吞吐量,在MAC 数据服务接入点(SAP)上测量。
HT STA支持第10条和第19条中确定的HT功能。
在5GHz 频段运行的HT STA支持传输和接收符合第17条中定义的强制性PHY规范的帧。
在2.4GHz 频段运行的HT STA支持传输和接收符合第16条和第18条中定义的强制性PHY规范。
HT STA也是QoS STA。
HT功能可用于与HTAP关联的HT STA。
HT功能的子集可用于在属于同一IBSS成员的两个HT STA之间使用。
同样,HT特征的子集可用于已建立网格对等互连的两个HT STA(有关详细信息,请参见9.4.2.55)。
HT STA具有PHY功能,包括19.3.5中描述的调制和编码方案(MCS)集以及19.1.4中描述的物理层(PHY)协议数据单元(PPDU)格式。
一些将HT STA与非HT STA区分开来的PHY特征被称为多输入多输出(MIMO)操作;空间多路复用;空间映射(包括发射波束成形);时空块编码;低密度奇偶校验(LDPC)编码;和天线选择(ASEL)。
允许的PPDU格式包括非HT格式、HT混合格式和HT绿地格式(请参阅19.1.4)。
PPDU可以以20MHz带宽传输,也可以以40MHz带宽传输。
HT STA具有MAC功能,包括帧聚合、某些块确认功能、省电多轮询(PSMP)操作、反向(RD)和支持共存的保护机制使用非HT STAs。
4.2Sub 1 GHz(S1G)STA4.2.1 概述IEEE 802.11 S1G STA可在低于1GHz的频段(不包括电视空白频段)下工作。
S1G STA 支持第9条、第10条、第11条、第12条和第23条中确定的S1G功能。
S1G STA中的主要PHY功能如下:—强制支持1MHz和2MHz信道宽度—对S1G_1M PPDU的强制支持—对S1G_SHORT PPDU的强制支持—如果支持≥4MHz信道宽度,则强制支持S1G_LONG PPDU—强制支持检测和解码S1G_LONG前导码的SIG-A字段—强制支持单空间流S1G-MCS0到S1G-MCS2和S1G-MCS10(仅适用于1MHzPPDU)—在S1GAP中强制支持单空间流S1G-MCS3到S1G-MCS7—强制支持二进制卷积码(BCC)编码—对正常保护间隔的强制支持—对固定飞行员的强制性支持—可选支持2、3和4个空间流(发送和接收)—如果不支持≥4MHz信道宽度,则可选支持S1G_LONGPPDU—波束成形探测的可选支持(通过发送S1GNDP)—可选支持压缩波束成形反馈—可选支持STBC、LDPC(发送和接收)—可选支持S1G MUPPDU(传输和接收)—可选支持4MHz、8MHz或16MHz信道宽度—可选支持S1G-MCS8和9(发送和接收)—可选支持较短的保护间隔—为旅行飞行员提供可选支持S1G STA支持的主要MAC功能如下:—强制支持NDP Ack、NDP Block Ack和NDP CTS帧;强制支持接收S1G AP的NDP探测请求帧;可选支持其他NDP CMAC PPDU—强制支持接收PV1MPDU,但可选支持PV1MPDU的传输—强制支持第二个虚拟载波传感机制,即响应指示延迟(RID)—S1G AP对TIM元素的层次结构的强制支持—强制支持延长的BSS最大空闲周期和延长的侦听间隔,并具有统一的缩放因子—对RAW的可选支持—可选支持中继—对非AP STA和组AID分组的可选支持—对TWT的可选支持—对BDT的可选支持—对扇区的可选支持—对非TIM模式的可选支持—可选支持非对称BA、片段BA—可选支持页面切片,S1GAP的动态AID分配—对身份验证控制的可选支持—对SST的可选支持—用于重新安排STA的低电耗/清醒周期的可选支持—可选支持传感器STA或非传感器STA—对ELSTA的可选支持注意—某些NDPCMACPPDU在某些条件下是强制性的,如B.4.4.2所示。
IEEE802.11-2020中译版 MAC服务概述
IEEE802.11-2020中译版MAC服务概述摘要本系列文章为IEEE802.11-2020标准的中译版,本文原文请参考英文标准的第5.1章。
本章主要对标准的MAC服务做了简要说明。
IEEE802.11-2020中译版第5章1 数据服务1.1概述此服务为对等LLC子层实体或IEEE 802.1Q网桥端口提供交换MSDU的能力。
为了支持此服务,本地MAC使用底层PHY级服务将MSDU传输到对等MAC实体,并在其中将其传送到对等LLC子层或桥接端口。
此类异步MSDU传输是在无连接的基础上执行的。
默认情况下,MSDU传输是尽力而为的。
但是,QoS设施使用流量标识符(TID)基于每个MSDU 指定差别服务。
QoS工具还允许使用TSPEC在面向连接的基础上支持更多的同步行为。
无法保证提交的MSDU将成功交付。
组寻址传输是MAC提供的数据服务的一部分。
由于WM的特征,与单独寻址的MSDU相比,组寻址MSDU的QoS可能较低。
所有STA都支持数据服务,但只有QoS BSS中的QoS STA会根据指定的流量类别或单个MSDU的流量流(TS)。
支持QMF服务的QoS STA根据MMPDU的访问类别区分其MMPDU交付。
每个MMPDU的接入类别由发射机的当前QMF策略指定。
QoS STA中有两个可用的服务类:QoSAck和QoSNoAck。
服务类用于发出MSDU是否要使用MAC级确认进行传输的信号。
在QoS STAs中,无论是在BSS中关联还是在IBSS中具有成员资格,MAC使用一组规则,这些规则往往会导致BSS中较高的UPMSDU在BSS中较低的UPMSDU之前发送。
MAC子层实体根据随这些MSDU提供的TID值确定这些MDU的UP。
如果已通过MAC子层管理实体为TS提供了TSPEC,则MAC会尝试根据TSPEC中包含的QoS参数值。
在BSS中,一些STA支持QoS设施,而另一些不支持QoS设施,在将MSDU交付给非QoS STA时,QoS STA使用与MSDU的UP对应的访问类别(AC)。
基于802.11协议的无线传感器数据流优先级模型
基于802.11协议的无线传感器数据流优先级模型王重英【摘要】The thesis using the mathematical analysis method.The results show that,it's obvious of the mechanism for the high priority data. And in the process of transmission,data packet loss condition has been effectively curbed.The thesis analyzes the mechanism’s energy consumption.The result is that the energy consumption of the high priority is lower than the low priority.The more of the nodes number,the obvious of the trend. Therefore,the proposed mechanism is suitable for the network of high node number.%本文利用数学分析方法做了验证,结果表明,该机制对于高优先级数据数据优先传送的作用是非常明显的,在传输过程,数据流分组丢失的情况也得到了有效遏制。
本文还对该机制的能耗情况进行了分析,结果表明,高优先级的能耗水平低于低优先级,并且这种趋势随着节点数的增加而更加明显。
因此,本文所提出的提高高优先级传输效率的机制,更适用于节点数比较高的网络中。
【期刊名称】《电子测试》【年(卷),期】2014(000)020【总页数】3页(P50-52)【关键词】WSN;高优先级;MAC协议;NTS【作者】王重英【作者单位】商洛学院计算机科学系,陕西商洛,726000【正文语种】中文802.11 MAC协议是保证无线传感器网络高效传输的重要协议。
MESRFID子系统介绍
工厂资 源管理
制造过 程透明
条码管 理系统
产品跟 踪与追 溯 财务成 本数据 产品质 量控制
系统架构:
用户: 客户 供应商 管理人员 工程师 操作员 大数据、云服务
工艺流转:
生产工艺流程示意图 采购
ERP采购入库单 导入MES系统 打印条码 张贴并扫描条码 确认入库 酸洗液检测 其他 生产后流转
系统建设目标:
仓库量 可视化
全程条码化管理(原料/半成品/成品和货位等) 实现从采购,库存, 生产,销售到财务管理 的全程条形码信息系统 利用条形码采集的实时数据实现生产管理系 统对车间生产情况的实时监控和调整,可实 现柔性化生产 保障在有效的时间内,物品通过物流过程, 保质,保量从原地点到达目的地,且整个过 程可跟踪
新 式 手 持 设 备
CPU
双核 A5 芯片
iSight 摄像头:500 万像素自动对焦; 摄制 1080p HD 全高清视频FaceTime 摄 像头:120 万像素照片; 720p HD 高清视频 Micro-USB,Micro-SD卡槽(支持64GB扩展) 802.11a/b/g/n 0.8
操作系统
系统要求:
PAD无线条码及实时数据采集: 将当前手工记录的数据及有线条码数据采集方式尽可能转变为PAD 无线终端实时数据采集方式;通过无线方式数据采集,改善数据录 入滞后现象,提高数据录入速度,降低人为记录失误,为ERP系统 提供更及时、更准确的一线数据。 MES系统基础: 规范物料出入库、物料周转生产过程各环节的业务操作,逐渐使员 工建立条码规范意识,为日后新厂实现MES生产执行系统奠定人 力基础。 ERP系统基础: 通过科学可行的技术手段实现与当前ERP系统的无缝数据交互,实 现无线条码数据采集系统的协同作业。
IEEE802.11标准及特点
IEEE802.11标准及特点IEEE 802.11标准及特点无线局域网和有线网络有机地结合,可灵活实现与有线网络之间的数据交换、移动访问和配置,这使得无线局域网成为一种灵活、方便的组网方案。
然而,由于最初的IEEE 802.11标准支持的数据传输速率较低,一般只有1Mbit/s或2Mbit/s,无法满足现在人们对可移动数据交换的需要,这在一定程度上已影响了无线局域网的发展。
诶了支持更高的数据传输速率,IEEE在802.11的基础上发布了802.11b标准,该标准也称为IEEE 802.11 High Rate,它的数据传输速率高达11Mbit/s,已超过了以太网(10Mbit/s)的数据传输率。
IEEE 802.11b标准的使用,不但使无线局域网在速度上得到了提升,而且还解决了不同厂家产品之间的兼容性等问题,已成为目前无线局域网产品遵循的主要标准。
目前,大量的无线局域网都遵循IEEE 802.11b标准。
除IEEE 802.11b标准之外,还有IEEE 802.11a、IEEE 802.11e和IEEE 802.11g标准等。
1.IEEE 802.11b与IEEE 802.11标准的比较在1997年,IEEE发布了第一个无线局域网标准802.11。
在1999年9月,IEEE批准并以官方的名义发布了IEEE 802.11b标准,该标准对IEEE 802.11标准进行了修改和补充,其中最重要的改进就是在IEEE 802.11a的基础上增加了两种更高速率5.5Mbit/s和11Mbit/s。
有了IEEE 802.11b无线局域网标准,移动用户将可以得到以太网级(10Mbit/s)的无线通信性能、速率和可用性,管理者也可以无缝地将多种局域网技术(如以太网、令牌环网等)集成起来,形成一种能够最大限度满足其商业和普通用户需求的网络,满足了用户对高速增长的数据业务和多媒体业务的通信需要。
同时,像已有的IEEE 802标准一样,IEEE 802.11标准集中在ISO模型的最低两层:物理层和数据链路层。
IEEE 802.11、802.15、802.16、802.20标准简介-文档资料
Wi-Fi与其他无线协议。 802.11v 无线网络管理。V工作组是最新成立的小组,
其任务将基于802.11k所取得的成果。802.11v主要面对 的7
与802.11b不兼容,是其最大的缺点。也许会因此而被 802.11g淘汰。
7
IEEE 802.11b标准
1999年9月被正式批准,又称Wi-Fi标准,目前最流行的 WLAN协议。该标准规定无线局域网工作频段在 2.4GHz~2.4835GHz,数据传输速率达到11 Mbps。该标 准是对IEEE 802.11的一个补充,采用点对点模式和基本 模式两种运作模式,在数据传输速率方面可以根据实际情 况在11 Mbps、5.5 Mbps、2 Mbps、1 Mbps的不同速率 间自动切换,而且在2 Mbps、1 Mbps速率时与802.11兼 容。
802.11j针对日本标准进行的补充,类似于 802.11h是对欧洲标准的补充。
12
IEEE 802.11i标准
IEEE 802.11i标准是结合IEEE 802.1x中的用户 端口身份验证和设备验证,对无线局域网MAC 层进行修改与整合,提出了新的TKIP协议解决 了WEP协议中的漏洞。定义了严格的加密格式 和鉴权机制,以改善无线局域网的安全性。 IEEE 802.11i新修订标准主要包括两项内容: “Wi-Fi保护访问”(WPA)技术和“强健安全 网络”。Wi-Fi联盟计划采用802.11i标准作为 WPA的第二个版本,并于2004年初开始实行。
16
IEEE 802.11o/p/Q/t/u/v标准
802.11o 针对VOWLAN(Voice over WLAN)而制订 ,更 快速的无限跨区切换,以及读取语音(voice)比数据 (Data)有更高的传输优先权。
模糊测度下IEEE 802.11的DCF性能优化
21 0 1年 9月
计 算 机 应 用 研 究
Ap l a in Re e r h o mp tr p i t s a c fCo u e s c o
Vo . 8 No 9 12 .
S p 01 e .2 1
模 糊 测 度 下 I E8 2 1 E 0 . E 1的 D CF性 能 优 化
关 键 词 :模 糊 测 度 ;C o u t 分 ;分 布 式 协 调 功 能 ;无 线局 域 网 hq e 积
பைடு நூலகம்
中图分 类号 :T 3 1 P 3 . P 9 ;T 3 4 4
