新北师大版八年级数学下册《二章 一元一次不等式与一元一次不等式组 6.一元一次不等式组的解法》教案_16
北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)
北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)一、选择题(共10小题;共40分)1. 现有以下数学表达式:①−3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3.其中不等式有( )A. 5个B. 4个C. 3个D. 1个2. 自从11月起,贝贝每天至少跑步1800m,若他每天跑x m,则x满足的关系式是( )A. x>1800B. x<1800C. x≥1800D. x≤18003. 不等式组{2x−4<0,3−2x<1的解集为( )A. x<1B. x>2C. x<1或x>2D. 1<x<24. 如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b>0的解集是( )A. x>−2B. x>3C. x<−2D. x<35. 下列说法中,错误的是( )A. 不等式x<2的正整数解只有一个B. −2是不等式2x−1<0的一个解C. 不等式−3x>9的解集是x>−3D. 不等式x<10的整数解有无数个6. 实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )A. ∣a−c∣>∣b−c∣B. −a<cC. a+c>b+cD. ab <cb7. 使不等式 x −2≥2 与 3x −10<8 同时成立的 x 的整数值是 ( ) A. 3,4B. 4,5C. 3,4,5D. 不存在8. 已知点 P (2a −1,1−a ) 在第一象限,则 a 的取值范围在数轴上表示正确的是 ( )A.B.C. D.9. 篮球联赛中,每场比赛都要分出胜负,每队胜 1 场得 3 分,负 1 场得 1 分.某队预计在 2014~2015赛季全部 32 场比赛中最少得到 54 分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜 x 场,要达到目标,x 应满足的关系式是 ( ) A. 3x −(32−x )≥54 B. 3x +(32−x )≥54 C. 3x +(32−x )≤54D. 3x ≥5410. 若关于 x 的一元一次不等式组 {x −2m <0,x +m >2 有解,则 m 的取值范围为 ( )A. m >−23B. m ≤23C. m >23D. m ≤−23二、填空题(共8小题;共32分)11. 2016年6月9日某市最高气温是 34 ∘C ,最低气温是 27 ∘C ,则当天该市气温 t 的变化范围可表示为 .12. 若 x >y ,则 −3x +2 −3y +2(填“<”或“>”).13. 若 (m −2)x ∣m−1∣−3>6 是关于 x 的一元一次不等式,则 m = .14. 不等式组 {3x +10>0,163x −10<4x 的最小整数解是 .15. 小明借到一本 72 页的图书,要在 10 天之内读完,开始两天每天只读 5 页,设以后几天里每天读 x 页,所列不等式为 .16. 函数 y =mx +n 和函数 y =kx 在同一坐标系中的图象如图所示,则关于 x 的不等式 mx +n >kx 的解集是 .17. 已知关于 x 的不等式 (a −1)x >4 的解集是 x <4a−1,则 a 的取值范围是 .18. 某商品的售价是 150 元,商家售出一件这种商品可获利润是进价的 10%∼20%,则进价的范围为 (结果取整数). 三、解答题(共7小题;共77分)19. 解不等式组 {4(x +1)≤7x +10,x −5<x−83, 并写出它的所有非负整数解.20. 若关于 x ,y 的方程组 {x +y =30−a,3x +y =50+a 的解都是非负数,求 a 的取值范围.21. 如图,一次函数 y 1=kx −2 和 y 2=−3x +b 的图象相交于点 A (2,−1).(1)求 k ,b 的值.(2)利用图象求出:当 x 取何值时,y 1≥y 2? (3)利用图象求出:当 x 取何值时,y 1>0 且 y 2<0?22. 解关于 x 的不等式 ax −x −2>0.23. 若关于x的不等式组{x2+x+13>0,3x+5a+4>4(x+1)+3a恰有三个整数解,求实数a的取值范围.24. 按如图所示的程序进行运算:并规定:程序运行到“结果是否大于65”为一次运算.(1)求程序运行一次便输出时的x的取值范围;(2)已知输入x后程序运行3次才停止,求x的取值范围.25. 去年夏天,某地区遭受到罕见的水灾,“水灾无情人有情”,某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件.(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往这所中学.已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜20件,则该单位安排甲、乙两种型号的货车时有几种方案?请你帮忙设计出来.(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元,该单位选择哪种方案可使运费最少?最少运费是多少?参考答案第一部分 1. B 【解析】③ 是等式;④ 是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共 4个. 2. C 3. D 4. A 5. C 6. A 7. B8. C【解析】根据点 P 在第一象限,知横、纵坐标都是正数,可得到关于 a 的不等式组{2a −1>0,1−a >0, 求得 a 的取值范围是 0.5<a <1. 9. B10. C 【解析】{x −2m <0, ⋯⋯①x +m >2. ⋯⋯②解不等式 ① 得 x <2m ,解不等式 ② 得 x >2−m .∵ 不等式组有解,∴ 2m >2−m .∴ m >23. 第二部分11. 27 ∘C ≤t ≤34 ∘C 12. < 13. 0【解析】根据一元一次不等式的定义可知 ∣m −1∣=1 且 m −2≠0,求解即可. 14. −315. 2×5+(10−2)x ≥72 16. x <−1【解析】由图象可知,直线 y =mx +n 和直线 y =kx 的交点坐标是 (−1,−1),∴ 关于 x 的不等式 mx +n >kx 的解集是 x <−1. 17. a <1 18. 125∼136 元【解析】设进价为 x 元.依题意,得 0.1x ≤150−x ≤0.2x ,即 {150−x ≥0.1x,150−x ≤0.2x, 解得 125≤x ≤136411.∵ 结果取整数,∴ 进价的范围为 125∼136 元.第三部分 19.{4(x +1)≤7x +10, ⋯⋯①x −5<x −83. ⋯⋯②由 ① 得x ≥−2,由 ② 得x <72,∴−2≤x <72.∴ 非负整数的解为 0,1,2,3. 20. 解方程组,得{x =10+a,y =20−2a.依题意有{10+a ≥0,20−2a ≥0,解得−10≤a ≤10.21. (1) 将 A 点坐标代入 y 1=kx −2,得 2k −2=−1,即 k =12;将 A 点坐标代入 y 2=−3x +b ,得 −6+b =−1,即 b =5.(2) 从图象可以看出:当 x ≥2 时,y 1≥y 2. (3) 直线 y 1=12x −2 与 x 轴的交点为 (4,0), 直线 y 2=−3x +5 与 x 轴的交点为 (53,0).从图象可以看出:当 x >4 时,y 1>0;当 x >53 时,y 2<0, ∴ 当 x >4 时,y 1>0 且 y 2<0. 22. 由题意变形得(a −1)x >2.当 a −1>0,即 a >1 时,x >2a −1. 当 a −1=0,即 a =1 时,不等式无解; 当 a −1<0,即 a <1 时,x<2 a−1.23. 由不等式x2+x+13>0,解得x>−25.由不等式3x+5a+4>4(x+1)+3a,解得x<2a.∵不等式组恰有三个整数解,∴2<2a≤3.∴1<a≤32.24. (1)根据题意得2x−1>65,解得x>33.(2)根据题意得{2x−1≤65,2(2x−1)−1≤65,2[2(2x−1)−1]−1<65,解得9<x≤17.25. (1) 设饮用水有 x 件,则蔬菜有 (x −80) 件. 依题意,得x +(x −80)=320,解这个方程,得x =200. x −80=120.答:饮用水和蔬菜分别有 200 件和 120 件.(2) 设租用甲型货车 n 辆,则租用乙型货车 (8−n ) 辆. 依题意,得{40n +20(8−n )≥200,10n +20(8−n )≥120,解这个不等式组,得2≤n ≤4.∵n 为整数, ∴ n =2 或 3 或 4,所以安排甲、乙两种型号的货车时有 3 种方案,分别是: ①甲型货车 2 辆,乙型货车 6 辆; ②甲型货车 3 辆,乙型货车 5 辆; ③甲型货车 4 辆,乙型货车 4 辆. (3) 3 种方案的运费分别为:方案①:2×400+6×360=2960(元); 方案②:3×400+5×360=3000(元); 方案③:4×400+4×360=3040(元); ∴ 方案①运费最少,最少运费是 2960 元.答:选择甲型货车 2 辆,乙型货车 6 辆,可使运费最少,最少运费是 2960 元.。
新北师大版八年级数学下册知识点总结
北师大版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。
二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
1231性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(外心)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
2、角平分线。
性质:角平分线上的点到这个角的两边的距离相等。
三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。
(内心)判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
第二章一元一次不等式和一元一次不等式组1.定义:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
2.基本性质:性质1:.不等式的两边都加(或减)同一个整式,不等号的方向不变.如果a>b,那么a+c>b+c, a-c>b-c.(注:移项要变号,但不等号不变)性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变. 如果a>b,并且c>0,那么ac>bc,cb c a >.性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变. 如果a>b,并且c<0,那么ac<bc,cb c a < 说明: 比较大小:作差法9第三章 图形的平移与旋转一、图形的平移1平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。
八年级数学北师大版初二下册--第二单元 2.6《一元一次不等式组》课件
(3)若要使商店的进货成本在4 300元的限额内,且全 部销售完后所获利润不低于1 400元,请你列举出 商店所有进货方案,并求出最大利润是多少?
解:(1)设购进篮球m个,排球n个,
根据题意得
ìïïíïïî
x+3 y=1.4, 2x+5 y=2.5.
解得
ìïïíïïî
x=0.5, y=0.3.
答:每台大型收割机1 h收割小麦0.5公顷,每台小型收割
机1 h收割小麦0.3公顷.
(2)设大型m)台,
根据题意得
w=300×2m+200×2(10-m)=200m+4 000.
ìïïíïïî
8m+(5 20-m)³ 20-m ³ 2.
148,
解得16≤m≤18.
∵m取整数,
∴m可取16,17,18.
故有三种派车方案:
方案一:大型运输车16辆,小型运输车4辆;
方案二:大型运输车17辆,小型运输车3辆;
方案三:大型运输车18辆,小型运输车2辆.
应用 6 租车方案
8.【 中考•绵阳】江南农场收割小麦,已知1台大型 收割机和3台小型收割机1 h可以收割小麦1.4公顷, 2台大型收割机和5台小型收割机1 h可以收割小 麦2.5公顷. (1)每台大型收割机和每台小型收割机1 h收割小 麦各多少公顷?
解得35≤x≤37.5.
∵x为整数,∴x=35,36,37.
方案如下:
方案 一 二 三
A型口罩 35 36 37
B型口罩 15 14 13
设购买口罩需要y元, 则y=5x+7(50-x)=-2x+350,k=-2<0, ∴y随x增大而减小, ∴x=37时,y的值最小. 答:有3种购买方案,其中方案三最省钱.
