北京市2017高考数学压轴卷 文
2017届北京市高三高考压轴理科数学试题及答案
2017届北京市高考压轴卷理科数学一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知11xyi i=-+,其中,x y 是实数,i 是虚数单位,则x yi +的共轭复数为( ) A .12i + B .12i - C .2i + D .2i - 2.已知函数3()f x x x =--,123,,x x x R ∈,且120x x +>,230x x +>,310x x +>,则123()()()f x f x f x ++的值为()A.正B.负C.零D.可正可负3.已知某几何体的三视图如下,则该几何体体积为( )A .4+52π B .4+32π C .4+2πD .4+π 4.如图所示为函数π()2sin()(0,0)2f x x ωϕωϕ=+>≤≤的部分图像,其中A ,B 两点之间的距离为5,那么(1)f -=( ) A .-1 B .CD .15.(5分)已知两条不重合的直线m、n和两个不重合的平面α、β,有下列命题:①若m⊥n,m⊥α,则n∥α;②若m⊥α,n⊥β,m∥n,则α∥β;③若m、n是两条异面直线,m⊂α,n⊂β,m∥β,n∥α,则α∥β;④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.其中正确命题的个数是()6.设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为A. B.C. D.7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是()8.已知定义在R上的偶函数f(x)满足f(1+x)=f(1﹣x),且x∈[0,1]时,,则方程在区间[﹣3,3]上的根的个数为()应位置.9.已知集合{}{}22,1,3,3,21,1A a a B a a a =+-=--+,若{}3A B =- ,则实数a 的值为________________.10.已知如图所示的流程图(未完成),设当箭头a 指向①时输出的结果S =m ,当箭头a 指向②时,输出的结果S =n ,求m +n 的值.11.若n S 是等差数列}{n a 的前n 项和,且8320S S -=,则11S 的值为 . 12.展开式中有理项共有 项.13.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是_______14.设a ∈R ,若x >0时均有[(a ﹣1)x ﹣1](x 2﹣ax ﹣1)≥0,则a= . 三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.15.已知向量)4cos ,4(cos ),1,4sin 3(2x x x ==.记n m x f ⋅=)( (I)求)(x f 的周期;(Ⅱ)在∆ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且满足(2a —c)cos B=b cosC ,若f (A )=,试判断∆ABC 的形状. 16.在一次对某班42名学生参加课外篮球、排球兴趣小组(每人参加且只参加一个兴趣小组)情况调查中,经统计得到如下2×2列联表:(单位:人)有关?(Ⅱ)在统计结果中,如果不考虑性别因素,按分层抽样的方法从两个兴趣小组中随机抽取7名同学进行座谈.已知甲、乙、丙三人都参加“排球小组”. ①求在甲被抽中的条件下,乙丙也都被抽中的概率;②设乙、丙两人中被抽中的人数为X ,求X 的分布列及数学期望E(X). 下面临界值表供参考:参考公式:2()()()()()n ad bc K a b c d a c b d -=++++命题意图:考查分类变量的独立性检验,条件概率,随机变量的分布列、数学期望等,中等题.17.已知正四棱柱1111-ABCD A BC D 中,12,4==AB AA . (Ⅰ)求证:1BD AC ⊥;(Ⅱ)求二面角11--A AC D 的余弦值;(Ⅲ)在线段1CC 上是否存在点P ,使得平面11ACD ⊥平面PBD ,若存在,求出1CPPC 的值;若不存在,请说明理由.18.已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,点B 为短轴的一个端点,260OF B ∠=︒. (Ⅰ)求椭圆C 的方程;(Ⅱ)如图,过右焦点2F ,且斜率为(0)≠k k 的直线l 与椭圆C 相交于,E F 两点,A 为椭圆的右顶点,直线,AE AF 分别交直线3=x 于点,M N ,线段MN 的中点为P ,记直线2PF 的斜率为'k . 求证: '⋅k k 为定值.19.已知数列{}n a 的各项均为正数,记12()n A n a a a =+++L ,231()n B n a a a +=+++L ,342(),1,2,n C n a a a n +=+++=L L .(Ⅰ)若121,5a a ==,且对任意n ∈*N ,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式.(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈*N ,三个数(),(),()A n B n C n 组成公比为q 的等比数列.20.已知函数2()2ln f x x x ax =-+(a ∈R ).(Ⅰ)当2a =时,求()f x 的图象在1x =处的切线方程;(Ⅱ)若函数()()g x f x ax m =-+在1[e]e,上有两个零点,求实数m 的取值范围;(Ⅲ)若函数()f x 的图象与x 轴有两个不同的交点12(0)(0)A x B x ,,,,且120x x <<, 求证:12()02x x f +'<(其中()f x '是()f x 的导函数).2017北京市高考压轴卷数学理word 版参考答案 1. 【 答案】D 【 解析】1()1,2,1,12x x xi yi x y i =-=-∴==+故选D . 2. 【 答案】B【 解析】∵3()f x x x =--,∴函数()f x 在R 上是减函数且是奇函数, ∵120x x +>,∴12x x >-,∴12()()f x f x <-,∴12()()f x f x <-,∴12()()0f x f x +<, 同理:23()()0f x f x +<,31()()0f x f x +<,∴123()()()0f x f x f x ++<.3. 【 答案】A【 解析】该几何体是一个圆柱与一个长方体的组成,其中重叠了一部分2π,所以该几何体的体积为52213422πππ⨯⨯+-=+.故选A . 4. 【 答案】A. 【 解析】5. 【 答案】C【 解析】①若m ⊥n ,m ⊥α,则n 可能在平面α内,故①错误 ②∵m ⊥α,m ∥n ,∴n ⊥α,又∵n ⊥β,∴α∥β,故②正确 ③过直线m 作平面γ交平面β与直线c , ∵m 、n 是两条异面直线,∴设n ∩c=O , ∵m ∥β,m ⊂γ,γ∩β=c ∴m ∥c , ∵m ⊂α,c ⊄α,∴c ∥α,∵n⊂β,c⊂β,n∩c=O,c∥α,n∥α∴α∥β;故③正确④由面面垂直的性质定理:∵α⊥β,α∩β=m,n⊂β,n⊥m,∴n⊥α.故④正确故正确命题有三个,故选C6. 【答案】C.【解析】由,得:,即,令,则当时,,即在是减函数,,,,在是减函数,所以由得,,即,故选7. 【答案】C.【解析】设P(m,n ),=(﹣c﹣m,﹣n)•(c﹣m,﹣n)=m2﹣c2+n2,∴m2+n2=2c2,n2=2c2﹣m2①.把P(m,n )代入椭圆得 b2m2+a2n2=a2b2②,把①代入②得 m2=≥0,∴a2b2≤2a2c2,b2≤2c2,a2﹣c2≤2c2,∴≥.又 m2≤a2,∴≤a2,∴≤0,a2﹣2c2≥0,∴≤.综上,≤≤,故选 C.8. 【答案】A.【解析】由f(1+x)=f(1﹣x)可得函数f(x)的图象关于x=1对称,方程在区间[﹣3,3]根的个数等价于f(x)与y=图象的交点的个数,而函数y=图象可看作y=的图象向下平移1个单位得到,作出它们的图象如图:可得两函数的图象有5个交点,故选A9. 【 答案】a=-1.【 解析】 若a-3=-3,则a=0,此时:}1,1,3{},3,1,0{--=-=B A ,}3,1{-=⋂∴B A ,与题意不符,舍 若2a-1=-3,则a=-1,此时:}2,4,3{},3,1,0{--=-=B A ,}3{-=⋂∴B A ,∴a=-1 若a2+1=-3,则a 不存在 综上可知:a=-1 10. 【 答案】20.【 解析】当箭头指向①时,计算S 和i 如下. i =1,S =0,S =1; i =2,S =0,S =2; i =3,S =0,S =3; i =4,S =0,S =4; i =5,S =0,S =5; i =6结束. ∴S =m =5.当箭头指向②时,计算S 和i 如下. i =1,S =0, S =1; i =2,S =3; i =3,S =6; i =4,S =10; i =5,S =15; i =6结束.∴S =n =15. ∴m +n =20. 11. 【 答案】44【 解析】由83456786520S S a a a a a a -=++++==,解得64a =,又由611111611211()114422a a a S a ⨯+==== 12. 【 答案】3.【 解析】展开式通项公式为T r+1==若为有理项时,则为整数,∴r=0、6、12,故展开式中有理项共有3项, 故答案为:3 13.【 答案】4.【 解析】设过坐标原点的一条直线方程为y kx =,因为与函数xx f 2)(=的图象交于P 、Q 两点,所以0k >,且联列解得,P Q ⎛ ⎝,所以4PQ ==14. 【 答案】【 解析】(1)a=1时,代入题中不等式明显不成立.(2)a ≠1,构造函数y 1=(a ﹣1)x ﹣1,y 2=x 2﹣ax ﹣1,它们都过定点P (0,﹣1).考查函数y 1=(a ﹣1)x ﹣1:令y=0,得M (,0),∴a >1;考查函数y 2=x 2﹣ax ﹣1,显然过点M (,0),代入得:,解之得:a=,或a=0(舍去).故答案为: 15. 【解析】211()cos cos cos 4442222x x x x x f x +++1sin 262x π⎛⎫=++⎪⎝⎭(I )π4=T(Ⅱ 根据正弦定理知:()2cos cos (2sin sin )cos sin cos a c B b C A C B B C -=⇒-=12sin cos sin()sin cos 23A B B C A B B π⇒=+=⇒=⇒=∵()f A =∴1sin 262263A A πππ⎛⎫++⇒+=⎪⎝⎭或23π3A π⇒=或 π 而203A π<<,所以3A π=,因此∆ABC 为等边三角形.……………12分16. 【 解析】(Ⅰ)由表中数据得K 2的观测值k =42×(16×12-8×6)224×18×20×22=25255≈4.582>3.841. ……2分所以,据此统计有95%的把握认为参加“篮球小组”或“排球小组”与性别有关.……4分(Ⅱ)①由题可知在“排球小组”的18位同学中,要选取3位同学. 方法一:令事件A 为“甲被抽到”;事件B 为“乙丙被抽到”,则P(A ∩B)=33318C C ,P(A)=217318C C .所以P(B|A)=P(A ∩B)P(A)=33217C C =217×16 =1136. ……7分方法二:令事件C 为“在甲被抽到的条件下,乙丙也被抽到”, 则P(C)=22217C C =217×16=1136.②由题知X 的可能值为0,1,2.依题意P(X =0)=316318C C =3551;P(X =1)=21162318C C C =517;P(X =2)=12162318C C C =151.从而X 的分布列为……10分于是E(X)=0×3551+1×517+2×151=1751=13. ……12分 17. 【 解析】证明:(Ⅰ)因为1111ABCD A BC D -为正四棱柱,所以1AA ⊥平面ABCD ,且ABCD 为正方形. (1)分因为BD ⊂平面ABCD ,所以1,BD AA BD AC ⊥⊥. ………2分因为1AA AC A = , 所以BD ⊥平面1A AC . ………3分因为1AC ⊂平面1A AC , 所以1BD AC ⊥. (4)分(Ⅱ) 如图,以D 为原点建立空间直角坐标系-D xyz .则11(0,0,0),(2,0,0),(2,2,0),(0,2,0),(2,0,4),(2,2,4),D A B C A B11(0,2,4),(0,0,4)C D ………5分所以111(2,0,0),(0,2,4)D A D C ==-uuuu r uuu r.设平面11A D C 的法向量111(,,)x y z =n .所以 1110,D A D C ⎧⋅=⎪⎨⋅=⎪⎩uuuu r uuu r n n .即1110,240x y z =⎧⎨-=⎩……6分令11z =,则12y =. 所以(0,2,1)=n . 由(Ⅰ)可知平面1AAC 的法向量为(2,2,0)DB =u u u r. ……7分所以cos ,5DB <>==uu u rn . ……8分因为二面角11--A AC D 为钝二面角,所以二面角11--A AC D的余弦值为5-.………(Ⅲ)设222(,,)P x y z 为线段1CC 上一点,且1(01)CP PC λλ=≤≤uu r uuu r. 因为2221222(,2,),(,2,4)CP x y z PC x y z =-=---uu r uuu r.所以222222(,2,)(,2,4)x y z x y z λ-=---. ………10分 即22240,2,1x y z λλ===+. 所以4(0,2,)1P λλ+. ………11分 设平面PBD 的法向量333(,,)x y z =m .因为4(0,2,),(2,2,0)1DP DB λλ==+uu u r uu ur ,所以 0,0DP DB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uu u rm m .即3333420,1220y z x y λλ⎧+=⎪+⎨⎪+=⎩. ………12分令31y =,则3311,2x z λλ+=-=-. 所以1(1,1,)2λλ+=--m . ………13分 若平面11ACD ⊥平面PBD ,则0⋅=m n . 即1202λλ+-=,解得13λ=. 所以当113CP PC =时,平面11ACD ⊥平面PBD . ………14分 18. 【解析】(Ⅰ)由条件2,a b ==…………2分故所求椭圆方程为13422=+y x . …………4分 (Ⅱ)设过点2(1,0)F 的直线l 方程为:)1(-=x k y . …………由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩可得:01248)34(2222=-+-+k x k x k …………6分 因为点2(1,0)F 在椭圆内,所以直线l 和椭圆都相交,即0>∆恒成立. 设点1122(,),(,)E x y F x y ,则34124,34822212221+-=+=+k k x x k k x x . …………8分因为直线AE 的方程为:)2(211--=x x y y , 直线AF 的方程为:)2(222--=x x y y , ………9分令3x =,可得)2,3(11-x y M ,)2,3(22-x yN , 所以点P 的坐标12121(3,())222y y x x +--. (10)分直线2PF 的斜率为12121()0222'31y y x x k +---=-12121()422yy x x =+-- 122112121212()42()4x y x y y y x x x x +-+=⋅-++ 1212121223()4142()4kx x k x x kx x x x -++=⋅-++ …………12分 22222241282341434341284244343k k k k k k k k k k k -⋅-⋅+++=⋅--⋅+++34k =-所以k k '⋅为定值43-. …………13分19. 【 解析】 (Ⅰ) 因为对任意n *∈N ,三个数(),(),()A n B n C n 是等差数列,所以()()()()B n A n C n B n -=-. (1)分所以1122n n a a a a ++-=-, ………2分即21214n n a a a a ++-=-=. (3)分所以数列{}n a 是首项为1,公差为4的等差数列. ………4分所以1(1)443n a n n =+-⨯=-. (5)分(Ⅱ)(1)充分性:若对于任意n *∈N ,三个数(),(),()A n B n C n 组成公比为q 的等比数列,则()(),()()B n qA n C n qB n ==. ………6分所以[]()()()(),C n B n q B n A n -=-得2211(),n n a a q a a ++-=-即2121n n a qa a qa ++-=-. (7)分因为当1n =时,由(1)(1),B qA =可得21a qa =, ………8分所以210n n a qa ++-=. 因为0n a >, 所以2211n n a a q a a ++==. 即数列{}n a 是首项为1a ,公比为q 的等比数列, ………9分(2)必要性:若数列{}n a 是公比为q 的等比数列,则对任意n *∈N ,有1n n a a q +=. ………10分因为0n a >,所以(),(),()A n B n C n 均大于0.于是12)2311212(......(),()......n n n nq a a a a a a B n q A n a a a a a a +++++++===++++++ ………11分231)342231231(......(),()......n n n n q a a a a a a C n q B n a a a a a a ++++++++++===++++++ ………12分 即()()B n A n =()()C n B n =q ,所以三个数(),(),()A n B n C n 组成公比为q 的等比数列. ………13分综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数(),(),()A n B n C n 组成公比为q 的等比数列. ………14分20. 【 解析】(Ⅰ)当2a =时,2()2ln 2f x x x x =-+,2()22f x x x'=-+,切点坐标为(11),,切线的斜率(1)2k f '==,则切线方程为12(1)y x -=-,即21y x =-. · 2分 (Ⅱ)2()2ln g x x x m =-+,则22(1)(1)()2x x g x x xx-+-'=-=,∵1[e]ex ∈,,故()0g x '=时,1x =.当11ex <<时,()0g x '>;当1e x <<时,()0g x '<.故()g x 在1x =处取得极大值(1)1g m =-. ··········· 4分 又211()2ee g m =--,2(e)2e g m =+-,2211(e)()4e 0e e g g -=-+<,则1(e)()eg g <, ∴()g x 在1[e]e,上的最小值是(e)g . ············· 6分()g x 在1[e]e ,上有两个零点的条件是2(1)10,11()20,eeg m g m =->⎧⎪⎨=--≤⎪⎩解得2112e m <≤+,∴实数m 的取值范围是21(12]e +,. ············· 8分(Ⅲ)∵()f x 的图象与x 轴交于两个不同的点12(0)(0)A x B x ,,,,∴方程22ln 0x x ax -+=的两个根为12x x ,,则211122222ln 0,2ln 0,x x ax x x ax ⎧-+=⎪⎨-+=⎪⎩两式相减得1212122(ln ln )()x x a x x x x -=+--.又2()2ln f x x x ax =-+,2()2f x x a x'=-+,则1212124()()2x x f x x a x x +'=-+++1212122(ln ln )4x x x x x x -=-+-. 下证1212122(ln ln )40x x x x x x --<+-(*),即证明2111222()ln 0x x x x x x -+<+,12x t x =,∵120x x <<,∴01t <<,即证明2(1)()ln 01t u t t t -=+<+在01t <<上恒成立. 10分∵22222(1)2(1)114(1)()(1)(1)(1)t t t u t t t t t t t -+---'=+=-=+++,又01t <<,∴()0u t '>,∴()u t 在(0,1)上是增函数,则()(1)0u t u <=,从而知2111222()ln 0x x xx x x -+<+, 故(*)式<0,即12()02x x f +'<成立………….12分。
2017年高考真题——数学(文)(北京卷)含解析
ð A (1)已知 U R ,集合 A {x | x 2或x 2} ,则 U
(A) ( 2, 2) (C) [ 2, 2] 【答案】C 【解析】因为 A {x x 2 或 x 2} ,所以 CU A x 2 x 2 ,故选 C. 【题型】选择题 【难度】一般 (2)若复数 (1 i)( a i) 在复平面内对应的点在第二象限,则实数 a 的取值范围是 (A) ( ,1) (C) (1, ) 【答案】B 【解析】 (B) ( , 1) (D) ( 1, ) (B) ( , 2) (2, ) (D) ( , 2] [2, )
z 1 i a i a 1 1 a i
,因为对应的点在第二象限,所以
a 1 0 1 a 0 ,解得: a 1 ,故选 B.