文献 标 志码 :A
文章 编号 :10 — 6 5 2 1 ) 9 35 — 4 0 1 3 9 (0 1 0 — 4 9 0
及其 参数之 间的 内在 关 系对 系统性 能的影 响 。根 据 测度 结 果优 化 MA C层协 议 参数 集 , 获得 对 吞 吐量 影 响 最 大 的参数 子 集。通过 调 整子 集 中的参数 , 出一种有 效提 高 WL N吞 吐 量 的策略 。仿 真 结果 表 明 , 据 测度 结 果 提 A 根 只 需调 整子 集 中的参数 以提 高吞 吐 量 , 效 改善无 线 资源利 用率 。 有
mor e s na l e r a o by. Ke o d y w r s: f zy me s r u z a u e; Cho ue ne r l DCF; W L q ti tg a ; AN
0 引言
I E 0 . 1 E E8 2 1 标准 中的介 质访 问控 制 ( C 子层 提供 了 MA ) 基 于具有 冲突避免 的载 波侦 听多路访 问 C MA C 的点协 调 S /A
802.11_MAC层协议分析
享。 (1)载波监听机制(CSMA) 物理和虚拟的载波监听机制可以让
MAC层监听介质状态。其中物理层(PHY) 提供信道的物理监听。PHY控制机提供的 物理信道评估结果发送到MAC层,作为确 定信道状态信息的一个因素。
注意在当工作站监听到介质空闲时, 工作站会延迟相应的一个帧间时隙(IFS), 如果此时介质保持忙状态,站点使用退避 算法并继续监听介质;如果介质空闲,站点 才传输。这点图2没有反映出来。
基于可选优先级的PCF提供无竞争的 帧传送。在这种T作模式下,置于访问节 点AP中的中心控制器控制来自工作站的帧 的发送。所有工作站均服从中心控制器 (P C)的控制。在竞争期的开始,P C 首先获得介质的控制权。这样中心控制器 就可在无竞争期保持控制权;PC通过发 送CF-poll轮询有数据要发送的工作站, 工作站收到轮询帧后必须予以反应。P C 遵循PIFS对介质访问;因为PIFS比DIFs 小,PCF能够获得介质并且在它轮询和接 收相应时把所有的DCF方式下发出的帧排 出介质外。
4.信包重整 如果MSDU的长度超过了MAC管理
信息库中规定的值,M A C协议就会对 MSD U进行分段。每一分段被独立的发 出,并从接收方返回各自的ACK。所有 经过分段处理的帧包含MAC头,FCS (帧校验序列)和序列控制(Sequence Contr01)字段。序列控制字段包含该帧 的序列号及该分段号。有了分段号,目标 工作站就可以过滤到重复帧。这样,目标 工作站就可按照正确的顺序对相同序列号 的所有分段进行组合,组成对应的 MSDU。
图1 MAC子层结构
万方数据
一134一
高的环境中,因为许多工作站都在等待介 质空闲,所以介质一旦空闲,大家就有可 能在同一时刻发送数据。CSMA/CA协议 于是利用随机退避时间控制,将冲突发生 的可能性减少到最低。 这样,和以太网 中的二进制退避算法类似,802.11中的 Backoff Procedure提供了一种处理重负 载的方法。
ieee802.11
IEEE 802.11h,2004年,无线覆盖半径的调整,室内 (indoor)和室外(outdoor)信道(5.2GHz频段)。 IEEE 802.11i,2004年,无线网络的安全方面的补 充。 IEEE 802.11j,2004年,根据日本规定做的升级。 IEEE 802.11l,预留及准备不使用。 IEEE 802.11m,维护标准;互斥及极限。 IEEE 802.11n,更高传输速率的改善,支持多输入 多输出技术(Multi-Input Multi-Output,MIMO)。 提 供标准速度300M,最高速度600M的连接速度 IEEE 802.11k,该协议规范规定了无线局域网络频 谱测量规范。该规范的制订体现了无线局域网络对频 谱资源智能化使用的需求。
数据传送率
编码长度
调制方式
波串速率
位数/波串ຫໍສະໝຸດ 1 Mbps2 Mbps 5.5 Mbps 11 Mbps
11 (BS串)
11 (BS串) 8(CCK) 8(CCK)
BPSK
QPSK QPSK QPSK
1 MSps
1 MSps 1.375 MSps 1.375 MSps
1
2 4 8
动态调节技术
为了支持在有噪音的环境下能够获得较好的传 输速率,802.11b采用了动态速率调节技术,来 允许用户在不同的环境下自动使用不同的连接 速度来补充环境的不利影响。在理想状态下, 用户以11M的全速运行,然而,当用户移出理 想的11M速率传送的位置或者距离时,或者潜 在地受到了干扰的话,这把速度自动按序降低 为5.5Mbps、2Mbps、1Mbps。同样,当用户回 到理想环境的话,连接速度也会以反向增加直 至11Mbps。速率调节机制是在物理层自动实现 而不会对用户和其它上层协议产生任何影响。
无线局域网题集
无线局域网题集一、选择题1.无线局域网WLAN 传输介质是: ( )A.无线电波(正确答案)B.红外线C.载波电流D.卫星通信答案解析:A我国的火警报警电话是119。
2.无线局域网的最初协议是: ( )A . IEEE802.11(正确答案)B.IEEE802.5C. IEEE802.3D. IEEE802.1答案 A3 .现网 AP设备能支持下列哪种管理方式: ( )A. SNMPB.SSHC.WEB正确答案)D.TELNET答案 C4.室内 AP最好安装在下面哪个环境? ( )A. 强电井通风好B. 弱电井通风好(正确答案)C. 强电井通风不好D. 弱电井通不好答案 B5.802.11 协议定义了无线的 ( ) [单选题]A. 物理层和数据链路层B.网络层和MAC层C.物理层和介质访问控制层(正确答案)D.网络层和数据链路层答案 C6. 802.11b 和802.11a 的工作频段、最高传输速率分别为: ( )A. 2.4GHz、11Mbps ; 2.4GHz 、54MbpsB. 5GHz、54Mbps ; 5GHz 、11MbpsC.5GHz、54Mbps ;2.4GHz 、11MbpsD.2.4GHz 、11Mbps ; 5GHz 、54Mbps(正确答案)答案 D7.由于无线通信过程中信号强度太弱、错误率较高,无线客户端自动切换到其它无线AP的信道,这个过程称为。
( )A.关联B.重关联C.漫游(正确答案)D.负载平衡答案 C8.802.11g 规格使用哪个RF频段( )A.5.2GHzB. 5.4GHzC.2.4 GHz(正确答案)D.800 MHz答案 C9. IEEE802.11 标准在OSI 模型中的提供进程间的逻辑通信.A.数据链路层(正确答案)B.网络层C.传输层D.应用层答案 A10.无线AP 的特点不包括以下哪一个 ( )A.稳定B.高速C.覆盖范围广D.简洁性(正确答案)答案 D11.以下哪一项不是胖 AP入网需要配置的参数?( )A.IP 地址B.DNS服务器地址(正确答案)C.默认网关地址D.子网掩码答案 B12.无线局域网中最常用的标准是:A. IEEE 802.1B. IEEE 802.3C. IEEE 802.11D. IEEE 802.1513.IEEE 802.11n标准工作在哪些频段?A. 仅2.4GHzB. 仅5GHzC. 2.4GHz和5GHzD. 1GHz以下14.以下哪个标准不属于Wi-Fi标准系列?A. IEEE 802.11aB. IEEE 802.11bC. IEEE 802.11gD. IEEE 802.15.415.IEEE 802.11a标准使用哪种调制技术?A. DSSSB. FHSSC. OFDMD. CDMA16.IEEE 802.11b标准最高支持多少Mbps的数据速率?A. 1 MbpsB. 11 MbpsC. 54 MbpsD. 600 Mbps17.以下哪个选项是Wi-Fi 6的标准名称?A. IEEE 802.11acB. IEEE 802.11adC. IEEE 802.11axD. IEEE 802.11be18.IEEE 802.11g标准与哪个标准向后兼容?A. IEEE 802.11aB. IEEE 802.11bC. IEEE 802.11b和IEEE 802.11a(部分)D. IEEE 802.11n19.以下哪个标准主要用于个人区域网络(WPAN)?A. IEEE 802.11B. IEEE 802.15.4C. IEEE 802.3D. IEEE 802.1620.IEEE 802.11标准中,用于无线局域网的安全协议是?A. WEPB. WPAC. WPA2D. TKIP21.以下哪个标准支持最高达6.75Gbps的数据速率?A. IEEE 802.11nB. IEEE 802.11acC. IEEE 802.11ax(Wi-Fi 6)D. IEEE 802.11be(Wi-Fi 7)22.IEEE 802.11标准中,哪个子标准使用5GHz频段?A. IEEE 802.11aB. IEEE 802.11bC. IEEE 802.11a和IEEE 802.11n(5GHz部分)D. IEEE 802.11g23.以下哪个选项不属于Wi-Fi网络的组成部分?A. 接入点(AP)B. 无线网卡C. 以太网交换机D. 分布式系统(DS)24.IEEE 802.11标准中,用于解决隐藏节点和暴露节点问题的机制是?A. RTS/CTSB. CTS/RTSC. CSMA/CAD. DSSS25.以下哪个选项不是Wi-Fi 6(IEEE 802.11ax)引入的新特性?A. OFDMAB. MU-MIMOC. DSSSD. Target Wake Time (TWT)26.IEEE 802.11标准中,用于无线局域网的基本服务集标识符是?A. BSSIDB. SSIDC. BSSID和SSIDD. MAC地址27.以下哪个标准支持高达9.6Gbps的数据速率?A. IEEE 802.11acB. IEEE 802.11axC. IEEE 802.11be(Wi-Fi 7)D. IEEE 802.11ad28.IEEE 802.11标准中,哪种方式用于减少冲突并提高网络效率?A. RTS/CTSB. CSMA/CDC. CSMA/CAD. FHSS29.以下哪个选项是Wi-Fi网络的物理层技术之一?A. TCP/IPB. HTTPC. OFDMD. DNS30.IEEE 802.11ac标准主要用于哪个频段?A. 2.4GHzB. 5GHzC. 6GHzD. 2.4GHz和5GHz31.以下哪个标准定义了无线局域网的媒体访问控制层(MAC)和物理层(PHY)?A. IEEE 802.1B. IEEE 802.3C. IEEE 802.11D. IEEE 802.1532.以下哪种拓扑结构在无线局域网中最常见,用于将多个设备连接到网络?A. 网状结构B. 星型结构C. 蜂窝状结构D. 总线型结构答案:B33.在无线局域网中,所有节点都直接连接到中心节点的拓扑结构是?A. 环形结构B. 星型结构C. 树状结构D. 分布式结构答案:B34.以下哪种拓扑结构在无线局域网中通过无线链路连接多个独立网络?A. WDS无线分布系统B. D-HOC拓扑C. DS分布式系统D. Mesh网络答案:A35.Mesh网络中,负责连接到有线网络的AP角色被称为?A. MPPB. MPC. MAPD. BSS答案:A36.哪种拓扑结构适用于节点按环形连接,每个节点连接两个相邻节点的场景?A. 环形拓扑B. 星型拓扑C. 总线拓扑D. 树状拓扑答案:A37.以下哪种结构是由一个或多个BSS组成的?A. BSSB. ESSC. BSSIDD. WDS答案:B38.在无线局域网中,用于标识AP管理的BSS的是?A. SSIDB. BSSIDC. APIDD. DSID答案:B39.以下哪种拓扑结构通过无线链路连接两个或多个独立的无线局域网?A. 星型拓扑B. 总线拓扑C. Mesh网络D. P2P拓扑答案:D(但注意,P2P通常是WDS的一种形式,这里为符合选项格式而给出)40.在WDS点对点拓扑结构中,对接的AP应使用什么?A. 不同的信道B. 统一的信道C. 不同的频段D. 随机的频段答案:B41.以下哪个不是无线局域网中常见的拓扑结构?A. 环形拓扑B. 蜂窝状结构C. 星型拓扑D. 总线型结构答案:B(虽然蜂窝状结构在移动通信中有应用,但不是无线局域网中的常见拓扑)42.Mesh网络中,处于中间位置的AP角色被称为?A. MPPB. MPC. MAPD. BSS答案:B43.以下哪种拓扑结构在无线局域网中通过无线链路实现网络互通?A. 环形拓扑B. 总线拓扑C. WDS无线分布系统D. 星型拓扑答案:C44.哪种拓扑结构适用于远距离无线连接,如城市间的无线连接?A. WLANB. WMANC. WPAND. WWAN答案:D45.以下哪个术语表示无线局域网的基本服务集?A. SSIDB. BSSC. BSSIDD. WDS答案:B46.Mesh网络中,负责连接STA的AP角色被称为?A. MPPB. MPC. MAPD. BSS答案:C47.在无线局域网中,以下哪种拓扑结构没有中心节点?A. 星型拓扑B. 总线拓扑C. D-HOC拓扑D. 树状拓扑答案:C(D-HOC拓扑通常没有固定的中心节点)48.以下哪种拓扑结构通过无线链路连接多个网络,并形成一个网状结构?A. 星型拓扑B. Mesh网络C. 总线拓扑D. WDS点到多点拓扑答案:B49.在无线局域网中,用于区分不同网络的SSID是?A. 网络名称B. MAC地址C. IP地址D. 端口号答案:A50.以下哪种拓扑结构在无线局域网中通常用于大型建筑内的无线覆盖?A. 环形拓扑B. 星型拓扑C. Mesh网络D. 总线拓扑答案:C(Mesh网络特别适用于大型建筑或区域的无线覆盖)51.以下哪个术语不是用于描述无线局域网拓扑结构的?A. BSSB. WDSC. APD. ESS答案:C(AP是接入点的简称,不是拓扑结构)52.在2.4GHz频段,IEEE 802.11标准中互不干扰的信道有哪些?A. 1, 6, 11B. 2, 4, 6C. 3, 7, 10D. 5, 8, 13答案:A53.动态信道选择技术的主要目的是什么?A. 提高数据传输速率B. 减少信道间干扰C. 扩大网络覆盖范围D. 增加网络节点数量答案:B54.使用定向天线相比于全向天线,在减少干扰方面的优势是什么?A. 