AOAC-ModernStandby
丰泰尼亚斯联盟旧厂区改造,里斯本,葡萄牙
丰泰尼亚斯联盟旧厂区改造,里斯本,葡萄牙
佚名
【期刊名称】《世界建筑》
【年(卷),期】2006(000)001
【总页数】3页(P102-104)
【正文语种】中文
【相关文献】
1.新里斯本大学校舍,里斯本,葡萄牙 [J], 曼努埃尔·艾利斯·马特乌斯;弗朗西斯科·艾利斯·马特乌斯;徐知兰(译)
2."倒置"——2005里斯本时装周展馆,里斯本,葡萄牙 [J],
3.里斯本NOVA大学医学院加建南楼多功能室,里斯本,葡萄牙 [J],
4.葡萄牙改造圣塔伦—里斯本近郊线 [J], 谭学斌
5.浅议旧工业厂区改造设计——以扬州电厂厂区规划为例 [J], 粟庆;刘斌;黄盈因版权原因,仅展示原文概要,查看原文内容请购买。
AOAC 2007 美国农药残留检测标准方法
AOAC Official Method 2007.01Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium SulfateGas Chromatography/Mass Spectrometry and Liquid Chromatography/Tandem Mass SpectrometryFirst Action 2007[Applicable for the following pesticides in grapes, lettuces, and oranges: atrazine, azoxystrobin, bifenthrin, carbaryl, chlorothalonil, chlorpyrifos, chlorpyrifos-methyl, l -cyhalothrin (incurred in lettuces), cyprodinil, o,p ¢-DDD, dichlorv os, endosulfan sulfate,ethion (incurred in oranges), imazalil, imidacloprid,kresoxim-methyl (incurred in grapes), linuron, methamidophos,methomyl, permethrins (incurred in lettuces) procymidone,pymetrozine, tebuconazole, thiabendazole (incurred in oranges),tolylfluanid (degraded in lettuces), and trifluralin. These were representative pesticide analytes chosen in representative matrixes,and the method is expected to be applicable to many other similar pesticides and matrixes. Limits of quantitation were demonstrated to be <10 ng/g.]See Tables 2007.01A–E for the results of the interlaboratory study supporting acceptance of the method.A. PrincipleThe QuEChERS (quick, easy, cheap, effective, rugged, and safe)method uses a single-step buffered acetonitrile (MeCN) extraction and salting out liquid–liquid partitioning from the water in the sample with MgSO 4. Dispersiv e-solid-phase extraction (dispersive-SPE) cleanup is done to remove organic acids, excess water, and other components with a combination of primary secondary amine (PSA) sorbent and MgSO 4; then the extracts are analyzed by mass spectrometry (MS) techniques after a chromatographic analytical separation. Figure 2007.01 outlines the protocol in a box format. In brief, a well-chopped food sample alongwith 1 mL of 1% acetic acid (HOAc) in MeCN and 0.5 g anhydrous MgSO 4/NaOAc (4/1, w/w) per g sample are added to a centrifuge tube or bottle, which is shaken and centrifuged. A portion of the MeCN extract (upper layer) is added to anhydrous MgSO 4/PSA sorbent (3/1, w/w; 200 mg per 1 mL extract), mixed, and centrifuged. This final extract is transferred to autosampler vials for analysis by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS) to identify and determine a wide range of pesticide residues. To achieve <10 ng/g detection limits in modern GC/MS, large volume injection (LVI) of 8 m L is typically needed, or the final extract can be concentrated and solvent exchanged to toluene (4 g/mL), in which case 2 m L splitless injection is used.Both GC/MS and LC/MS/MS techniques are prone to matrix effects in pesticide residue analysis, albeit for different reasons [Erney, D.R., Gillespie, A.M., Gilvydis, D.M., & Poole, C.F. (1993)J. Chromatogr. 638, 57–63; Hajslova, J., & Zrostlikova, J. (2003) J.Chromatogr. A 1000, 181–197; Alder, L., Luderitz, S., Lindtner, K.,& Stan, H.J. (2004) J. Chromatogr. A 1058, 67–79]. To account for these effects, matrix-matched calibration was conducted (calibration standards in solvent solution may also be used if matrix effects are shown not to occur). Due to the situation that some laboratories had LVI capability and others did not, the necessary amounts of matrix blank(s) and final extract volume was different for some laboratories than others. Depending on the water content of the matrix, a 15 g sample typically yields 11–14 mL of initial MeCN extract after centrifugation. In dispersive-SPE, roughly half of the extract is lost to the powders, thus about 6–7 mL of final extract can be expected for a 15 g sample. Two options were provided in the protocol to account for the different situations among the laboratories.ã 2007 AOAC IN T ER N A T IONALTable 2007.01A. Interlaboratory study results for incurred pesticides (and chlorpyrifos-methyl)AnalyteMatrix Avg. concn s raRSD r b, %S R c, ng/g Rec., %RSD R d, %HorRat No. of labsOutlierlabs e Chlorpyrifos-methylGrapes 165 14 8.535 8321 1.00116-C, 4-C Lettuces 178 20 11 30 89170.811011-SGOranges174 25 14 36 87200.9812Kresoxim-methyl Grapes 9.2 1.921f3.2NA 35f1.0912Cyprodinil Grapes 112 NAgNA 18 NA 160.7313l -Cyhalothrin Lettuces 58 6.111 11 NA 200.80 911-C Permethrins Lettuces 112 9.88.741 NA 36f1.63 96-C, 1-C Imidacloprid Lettuces 12NA NA 1.6NA 140.4411Ethion Oranges 198 23 12 36 NA 180.891111-C Thiabendazole Oranges 53 3.87.27.6NA 140.5812ImazalilOranges13NANA4.7NA35f1.1587-SGa s r = Standard deviation for repeatability (within laboratory).b RSD r = Relative standard deviation for repeatability.c s R = Standard deviation for reproducibility (among laboratories).d RSD R = Relative standard deviation for reproducibility.e C = Cochran outlier; SG = single Grubbs outlier.f RSD r >15%; 120% < Rec. < 70%; RSD R >25%; HorRat >1.2; and fewer than 8 laboratories in an assessment.gNA = Not applicable.Analyte Avg. C, ng/g s r, ng/g RSD r, %s R, ng/g Rec., %RSD R, %HorRat No. of labs Outlier labs Atrazine9.30.6 6.9 2.093210.651345 3.27.1 5.790130.4913365 23 6.271 9119 1.0413Azoxystrobin9.40.6 6.6 2.094210.641392 8.79.411 92120.51128-SG182 17 9.226 91140.70128-SG Bifenthrin7.80.811 2.37830b0.89112-C, 10-C86 5.9 6.914 86170.73126-C923 71 7.7136 92150.9113Carbaryl12 1.211 2.8104 27b0.85125-SG50 6.413 11 100 220.87131003 70 7.0189 100 19 1.18125-C Chlorothalonil 6.30.914 2.163b33b0.97 810-C59 8.314 13 79230.9310140 19 13 38 7027b 1.27b10Chloropyrifos8.1 1.519b 3.08137b 1.121268 8.312 14 84200.8413396 25 6.450 79120.681211-SG Cyprodinil c123 13 10 26 101 210.9513240 20 8.363 9226b 1.32b13581 42 7.3110 9519 1.0913o,p¢-DDD8.9 1.416b 3.28936b 1.091242 3.17.37.084170.6512445 32 7.147 89100.58116-C Dichlorvos7.2 1.014 1.372180.53118-SG85 7.48.715 85180.77114-C294 25 8.562 9821 1.1012Endosulfan sulfate8.60.910 1.586170.52 7b10-C 115 14 12 21 77180.8111415 56 14 111 8327b 1.47b11Imazalil7.60.89.8 