【题型】选择题 【难度】一般
(3)执行如图所示的程序框图,输出的 s 值为
(A)2
3 (B) 2 8 (D) 5
绝密★启封并使用完毕前
2017 年普通高等学校招生全国统一考试
数学(文)(北京卷)
本试卷共 5 页,150 分。考试时长 120 分钟。考生务必将答案答在答题卡上,在试卷上 作答无效。考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题
共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40 分。在每小题列出的四个选项中,选出符合题目 要求的一项。
为_________. 【答案】6
【解析】 AO AP | AO | | AP | cos | AO | | AP | 2 (2 1) 6. 所以最大值是 6. 【题型】填空题 【难度】一般 (13)能够说明“设 a,b,c 是任意实数.若 a>b>c,则 a+b>c”是假命题的一组整数
2017年高考真题 文科数学(北京卷)解析版
绝密★本科目考试启用前2017年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知全集U =R ,集合{|22}A x x x =<->或,则U A =ð(A )(2,2)- (B )(,2)(2,)-∞-+∞U (C )[2,2]-(D )(,2][2,)-∞-+∞U【答案】C 【解析】试题分析:因为{2A x x =<-或2}x >,所以{}22U A x x =-≤≤ð,故选C. 【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.(2)若复数(1i)(i)a -+在复平面内对应的点在第二象限,则实数a 的取值范围是(A )(,1)-∞ (B )(,1)-∞- (C )(1,)+∞(D )(1,)-+∞【答案】B【考点】复数的运算【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z=a+b i复平面内的点Z(a,b)(a,b∈R).复数z=a+b i(a,b∈R) 平面向量u u u r OZ.(3)执行如图所示的程序框图,输出的s值为(A)2 (B)3 2(C)53(D)85【答案】C【考点】程序框图【名师点睛】解决此类型问题时要注意:第一,要明确是当型循环结构,还是直到型循环结构,并根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体,争取写出每一个循环,这样避免出错.(4)若,x y满足3,2,,xx yy x≤⎧⎪+≥⎨⎪≤⎩则2x y+的最大值为(A)1 (B)3(C)5 (D)9【答案】D【解析】试题分析:如图,画出可行域,2z x y=+表示斜率为12-的一组平行线,当2z x y=+过点()3,3C时,目标函数取得最大值max3239z=+⨯=,故选D.【考点】线性规划【名师点睛】本题主要考查简单的线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义.求目标函数的最值的一般步骤为:一画、二移、三求.常见的目标函数类型有:(1)截距型:形如z ax by=+.求这类目标函数的最值时常将函数z ax by=+转化为直线的斜截式:a zy xb b=-+,通过求直线的截距zb的最值间接求出z的最值;(2)距离型:形如()()22z x a y b=-+-;(3)斜率型:形如y bzx a-=-,而本题属于截距形式.(5)已知函数1()3()3x xf x =-,则()f x(A )是偶函数,且在R 上是增函数 (B )是奇函数,且在R 上是增函数 (C )是偶函数,且在R 上是减函数(D )是奇函数,且在R 上是减函数【答案】B【考点】函数的性质【名师点睛】本题属于基础题型,根据()f x -与()f x 的关系就可以判断出函数的奇偶性,判断函数单调性的方法:(1)利用平时学习过的基本初等函数的单调性;(2)利用函数图象判断函数的单调性;(3)利用函数的四则运算判断函数的单调性,如:增函数+增函数=增函数,增函数−减函数=增函数;(4)利用导数判断函数的单调性. (6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A )60 (B )30 (C )20(D )10【答案】D 【解析】试题分析:该几何体是如下图所示的三棱锥P ABC -.由图中数据可得该几何体的体积是115341032V =⨯⨯⨯⨯=,故选D. 【考点】三视图,几何体的体积【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:如果我们死记硬背,不会具体问题具体分析,就会选错,实际上,这个题的俯视图不是几何体的底面,因为顶点在底面的射影落在了底面三角形的外面,否则中间的那条线就不会是虚线.(7)设m , n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件【答案】A【考点】向量,充分必要条件【名师点睛】判断充分必要条件的的方法:(1)根据定义,若,p q q p ⇒≠>,那么p 是q 的充分不必要条件,同时q 是p 的必要不充分条件;若p q ⇔,那么p ,q 互为充要条件;若,p q q p ≠>≠>,那么就是既不充分也不必要条件.(2)当命题是以集合形式给出时,那就看包含关系,已知:,p x A ∈:q x B ∈,若A B ≠⊂,那么p 是q 的充分不必要条件,同时q 是p 的必要不充分条件;若A B =,那么p ,q 互为充要条件;若没有包含关系,那么就是既不充分也不必要条件.(3)命题的等价性,根据互为逆否命题的两个命题等价,将p 是q 条件的判断,转化为q ⌝是p ⌝条件的判断.(8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) (A )1033 (B )1053 (C )1073(D )1093【答案】D【考点】对数运算【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log na a M n M =. 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2017年数学真题及解析_2017年北京市高考数学试卷(文科)
2017年北京市高考数学试卷(文科)一、选择题1.(5分)已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)3.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.C.D.4.(5分)若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.95.(5分)已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数6.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.107.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033 B.1053 C.1073 D.1093二、填空题9.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.10.(5分)若双曲线x2﹣=1的离心率为,则实数m=.11.(5分)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是.12.(5分)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为.13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.14.(5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为.②该小组人数的最小值为.三、解答题15.(13分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n.﹣116.(13分)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.17.(13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.18.(14分)如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.19.(14分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x 轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.20.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.2017年北京市高考数学试卷(文科)参考答案与试题解析一、选择题1.(5分)已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)【分析】根据已知中集合A和U,结合补集的定义,可得答案.【解答】解:∵集合A={x|x<﹣2或x>2}=(﹣∞,﹣2)∪(2,+∞),全集U=R,∴∁U A=[﹣2,2],故选:C.【点评】本题考查的知识点是集合的补集及其运算,难度不大,属于基础题.2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【分析】复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,可得,解得a范围.【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.【点评】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.3.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.C.D.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2,当k=1时,满足进行循环的条件,执行完循环体后,k=2,S=,当k=2时,满足进行循环的条件,执行完循环体后,k=3,S=,当k=3时,不满足进行循环的条件,故输出结果为:,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4.(5分)若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.9【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.【解答】解:x,y满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由,可得A(3,3),目标函数的最大值为:3+2×3=9.故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(5分)已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数【分析】由已知得f(﹣x)=﹣f(x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:B.【点评】本题考查的知识点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题.6.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.10【分析】由三视图可知:该几何体为三棱锥,如图所示.【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积==10.故选:D.【点评】本题考查了三棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.7.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论.【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.【点评】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033 B.1053 C.1073 D.1093【分析】根据对数的性质:T=,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093,故选:D.【点评】本题解题关键是将一个给定正数T写成指数形式:T=,考查指数形式与对数形式的互化,属于简单题.二、填空题9.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.【分析】推导出α+β=π+2kπ,k∈Z,从而sinβ=sin(π+2kπ﹣α)=sinα,由此能求出结果.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.【点评】本题考查角的正弦值的求法,考查对称角、诱导公式,正弦函数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是基础题.10.(5分)若双曲线x2﹣=1的离心率为,则实数m=2.【分析】利用双曲线的离心率,列出方程求和求解m 即可.【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.【点评】本题考查双曲线的简单性质,考查计算能力.11.(5分)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是[,1] .【分析】利用已知条件转化所求表达式,通过二次函数的性质求解即可.【解答】解:x≥0,y≥0,且x+y=1,则x2+y2=x2+(1﹣x)2=2x2﹣2x+1,x∈[0,1],则令f(x)=2x2﹣2x+1,x∈[0,1],函数的对称轴为:x=,开口向上,所以函数的最小值为:f()==.最大值为:f(1)=2﹣2+1=1.则x2+y2的取值范围是:[,1].故答案为:[,1].【点评】本题考查二次函数的简单性质的应用,考查转化思想以及计算能力.12.(5分)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为6.【分析】设P(cosα,sinα).可得=(2,0),=(cosα+2,sinα).利用数量积运算性质、三角函数的单调性与值域即可得出.【解答】解:设P(cosα,sinα).=(2,0),=(cosα+2,sinα).则•=2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.【点评】本题考查了数量积运算性质、三角函数的单调性与值域、圆的参数方程,考查了推理能力与计算能力,属于中档题.13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为﹣1,﹣2,﹣3.【分析】设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b >c,则a+b≤c”是真命题,举例即可,本题答案不唯一【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一),故答案为:﹣1,﹣2,﹣3【点评】本题考查了命题的真假,举例说明即可,属于基础题.14.(5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为6.②该小组人数的最小值为12.【分析】①设男学生女学生分别为x,y人,若教师人数为4,则,进而可得答案;②设男学生女学生分别为x,y人,教师人数为z,则,进而可得答案;【解答】解:①设男学生女学生分别为x,y人,若教师人数为4,则,即4<y<x<8,即x的最大值为7,y的最大值为6,即女学生人数的最大值为6.②设男学生女学生分别为x,y人,教师人数为z,则,即z<y<x<2z即z最小为3才能满足条件,此时x最小为5,y最小为4,即该小组人数的最小值为12,故答案为:6,12【点评】本题考查的知识点是推理和证明,简易逻辑,线性规划,难度中档.三、解答题15.(13分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;.(Ⅱ)求和:b1+b3+b5+…+b2n﹣1【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.16.(13分)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【分析】(Ⅰ)根据两角差的余弦公式和两角和正弦公式即可求出f(x)sin (2x+),根据周期的定义即可求出,(Ⅱ)根据正弦函数的图象和性质即可证明.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣【点评】本题考查了三角函数的化简以及周期的定义和正弦函数的图象和性质,属于基础题17.(13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【分析】(Ⅰ)根据频率=组距×高,可得分数小于70的概率为:1﹣(0.04+0.02)×10;(Ⅱ)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.进而得到答案.【解答】解:(Ⅰ)由频率分布直方图知:分数小于70的频率为:1﹣(0.04+0.02)×10=0.4故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;(Ⅱ)已知样本中分数小于40的学生有5人,故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1﹣(0.04+0.02+0.02+0.01)×10﹣0.05=0.05,估计总体中分数在区间[40,50)内的人数为400×0.05=20人,(Ⅲ)样本中分数不小于70的频率为:0.6,由于样本中分数不小于70的男女生人数相等.故分数不小于70的男生的频率为:0.3,由样本中有一半男生的分数不小于70,故男生的频率为:0.6,即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:2.【点评】本题考查的知识点是频率分布直方图,用样本估计总体,难度不大,属于基础题.18.(14分)如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【分析】(1)运用线面垂直的判定定理可得PA⊥平面ABC,再由性质定理即可得证;(2)要证平面BDE⊥平面PAC,可证BD⊥平面PAC,由(1)运用面面垂直的判定定理可得平面PAC⊥平面ABC,再由等腰三角形的性质可得BD⊥AC,运用面面垂直的性质定理,即可得证;(3)由线面平行的性质定理可得PA∥DE,运用中位线定理,可得DE的长,以及DE⊥平面ABC,求得三角形BCD的面积,运用三棱锥的体积公式计算即可得到所求值.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE=PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,=S△ABC=××2×2=1,可得S△BDC则三棱锥E﹣BCD的体积为DE•S=×1×1=.△BDC【点评】本题考查空间的线线、线面和面面的位置关系的判断,主要是平行和垂直的关系,注意运用线面平行的性质定理以及线面垂直的判定定理和性质定理,面面垂直的判定定理和性质定理,同时考查三棱锥的体积的求法,考查空间想象能力和推理能力,属于中档题.19.(14分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x 轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.【分析】(Ⅰ)由题意设椭圆方程,由a=2,根据椭圆的离心率公式,即可求得c,则b2=a2﹣c2=1,即可求得椭圆的方程;(Ⅱ)由题意分别求得DE和BN的斜率及方程,联立即可求得E点坐标,根据三角形的相似关系,即可求得=,因此可得△BDE与△BDN的面积之比为4:5.【解答】解:(Ⅰ)由椭圆的焦点在x轴上,设椭圆方程:(a>b>0),则a=2,e==,则c=,b2=a2﹣c2=1,∴椭圆C的方程;(Ⅱ)证明:设D(x0,0),(﹣2<x0<2),M(x0,y0),N(x0,﹣y0),y0>0,由M,N在椭圆上,则,则x02=4﹣4y02,则直线AM的斜率k AM==,直线DE的斜率k DE=﹣,直线DE的方程:y=﹣(x﹣x0),直线BN的斜率k BN=,直线BN的方程y=(x﹣2),,解得:,过E做EH⊥x轴,△BHE∽△BDN,则丨EH丨=,则=,∴:△BDE与△BDN的面积之比为4:5.【点评】本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,直线的斜率公式,相似三角形的应用,考查数形结合思想,属于中档题.20.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.【点评】本题考查导数的运用:求切线的方程和单调区间、最值,考查化简整理的运算能力,正确求导和运用二次求导是解题的关键,属于中档题.。