增加信号覆盖范围B. 提高信号方向性C. 降低设备成本D. 简化网络配置答案:B55.在无线网络中,提高信噪比(SNR)的主要目的是什么?A. 增加信道带宽B. 延长电池寿命C. 减少噪声和干扰D. 提高设备兼容性答案:C56.MIMO技术通过什么方式提高数据速率和信号质量?A. 使用单个发送和接收天线B. 利用多个发送和接收天线C. 增加信道带宽D. 改进调制方式答案:B57.波束成形技术主要用于什么?A. 增加信号覆盖范围B. 控制信号方向C. 加密无线信号D. 提高设备功率答案:B58.信道绑定可能带来的主要问题是什么?A. 降低信号质量B. 减少带宽C. 增加干扰风险D. 提高成本答案:C59.在无线网络规划中,如何避免相邻AP之间的干扰?A. 使用相同的信道B. 尽可能增加AP之间的距离C. 分配相邻的信道D. 降低发射功率答案:B60.以下哪项不是减少无线网络干扰的策略?A. 信道规划与管理B. 使用低功率设备C. 增加信道数量D. 禁用不必要的无线设备答案:C61.在认知无线电网络中,频谱感知技术的主要作用是什么?A. 预测网络流量B. 实时监测频谱使用情况C. 加密无线信号D. 自动调整信道带宽答案:B62.信道接入控制(MAC)层协议的主要目的是什么?A. 确保数据传输的安全性B. 管理信道接入,减少碰撞和干扰C. 扩大网络覆盖范围D. 提高设备兼容性答案:B63.在无线网络中,提高接收机灵敏度的主要目的是什么?A. 延长电池寿命B. 减少外部噪声和干扰的影响C. 增加信号覆盖范围D. 提高数据传输速率答案:B64.以下哪项技术不是用于减少无线网络干扰的?A. 信道绑定B. 信道重用规划C. 自适应调制与编码D. 干扰避免算法答案:A65.在大型无线网络中,合理规划信道重用模式的主要目的是什么?A. 增加信道数量B. 减少信号重叠和干扰C. 扩大网络覆盖范围D. 提高设备功率答案:B66.无线AP的供电方式有哪些?(多选)A. PoE供电B. DC电源适配器C. USB供电D. 太阳能供电答案:A, B67.在无线网络中,如何判断哪个信道受到的干扰最小?A. 通过环境检测工具B. 观察信号强度C. 询问网络管理员D. 随意选择一个信道答案:A68.Wi-Fi 6中的BSS Coloring技术主要用于什么?A. 加密无线信号B. 提升信道复用率C. 预测网络流量D. 降低设备功耗答案:B69.以下哪项不是IEEE 802.11n的技术特点?A. 向下兼容IEEE 802.11bB. 工作于2.4G频段时,最大传输速率是600Mbit/sC. 采用双频工作模式D. 另一个名称是“Wi-Fi 5”答案:D70.在无线网络中,如何减少AP之间的信号重叠?A. 增加AP的发射功率B. 分配相邻的信道C. 合理规划AP的位置D. 禁用不必要的无线设备答案:C71.以下哪项是信道接入控制(MAC)层协议不直接管理的?A. 信道分配B. 数据加密C. 信道接入顺序D. 冲突检测和避免答案:B二、简答题1.什么是WPA3?它相比WPA2有哪些改进?答案:WPA3(Wi-Fi Protected Access 3)是Wi-Fi联盟发布的最新一代Wi-Fi安全协议。
IEEE802.11-2020中译版第3章:定义和缩略语
3 定义和缩略语3.1定义就本标准而言,以下术语和定义适用。
IEEE 标准词典在线应引用本条款中未定义的术语。
访问控制:防止未经授权使用资源。
接入点(AP):包含一个站(STA)并通过无线介质(WM)为关联的STA提供对分发系统服务的访问的实体。
AP包括STA和分发系统访问功能(DSAF)。
接入点(AP)可访问性:如果预身份验证消息可以通过分发系统(DS)在STA和目标AP之间交换,则AP可由站(STA)访问。
注意—预身份验证在12.6.10.2中定义。
其他身份验证数据(AAD):未加密但受加密保护的数据。
准入控制:一种算法,旨在通过控制新流的准入来防止违反网络对允许流做出的参数化服务承诺资源受限的网络。
聚合介质访问控制(MAC)协议数据单元(A-MPDU):包含一个或多个MPDU并由物理层(PHY)作为单个PHY服务数据传输的结构单位(PSDU)。
聚合介质访问控制(MAC)协议数据单元(A-MPDU)子帧:A-MPDU的一部分,它包含分隔符,并选择性地包含MPDU和任何必要的填充。
聚合介质访问控制(MAC)服务数据单元(A-MSDU):包含一个或多个MSDU并在单个(未分段)数据介质访问控制(MAC)中传输的结构协议数据单元(MPDU)。
聚合介质访问控制(MAC)服务数据单元(A-MSDU)子帧:A-MSDU的一部分,其中包含标头和关联的MSDU。
天线连接器:用于电台(STA)中射频(RF)测量的测量参考点。
天线连接器是STA 架构中的点,表示用于无线电接收的接收器的输入(天线的输出)和天线(发射器的输出)用于无线电传输。
在使用多个天线或天线阵列的系统中,天线连接器是一个虚拟点,表示多个天线的聚合输出(或输入)。
在使用有源天线阵列进行处理的系统中,天线连接器是有源阵列的输出,其中包括有源天线的任何处理增益子系统。
天线选择(ASEL)接收器:执行接收ASEL的站(STA)。
天线选择(ASEL)发射器:执行传输ASEL的站(STA)。
802.11g核心技术和协议测试报告
802.11g核心技术和协议测试报告【2005-01-31 15:57】【韩旭东张春业曹建海】【慧聪网通信行业】IEEE802.11工作组近年来开始定义新的物理层标准IEEE802.11g。
与以前的IEEE802.11协议标准相比,IEEE802.11g草案有以下两个特点:在2.4 GHz频段使用正交频分复用(OFDM)调制技术,使数据传输速率提高到20 Mbit/s以上;能够与IEEE802.11b的Wi-Fi系统互联互通,可共存于同一AP的网络里,从而保障了后向兼容性。
这样原有的WLAN系统可以平滑地向高速WLAN过渡,延长了IEEE802.11b产品的使用寿命,降低了用户的投资。
2003年7月IEEE802.11工作组批准了IEEE802.11g草案,该标准成为人们关注的新焦点。
IEEE802.11 WLAN实现的关键技术随着WLAN技术的应用日渐广泛,用户对数据传输速率的要求越来越高。
但是在室内这个较为复杂的电磁环境中,多经效应、频率选择性衰落和其它干扰源的存在使得无线信道中高速数据传输的实现比有线信道困难,因此WLAN需要采用合适的调制技术。
IEEE802.11 WLAN是一种能支持较高数据传输速率(1~54 Mbit/s),采用微蜂窝、微微蜂窝结构,自主管理的计算机局域网络。
其关键技术大致有3种,直序列扩频调制技术(DSSS: Direct Sequence Spread Spectrum)及补码键控(CCK:Complementary Code Keying)技术、包二进制卷积(PBCC:Packet Binary Convolutional Code)和正交频分复用技术OFDM:Orthogonal Frequency Division Mustiplexing。
每种技术皆有其特点,目前扩频调制技术正成为主流,而OFDM技术由于其优越的传输性能成为人们关注的新焦点。
1.DSSS调制技术基于DSSS的调制技术有3种。
IEEE802.11-2020中译版:概述
IEEE802.11-2020中译版概述摘要 本系列文章为IEEE802.11-2020标准的中译版,本文原文请参考英文标准的第1章。
本章主要对标准的范围、目的等做了说明,并对标准中出现的单词用法做了说明。
1 范围该标准的范围是为本区域内的固定、便携式和移动站(STA)的无线连接定义一个媒体访问控制(MAC)和多个物理层(PHY)规范。
2 目的该标准的目的是为本地区域内的固定、便携式和移动站提供无线连接。
该标准还为监管机构提供了一种标准化访问一个或多个频段的方法,以便进行局域通信。
3 关于目的的补充资料具体而言,在符合IEEE802.11™标准的设备中,此标准—描述设备在独立、个人和基础结构网络中运行所需的功能和服务,以及这些网络中设备移动性(转换)的各个方面网络。
—描述允许设备与独立网络或基础结构网络外部的另一个此类设备直接通信的功能和服务。
—定义MAC过程以支持MAC服务数据单元(MSDU)传递服务。
—定义了几种由MAC控制的PHY信令技术和接口功能。
—允许在与多个重叠的IEEE802.11WLAN共存的无线局域网(WLAN)中操作设备。
—描述为通过无线介质(WM)传输的用户信息和MAC管理信息提供数据机密性和设备身份验证的要求和过程。
—定义动态频率选择(DFS)和发射功率控制(TPC)的机制,这些机制可用于满足任何频段操作的法规要求。
—定义MAC过程以支持具有服务质量(QoS)要求的局域网(LAN)应用程序,包括语音、音频和视频的传输。
—定义设备的无线网络管理机制和服务,包括BSS转换管理、信道使用和共存、并置干扰报告、诊断、组播诊断和事件报告、灵活的多播、高效的信标机制、代理ARP播发、位置、时序测量、定向多播、扩展休眠模式、流量过滤和管理通知。
—定义帮助设备发现和选择网络的功能和程序,使用QoS映射从外部网络传输信息,以及提供紧急情况的一般机制服务业。
—定义无线多跳通信所需的MAC过程,以支持无线LAN网状拓扑。
博通BCM43362-wifi 资料
Single-Chip IEEE 802.11™ b/g/n MAC/Baseband/Radio + SDIO Figure 1: BCM43362 System Block Diagram GENERAL DESCRIPTIONFEATURES The Broadcom® BCM43362 single-chip device provides the highest level of integration for mobileand handheld wireless systems, featuring integrated IEEE 802.11™ b/g and handheld device class IEEE 802.11n. It includes a 2.4 GHz WLAN CMOS power amplifier (PA) that meets the output power requirements of most handheld systems. An optional external low-noise amplifier (LNA) and external PA are also supported.Along with the integrated power amplifier, the BCM43362 also includes integrated transmit and receive baluns, further reducing the overall solution cost.Host interface options include SDIO v2.0 that can operate in 4b or 1b modes, and a generic gSPI mode.Utilizing advanced design techniques and process technology to reduce active and idle power, the BCM43362 is designed to address the needs of highly mobile devices that require minimal power consumption and compact size. It includes a power management unit that simplifies the system power topology and allows for operation directly from a rechargeable mobile platform battery while maximizing battery life.•Single-band 2.4 GHz IEEE 802.11 b/g/n •Integrated WLAN CMOS power amplifier with internal power detector and closed-loop power control •Internal fractional-N PLL enables the use of a wide range of reference clock frequencies •Supports IEEE 802.15.2 external 3-wire and 4-wire coexistence schemes to optimize bandwidth utilization with other co-located wireless technologies such as Bluetooth, GPS, WiMax, or UWB. •Supports standard interfaces SDIO v2.0 (50 MHz, 4-bit and 1-bit) and generic SPI (up to 50 MHz)•Integrated ARM Cortex™-M3 CPU with on-chip memory enables running IEEE 802.11 firmwarethat can be field-upgraded with future features.