3.17641b 1.22b1150 2.5 4.915 67b30b 1.19108-C432 53 12 161 7837b 2.06b11Imidacloprid8.80.88.9 3.08834b 1.041345 3.57.78.999200.7813218 18 8.224 97110.56128-SG Linuron9.9 1.717b 2.99929b0.901199 7.47.415 99150.6712971 65 6.7191 9720 1.23b12Methamidophos10 2.929b 3.0101 30b0.95 95-SG80 8.010 14 80180.7712852 72 8.4119 85140.85118-SG Methomyl9.3 1.212 2.99332b0.981250 3.3 6.79.3100 190.7413204 10 4.926 102 130.6313Procymidone8.20.78.2 2.082240.74115-SG64 6.09.416 8524 1.0113428 16 3.870 86160.90129-C Pymetrozine 6.2 1.220b 1.662b27b0.771147 3.1 6.79.662b200.8111341 20 5.859 68b170.9211Tebuconazole9.2 1.112 1.292130.41123&4-DG63 5.58.78.884140.5813439 29 6.784 8819 1.0613Tolylfluanid7.9 1.012 3.17939b 1.191334 4.313 13 67b37b 1.41b13144 13 8.842 7229b 1.37b13Trifluralin7.80.78.5 1.878230.681210-C58 3.7 6.414 7725 1.0213379 19 5.148 76130.69106-C, 4-C, 11-SG aC = Cochran outlier; SG = single Grubbs outlier; DG = double Grubbs outliers.bRSD r >15%; 120% < Rec. < 70%; RSD R >25%; HorRat >1.2; or fewer than 8 laboratories in an assessment.cCyprodinil was incurred in the grapes and affected quantitation.ã 2007 AOAC IN T ER N A T IONALAnalyte Avg. C, ng/g s r, ng/g RSD r, %s R, ng/g Rec., %RSD R, %HorRat No. of labs Outlier labs Atrazine9.9 1.515 1.899180.561170 7.9111593210.8812930 50 5.4166 9318 1.11115-C Azoxystrobin10 0.8 7.6 1.8102 180.561247 2.4 5.2 6.593140.5512531 32 6.188106 170.9412Bifenthrin9.10.8 9.1 1.491160.481166 8.012 9.488140.5911217 27 123387150.7711Carbaryl9.4 1.112 2.094220.671292 6.1 6.7 9.092 9.80.43118-SG589 38 6.4127 9822 1.24b12Chlorothalonil 6.20.814 2.062b32b0.93 6b28 10 37b147048b 1.77b 7b684 134 20b205 68b30b 1.77b 6bChloropyrifos9.0 2.124b 2.39026b0.79 912-SG, 10&11-DG86 9.411208623 1.011111-SG179 18 103090170.821111-SG Cyprodinil9.7 1.010 1.497140.441111-SG44 2.7 6.1 8.989200.791111-SG848 61 7.2117 85140.84108-SGo,p¢-DDD8.90.6 7.0 1.989210.66 881 4.8 5.91281150.63 911-C214 19 8.72786130.6210Dichlorvos 5.2 1.020b 2.452b45b 1.29b1258 6.6111277200.8112838 50 6.0224 8427 1.63b11Endosulfan sulfate 5.6 3.359b 2.556b45b 1.28b 2b38 9.625b157539b 1.48b 7b769 330 43b312 7740b 2.44b 7bImazalil7.60.3 3.5 3.57639b 1.18 82-C72 3.7 5.22457b33b 1.39b11589 47 7.9229 59b39b 2.25b11Imidacloprid c22 1.3 6.2 1.7100 7.90.28118-SG84 6.2 7.4 8.197 9.60.4112515 21 4.253101 100.58115-C Linuron8.6 1.112 1.586170.531146 2.2 4.9 7.491160.63102-C234 14 5.82594100.5311Methamidophos8.80.8 8.5 1.388150.46 86-C66 4.5 6.91282180.7211538 37 6.86384120.67 95-C, 8-SG Methomyl9.70.8 8.6 1.096100.321099 8.0 8.1 6.499 6.50.29102-SG997 24 2.4168 100 17 1.0511Procymidone10 0.6 6.2 2.2101 220.68 82-C92 8.5 9.21592170.7311967 118 12129 97130.8311Pymetrozine 6.90.4 6.1 1.469b200.591033 1.6 4.7 4.667b140.51 911-C127 8.5 6.71763b130.6110Tebuconazole9.70.7 6.9 1.297130.40114-C89 6.8 7.71189120.5212948 42 4.4226 9524 1.48b114-C Tolylfluanid 3.7 1.130b 2.237b59b 1.59b 4b9.3 3.740b 4.1 9.3b44b 1.37b 83-SG, 8-SG142 22 158614b61b 2.84b 812-C, 3&8-DG Trifluralin10 1.413 1.7103 170.541142 4.511 9.084220.8311169 25 153084180.8411aC = Cochran outlier; SG = single Grubbs outlier; DG = double Grubbs outliers.bRSD r >15%; 120% < Rec. < 70%; RSD R >25%; HorRat >1.2; or fewer than 8 laboratories in an assessment.cImidacloprid was incurred in the lettuces unbeknownst to the SD.ã 2007 AOAC IN T ER N A T IONALAnalyte Avg. C, ng/g s r, ng/g RSD r, %s R, ng/g Rec., %RSD R, %HorRat No. of labs Outlier labs Atrazine 8.9 1.011 1.989210.65112-C 908.29.11290130.5712187 19 10 2793140.6912Azoxystrobin 8.4 1.316b 1.884210.651165 5.28.0 8.186120.5212853 35 4.18285 9.60.591111-C Bifenthrin 9.7 2.324b 2.397240.75109-SG45 2.5 5.6 6.891150.59102-C488 51 10 7698160.8712Carbaryl 8.40.67.3 2.184250.771066 5.07.51488210.8811172 8.8 5.13486200.9512Chlorothalonil 4.80.816b 2.748b56b 1.57b 3b7014 20b297042b 1.74b 6b330 137 42b131 66b40b 2.09b 7bChloropyrifos11 1.614 5.0111 45b 1.58b 92-C82 4.5 5.61282150.64109-C953 97 10 284 9530b 1.85b1211-C Cyprodinil 8.70.910 2.087230.721256 4.58.0 9.075160.6512199 12 6.23580180.8612o,p¢-DDD 9.10.67.2 1.891200.60 99-C74 5.1 6.9 9.899130.561010-C967 81 8.41919720 1.22b11Dichlorvos 9.30.88.1 1.093110.35 7b12-C43 2.2 5.2 8.085190.73 812-SG446 22 5.05489120.6810Endosulfan sulfate12 5.444b 5.4124b43b 1.40b 4b3-SG 8319 23b198323 1.0110240 35 15 618025 1.28b10Imazalil c22 1.77.7 6.29628b0.98 87-C58 4.37.41392220.91 9186 9.7 5.2418722 1.0610Imidacloprid10 1.110 2.8104 27b0.861193 6.57.01293130.5711989 64 6.5124 99130.7811Linuron 7.8 1.317b 2.77835b 1.041160 3.0 5.01386210.8611387 26 6.64279110.59 9111-DG Methamidophos 9.2 1.112 1.592160.49 89-C42 3.58.2 5.685130.52 84-C211 12 5.53185150.73 94&9-DG Methomyl 8.50.88.9 2.88533b0.99 97-C68 4.87.0 8.791130.5412492 19 3.96098120.6912Procymidone110.98.1 3.9108 36b 1.15 812-C43 3.58.0 5.886140.531010-C170 16 9.72585150.7111Pymetrozine 7.5 1.318b 2.17528b0.821077 5.97.71077140.5710789 38 4.8117 79150.89 912-C Tebuconazole 8.70.78.0 1.287140.421141 2.2 5.4 6.282150.5812177 14 7.92888160.7612Tolylfluanid 5.8 1.220b 1.458b240.69 911-SG 467.516b1461b31b 1.21b119-C356 54 15 134 7138b 2.02b12Trifluralin 8.60.4 4.5 2.48628b0.87 99-C 928.69.41192120.5412915 60 6.5194 9221 1.31b116-CaC = Cochran outlier; SG = single Grubbs outlier; DG = double Grubbs outliers.bRSD r >15%; 120% < Rec. < 70%; RSD R >25%; HorRat >1.2; or fewer than 8 laboratories in an assessment.cImazalil was incurred in the oranges unbeknownst to the SD.