(大师特稿)北京市2017年高考压轴题:数学(文)试题含答案
2017北京市高考压轴卷文科数学第一部分(选择题共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设常数a∈R,集合A={}0)a ()1(≥--x x x ,B={}1-≥a x x .若A∪B=R,则a 的取值范围为()(A )(-∞,2)(B )(-∞,2](C )(2,+∞)(D )[2,+∞)2.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞3.将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是A .π12B .π6C .π3D .5π64.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A .()p ⌝∨()q ⌝B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q5.函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是(A)1-(B)22-(C)22(D)06.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有()A .3个B .4个C .5个D .6个7.执行如图所示的程序框图,输出的S 值为()A .1B .23C .1321D .6109878.下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列;3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列;其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p 第Ⅱ卷(非选择题共110分)二、填空题(共6个小题,每题5分,共30分)9.方程x 31139x =+-的实数解为.10.学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别是75、80,则这次考试该年级学生平均分数为.11.设a +b =2,b >0,则1||2||a a b+的最小值为.12.已知抛物线28y x =的准线过双曲线22221(0,0)x y a b a b-=>>的一个焦点,且双曲线的离心率为2,则该双曲线的方程为.13.在四边形CD AB 中,()C 2,4A = ,()D 2,1B =- ,则该四边形的面积为_______14.设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为。
2017北京市高考压轴卷数学(文)附答案解析
2017北京市高考压轴卷文科数学第一部分(选择题共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知集合A={0,1},B={﹣1,0,a+2},且A ⊆B ,则实数a=( )A .0B .﹣1C .﹣2D .﹣32. 函数y=f (x )在(0,2)上是增函数,函数y=f (x+2)是偶函数,则f (1),f (2.5),f (3.5)的大关系是( )A .f (2.5)<f (1)<f (3.5)B .f (2.5)>f (1)>f (3.5)C .f (3.5)>f (2.5)>f (1)D .f (1)>f (3.5)>f (2.5)3. 给出下列命题:①函数y=cos (﹣2x)是偶函数;②函数y=sin (x+)在闭区间上是增函数;③直线x=是函数y=sin (2x+)图象的一条对称轴;④将函数y=cos (2x﹣)的图象向左平移单位,得到函数y=cos2x 的图象,其中正确的命题的个数为( )A .1B .2C .3D .44. 命题“若,则”的逆否命题是6πα=33tan =αA.若,则B.若,则6πα≠33tan ≠α6πα=33tan ≠α C.若,则 D. 若,则33tan ≠α6πα≠33tan ≠α6πα=5. 设m 、n 是两条不同的直线,α、β、γ是三个不同的平面,则下列命题中正确的是( )A .若α⊥β,m⊥α,则m∥βB .若m⊥α,n∥α,则m⊥nC .若m∥α,n∥α,则m∥nD .若α⊥γ,β⊥γ,则α∥β6. 双曲线的一条渐近线与圆相切,则此双曲线的离心率()222210,0x y a b a b-=>>(()22311x y +-=为( )5327 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .8.执行如图所示的程序框图,输出的值为()SA .B .123C .D .1321610987第Ⅱ卷(非选择题 共110分)二、填空题(共6个小题,每题5分,共30分)已知是(-∞,+∞)上的减函数,那么10. 若复数+b (b∈R)所对应的点在直线x+y=1上,则b 的值为 .11.如图,是可导函数,直线l 是曲线在处()y f x =()y f x =4x =的切线,令,则= .()()f x g x x =()4g '12. .一个四面体的三视图如图所示,则该四面体的表面积是 .13. 在四边形中,,,则该四边形的面积为_______CD AB ()C 2,4A = ()D 2,1B =-14.如图,一条螺旋线是用以下方法画成:是边长为1的正三角形,曲线分别以为圆心,为半径画的弧,曲线称为螺旋线旋转一圈.然后又以为圆心为半径画弧…,这样画到第圈,则所得整条螺旋线的长度______.(用表示即可)三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)15.(本小题满分13分)在ABC ∆中, 223=4cos A cosA +.(1)求角A 的大小;(2)若2a =,求ABC ∆的周长l 的取值范围.16 (本小题满分13分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.(I )假设n =2,求第一大块地都种植品种甲的概率;(II )试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm 2)如下表:品种甲403397390404388400412406品种乙419403412418408423400413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据的的样本方差,其中为样本平均数.n x x x ,,,21⋅⋅⋅])()()[(1222212x x x x x x ns n -+⋅⋅⋅+-+-=x 17. (本小题共13分)已知数列{a n }的前n 项和为S n ,a 1=2,S n =n 2+n .(1)求数列{a n }的通项公式;(2)设{}的前n 项和为T n ,求证T n <1.18.(本小题共13分)已知在四棱锥中,底面是矩形,且平面, 分别P ABCD -ABCD 2,1,AD AB PA ==⊥ABCD ,E F 是线段的中点.,AB BC(1)证明: ;PF FD ⊥(2)若,求点到平面的距离.1PA =E PFD 19.(本小题满分共14分)已知函数()()2ln .f x x ax a x a R =--∈(1)若函数在处取得极值,求a 的值;()f x 1x =(2)在(1)的条件下,求证:()322114;326x x f x x ≥+-+(3)当时,恒成立,求a 的取值范围.[),x e ∈+∞()0f x ≥20.(本小题共14分)已知椭圆C 上点到两焦点的距离和为,短轴长为,直线l 与椭圆C 交于M 、)0(12222>>=+b a by a x 3221N 两点.(Ⅰ)求椭圆C 方程;(Ⅱ)若直线MN 与圆O 相切,证明:为定值;25122=+y x MON ∠(Ⅲ)在(Ⅱ)的条件下,求的取值范围.OM ON 试卷答案1B【解答】解:集合A={0,1},B={﹣1,0,a+2},且A ⊆B ,可得a+2=1,解得a=﹣1.故选:B .2B【分析】根据函数y=f (x+2)是偶函数,知x=2是其对称轴,又函数y=f (x )在(0,2)上是增函数,可知其在(2,4)上为减函数,而2.5,3.5∈(2,4),1∉(2,4),而f (1)=f (3),根据函数的单调性可得结果.【解答】解:因为函数y=f (x )在(0,2)上是增函数,函数y=f (x+2)是偶函数,所以x=2是对称轴,在(2,4)上为减函数,f (2.5)>f (1)=f (3)>f (3.5).故选B .3B【分析】利用诱导公式化简①,然后判断奇偶性;求出函数y=sin (x+)的增区间,判断②的正误;直线x=代入函数y=sin (2x+)是否取得最值,判断③的正误;利用平移求出解析式判断④的正误即可.解:①函数y=sin (﹣2x)=sin2x ,它是奇函数,不正确;②函数y=sin (x+)的单调增区间是,k∈Z,在闭区间上是增函数,正确;③直线x=代入函数y=sin (2x+)=﹣1,所以x=图象的一条对称轴,正确;④将函数y=cos (2x﹣)的图象向左平移单位,得到函数y=cos (2x+)的图象,所以④不正确.故选:B .4.C 5. B【分析】A:漏掉了m ⊂β.B :根据线线垂直的判定可得结论是正确的.C :漏掉了m 与n 相交、异面的情况.D :可以举出墙角的例子.解:A :直线m 也可以在平面β内.B :根据线线垂直的判定可得结论是正确的.C :m 与n 可能平行也可能相交也可能异面.D :α与β也可以相交.可以举出墙角的例子.故选B .6A【解析】由题意可得,计算,选A.31b a -=2e =∴7C【试题解析】由题知:所以m 可以取:0,1,2.故答案为:C89.【解析】解:由已知是(-∞,+∞)上的减函数,可得,求得≤a<,故答案为:.10.0【解析】解:复数+b=+b=+b=b+i所对应的点(b,1)在直线x+y=1上,∴b+1=1,解得b=0.故答案为:0.11. 【答案】12. 【答案】2【解析】解:根据几何体的三视图,得该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××2+×2×1=2+.故答案为:2+.13. 【答案】5【解析】根据题意,,所以,且,从而有该四边形440AC BD ⋅=-+=AC BD ⊥5,5AC BD ==的面积为125552S =⋅=14. 14.(31)n n π+【解析】设第n 段弧的弧长为,由弧长公式,可得…数列是以为首项、为公差的等差数列.画到第n 圈,有3n 段弧,故所得整条螺旋线的长度15. 【答案】(1)因为,所以,2234cos A cosA +=2122cos 2cos A A +=所以, 24410cos A cosA -+=所以.1cos 2A =又因为,所以.0A π<<3A π=(2)因为, , ,sin sin sin a b c A B C ==3A π=2a =所以,,33b Bc ==所以.)22sin sinC 3l b c B =++=+因为,23B C π+=所以.22sin sin 2sin 363l B B B ππ⎤⎛⎫⎛⎫=+-=++ ⎪ ⎪⎥⎝⎭⎝⎭⎦又因为,所以,所以203B π<<1sin 126B π⎛⎫<+≤ ⎪⎝⎭(]4,6l ∈【解析】(1)根据倍角公式可将已知等式转化为关于的二次方程,解方程求得的值,进而得到cos A cos A 角的大小;A (2)根据正弦定理可将三角形的边长用对应角的正弦值表示,列出周长的表达式并利用两角和与差公式l 化为关于角的三角函数,进而根据三角函数的值域求得周长的取值范围.B l 16.解:(I )设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A=“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个;(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).而事件A 包含1个基本事件:(1,2).所以 1().6P A =(II )品种甲的每公顷产量的样本平均数和样本方差分别为:222222221(403397390404388400412406)400,81(3(3)(10)4(12)0126)57.25.8x S =+++++++==+-+-++-+++=甲甲 品种乙的每公顷产量的样本平均数和样本方差分别为:2222222221(419403412418408423400413)412,81(7(9)06(4)11(12)1)56.8x S =+++++++==+-+++-++-+=乙乙由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.17. 【分析】(1)利用公式a n =S n ﹣S n﹣1(n≥2),得当n≥2时a n =2n ,再验证n=1时,a 1=2×1=2也适合,即可得到数列{a n }的通项公式.(2)裂项得=﹣,由此可得前n 项和为T n =1﹣<1,再结合∈(0,1),不难得到T n <1对于一切正整数n 均成立.解:(1)当n≥2时,a n =S n ﹣S n﹣1=n 2+n﹣[(n﹣1)2+(n﹣1)]=2n .∵n=1时,a 1=2×1=2,也适合∴数列{a n }的通项公式是a n =2n .(2)==﹣∴{}的前n 项和为T n =(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣=∵0<<1∴1﹣∈(0,1),即T n <1对于一切正整数n 均成立.18. 【答案】(1)证明:连接,则,又,又平AF 2,2AF DF ==2222,,AD DF AF AD DF AF =∴+=∴⊥PA ⊥面,又平面,又平面.,ABCD DF PA ∴⊥,PA AF A DF ⋂=∴⊥PAF PF ⊂,PAF DF PF ∴⊥(2) , ,53244EFD ADE BEF CDF ABCD S S S S S ∆∆∆∆=---=-= 平面1131·13344P EFD EFD V S PA -∆∴==⨯⨯=,解得,即点到平面.1161,···34E PFD P EFD E PFD PFD V V V S h h ---∆=∴=== 6h =E PFD19.20.解:(Ⅰ)由椭圆C 上点到两焦点的距离和为,22221(0)x y a b a b +=>>23得2a=,即 ;由短轴长为,得2b=,即231312121b 4=所以椭圆C 方程:229161x y +=(Ⅱ)当直线MN 轴时,因为直线MN 与圆O 相切,所以直线MN 方程:x=或x=-,当直线x ⊥22125x y +=5115方程为x=,得两点分别为(,)和(,-),故=0,可证=;同理可证当x=-1515151515OM ON ∙ MON ∠2π,=; 15MON ∠2π当直线MN 与x 轴不垂直时,设直线MN :y=kx+b ,直线MN 与圆O 的交点M ,N 25122=+y x ),11y x (),22y x (由直线MN 与圆O 相切得:,即25 ①;215k 1b=+221b k =+联立y=kx+b ,,得,229161x y +=222916)321610k x kbx b +++-=(因此,=-,=22169116k b +-;0δ>12x x +232916kbk +12x x 由=+=+OM ON ∙ 12x x 12y y 12x x 12k )()x b kx b ++(=(1+k )+kb ()+b = ②;212x x 12x x +2222251916b k k --+由①②得=0,即=;OM ON ∙ MON ∠2π综上=(定值).MON ∠2π(Ⅲ)不妨设,则,XOM θ∠=N 2XO πθ∠=±由三角函数定义可知M (cos ,sin ),N (sin ,cos )OM θOM θ±ON θ±ON θ因为点M 、N 都在上,229161x y +=所以=, =21OM 229cos 16sin θθ+21ON 229sin 16cos θθ+=211()OM ON 21OM 21ON =()()229cos 16sin θθ+229sin 16cos θθ+=916+(9-16)2⨯22sin cos θθ=916+(9-16),⨯221sin 24θ又[0,1],故()[916,()]2sin 2θ∈1OM 1ON 2∈⨯9162+2因此 [].OM ON ∈21,2512。
2017年北京市高考数学押题卷试题含答案
2017年北京市高考数学押题卷试题含答案2017年高考数学押题卷试题【北京卷】命题人:北大地校区 董志华教师1.已知集合M={1,2,(m 2-3m-1)+(m 2-5m-6)i},N={-1,3},且M ∩N={3},则实数m 的值为( )A.4B.-1C.-1或4D.-1或62. 不等式组⎩⎪⎨⎪⎧|x +y |≤1|x -y |≤1表示的平面区域内整点的个数是( )A .0B .2C .4D .53.如图给出的是计算12+14+…+120的值的一个程序框图,其中判断框内应填入的条件是( )A .i >10B .i <10C .i >20D .i <204.命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是()A.**,()n Nf n N ∀∈∈且()f n n >B.**,()n Nf n N ∀∈∈或()f n n >C.**00,()n N f n N ∃∈∈且00()f n n >D.**00,()n Nf n N ∃∈∈或00()f n n >5. 正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为( )6.若,,a b c 成等差数列,则二次函数()22f x ax bx c =-+的零点个数为()A.0B.1C.2D.1或2 7.把一颗骰子投掷两次,第一次出现的点数记为m ,第二次出现的点数记为n ,方程组⎩⎨⎧=+=+2323y x ny mx 只有一组解的概率是( ). A .27 B .1725 C .1817D .313 8. 已知函数22,5)2(3)(212->-+-=x x x x f 且,则( )A 、)x (f )x (f 21>B 、)x (f )x (f 21=C 、)x (f )x (f 21<D 、不能确定大小 二、填空题9.若二项式23nx x ⎛⎫- ⎪⎝⎭展开式的各项系数的和为64,则其展开式的所有二项式系数中最大的是 . (用数字作答)10已知圆C 的参数方程为2x y cos ,sin ,θθ⎧=⎨=+⎩(θ为参数), 以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos ρθρθ+=, 则直线l 截圆C 所得的弦长是 .11已知以F 为焦点的抛物线24y x =上的两点A 、B 满足3AF FB =u u u r u u u r,点A 在x 轴上方,则直线AB 的方程为12.已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab =g ,则双曲线的离心率是_________ 13.已知数列{}n a ,若114a =,123n n a a +=-(*n ∈N ),则使20n n a a +⋅<成立的n 的值是 .14.点P 是曲线2ln 0x y x --=上的任意一点,则点P 到直线2-=x y 的最小距离为__________.三、解答题15. 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c = 3a sinC -c cosA (1) 求角A(2) 若a =2,△ABC 的面积为3,求b ,c.16. 某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果:(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)17. 如图,在四棱锥P-ABCD中,AB丄平面PAD,PD=AD, E为PB的中点,向量,点H在AD上,且(I)求证:EF//平面PAD.(II)若PH=3,AD=2, AB=2, CD=2AB,(1)求直线AF与平面PAB所成角的正弦值.(2)求平面PAD与平面PBC所成二面角的平面角的余弦值.18.已知函数()f x满足()()12log1aaf x x xa-=--,其中0>a,且1≠a。