•Supports WMM®, WMM-PS, and Wi-Fi Voice Personal (upgradable to Voice Enterprise in the future)•Security:–Hardware WAPI acceleration engine –AES and TKIP in hardware for faster data encryption and IEEE 802.11i compatibility –WPA™- and WPA2™- (Personal) support for powerful encryption and authentication •Programmable dynamic power management•Supports battery voltage range from 2.3V to 5.5V supplies with internal switching regulator• 1 kbit One-Time Programmable (OTP) memory for storing board parameters •69-bump WLBGA (4.52 mm x 2.92 mm, 0.4 mm pitch)Broadcom®, the pulse logo, Connecting everything®, and the Connecting everything logo are among the trademarks of Broadcom Corporation and/or its affiliates in the United States, certain other countries and/or the EU. Any other trademarks or trade names mentioned are the property of their respective owners.This data sheet (including, without limitation, the Broadcom component(s) identified herein) is not designed, intended, or certified for use in any military, nuclear, medical, mass transportation, aviation, navigations, pollution control, hazardous substances management, or other high-risk application. BROADCOM PROVIDES THIS DATA SHEET “AS-IS,” WITHOUT WARRANTY OF ANY KIND. BROADCOM DISCLAIMS ALL WARRANTIES, EXPRESSED AND IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF Broadcom Corporation 5300 California Avenue Irvine, CA 92617© 2011 by Broadcom Corporation All rights reserved Printed in the U.S.A.Revision History Revision Date Change Description 43362-DS101-R 02/17/11Updated:•LPO clock to LPO sleep clock throughout the document.•Figure 3: “Power Topology,” on page 13.•“TCXO” on page 18.•Table 2: “Crystal Oscillator and External Clock Requirements and Performance,” on page 19.•“External 32.768 kHz Low-Power Oscillator” on page 20.•Table 3: “External 32.768 kHz Low-Power Oscillator Specifications,” on page 20.•Table 6: “gSPI Registers,” on page 29.•Table 8: “WLBGA Signal Descriptions,” on page 47.•Table 9: “BCM43362 During Reset and After Reset or During Sleep,” on page 53.•Table 12: “Environmental Ratings,” on page 57.•Table 13: “ESD Specifications,” on page 57.•Table 14: “Recommended Operating Conditions and DC Characteristics,” on page 58.•Table 16: “WLAN 2.4 GHz Receiver Performance Specifications,” on page 60.•Table 17: “WLAN 2.4 GHz Transmitter Performance Specifications,” on page 63.•Table 18: “General Spurious Emissions Specifications,” on page 65.•Table 19: “Core Buck Regulator,” on page 66.•Table 20: “3.3V LDO (LDO3P3),” on page 69.•Table 21: “CLDO,” on page 70.•Table 22: “LNLDO1,” on page 71.•“gSPI Signal Timing” on page 76.43362-DS100-R 07/15/10Initial releaseTable of ContentsAbout This Document (8)Purpose and Audience (8)Acronyms and Abbreviations (8)Document Conventions (8)References (9)Technical Support (9)Section 1: BCM43362 Overview (10)Overview (10)Standards Compliance (11)Section 2: Power Supplies and Power Management (12)WLAN Power Management (12)Power Supply Topology (13)Voltage Regulators (14)PMU Sequencing (14)Low-Power Shutdown (15)CBUCK Regulator Features (15)Section 3: Frequency References (17)Crystal Interface and Clock Generation (17)TCXO (18)External 32.768 kHz Low-Power Oscillator (20)Section 4: WLAN System Interfaces (21)SDIO v2.0 (21)SDIO Pin Descriptions (21)Generic SPI Mode (23)SPI Protocol (23)Command Structure (26)Write (26)Write/Read (26)Read (26)Status (27)gSPI Host-Device Handshake (29)Boot-Up Sequence (29)External Coexistence Interface (32)Section 5: Wireless LAN MAC and PHY (33)MAC Features (33)MAC Description (33)PSM (34)WEP (35)TXE (35)RXE (35)IFS (36)TSF (36)NAV (36)MAC-PHY Interface (36)PHY Description (37)PHY Features (37)Section 6: WLAN Radio Subsystem (40)Receive Path (41)Transmit Path (41)Calibration (41)Section 7: CPU and Global Functions (42)WLAN CPU and Memory Subsystem (42)One-Time Programmable Memory (42)GPIO Interface (43)JTAG Interface (43)UART Interface (43)Section 8: WLAN Software Architecture (44)Host Software Architecture (44)Device Software Architecture (44)Remote Downloader (45)Wireless Configuration Utility (45)Section 9: Pinout and Signal Descriptions (46)Signal Assignments (46)WLAN GPIO Signals and Strapping Options (55)Section 10: DC Characteristics (56)Absolute Maximum Ratings (56)Environmental Ratings (57)Electrostatic Discharge Specifications (57)Recommended Operating Conditions and DC Characteristics (58)Section 11: WLAN RF Specifications (59)2.4 GHz Band General RF Specifications (60)WLAN 2.4 GHz Receiver Performance Specifications (60)WLAN 2.4 GHz Transmitter Performance Specifications (63)General Spurious Emissions Specifications (65)Section 12: Internal Regulator Electrical Specifications (66)Core Buck Regulator (66)3.3V LDO (LDO3P3) (69)CLDO (70)LNLDO1 (71)Section 13: System Power Consumption (72)Section 14: Interface Timing and AC Characteristics (73)SDIO Default Mode Timing (73)SDIO High-Speed Mode Timing (75)gSPI Signal Timing (76)JTAG Timing (77)Section 15: Package Information (78)Package Thermal Characteristics (78)Junction Temperature Estimation and PSI Versus Theta jc (78)Section 16: Mechanical Information (79)Section 17: Ordering Information (80)Figure 1: BCM43362 System Block Diagram (1)Figure 2: BCM43362 Block Diagram (10)Figure 3: Power Topology (13)Figure 4: Recommended Oscillator Configuration (17)Figure 5: Recommended Circuit to Use with an External Dedicated TCXO (18)Figure 6: Recommended Circuit to Use with an External Shared TCXO (18)Figure 7: Signal Connections to SDIO Host (SD 4-Bit Mode) (21)Figure 8: Signal Connections to SDIO Host (SD 1-Bit Mode) (22)Figure 9: Signal Connections to SDIO Host (gSPI Mode) (23)Figure 10: gSPI Write Protocol (24)Figure 11: gSPI Read Protocol (25)Figure 12: gSPI Command Structure (26)Figure 13: gSPI Signal Timing Without Status (27)Figure 14: gSPI Signal Timing with Status (Response Delay = 0) (28)Figure 15: WLAN Boot-Up Sequence (31)Figure 16: 4-Wire Coexistence Wiring (32)Figure 17: WLAN MAC Architecture (34)Figure 18: WLAN PHY Block Diagram (38)Figure 19: STBC Receive Block Diagram (39)Figure 20: Radio Functional Block Diagram (40)Figure 21: WLAN Software Architecture (45)Figure 22: 69-Ball WLBGA Ball Map (46)Figure 23: RF Port Location (59)Figure 24: CBUCK Efficiency (68)Figure 25: SDIO Bus Timing (Default Mode) (73)Figure 26: SDIO Bus Timing (High-Speed Mode) (75)Figure 27: gSPI Timing (76)Figure 28: 69-Ball WLBGA Mechanical Information (79)Table 