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分,第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. x 与1的和是非负数,用不等式表示为.( ) A. x +1<0B. x +1≤0C. x +1≥0D. x +1>02. 下列式子: ①x +y =1; ②x >y; ③x +2y; ④x −y ≥1; ⑤x <0中,属于不等式的有( )A. 2个B. 3个C. 4个D. 5个3. 由ax >b 得到x <ba ,则a 应满足的条件是.( ) A. a ≤0B. a >0C. a ≥0D. a <04. 已知实数a 、b ,若a >b ,则下列结论正确的是( ) A. a −5<b −5B. 2+a <2+bC. −a4>−b4D. 3a >3b5. 下列不等式的一个解是x =3的是.( ) A. x +3>5B. x +3>6C. x +3>7D. x +3>86. 下列各数中,是不等式2(x −5)<x −8的解的是.( ) A. 4 B. −5C. 3D. 57. 解不等式2+x3>2x−15的过程中,下列错误的一步是.( ) A. 5(2+x)>3(2x −1) B. 10+5x >6x −3 C. 5x −6x >−3−10D. x >138. 不等式4x −a >7x +5的解集是x <−1,则a 的值为.( ) A. −2B. 2C. 5D. 89. 如图,直线y =x +32与y =kx −1相交于点P ,点P 的纵坐标为12,则关于x 的不等式x +32>kx −1的解集是( )A. x >−1B. x <−1C. x>12D. x<1210. 如图是一次函数y1=kx+b与y2=x+a的图象,则不等式kx+b<x+a的解集是( )A. x<3B. x>3C. x>a−bD. x<a−b11. 定义新运算“☆”如下:当a>b时,a☆b=ab+b;当a<b时,a☆b=ab−b.若3☆(x+2)>0,则x的取值范围是.( )A. −1<x<1或x<2B. x<−2或1<x<2C. −2<x<1或x>1D. x<−2或x>212. 一个关于x的一元一次不等式组的解集在数轴上的表示如图所示,则该不等式组的解集是.( )A. x>1B. x≥1C. x>3D. x≥3第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 某生物兴趣小组要在温箱里培养A,B两种菌苗,A种菌苗的生长温度x(℃)的范围是35≤x≤38,B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)的范围是____.14. 若a>b,则ac2_______bc2.15. 如图,函数y=3x+b和y=ax−3的图像交于点P(−2,−5),则不等式3x+b>ax−3的解集是.16. 一元一次不等式组中各个不等式解集的,叫做这个一元一次不等式组的解集.三、解答题(本大题共9小题,共72.0分。
最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试卷(含答案详解)
第二章一元一次不等式和一元一次不等式组章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣42、下列说法中,正确的是( )A .x =3是不等式2x >1的解B .x =3是不等式2x >1的唯一解C .x =3不是不等式2x >1的解D .x =3是不等式2x >1的解集3、一次函数y =mx ﹣n (m ,n 为常数)的图象如图所示,则不等式mx ﹣n ≥0的解集是( )A .x ≥2B .x ≤2C .x ≥3D .x ≤34、在数轴上表示不等式1x >-的解集正确的是( )A.B.C.D.5、已知a>b,下列变形一定正确的是()A.3a<3b B.4+a>4﹣b C.ac2>bc2D.3+2a>3+2b6、设m为整数,若方程组3131x y mx y m+=-⎧⎨-=+⎩的解x、y满足175x y+>-,则m的最大值是()A.4 B.5 C.6 D.77、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A.关于x的不等式ax+b>0的解集是x>2B.关于x的不等式ax+b<0的解集是x<2C.关于x的方程ax+b=0的解是x=4D.关于x的方程ax+b=0的解是x=28、一次函数y=kx+b的图象如图所示,则下列说法错误的是()A.y随x的增大而减小B.k<0,b<0C.当x>4时,y<0x的图象D.图象向下平移2个单位得y=﹣129、一个不等式的解集为x≤1,那么在数轴上表示正确的是()A.B.C.D.10、下列说法正确的是()A.若a<b,则3a<2b B.若a>b,则ac2>bc2 C.若﹣2a>2b,则a<b D.若ac2<bc2,则a<b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某种药品的说明书上贴有如下的标签,一次服用这种药品的剂量范围是_________mg .2、如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围为_____________.3、当|x ﹣4|=4﹣x 时,x 的取值范围是___.4、如果a >b ,那么﹣2﹣a ___﹣2﹣b .(填“>”、“<”或“=”)5、已知点M (-6,3-a )是第二象限的点,则a 的取值范围是________.三、解答题(5小题,每小题10分,共计50分)1、学校计划购买甲、乙两种品牌的羽毛球拍若干副.已知购买3副甲种品牌球拍和2副乙种品牌球拍共需230元;购买2副甲种品牌球拍和1副乙种品牌球拍共需140元.(1)甲、乙两种品牌球拍的单价分别是多少元?(2)学校准备购买这两种品牌球拍共100副,要求乙种品牌球拍数量不超过甲种品牌球拍数量的3倍,那么购买多少副甲种品牌球拍最省钱?2、人和人之间讲友情,有趣的是,数与数之间也有相类似的关系.若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”.例如:18的正因数有1、2、3、6、9、18,它的真因数之和为1236921++++=;51的正因数有1、3、17、51,它的真因数之和为131721++=,所以称18和51为“亲和数”.又如要找8的亲和数,需先找出8的真因数之和为1247++=,而7133=++,所以8的亲和数为1339⨯⨯=,数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.例如:121、1351等.(1)10的真因数之和为_______;(2)求证:一个四位的“两头蛇数”11ab 与它去掉两头后得到的两位数的3倍的差,能被7整除;(3)一个百位上的数为4的五位“两头蛇数”,能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”.3、解不等式组求它的整数解:()202131x x x ->⎧⎪⎨+≥-⎪⎩ 4、解不等式(组)(1)3(1)5x x -≤+(2)4614312163x x x x +>-⎧⎪++⎨-≤⎪⎩ 5、为做好“园林城市创建”工作,打造美丽城市,达州市绿化提质改造工程正如火如荼地进行.某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某桥标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?-参考答案-一、单选题1、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.2、A【分析】对A 、B 、C 、D 选项进行一一验证,把已知解代入不等式看不等式两边是否成立.【详解】解:A 、当x =3时,2×3>1,成立,故A 符合题意;B 、当x =3时,2×3>1成立,但不是唯一解,例如x =4也是不等式的解,故B 不符合题意;C 、当x =3时,2×3>1成立,是不等式的解,故C 不符合题意;D 、当x =3时,2×3>1成立,是不等式的解,但不是不等式的解集,其解集为:x >12,故D 不符合题意;故选:A .【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题.3、D【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.4、A【分析】根据在数轴上表示不等式的解集的方法进行判断即可.【详解】在数轴上表示不等式1x>-的解集如下:故选:A.【点睛】本题考查不等式在数轴上的表示,掌握不等式在数轴上的画法是解题的关键.5、D【分析】根据不等式的基本性质逐项排查即可.【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C .当c =0时,不等式不成立,故C 选项不正确,不符合题意;D .不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D 选项正确,符合题意. 故选:D .【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.6、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=, 把25m x -=代入①得6315m y m -+=-,解得125m y --=, ∵175x y +>-, ∴21217555m m ---+>-,即131755m ->-, 解得6m <,∵m 为整数,∴m 的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.7、D【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.8、B【分析】由一次函数的图象的走势结合一次函数与y轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在x轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;k b故B符合题意;一次函数y=kx+b, y随x的增大而减小,与y轴交于正半轴,所以0,0,由图象可得:当x >4时,函数图象在x 轴的下方,所以y <0,故C 不符合题意;由函数图象经过0,2,4,0,240b k b ,解得:1,22k b 所以一次函数的解析式为:12,2y x 把122y x =-+向下平移2个单位长度得:12y x =-,故D 不符合题意; 故选B 【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.9、C【分析】根据数轴上数的大小关系解答.【详解】解:解集为x ≤1,那么在数轴上表示正确的是C ,故选:C .【点睛】此题考查利用数轴表示不等式的解集,正确掌握数轴上数的大小关系及表示解集的方法是解题的关键.10、D【分析】利用不等式的性质,即可求解.【详解】解:A、若a<b,则3a<3b,故本选项错误,不符合题意;B、若a>b,当c=0时,则ac2=bc2,故本选项错误,不符合题意;C、若﹣2a>﹣2b,则a<b,故本选项错误,不符合题意;D、若ac2<bc2,则a<b,故本选项正确,符合题意;故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键.二、填空题1、20~45【分析】根据60≤2次服用的剂量≤90,60≤3次服用的剂量≤90,列出两个不等式组,求出解集,再求出解集的并集即可.【详解】解:设一次服用的剂量为x mg,根据题意得;60≤2x≤90或60≤3x≤90,解得30≤x≤45或20≤x≤30,则一次服用这种药品的剂量范围是:20~45mg.故答案为:20~45.【点睛】此题考查一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键.2、1<m<2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一幅图得m >1,由第二幅图得m <2,故1<m <2;故答案是:1<m <2.【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键.3、4x ≤【分析】根据绝对值的意义进行分析解答【详解】解:∵ |4|4x x =-=-,∴40x -≥,故答案为:4x ≤.【点睛】本题考查绝对值的意义,解一元一次不等式,熟练掌握基础知识即可.4、<【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变.【详解】解:∵a >b ,∴﹣a <﹣b ,∴﹣2﹣a <﹣2﹣b ,故答案为:<.【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.5、a<3【分析】根据第二象限的符号特点(-,+),建立不等式解答即可.【详解】∵M(-6,3-a)是第二象限的点,∴3-a>0,解得a<3,故答案为:a<3.【点睛】本题考查了坐标与象限,不等式的解法,根据点的位置,正确建立不等式求解是解题的关键.三、解答题1、(1)甲种品牌球拍的单价是50元,乙种品牌球拍的单价是40元(2)购买25副甲种品牌球拍最省钱【分析】(1)设甲种品牌球拍的单价是x元,乙种品牌球拍的单价是y元,根据“购买3副甲种品牌球拍和2副乙种品牌球拍共需230元;购买2副甲种品牌球拍和1副乙种品牌球拍共需140元”,即可得出关于x,y的二元一次方程组,解之即可得出甲、乙两种品牌球拍的单价;(2)设购买m副甲种品牌球拍,则购买(100﹣m)副乙种品牌球拍,根据乙种品牌球拍数量不超过甲种品牌球拍数量的3倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设学校购买100副球拍所需费用为w元,利用总价=单价×数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.(1)解:设甲种品牌球拍的单价是x 元,乙种品牌球拍的单价是y 元,依题意得:{3x +2x =2302x +x =140, 解得:5040x y =⎧⎨=⎩. 答:甲种品牌球拍的单价是50元,乙种品牌球拍的单价是40元.(2)解:设购买m 副甲种品牌球拍,则购买(100﹣m )副乙种品牌球拍,依题意得:100﹣m ≤3m ,解得:m ≥25.设学校购买100副球拍所需费用为w 元,则w =50m +40(100﹣m )=10m +4000.∵10>0,∴w 随m 的增大而增大,∴当m =25时,w 取得最小值,∴购买25副甲种品牌球拍最省钱.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.2、(1)8;(2)见解析;(3)10461,11451,12441.【分析】(1)先求出10的真因数,再求10的真因数之和即可;(2)先把给出的数用代数式表示111001+10010ab a b =+,10ab a b =+,根据要求列代数式得1121001100103(10)ab ab a b a b -=++-+=7(10143)a b ++,说明括号中的数为整式即可;(3)设五位“两头蛇数”为141x y (x y <),先求出16的真因数之和15,找到16的亲和数为131133⨯⨯= ,根据能被16的“亲和数”整除,将五位数写成33的倍数与剩余部分为14133315333010106x y x x y =⨯+⨯+++,可得553x y ++能被33整除,根据08x ≤≤,19y ≤≤且x y <,得出555388x y ≤++≤能被33整除得出6x y +=即可.【详解】.解:(1)10的真因数为1,2,5,10的真因数之和为1+2+5=8,故答案为8;(2)11100010010+1=1001+10010ab a b a b =+++,10ab a b =+, ∵1131001100103(10)ab ab a b a b -=++-+,=7071001a b ++,=7(10143)a b ++,又因为09a ≤≤,09b ≤≤的整数,∴10143a b ++为整数,∴一个四位“两头蛇数”与它去掉两头后得到的两位数的3倍的差能被7整除;(3)设五位“两头蛇数”为141x y (x y <),∵末位数为1,∴不能被2(真因数)整除,∵16的真因数之和1248151311=+++==++,∴16的亲和数为131133⨯⨯= ,1411040110001033315633301010x y x y x x y =++=⨯++⨯++能被33整除,101062(553)x y x y ∴++=++能被33整除,又2不能被33整除,553x y ∴++能被33整除,08x ≤≤又,19y ≤≤且x y <,∴555388x y ≤++≤,55333x y ∴++=或66.5530x y ∴+=或5563x y +=(舍去),6x y ∴+=,09x y ≤≤<,∴06x y ==,或1,5x y ==或2,4x y ==,所以五位“两头蛇数”为10461,11451,12441.