ã 2007 AOAC IN T ER N A T IONALIn Option A, if the laboratory had LVI capability, then 1 or 2 mL extracts were taken for dispersive-SPE (the volume depended on the analyst preference and the type of centrifuge and tubes available in the laboratory). The final extract volume was 0.5 mL if 1 mL was taken for dispersive-SPE, and 1 mL if 2 mL underwent the cleanup step. In either case, two 15 g blank samples were used for the matrix blank (0-standard) and 6 matrix-matched calibration standards (5, 10, 50, 100, 250, and 1000 ng/g equiv alent concentrations). For dispersive-SPE of the matrix blanks, either 7 separate tubes using the same 1–2 mL extract volumes as the test samples could have been used, or 1–2 dispersive-SPE tube(s) with 7-fold greater extract volume(s).In Option B, if LVI is not available for GC/MS, then »30 mL of matrix blank extract was needed after dispersive-SPE cleanup to prepare the matrix-matched calibration standards (or $60 mL initial extract). In this case, 6 matrix blanks of 15 g each were extracted along with the test samples to provide enough blank extract volume, which were combined, and seven 8 mL aliquots were distributed to 7 dispersive-SPE tubes containing 0.4 g PSA + 1.2 g anhydrous MgSO4.B. Apparatus and ConditionsNote: Tables 4 and 5 of the collaborative study [J. AOAC Int. 90, 485(2007)] list the analytical instrumentation and sources of sample preparation materials used by each laboratory in the study. Further information appears in the full report. Since the time of the collaborativ e study, at least 3 v endors, United Chemical Technologies (Bristol, PA, USA), Restek (Bellefonte, PA, USA) and Supelco (Bellefonte, PA, USA) hav e introduced commercial dispersive-SPE products for QuEChERS and other applications. See Table 4 [J. AOAC Int. 90, 485(2007)] for sources of analytical instruments.(a) Gas chromatograph/mass spectrometer.—An ion trap, quadrupole, time-of-flight (TOF), or other GC/MS instrument may be used with electron impact (EI) ionization, an autosampler (AS), and computerized instrument control/data collection. Either LVI of 8 m L for a 1 g/mL MeCN extract (e.g., 75°C ramped to 275°C at 200°C/min) or 2 m L splitless injection of 4 g/mL extracts in toluene a t250°C m a y b e u s e d.A3–5m,0.25m m i d, phenylmethyl-deactivated guard column must be used as a retention gap in either case. The analytical column is a 30 m, 0.25 mm id, 0.25 m m film thickness (5%phenyl)-methylpolysiloxane (low bleed) analytical column (DB-5ms or equiv alent). Set He head pressure on the column to be 10 psi or constant flow to be 1.0 mL/min with systems capable of electronic pressure/flow control. After an appropriate time for solv ent delay, use an appropriate ov en temperature program, for example, starting at 75°C for MeCN extracts or 100°C for toluene ramped to 150°C at 25°C/min, then to 280°C at 10°C/min, and hold for 10 min. All collaborators had much experience in pesticide residue analysis and were free to use their own analytical conditions provided that peak shapes were Gaussian, peak widths at half heights were <5 s, and signal-to-noise ratio (S/N) of the quantitative ion for the pesticides at 10 ng/g equivalent concentrations in the sample were >10. For qualitative purposes (which were not the focus of this study), at least 3 ions yielding relativ e abundances that reasonably match a contemporaneously analyzed reference standard are typically needed to make an analyte identification.(b) Liquid chromatograph/tandem mass spectrometer.— A triple quadrupole, ion trap, or other LC/MS/MS instrument may be used provided it is capable of electrospray ionization (ESI) in the positive mode with computerized instrument control/data collection and has an AS. An injection volume (5–100 m L) will be determined for each instrument to achieve S/N > 10 for the quantitation ion for a 10 ng/g equivalent sample concentration. As in GC/MS, the collaborators had much experience in the analysis of pesticides and were free to use their own conditions. Suggested LC conditions, howev er, include a 15 cm long, 3.0 mm id, 3 m m particle size C18 column, flow rate of 0.3 mL/min, and gradient elution with an initial condition of 25% MeOH in 5 mM formic acid solution taken linearly in 15 min to 90% MeOH in 5 mM formic acid solution and held for 15 min. A short C18 guard column must be used to protect the analytical column, and a bypass valve must be used before the MS instrument to av oid introduction of the early and late eluting nonanalyte components into the detector. The MS/MS conditions were optimized in each laboratory using direct infusion into the ESI source to prov ide highest S/N for the quantitation ion of each LC-type analyte from a single MS/MS transition. A second transition with reasonably matching relative abundance ratios vs a contemporaneously analyzed reference standard is typically needed for qualitative purposes.(c) Centrifuge(s).—Capable of holding the 50 mL centrifuge tubes or bottles used for extraction and 10–15 mL graduated centrifuge tubes or 2 mL mini-tubes used in dispersiv e-SPE. Determine the rpm settings that yield a given relative centrifugal force (RCF), and ensure that maximum ratings of the centrifuge, tube/bottles, and rotors for the instrument are not exceeded.(d) Balance(s).—Capable of accurately measuring weights from0.05 to 100 g within ±0.01 g.(e) Freezer.—Capable of continuous operation <–20°C.(f) Furnace/oven.—Capable of 500°C operation.ã 2007 AOAC IN T ER N A T IONALTable 2007.01E. Averaged interlaboratory study results for the fortified and incurred pesticides aMatrix Recovery, %RSD r, %RSD R, %HorRat No. of labs (n) Grapes86 ± 1110 ± 422 ± 80.90 ± 0.2912 ± 1 Lettuces87 ± 1210 ± 720 ± 90.83 ± 0.4510 ± 1 Oranges87 ± 1510 ± 620 ± 80.84 ± 0.3710 ± 2 Overall87 ± 1110 ± 621 ± 80.86 ± 0.3711 ± 2Incurred NA b12 ± 422 ± 80.92 ± 0.3011 ± 2aData from fewer than 7 laboratories in an assessment were excluded.bNA = Not applicable.(g ) Food chopper and/or bl ender.—Preferably an s-blade vertical cutter (e.g. Stephan, Robotcoupe) and and probe blender (e.g. Ultra-Turrax, Propsep).(h ) Sol vent evaporator (optional ).—For the ev aporation of MeCN extracts, if LVI is not used in GC/MS.C. Reagents[See Table 5 [J. AOAC Int. 90, 485(2007)] for sources of chemicals.](a ) Anhydrous magnesium sul fate (MgSO 4).—Powder form;purity >98%; heated in bulk to 500°C for >5 h to remove phthalates and residual water.(b ) Acetonitril e (MeCN).—Quality of sufficient purity that is free of interfering compounds.(c ) Acetic acid (HOAc).—Glacial; quality of sufficient purity that is free of interfering compounds.(d ) 1% HOAc in MeCN.—Prepared on a v/v basis (e.g., 10 mL glacial HOAc in a 1 L MeCN solution).(e ) Anhydrous sodium acetate (NaOAc).