1: CBUCK Operating Mode Selection (16)Table 2: Crystal Oscillator and External Clock Requirements and Performance (19)Table 3: External 32.768 kHz Low-Power Oscillator Specifications (20)Table 4: SDIO Pin Descriptions (21)Table 5: gSPI Status Field Details (28)Table 6: gSPI Registers (29)Table 7: Coexistence Signals (32)Table 8: WLBGA Signal Descriptions (47)Table 9: BCM43362 During Reset and After Reset or During Sleep (53)Table 10: GPIO Functions and Strapping Options (55)Table 11: Absolute Maximum Ratings (56)Table 12: Environmental Ratings (57)Table 13: ESD Specifications (57)Table 14: Recommended Operating Conditions and DC Characteristics (58)Table 15: 2.4 GHz Band General RF Specifications (60)Table 16: WLAN 2.4 GHz Receiver Performance Specifications (60)Table 17: WLAN 2.4 GHz Transmitter Performance Specifications (63)Table 18: General Spurious Emissions Specifications (65)Table 19: Core Buck Regulator (66)Table 20: 3.3V LDO (LDO3P3) (69)Table 21: CLDO (70)Table 22: LNLDO1 (71)Table 23: System Power Consumption (72)Table 24: SDIO Bus Timing Parameters (Default Mode) (74)Table 25: SDIO Bus Timing Parameters (High-Speed Mode) (75)Table 26: gSPI Timing Parameters (76)Table 27: JTAG Timing Characteristics (77)Table 28: Package Thermal Characteristics (78)About This Document BCM43362 Advance Data SheetAbout This DocumentPurpose and AudienceThis document provides engineering design information for the BCM43362, a single chip with an integrated 2.4 GHz RF transceiver, MAC, and baseband processor that fully supports the IEEE 802.11™ b/g/n standards. The information provided is intended for hardware design engineers who will be incorporating the BCM43362 into their designs.Acronyms and AbbreviationsIn most cases, acronyms and abbreviations are defined on first use.For a comprehensive list of acronyms and other terms used in Broadcom documents, go to:/press/glossary.php.Document ConventionsThe following conventions may be used in this document:Convention DescriptionBold User input and actions: for example, type exit, click OK, press Alt+CMonospace Code: #include <iostream>HTML: <td rowspan = 3>Command line commands and parameters: wl [-l] <command>< >Placeholders for required elements: enter your <username> or wl <command>[ ]Indicates optional command-line parameters: wl [-l]Indicates bit and byte ranges (inclusive): [0:3] or [7:0]Technical Support BCM43362 Advance Data Sheet ReferencesThe references in this section may be used in conjunction with this document.For Broadcom documents, replace the “xx” in the document number with the largest number available in the repository to ensure that you have the most current version of the document.Technical SupportBroadcom provides customer access to a wide range of information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software updates through its customer support portal (https:// ). For a CSP account, contact your Sales or Engineering support representative.In addition, Broadcom provides other product support through its Downloads & Support site(/support/).Note: Broadcom provides customer access to technical documentation and software through itsCustomer Support Portal (CSP) and Downloads & Support site (see Technical Support ).Document (or Item) Name Number Source Broadcom Items[1]BCM43362 reference board schematics – Broadcom RepresentativeBCM43362 Advance Data SheetBCM43362 Overview Section 1: BCM43362 Overview OverviewThe Broadcom® BCM43362 provides the highest level of integration for a mobile or handheld wireless system, with integrated IEEE 802.11 b/g/n. It provides a small form-factor solution with minimal external components to drive down cost for mass volumes and allows for handheld device flexibility in size, form, and function. The BCM43362 is designed to address the needs of highly mobile devices that require minimal power consumption and reliable operation.Figure 2 shows the interconnect of all the major physical blocks in the BCM43362 and their associated external interfaces, which are described in greater detail in the following sections.Figure 2: BCM43362 Block DiagramStandards Compliance BCM43362 Advance Data SheetStandards ComplianceThe BCM43362 supports the following standards:•IEEE 802.11n•802.11b•802.11g•802.11d•802.11h•802.11i•802.11jThe BCM43362 will support the following future drafts/standards:•802.11w —S ecure Management Frames•802.11 Extensions:•WMM®•802.11i MAC Enhancements•802.11r Fast Roaming Support (between APs)•802.11k Radio Resource Measurement•Security:•WEP•WAPI•WPA™Personal•WPA2™Personal•AES (Hardware Accelerator)•TKIP (HW Accelerator)•CKIP (SW Support)•QOS Protocols:•WMM•WWM-PS (U-APSD)•WWM-SA•Proprietary Protocols:•CCXv2•CCXv3•CCXv4•CCXv5•WFAEC•Coexistence Interfaces:•Supports IEEE 802.15.2 external three-wire coexistence scheme to support additional wireless technologies, such as GPS, WiMax, or UWB.Power Supplies and Power Management BCM43362 Advance Data SheetSection 2: Power Supplies and PowerManagementWLAN Power ManagementThe BCM43362 has been designed with the stringent power consumption requirements of mobile devices in mind. All areas of the chip design are optimized to minimize power consumption. Silicon processes and cell libraries were chosen to reduce leakage current and supply voltages. Additionally, the BCM43362 integrated RAM is a low-leakage memory with dynamic clock control. The dominant supply current consumed by the RAM is leakage current only.Additionally, the BCM43362 includes an advanced WLAN power management unit (PMU) sequencer. The PMU sequencer provides significant power savings by putting the BCM43362 into various power management states appropriate to the current environment and activities that are being performed. The power management unit enables and disables internal regulators, switches, and other blocks based on a computation of the required resources and a table that describes the relationship between resources and the time needed to enable and disable them. Power-up sequences are fully programmable. Configurable, free-running counters, which run on the 32.768 kHz low-power oscillator (LPO) sleep clock in the PMU sequencer, are used to turn individual regulators and power switches on and off. Clock speeds are dynamically changed, or gated off, as appropriate for the current mode. Slower clock speeds are used wherever possible.The BCM43362 power states are described as follows:•Active mode —A ll components in the BCM43362 are powered up and fully functional with active carrier sensing and frame transmission and receiving. All required regulators are enabled and put in the most efficient mode (PWM or Burst) based on the load current. Clock speeds are dynamically adjusted by the PMU sequencer.