2017北京市高考压轴卷 数学(理)Word版含解析新
2017北京市高考压轴卷理科数学第一部分(选择题共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知全集U=R ,A={x|x 2﹣4x+3≤0},B={x|log 3x ≥1},则A ∩B=( )A .{3}B .{x|<x ≤1}C .{x|x <1}D .{x|0<x <1}2. 已知数列{a n }为等差数列,且满足a 1+a 5=90.若(1﹣x )m 展开式中x 2项的系数等于数列{a n }的第三项,则m 的值为( )A .6B .8C .9D .103已知单位向量,,满足,则与夹角的余弦值为( )A .B .C .D .4.设x R ∈,则“x>21”是“0122>-+x x ”的A.充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则该几何体的体积为( )A .B .C .D .46.已知函数,曲线上存在两个不同点,使得曲线在这两点处的切线都与轴垂直,则实数的取值范围是A. B. C. D.7.△ABC的内角A,B,C的对边分别为a,b,c,已知cosC=,a=1,c=2,则△ABC的面积为()A.B.C.D.8.已知函数,若m<n,且f(m)=f(n),则n﹣m的取值范围是()A.[3﹣2ln2,2)B.[3﹣2ln2,2] C.[e﹣1,2] D.[e﹣1,2)第Ⅱ卷(非选择题共110分)二、填空题(共6个小题,每题5分,共30分)9.若目标函数z=kx+2y在约束条件下仅在点(1,1)处取得最小值,则实数k的取值范围是.10若按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M的值是.11采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为.12.直线(t为参数)与圆C:(x+6)2+y2=25交于A,B两点,且,则直线l的斜率为.13.已知直线l:y=k(x﹣2)与抛物线C:y2=8x交于A,B两点,F为抛物线C的焦点,若|AF|=3|BF|,则直线l的倾斜角为.14.若函数,,则不等式的解集是______.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)15.(本小题满分13分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asin C-ccos A.(1)求A;(2)若a=2,△ABC的面积为,求b,c.16. (本小题满分13分)某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分别直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间[2,4]的有8人.(Ⅰ)求直方图中a 的值及甲班学生每天平均学习时间在区间[10,12]的人数;(Ⅱ)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为ξ,求ξ的分布列和数学期望.17.(本小题满分13分)如图,四棱锥中P ABCD -中,底面ABCD 是直角梯形,AB//CD ,60,2,DAB AB AD CD ∠===侧面PAD ⊥ABCD 底面,且PAD 为等腰直角三角形,90APD ∠=.(Ⅰ)求证:;AD PB ⊥(Ⅱ)求平面PAD 与平面PBC 所成锐二面角的余弦值.18.(本小题满分13分)已知函数()()2=-33x f x x x e +的定义域为[]-2t ,,设()-2=f m ,()f t n =. (Ⅰ)试确定t 的取值范围,使得函数()f x 在[]-2t ,上为单调函数;(Ⅱ)求证:m n <;(Ⅲ)若不等式()()()72ln 1xf x x k x x k e +->-为正整数对任意正实数恒成立,求的最大值,并证明14ln.9x<(解答过程可参考使用以下数据ln7 1.95ln8 2.08≈≈,)19.(本题满分14分)已知椭圆E:的离心率为,其右焦点为F(1,0).(1)求椭圆E的方程;(2)若P、Q、M、N四点都在椭圆E上,已知与共线,与共线,且=0,求四边形PMQN的面积的最小值和最大值.20.(本小题满分 14 分)已知数列{a n}的前n项和为S n,且S n=2a n﹣2(n∈N*).(1)求{a n}的通项公式;(2)设,b1=8,T n是数列{b n}的前n项和,求正整数k,使得对任意n∈N*均有T k≥T n恒成立;(3)设,R n是数列{c n}的前n项和,若对任意n∈N*均有R n<λ恒成立,求λ的最小值.试卷答案1A【分析】求出A,B中不等式的解集,找出A与B的交集即可.【解答】解:A={x|x2﹣4x+3≤0}={x|1≤x≤3},B={x|log3x≥1}={x|x≥3},则A∩B={3},故选:A2D【分析】利用等差数列的性质,求出a3=45,利用(1﹣x)m展开式中x2项的系数等于数列{a n}的第三项,可得=45,即可求出m.【解答】解:数列{a n}为等差数列,且满足a1+a5=2a3=90,∴a3=45,∵(1﹣x)m展开式中x2项的系数等于数列{a n}的第三项,∴=45,∴m=10,故选D.3D【分析】设单位向量,的夹角为θ,根据,得•(+2)=0,代入数据求出cosθ的值.【解答】解:设单位向量,的夹角为θ,∵,∴•(+2)=+2=0,即12+2×1×1×cosθ=0,解得cosθ=﹣,∴与夹角的余弦值为﹣.故选:D.4.A 5B【解答】解:如图所示,由三视图可知该几何体为:四棱锥P﹣ABCD.连接BD.其体积V=V B﹣PAD+V B﹣PCD==.故选:B.6D【解析】本题主要考查导数与导数的几何意义,考查了存在问题与逻辑思维能力.,因为曲线上存在两个不同点,使得曲线在这两点处的切线都与轴垂直,所以有两个不同的解,令,,由得x>2,由得x<2,所以当x=2时,函数取得极小值,所以a>7A【解答】解:由题意cosC=,a=1,c=2,那么:sinC=,cosC==,解得b=2.由,可得sinB=,那么△ABC的面积=故选A8A【解答】解:作出函数f(x)的图象如图:若m<n,且f(m)=f(n),则当ln(x+1)=1时,得x+1=e,即x=e﹣1,则满足0<n≤e﹣1,﹣2<m≤0,则ln(n+1)=m+1,即m=2ln(n+1)﹣2,则n﹣m=n+2﹣2ln(n+1),设h(n)=n+2﹣2ln(n+1),0<n≤e﹣1则h′(n)=1﹣==,当h′(x)>0得1<n≤e﹣1,当h′(x)<0得0<n<1,即当n=1时,函数h(n)取得最小值h(1)=1+2﹣2ln2=3﹣2ln2,当n=0时,h(0)=2﹣2ln1=2,当n=e﹣1时,h(e﹣1)=e﹣1+2﹣2ln(e﹣1+1)=1+e﹣2=e﹣1<2,则3﹣2ln2≤h(n)<2,即n﹣m的取值范围是[3﹣2ln2,2),故选:A9. 【答案】(﹣4,2)【分析】作出不等式对应的平面区域,利用线性规划的知识,确定目标取最优解的条件,即可求出k的取值范围.【解答】解:作出不等式对应的平面区域,由z=kx+2y得y=﹣x+,要使目标函数z=kx+2y仅在点B(1,1)处取得最小值,则阴影部分区域在直线z=kx+2y的右上方,∴目标函数的斜率﹣大于x+y=2的斜率且小于直线2x﹣y=1的斜率即﹣1<﹣<2,解得﹣4<k<2,即实数k的取值范围为(﹣4,2),故答案为:(﹣4,2).10.6【解答】解:由图知运算规则是对S=2S+1,执行程序框图,可得A=1,S=1满足条件A<M,第1次进入循环体S=2×1+1=3,满足条件A<M,第2次进入循环体S=2×3+1=7,满足条件A<M,第3次进入循环体S=2×7+1=15,满足条件A<M,第4次进入循环体S=2×15+1=31,满足条件A<M,第5次进入循环体S=2×31+1=63,由于A的初值为1,每进入1次循环体其值增大1,第5次进入循环体后A=5;所以判断框中的整数M的值应为6,这样可保证循环体只能运行5次.故答案为:6.11.10【分析】由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n=9+(n﹣1)30=30n﹣21,由451≤30n﹣21≤750 求得正整数n的个数,即为所求.【解答】解:由960÷32=30,故由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,且此等差数列的通项公式为a n=9+(n﹣1)30=30n﹣21.由 451≤30n﹣21≤750 解得 15.7≤n≤25.7.再由n为正整数可得 16≤n≤25,且 n∈z,故做问卷B的人数为10,故答案为:10.12.±【分析】直线(t为参数)与圆C:(x+6)2+y2=25联立,可得t2+12tcosα+11=0,|AB|=|t1﹣t2|=⇒(t1+t2)2﹣4t1t2=10,即可得出结论.【解答】解:直线(t为参数)与圆C:(x+6)2+y2=25联立,可得t2+12tcos α+11=0.t1+t2=﹣12cosα,t1t2=11.∴|AB|=|t1﹣t2|=⇒(t1+t2)2﹣4t1t2=10,⇒cos2α=,tanα=±,∴直线AB的斜率为±.故答案为±.13.或【分析】设A,B两点的抛物线的准线上的射影分别为E,F,过B作AE的垂线BC,在三角形ABC中,∠BAC等于直线AB的倾斜角,其正切值即为K值,在直角三角形ABC中,得出直线AB的斜率.【解答】解:如图,设A,B两点的抛物线的准线上的射影分别为E,F′,过B作AE的垂线BC,在三角形ABC中,∠BAC等于直线AB的倾斜角,其正切值即为K值,设|BF|=n,∵|AF|=3|BF|,∴|AF|=3n,根据抛物线的定义得:|AE|=3n,|BF′|=n,∴|AC|=2n,在直角三角形ABC中,tan∠BAC==,∴k AB=k AF=.∴直线l的倾斜角为.根据对称性,直线l的倾斜角为,满足题意.故答案为或.14. 【答案】(1,2)15. 【答案】(1)由c =3a sin C -c cos A 及正弦定理,得 3sin A sin C -cos A ·sin C -sin C =0,由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12, 又0<A <π,所以-π6<A -π6<5π6,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8,解得b =c =2.由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12, 又0<A <π,所以-π6<A -π6<5π6,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8,解得b =c =2.16.解:(1)由直方图知,(0.150+0.125+0.100+0.0875+a )×2=1,解得a=0.0375, 因为甲班学习时间在区间[2,4]的有8人,所以甲班的学生人数为.所以甲、乙两班人数均为40人,所以甲班学习时间在区间[10,12]的人数为40×0.0375×2=3(人).(2)乙班学习时间在区间[10,12]的人数为40×0.05×2=4(人).由(1)知甲班学习时间在区间[10,12]的人数为3人.在两班中学习时间大于10小时的同学共7人,ξ的所有可能取值为0,1,2,3.,,,. 所以随机变量ξ的分布列为:ξ 0 1 2 3P .17. 解:(Ⅰ)取AD 的中点G ,连结PG GB BD 、、.PA PD =,PG AD ∴⊥……………………………2分AB AD =,且60DAB ∠=︒,ABD ∴∆是正三角形,AD BG ⊥,又PG BG G =,AD ∴⊥平面PGB .AD PB ∴⊥. ……………………………5分(Ⅱ) ∵侧面PAD ⊥底面ABCD ,又PG AD ⊥,PG ∴⊥底面ABCD .PG BG ∴⊥.∴直线GA GB GP 、、两两互相垂直,故以G 为原点,直线GA GB GP 、、所在直线为x 轴、y 轴和z 轴建立 如图所示的空间直角坐标系G xyz -.设PG a =,则可求得(0,0,),(,0,0),P a A a 3,0)B a ,(,0,0)D a -,)0,23,23(a a C -.…………………………………………………7分 33(,,0)22BC a a ∴=--.3,)PB a a ∴=- 设000(,,)n x y z =是平面PBC 的法向量,则0n BC ⋅=且0n PB ⋅=.0000330,2230.ax ay ay az ⎧--=⎪∴-= 00003,3.x y z ⎧=⎪⇒⎨⎪=⎩ 取03y =(1,3,3)n =-. …………………………………………9分 又平面PAD 的法向量1(0,3,0)n GB a ==,设平面PAD 与平面PBC 所成锐二面角为θ,则1139cos 131393n n an n θ⋅===++⋅⋅,所以平面PAD 与平面PBC 所成锐二面角的余弦值为13.……………………13分 18. 解:(Ⅰ)因为x x x e x x e x e x x x f ⋅-=⋅-+⋅+-=')1()32()33()(2 ………………1分令()0f x '>,得:1x >或0x <;令()0f x '<,得:01x <<所以()f x 在(,0),(1,)-∞+∞上递增,在(0,1)上递减………………………………3分 要使()f x 在[2,]t -为单调函数,则20t -<≤所以t 的取值范围为(2,0]- …………………………………………………4分 (Ⅱ)证:因为()f x 在(,0),(1,)-∞+∞上递增,在(0,1)上递减,所以()f x 在1x =处取得极小值e 又213(2)f e e-=<,所以()f x 在[2,)-+∞的最小值为(2)f -………………………6分 从而当2t >-时,)()2(t f f <-,即m n < ………………………………………8分 (Ⅲ)()72(ln 1)x f x x k x x e+->-等价于241(ln 1)x x k x x ++>- 即14ln 0k x k x x+++->………………………………………9分 记1()4ln k g x x k x x+=++-, 则221(1)(1)()1k k x x k g x x x x ++--'=--=, 由()0g x '=,得1x k =+,所以()g x 在(0,1)k +上单调递减,在(1,)k ++∞上单调递增,所以()(1)6ln(1)g x g k k k ≥+=+-+()0g x >对任意正实数x 恒成立,等价于6ln(1)0k k +-+>,即61ln(1)0k k+-+>………………………………11分 记6()1ln(1)h k k k=+-+, 则261()01h x x x =--<+, 所以()h x 在(0,)+∞上单调递减,又(6)2ln 70h =->,13(7)ln807h =-<, 所以k 的最大值为6………………………………………12分当6k =时,由2416(ln 1)x x x x ++>- 令3x =,则14ln 39<………………………………………13分19解:(1)由椭圆的离心率公式可知:e==,由c=1,则a=,b 2=a 2﹣c 2=1,故椭圆方程为;…(4分) (2)如图,由条件知MN 和PQ 是椭圆的两条弦,相交于焦点F (1,0), 且PQ ⊥MN ,设直线PQ 的斜率为k (k ≠0), 则PQ 的方程为y=k (x ﹣1),P (x 1,y 1),Q (x 1,y 1), 则,整理得:(1+2k 2)x 2﹣4k 2x+2k 2﹣2=0, x 1+x 1=,x 1x 2=,则丨PQ 丨=•,于是,…(7分) 同理:.则S=丨PQ 丨丨MN 丨=,令t=k 2+,T ≥2,S=丨PQ 丨丨MN 丨==2(1﹣),当k=±1时,t=2,S=,且S 是以t 为自变量的增函数,当k=±1时,四边形PMQN的面积取最小值.当直线PQ的斜率为0或不存在时,四边形PMQN的面积为2.综上:四边形PMQN的面积的最小值和最大值分别为和2.20.解:(1)由S n=2a n﹣2,得S n+1=2a n+1﹣2两式相减,得a n+1=2a n+1﹣2a n ∴a n+1=2a n数列{a n}为等比数列,公比q=2又S1=2a1﹣2,得a1=2a1﹣2,a1=2∴(2),方法一当n≤5时,≥0因此,T1<T2<T3<T4=T5>T6>…∴对任意n∈N*均有T4=T5≥T n,故k=4或5.方法二(两式相减,得,=(6﹣n)•2n+1﹣12,,当1≤n<4,T n+1>T n,当n=4,T4=T5,当n>4时,T n+1<T n,综上,当且仅当k=4或5时,均有T k≥T n(3)∵∴=∵对任意n∈N*均有成立,∴,所以λ的最小值为.。
2017年北京市高考数学试卷(文科)(解析版)
绝密★本科目考试启用前2017年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题1.(5分)已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)3.(5分)执行如图所示的程序框图,输出的S值为()A.2B .C .D .4.(5分)若x,y 满足,则x+2y的最大值为()A.1B.3C.5D.95.(5分)已知函数f(x)=3x ﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数6.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60B.30C.20D.107.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093二、填空题9.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.10.(5分)若双曲线x2﹣=1的离心率为,则实数m=.11.(5分)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是.12.(5分)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为.13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.14.(5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为.②该小组人数的最小值为.三、解答题15.(13分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.16.(13分)已知函数f(x)=cos(2x ﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.17.(13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40), (80)90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.18.(14分)如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.19.(14分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x 轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.20.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.2017年北京市高考数学试卷(文科)参考答案与试题解析一、选择题1.(5分)已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)【考点】1F:补集及其运算.