—Powder form (NaOAc·3H 2O may be substituted, but 0.17 g per g sample must be used rather than 0.1 g anhydrous NaOAc per g sample).(f ) Primary secondary amine (PSA) sorbent.—40 m m particle size (Varian Part No. 12213024 or equiv alent). (Note : Premade dispersive-SPE tubes are now available from at least 3 vendors.)(g ) C 18 sorbent (optional ).—40 m m particle size, if samples contain >1% fat.(h ) G r a p h i t i z e d c a r b o n b l a c k (G C B ) s o r b e n t (optional ).—120/400 mesh size, if no structurally planar pesticides are included among the analytes.(i ) Helium.—Purity that has been demonstrated to be free of interfering compounds in GC/MS.(j ) Toluene (optional ).—Quality of sufficient purity that is free of interfering compounds; only needed if LVI is not used in GC/MS.(k ) Methanol (MeOH).—Quality of sufficient purity that is free of interfering compounds in LC/MS/MS prepared in mobile phase solution.(l ) Water.—Quality of sufficient purity that is free of interfering compounds in LC/MS/MS.(m ) Formic acid.—Quality of sufficient purity that is free of interfering compounds in LC/MS/MS prepared in mobile phase solution.(n ) Pesticide standards .—High purity reference standards of the pesticide analytes, and quality control (QC) and internal standards (ISs) prepared at highly concentrated stock solutions (e.g.,2000 ng/m L) in MeCN with 0.1% HOAc. Stored in dark vials in the freezer. Check annually for stability.(o ) Standard sol utions.—Prepared in MeCN for all collaborators: IS solution = 40 ng/m L of both d 10-parathion and d 6-a -HCH in MeCN; triphenylphosphate (TPP) solution = 2 ng/m L TPP in 1% HOAc in MeCN solution; QC-spike solution = 40 ng/m L of the 27 pesticide analytes in 0.1% HOAc in MeCN; and individual test solutions = 10 ng/m L of each of the 30 compounds to be detected (except 40 ng/m L TPP) in 0.1% HOAc in MeCN solution.Collaborators prepared a test mix and calibration standard spike solutions from those provided as described in E .(p ) Bl ank sampl e .—Verified to be free of analytes abov e the detection limit.(q ) Other reagents.—Certain instruments may require nitrogen or other materials/devices for their operation.D. Materials(a ) Fl uorinated ethyl ene propyl ene (FEP) centrifugetubes.—50 mL; e.g., Nalgene Part No. 3114-0050 or equivalent for <16 g sample (or 250 mL FEP centrifuge bottles for 16–75 g sample size).(b ) Spatul a/spoon and funnel .—For transferring sample into centrifuge tubes.(c ) Solvent dispenser and 1–4 L solvent bottle.—For transferring 15 mL 1% HOAc in MeCN per 15 g sample in FEP centrifuge tubes or bottles.(d ) Centrifuge tubes (optional ).—10–15 mL graduated. For evaporation and/or dispersive-SPE.(e ) Mini-centrifuge tubes (optional).—2 mL. For dispersive-SPE (use tubes with o-ring-sealed caps to avoid leaks).(f ) Syringes/pipets.—Capable of accurate sample introduction of 2 or 8 m L volume into GC/MS and appropriate volumes of matrix spike, IS, and calibration standard solutions (12.5–300 m L).(g ) Repeating or vol umetric pipets.—Capable of accurately transferring 0.5–8 mL solvent.(h ) Containers .—Graduated cylinders, volumetric flasks, weigh boats, v ials, and/or other general containers in which to contain samples, extracts, solutions, standards, and reagents.E. Preparation of Reagent Materials and Comminuted Sample(1) Prepare the necessary number of sealable vials/cups containing 6.0 ± 0.3 g anhydrous MgSO 4 + 1.5 ± 0.1 g anhydrous NaOAc (or 2.5ã 2007 AOAC IN T ER N A TIONALFigure 2007.01. Outline of the QuEChERS protocol used in the collaborative study.± 0.2 g NaOAc·3H2O) per 15 g sample. Scoops of appropriate volume can be used to speed the process, but weighing should still be done to check consistency. The containers should be sealed during storage and can be refilled and re-used without cleaning in between usages.(2) Prepare the necessary number of appropriate centrifuge tubes (2 mL mini-centrifuge tubes or 10–15 mL centrifuge tubes) containing 0.05 ± 0.01 g PSA sorbent + 0.15 ± 0.03 g anhydrous MgSO4 per 1 mL extract taken for dispersive-SPE cleanup. (Note: At least United Chemical Technologies, Restek, and Supelco now provide dispersive-SPE products commercially to replace this step.) If LVI is not available for GC/MS, then evaporation of the extracts will be needed, and 8 mL extract will be transferred to 10–15 mL sealable centrifuge tubes containing 0.40 ± 0.08 g PSA sorbent + 1.20 ± 0.24 g anhydrous MgSO4. For matrixes that contain >1% fat, add an additional 0.05 ± 0.01 g C18 sorbent per mL extract to the container. If no planar pesticides are among the analytes (e.g., thiabendazole, terbufos, quintozene, and hexachlorobenzene), then 0.05 ± 0.01 g GCB sorbent per mL extract can also be added to the tube. (Note: Final extract volume may have to be reduced to 0.4 mL per 1 mL aliquot in dispersive-SPE if all 4 powders are used.) (3) Prepare 1% HOAc in MeCN in dispenser bottle by adding 10 mL HOAc to 990 mL v olume of MeCN or different desired amount in the same ratio.(4) Label all vials and tubes appropriately that will be used in the method.(5) Note: Step 5 was conducted by the Study Director (SD) when preparing the test samples. An appropriate chopper must be used to comminute large, representative sample portions. An uncommon or deuterated pesticide standard may be spiked into the sample during homogenization to determine the effectiv eness of the procedure. Blend the sample until it gives a consistent texture. Transfer .200 g to a sealable container for freezer storage after further homogenization with a probe blender. Blend this subsample with the mixer until it is homogeneous. The test portion (e.g., 15 g) is taken for extraction immediately, and the container is then sealed and stored in the freezer in case re-analysis is necessary. The advantages of this approach are that the 15 g portion is highly representative of the original sample, the sample is well-comminuted to improv e extraction by shaking, less time is spent on the ov erall homogenization process than trying to prov ide equiv alent homogenization of the large initial sample with the