•Sleep mode —T he radio, AFE, PLLs, and the crystal oscillator are powered down. The rest of the BCM43362 remains powered up in an IDLE state. All main clocks are shut down. The 32.768-kHz LPO sleep clock is available only for the PMU sequencer. This condition is necessary to allow the PMU sequencer to wake up the chip and transition to Active mode. In Sleep mode, the primary power consumed is due to leakage current.•Power-down modes —T he BCM43362 has a full power-down mode and a low-power shutdown mode. A full power-down occurs when there is no VIO voltage, and WL_RST_N and EXT_SMPRS_REQ are low. A low-power shutdown occurs when VIO is present, and WL_RST_N and EXT_SMPRS_REQ are low. In low-power shutdown, only the band gap and LDO3P3 are on. Both power-down modes are exited when the host asserts either WL_RST_N or EXT_SMPS_REQ high.•External mode —I n this mode, the following are true:–The assertion of EXT_SMPS_REQ turns only the Core Buck (CBUCK) regulator on.–The WLAN is in reset (WL_RST_N = low).–The state of LDO3P3 and the band gap are dependent on VBAT and VIO.Power Supply Topology BCM43362 Advance Data SheetPower Supply TopologyThe BCM43362 contains a Power Management Unit (PMU), a buck-mode switching regulator, and three low noise LDOs. These integrated regulators simplify power supply design in WLAN embedded designs. All regulator inputs and outputs are brought out to pins on the BCM43362, providing system designers with the flexibility to choose which of the BCM43362's integrated regulators to use. One option is to supply the PMU from a single, variable power supply, VBAT, which can range from 2.3V to 5.5V. Using this option, all of the required voltages are provided by BCM43362 regulators except for a low current rail, VIO, which must be provided by the host to power the I/O signal buffers when the chip is out of reset.Alternately, if specific rails such as 3.3V, 1.8V, and 1.2V already exist in the system, appropriate regulators in the BCM43362 can be bypassed, thereby reducing the cost and board space associated with external regulator components such as inductors and large capacitors.The CBUCK and CLDO get powered whenever the reset signal is deasserted. The CBUCK regulator can be turned ON by asserting EXT_SMPS_REQ high. Asserting EXT_PWM_REQ high will set CBUCK to PWM mode. Driving EXT_PWM_REQ low will put CBUCK in Burst mode. Optionally, LNLDO may also be powered. All regulators are powered down only when the reset signal is asserted.Figure 3: Power TopologyVoltage Regulators BCM43362 Advance Data SheetVoltage RegulatorsAll BCM43362 regulator output voltages are PMU programmable and have the following nominal capabilities. The currents listed below indicate regulator capabilities. See “System Power Consumption” on page 72 for the actual expected loads.•Core Buck switching regulator (CBUCK): 2.3–5.5V input, nominal 1.5V output (up to 500 mA).•LDO3P3: 2.3–5.5V input, nominal 3.3V output (up to 40 mA)•CLDO (for the core): 1.45–2.0V input, nominal 1.2V output (up to 150 mA)•Low-noise LNLDO1: 1.45–2.0V input, nominal 1.2V output (up to 150 mA)See “Internal Regulator Electrical Specifications” on page 66 for full regulator specifications.PMU SequencingThe WLAN PMU sequencer is responsible for minimizing system power consumption. It enables and disables various system resources based on a computation of the required resources and a table that describes the relationship between resources and the time needed to enable and disable them. Resource requests come from several sources: clock requests from cores, the minimum resources defined in the ResourceMin register, and the resources requested by any active resource request timers. The PMU sequencer maps clock requests into a set of resources required to produce the requested clocks.Each resource is in one of four states: enabled, disabled, transition_on, and transition_off. Each resource has a timer that contains 0 when the resource is enabled or disabled and a nonzero value in the transition states. The timer is loaded with the resource's time_on or time_off value when the PMU determines that the resource must be enabled or disabled. That timer decrements on each LPO sleep clock. When it reaches 0, the state changes from transition_off to disabled or transition_on to enabled. If the time_on value is 0, the resource can go immediately from disabled to enabled. Similarly, a time_off value of 0 indicates that the resource can go immediately from enabled to disabled. The terms enable sequence and disable sequence refer to either the immediate transition or the timer load-decrement sequence.During each clock cycle, the PMU sequencer performs the following actions:putes the required resource set based on requests and the resource dependency table.2.Decrements all timers whose values are nonzero. If a timer reaches 0, the PMU clears the ResourcePendingbit for the resource and inverts the ResourceState bit.pares the request with the current resource status and determines which resources must be enabledor disabled.4.Initiates a disable sequence for each resource that is enabled, no longer being requested, and has nopowered-up dependents.5.Initiates an enable sequence for each resource that is disabled, is being requested, and has all of itsdependencies enabled.BCM43362 Advance Data SheetLow-Power ShutdownLow-Power ShutdownThe BCM43362 provides a low-power shutdown feature that allows the device to be turned off while the host, and any other device in the system, remain