【专题】11:计算题;37:集合思想;5J:集合.【分析】根据已知中集合A和U,结合补集的定义,可得答案.【解答】解:∵集合A={x|x<﹣2或x>2}=(﹣∞,﹣2)∪(2,+∞),全集U=R,∴∁U A=[﹣2,2],故选:C.【点评】本题考查的知识点是集合的补集及其运算,难度不大,属于基础题.2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【考点】A1:虚数单位i、复数.【专题】35:转化思想;59:不等式的解法及应用;5N:数系的扩充和复数.【分析】复数(1﹣i)(a+i)=a+1+(1﹣a)i 在复平面内对应的点在第二象限,可得,解得a范围.【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.【点评】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.3.(5分)执行如图所示的程序框图,输出的S值为()A.2B.C.D .【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2,当k=1时,满足进行循环的条件,执行完循环体后,k=2,S=,当k=2时,满足进行循环的条件,执行完循环体后,k=3,S=,当k=3时,不满足进行循环的条件,故输出结果为:,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4.(5分)若x,y 满足,则x+2y的最大值为()A.1B.3C.5D.9【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.【解答】解:x,y 满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A 时,取得最大值,由,可得A(3,3),目标函数的最大值为:3+2×3=9.故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(5分)已知函数f(x)=3x ﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数【考点】3N:奇偶性与单调性的综合.【专题】2A:探究型;4O:定义法;51:函数的性质及应用.【分析】由已知得f(﹣x)=﹣f(x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x 为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f(x)=3x ﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x ﹣()x为增函数,故选:B.【点评】本题考查的知识点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题.6.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60B.30C.20D.10【考点】L!:由三视图求面积、体积.【专题】31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】由三视图可知:该几何体为三棱锥,如图所示.【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积==10.故选:D.【点评】本题考查了三棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.7.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】35:转化思想;5A:平面向量及应用;5L:简易逻辑.【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论.【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.【点评】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093【考点】4G:指数式与对数式的互化.【专题】11:计算题.【分析】根据对数的性质:T=,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093,故选:D.【点评】本题解题关键是将一个给定正数T写成指数形式:T=,考查指数形式与对数形式的互化,属于简单题.二、填空题9.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.【考点】GF:三角函数的恒等变换及化简求值.【专题】11:计算题;35:转化思想;4O:定义法;56:三角函数的求值.【分析】推导出α+β=π+2kπ,k∈Z,从而sinβ=sin(π+2kπ﹣α)=sinα,由此能求出结果.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.【点评】本题考查角的正弦值的求法,考查对称角、诱导公式,正弦函数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是基础题.10.(5分)若双曲线x2﹣=1的离心率为,则实数m=2.【考点】KC:双曲线的性质.【专题】11:计算题;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】利用双曲线的离心率,列出方程求和求解m即可.【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.【点评】本题考查双曲线的简单性质,考查计算能力.11.(5分)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是[,1].【考点】3V:二次函数的性质与图象.【专题】11:计算题;35:转化思想;49:综合法;51:函数的性质及应用.【分析】利用已知条件转化所求表达式,通过二次函数的性质求解即可.【解答】解:x≥0,y≥0,且x+y=1,则x2+y2=x2+(1﹣x)2=2x2﹣2x+1,x∈[0,1],则令f(x)=2x2﹣2x+1,x∈[0,1],函数的对称轴为:x=,开口向上,所以函数的最小值为:f ()==.最大值为:f(1)=2﹣2+1=1.则x2+y2的取值范围是:[,1].故答案为:[,1].【点评】本题考查二次函数的简单性质的应用,考查转化思想以及计算能力.12.(5分)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O 为原点,则•的最大值为6.【考点】9O:平面向量数量积的性质及其运算.【专题】35:转化思想;56:三角函数的求值;5A:平面向量及应用;5B:直线与圆.【分析】设P(cosα,sinα).可得=(2,0),=(cosα+2,sinα).利用数量积运算性质、三角函数的单调性与值域即可得出.【解答】解:设P(cosα,sinα).=(2,0),=(cosα+2,sinα).则•=2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.【点评】本题考查了数量积运算性质、三角函数的单调性与值域、圆的参数方程,考查了推理能力与计算能力,属于中档题.13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为﹣1,﹣2,﹣3.【考点】FC:反证法.【专题】11:计算题;35:转化思想;4O:定义法;5L:简易逻辑.【分析】设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,举例即可,本题答案不唯一【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一),故答案为:﹣1,﹣2,﹣3【点评】本题考查了命题的真假,举例说明即可,属于基础题.14.(5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为6.②该小组人数的最小值为12.【考点】7C:简单线性规划.【专题】11:计算题;5L:简易逻辑;5M:推理和证明.【分析】①设男学生女学生分别为x,y人,若教师人数为4,则,进而可得答案;②设男学生女学生分别为x,y人,教师人数为z ,则,进而可得答案;【解答】解:①设男学生女学生分别为x,y人,若教师人数为4,则,即4<y<x<8,即x的最大值为7,y的最大值为6,即女学生人数的最大值为6.②设男学生女学生分别为x,y人,教师人数为z,则,即z<y<x<2z即z最小为3才能满足条件,此时x最小为5,y最小为4,即该小组人数的最小值为12,故答案为:6,12【点评】本题考查的知识点是推理和证明,简易逻辑,线性规划,难度中档.三、解答题15.(13分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11:计算题;35:转化思想;49:综合法;54:等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,{b2n﹣1}是等比数列,公比为3,首项为1.b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.16.(13分)已知函数f(x)=cos(2x ﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【考点】GA:三角函数线;GL:三角函数中的恒等变换应用;H1:三角函数的周期性.【专题】11:计算题;35:转化思想;4O:定义法;56:三角函数的求值;57:三角函数的图像与性质.【分析】(Ⅰ)根据两角差的余弦公式和两角和正弦公式即可求出f(x)sin(2x +),根据周期的定义即可求出,(Ⅱ)根据正弦函数的图象和性质即可证明.【解答】解:(Ⅰ)f(x)=cos(2x ﹣)﹣2sinxcosx,=(co2x +sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x +),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x +∈[﹣,],∴﹣≤sin(2x +)≤1,∴f(x)≥﹣【点评】本题考查了三角函数的化简以及周期的定义和正弦函数的图象和性质,属于基础题17.(13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40), (80)90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【考点】B8:频率分布直方图;CB:古典概型及其概率计算公式.【专题】11:计算题;27:图表型;5I:概率与统计.【分析】(Ⅰ)根据频率=组距×高,可得分数小于70的概率为:1﹣(0.04+0.02)×10;(Ⅱ)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.进而得到答案.【解答】解:(Ⅰ)由频率分布直方图知:分数小于70的频率为:1﹣(0.04+0.02)×10=0.4故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;(Ⅱ)已知样本中分数小于40的学生有5人,故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1﹣(0.04+0.02+0.02+0.01)×10﹣0.05=0.05,估计总体中分数在区间[40,50)内的人数为400×0.05=20人,(Ⅲ)样本中分数不小于70的频率为:0.6,由于样本中分数不小于70的男女生人数相等.故分数不小于70的男生的频率为:0.3,由样本中有一半男生的分数不小于70,故男生的频率为:0.6,即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:2.【点评】本题考查的知识点是频率分布直方图,用样本估计总体,难度不大,属于基础题.18.(14分)如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LW:直线与平面垂直;LY:平面与平面垂直.【专题】35:转化思想;49:综合法;5F:空间位置关系与距离.【分析】(1)运用线面垂直的判定定理可得PA⊥平面ABC,再由性质定理即可得证;(2)要证平面BDE⊥平面PAC,可证BD⊥平面PAC,由(1)运用面面垂直的判定定理可得平面PAC⊥平面ABC,再由等腰三角形的性质可得BD⊥AC,运用面面垂直的性质定理,即可得证;(3)由线面平行的性质定理可得PA∥DE,运用中位线定理,可得DE的长,以及DE⊥平面ABC,求得三角形BCD的面积,运用三棱锥的体积公式计算即可得到所求值.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE=PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC=S△ABC =××2×2=1,则三棱锥E﹣BCD 的体积为DE•S△BDC=×1×1=.【点评】本题考查空间的线线、线面和面面的位置关系的判断,主要是平行和垂直的关系,注意运用线面平行的性质定理以及线面垂直的判定定理和性质定理,面面垂直的判定定理和性质定理,同时考查三棱锥的体积的求法,考查空间想象能力和推理能力,属于中档题.19.(14分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x 轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.【考点】K3:椭圆的标准方程;KL:直线与椭圆的综合.【专题】31:数形结合;44:数形结合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)由题意设椭圆方程,由a=2,根据椭圆的离心率公式,即可求得c,则b2=a2﹣c2=1,即可求得椭圆的方程;(Ⅱ)由题意分别求得DE和BN的斜率及方程,联立即可求得E点坐标,根据三角形的相似关系,即可求得=,因此可得△BDE与△BDN的面积之比为4:5.【解答】解:(Ⅰ)由椭圆的焦点在x 轴上,设椭圆方程:(a>b>0),则a=2,e==,则c=,b2=a2﹣c2=1,∴椭圆C 的方程;(Ⅱ)证明:设D(x0,0),(﹣2<x0<2),M(x0,y0),N(x0,﹣y0),y0>0,由M,N 在椭圆上,则,则x02=4﹣4y02,则直线AM的斜率k AM ==,直线DE的斜率k DE=﹣,直线DE的方程:y=﹣(x﹣x0),直线BN的斜率k BN =,直线BN的方程y=(x﹣2),,解得:,过E做EH⊥x轴,△BHE∽△BDN,则丨EH丨=,则=,∴:△BDE与△BDN的面积之比为4:5.【点评】本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,直线的斜率公式,相似三角形的应用,考查数形结合思想,属于中档题.20.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】34:方程思想;48:分析法;53:导数的综合应用.【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.【点评】本题考查导数的运用:求切线的方程和单调区间、最值,考查化简整理的运算能力,正确求导和运用二次求导是解题的关键,属于中档题.。
2017北京市高考压轴卷 数学(理)Word版含解析
2017北京市高考压轴卷理科数学第一部分(选择题共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N = ( )A .(0,4]B .[0,4)C .[1,0)-D .(1,0]-2.等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( ) A .6 B .5 C .4 D .33.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠=( )A .14 B .13 C .4 D .34.若向量,a b 满足:()()1,,2,a a b a a b b =+⊥+⊥则b = ( )A .2BC .1D .25. 已知函数的一个对称中心是,且,要得到函数的图像,可将函数的图像( )向左平移个单位长度 向左平移个单位长度向右平移个单位长度向右平移个单位长度6.若12()2(),f x x f x dx =+⎰则1()f x dx =⎰( )A.1-B.13-C.13D.1 7.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<8. 已知点P 为函数()ln f x x =的图象上任意一点,点Q 为圆221[()]1x e y e-++=上任意一点,则线段PQ 的长度的最小值为ABD .11e e +-第Ⅱ卷(非选择题 共110分)二、填空题(共6个小题,每题5分,共30分)9.执行右侧的程序框图,若输入9x =,则输出y =.10.若函数()cos 2sin f x x a x =+在区间(,)62ππ是减函数,则a 的取值范围是 . 11.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.12.已知曲线C:x =l :x=6。
2017全国卷Ⅲ高考压轴卷数学(文)附答案解析
绝密★启封前2017全国卷Ⅲ高考压轴卷文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于(A )[1,4)- (B )(2,3] (C )(2,3) (D )(1,4)-2.已知133iz i-=+(i 为虚数单位),则z 的共轭复数的虚部为( ) (A)i - (B)i (C)1- (D)13袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3,蓝色卡片两张,标号分别为1,2,从以上五张卡片中任取两张,则这两张卡片颜色不同且标号之和不小于4的概率为(A )110 (B )310 (C )25 (D )7104.在射击训练中,某战士射击了两次,设命题p 是“第一次射击击中目标”,命题q 是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是() A .()()p q ⌝∨⌝为真命题 B .()p q ∨⌝为真命题 C. ()()p q ⌝∧⌝为真命题 D .p q ∨为真命题5.设n S 是等差数列{}n a 的前n 项和,若65911a a =,则119SS =() (A )1(B )1- (C )2(D )126.榫卯(sŭn măo)是我国古代工匠极为精巧的发明,它是在两个构件上采用44 2 2正视图侧视图凹凸部位相结合的一种连接方式.我国的北京紫禁城、山西悬空寺、福建宁德的廊桥等建筑都用到了榫卯结构.如图所示是一种榫卯构件中榫的三视图,其表面积为(A )1224+π (B )1220+π(C )1420+π(D )1424+π7. 已知函数()cos()sin 4f x x x π=+⋅, 则函数()f x 的图象AA. 关于直线8x π=对称 B. 关于点直线2(,84π-对称 C. 最小正周期为T=2π D. 在区间(0,)8π上为减函数8. 下面左图是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为1A 、2A 、……、16A ,右图是统计茎叶图中成绩在一定范围内的学生人数的算法流程图.那么该算法流程图输出的结果是A. 6B. 10C. 91D. 92676981367929415861031114开始输入 12316,,,,A A A A 0,1n i ==输出n 结束1i i =+1n n =+90i A 是是否否16i ≤9.正方体1111ABCD A B C D -中,,E F 分别是1,AD DD 的中点,4AB =,则过,,B E F 的平面截该正方体所得的截面周长为(A )325(B )25(C )325(D )2510.已知()f x 是定义在R 上的奇函数,且0x >时,()ln 1f x x x =-+,则函数()()x g x f x e =-(e 为自然对数的底数)的零点个数是() A. 0B. 1C. 2D. 311.等差数列{}n a 前n 项和为n S ,已知510071007(1)2017(1)1a a ---=510111011(1)2017(1)1a a ---=-,则A .2017100710112017,S a a =>B .2017100710112017,S a a =->C .2017100710112017,S a a =<D .2017100710112017,S a a =-<12. 若(,0)F c 是双曲线22221(0)x y a b a b-=>>的右焦点,过F 作该双曲线一条渐近线的垂线与两条渐近线交于,A B 两点,O 为坐标原点,OAB ∆的面积为2127a ,则该双曲线的离心率e =A. 53B. 43C. 54D. 85第Ⅱ卷注意事项:须用黑色墨水签字笔在答题卡上作答。