chopper, and a frozen subsample is available for re-analysis if needed.To provide the most homogeneous comminuted samples, frozen conditions, sufficient chopping time, and appropriate sample size to chopper volume ratio should be used. Use of frozen samples also minimizes degradative and volatilization losses of certain pesticides. In this case, cut the sample into 2–5 cm3 portions with a knife and store the sample in the freezer prior to processing. Cryogenic blending devices, liquid nitrogen, or dry ice may also be used (but make sure all dry ice has sublimed before weighing samples and ensure that water condensation is minimal, especially in a humid environment). (6) For laboratories with LVI in GC/MS, prepare a test mix of the pesticides in MeCN + 0.1% HOAc to determine the retention times (t R) and MS quantitation/diagnostic ions at the particular GC/MS conditions to be used in the analysis [see Table 2 of the collaborative study (J. AOAC Int. 90, 485(2007)].The preparation of the test mix and calibration spiking standards are described as follows:(1) Test mix in MeCN + 0.1% HOAc.—4 ng/m L in 10 mL of all 30 compounds to be analyzed. Add 1 mL each of QC-spike solution + IS solution + TPP test solution + 1% HOAc in MeCN and fill to 10 mL with MeCN. Calibration spike standards in MeCN for 27 pesticide analytes (make 10 mL each in volumetric flasks, then transfer to 15 mL dark glass vials and store in freezer).(2) Cal-standard-1000.—20 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 5 mL QC-spike solution + 1 mL IS solution + 1 mL 1% HOAc in MeCN and fill to the mark with MeCN.(3) Cal-standard-250.—5 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 1.25 mL QC-spike solution + 1 mL IS solution + 1 mL 1% HOAc in MeCN and fill to the mark with MeCN.(4) Cal-standard-100.—2 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 500 m L QC-spike solution + 1 mL IS solution + 1 mL 1% HOAc in MeCN and fill to the mark with MeCN.(5) Cal-standard-50.—1 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 250 m L QC-spike solution + 1 mL IS solution + 1 mL 1% HOAc in MeCN and fill to the mark with MeCN.(6) Cal-standard-10.—0.2 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 50 m L QC-spike solution + 1 mL IS solution + 1 mL 1% HOAc in MeCN and fill to the mark with MeCN.(7) Cal-standard-5.—0.1 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 25 m L QC-spike solution + 1 mL IS solution + 1 mL 1% HOAc in MeCN and fill to the mark with MeCN. For laboratories without LVI in GC/MS, the preparation of the test mix and the calibration spiking standards are described below: (1a) Test mix for GC in tol uene.—4 ng/m L in 10 mL of all 30 compounds to be analyzed. Add 1 mL QC-spike solution + 1 mL IS solution + 1 mL TPP test solution and fill to 10 mL with toluene. Calibration spike standards in MeCN for LC/MS/MS (in dark glass AS vials stored in freezer).(2a) Cal-standard-1000.—20 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 500 m L QC-spike solution + 100 m L IS solution + 100 m L 1% HOAc in MeCN + 320 m L MeCN.(3a) Cal-standard-250.—5 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 125 m L QC-spike solution + 100 m L IS solution + 100 m L 1% HOAc in MeCN + 695 m L MeCN.(4a) Cal-standard-100.—2 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 50 m L QC-spike solution + 100 m L IS solution + 100 m L 1% HOAc in MeCN + 770 m L MeCN.Dilute QC-spike solution.—4 ng/m L. Transfer 100 m L QC-spike solution to AS vial and add 900 m L MeCN.(5a) Cal-standard-50.—1 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 250 m L dilute QC-spike solution + 100 m L IS solution + 100 m L 1% HOAc + 570 m L MeCN.(6a) Cal-standard-10.—0.2 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 50 m L dilute QC-spike solution + 100 m L IS solution + 100 m L 1% HOAc and 770 m L MeCN.(7a) Cal-standard-5.—0.1 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 25 m L dilute QC-spike solution + 100 m L IS solution + 100 m L 1% HOAc + 795 m L MeCN.Calibration spike standards in toluene.—Make 10 mL each in volumetric flasks, then transfer to 15 mL dark glass vials and store in freezer.(8a) Cal-standard-1000-tol.—20 ng/m L of each pesticide + 4 ng/m L IS in toluene. Add 5 mL QC-spike solution + 1 mL IS solution and fill to the mark with toluene.ã 2007 AOAC IN T ER N A T IONAL。
循因渐进摩弗西斯事务所设计的纽约库珀广场41号
…
20
周新 佳 Z O a j H UJ ni i a
循因渐进
摩弗西斯事务所设计 的纽约库珀广场 4 号 1
lf m aton,n F m a i n or i I or ton, or a i F m ton
41 o p r qu r, w o kb r h s o e c S a e Ne Y r y Mo p o i s
一
间时 . 通过建筑 面上的切口一发次捕获纽约城市的 片断 . 与城市形成呼应 从主立面的切 口 向外看 , 恰 好与库珀学院基金会大接~ 一拣风格迎然的古典建 筑对角相望 ( 1 ) 由此 , 目 2。 建筑从城 市中获得对自 身的定义 .条件激发 的 特形态x 反过来定义 7城 独 市 在从城市环 到建筑内部又目到城市的一番游历 境
翦一
文章通过评述摩弗西斯事务所 ( h s r i c s Mo p o i A c t t 在纽约完成 的 r s he ) 库珀联盟学院新大楼—
庠珀r场
4 号 .简 介 7设计师是如何将建筑功能 所在环境 的 1 要 绍 特殊条件 什八设计过程,通过对几何形体的操作来 推动建筑的生戚 . 并且获得 后的形态 。 关■诩 城市 环境 . 直 目 . 垂 校 切割 . 几何 生成
U
1 信息 ( n r t n是一十有趣的过程.建 庭里穿摧的天桥把这些空问串联起来 在走进这些空
筑的±成总在经历草图、实物模型与电脑模型±间的 往复 汤蛳 梅恩最早 的草图 ( 2 隐约地表 达7 图 ) 建筑外女 面与其建筑 内部的*系 一
这样的 观感很容
易让人联 想到以切割画布闻名的艺术家鲁 奥 封塔 使主与观者所处的真实环境融为一体 无独有偶 . 库 纳 f u i F n a a 的作 Lc oth} o —— 空间 念 S a l 珀广场 4 号的切 口 概 ( p t I a 1 不免让^产生同样的 期望 想 , 3 之后的世界 。 C n et系列 ( 5)对画布不 厌其烦的切割使封 像这切 1 oc p) 目 c
引领世界的英国智能型服装
引领世界的英国智能型服装
牟汝佳
【期刊名称】《中国纤检》
【年(卷),期】2008(000)004
【摘要】目前,有数个英国公司都成功地把智能纺织技术运用于服装和其他软的消费品,也包括手提包和背包。
在这个领域最卓越的英国公司有奥希迪西(Auxetix)公司、伊莱克森公司(Eleksen)、英国工程纤维构造公司(EngineeredFibreStructures)、
【总页数】1页(P75)
【作者】牟汝佳
【作者单位】无
【正文语种】中文
【中图分类】TS941.1
【相关文献】
1.英国研制成功世界首款净化空气功能服装 [J],
2.引领纺织染化创新潮流——亨斯迈召开"深入创新-智能型功效引领创新趋势"研讨会 [J], 黄莉
3.英国服装市场立足本土,放眼世界 [J], 姜蕾
4.让世界服装进入中国让中国服装走向世界—’94中国国际服装服饰博览会综述[J], 任小强
5.波司登:引领中国服装品牌走向世界 [J], 梁莉萍
因版权原因,仅展示原文概要,查看原文内容请购买。
第51届多恩比恩国际人造纤维大会全新亮相
第51届多恩比恩国际人造纤维大会全新亮相作者:白琼来源:《纺织报告》 2012年第10期最近,第51届多恩比恩国际人造纤维大会在奥地利多恩比恩举行。
会议启用了新的视觉形象标识,以展示持久创新的活力。
本届会议应行业未来发展之需,扩大专业交流研讨的范围,包括工业、研发、市场、环境等多个环节及领域。
新视觉设计传达活力新的视觉形象已经被参加多恩比恩国际人造纤维大会(Dornbirn-MFC)的所有观众、讲演者以及会员和赞助商所接受,它表达了全球纤维市场的活力。
大会板块的调整在第50届多恩比恩国际人造纤维大会(Dornbirn-MFC)举办时,纤维世界的变化已经显现。
未来的挑战已经摆在面前,促使2012年的大会在选题方面更加注重创新和切合实际。
“适应未来”板块讲座内容增加上届大会的50周年庆典活动为下一个50年奠定了基础。
因此,今年的大会重点关注可持续性、创新和与后代交流基础上的未来生存能力。