operational. When the WLAN is not needed, the WLAN core can be put in reset by deasserting WL_RST_N (logic hi). VDDIO_RF and VDDIO remain powered while VIO and VBAT are both present, allowing the BCM43362 to be effectively off while keeping the I/O pins powered. During a low-power shut-down state, provided VIO continues to be supplied to the BCM43362, most outputs are tristated and most inputs are disabled. Input voltages must remain within the limits defined for normal operation. This is done to prevent current paths or create loading on any digital signals in the system, enabling the BCM43362 to be a fully integrated embedded device that takes full advantage of the lowest power-saving modes.Two signals on the BCM43362, the system clock input (OSCIN) and sleep clock input (EXT_SLEEP_CLK), are designed to be high-impedance inputs that do not load down the driving signal even if the BCM43362 does not have VDDIO power applied to it. When the BCM43362 is powered on from this state, it is the same as a normal power-up, and the device does not contain any information about its state from before it was powered down.CBUCK Regulator FeaturesThe CBUCK regulator has several features that help make the BCM43362 ideal for mobile devices. First, the regulator uses 3.2 MHz as its PWM switching frequency for Buck regulation. This high frequency allows the use of small passive components for the switcher's external circuit, thereby saving PCB space in the design. In addition, the CBUCK regulator has three modes of operation: PWM mode for low-ripple output and for fast transient response and extended load ranges, Burst Mode for lower currents, and Low Power Burst Mode for higher efficiency when the load current is very low (Low Power Burst mode is not available for external devices).The CBUCK supports external SMPS request to allow flexibility of supplying 1.8V to BCM43362, BCM2076, and other external devices when EXT_SMPS_REQ is asserted high. It also supports low ripple PWM mode (7 mVpp typical) for noise-sensitive applications when EXT_PWM_REQ is asserted high. A 100 μs wait/settling time from the assertion of EXT_PWM_REQ high before increasing the load current allows the internal integrator precharging to complete. This is not a requirement, but is preferred.CBUCK Regulator FeaturesBCM43362 Advance Data Sheet Table 1 lists the mode the CBUCK operates in (Burst or PWM), based on various external control signals and internal CBUCK mode register settings.For detailed CBUCK performance specifications, see “Core Buck Regulator” on page 66.Table 1: CBUCK Operating Mode SelectionWL_RST_L EXT_SMPS_REQ EXT_PWM_REQ Internal CBUCK Mode Required CBUCK Mode 00X X Off 010X BURST 011XPWM 10X BURST BURST 10X PWM PWM 110BURST BURST 110PWM PWM 111XPWMFrequency ReferencesBCM43362 Advance Data Sheet Section 3: Frequency ReferencesAn external crystal is used for generating all radio frequencies and normal operation clocking. As analternative, an external frequency reference driven by a temperature-compensated crystal oscillator (TCXO) signal may be used. No software settings are required to differentiate between the two. In addition, a low-power oscillator (LPO) is provided for lower power mode timing.Crystal Interface and Clock GenerationThe BCM43362 can use an external crystal to provide a frequency reference. The recommended configuration for the crystal oscillator, including all external components, is shown in Figure 4. Consult the reference schematics for the latest configuration.Figure 4: Recommended Oscillator ConfigurationThe BCM43362 uses a fractional-N synthesizer to generate the radio frequencies, clocks, and data/packet timing. This enables it to operate using numerous frequency references. This may either be an external source such as a TCXO or a crystal interfaced directly to the BCM43362.The default frequency reference setting is a 26 MHz crystal or TCXO. The signal requirements and characteristics for the crystal interface are shown in Table 2 on page 19.Note: Although the fractional-N synthesizer can support many reference frequencies, frequencies other than the default require support to be added in the driver, plus additional extensive system testing. Contact Broadcom for further details.TCXOAs an alternative to a crystal, an external precision TCXO can be used as the frequency reference, provided that it meets the Phase Noise requirements listed in Table 2 on page 19. When the clock is provided by an external TCXO, there are two possible connection methods, as shown in Figure 5 and Figure 6:1.If the TCXO is dedicated to driving the BCM43362, it should be connected to the OSC_IN pin through anexternal 1000 pF coupling capacitor, as shown in Figure 5. The internal clock buffer connected to this pin will be turned OFF when the BCM43362 goes into sleep mode. When the clock buffer turns ON and OFF, there will be a small impedance variation up to ±15%. Power must be supplied to the WRF_XTAL_VDD1P2 pin.2.An alternative is to DC-couple the TCXO to the WRF_TCXO_IN pin, as shown in Figure 6. Use this methodwhen the same TCXO is shared with other devices and a change in the input impedance is not acceptable because it may cause a frequency shift that cannot be tolerated by the other device sharing the TCXO. This pin is connected to a clock buffer powered from WRF_TCXO_VDD3P3. If the power supply to this buffer is always on (even in sleep mode), the clock buffer is always on, thereby ensuring a constant input impedance in all states of the device. The maximum current drawn from WRF_TCXO_VDD3P3 is approximately 500 μA.Figure 5: Recommended Circuit to Use with an External Dedicated TCXOFigure 6: Recommended Circuit to Use with an External Shared TCXOTable 2: Crystal Oscillator and External Clock Requirements and PerformanceParameter Conditions/Notes CrystalExternal FrequencyReference Min TypMaxMinTypMaxUnits Frequency – Between 12 MHz and 52 MHz a a.The frequency step size is approximately 80 Hz. The BCM43362 does not auto-detect the reference clock frequency; the frequency is specified in the software/NVRAM file.Crystal load capacitance –– 