2017年北京市高考数学试卷(文科)(解析版)
2017年北京市高考数学试卷(文科)一、选择题1.(5分)已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)3.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.C.D.4.(5分)若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.95.(5分)已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数6.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.107.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033 B.1053 C.1073 D.1093二、填空题9.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y 轴对称,若sinα=,则sinβ=.10.(5分)若双曲线x2﹣=1的离心率为,则实数m=.11.(5分)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是.12.(5分)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为.13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.14.(5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为.②该小组人数的最小值为.三、解答题15.(13分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.16.(13分)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.17.(13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.18.(14分)如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D 为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.19.(14分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.20.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.2017年北京市高考数学试卷(文科)参考答案与试题解析一、选择题1.(5分)已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2]D.(﹣∞,﹣2]∪[2,+∞)【分析】根据已知中集合A和U,结合补集的定义,可得答案.【解答】解:∵集合A={x|x<﹣2或x>2}=(﹣∞,﹣2)∪(2,+∞),全集U=R,∴∁U A=[﹣2,2],故选:C.【点评】本题考查的知识点是集合的补集及其运算,难度不大,属于基础题.2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【分析】复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,可得,解得a范围.【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.【点评】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.3.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.C.D.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2,当k=1时,满足进行循环的条件,执行完循环体后,k=2,S=,当k=2时,满足进行循环的条件,执行完循环体后,k=3,S=,当k=3时,不满足进行循环的条件,故输出结果为:,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4.(5分)若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.9【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.【解答】解:x,y满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由,可得A(3,3),目标函数的最大值为:3+2×3=9.故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(5分)已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数【分析】由已知得f(﹣x)=﹣f(x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:B.【点评】本题考查的知识点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题.6.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.10【分析】由三视图可知:该几何体为三棱锥,如图所示.【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积==10.故选:D.【点评】本题考查了三棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.7.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论.【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.【点评】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033 B.1053 C.1073 D.1093【分析】根据对数的性质:T=,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093,故选:D.【点评】本题解题关键是将一个给定正数T写成指数形式:T=,考查指数形式与对数形式的互化,属于简单题.二、填空题9.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y 轴对称,若sinα=,则sinβ=.【分析】推导出α+β=π+2kπ,k∈Z,从而sinβ=sin(π+2kπ﹣α)=sinα,由此能求出结果.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.【点评】本题考查角的正弦值的求法,考查对称角、诱导公式,正弦函数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是基础题.10.(5分)若双曲线x2﹣=1的离心率为,则实数m=2.【分析】利用双曲线的离心率,列出方程求和求解m 即可.【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.【点评】本题考查双曲线的简单性质,考查计算能力.11.(5分)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是[,1] .【分析】利用已知条件转化所求表达式,通过二次函数的性质求解即可.【解答】解:x≥0,y≥0,且x+y=1,则x2+y2=x2+(1﹣x)2=2x2﹣2x+1,x∈[0,1],则令f(x)=2x2﹣2x+1,x∈[0,1],函数的对称轴为:x=,开口向上,所以函数的最小值为:f()==.最大值为:f(1)=2﹣2+1=1.则x2+y2的取值范围是:[,1].故答案为:[,1].【点评】本题考查二次函数的简单性质的应用,考查转化思想以及计算能力.12.(5分)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为6.【分析】设P(cosα,sinα).可得=(2,0),=(cosα+2,sinα).利用数量积运算性质、三角函数的单调性与值域即可得出.【解答】解:设P(cosα,sinα).=(2,0),=(cosα+2,sinα).则•=2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.【点评】本题考查了数量积运算性质、三角函数的单调性与值域、圆的参数方程,考查了推理能力与计算能力,属于中档题.13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为﹣1,﹣2,﹣3.【分析】设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,举例即可,本题答案不唯一【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一),故答案为:﹣1,﹣2,﹣3【点评】本题考查了命题的真假,举例说明即可,属于基础题.14.(5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为6.②该小组人数的最小值为12.【分析】①设男学生女学生分别为x,y人,若教师人数为4,则,进而可得答案;②设男学生女学生分别为x,y人,教师人数为z,则,进而可得答案;【解答】解:①设男学生女学生分别为x,y人,若教师人数为4,则,即4<y<x<8,即x的最大值为7,y的最大值为6,即女学生人数的最大值为6.②设男学生女学生分别为x,y人,教师人数为z,则,即z<y<x<2z即z最小为3才能满足条件,此时x最小为5,y最小为4,即该小组人数的最小值为12,故答案为:6,12【点评】本题考查的知识点是推理和证明,简易逻辑,线性规划,难度中档.三、解答题15.(13分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.16.(13分)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【分析】(Ⅰ)根据两角差的余弦公式和两角和正弦公式即可求出f(x)sin(2x+),根据周期的定义即可求出,(Ⅱ)根据正弦函数的图象和性质即可证明.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣【点评】本题考查了三角函数的化简以及周期的定义和正弦函数的图象和性质,属于基础题17.(13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【分析】(Ⅰ)根据频率=组距×高,可得分数小于70的概率为:1﹣(0.04+0.02)×10;(Ⅱ)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.进而得到答案.【解答】解:(Ⅰ)由频率分布直方图知:分数小于70的频率为:1﹣(0.04+0.02)×10=0.4故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;(Ⅱ)已知样本中分数小于40的学生有5人,故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1﹣(0.04+0.02+0.02+0.01)×10﹣0.05=0.05,估计总体中分数在区间[40,50)内的人数为400×0.05=20人,(Ⅲ)样本中分数不小于70的频率为:0.6,由于样本中分数不小于70的男女生人数相等.故分数不小于70的男生的频率为:0.3,由样本中有一半男生的分数不小于70,故男生的频率为:0.6,即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:2.【点评】本题考查的知识点是频率分布直方图,用样本估计总体,难度不大,属于基础题.18.(14分)如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D 为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【分析】(1)运用线面垂直的判定定理可得PA⊥平面ABC,再由性质定理即可得证;(2)要证平面BDE⊥平面PAC,可证BD⊥平面PAC,由(1)运用面面垂直的判定定理可得平面PAC⊥平面ABC,再由等腰三角形的性质可得BD⊥AC,运用面面垂直的性质定理,即可得证;(3)由线面平行的性质定理可得PA∥DE,运用中位线定理,可得DE的长,以及DE⊥平面ABC,求得三角形BCD的面积,运用三棱锥的体积公式计算即可得到所求值.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE=PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC =S△ABC=××2×2=1,则三棱锥E﹣BCD的体积为DE•S△BDC=×1×1=.【点评】本题考查空间的线线、线面和面面的位置关系的判断,主要是平行和垂直的关系,注意运用线面平行的性质定理以及线面垂直的判定定理和性质定理,面面垂直的判定定理和性质定理,同时考查三棱锥的体积的求法,考查空间想象能力和推理能力,属于中档题.19.(14分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.【分析】(Ⅰ)由题意设椭圆方程,由a=2,根据椭圆的离心率公式,即可求得c,则b2=a2﹣c2=1,即可求得椭圆的方程;(Ⅱ)由题意分别求得DE和BN的斜率及方程,联立即可求得E点坐标,根据三角形的相似关系,即可求得=,因此可得△BDE与△BDN的面积之比为4:5.【解答】解:(Ⅰ)由椭圆的焦点在x轴上,设椭圆方程:(a>b>0),则a=2,e==,则c=,b2=a2﹣c2=1,∴椭圆C的方程;(Ⅱ)证明:设D(x0,0),(﹣2<x0<2),M(x0,y0),N(x0,﹣y0),y0>0,由M,N在椭圆上,则,则x02=4﹣4y02,则直线AM的斜率k AM==,直线DE的斜率k DE=﹣,直线DE的方程:y=﹣(x﹣x0),直线BN的斜率k BN=,直线BN的方程y=(x﹣2),,解得:,过E做EH⊥x轴,△BHE∽△BDN,则丨EH丨=,则=,∴:△BDE与△BDN的面积之比为4:5.【点评】本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,直线的斜率公式,相似三角形的应用,考查数形结合思想,属于中档题.20.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.【点评】本题考查导数的运用:求切线的方程和单调区间、最值,考查化简整理的运算能力,正确求导和运用二次求导是解题的关键,属于中档题.。
2017年北京市高考数学试卷(文科)
2017年北京市高考数学试卷(文科)一、选择题1.(5分)已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=( )A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2] D.(﹣∞,﹣2]∪[2,+∞)2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是( )A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)3.(5分)执行如图所示的程序框图,输出的S值为( )A.2 B.C.D.4.(5分)若x,y满足,则x+2y的最大值为( )A.1 B.3 C.5 D.95.(5分)已知函数f(x)=3x﹣()x,则f(x)( )A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数6.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.60 B.30 C.20 D.107.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是( )(参考数据:lg3≈0.48)A.1033 B.1053 C.1073 D.1093二、填空题9.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ= .10.(5分)若双曲线x2﹣=1的离心率为,则实数m= .11.(5分)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是 .12.(5分)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为 .13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为 .14.(5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 .②该小组人数的最小值为 .三、解答题15.(13分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.16.(13分)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.17.(13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.18.(14分)如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.19.(14分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x 轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.20.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.2017年北京市高考数学试卷(文科)参考答案与试题解析一、选择题1.(5分)已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=( )A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2] D.(﹣∞,﹣2]∪[2,+∞)【分析】根据已知中集合A和U,结合补集的定义,可得答案.【解答】解:∵集合A={x|x<﹣2或x>2}=(﹣∞,﹣2)∪(2,+∞),全集U=R,∴∁U A=[﹣2,2],故选:C.【点评】本题考查的知识点是集合的补集及其运算,难度不大,属于基础题. 2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是( )A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【分析】复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,可得,解得a范围.【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.【点评】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.3.(5分)执行如图所示的程序框图,输出的S值为( )A.2 B.C.D.