【点睛】本题考查数字之间的新定义,仔细阅读题目,把握实质,明确真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解,掌握真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解是解题关键.3、不等式组的解集为23x <≤,不等式组的整数解为3.【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出不等式组的整数解即可.【详解】解:()202131x x x ->⎧⎪⎨+≥-⎪⎩①② 解不等式①得:2x >,解不等式②得:3x ≤,∴不等式组的解集为23x <≤,∴不等式组的整数解为3.【点睛】本题主要考查了解一元一次不等式组和求一元一次不等式组的整数解,解题的关键在于能够熟练掌握解不等式组的方法.4、(1)4x ≤;(2)1x >-【分析】(1)根据解不等式的基本步骤求解即可;(2)先求得每一个不等式的解集,后确定出解集即可.【详解】(1)∵3(1)5x x -≤+ ,∴335x x -≤+,∴28x ≤,∴4x ≤;(2)4614312163x x x x +>-⎧⎪⎨++-≤⎪⎩①② 由①:1x >-,由②:4x ≥-,1x ∴>-.【点睛】本题考查了一元一次不等式和一元一次不等式组的解法,熟练掌握解题的基本步骤是解题的关键.5、(1)购买甲种树苗300棵,则购买乙种树苗100棵;(2)至少应购买甲种树苗240棵【分析】(1)设购买甲种树苗x棵,则购买乙种树苗(400-x)棵,根据购买两种树苗的总金额为90000元建立方程求出其解即可;(2)设应购买甲种树苗a棵,则购买乙种树苗(400-a)棵,根据购买甲种树苗的金额不少于购买乙种树苗的金额建立不等式求出其解即可.【详解】解:(1)设购买甲种树苗x棵,则购买乙种树苗(400-x)棵,由题意得200x+300(400-x)=90000,解得:x=300,∴购买乙种树苗400-300=100棵,答:购买甲种树苗300棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a棵,则购买乙种树苗(400-a)棵,由题意,得200a≥300(400-a),解得:a≥240.答:至少应购买甲种树苗240棵.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次不等式的解法的运用,解答时建立方程和不等式是关键.。
新北师大版八年级数学下册知识点总结
新北师大版八年级数学下册知识点总结XXX版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形的判定和性质:判定方法:SSS、SAS、ASA、AAS、HL(直角三角形)对应边相等,对应角相等二、等腰三角形的性质和判定:有两边相等,底角相等等腰三角形的顶角平分线、底边中线和高线互相重合等边三角形的各角相等,每个角都等于60°判定方法:等角对等边三、直角三角形的性质和判定:两锐角互余直角边平方和等于斜边平方锐角等于30°的直角三角形,直角边等于斜边的一半斜边上的中线等于斜边的一半判定方法:三边平方和相等四、线段的垂直平分线和角平分线:垂直平分线上的点到两个端点的距离相等三角形三条边的垂直平分线相交于一点,这个点到三个顶点的距离相等(外心)角平分线上的点到两边距离相等三角形三条角平分线相交于一点,这个点到三条边的距离相等(内心)第二章一元一次不等式和一元一次不等式组本章主要介绍一元一次不等式和一元一次不等式组的概念、性质和解法。
一、一元一次不等式的概念和性质:形如ax+b0)的不等式称为一元一次不等式解不等式的基本方法是移项、化简、分段讨论不等式的解集可以用区间表示二、一元一次不等式的解法:通过移项将不等式化为ax)b的形式根据a的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况三、一元一次不等式组的概念和性质:形如ax+by)和dx+ey>f(或<)的不等式组称为一元一次不等式组解不等式组的基本方法是联立、消元、分段讨论不等式组的解集可以用平面区域表示四、一元一次不等式组的解法:通过联立将不等式组化为标准形式根据系数的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况总之,本章内容涵盖了三角形的证明和一元一次不等式及其组的解法,是初中数学中重要的基础知识。
定义:不等式是用符号“<”(或“≤”),“>”(或“≥”)连接的式子。
基本性质:不等式的两边都加(或减)同一个整式,不等号的方向不变;不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变。
北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组第6节一元一次不等式组课后练习
第二章一元一次不等式与一元一次不等式组第6节一元一次不等式组课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.若关于x的一元一次不等式组122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.1a≥B.1a>C.1a≤-D.1a<-2.若关于x的不等式组()212xa x⎧->⎨-<⎩的解集为x>a,则a的取值范围是() A.a<2B.a≤2C.a>2D.a≥23.已知关于x 的不等式组255332xxxt x+⎧->-⎪⎪⎨+⎪-<⎪⎩恰有5个整数解,则t的取值范围是()A.﹣6<t<112-B.1162t-≤<-C.1162t-<≤-D.1162t-≤<-4.把不等式组21123xx+>-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是()A.B.C.D.5.若方程组3133x y kx y+=+⎧⎨+=⎩的解x,y满足01x y<+<,则k的取值范围是()A.10k-<<B.40k-<<C.08k<<D.4k>-6.如图所示为在数轴上表示的某不等式组的解集,则这个不等式组可能是()A.31215xx-≥⎧⎨->⎩B.31526xx->⎧⎨⎩C.35215xx+≥⎧⎨-<⎩D.322313x xxx<+⎧⎪+⎨--⎪⎩7.已知点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,则m的取值范围在数轴上表示正确的是()A.B .C.D.8.已知关于x的不等式组()()25513322xxxt x+⎧->⎪⎪⎨+⎪-<⎪⎩恰有5个整数解,则t的取值范围是()A.1992t<<B.1992t≤<C.1992t<≤D.1992t≤≤9.关于x的不等式组12xx m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m的取值范围为()A.m>-3B.m<-2C.m-3≤<-2D.m-3<≤-2 10.不等式组111324(1)2()xxx x a-⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a的取值范围是()A.65a-≤<-B.65a-<≤-C.65a-<<-D.65a-≤≤-评卷人得分二、填空题11.不等式组273(1)2342363x xxx+>+⎧⎪+⎨-≤⎪⎩的非负整数解有_____个.12.运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x 后程序操作进行了两次停止,则x的取值范围是______.13.在平面直角坐标系中,已知点A(7-2m,5-m)在第二象限内,且m为整数,则点A的坐标为_________.14.不等式组2425x a x b +>⎧⎨-<⎩的解集是0<x <2,那么a+b 的值等于_____. 15.关于x 的不等式组,22213x b x b -≥⎧⎨-≤⎩无解,则常数b 的取值范围是__________ 16.关于x 的不等式组1234x m x +⎧⎨-≥-⎩有3个整数解,则m 的取值范围是_____. 17.同时满足332x x ->-和34x x +>的最大整数是_______. 18.若关于x 的不等式组1423x x x m+⎧-≥⎪⎨⎪>⎩的所有整数解的和是﹣9,则m 的取值范围是_____.19.已知x =3是方程2x a -—2=x—1的解,那么不等式(2—5a )x <13的解集是______.20.若数m 使关于x 的不等式组2122274x x x m -⎧≤-+⎪⎨⎪+>-⎩,有且仅有三个整数解,则m 的取值范围是______.评卷人得分 三、解答题 21.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.22.解下列不等式(组):(1)4123x x -<-(2)()543113125x x x x ⎧+<+⎪⎨--≥⎪⎩.23.涡阳苏果超市计划购进甲,乙两种商品共100件,这两种商品的进价、售价如表所示:进价(元/件)售价(元/件)甲种商品1015乙种商品2030设其中甲种商品购进x件,售完此两种商品总利润为y元.(1)写出y与x的函数关系式;(2)该商场计划最多投入1500元用于购进这两种商品共100 件,则至少要购进多少件甲种商品?若售完这些商品,商场可获得的最大利润是多少元?24.某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)25.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.(1)在方程320x -=①,210x +=①,()315x x -+=-①中,写出是不等式组25312x x x x -+>-⎧⎨->-+⎩的相伴方程的序号 . (2)写出不等式组213133x x x -<⎧⎨+>-+⎩的一个相伴方程,使得它的根是整数: . (3)若方程1, 2x x ==都是关于x 的不等式组22x x m x m <-⎧⎨-≤⎩的相伴方程,求m 的取值范围.26.阅读下面的材料,回答问题:如果(x-2)(6+2x)>0,求x 的取值范围. 解:根据题意,得20620x x ->⎧⎨+>⎩或20620x x -<⎧⎨+<⎩,分别解这两个不等式组,得第一个不等式组的解集为x >2,第二个不等式组的解集为x <-3.故当x >2或x <-3时,(x-2)(6+2x)>0.(1)由(x-2)(6+2x)>0,得出不等式组20620x x ->⎧⎨+>⎩或20620x x -<⎧⎨+<⎩,体现了_____思想; (2)试利用上述方法,求不等式(x-3)(1-x)<0的解集.27.某超市准备购进A、B两种品牌台灯,其中A每盏进价比B进价贵30元,A售价120元,B售价80元.已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A进行降价促销,A台灯每盏降价m(8<m<15)元,B不变,超市如何进货获利最大?参考答案:1.A【解析】【分析】先求出不等式组中的每个不等式的解集,然后根据不等式组无解即可得出答案.【详解】解:解不等式122x x ->-,得1x <,解不等式0x a ->,得x a >,①不等式组1220x x x a ->-⎧⎨->⎩无解, ①1a ≥.故选:A .【点睛】本题考查了一元一次不等式组的解法,属于常考题型,正确理解题意、熟练掌握解一元一次不等式组的方法是解题的关键.2.D【解析】【分析】先求出每一个不等式的解集,然后根据不等式组有解根据已知给的解集即可得出答案.【详解】 ()2120x a x ⎧->⎨-<⎩①②, 由①得2x >,由①得x a >,又不等式组的解集是x >a ,根据同大取大的求解集的原则,①2a >,当2a =时,也满足不等式的解集为2x >,①2a ≥,故选D.【点睛】本题考查了解一元一次不等式组,不等式组的解集,熟练掌握不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.3.C【解析】【分析】本题首先求解不等式组的公共解集,继而按照整数解要求求解本题.【详解】①2553x x +->-, ①20x <;①32x t x +->, ①32x t >-;①不等式组的解集是:2032t x <<-.①不等式组恰有5个整数解,①这5个整数解只能为 15,16,17,18,19,故有143215t ≤-<,求解得:1162t -<≤-. 故选:C .【点睛】本题考查含参不等式组的求解,解题关键在于求解不等式时需将参数当做常量进行运算,其次注意运算仔细即可.4.B【解析】【分析】分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则逐个判断即可.【详解】解:解不等式2x +1>-1,得:x >-1,解不等式x +2≤3,得:x ≤1,①不等式组的解集为:-1<x ≤1,故选:B .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.B【解析】【分析】理解清楚题意,运用二元一次方程组的知识,解出k 的取值范围.【详解】①0<x+y <1,观察方程组可知,上下两个方程相加可得:4x+4y=k+4,两边都除以4得,x+y=44k +, 所以44k +>0, 解得k >-4;44k +<1, 解得k <0.所以-4<k <0.故选B .【点睛】当给出两个未知数的和的取值范围时,应仔细观察找到题中所给式子与它们和的关系,进而求值.6.C【解析】【分析】数轴上表示的解集是2≤x <3,再根据不等式组的求法,先分别求出不等式组中每个不等式的解,即可得到不等式的解集,最后根据所求不等式组的解集是否与题干中的解集进行判断,即可得到答案.【详解】解:数轴上表示的解集是2≤x <3, A 、31215x x -≥⎧⎨->⎩①②,①解不等式①得:x≤2,解不等式①得:x>3,①不等式组无解,故本选项不符合题意;B、31526xx->⎧⎨⎩①②①解不等式①得:x>2,解不等式①得:x≤3,①不等式组的解集是2<x≤3,故本选项不符合题意;C、35 215 xx+≥⎧⎨-<⎩①②①解不等式①得:x≥2,解不等式①得:x<3,①不等式组的解集是2≤x<3,故本选项符合题意;D、322313x xxx<+⎧⎪⎨+--⎪⎩①②①解不等式①得:x<2,解不等式①得:x≥3,①不等式组无解,故本选项不符合题意;故选C.【点睛】本题考查数轴和求不等式组的解集,解题的关键是读懂数轴,掌握解不等式组的方法. 7.D【解析】【分析】直接利用关于x轴对称点的性质得出对应点坐标,进而利用第四象限内点的性质得出答案.【详解】解:①点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,①对称点坐标为:(1﹣2m,m﹣1),则1﹣2m>0,且m﹣1<0,解得:m<12,如图所示:.故选D .【点睛】本题考查了关于x 轴对称点的性质以及不等式的解法,正确得出m 的取值范围是解题的关键.8.C【解析】【分析】先求出不等式的解集,再根据x 有5个整数解确定含t 的式子的值的范围,特别要考虑清楚是否包含端点值,这点极易出错.再求出t 的范围即可.【详解】解:由(1)得x<-10,由(2)x>3-2t,,所以3-2t<x<-10, ①x 有5个整数解,即x=-11,-12,-13,-14,-15,①163215t -≤-<-①1992t <≤ 故答案为C .【点睛】本题考查根据含字母参数的不等式组的解集来求字母参数的取值范围,关键是通过解集确定含字母参数的式子的范围,特别要考虑清楚是否包含端点值,这点极易出错. 9.C【解析】【详解】分析:首先确定不等式组的解集,先利用含m 的式子表示,可表示出整数解,根据所有整数解的积为2就可以确定有哪些整数解,从而求出m 的范围.详解:原不等式组的解集为m <x ≤12-.整数解可能为-1,-2,-3…等又因为不等式组的所有整数解的积是2,而2=-1×(-2),由此可以得到-3≤m<-2.故选C.点睛:本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,要借助数轴做出正确的取舍.10.B【解析】【分析】解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.【详解】解:不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()(),由13x-﹣12x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()()有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.【点睛】本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.11.4【解析】【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【详解】解不等式2x+7>3(x+1),得:x<4,解不等式2342363xx+-≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为4.