今年的议题重点围绕“汽车用纤维和纺织品”展开。
其他话题包括:“非传统纤维应用”、“用于环境保护的人造纤维”、“医疗用品”、“技术非织造布”和“欧盟项目”等。
这些选题将Dornbi rn-MFC发展成欧洲讨论人造纤维业未来发展重要议题的中央交流平台的目标又向前推进了一步。
来自学术界、研究领域、业界及整个加工链的演讲者和听众将通过这一活动分享有价值的思路、发现和知识。
年轻参与者增多欧洲拥有密集的研究院所和大学网络。
今年多恩比恩人造纤维大会首次邀请6 名学生在全体大会上阐述他们的研究成果,并在门厅的展览区域以海报形式发表这些研究成果的详细内容。
通过集群效应增强了大会的影响力与德国汽车协会(VDA)的合作得到多恩比恩汽车用纺织品工作小组的肯定,这使参会者能够获得关于人造纤维在这一重要行业的应用情况及其供应商的最新信息。
主办方还与世界绿色屋顶组织的代表计划未来几年在会前和会议期间举办相关活动。
今年有来自30多个国家和地区的700余名代表参会。
AOAC 试验方法 Method AOAC method 985.22
ganic
layer
in
first
separatory
funnel
by
passing
through
ca
14 supported on washed glass wool in 4 in(10 cm)
funnel, collecting in 500 mL K–D concentrator fitted with volumet-
Instrument used
B(g)(2)
E
0.5
0.4
0.1
0.1
0.5
0.5
0.2
0.2
0.5
0.5
0.2
0.4
2.0
0.4
“包装”OL绝对现场
“包装”OL绝对现场
林格
【期刊名称】《中国化妆品:专业版》
【年(卷),期】2003(000)005
【总页数】7页(P57-63)
【作者】林格
【作者单位】无
【正文语种】中文
【中图分类】TS974.1
【相关文献】
1.绝对创意:论绝对伏特加的包装设计 [J], 曹艳
2.绝对现场、绝对精彩——摄影棚拍摄全接触 [J], 小滔
3.绝对现场、绝对精彩——浙大中控重拳出击第15届多国仪器仪表展 [J],
4.从Pro Tools到Live——提升现场演出,只需将Pro Tools音轨导出到Ableton Live [J], 半瓶醋
5.量身定做符合客户需要的包装系统解决方案——访美德维实伟克(中国)投资有限公司亚洲市场经理Richard Olsen先生和饮料包装系统大中华区总经理宋勝强先生 [J], 李培珍;牛牧
因版权原因,仅展示原文概要,查看原文内容请购买。
C&A 2012摩登艺术绽放冬季
C&A 2012摩登艺术绽放冬季
佚名
【期刊名称】《中国服装》
【年(卷),期】2012(000)019
【摘要】C&A本季冬季款将在艺术绘画中才能寻找到的巧妙色泽搭配运用NTN 饰用色灵感中。
配合新颖的剪裁和潮流的设计元素,这个冬季,都市中的熟男熟女们的衣柜里不再只有单调的灰白,穿上C&A,让冬季的空气也跟着鲜活起来。
成熟女装YESSICA系列本季在色彩与色彩的碰撞中展现女性的千姿百媚。
不论你是青睐冷色,黑白色调塑造沉稳干练形象.还是偏爱亮丽颜色让这个冬日也掩盖不住你的光彩.你都会在C&A找到属于你的那一抹炫色。
【总页数】1页(P152-152)
【正文语种】中文
【中图分类】TS933.23
【相关文献】
1.“浅色变奏”演绎摩登活力明快色调描摹都会时尚MANGO2012春夏新装绚烂绽放 [J],
2.天然传统纤维现代艺术演绎摩登羊毛艺术展十月上海拉开帷幕 [J],
3.摩登上海的一次先锋艺术探索——20世纪30年代先锋艺术团体决澜社的酝酿与成立 [J], 胡荣
4.焕彩摩登品味优雅——法式优雅女装LEVU‘SU(艺元素)和快速时尚女装SIUSIU 2011秋冬季时装联合发布会 [J],
5.“冬季最摩登之运动” 现代冰雪运动在我国的开展 [J], 黄金生
因版权原因,仅展示原文概要,查看原文内容请购买。
aoac 2005.7
C
Submitted for publication June 2005. The recommendation was approved by the Methods Committee on Dietary Supplements as First Action. See “Official Methods Program Actions,” (2005) Inside Laboratory Management, July/August issue. Corresponding author’s e-mail: john.szpylka@.
JOHN SZPYLKA and JONATHAN W. DEVRIES Medallion Laboratories Division of General Mills, 9000 Plymouth Ave N, Minneapolis, MN 55427-3870 Collaborators: S. Bhandari; M.H. Bui; D. Ji; E. Konings; R. Lewis; P. Maas; H. Parish; B. Post; J. Schierle; D. Sullivan; A. Taylor; J. Wang; G. Ware; D. Woollard; T. Wu
SZPYLKA & DEvRIES: JOURNAL OF AOAC INTERNATIONAL VOL. 88, NO. 5, 2005 1279
DIETARY SUPPLEMENTS
Determination of b-Carotene in Supplements and Raw Materials by Reversed-Phase High Pressure Liquid Chromatography: Collaborative Study
aoac_official_method_973.32
9.1.04AOAC Official Method 973.32Lead and Cadmium Extracted from Ceramicware Atomic Absorption Spectroscopic MethodFirst Action 1973Final Action 1977AOAC–ASTM MethodA. PrincipleLead and cadmium are extracted from the test article by leaching with 4% acetic acid for 24 h at 22 ± 2°C. Leach solutions containing ≥1 µg Pb/mL or ≥0.1 µg Cd/mL are analyzed by this method using flame atomic absorption spectroscopy. Leach solutions containing <1 µg Pb/mL or <0.1 µg Cd/mL must be analyzed by alternative method 973.82.(Caution: For information on potential hazards associated with this method, see appropriate sections [in parentheses]in Appendix B, Laboratory Safety: acetylene explosionhazard [Atomic Absorption Spectrometers and Com-pressed Gas Cylinders]; acid fume removal and spillcleanup [Safe Handling of Acids]. For disposal of 4%acetic acid containing lead and cadmium, follow localregulations.)B. Apparatus(a) Atomic Absorption Spectrometer.—Equipped with light sources specific for lead and cadmium (hollow cathode or elec-trodeless discharge lamps), instrumental background correction, and a 4-in. (102 mm) single slot or Boling burner head. Digital concen-tration readout may be used. Use air-acetylene flame, instrumental background correction, and operating conditions recommended by instrument manufacturer. Measure Pb at 217.0 or 283.3 nm and Cd at 228.8 nm. Using these conditions, characteristic concentration (concentration that gives 0.0044 absorbance) should be approxi-mately (±20%) 0.1 and 0.2 µg Pb/mL measured at 217.0 and 283.3 nm, respectively. Characteristic concentration should be approxi-mately (±20%) 0.02 µg Cd/mL.(b) Laboratory beakers, flasks, stirring rods.—Use chemically resistant plastic, borosilicate glass, quartz, or Teflon™. Clean by rinsing with dilute nitric acid (1 + 10) followed by copious quantities of water.C. Reagents(a) Acetic acid.—4%. Mix glacial acetic acid and H2O (1 + 24).(b) Detergent wash.—Use detergent designed for washing household dishes by hand. Mix with lukewarm tap water according to product instructions.(c) Lead standard solutions.—(1) Stock solution.—1000 µg/mL. Dissolve 1.5985 g Pb(NO3) in 4% acetic acid and dilute to 1 L with same solution. Commercially prepared stock solution may be used.(2) Working solutions.—Dilute 0.0, 1.0, 2.0, 3.0, 5.0, and 10.0 mL stock solution to 1 L with 4% acetic acid (0, 1, 2, 3, 5, and 10 µg/mL).(3) Independent check solution.—Prepare an independent stock solution as in 973.32C(c)(1) starting with a different source of Pb(NO3). Alternatively, a different commercially prepared stock solution may be used. Use independent stock solution to prepare an independent check solution containing 5 µg Pb/mL as in 973.32C(c)(2).(d) Cadmium standard solutions.—(1) Stock solution.—1000µg/mL. Dissolve 0.9273 g anhydrous CdSO4 in 250 mL HCl (1 + 37), and dilute to 500 mL with HCl (1 + 37). Commercially prepared stock solution may be used. (2) Intermediate solution.—10 µg/mL. Dilute 10 mL stock solution to 1 L with 4% acetic acid. (3) Working solutions.—Dilute 0.0, 1.0, 2.0, 3.0, 5.0, and 10.0 mL intermediate solution to 100 mL with 4% acetic acid (0.0, 0.1, 0.2, 0.3, 0.5, and 1.0 µg/mL). (4) Independent check solution.