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2,当k=1时,满足进行循环的条件,执行完循环体后,k=2,S=,当k=2时,满足进行循环的条件,执行完循环体后,k=3,S=,当k=3时,不满足进行循环的条件,故输出结果为:,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4.(5分)若x,y满足,则x+2y的最大值为( )A.1 B.3 C.5 D.9【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.【解答】解:x,y满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由,可得A(3,3),目标函数的最大值为:3+2×3=9.故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(5分)已知函数f(x)=3x﹣()x,则f(x)( )A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数【分析】由已知得f(﹣x)=﹣f(x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:B.【点评】本题考查的知识点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题.6.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.60 B.30 C.20 D.10【分析】由三视图可知:该几何体为三棱锥,如图所示.【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积==10.故选:D.【点评】本题考查了三棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.7.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论.【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.【点评】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是( )(参考数据:lg3≈0.48)A.1033 B.1053 C.1073 D.1093【分析】根据对数的性质:T=,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093,故选:D.【点评】本题解题关键是将一个给定正数T写成指数形式:T=,考查指数形式与对数形式的互化,属于简单题.二、填空题9.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ= .【分析】推导出α+β=π+2kπ,k∈Z,从而sinβ=sin(π+2kπ﹣α)=sinα,由此能求出结果.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.【点评】本题考查角的正弦值的求法,考查对称角、诱导公式,正弦函数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是基础题.10.(5分)若双曲线x2﹣=1的离心率为,则实数m= 2 .【分析】利用双曲线的离心率,列出方程求和求解m 即可.【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.【点评】本题考查双曲线的简单性质,考查计算能力.11.(5分)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是 [,1] .【分析】利用已知条件转化所求表达式,通过二次函数的性质求解即可.【解答】解:x≥0,y≥0,且x+y=1,则x2+y2=x2+(1﹣x)2=2x2﹣2x+1,x∈[0,1],则令f(x)=2x2﹣2x+1,x∈[0,1],函数的对称轴为:x=,开口向上,所以函数的最小值为:f()==.最大值为:f(1)=2﹣2+1=1.则x2+y2的取值范围是:[,1].故答案为:[,1].【点评】本题考查二次函数的简单性质的应用,考查转化思想以及计算能力. 12.(5分)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为 6 .【分析】设P(cosα,sinα).可得=(2,0),=(cosα+2,sinα).利用数量积运算性质、三角函数的单调性与值域即可得出.【解答】解:设P(cosα,sinα).=(2,0),=(cosα+2,sinα).则•=2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.【点评】本题考查了数量积运算性质、三角函数的单调性与值域、圆的参数方程,考查了推理能力与计算能力,属于中档题.13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为 ﹣1,﹣2,﹣3 .【分析】设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,举例即可,本题答案不唯一【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一),故答案为:﹣1,﹣2,﹣3【点评】本题考查了命题的真假,举例说明即可,属于基础题.14.(5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 6 .②该小组人数的最小值为 12 .【分析】①设男学生女学生分别为x,y人,若教师人数为4,则,进而可得答案;②设男学生女学生分别为x,y人,教师人数为z,则,进而可得答案;【解答】解:①设男学生女学生分别为x,y人,若教师人数为4,则,即4<y<x<8,即x的最大值为7,y的最大值为6,即女学生人数的最大值为6.②设男学生女学生分别为x,y人,教师人数为z,则,即z<y<x<2z即z最小为3才能满足条件,此时x最小为5,y最小为4,即该小组人数的最小值为12,故答案为:6,12【点评】本题考查的知识点是推理和证明,简易逻辑,线性规划,难度中档. 三、解答题15.(13分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,{b2n﹣1}是等比数列,公比为3,首项为1.b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.16.(13分)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【分析】(Ⅰ)根据两角差的余弦公式和两角和正弦公式即可求出f(x)sin (2x+),根据周期的定义即可求出,(Ⅱ)根据正弦函数的图象和性质即可证明.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣【点评】本题考查了三角函数的化简以及周期的定义和正弦函数的图象和性质,属于基础题17.(13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【分析】(Ⅰ)根据频率=组距×高,可得分数小于70的概率为:1﹣(0.04+0.02)×10;(Ⅱ)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.进而得到答案.【解答】解:(Ⅰ)由频率分布直方图知:分数小于70的频率为:1﹣(0.04+0.02)×10=0.4故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;(Ⅱ)已知样本中分数小于40的学生有5人,故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1﹣(0.04+0.02+0.02+0.01)×10﹣0.05=0.05,估计总体中分数在区间[40,50)内的人数为400×0.05=20人,(Ⅲ)样本中分数不小于70的频率为:0.6,由于样本中分数不小于70的男女生人数相等.故分数不小于70的男生的频率为:0.3,由样本中有一半男生的分数不小于70,故男生的频率为:0.6,即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:2.【点评】本题考查的知识点是频率分布直方图,用样本估计总体,难度不大,属于基础题.18.(14分)如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【分析】(1)运用线面垂直的判定定理可得PA⊥平面ABC,再由性质定理即可得证;(2)要证平面BDE⊥平面PAC,可证BD⊥平面PAC,由(1)运用面面垂直的判定定理可得平面PAC⊥平面ABC,再由等腰三角形的性质可得BD⊥AC,运用面面垂直的性质定理,即可得证;(3)由线面平行的性质定理可得PA∥DE,运用中位线定理,可得DE的长,以及DE⊥平面ABC,求得三角形BCD的面积,运用三棱锥的体积公式计算即可得到所求值.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE=PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC=S△ABC=××2×2=1,则三棱锥E﹣BCD的体积为DE•S△BDC=×1×1=.【点评】本题考查空间的线线、线面和面面的位置关系的判断,主要是平行和垂直的关系,注意运用线面平行的性质定理以及线面垂直的判定定理和性质定理,面面垂直的判定定理和性质定理,同时考查三棱锥的体积的求法,考查空间想象能力和推理能力,属于中档题.19.(14分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x 轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.【分析】(Ⅰ)由题意设椭圆方程,由a=2,根据椭圆的离心率公式,即可求得c,则b2=a2﹣c2=1,即可求得椭圆的方程;(Ⅱ)由题意分别求得DE和BN的斜率及方程,联立即可求得E点坐标,根据三角形的相似关系,即可求得=,因此可得△BDE与△BDN的面积之比为4:5.【解答】解:(Ⅰ)由椭圆的焦点在x轴上,设椭圆方程:(a>b>0),则a=2,e==,则c=,b2=a2﹣c2=1,∴椭圆C的方程;(Ⅱ)证明:设D(x0,0),(﹣2<x0<2),M(x0,y0),N(x0,﹣y0),y0>0,由M,N在椭圆上,则,则x02=4﹣4y02,则直线AM的斜率k AM==,直线DE的斜率k DE=﹣,直线DE的方程:y=﹣(x﹣x0),直线BN的斜率k BN=,直线BN的方程y=(x﹣2),,解得:,过E做EH⊥x轴,△BHE∽△BDN,则丨EH丨=,则=,∴:△BDE与△BDN的面积之比为4:5.【点评】本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,直线的斜率公式,相似三角形的应用,考查数形结合思想,属于中档题.20.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g (x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.【点评】本题考查导数的运用:求切线的方程和单调区间、最值,考查化简整理的运算能力,正确求导和运用二次求导是解题的关键,属于中档题.。
2017北京高考模拟解析几何压轴题文科
解析几何压轴题1.fs20)(本小题14分)已知椭圆C :22221x y a b+=(0)a b >>,点(4,0)A -,(0,2)B 和点(,)(0)P m n m ≠都在椭圆C 上,BP AB ⊥,且直线BP 与x 轴交于点M .(Ⅰ)求椭圆C 的标准方程和离心率; (Ⅱ)求点P 的坐标;(Ⅲ)若以M 为圆心、r 为半径的圆在椭圆C 的内部,求r 的取值范围. 2.cp (20)(本小题满分14分)已知椭圆M :()222210x y a b a b+=>>的焦距为2,点(0,D 在椭圆M 上,过原点O 作直线交椭圆M 于A 、B 两点,且点A 不是椭圆M 的顶点,过点A 作x 轴的垂线,垂足为H ,点C 是线段AH 的中点,直线BC 交椭圆M 于点P ,连接AP .(Ⅰ)求椭圆M 的方程及离心率; (Ⅱ)求证:AB AP ⊥;(III )设ABC ∆的面积与APC ∆的面积之比为q ,求q 的取值范围.3.hd 20.(本小题满分14分)已知曲线22:1(0)43x y C y +=≥, 直线:1l y kx =+与曲线C 交于,A D 两点,,A D 两点在x 轴上的射影分别为点,B C .(Ⅰ)当点B 坐标为(1,0)-时,求k 的值;(Ⅱ)记OAD ∆的面积1S ,四边形ABCD 的面积为2S .(i )若1S =||AD 的值; (ii )求证:1212S S ≥. 4.xc20.(本小题满分14分)已知抛物线C :24x y =,过点)0)(,0(>m m P 的动直线l 与C 相交于B A ,两点,抛物线C 在点A 和点B 处的切线相交于点Q ,直线BQ AQ ,与x 轴分别相交于点F E ,.(Ⅰ)写出抛物线C 的焦点坐标和准线方程; (Ⅱ)求证:点Q 在直线y m =-上;(Ⅲ)判断是否存在点P ,使得四边形PEQF 为矩形?若存在,求出点P 的坐标;若不存在,说明理由. 5.ft20.(本小题共14分)已知椭圆w :22221(0)x y a b a b+=>>过点(0,椭圆w 上任意一点到两焦点的距离之和为4.(Ⅰ)求椭圆w 的方程;(Ⅱ)如图,设直线:(0)l y kx k =≠与椭圆w 交于,P A两点,过点00(,)P x y 作PC ⊥x 轴,垂足为点C , 直线AC 交椭圆w 于另一点B .①用直线l 的斜率k 表示直线AC 的斜率; ②写出∠APB 的大小,并证明你的结论. 6.dc (20)(本小题共14分)设函数()af x x x=-,a ∈R . (Ⅰ)若1a =-,求()f x 在区间1[,3]2上的最大值;(Ⅱ)设0b ≠,求证:当1a =-时,过点(,)P b b -有且只有一条直线与曲线()y f x =相切;(Ⅲ)若对任意的1[,2]2x ∈,均有()11f x x -≤成立,求a 的取值范围. 7.cy20. (本小题满分14分)在平面直角坐标系xOy 中,000(,)(0)P x y y ≠是椭圆:C 222212x y λλ+=(0)λ>上的点,过点P 的直线l 的方程为002212x x y yλλ+=. (Ⅰ)求椭圆C 的离心率;(Ⅱ)当1λ=时,设直线l 与x 轴、y 轴分别相交于,A B 两点,求OAB ∆面积的最小值; (Ⅲ)设椭圆C 的左、右焦点分别为1F ,2F ,点Q 与点1F 关于直线l 对称,求证: 点2,,Q P F 三点共线.详解答案1.fs20)(本小题14分)已知椭圆C :22221x y a b+=(0)a b >>,点(4,0)A -,(0,2)B 和点(,)(0)P m n m ≠都在椭圆C 上,BP AB ⊥,且直线BP 与x 轴交于点M .(Ⅰ)求椭圆C 的标准方程和离心率; (Ⅱ)求点P 的坐标;(Ⅲ)若以M 为圆心、r 为半径的圆在椭圆C 的内部,求r 的取值范围. 20(共14分)解:(Ⅰ)易知 4,2a b ==所以c =所以椭圆C 的标准方程是 221164x y +=; …………………………2分离心率为c e a =4分 (Ⅱ)易知12AB k =…………………………5分 因为AB BP ⊥, 所以 2BP k =-…………………………6分 所以 BP 的方程为22y x =-+…………………………7分所以22221164n m m n=-+⎧⎪⎨+=⎪⎩解得32173017m n ⎧=⎪⎪⎨⎪=-⎪⎩或00m n =⎧⎨=⎩(舍) 所以点P 的坐标为3230(,)1717-…………………………………9分 (Ⅲ)直线BP 的方程为22y x =-+令0y =,得1x =所以点M 的坐标为(1,0)………………………10分以M 为圆心,为r 半径的圆在椭圆C 的内部,等价于r 小于椭圆C 的点到点M 的最小值. 设点(,)(44)Q x y x -≤≤为椭圆C 上任意一点则3MQ ===≥所以r的取值范围是(0,3…………………………………14分2.cp (20)(本小题满分14分)已知椭圆M :()222210x y a b a b+=>>的焦距为2,点(0,D 在椭圆M 上,过原点O 作直线交椭圆M 于A 、B 两点,且点A 不是椭圆M 的顶点,过点A 作x 轴的垂线,垂足为H ,点C 是线段AH 的中点,直线BC 交椭圆M 于点P ,连接AP .(Ⅰ)求椭圆M 的方程及离心率; (Ⅱ)求证:AB AP ⊥;(III )设ABC ∆的面积与APC ∆的面积之比为q ,求q 的取值范围.(20)(本小题满分14分)解:(I )由题意知1,c=b =,则2224a b c =+=,所以椭圆M 的方程为22143x y +=,椭圆M 的离心率为12.………….5分(II )设0011(,),(,)A x y P x y ,则0000(,),(,).2y B x y C x -- 由点,A P 在椭圆上,所以2200143x y +=①2211143x y +=② 点A 不是椭圆M 的顶点,②-①得,2210221034y y x x -=-- . 法一:又01001000332,,24PB BCy y y y k k x x x x +===+且点,,B C P 三点共线, 所以10010034y y y x x x +=+, 即 0100104().3()y y y x x x +=+所以,22010101010220101010104()4()43()1,3()3()34AB PAy y y y y y y y y k k x x x x x x x x x -+--====⨯-=--+-- 即 AB AP ⊥. ……………9分法二:由已知AB 与AP 的斜率都存在,2210101022101010PA PBy y y y y y k k x x x x x x -+-==-+-221022103()344x x x x --==--.又003,4PB BC y k k x ==得00,PA xk y =- 则0000()1AB PA y x k k x y -==- , 即 AB AP ⊥. ……………9分 (III )法一:设AB k k =,由(II )知13,4AP BP kk k k =-=,联立直线AP 与BP 方程:00001(),3(),4y y x x k k y y x x ⎧-=--⎪⎪⎨⎪+=+⎪⎩得 001312()4314k y x k x k k --=+,将00y k x =代入得 0000220000012200000032()4(45)3434y x y x x y x x y x y x x y x y --+==++.0102ABC APC x S q S x x ∆∆==-2200022200002200243(45)43x x y y x x y x x y +==+-+201633(1)3y =+-, 因为20(0,3)y ∈,所以(3,)q ∈+∞. 法二:设AB k k =,由(II )知13,4AP BP kk k k =-=,联立直线AP 与BP 方程:00001()3()4y y x x k k y y x x ⎧-=--⎪⎪⎨⎪+=+⎪⎩得 0001031512()()442(1)313131444k k k y x x k k x x k k k k k k --+===++++, 0102ABCAPC x S q S x x ∆∆==-02002432(1)314x k kx x k k==++-+,因为2(0,)k ∈+∞,所以(3,)q ∈+∞. ……………14分 3.hd 20.(本小题满分14分)已知曲线22:1(0)43x y C y +=≥, 直线:1l y kx =+与曲线C 交于,A D 两点,,A D 两点在x 轴上的射影分别为点,B C .(Ⅰ)当点B 坐标为(1,0)-时,求k 的值;(Ⅱ)记OAD ∆的面积1S ,四边形ABCD 的面积为2S .(i )若1S =||AD 的值; (ii )求证:1212S S ≥. 20.解:(Ⅰ)因为(1,0)B -,所以0(1,)A y -, …………………1分代入221(0)43x y y +=≥,解得032y =,…………………2分代入直线1y kx =+,得12k =-. …………………3分(Ⅱ)解法一:设点(0,1)E , 1122(,),(,)A x y B x y .