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.148 3x<≤【解析】【分析】根据运行程序,第一次运算结果小于等于18,第二次运算结果大于18列出不等式组,然后求解即可.【详解】解:由题意得:36183(36)618xx-≤⎧⎨-->⎩①②,解不等式①,得:8x≤,解不等式①,得:143 x>,则x得取值范围是:148 3x<≤;故答案为148 3x<≤.【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.13.(-1,1)【解析】【详解】根据平面直角坐标系的象限特点,第二象限的点的符号为(-,+),所以可得720 50mm-⎧⎨-⎩<>,解不等式可得72<m <5,由于m 为整数,所以m=4,代入可得7-2m=-1,5-m=1,即A 点的坐标为(-1,1).故答案为(-1,1).14.1【解析】【详解】试题分析:先分别用a 、b 表示出各不等式的解集,然后根据题中已知的解集,进行比对,从而得出两个方程,解答即可求出a 、b .24{25x a x b >①<②+-, ①由①得,x >4-2a ;由①得,x <5+2b , ①此不等式组的解集为:4-2a <x <5+2b , ①不等式组24{25x a x b +-><的解是0<x <2, ①4-2a=0,5+2b =2, 解得a=2,b=-1,①a+b=1考点:解一元一次不等式组.15.b >-3【解析】【分析】先求出不等式的解集,再根据不等式无解可得出b 的取值范围.【详解】22213x b x b -≥⎧⎨-≤⎩①② 解不等式①得:22≥+x b解不等式①得:312+≤b x所以不等式组的解集为31222++≤≤b b x ①此不等式无解,①31222++>b b 解得:3b >-故答案为:3b >-.【点睛】本题考查不等式组无解问题,关键是掌握不等式组解集的口诀:同大取大,同小取小,大小小大取中间,大大小小找不到(无解).16.01m ≤<【解析】【分析】解不等式组的两个不等式,根据其整数解的个数得m 的取值范围可得.【详解】解:解不等式x+1≥m ,得:x≥m ﹣1,解不等式2﹣3x≥﹣4,得:x≤2,①不等式组有3个整数解,①110m ≤﹣<﹣,即01m ≤<,故答案为0<m≤1.【点睛】本题是对不等式知识的考查,熟练掌握不等式知识是解决本题的关键.17.2【解析】【分析】根据题意列出不等式组,求出x 的取值范围,再找出符合条件的x 的整数值即可.【详解】根据题意得33234x x x x -⎧>-⎪⎨⎪+>⎩ 解得:-2<x<3.同时满足x 3x 32->-和3x 4x +>的最大整数是2, 故答案为2【点睛】本题考查的是求不等式组解集的方法,即同大取较大,同小去较小,大小小大中间找,大大小小解不了的原则.18.-5≤m <-4.【解析】【分析】先求出不等式的解集,根据已知不等式组的整数解得和为-9即可得出答案.【详解】解:1423x x x m +⎧-≥⎪⎨⎪>⎩①②解不等式①得:x≤-2,①m <x≤-2又①不等式组的所有整数解得和为-9,①-4+(-3)+(-2)=-9①-5≤m <-4;故答案为-5≤m <-4.【点睛】本题主要考查了解一元一次不等式组,是一道较为抽象的题,利用数轴就能直观的理解题意,列出关于m 的不等式组,临界数-5的取舍是易错的地方,要借助数轴做出正确的取舍.19.x <19 【解析】【详解】先根据x=3是方程2x a --2=x-1的解,代入可求出a=-5,再把a 的值代入所求不等式(2—5a )x <13,由不等式的基本性质求出x 的取值范围x <19. 故答案为x <19.20.114m -<≤-【解析】【分析】先解不等式组,求出解集,再根据“有且仅有三个整数解的条件”确定m 的范围.【详解】解:解不等式组2122274x x x m-⎧≤-+⎪⎨⎪+>-⎩ 得:437m x +-< 由有且仅有三个整数解即:3,2,1.则:4017m +-< 解得:114m -<≤-【点睛】本题考查了一元一次不等式组,利用不等式的解得出关于m 的不等式组是解题关键. 21.(1)每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个(2)3【解析】【分析】(1)根据“每辆大客车的乘客座位数-小客车乘客座位数=15;6辆大客车乘客+5辆小客车乘客=310”列出二元一次方程组解之即可.(2)根据题意,设租用a 辆小客车才能将所有参加活动的师生装载完成,利用“大客车乘客+小客车乘客≥310+20”解之即可.【详解】(1)设每辆小客车的乘客座位数是x 个,大客车的乘客座位数是y 个,根据题意,得1556310y x x y -=⎧⎨+=⎩解得2035x y =⎧⎨=⎩ 答:每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个.(2)设租用a 辆小客车才能将所有参加活动的师生装载完成,则20a+35(11-a)≥310+20,解得a≤323,符合条件的a 的最大整数为3.答:租用小客车数量的最大值为3.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解决本题的关键是找到题目中蕴含的数量关系.22.(1)x<-1;(2)x≤-3.【解析】【分析】(1)由移项,合并,系数化为1,即可得到答案;(2)先分别求出每个不等式的解集,然后取解集的公共部分,即可得到不等式组的解集.【详解】解:(1)4123x x -<-,①4231x x -<-+,①22x <-,①1x <-;(2)()543113125x x x x ⎧+<+⎪⎨--≥⎪⎩①②, 解不等式①,得:12x <-; 解不等式①,得:3x ≤-;①不等式组的解集为:3x ≤-.【点睛】 本题考查了解一元一次不等式组,解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤.23.(1)y=-5x+1000(0≤x≤100),(2)至少要购进50件甲种商品,商场可获得的最大利润是750元.【解析】【分析】(1)根据题意建立函数模型,利用利润=一件的利润×数量即可解题,(2)根据最多投入1500元建立不等式,再根据一次函数的性质求出最值即可.【详解】解:(1)①购进甲,乙两种商品共100件,设其中甲种商品购进x 件,①乙种商品购进(100-x )件,①y=(15-10)x+(30-20)(100-x)=-5x+1000(0≤x≤100),(2)由题意得,10x+20(100-x)≤1500,解得:x≥50,①至少要购进50件甲种商品,①y=-5x+1000,k=-5<0,①y 随着x 的减小而增大,①当x=50时,y 最大=750,①若售完这些商品,商场可获得的最大利润是750元.【点睛】本题考查了一次函数的实际应用,不等式的实际应用,函数的性质,中等难度,运用销售问题的等量关系求出一次函数的解析式是解题关键.24.(1)共有三种方案,分别为①A 型号16辆时, B 型号24辆;①A 型号17辆时,B 型号23辆;①A 型号18辆时,B 型号22辆;(2)当16x =时,272W =最大万元;(3)甲钢板4吨,乙钢板8吨;甲钢板10吨,乙钢板3吨两种生产方案.【解析】【分析】(1)设A 型号的轿车为x 辆,可根据题意列出不等式组,根据问题的实际意义推出整数值;(2)根据“利润=售价-成本”列出一次函数的解析式,然后根据一次函数的性质解答即可; (3)根据(2)中方案求出利润,然后设生产甲钢板m 吨,乙钢板n 吨,列方程求解即可.【详解】(1)设生产A 型号x 辆,则B 型号(40-x )辆,得:1536≤34x +42(40-x )≤1552,解得1618x ≤≤,x 可以取值16,17,18,共有三种方案,分别为:A 型号16辆时,B 型号24辆,A 型号17辆时,B 型号23辆,A 型号18辆时,B 型号22辆.(2)设总利润W 万元,则W =()5840x x +-=3320x -+30k =-<∴w 随x 的增大而减小当16x =时,272W =最大万元;(3)272 2.5%=6.8⨯(万元),设生产甲钢板m 吨,乙钢板n 吨,①50006000 6.810000m n +=⨯,化简得:5668m n +=,①当m =4,n =8时,甲钢板4吨,乙钢板8吨;当m =10,n =3时,甲钢板10吨,乙钢板3吨.【点睛】本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.25.(1)①;(2)1x =;(3)01m ≤<.【解析】【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其整数解,根据关联方程的定义写出一个解为1的方程即可; (3)先求出方程的解和不等式组的解集,即可得出答案.【详解】(1)由不等式组25312x x x x -+>-⎧⎨->-+⎩得,3 3.54x <<, 由320x -=,解得,x =23,故方程①320x -=不是不等式组的相伴方程, 由210x +=,解得,x =1-2,故方程①210x +=不是不等式组25312x x x x -+>-⎧⎨->-+⎩的相伴方程,由 ()315x x -+=-,解得 x =2,故方程①()315x x -+=- 是不等式25312x x x x -+>-⎧⎨->-+⎩的相伴方程,故答案为①;(2)由不等式组213133x x x -<⎧⎨+>-+⎩,解得,122x << ,则它的相伴方程的解是整数, 相伴方程x=1故答案为1x =;(3)解不等式组22x x m x m <-⎧⎨-≤⎩得2m x m <≤+ 方程12x x ==,都是不等式组的相伴方程 122m m ∴<<≤+01m ∴≤<【点睛】本题主要考查解一元一次方程和一元一次不等式组,熟练掌握解一元一次方程和一元一次不等式组的技能是解题的关键.26.(1)转化;(2)x >3或x <1【解析】【分析】(1)将一个二次不等式转化为不等式组的形式,该过程体现了转化的数学思想; (2)根据两式相乘,同号得正,异号得负,则转化为30301010x x x x ->-<⎧⎧⎨⎨-<->⎩⎩或 ,再分别解两个不等式组即可.【详解】解:(1)转化;(2)由(x -3)(1-x )<0,可得3010x x -⎧⎨-⎩>,<或3010.x x -⎧⎨-⎩<,> 分别解这两个不等式组,得x >3或x <1.所以不等式(x -3)(1-x )<0的解集是x >3或x <1.【点睛】本题目是一道新型材料题目,考察学生的知识的迁移能力,根据两数相乘,同号得正,异号得负,将二次不等式转化为两个不等式组,解这两个不等式组,即可.27.(1)A 进价80元,B 进价50元;(2)16种;(3)当8<m<10时,A40盏,B60盏,利润最大;当m=10时,A 品牌灯数量在40至55间,利润均为3000;当8<m<10时,A55盏,B45盏,利润最大.【解析】【详解】试题分析:(1)根据:“1040元购进的A 品牌台灯的数量=650元购进的B 品牌台灯数量”相等关系,列方程求解可得;(2)根据:“3400≤A 、B 品牌台灯的总利润≤3550”不等关系,列不等式组,可知数量范围,确定方案数;(3)利用:总利润=A 品牌台灯利润+B 品牌台灯利润,列出函数关系式,结合函数增减性,分类讨论即可.试题解析:(1)设A 品牌台灯进价为x 元/盏,则B 品牌台灯进价为(x-30)元/盏,根据题意得104065030x x -=, 解得x=80,经检验x=80是原分式方程的解.则A 品牌台灯进价为80元/盏,B 品牌台灯进价为x-30=80-30=50(元/盏),答:A 、B 两种品牌台灯的进价分别是80元/盏,50元/盏.(2)设超市购进A 品牌台灯a 盏,则购进B 品牌台灯有(100-a )盏,根据题意,有 ()()()()()()12080805010034001208080501003550a a a a ⎧-+--≥⎪⎨-+--≤⎪⎩解得,40≤a≤55.①a 为整数,①该超市有16种进货方案.(3)令超市销售台灯所获总利润记作w ,根据题意,有w=(120-m-80)a+(80-50)(100-a )=(10-m)a+3000①8‹m‹15①①当8<m<10时,即10-m<0,w随a的增大而减小,故当a=40时,所获总利润w最大,即A品牌台灯40盏、B品牌台灯60盏;①当m=10时,w=3000;故当A品牌台灯数量在40至55间,利润均为3000;①当10<m<15时,即10-m>0,w随a的增大而增大,故当a=55时,所获总利润w最大,即A品牌台灯55盏、B品牌台灯45盏.。
八年级数学下册第二章《一元一次不等式与一元一次不等式组》知识点归纳北...
八年级数学下册第二章《一元一次不等式与一元一次不等式组》知识点归纳北...八年级数学下册第二章《一元一次不等式与一元一次不等式组》知识点归纳(北师大版)第二章一元一次不等式和一元一次不等式组一.不等关系1.一般地,用符号“<</span>”(或“≤”),“>”(或“≥”)连接的式子叫做不等式2.要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数大于等于0(≥0),非正数小于等于0(≤0)二.不等式的基本性质1.掌握不等式的基本性质:(1)不等式的两边加上(或减)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,a/c=b/c.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac2.比较大小:(a、b分别表示两个实数或整式)即:a>b <===>a-b>0 a=b <===>a-b=0 a<===>a-b<02.比较大小:(a、b分别表示两个实数或整式)一般地:如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a那么a-b是负数;反过来,如果a-b是负数,那么a即:a>b <===>a-b>0a=b <===>a-b=0a<===>a-b<0(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.三.不等式的解集:1.能使不等式成立的未知数的值,叫做不等式的解;一个含有未知数的不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.¤3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:边界:有等号的是实心圆圈,无等号的是空心圆圈;。
北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)
创设情境
为确保安全,引火线的长度应满足什么条件?
引火线长度
4cm
6cm
燃放者撤离到安全 区域外的时间
引火线燃烧完所用 时间
结论
大于 10÷4=2.5(s)
0.04÷0.02=2(s)
0.06÷0.02=3(s)
不安全
安全
学习目标
1.经历探索发现不等关系的过程,进一步体会模型思想. 2.探索并掌握不等式的基本性质,体会类比的思想方法. 3.会解一元一次不等式(组)并直观表示其解集,发展几何直观. 4.能够用一元一次不等式解决一些简单的实际问题. 5.体会不等式、函数、方程之间的联系.
A.X>2
B. X>4
C.X>-2
D. X>-4
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
4.如图所示的不等式的解集是___x_<__3_______.
5.在数轴上表示下列不等式的解集.
(1)X<-2.5;
(2) X>2.5;
(3) X≥3
-3 -2.5 -2 -1
0
0
1
2 2.5 3
A.
B.
C.
D.
4.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集 x≤2 .
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式
数学知识
思想方法
不等式的 解
不等式 的解集
用数轴表示不 等式的解集
类比思 想
数形结合 思想
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式的解集 解不等式
八年级数学北师大版下册名师说课稿:第二章课题 一元一次不等式组及其解集
八年级数学北师大版下册名师说课稿:第二章课题一元一次不等式组及其解集一. 教材分析本次说课的教材是北师大版八年级数学下册第二章课题《一元一次不等式组及其解集》。
本节课的内容是在学生已经掌握了不等式的概念、性质和一元一次不等式的解法的基础上进行学习的。
通过本节课的学习,使学生理解不等式组的含义,掌握不等式组的解法,以及会用图像法表示不等式组的解集,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了一元一次不等式的相关知识,具备了一定的逻辑思维能力和解决问题的能力。