—Prepare an inde-pendent stock solution as in 973.32C(d)(1)starting with a different source of CdSO4. Alternatively, a different commercially prepared stock solution may be used. Use independent stock solution to prepare an independent check solution containing 0.5 µg Cd/mL as in 973.32C(d)(2) and (3).D. ExtractionTake a method control through entire procedure, using a labora-tory beaker with dimensions similar to ware being tested. Take, at random, 6 identical units of product and cleanse each with detergent wash. Rinse with tap H2O followed by distilled H2O, and dry. Fill each unit with 4% acetic acid to within 6–7 mm (1/4 in.) of overflowing. Measure distance along surface of test unit, not vertical distance. Record volume acid required for each unit. Prevent evapo-ration by covering each unit with an inverted glass or plastic Petri dish or laboratory beaker. To prevent photo-oxidation of insoluble cadmium sulfide to soluble cadmium sulfate, carry out extraction in total darkness. Use opaque covers or wrap the side of cover away from leach solution with aluminum foil. Do not let leach solution contact foil. Let stand 24 h at 22 ± 2°C. Check level of leach solution. If volume of leach solution decreases due to evaporation, adjust solution volume to same level as at the start of 24 h leach with 4% acetic acid. After 24 h leach, stir leach solution and remove a portion by pipetting into clean container.E. Determination(a) Lead.—Optimize instrument for maximum signal at 283.3 or 217.0 nm using Pb lamp, background correction, and air and C2H2 flow rates recommended by manufacturer. Determine absorbance of leach solutions and working standards. Flush burner with H2O and check 0 point between readings. To demonstrate that standard solu-tions were prepared accurately, determine absorbance of inde-pendent check solution containing 5 µg Pb/mL. If concentration found in independent check solution does not agree within ±5% of known level, prepare new working standard and independent check solutions. Dilute leach solutions containing >10 µg Pb/mL with 4% acetic acid. To analyze leach solutions containing <1 µg Pb/mL, proceed as in alternate method 973.82F.(b) Cadmium.—Optimize instrument for maximum signal at 228.8 nm using Cd lamp, background correction, and air and C2H2 flow rates recommended by manufacturer. Determine absorbance of leach solutions and working standards. Flush burner with H2O and check 0 point between readings. To demonstrate that standard solu-tions were prepared accurately, determine absorbance of inde-pendent check solution containing 0.5 µg Cd/mL. If concentration found in independent check solution does not agree within ±5% of known level, prepare new working standard and independent check solutions. Dilute leach solutions containing >1 µg Cd/mL with 4% acetic acid. To analyze leach solutions containing <0.1 µg Cd/mL, proceed as in alternate method 973.82F.(c) Calculation.—Calculate µg/mL in test and independent check solutions by comparing absorbance of test and check solutions to© 1996 AOAC INTERNATIONALabsorbance of working standards and multiplying by dilution factor. Calculate µg/mL released from test units by subtraction.µg/mL released = (A×B) – Cwhere A = µg/mL found in test leach solution; B = dilution factor (volume of diluted solution/volume of aliquot diluted); and C= concentration found in the method control solution. For each unit report Pb and Cd released in µg/mL, leach volume of test unit in mL, depth of test unit in mm, and type of test unit.References: JAOAC 56, 869(1973); 59, 158(1976); 62,380(1979); 64, 936(1981); 71, 92(1988). ASTMC738–72.Revised: March 1996CAS-7440-43-9 (cadmium)CAS-7439-92-1 (lead)© 1996 AOAC INTERNATIONAL。
AOAC 906_02
36.3.11AOAC Official Method906.02Aldehydes(Total)in Lemon,Orange,and Lime ExtractsColorimetric MethodFirst Action1906Final ActionA.Reagents(a)Aldehyde-free alcohol.—Let alcohol,containing5g m-phenylenediamine⋅2HCl/L,stand≥24h with frequent shaking. (Nothing is gained by previous treatment with KOH.)Reflux at least 8h,longer if necessary;let stand overnight,and distil,rejecting first 10and last5mL distillate.Store in dark,cool place in well filled bot-tles.(25mL of this alcohol,on standing20min at14–16°C with 20mL of the fuchsin-bisulfite solution,should develop only faint pink tinge.If stronger color develops,repeat above m-phenylenediamine treatment.)(Avoid skin and eye contact and breathing m-phenylenediamine dust.)(b)Fuchsin–bisulfite solution.—Dissolve0.5g fuchsin in 250mL H2O,add aqueous solution containing16g SO2,let stand until colorless or nearly so,and dilute to1L with H2O.Let stand12h before use and keep in refrigerator.(This solution may deteriorate and should be reasonably fresh when used.)(c)Citral standard solution.—1mg/mL.Weigh0.5g citral into 50mL volumetric flask,dilute to volume with aldehyde-free alcohol at room temperature,stopper flask,and mix by shaking.Dilute 10mL of this solution with aldehyde-free alcohol to100mL in volu-metric flask,stopper,and mix.B.DeterminationWeigh ca25g extract in stoppered weighing flask,transfer to 50mL volumetric flask,and dilute to volume at room temperature with aldehyde-free alcohol.Measure,at room temperature,2mL(or other suitable volume)of this solution into comparison tube.Add 25mL aldehyde-free alcohol(previously cooled to14–16°C),then 20mL fuchsin-bisulfite solution(also cooled),and dilute to50mL with aldehyde-free alcohol.Mix thoroughly,stopper,and keep 15min at14–16°C.Prepare standard for comparison at same time and in same man-ner,using2mL standard citral solution,and compare colors devel-oped.Calculate amount of citral present and repeat determination, using amount sufficient to give test portion ca strength of the stan-dard.From this result calculate amount of citral in extract.If com-parisons are made in Nessler tubes,standards containing1,1.5,2, 2.5,3,3.5,and4mg citral may be prepared and trial comparison made against these,final comparison being made with standards ly-ing between1.5and2.5mg with0.25mg increments.It is absolutely essential to keep reagents and comparison tubes at required temperature,14–16°C.If comparisons are made in a bath (possible only when bath is of glass),use standards within25min af-ter adding fuchsin-bisulfite solution.Treat samples and standards identically.Reference:J.Am.Chem.Soc.28,1472(1906).©2000AOAC INTERNATIONAL。
AOAC协同研究方法