因为221431x y y kx ⎧+=⎪⎨⎪=+⎩,所以22(34)880k x kx ++-=, …………………4分所以122122834834k x x k x x k ⎧∆=⎪⎪-⎪+=⎨+⎪-⎪=⎪+⎩…………………6分 又因为1121212111||(||||)1||||222S OE x x x x x x =+=⋅⋅-=-, …………………7分而12||x x -=,所以1S =, …………………8分,13,解得0k =, …………………9分所以23||13AD ==. …………………10分 法二:解法一:设点(0,1)E , 1122(,),(,)A x y B x y .因为22141x y y kx ⎧+=⎪⎨⎪=+⎩, 所以22(34)880k x kx ++-=, …………………4分 所以122122834834k x x k x x k ⎧∆=⎪⎪-⎪+=⎨+⎪-⎪=⎪+⎩…………………6分 点O 到直线AD的距离为d =, …………………7分1212||||AD x x x x =-=-=8分所以11||2S AD d =⋅=13,解得0k =, …………………9分所以23||13AD ==. …………………10分 (Ⅲ)因为212121()||2S y y x x =+-, …………………11分所以12121212121||121()||2x x S S y y y y x x -==++-, …………………12分 而12121211()2y y kx kx k x x +=+++=++, …………………13分所以2122134318662234S k k S k k +==≥=-++. …4.xc20.(本小题满分14分)已知抛物线C :24x y =,过点)0)(,0(>m m P 的动直线l 与C 相交于B A ,两点,抛物线C 在点A 和点B 处的切线相交于点Q ,直线BQ AQ ,与x 轴分别相交于点F E ,.(Ⅰ)写出抛物线C 的焦点坐标和准线方程; (Ⅱ)求证:点Q 在直线y m =-上;(Ⅲ)判断是否存在点P ,使得四边形PEQF 为矩形?若存在,求出点P 的坐标;若不存在,说明理由. 20.(本小题满分14分)(Ⅰ)解:焦点坐标为(0,1),准线方程为1y =-. ………………2分 (Ⅱ)证明:由题意,知直线l 的斜率存在,故设l 的方程为m kx y +=. 由方程组2,4,y kx m x y =+=⎧⎨⎩ 得2440x kx m --=,由题意,得216160k m ∆=+>.设11(,)A x y ,22(,)B x y ,则124x x k +=,124x x m =-, ………………4分 由抛物线方程24x y =,得214y x=,所以12y x '=, 所以抛物线在点A 处的切线方程为)(21411121x x x x y -=-, 化简,得2114121x x x y -=, ○1 同理,抛物线在点B 处的切线方程为2224121x x x y -=. ○2 ………………6分联立方程○1○2,得22221141214121x x x x x x -=-,即))((41)(21212121x x x x x x x +-=-,因为21x x ≠,所以)(2121x x x +=,代入○1,得1214y x x m ==-,所以点12(,)2x x Q m +-,即(2,)Q k m -. 所以点Q 在直线y m =-上. ………………8分 (Ⅲ)解:假设存在点P ,使得四边形PEQF 为矩形, 由四边形PEQF 为矩形,得EQ FQ ⊥,即AQ BQ ⊥, 所以1-=⋅BQ AQ k k ,即1212121-=⋅x x . 由(Ⅱ),得1)4(414121-=-=m x x , 解得1m =.所以(0,1)P . ………………10分以下只要验证此时的四边形PEQF 为平行四边形即可. 在○1中,令0=y ,得)0,21(1x E .同理得)0,21(2x F .所以直线EP 的斜率为11221001x x k EP -=--=,直线FQ 的斜率12122221)1(0x x x x k FQ-=+---=, ………………12分 所以FQ EP k k = ,即FQ EP //. 同理EQ PF //.所以四边形PEQF 为平行四边形.综上所述,存在点)1,0(P ,使得四边形PEQF 为矩形. ………………14分5.ft20.(本小题共14分)已知椭圆w :22221(0)x y a b a b+=>>过点(0,椭圆w 上任意一点到两焦点的距离之和为4.(Ⅰ)求椭圆w 的方程;(Ⅱ)如图,设直线:(0)l y kx k =≠与椭圆w 交于,P A两点,过点00(,)P x y 作PC ⊥x 轴,垂足为点C , 直线AC 交椭圆w 于另一点B .①用直线l 的斜率k 表示直线AC 的斜率; ②写出∠APB 的大小,并证明你的结论. 20.(本小题共14分)解:(Ⅰ)2,a b == -------------------2分椭圆W 的方程22142x y +=. --------------------4分 (Ⅱ)设00(,)P x y ,则000(,),(,0)A x y C x --,0y k x =. --------------------6分 直线AB 的斜率0010000()()22y y kk x x x --===--.--------------------7分(Ⅲ)090APB ∠=--------------------8分由(Ⅱ)可得直线AB 的方程:0()2ky x x =-,设点11(,)B x y 联立022(),24ky x x x y =2⎧-⎪⎨⎪+=⎩,消去y 得22222002280k x k x x k x ()+-+-=--------------------10分 则2001222k x x x k -+=+ ,解得20012322k x x x k +=+, --------------------12分所以30122k x y k =+,点230002232B(,)22k x x k x k k +++. --------------------13分 因为 30020PB2200002212 =3222k x kx kx k k k x x k x kx k --+==-+-+, 所以P P 1A B k k ⋅=-,所以090APB ∠=----------------------14分 6.dc (20)(本小题共14分)设函数()af x x x=-,a ∈R .(Ⅰ)若1a =-,求()f x 在区间1[,3]2上的最大值;(Ⅱ)设0b ≠,求证:当1a =-时,过点(,)P b b -有且只有一条直线与曲线()y f x =相切;(Ⅲ)若对任意的1[,2]2x ∈,均有()11f x x -≤成立,求a 的取值范围.(20)(共14分)解:(Ⅰ)当1a =-时,1()f x x x=--. 221(1)(1)()1x x f x x x --+'=-=. 令()0f x '=,得1x =-或1x =.当1[,1)2x ∈,有()0f x '>,所以()f x 在区间1[,1)2上是增函数; 当(1,3]x ∈时,有()0f x '<,所以()f x 在区间(1,3]上是减函数; 所以()f x 在区间1[,3]2上的最大值为(1)2f =-. ………………… 5分(Ⅱ)设过点(,)P b b -的直线与曲线()y f x =相切于点00(,)Q x y ,则0001y x x =--,且切线斜率为0201()1k f x x '==-. 所以000()()y b f x x b--'=-,即00200111x b x x b x --+=--. 所以 22000001()(1)()x b x x x b x --+=--,解得02b x =.即存在唯一的切点2(,)22b bb --. 所以过点(,)P b b -有且只有一条直线与曲线()y f x =相切. ………………… 9分(Ⅲ)当1x =时,对任意a ∈R ,不等式显然成立;当1x ≠时,不等式等价于21xa x x ≤+-.当1[,1)2x ∈时,不等式等价于21xa x x≤+-恒成立. 令2()1x g x x x =+-,1[,1)2x ∈, 则21()2(1)g x x x '=+-,当1[,1)2x ∈时,显然()0g x '>, 所以()g x 在区间1[,1)2上单调递增, 所以()g x 在区间1[,1)2上有最小值15()24g =.所以54a ≤.当(1,2]x ∈时,不等式等价于21x a x x ≤+-恒成立.令2()1x h x x x =+-,(1,2]x ∈,当(1,2]x ∈时,2221()=11211x h x x x x x x =+++>+>--, 所以,当54a ≤时,不等式21x a x x ≤+-对(1,2]x ∈恒成立.综上,实数a的取值范围是5(,]4-∞. ………………… 14分7.cy20. (本小题满分14分)在平面直角坐标系xOy 中,000(,)(0)P x y y ≠是椭圆:C 222212x y λλ+=(0)λ>上的点,过点P 的直线l 的方程为002212x x y yλλ+=. (Ⅰ)求椭圆C 的离心率;(Ⅱ)当1λ=时,设直线l 与x 轴、y 轴分别相交于,A B 两点,求OAB ∆面积的最小值; (Ⅲ)设椭圆C 的左、右焦点分别为1F ,2F ,点Q 与点1F 关于直线l 对称,求证: 点2,,Q P F 三点共线. 20.(本小题满分14分)解:(Ⅰ)依题a =,c λ==,所以椭圆C 离心率为2e ==.……………………………………………3分(Ⅱ)依题意00x ≠,令0y =,由0012x x y y +=,得02x x =,则02(,0)A x . 令0x =,由0012x x y y +=,得01y y =,则01(0,)B y . 则OAB ∆的面积0000112122OAB S OA OB x y x y ∆===. 因为00(,)P x y 在椭圆:C 2212x y +=上,所以220012x y +=.所以220012x y =+≥,即002x y ≤,则001x y ≥所以00112OAB S OA OB x y ∆==≥当且仅当22002x y =,即001,2x y =±=±时,OAB ∆面积的最小值为 ……………………………………………………………8分(Ⅲ)由2222102y x λλ=->,解得0x <.①当00x =时,(0,)P λ,(,2)Q λλ-,此时21F P k =-,21F Q k =-. 因为22F Q F P k k =,所以三点2,,Q P F 共线. 当(0,)P λ-时,也满足.②当00x ≠时,设(,)Q m n ,m λ≠-,1FQ 的中点为M ,则(,)22m nM λ-,代入直线l 的方程,得:2000240x m y n x λλ+--=.设直线1FQ 的斜率为k ,则002y nk m x λ==+, 所以000220y m x n y λ-+=.由2000000240220x m y n x y m x n y λλλ⎧+--=⎨-+=⎩,解得22002200244x x m y x λλλ+=-+,20002200484x y y n y x λλ+=+.所以22200000222200002448(,)44x x x y y Q y x y x λλλλλ++-++. 当点P 的横坐标与点2F 的横坐标相等时,把0x λ=,222y λ=代入22002200244x x m y x λλλ+=-+中得m λ=,则2,,Q P F 三点共线. 当点P 的横坐标与点2F 的横坐标不相等时, 直线2F P 的斜率为200F P y k x λ=-.由0x ≤≤,02x λ≠-.所以直线2F Q 的斜率为220002220000022222200000022004844824248224F Qx y y y x x y y k x x x x y x y x λλλλλλλλλλλ+++==++---+ 20000000022222000000482(2)4822x y y x y y y x x y x y x x λλλλλλλλλ+++===--+- 000000(2)()(2)y x y x x x λλλλ+==-+-. 因为22F Q F P k k =,所以2,,Q P F 三点共线.综上所述2,,Q P F 三点共线. ……………………………………………………………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017北京市高考压轴卷
文科数学
第一部分(选择题共40分)
一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.设常数a ∈R ,集合A={}0)a ()1(≥--x x x ,B={}
1-≥a x x .若A ∪B=R ,则a 的取值范围为( ) (A )(-∞,2) (B )(-∞,2] (C )(2,+∞) (D )[2,+∞) 2.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是
A .(,0)-∞
B .1
(0,)2
C .(0,1)
D .(0,)+∞
3.将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是 A .
π
12
B .
π
6
C .
π
3
D .
5π6
4.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()p ⌝∨()q ⌝ B .p ∨()q ⌝
C .()p ⌝∧()q ⌝
D .p ∨q
5.函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤
⎢⎥⎣⎦
上的最小值是
(A) 1- (B)
(C)
2
(D) 0
6.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离
的不同取值有( )
A .3个
B .4个
C .5个
D .6个
7.执行如图所示的程序框图,输出的S 值为( )
A .1
B .
2
3
C .1321
D .610987
8.下面是关于公差0d >的等差数列()n a 的四个命题:
{}1:n p a 数列是递增数列;
{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫
⎨⎬⎩⎭
数列是递增数列; {}4:3n p a nd +数列是递增数列;
其中的真命题为
(A )12,p p (B )34,p p (C )23,p p (D )14,p p
第Ⅱ卷(非选择题 共110分)
二、填空题(共6个小题,每题5分,共30分) 9.方程
x
311
39x
=+-的实数解为 . 10.学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别是75、80,则这次考试该年级学生平均分数为 .
11. 设a + b = 2, b >0, 则1||
2||a a b +
的最小值为 . 12. 已知抛物线2
8y x =的准线过双曲线22
221(0,0)x y a b a b
-=>>的一个焦点, 且双曲线的离心
率为2, 则该双曲线的方程为 .
13. 在四边形CD AB 中,()C 2,4A =,()D 2,1B =-,则该四边形的面积为_______
14.设D 为不等式组02030x x y x y ≥⎧⎪
-≤⎨⎪+-≤⎩
所表示的平面区域,区域D 上的点与点(1,0)之间的距离的
最小值为 。
三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)
15.(本小题满分13分)
在ABC ∆中, 223=4cos A cosA +. (1)求角A 的大小;
(2)若2a =,求ABC ∆的周长l 的取值范围.
16 (本小题满分13分)
某产品的三个质量指标分别为x , y , z , 用综合指标S = x + y + z 评价该产品的等级. 若S ≤4,
则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:
(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率; (Ⅱ) 在该样品的一等品中, 随机抽取2件产品,
(⒈) 用产品编号列出所有可能的结果;
(⒉) 设事件B 为 “在取出的2件产品中, 每件产品的综合指标S 都等于4”, 求事件B 发生的概率.
17.(本小题共13分)
已知在四棱锥P ABCD -中,底面ABCD 是矩形,且2,1,AD AB PA ==⊥平面ABCD ,
,E F 分别是线段,AB BC 的中点.
(1)证明: PF FD ⊥;
(2)若1PA =,求点E 到平面PFD 的距离.
18.(本小题满分共13分)
已知函数2
()()4x
f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为
44y x =+。
(Ⅰ)求,a b 的值;
(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值。
19(本小题满分14分)
设椭圆22221(0)x y a b a b
+=>>的左焦点为F , , 过点F 且与x 轴垂直的直线被椭圆
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设A , B 分别为椭圆的左,右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若
··8AC DB AD CB +=, 求k 的值.
20.(本小题共14分)
给定数列1a ,2a ,,n a 。
对1,2,3,
,1i n =-,该数列前i 项的最大值记为i A ,
后n i -项1i a +,2i a +,
,n a 的最小值记为i B ,i i i d A B =-。
(1)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值。
(2)设1a ,2a ,
,n a (4n ≥)是公比大于1的等比数列,且10a >,证明1d ,2d ,
,
1n d -是等比数列。
(3)设1d ,2d ,,1n d -是公差大于0的等差数列,且10d >,证明1a ,2a ,,1
n a -是等差数列。
试卷答案1.B
2.
3.
4.
5.B
6
7
8.B
9.【答案】log 34
10. 【答案】78 11. 【答案】
34
12. 【答案】2
2
13
y x -=
13. 【答案】5
【解析】根据题意,440AC BD ⋅=-+=,所以AC BD ⊥,且AC BD ==
而有该四边形的面积为1
52
S =
⋅=
14.
15. 【答案】
(1)因为2234cos A cosA +=,所以21
22cos 2
cos A A +
=, 所以2
4410cos A cosA -+=,
所以1cos 2
A =
. 又因为0A π<<,所以3
A π
=.
(2)因为
sin sin sin a b c A B C ==
, 3
A π
=, 2a =,
所以,
b B
c =
=, 所以)22sin sinC
l b c B =++=+
+. 因为23
B C π+=, 所以22sin sin 2sin
36l B B B ππ⎤⎛⎫⎛⎫=+-=++ ⎪ ⎪⎥⎝⎭⎝
⎭⎦. 又因为203B π<<
,所以1sin 126B π⎛
⎫<+≤ ⎪⎝
⎭,所以(]4,6l ∈
【解析】(1)根据倍角公式可将已知等式转化为关于cos A 的二次方程,解方程求得cos A 的
值,进而得到角A 的大小;
(2)根据正弦定理可将三角形的边长用对应角的正弦值表示,列出周长l 的表达式并利用两角和与差公式化为关于角B 的三角函数,进而根据三角函数的值域求得周长l 的取值范围. 16.
17. 【答案】
(1)证明:连接AF ,则A F ==,又2222,,A D D F A F A D D F A F =∴+=∴⊥,
又PA ⊥平面,ABCD DF PA ∴⊥,又,PA AF A DF ⋂=∴⊥平面PAF ,又PF ⊂平面
,PAF DF PF
∴⊥.
(2) 53244EFD ADE BEF CDF ABCD S S S S S ∆∆∆∆=---=-=平面,
1131·13344
P EFD EFD V S PA -∆∴==⨯⨯=,
11,?34E PFD P EFD E PFD PFD V V V S h ---∆=∴===,解得h =,即点E 到平面PFD
.
18.
19.
20.。