但是,对于不等式组的解法和解集的表示方法,可能还存在一定的困难。
因此,在教学过程中,要注重引导学生,激发学生的学习兴趣,帮助学生理解和掌握不等式组的知识。
三. 说教学目标1.知识与技能目标:使学生理解不等式组的含义,掌握不等式组的解法,以及会用图像法表示不等式组的解集。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:不等式组的解法和不等式组的解集的表示方法。
2.教学难点:不等式组的解集的图像表示方法。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、启发引导的教学方法,让学生在解决问题的过程中,掌握不等式组的知识。
2.教学手段:利用多媒体课件、黑板、粉笔等教学手段,辅助教学。
六. 说教学过程1.导入新课:通过复习一元一次不等式的知识,引出不等式组的概念,激发学生的学习兴趣。
2.自主学习:让学生自主探究不等式组的解法,引导学生发现解法的规律。
3.合作交流:学生分组讨论,分享解法经验,互相学习,共同提高。
4.教师讲解:教师讲解不等式组的解集的表示方法,特别是图像法的含义和画法。
5.练习巩固:让学生通过练习题,巩固所学知识,提高解题能力。
6.总结提升:教师引导学生总结不等式组的知识,使学生形成系统化的知识结构。
北师大版初2数学8年级下册 第2章 一元一次不等式和一元一次不等式组 易错题专练(含答案)
【自己做】(1)已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围.(2) 已知关于x 的不等式(1-a )x >2的解集为x <a -12 ,则a 的取值范围是 .(3)如果不等式组⎩⎨⎧<+>-00b x a x 的解集是3<x <5,那么a= ,b= .(4) 如果不等式 ⎩⎨⎧><m x x 8 无解,那么m 的取值范围是 ( ) A .m >8 B.m ≥8 C.m <8 D.m ≤8(5)如果不等式组⎩⎨⎧>-<+m x x x 148的解集是3>x ,则m 的取值范围是( ).A .m≤3 B . m≥3 C .m=3 D .m <3(6)关于x 的不等式组()⎪⎩⎪⎨⎧->-+--<-325251263x x a x x 有三个整数解,则a 的取值范围是 .【自己解答】(7) 若方程组⎩⎨⎧+=++=+3654,2m y x m y x 的解x ,y 均为正数,求m 的取值范围.提示:先将m 当作已知数,将x 、y 用含m 的式子表示出来,然后利用x ,y 均为正数,列出含m 的不等式组,解出m 的取值范围【自己解】2.解不等式(组)【】(1)解不等式1213312+-≥+)(x x ,并将解集在数轴上表示出来;(2)解不等式组⎪⎩⎪⎨⎧≤+--+<-1215312)1(315x x x x ,并把它的解集表示在数轴上.3.一元一次不等式(组)与一次函数利用一次函数解一元一次不等式(组):实质就是比较两个函数y 值得大小,函数值(y )越大,图像越高,函数值(y )越小,图像越高低,这里一般是让求自变量x 的取值范围,找出与x 轴交点的横坐标(指一元一次不等式),看让求图像在x 轴以上的自变量的取值范围(还是图像在x 轴以下的自变量的取值范围);或找出函数交点的横坐标,然后看在该交点以左满足题意还是交点以右满足题意.(1)函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等式kx+b>0的解集为( ).A .x>0B .x<0C .x<2D .x>2(2)直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为4.一元一次不等式(组)应用题◆一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打多少折?解:◆某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤2y x +元的价格卖完后,结果发现自己赔了钱,其原因是( )x <y B .x >yC .x ≤yD .x ≥y 解答题:(1)某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元。
(汇总)北师大版八年级下册数学第二章 一元一次不等式和一元一次不等式组含答案
北师大版八年级下册数学第二章一元一次不等式和一元一次不等式组含答案一、单选题(共15题,共计45分)1、不等式组的解集在数轴上表示正确的是()A. B. C.D.2、下列命题是真命题的是()A.若ac>bc,则a>bB.4的平方根是2C.一组对边平行,另一组对边相等的四边形是平行四边形D.顺次连接任意四边形各边中点所得的四边形是平行四边形3、某同学手里拿着长为3和2的两个木棍,想要装一个木棍,用它们围成一个三角形,那么他所找的这根木棍长满足条件的整数解是()A.1,3,5B.1,2,3C.2,3,4D.3,4,54、已知两个不等式的解集在数轴上如图表示,那么这个解集为()A.x≥﹣1B.x>1C.﹣3<x≤﹣1D.x>﹣35、如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣16、在-2,-1,0,1,2中,不等式x+3>2的解有()A.1个B.2个C.3个D.4个7、已知m、n均为非零有理数,下列结论正确的是()A.若m≠n,则m 2≠n 2B.若m 2=n 2,则m=nC.若m>n>0,则>,D.若m>n>0,则m 2>n 28、不等式组的解集是()A.x>2B.x≤3C.2<x≤3D.x≥39、一次函数y=﹣3x+b和y=kx+1的图象如图所示,其交点为P(3,4),则不等式kx+1≥﹣3x+b的解集在数轴上表示正确的是()A. B. C. D.10、若整数使得关于的方程的解为非负数,且使得关于的不等式组至少有四个整数解,则所有符合条件的整数的和为().A.17B.18C.22D.2511、不等式组的解集是( )A.-5≤x<3B.-5<x≤3C.x≥-5D.x<312、已知a,b,c均为有理数,若a>b,且b≠0,则下列结论不一定成立的是()A.a 2>abB.a+c>b+cC.D.c﹣a<c﹣b13、在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cmB.5cm<AB<10cmC.4cm<AB<8cmD.4cm<AB<10cm14、若x+3的值同时大于2x和1﹣x的值,则x的取值范围是()A.x>﹣1B.x<3C.x>3D.﹣1<x<315、不等式组的解集在数轴上表示正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、某试卷共有50道选择愿,每道题选对得4分,选错了或者不选扣2分,至少要选对________道题,其得分才能不少于120分.17、大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分。
北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义
第03讲_含参数一元一次不等式(组)知识图谱含参数一元一次不等式(组)知识精讲含字母的一元一次不等式(组)未知数的系数含有字母或常数项含有字母的一元一次不等式(组) 未知数的系数含有字母若0a >,axb >的解为b x a >; 若0a <,ax b >的解为bx a<;若0a =,则当0b ≥时,ax b >无解, 当0b <时,ax b >的解为任何实数已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 原不等式化为:()()13214a x a x +--<--()325a x -<-(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-参数取值范围首先把不等式的解集用含有字母的代数式表示出来,然后把它与已知解集联系起来求解,在求解过程中可以利用数轴进行分析.五.易错点1.注意参数取值范围导致的变号问题.2.分清参数和未知数,不要混淆.3.解连续不等式时要注意拆分为不等式组.三点剖析一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合. 三.易错点:注意参数取值范围导致的变号问题.解含参一元一次不等式(组)例题1、 解关于x 的不等式:ax ﹣x ﹣2>0. 【答案】 当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -【解析】 ax ﹣x ﹣2>0. (a ﹣1)x >2,当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -.例题2、 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】 2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数 【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有 ①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.例题3、 已知a 、b 为常数,若0ax b +>的解集为23x >,则0bx a -<的解集是( ) A.32x >B.32x <C.32x >-D.32x <-【答案】 C 【解析】 该题考查的是解不等式.0ax b +>的解集为23x >,化简得2=3b a - 且a>00bx a -<的解集为a x b >,32x >-.所以该题的答案是C .例题4、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a>-例题5、 已知关于x 的不等式22m mx ->12x ﹣1.(1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】 (1)x <2(2)当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2【解析】 (1)当m=1时,不等式为22x ->2x﹣1,去分母得:2﹣x >x ﹣2, 解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2, 移项合并得:(m+1)x <2(m+1), 当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2; 当m <﹣1时,不等式的解集为x >2.随练1、 解关于x 的不等式22241x x a a a-≥+.【答案】当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立; 当2a <-时,有2x a ≥-【解析】 因为0a ≠,所以20a >,将原不等式去分母,整理得()224a x a +≤-.当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立;当2a <-时,有2x a ≥-.随练2、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--.【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数. (1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-随练3、 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x >【解析】 原不等式组可化为323x a x >+⎧⎨>⎩.当323a +>,即13a >时,不等式组的解集为32x a >+.当323a +≤,即13a ≤时,不等式组的解集为3x >随练4、 已知a ,b 为实数,若不等式ax +b <0的解集为12x >,则不等式b (x -1)-a <0的解集为( )A.x >-1B.x <-1C.a b x b +>D.a b x b+< 【答案】 B【解析】 暂无解析随练5、已知关于x 的不等式()2340a b x a b -+->的解集是1x >.则关于x 的不等式()4230a b x a b -+->的解集是____________.【答案】 13x <-【解析】 ()2340a b x a b -+->, 移项得:()232a b x a b ->-,由已知解集为1x >,得到20a b ->,变形得:322a bx a b ->-,可得:3212a ba b-=-,整理得:a b =, ()4230a a x a a ∴-+->,即0a >,∴不等式()4230a b x a b -+->可化为()4230a a x a a -+->. 两边同时除以a 得:31x ->,解得:13x <-.随练6、 已知实数a 是不等于3的常数,解不等式组2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥()< ,并依据a 的取值情况写出其解集. 【答案】 当a >3时,不等式组的解集为x ≤3,当a <3时,不等式组的解集为x <a【解析】 2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥(①②)<, 解①得:x ≤3,解①得:x <a ,∵实数a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3, 当a <3时,不等式组的解集为x <a .随练7、 关于x 的不等式组2131x a x +>⎧⎨->⎩.(1)若不等式组的解集是1<x <2,求a 的值;(2)若不等式组无解,求a 的取值范围. 【答案】 (1)a=3;(2)a≤2【解析】 (1)解不等式2x+1>3得:x >1, 解不等式a ﹣x >1得:x <a ﹣1, ∵不等式组的解集是1<x <2,∴a ﹣1=2, 解得:a=3;(2)∵不等式组无解, ∴a ﹣1≤1, 解得:a≤2.参数与解集之间的关系例题1、 若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 .【答案】 a≥2.【解析】 由x ﹣a >0得,x >a ;由1﹣x >x ﹣1得,x <1, ∵此不等式组的解集是空集, ∴a≥1.例题2、 已知关于x 的不等式组301(2)342x a x x -≥⎧⎪⎨->+⎪⎩有解,求实数a 的取值范围,并写出该不等式组的解集.【答案】 a <﹣6,3a≤x <﹣2.【解析】 解不等式3x ﹣a≥0,得:x≥3a,解不等式12(x ﹣2)>3x+4,得:x <﹣2,由题意得:3a<﹣2,解得:a <﹣6,∴不等式组的解集为3a≤x <﹣2.例题3、 如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A.a <﹣1 B.a <0 C.a >﹣1 D.a >0或a <﹣1 【答案】 A【解析】 (a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <﹣1. 故选:A .例题4、 当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A.m >1 B.m <1 C.m >4 D.m <4 【答案】 B【解析】 设y=mx ﹣4,由题意得,当x=1时,y <0,即m ﹣4<0, 解得m <4,当x=4时,y <0,即4m ﹣4<0, 解得,m <1,则m 的取值范围是m <1,例题5、 若不等式(a ﹣3)x >1的解集为x <13a -,则a 的取值范围是 .【答案】 a <3.【解析】 ∵(a ﹣3)x >1的解集为x <13a -, ∴不等式两边同时除以(a ﹣3)时不等号的方向改变, ∴a ﹣3<0, ∴a <3.故答案为:a <3.例题6、 如果关于x 的不等式()122a x a +>+的解集是2x <,则a 的取值范围是( ) A.0a < B.1a <-C.1a >D.1a >-【答案】 B【解析】 将原不等式与其解集进行比较,在不等式的变形过程中利用了不等式的性质三,因此有10a +<,故1a <-例题7、 若不等式组()322110b x x a -<--⎧⎨->⎩的解集为﹣2<x <4,求出a 、b 的值.【答案】 a=﹣10,b=3.【解析】 解不等式10﹣x <﹣(a ﹣2),得:x >a+8,解不等式3b ﹣2x >1,得:x <312b -,∵解集为﹣2<x <4, ∴314282a b ⎧⎪⎨-=+=-⎪⎩,解得:a=﹣10,b=3.随练1、 已知关于x 的不等式(m -2)x >2m -4的解集为x <2,则m 的取值范围是________. 【答案】 m <2【解析】 不等式(m -2)x >2m -4的解集为x <2, ∴m -2<0,m <2.随练2、 关于x 的不等式组()3141x x x m ⎧->-⎪⎨<⎪⎩的解集为x <3,那么m 的取值范围是 .【答案】 m≥3【解析】 ()3141x x x m ->-⋅⋅⋅⎧⎪⎨<⋅⋅⋅⎪⎩①②,解①得x <3,∵不等式组的解集是x <3, ∴m≥3.故答案是:m≥3.随练3、 若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】 C【解析】 202x m x m -<⎧⎨+>⎩①②,解不等式①得,x <2m , 解不等式②得,x >2-m , ∵不等式组有解, ∴2m >2-m ,∴23m >.随练4、 若不等式组0422x a x x +⎧⎨->-⎩≥有解,则实数a 的取值范围是( )A.a≥-2B.a <-2C.a≤-2D.a >-2【答案】 D【解析】 0422x a x x +⎧⎨->-⎩≥,解不等式x +a≥0得,x≥-a ,由不等式4-2x >x -2得,x <2,∵不等式组:不等式组0422x a x x +⎧⎨->-⎩≥有解,∴a >-2,随练5、 已知不等式31(x ﹣m )>2﹣m . (1)若上面不等式的解集为x >3,求m 的值.(2)若满足x >3的每一个数都能使上面的不等式成立,求m 的取值范围. 【答案】 (1)23(2)m≥23 【解析】 (1)解不等式可得x >6﹣2m ,∵不等式的解集为x >3, ∴6﹣2m=3,解得m=23;(2)∵原不等式可化为x >6﹣2m ,满足x >3的每一个数都能使不等式成立, ∴6﹣2m≤3,解得m≥23.整数解问题例题1、 关于x 的不等式-1<x≤a 有3个正整数解,则a 的取值范围是________. 【答案】 3≤a <4【解析】 ∵不等式-1<x≤a 有3个正整数解, ∴这3个整数解为1、2、3, 则3≤a <4.例题2、 关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( ) A.32?b -<<- B.32?b -<≤- C.32b -≤≤- D.32b -≤<- 【答案】 D【解析】 本题主要考查一元一次不等式及其解法。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (24)