12 –pF ESR– – – 60ΩInput Impedance (OSCIN)bb.The internal clock buffer connected to this pin will be turned off when the BCM43362 goes into Sleep mode. When the clock buffer turns on and off, there will be a small impedance variation up to ±15%.Resistive 30k 100k– ΩCapacitive– – 7.5pF Input Impedance (WRF_TCXO_IN)Resistive 30k 100k – ΩCapacitive– – 4pF OSCIN input voltage AC-coupled analog signal 400 – 1200mV p-p OSCIN input low level DC-coupled digital signal 0 – 0.2V OSCIN input high level DC-coupled digital signal 1.0 – 1.36V WRF_TCXO_IN input voltageDC-coupled analog signal c c.This input has an internal DC blocking capacitor, so do not include an external DC blocking capacitor.400 – TCXO_ VDD d d.The maximum allowable voltage swing for the WRF_TCXO_IN input is equal to the WRF_TCX0_VDD3P3 supply voltage range, which is 1.7V to 3.3V.mV p-p Frequency tolerance Initial + over temperature – –20 – 20–20 – 20ppm Duty cycle 26 MHz clock 405060%Phase Noise e, f (IEEE 802.11 b/g)e.For a clock reference other than 26 MHz, 20 × log10(f/26) dB should be added to the limits, where f = the reference clock frequency in MHz.f.If the selected clock has a flat phase-noise response above 100 kHz, then it is acceptable to subtract 1 dB from all 1 kHz, 10 kHz, and 100 kHz values shown, and ignore the 1 MHz requirement.26 MHz clock at 1 kHz offset – – – 119dBc/Hz 26 MHz clock at 10 kHz offset– – – 129dBc/Hz 26 MHz clock at 100 kHz offset – – – 134dBc/Hz 26 MHz clock at 1 MHz offset– – – 139dBc/Hz Phase Noise e, f (IEEE 802.11n, 2.4 GHz)26 MHz clock at 1 kHz offset – – – 124dBc/Hz 26 MHz clock at 10 kHz offset – – – 134dBc/Hz 26 MHz clock at 100 kHz offset – – – 139dBc/Hz 26 MHz clock at 1 MHz offset––– 144dBc/Hz。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Parminder Singh
Chandigarh Engineering College, Landran (Mohali), Punjab, 140307, India E-mail: singh.parminder06@ Abstract—Wireless mesh networks, consisting of mesh routers and mesh clients are very robust, reliable and easily maintained networks. The current work is based on IEEE 802.11 standard amendment IEEE 802.11s specific for mesh topology based networks to improve the connectivity and coverage. It aims to control the shared medium access among the stations using Distributed Coordination Function (DCF) MAC protocol for reducing collisions and delays, thereby increasing throughput of the network.. The actual Binary Exponential Backoff (BEB) algorithm as implemented in IEEE 802.11 resets the contention window to its least value after an acknowledged transmission. From the previous works it has been observed that this sudden reset to minimum value of contention window does not ensure a reduction in collisions. It may lead to more contention in the network thereby increasing delays and affecting its throughput. The proposed work presents a Mean Backoff Algorithm in order to solve this flaw of BEB algorithm. The proposed algorithm aims to bring the contention window to some appropriate value in order to cope up with the unfairness caused due to its minimum value on successful transmission. Index Terms—IEEE 802.11s, Independent Basic Service Set, Basic Service Set, Extended Service Set, Distributed Coordination Function, Contention window, Backoff. I. INTRODUCTION Wireless Mesh Networks comprise of mobile nodes form a dynamic network that organizes and configures itself. The mesh networks are formed using two types of nodes, mesh routers that perform routing functions in the network and mesh clients. These are enhanced ad hoc networks providing more robustness, reliable service coverage using multi-hop communication and easy network maintenance [1]. The working of these type of networks is mostly not centralized, which implies that different nodes take part for routing purposes for communication between the senders and the receivers [21]. These can be Infrastructure based, in which the traffic is redirected through the gateways, or Client mesh networks, which support peer to peer networking among Copyright © 2015 MECS the clients or a hybrid approach can be adopted for implementing them. Being advantageous over many other type of wireless networks, in terms of cost, reliability, coverage etc, they have been deployed in various applications [2]. The most common applications include broadband services, enterprise networking, community and enterprise networking etc [12]. The implementation of wireless mesh networks can be done using wireless technologies like 802.11, 802.15, 802.16 etc [2]. The IEEE 802.11 family of standards has specified many extensions for improvements in wireless connectivity. IEEE 802.11s is an extension to this standard which specifically corresponds to mesh networking that helps to improve coverage. There are three types of architectures specified by IEEE 802.11 that suggest the different ways of communication among the devices. An IBSS (Independent Basic Service Set) is composed of nodes that can directly communicate with one another as shown in Fig. 1. This type of configuration is formed randomly when the devices are in range and ready for communication with one another [3].
The differences between IBSS and ESS can be therefore summed up as given in table 1 [4]:
Table 1. Difference between IBSS and ESS S. No. 1 ESS Multiple BSSs are interconnected through a Distributed set (DS). There are portals that allow the MSDUs from other type of LANs to enter into the DS. It has provisions for client support and internet access. IBSS There is a single BSS in this configuration. There is no provision of portals or integrated wired LAN. It cannot provide client support or internet access.
Fig.1. IBSS
In a BSS (Basic Service Set), the stations don’t communicate directly but through Access Points as shown in Fig. 2. The access points distribute the data and act as gateways in the network [3]. The ESS (Extended Service Set) is a collection of numerous BSSs connected with one another through a central system often described as Distributed system (DS) as depicted in Fig. 3. A distributed system is responsible for transporting MAC service data units among various