(共25题)一、选择题(共10题)1. 若关于 x 的不等式组 {2x −6+m <0,4x −m >0 有解,则在其解集中,整数的个数不可能是 ( )A . 1B . 2C . 3D . 42. 如图表示下列四个不等式组中其中一个的解集,这个不等式组是 ( )A . {x ≥2,x >−3B . {x ≤2,x <−3C . {x ≥2,x <−3D . {x ≤2,x >−33. 把不等式组 {2x +3>1,3x +4≥5x的解集表示在数轴上如图,正确的是 ( )A .B .C .D .4. 若 a >b ,则下列不等式成立的是 ( ) A . a −1<b −1 B . −8a <−8b C . 4a <4bD . ac >bc5. 若 x <y 成立,则下列不等式成立的是 ( ) A . x −2<y −2 B . −x <−y C . x +1>y +1D . −3x <−3y6. 不等式 x −1>0 的解集是 ( ) A . x >1B . x <1C . x >−1D . x <−17. 不等式组{5x +2>3(x −1)12x −1≤7−32x的所有非负整数解的和是( ) A .10 B .7 C .6 D .08. 已知 a >b ,则下列不等关系中正确的是 ( ) A . ac >bcB . a +c >b +cC . a −1>b +1D . ac 2>bc 29. 不等式组 {x +9<5x +1,x ≥2x −3 的解集是 ( )A .x >2B .x ≤3C .2<x ≤3D .x ≥310. 不等式 2x ≥x −1 的解集在数轴上表示正确的是 ( )A .B .C .D .二、填空题(共7题)11. 在平面直角坐标系中,点 P (m,m −2) 在第一象限内,则 m 的取值范围是12. 已知关于 x 的不等式组 {x −a <0,9−2x ≤3 有且只有 2 个整数解,且 a 为整数,则 a 的值为 .13. 定义新运算:对于任意实数 a ,b 都有:a ⊕b =a (a −b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2−5)+1=2×(−3)+1=−5,那么不等式 3⊕x <13 的解集为 .14. 当 x 满足条件 时,代数式 6−3x 5的值不大于零.15. 对于有理数 m ,我们规定 [m ] 表示不大于 m 的最大整数,例如 [1.2]=1,[3]=3,[−2.5]=−3,若 [x+23]=−5,则整数 x 的取值是 .16. 一元一次不等式需满足的三个条件是:① ,② ,③ ,这样的不等式叫做一元一次不等式.17. 如图,周长为 a 的圆上仅有一点 A 在数轴上,点 A 所表示的数为 1.该圆沿着数轴向右滚动一周后点 A 对应的点为点 B ,且滚动中恰好经过 3 个整数点(不包括 A ,B 两点),则 a 的取值范围为 .三、解答题(共8题)18. 已知不等式 18x −2>x 与 ax −3>2x 的解集相同,求 a 的值.19. 解不等式组 {2x−13−5x+12≤1,5x −1<3(x +1), 并写出该不等式组的整数解.20. 列方程解应用题.(1) 某车间 32 名工人生产螺母和螺钉,每人每天平均生产螺钉 1500 个或螺母 5000 个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?(2) 一家游泳馆每年 6∼8 月份出售夏季会员证,每张会员证 80 元,只限本人使用凭证购入场券每张 1 元,不凭证购入场卷每张 3 元,请用所学数学知识分析,什么情况下购会员证更合算?21. 解不等式组 {3x ≥4x −4, ⋯⋯①5x −11≥−1. ⋯⋯②请结合题意填空,完成本题的解答. (1) 解不等式 ①,得 . (2) 解不等式 ②,得 .(3) 把不等式 ① 和 ② 的解集在数轴上表示出来:(4) 原不等式组的解集为 .22. 已知两个语句:①式子 2x −1 的值比 1 大; ②式子 2x −1 的值不小于 1. 请回答下列问题:(1) 两个语句表达的意思是否一样?(不用说明理由)(2) 把两个语句分别用数学式子表示出来,并选择一个求其解集.23. 解方程组:{x +3>5 ⋯⋯①2x −3<x +2 ⋯⋯②24. 解不等式组:{4x >2x −6,x−13≤x+19, 并把解集在数轴上表示出来.25. 解不等式:x−52+1>x −3.答案一、选择题(共10题)1. 【答案】C【解析】解不等式2x−6+m<0,得x<6−m2,解不等式4x−m>0,得x>m4,∵不等式组有解,∴m4<6−m2,解得m<4,如果m=2,则不等式组的解集为12<x<2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<x<3,整数解为x=1,2,有2个;如果m=−1,则不等式组的解集为−14<x<72,整数解为x=0,1,2,3,有4个.故选C.【知识点】含参一元一次不等式组2. 【答案】D【知识点】常规一元一次不等式组的解法3. 【答案】B【解析】解不等式2x+3>1,得:x>−1,解不等式3x+4≥5x,得:x≤2,则不等式组的解集为−1<x≤2,故选:B.【知识点】常规一元一次不等式组的解法4. 【答案】B【知识点】不等式的性质5. 【答案】A【解析】A、不等式的两边都减去2,不等号的方向不变,故本选项正确;B、不等式的两边都乘以−1,不等号的方向改变,故本选项错误;C、不等式的两边都加上1,不等号的方向不变,故本选项错误;D、不等式的两边都乘以−3,不等号的方向改变,故本选项错误.【知识点】不等式的性质6. 【答案】A【知识点】常规一元一次不等式的解法7. 【答案】A【解析】【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解析】解:{5x +2>3(x −1)①12x −1≤7−32x②, 解不等式①得:x >−2.5, 解不等式②得:x ≤4,∴不等式组的解集为:−2.5<x ≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10, 故选:A .【点评】本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键. 【知识点】常规一元一次不等式组的解法8. 【答案】B【解析】A .不等式两边都乘以 c ,当 c <0 时,不等号的方向改变,原变形错误,故此选项不符合题意;B .不等式两边都加上 c ,不等号的方向不变,原变形正确,故此选项符合题意;C .不等式的两边一边加 1 一边减 1,不等号的方向不确定,原变形错误,故此选项不符合题意;D .不等式的两边都乘以 c 2,当 c =0 时,变为等式,原变形错误,故此选项不符合题意. 【知识点】不等式的性质9. 【答案】C【解析】{x +9<5x +1, ⋯⋯①x ≥2x −3, ⋯⋯②解不等式 ①,得 x >2, 解不等式 ②,得 x ≤3, ∴ 不等式组的解集为 2<x ≤3. 【知识点】常规一元一次不等式组的解法10. 【答案】C【知识点】常规一元一次不等式的解法二、填空题(共7题) 11. 【答案】 m >2【知识点】常规一元一次不等式组的解法12. 【答案】 5【解析】 {x −a <0,9−2x ≤3解得:{x <a,x ≥3,∴3≤x <a ,∵ 有且只有 2 个整数解, ∴4<a ≤5, ∵a 为整数, ∴a =5.【知识点】含参一元一次不等式组13. 【答案】 x >−1【解析】 ∵a ⊕b =a (a −b )+1,∴3⊕x =3(3−x )+1<13,解得 x >−1. 【知识点】常规一元一次不等式的解法14. 【答案】 x ≥2【知识点】常规一元一次不等式的解法15. 【答案】 −17 或 −16 或 −15【解析】 ∵[x+23]=−5,∴−5≤x+23<−4,∴−15≤x +2<−12, ∴−17≤x <−14,∴ 整数 x 的取值为 −17 或 −16 或 −15. 【知识点】常规一元一次不等式组的解法16. 【答案】只含有一个未知数;未知数的最高次数是 1 ;系数不等于 0【知识点】一元一次不等式的概念17. 【答案】 3<a ≤4【解析】根据题意可知,三个整数点表示的数为 2,3,4,所以 4<a +1≤5,所以 a 的取值范围为3<a≤4.【知识点】不等式的概念三、解答题(共8题)18. 【答案】解不等式18x−2>x得,x<−167;由不等式ax−3>2x得,(a−2)x>3,∵两不等式的解集相同,∴a−2<0,∴x<3a−2,∴3a−2=−167,解得:a=1116.故a的值为:1116.【知识点】含参一元一次方程的解法、常规一元一次不等式的解法19. 【答案】{2x−13−5x+12≤1, ⋯⋯①5x−1<3(x+1), ⋯⋯②解不等式①,得x≥−1,解不等式②,得x<2,∴不等式组的解集为−1≤x<2,∴不等式组的整数解为−1,0,1.【知识点】常规一元一次不等式组的解法20. 【答案】(1) 设为了使每天的产品刚好配套,应该分配x名工人生产螺钉,则(32−x)名工人生产螺母,根据题意得:1500x×2=5000(32−x),解得:x=20.则为了使每天的产品刚好配套,应该分配20名工人生产螺钉.(2) 假设游泳x次,则购证后花费为(80+x)元,不购证花费3x元,根据题意得:80+x<3x,解得:x>40.答:6∼8月游泳次数大于40的话,购证更划算.【知识点】和差倍分、一元一次不等式的应用21. 【答案】(1) x≤4(2) x≥2(3) 如图所示:(4) 2≤x≤4【解析】(1) 解不等式 ① 得 x ≤4. (2) 解不等式 ② 得 x ≥2.【知识点】常规一元一次不等式组的解法、常规一元一次不等式的解法、数轴的概念22. 【答案】(1) 两个语句表达的意思不一样.(2) ① 2x −1>1; 两边同加上 1,得 2x >2, 两边再同除以 2,得 x >1. ② 2x −1≥1;两边同加上 1,得 2x ≥2, 两边再同除以 2,得 x ≥1.【知识点】常规一元一次不等式的解法、一元一次不等式的概念、不等式的概念23. 【答案】解不等式①,得 x >2.解不等式②,得 x <5.所以,这个不等式组的解集是 2<x <5. 【知识点】常规一元一次不等式组的解法24. 【答案】{4x >2x −6, ⋯⋯①x−13≤x+19. ⋯⋯②解不等式①得:x >−3,解不等式②得:x ≤2.∴ 不等式组的解集为−3<x ≤2.在数轴上表示不等式组的解集为:【知识点】常规一元一次不等式组的解法25. 【答案】(x −5)+2>2(x −3),x −5+2>2x −6,x −2x >5−2−6,−x >−3,x <3.【知识点】常规一元一次不等式的解法。
第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)
巩固练习 拓展提高
6. 某公司为了扩大经营,决定购进6台机器用于生产某种活塞,
甲
乙
现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生 价格(万元/台) 7
5
产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能
每台日产量(个) 100 60
超过34万元,则按该公司的要求可以有几种购买方案?
> 大于,高出 大于
小于或等于 号
≤
不大于, 小于或 不超过 等于
大于或等于 号
≥
不小于, 大于或
至少
等于
不等号
≠
不相等 不等于
Hale Waihona Puke 创设情境 引入新课比较不等式与等式的基本性质:
变形 两边都加上(或减去)同一个整式 两边都乘以(或除以)同一个正数 两边都乘以(或除以)同一个负数
等式 仍成立 仍成立 仍成立
解不等式的应用问题的步骤包括审、设、列、解、 找、答这几个环节,而在这些步骤中,最重要的是 利用题中的已知条件,列出不等式(组),然后通 过解出不等式(组)确定未知数的范围,利用未知 数的特征(如整数问题),依据条件,找出对应的 未知数的确定数值,以实现确定方案的解答.
巩固练习 拓展提高
7. 暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家 旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的 优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅 行社?
创设情境 引入新课
一元一次不等式与一次函数在决策型应用题中的应用
实际问题
写出两个函数表达式
画出图象
分析图象
八年级数学下册(新版北师大版)精品导学案【第二章_一元一次不等式和一元一次不等式组】
⼋年级数学下册(新版北师⼤版)精品导学案【第⼆章_⼀元⼀次不等式和⼀元⼀次不等式组】第⼆章⼀元⼀次不等式和⼀元⼀次不等式组第⼀节不等关系【学习⽬标】1.理解不等式的概念,感受⽣活中存在的不等关系。
2.能根据条件列出不等式,增强学⽣的符号感,发展其数学化的能⼒。
3.通过观察、分析、猜想、独⽴思考的过程感受不等式这个重要的过程,发展学⽣归纳、猜想能⼒。
【学习⽅法】⾃主探究与⼩组合作交流相结合.【学习重难点】重点:对不等式概念的理解。
难点:怎样建⽴量与量之间的不等关系。
【学习过程】模块⼀预习反馈⼀.学习准备1.⼀般地,⽤符号“<”(或“≤”),“>”(或“≥”)连成的式⼦叫做。
注意:⽤符号“≠”连接的式⼦也叫不等式。
2.列不等式:列不等式类似于列⽅程,列⽅程依据的是等量关系,列不等式依据的是不等关系,列不等式的关键是找不等关系。
⼤于⽤符号表⽰,⼩于⽤符号表⽰;不⼤于⽤符号表⽰,不⼩于⽤符号表⽰。
3.阅读教材:第⼀节不等关系⼆.教材精读4.例题:如图,⽤两根长度均为l cm的绳⼦,分别围成⼀个正⽅形和圆,(1)如果要使正⽅形的⾯积不⼤于25cm2,那么绳长l应满⾜怎样的关系式?(2)如果要使圆的⾯积不⼩于100 cm2,那么绳长l应满⾜怎样的关系式?(3)当l=8时,正⽅形和圆的⾯积哪个⼤?l=12呢?(4)你能得到什么猜想?改变l的取值再试⼀试?分析:正⽅形的⾯积等于边长的平⽅.圆的⾯积是πR2,其中R是圆的半径.两数⽐较有⼤于、等于、⼩于三种情况,“不⼤于”就是等于或⼩于. “不⼩于”就是⼤于或等于。
做⼀做:通过测量⼀棵树的树围(树⼲的周长),可以计算出它的树龄,通常规定以树⼲离地⾯1.5m的地⽅作为测量部位。
某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树⾄少⽣长多少年其树围才能超过2.4m?(只列关系式)归纳⼩结:⼀般地,⽤符号“〈”(或“≤”),“〉”(或“≥”)连接的式⼦叫做不等式。
实践练习:判断下列各式哪些是不等式,哪些既不是等式也不是不等式。
北师大版八年级下册数学第二章 一元一次不等式和一元一次不等式组含答案
北师大版八年级下册数学第二章一元一次不等式和一元一次不等式组含答案一、单选题(共15题,共计45分)1、下列式子中是一元一次不等式的是()A.6>3B. >4C.﹣x<﹣1D.xy>02、不等式组次的解集在数轴上表示正确的是()A. B. C.D.3、若x > y,则下列式子中,错误的是()A.x - 3 > y - 3B.x + 3 > y + 2C.- 3x >- 3yD. >4、已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B. C.D.5、一个不等式组的解集在数轴上的表示如下图,则这个不等式组的解集是( )A.x<3B.x≥-1C.-1<x≤3D.-1≤x<36、如图,不等式组的解集在数轴上表示正确的是()A. B. C.D.7、下列说法正确的是( )A.若a>b,b<c,则a>cB.若a>b,则ac>bcC.若a>b,则ac 2>bc 2D.若ac 2>bc 2,则a>b8、不等式组的解集在数轴上表示正确的是A. B. C. D.9、已知a<b,下列式子不成立的是()A.a+1<b+1B.3a<3bC.-2a<-2bD.a-b<010、不等式组的解集是()A.x≤1B.x≥2C.1≤x≤2D.1<x<211、已知甲、乙两个函数图象上的部分点的横坐标x与纵坐标y如表所示.若在实数范围内,甲、乙的函数值都随自变量的增大而减小,且两个图象只有一个交点,则关于这个交点的横坐标a,下列判断正确的是()x -2 0 2 4y甲 5 4 3 2y乙 6 5 3.5 0A.a<﹣2B.﹣2<a<0C.0<a<2D.2<a<412、已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<﹣1B.﹣1<a<C.﹣<a<1D.a>13、不等式的解集在数轴上表示正确的是()A. B. C. D.14、若,则下列式子不成立的是()A. B. C. D.15、若不等式组的解集是x>4,则m的取值范围是()A.m>4B.m≥4C.m≤4D.m<4二、填空题(共10题,共计30分)16、 ________不等式的一个解(填“是”或“不是”).17、若a>b ,则a﹣3________b﹣3.(填>或<)18、若不等式(2k+1)x<2k+1的解集是x>1,则k的范围是________.19、当x________时,代数式的值为非负数.20、用不等式表示:x与3的和不大于1,则这个不等式是:________21、某年级为山区学生捐款2268元,这个年级有教师35名,14个教学班,各班学生人数都相同且多于30人,不超过45人.若平均每人捐款的金额是整数,则平均每人捐款________元.22、不等式组的解集是________.23、若不等式组的解集是,则m的取值范围是________.24、不等式组的解集是________.25、不等式组的解集是x>2,则m的取值范围是________.三、解答题(共5题,共计25分)26、求下列不等式组的解集:.27、赵军说不等式2a>3a永远不会成立,因为如果在这个不等式两边同除以a,就会出现2>3这样的错误结论.你同意他的说法对吗?若同意说明其依据,若不同意说出错误的原因.28、解不等式(3x+4)(3x-4)-x(x-4)>8(x+1)2,并把它的解集在数轴上表示出来.29、用不等式表示下列关系:哥哥存款x元,弟弟存款y,兄弟2人的存款总数少于1000元.30、解不等式组,并把解集在数轴上表示出来.参考答案一、单选题(共15题,共计45分)1、C2、A3、C4、A5、D6、A7、D8、C10、C11、D12、B13、A14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (6)
(共25题)一、选择题(共10题)1. 若不等式组 {x >1,x <a 无解,则 a 的取值范围是 ( )A . a >1B . a ≥1C . a <1D . a ≤12. 下列各数轴上表示的 x 的取值范围可以是不等式组 {x +2>a,(2a −1)x −6<0的解集的是 ( )A .B .C .D .3. 不等式 −x +2≤0 的解集为 ( )A . x ≤−2B . x ≥−2C . x ≤2D . x ≥24. 若关于 x 的不等式 (a +2019)x >a +2019 的解为 x <1,则 a 的取值范围是 ( ) A . a >−2019B . a <−2019C . a >2019D . a <20195. 若关于 x 的不等式组 {2x −1>4x +7,x >a 无解,则实数 a 的取值范围是 ( )A .a <−4B .a =−4C .a >−4D .a ≥−46. 不等式组 {2x +1>3,3x −5≤1的解集在数轴上表示正确的是 ( )A .B .C .D .7. 为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户 1 只;若每户发放母羊 5 只,则多出 17 只母羊,若每户发放母羊 7 只,则有一户可分得母羊但不足 3 只,这批种羊共 ( )A . 55 只B . 72 只C . 83 只D . 89 只8. 下面给出了 5 个式子:① 3>0;② 4x +3y >0;③ x =3;④ x −1;⑤ x +2≤3;其中不等式有 ( ) A . 2 个 B . 3 个 C . 4 个 D . 5 个9. 已知关于 x 的不等式组 {x −a ≥0,3−2x ≥−1 的整数解共有 3 个,则 a 的取值范围是 ( )A . −1≤a ≤0B . −1<a ≤0C . 0≤a ≤1D . 0<a ≤110. 若关于 x 的不等式组 {2−x2>2x−43,−3x >−2x −a的解集是 x <2,则 a 的取值范围是 ( )A . a ≥2B . a <−2C . a >2D . a ≤2二、填空题(共7题) 11. 叫做解不等式.12. 已知 x −y =3.①若 y <1,则 x 的取值范围是 ; ②若 x +y =m ,且 {x >2,y <1,则 m 的取值范围是 .13. 不等式 x >√2x +1 的解集是 .14. 不等式组 {x >4,x >m 的解集是 x >4,那么 m 的取值范围是 .15. 不等式组 {x−32+3>x +1,1−3(x −1)≤8−x所有整数解的和是 .16. “九月已经霜,蟹肥菊桂香”,古往今来,每至农历九月,蟹都是人们翘首以待的珍馐.某大闸蟹养殖户十月捕捞了第一批成熟的大闸蟹,并以每只相同的价格(价格为整数)批发给某经销商.十一月该养殖户捕捞了第二批成熟的大闸蟹,这次决定与某电商合作,将这批大闸蟹根据品质及重量分为 A (小蟹)、 B (中蟹)、 C (大蟹)三类,每类按照不同的单价(价格都为整数)网上销售,若 2 只 A 类蟹、 1 只 B 类蟹和 3 只 C 类蟹的价格之和正好是第一批蟹 8 只的价格,而 6 只 A 类蟹、 3 只 B 类蟹和 2 只 C 类蟹的价格之和正好是第一批蟹 12 只的价格,且 A 类蟹与 B 类蟹每只的单价之比为 3:4,根据市场有关部门的要求 A ,B ,C 三类蟹的单价之和不低于 40 元、不高于 60 元,则第一批大闸蟹每只价格为 元.17. 已知不等式 {2x −a <1,x −2b >3 的解集为 −1<x <1,求 (a +1)(b −1) 的值为 .三、解答题(共8题)18. 对于三个数 a ,b ,c ,用 M {a,b,c } 表示这三个数的平均数;用 min {a,b,c } 表示这三个数中最小的数.例如 M {1,2,3}=13×(1+2+3)=2,min {1,2,3}=1,min {2,2,2}=2⋯.解答下列问题:(1) 填空:M{√3,√12,√18}= ,min{2√2,π,√7}= . (2) 如果 M {−2,x −1,2x }=min {−2,x −1,2x },求 x 的值.(3) 在同一直角坐标系中作出函数 y =12x −3,y =−12x −1,y =−2x +4 的图象(不需列表描点),通过观察图象,填空:min {12x −3,−12x −1,−2x +4} 的最大值为 .19. 解不等式:1−x+26<2x−33,并把它的解集在数轴上表示出来.20. 解答下列各题:(1) 解方程组 {5x +6y =7,2x +3y =4.(2) 解不等式组 {x −4<3(x −2),1+2x 3+1>x.21. 解答下列问题.(1) 解方程组:{5x −2y =4,2x −y =1;(2) 解不等式组:{3x −2≥1,x +9>3(x +1).22. 某出租汽车公司计划购买A 型和B 型两种节能汽车,若购买A 型汽车 4 辆,B 型汽车 7 辆,共需 310 万元;若购买A 型汽车 10 辆,B 型汽车 15 辆,共需 700 万元. (1) A 型和B 型汽车每辆的价格分别是多少万元?(2) 该公司计划购买A 型和B 型两种汽车共 10 辆,费用不超过 285 万元,且A 型汽车的数量少于B 型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.23. 解不等式组 {3x −5>2(x −3),x+43≥x,并写出该不等式组的所有非负整数解.24. 为迎接“军运会”,某商店准备采购 500 件纪念品,现有甲、乙两种纪念品可供选择.其中甲种纪念品的进价为 80 元/件,售价为 112 元/件;乙种纪念品的进价为 64 元/件,售价为 80 元/件.设购进甲种纪念品 x (x 为整数)件,所购纪念品全部售完时利润为 y 元. (1) 求 y 关于 x 的函数关系式.(2) 若乙种纪念品的数量不少于甲种纪念品数量的 3 倍,且利润 y 不低于 9600 元,请通过计算说明商店有几种采购方案.(3) 若甲种纪念品每件售价降低 3a 元,乙种纪念品毎件售价上涨 2a 元,在(2)的条件下,最大利润为 11500 元,求 a 的值.25. 如图,数轴上两点 A ,B 对应的数分别是 −1,1,点 P 是线段 AB 上一动点,给出如下定义:如果在数轴上存在动点 Q ,满足 ∣PQ∣∣=2,那么我们把这样的点 Q 表示的数称为连动数,特别地,当点 Q 表示的数是整数时我们称为连动整数.(1) −3,0,2.5 是连动数的是 ;(2) 关于 x 的方程 2x −m =x +1 的解满足是连动数,求 m 的取值范围 ;(3) 当不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时,求 a 的取值范围.答案一、选择题(共10题) 1. 【答案】D【解析】 ∵ 不等式组 {x >1,x <a 无解,∴a 的取值范围是 a ≤1, 故选:D .【知识点】含参一元一次不等式组2. 【答案】B【解析】由 x +2>a ,得 x >a −2, A 选项,由数轴知 x >−3,则 a −2=−3, ∴a =−1,∴−3x −6<0,解得 x >−2,与数轴不符合; B 选项,由数轴知 x >0,则 a −2=0, ∴a =2,∴3x −6<0,解得 x <2,与数轴相符合; C 选项,由数轴知 x >2,则 a −2=2, ∴a =4,∴7x −6<0,解得 x <67,与数轴不符合;D 选项,由数轴知 x >−2,则 a −2=−2, ∴a =0,∴−x −6<0,解得 x >−6,与数轴不符合. 【知识点】含参一元一次不等式组3. 【答案】D【知识点】常规一元一次不等式的解法4. 【答案】B【解析】 ∵ 不等式 (a +2019)x >a +2019 的解为 x <1, ∴a +2019<0, 则 a <−2019. 【知识点】不等式的性质5. 【答案】D【解析】提示:解 2x −1>4x +7 ,得 x <−4 . 【知识点】常规一元一次不等式组的解法6. 【答案】D【知识点】常规一元一次不等式组的解法7. 【答案】C【解析】设该村有 x 户,则这批种羊中母羊有 (5x +17) 只,根据题意可得 {5x +17−7(x −1)>0,5x +17−7(x −1)<3, 解得 10.5<x <12, 因为 x 为正整数, 所以 x =11,所以这批种羊共有 11+5×11+17=83(只). 【知识点】一元一次不等式组的应用8. 【答案】B【知识点】不等式的概念9. 【答案】B【知识点】含参一元一次不等式组、不等式组的整数解10. 【答案】A【知识点】含参一元一次不等式组二、填空题(共7题)11. 【答案】求不等式的解集的过程【知识点】不等式的解集12. 【答案】 x <4 ; 1<m <5【知识点】二元一次方程、常规一元一次不等式组的解法13. 【答案】 x <−√2−1【知识点】常规一元一次不等式的解法、分母有理化14. 【答案】 m ≤4【解析】不等式组 {x >4,x >m的解集是 x >4,得 m ≤4. 【知识点】含参一元一次不等式组15. 【答案】 −3【知识点】常规一元一次不等式组的解法16. 【答案】14【解析】A类蟹与B类蟹每只单价之比为3:4,设A类蟹价格为3x,B类蟹价格为4x.∵批发时每只价格相同,依题意可得,∴2A+B+3C8=6A+3B+2C12,24A+12B+36C=48A+24B+16C,∵A=3x,B=4x,∴C=6x,∵A,B,C三类单价之和不低于40元,不高于60元,∴40≤A+B+C≤60,即:40≤13x≤60,∵A(3x),B(4x),C(6x)单价均为整数,∴4013≤x≤6013,x取整为x=4.∴A=3x=12,B=4x=16,C=6x=24.第一批大闸蟹每只价格为:2A+B+3C8=2×12+16+24×38=14元.故第一批大闸蟹每只价格为14元.【知识点】一元一次不等式组的应用17. 【答案】−6【解析】{2x−a<1, ⋯⋯①x−2b>3. ⋯⋯②由①得2x<1+a,x<1+a2,由②得,x>3+2b,综上,不等式组的解为3+2b<x<1+a2,又∵已知解集:−1<x<1,∴{3+2b=−1,1+a2=1,解得{a=1,b=−2,∴(a+1)(b−1)=(1+1)(−2−1)=−6.【知识点】含参一元一次不等式组三、解答题(共8题)18. 【答案】(1) √3+√2;√7(2)∵M {−2,x −1,2x }=13×(−2+x −1+2x )=13×(3x −3)=x −1,∵M {−2,x −1,2x }=min {−2,x −1,2x }=x −1, ∴ 可知 {x −1≤−2,x −1≤2x, 解之得 {x ≤−1,x ≥−1,∴ 可知 x =−1.(3) 在同一直角坐标系中,作出 y =12x −3,y =−12x −1,y =−2x +4 的图象如图所示: −2 【解析】(1) ∵M {1,2,3}=13(1+2+3)=2∴M{√3,√12,√18}=13×(√3+√12+√18)=13×(√3+2√3+3√2)=√3+√2,又 ∵min {1,2,3}=1,min {2,2,2}=2⋯, ∴ 可知 min 表示其中最小数字, ∵π>3,故 π2>9, ∴ 可知 π>√9, ∵9>8>7,∴√9>√8>√7,即 √9>2√2>√7, ∴ 可知 π>2√7>√7, ∴min{2√2,π,√7}=√7. 故答案为:√3+√2;√7.(3) 联立 {y =−12x −1,y =12x −3,解得 {x =2,y =−2, ∴y =−12x −1 与 y =12x −3 交点坐标为 (2,−2),联立 {y =−12x −1,y =−2x +4, 解得 {x =103,y =−83,∴y =−12x −1 与 y =−2x +4 交点坐标为 (103,−83), 由函数图象可知:当 x ≤2 时,min {12x −3,−12x −1,−2x +4}=12x −3≤−2, ∴min {12x −3,−12x −1,−2x +4} 最大值为 −2,当 2<x <103时,min {12x −3,−12x −1,−2x +4}=−12x −1,则 −53<−12x <−1,−83<−12x −1<−2,∴min {−12x −3,−12x −1,−2x +4} 最大值小于 −2, 当 x ≥103时,min {12x −3,−12x −1,−2x +4}=−2x +4, ∴−2x ≤−203,−2x +4≤−83,∴min {12x −3,−12x −1,−2x +4} 最大值为 −83,∵−2>−83,∴min {12x −3,−12x −1,−2x +4} 最大值为 −2.故答案为:−2.【知识点】常规一元一次不等式组的解法、平方根的估算、一次函数与二元一次方程(组)的关系19. 【答案】 x >2.【知识点】常规一元一次不等式的解法20. 【答案】(1) {5x +6y =7, ⋯⋯①2x +3y =4. ⋯⋯②① − ② ×2 得:x =−1.把 x =−1 代入①得:y =2.则方程组的解为{x =−1,y =2.(2) {x −4<3(x −2), ⋯⋯①1+2x 3+1>x. ⋯⋯②解不等式①得x >1.解不等式②得x <4.∴ 不等式组的解集为1<x <4.【知识点】加减消元、常规一元一次不等式组的解法21. 【答案】(1) {5x −2y =4, ⋯⋯①2x −y =1. ⋯⋯②① − ② ×2,得:x =2.将 x =2 代入②,得:4−y =1.解得y =3.∴ 方程组的解为{x =2,y =3.(2) 解不等式 3x −2≥1,得:x ≥1.解不等式 x +9>3(x +1),得:x <3.则不等式组的解集为1≤x <3.【知识点】加减消元、常规一元一次不等式组的解法22. 【答案】(1) 设A 型汽车每辆价格为 x 万元,B 型汽车每辆的价格为 y 万元,由题意,得{4x +7y =310,10x +15y =700,解得{x =25,y =30.故A 型汽车每辆的价格为 25 万元,B 型汽车每辆的价格为 30 万元.(2) 设购买A 型汽车 m 辆,则购买B 型汽车 (10−m ) 辆,由题意,得{m <10−m,25m +30(10−m )≤285.解得3≤m <5.因为 m 是整数,所以 m =3或4.当 m =3 时,该方案所需费用为 25×3+30×7=285(万元); 当 m =4 时,该方案所需费用为 25×4+30×6=280(万元).故费用最省的方案是购买 4 辆A 型汽车,6 辆B 型汽车,该方案所需费用为 280 万元. 【知识点】一元一次不等式组的应用、综合应用23. 【答案】原不等式组为{3x −5>2(x −3), ⋯⋯①x+43≥x. ⋯⋯②解不等式 ①,得x >−1.解不等式 ②,得x ≤2.∴ 原不等式组的解集为 −1<x ≤2. ∴ 原不等式组的所有非负整数解为 0,1,2.【知识点】常规一元一次不等式组的解法24. 【答案】(1) 由题意得:y =(112−80)x +(80−64)(500−x ), 化简得:y =16x +8000.(2) 由题意得:{16x +8000≥9600,500−x ≥3x.解得:100≤x ≤125.因为 x 为整数,所以x =100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125.所以共有 26 种采购方案. (3) 设利润为 w , w=(112−3a −80)x +(80+2a −64)(500−x )=(16−5a )x +8000+1000a.当 16−5a >0,即 a <165时,w 随 x 增大而增大,所以 x =125 时,利润最大,w 最大=(16−5a )×125+8000+1000a =11500, 解得 a =195.11 综上可知,a =195.【知识点】一元一次不等式组的应用、利润问题、解析式法25. 【答案】(1) −3,2.5(2) −4≤m ≤−2 或 0≤m ≤2(3) {x+12>−1, ⋯⋯①1+2(x −a )≤3, ⋯⋯② 由 ① 得,x >−3;由 ② 得,x ≤a +1,∵ 不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时, ∴ 四个连动整数解为 −2,−1,1,2, ∴2≤a +1<3,∴1≤a <2∴a 的取值范围是 1≤a <2.【解析】(2) 解关于 x 的方程 2x −m =x +1 得,x =m +1.∵ 关于 x 的方程 2x −m =x +1 的解满足是连动数,∴{−1−m −1≤2,1−m −1≥2或 {m +1−1≤2,m +1+1≥2, 解得 −4≤m ≤−2 或 0≤m ≤2.【知识点】常规一元一次不等式组的解法、含参一元一次方程的解法、数轴的概念、含参一元一次不等式组、不等式组的整数解。
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(标准困难)(含答案解析)
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(标准困难)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 给出下列数学表达式: ①−3<0; ②4x+3y>0; ③x=5; ④x2−xy+y2; ⑤x+2>y−7.其中不等式的个数是.( )A. 5B. 4C. 3D. 12. 下列不等关系表示正确的是.( )A. a是负数可表示为a>0B. x不大于3可表示为x>3C. m与4的差是负数可表示为m−4<0D. x与2的和为非负数可表示为x+2>03. 已知2m>4m,那么.( )A. m一定是正数B. m是0或负数C. m是非负数D. m一定是负数4. 设a,b,c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是.( )A. c<b<aB. b<c<aC. c<a<bD. b<a<c5. 等式√x−3√x+1=√x−3x+1成立的x的取值范围在数轴上可表示为( )A. B. C. D.6. 已知关于x的不等式(1−a)x>1的解集为x<11−a,则a的取值范围是( )A. a≥1B. 0≤a<1C. a>1D. 0<a≤17. 欲用甲、乙两种运输车将46t抗旱物资运往灾区,甲种运输车载质量为5t,乙种运输车载质量为4t,若安排车辆不超过10辆,则甲种运输车至少应安排.( )A. 4辆B. 5辆C. 6辆D. 7辆8. 某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若小李想买下标价为360元的这种商品,商店老板让价的最大限度为.( )A. 160元B. 120元C. 100元D. 82元9. 函数y =kx +b(k,b 为常数,且k ≠0)的图象如图所示,则关于x 的不等式kx +b >0的解集为.( )A. x >0B. x <0C. x <2D. x >210. 如图,一次函数y =kx +b(k,b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)的图象相交于点P ,则不等式kx +b >ax 的解集是.( )A. x >1B. x <1C. x >2D. x <211. 用若干辆载重量为6吨的货车运一批货物,若每辆货车只装4吨,则剩下18吨货物;若每辆货车装6吨,则最后一辆车装的货物不足5吨,若设有x 辆货车,则x 应满足的不等式组是( )A. {6x −(4x +18)>06x −(4x +18)≤5B. {(4x +18)−6(x −1)>0(4x +18)−6(x −1)≤5C. {6(x −1)−(4x +18)⩾06(x −1)−(4x +18)<5D. {(4x +18)−6(x −1)⩾0(4x +18)−6(x −1)<5 12. 若关于x 的不等式组{2x +3>12x −a ≤0恰有3个整数解,则实数a 的取值范围是( ) A. 7<a <8 B. 7<a ≤8 C. 7≤a <8 D. 7≤a ≤8第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 当x________时,代数式x+32−5x−16的值是非负数.14. 如图,一次函数y=x+b与一次函数y=kx+4的图象相交于点P(1,3),则关于x的不等式x+b>kx+4的解集是.15. 不等式组╔╔ \ begin{cases}3x+1 .16. 我们定义|a bc d |=ad−bc,例如|2345|=2×5−3×4=−2,则不等式组1<|1x34|<3的解集是.三、解答题(本大题共9小题,共72.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式组一、教学内容及其解析本节知识是在学习了一元一次不等式及二元一次方程组的解法的基础上上来学习的,同时也是以后学习一元二次方程、一元二次函数及一些不等式问题的基础。
本章学习一元一次不等式和一元一次不等式组,应突出由一些具体的实际问题抽象为不等关系模型的过程,让学生体会建立不等关系及学习一元一次不等式和一元一次不等式组的意义.本节内容教材的编排主要是让学生经历通过具体问题抽象出不等式组的过程,理解一元一次不等式组及其解集的意义,初步感知利用一元一次不等式解集的数轴表示求不等式组解和解集的方法,然后通过具体例题熟练掌握解一元一次不等式组的过程.《义务教育数学课程标准(2011版)》对本节的要求是:会用数轴确定由两个一元一次不等式组成的不等式组的解集.本节内容是在了解一元一次不等式组,不等式组的解集,解不等式组的基础上,要求学生能利用数轴找出两个一元一次不等式解集的公共部分从而确定不等式组的解集.本节课学生学习一元一次不等式组的概念以及如何求不等式组的解集是有类似的学习经验的和相近的认知基础的.学生类比一元一次不等式和二元一次方程组的知识来认识一元一次不等式组的相关知识并不困难.“一元一次不等式组”是从已有的知识构建回顾出发,遵循从具体的实际问题中抽象出不等式组的概念的过程,我们知道求未知数取值范围的问题是普遍存在的,在涉及两个以上数量间的大小关系时,不等式组是解决这些问题的有力工具,因此必须学会求解一元一次不等式组的解集,可见本课时在这一章以及以后的数学学习中具有举足轻重的作用。
本节课教学主要以鼓励学生利用类比思想和数形结合思想自主探究,合作交流,大胆表述,满足学生多样化的学习要求。
此外,二元一次方程组与一元一次不等式组,两者既有联系又有差异,因此,在教学中一要注重类比,做好从方程组到不等式组的迁移;二要重视化归、数形结合等数学思想方法的渗透。
二、学情分析本节学习之前,学生学习了一元一次不等式概念,掌握了解一元一次不等式的基本技能。
并能利用一元一次不等式解决一些简单的现实问题,感受到了不等式在生活中的广泛应用;同时同学们都非常清楚在本章节的学习当中主要采用类比的学习方法,并且知道数形结合的思想在解决一些实际问题的优越性,这些知识对于本课的学习是有益的,但还要注意加强学习的主动性和探究性学习的培养。
三、教学目标及其解析(一)教学目标1.结合具体问题了解一元一次不等式组,并理解它的解集的概念.2.会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。
3.经历实际问题中的数量关系的分析、抽象、建立不等式组模型的过程(二)教学目标解析1.通过具体的问题情境,使学生了解到学习一元一次不等式组的实际意义,从而引出一元一次不等式组解集的概念。
让学生理解一元一次不等式组解集必须同时满足两个不等式,也就是两个不等式解集的公共部分.2.引导学生自主活动,学会利用数轴确定两个不等式解集的公共部分的方法,体会数形结合的思想方法的应用,让学生经历从直观感知到抽象概括的过程,激发学生的探究乐趣.3.通过例题让学生掌握一元一次不等式组的具体解法是:求---找---写.(三)教学重点,难点教学重点:理解一元一次不等式组解集的概念及掌握其解法.教学难点:理解一元一次不等式组解集的理解.四、教学问题诊断分析学生对于通过具体问题列出两个一元一次不等式,从而组成一元一次不等式组并不困难,但理解不等式组解集的概念是比较困难的。
学生往往只会求每个不等式的解集,但想不到要找两个不等式解集的公共部分,所以我们在进行教学时设计由浅入深的“问题串”引导学生思考不等式组的解集必须同时满足两个不等式,再引导学生会利用数轴较为容易地找到两个不等式解集的公共部分,从而让学生准确理解不等式组解集的概念,突破本节课的教学难点.五、教学支持条件分析根据教学内容特点,为了增大课堂容量,提高课堂效率,采用以课堂实践探究为主,多媒体演示为辅的教学形式,设置带有探究性的问题,创设具体情境,通过学生合作交流、动手实践、发现归纳结论。
体现了知识由感性到理性、由特殊到一般的形成过程.六、教学过程设计环节一复习旧知,做好铺垫1.解不等式,并把解集在数轴上表示出来:(1)0+3≤-x5<3-x(2)0师:类比二元一次方程组的形成,将这两个一元一次不等式组合在一起会得到什么——(板书课题)一元一次不等式组.设计意图:温故而知新,为这节课的所学知识做好准备.环节二 设置问题,创设情境问题1:现有甲乙两家公司招聘员工,两家公司开出的招聘条件分别是:甲公司:年龄必须大于 18岁;乙公司:年龄必须不小于25岁.师:17岁的人可以到哪个公司应聘.生:没有公司.师:20 岁的人可以到哪个公司应聘生:甲公司师:30岁的人可以到哪个公司应聘生:甲公司,乙公司都可以.师:25 岁的人可以到哪个公司应聘生 :甲公司师:有不同的意可见吗?生 2:甲公司,乙公司都可以.师:说一说你的理由生 :因为年龄25岁是属于不小于25岁的人的范围, 因此乙公司的条件他也满足.师:回答得很好。
设应聘人员的年龄为x 岁,在上述问题1中你能用合适的数学式子分别将两家公司的招聘条件表示出来吗?生 : 甲公司的条件为:18x >;乙公司的条件为:25x ≥.师: 在上述问题中可以同时应聘两家公司的人要具备几个条件呢?生: 必须具备两个条件才行,既要满足甲公司的条件,又要满足乙公司的条件.生: 也就是年龄必须大于18岁,又不小于25 岁.师: 你能用数学式子表示可以同时应聘两家公司的人要具备的条件吗?生:既要满足 18x >,又要满足25x ≥这两个条件师:类似这样要满足两个条件的问题我们以前遇到过吗? 我们如何解决的.生:以前学过的二元一次方程组就是类似的问题.师: 同学们说得很好, 类似于方程组,我们把这两个不等式合起来就组成了一个一元一次不等式组⎩⎨⎧≥>2518x x 。
像这样的不等式组在生活中是普遍存在的.综合上述实例,我再适时地介绍不等式组的概念.师:你能归纳出什么年龄的人两家公司都可以应聘吗?生:年龄大于25岁的人两家公司都可以应聘.师:有不同的意可见吗?生 2:年龄大于或等于25岁的人两家公司都可以应聘.师:说一说你的理由.生 2:因为年龄不小于25岁的人自然年龄会大于18岁. 因此两家公司的条件他都满足.师: 你能用数学式子将同时满足两家公司的招聘条件的人的年龄范围表示出来吗?生: 同时满足两家公司的招聘条件的人的年龄范围是:25x ≥.师:回答的很好,可以同时到两家公司应聘的人的年龄范围是25x ≥, 这就是问题1中的不等式组的解集.综合上述实例,我再适时地介绍不等式组的解集的概念,并让学生对比感受不等式组的解集与二元一次方程组的解的区别.设计意图:选取了学生较容易理解和接受的现实生活中的应聘事件,目的是从实际问题抽象出数学问题,即经历数学化的过程,从而形成建立数学模型的出发点,然后对学生提出用数学式子表示问题中的数量关系的要求,目的是充分展现新知的形成与发展过程,最终使学生能够顺利的利用所学的知识,通过知识迁移、类比的方法归纳得出不等式组的概念,从而经历建立数学模型的过程,最后要求学生们求出问题的结果,目的是归纳不等式组的解集的概念,从而完成求解数学模型的过程。
接着设置了几个类似的变式问题,请同学们继续思考.问题2:现有甲乙两家公司招聘员工,两家公司开出的招聘条件分别是:甲公司,年龄必须不大于18岁, 乙公司: 年龄必须小于25岁.问:什么年龄的人两家公司都可以应聘.问题3:现有甲乙两家公司招聘员工,两家公司开出的招聘条件分别是,甲公司,年龄必须大于18岁, 乙公司: 年龄必须不大于25岁. 问:什么年龄的人两家公司都可以应聘.问题4:现有甲乙两家公司招聘员工,两家公司开出的招聘条件分别是:甲公司,年龄必须不大于18岁,乙公司:年龄必须不小于25岁. 问:什么年龄的人两家公司都可以应聘.学生参照问题1中的思考方式,兴趣高涨,回答踊跃,方法与上面类似师:你还能用不等式组表示可以同时应聘两家公司的人要具备的年龄条件吗?生:问题2是:⎩⎨⎧<≤2518x x 问题3是:⎩⎨⎧≤>2518x x问题4是:⎩⎨⎧≥≤2518x x 师:在上述问题中你能分别将同时满足两家公司的招聘条件的人的年龄范围表示出来吗? 也就是你能找出上述问题中不等式组的解集吗?生:问题2是:18≤x问题3是:2518≤<x .问题4中同时满足两家公司的招聘条件的人不存在。
师:在问题4中同时满足两家公司的招聘条件的人为什么不存在, 能说说你们的理由吗?生:因为没有既小于等于18又大于等于25的数, 所以同时满足两家公司招聘条件的人不存在.师:说的非常好。
设计意图:综合上述问题,肯定学生的思考方法和问题解决,并由学生自己随着几个变式问题的提出,引入了其他几个不等式组的类型,而且自主的找到了问题的答案,反思利用数学变式,创设后续的几个应聘问题,既合理的引出其他几个基本不等式组类型,又极大的调动了学生的学习热情,学生急于发现几个问题的不同点,并积极地找到各不等式组地解集,从而体会到不等式组解集的各种类型。
环节三信息交流,揭示规律问题5:在前面我们分别找到了能同时满足两家公司招聘条件的人的年龄范围,也就是不等式组的解集,我们在学习解不等式时曾将不等式的解集在数轴上表示出来,你能分别将上述四个问题中甲、乙公司的招聘条件在同一个数轴上画出来吗?你能用更直观的方法来验证我们找到的答案是否正确吗?与同伴交流你的想法。
师:结合你们画的数轴,对照刚才你们找到的不等式组的解集,你有什么发现。
生:我发现两个解集的重合的部分就是能同时满足两家公司招聘条件的人的年龄范围,也就是不等式组的解集。
师:能说出其中的道理吗?生:两个解集的重合部分就是既满足不等式1又满足不等式2的解的集合,所以同时满足两家公司的招聘条件。
师:用画图的方法来寻找解集有什么有特点?生:直观,很容易就能找到不等式组的解集生 2:可靠,比如在问题1中容易漏掉年龄等于25岁的人,而看图形就很清楚的发现这一点是实心点,不容易漏掉。
生 3:比如问题4中同时满足两家公司的招聘条件的人不存在,在数轴上反映的一目了然,两个不等式的解集方向是“背道而驰”,当然不等式组是没有解了。
师:同学们讲的太好了。
师:通过画数轴,我们发现用画数轴的方法也可以直观地确定不等式组的解集.师生活动:学生认真画图,讨论,交流,教师适时点拨。
设计意图:利用数轴求不等式组的解集,渗透“数形结合”思想,使学生掌握不等式组的解法关键是找解集的公共部分,利用数轴可以把解集的公共部分表现地非常透彻,使学生充分认识到数形结合”思想方法的用处。