AOAC协同研究方法AOAC协同研究方法(AOAC Collaborative Study Methods)是一种用于食品检测方法的协同研究的标准化方法。
AOAC国际是全球公认的食品分析和检测方法标准的领导者,其成立于1884年,致力于促进全球食品检测方法的发展和应用。
AOAC协同研究方法通过多个实验室的合作,对特定的检测方法进行验证和标准化,并提供权威性和可靠性的检测结果。
1.研究计划制定:在开始协同研究之前,需要明确研究的目的和范围。
确定研究的样品类型、分析技术和参与实验室等相关要素。
2.样品准备和分发:将需要检测的样品制备成不同批次,并分发给各实验室参与检测。
样品的准备应根据特定的检测方法要求进行,确保样品的统一性和可比性。
3.实验室操作和数据收集:各实验室按照研究计划和标准操作程序进行样品检测,并记录相关数据。
实验室操作的一致性和准确性对于最终结果的可靠性至关重要。
4.数据分析和结果评估:对各实验室提交的数据进行统计和分析,评估不同实验室之间的一致性和可比性。
可以使用统计方法来确定方法的准确性、精密度和可重复性等相关指标。
5.研究结果确认和标准制定:根据数据分析的结果,确认一致性较好的实验室数据,并制定相应的标准。
标准的制定将有助于确保该检测方法在不同实验室之间的一致性和可比性。
6.结论和报告撰写:根据协同研究的结果,撰写相应的结论和报告。
该结论和报告将为食品检测方法的标准化提供参考,并用于指导实际应用中的检测工作。
AOAC协同研究方法的优势在于通过多个实验室的合作,能够评估和确认特定检测方法的准确性和可靠性,提高了检测方法的权威性和可信度。
同时,该方法还可以推广和推动新的检测方法的应用,促进食品安全检测的标准化和国际化。
总之,AOAC协同研究方法是一种全球公认的食品检测方法验证和标准化的有效途径。
通过多个实验室的合作,可以获得可靠、权威的检测结果,并为食品安全检测工作提供科学依据和技术支持。
AOAC 16.13.02 AOAC Official Method 993.28 Light Filth in Bean Paste-国外标准规范
16.13.02AOAC Official Method993.28Light Filth in Bean PasteFlotation MethodFirst Action1993Final Action1996(Applicable to determination of light filth in bean paste.)See Table993.28for results of the interlaboratory study support-ing the acceptance of the method.A.PrincipleBean paste sample is treated with surfactants and is wet-sieved with hot water to remove surfactants and emulsified fats and oils. Residue is defatted with isopropanol,wet-sieved,boiled in40% isopropanol,cooled,and trapped2×with flotation liquid in aqueous 40%isopropanol to recover light filth.Light filth,such as insect fragments and hairs,is unaffected by emulsification and defatting steps.In contrast to bean paste,light filth is attracted to oil phase in trapping procedure.When oil phase is trapped off,light filth is assessed microscopically.B.Apparatus(a)Sieve.—(1)No.230plain-weave,945.75B(r)(see16.1.01); and(2)sieve handle,945.75B(t)(see16.1.01).(b)Reflux apparatus.—975.49A(e)(see16.14.05).(c)Wildman trap flask.—2L,945.75B(h)(4)(see16.1.01).(d)Filter paper.—Ruled,945.75B(i)(see16.1.01).C.Reagents(a)Surfactant mixture.—Igepal CO-730,945.75C(j)(1) (see16.1.01),and Igepal DM-710,945.75C(j)(2)(see16.1.01).Pre-pare surfactant mixture,DM-710and CO-730(1+2).(b)Isopropanol solutions.—(1)100%.(2)40%aqueous solution.(c)Flotation liquid.—945.75C(k)(see16.1.01).D.IsolationAccurately weigh100g bean paste to nearest0.5g into1.5L beaker.Add ca400mL hot tap water and hand-stir1min.Bring vol-ume in beaker to600mL with hot(55–70°C)tap water.Add15mL surfactant mixture,C(a),cover beaker with watch glass,and bring to boil with magnetic stirring,945.75B(n)(see16.1.01).Remove watchglass and boil solution for10min.Transfer beaker contents portionwise to sieve,B(a)(1). Wet-sieve,970.66B(a)(see16.1.02),between portions.Rinse beaker and transfer washings to sieve.Retain beaker.Wet-sieve,us-ing forceful stream of hot tap water until rinse is e of sieve handle,B(a)(2),is recommended.(Note:If sieve becomes clogged during sieving,gently tap on side of sieve to drain excess water.) Wet residue on sieve with100%isopropanol,C(b)(1),to reduce foam.Quantitatively transfer residue to retained beaker using100% isopropanol.Wash sides of beaker with100%isopropanol from wash bottle;and then fill beaker to400mL with100%isopropanol. Defat contents by boiling5min,using reflux apparatus,B(b).Quan-titatively transfer contents from reflux apparatus to sieve.Wet-sieve until rinse is clear.Wash residue on sieve with 40%isopropanol,C(b)(2),and quantitatively transfer to trap flask, B(c).Wash sides of flask with40%isopropanol from wash bottle; then fill to600mL with40%isopropanol.Bring to boil and boil gently10min with magnetic stirring.Remove from heat and loosen any adhering materials from sides of flask using stopper(wafer)and by washing sides of flask with40%isopropanol.Cool flask contents to28–30°C in water bath.Remove from water bath and add60mL flotation liquid,C(c).Stir magnetically10min,970.66B(c)(see16.1.02).Fill flask with 40%isopropanol by pouring slowly down stirring rod.Stir intermit-tently10min and let stand undisturbed20min.Gently spin stopper to remove sediment and trap off,970.66B(b)(see16.1.02),into 400–600mL beaker,using40%isopropanol.Add35mL flotation liquid to flask and hand-stir with gentle up-and-down motion30s. Fill flask to top with40%isopropanol and let stand undisturbed 20min.Trap off as before,using100%isopropanol,and filter entire beaker contents through filter,B(d),using2filters if necessary. Examine microscopically,945.75B(o)(2)(see16.1.01),at ca30×. Reference:J.AOAC Int.77,1143(1994).Revised:March1997©2000AOAC INTERNATIONALTable993.28Interlaboratory study results for determination of light filth in bean paste by flotation method aSpike added x srs R RSD r RSD RRat hairs5 4.55(4.50) 1.63(1.00) 1.63(1.05)35.8(22.2)35.8(23.4) 108.85(8.65) 2.04(1.56) 2.09(1.56)23.0(18.1)23.6(18.1) 1512.15(11.70) 2.20(1.67) 2.28(1.85)18.1(14.3)18.8(15.8)Insect fragments5 4.35(4.10)0.87(1.00) 1.05(1.02)19.9(24.4)24.1(24.9) 1514.20(14.25) 1.22(1.32) 1.45(1.53)8.6(9.3)10.2(10.7) 3028.00(29.11) 1.87(1.05) 2.81(1.05) 6.7(3.6)10.1(3.6) a Third-party counts in parentheses.。
织物马丁代尔检测结果的准确性评估
织物马丁代尔检测结果的准确性评估为了全面而又准确的表达纺织品的耐磨性能,测试要求具有良好的准确性和可重复性。
本文从仪器的维护、试样的制备、操作规范三个方面进行论述对马丁代尔测试结果产生影响的因素,以便提高使用测量结果的准确习惯。
一、马丁代尔仪器的维护仪器的状态决定了测试结果的可靠性,为了保证试验的准确性,必须确保测试仪器处于最佳状态。
除了日常的清洁维护外需要对仪器性能进行定期检查。
1、试样夹持头施加压力的控制利用马丁代尔进行耐磨性试验时,需要对试样施加一定的压力,其压力的大小会直接影响摩擦效果。
如压力偏小,则会摩擦过轻,试验结果会优于试样实际性能;反之,压力过大,会加重对试样的损害,检测结果偏差。
2、摩擦次数计数器的准确性当使用马丁代尔进行耐磨性试验时,需要对摩擦次数进行计数,以根据不同摩擦次数产生的磨损情况进行评级。
此时,如果摩擦次数计数器出现故障,则会影响试验中的摩擦次数,造成误差。
二、试样的制备试验中试样的选取决定样品的代表性。
1、试样的选取为了提供试样的代表性,需要选取包含不同经纬纱的部位,针对某些特殊性质的试样需要特别注意。
如,印花织物选取的试样要包含整个花型,以避免遗漏某些对摩擦敏感的部位;机织物需要与门幅边缘保持一定距离。
另外,试样选取数量也影响试验的准确性及可重复性。
试样测试数量越多,代表性越强,准确性越高,反之数量过少,则测试结果的随机性越大,可靠性低,试样最少选择数量为3。
2、试样的预处理由于织物送测前都是打包卷绕的,处于绷紧状态,为了更好的测试,需要将其放置于标准状态下平摊一段时间,以使被测织物从绷紧状态恢复过来。
如果预处理不到位,织物处于绷紧状态,耐磨性变差,会影响试验准确性。
三、实验操作的规范性为了保证正确操作,需要对实验操作人员进行培训。
操作过程中注意样品放置、夹持松紧度良好,既不会过紧造成额外拉伸作用,也不要过松,使试样表面过松,起鼓而影响测试结果。
欧胜荣获企业创新女王奖
( 较 低 的测 试成本 ,不需 要制作 专 门的测试 2)
夹具 ;
( 3)由于设定 、编程和测试 的 简单与快 速 ,实
产品的开发 阶段 ,亦用于多品种 、中小批 量 P B的在 C
线 测 试
际上一般技术装配人员就可以进行操作 测试 ;
我很 高兴能 够代 表欧 胜来领 取这 个奖项 。 他还说 , ” “ WM9 1L为移动通信 设备提供杰 出的集 成度 ,该产品 的 73
成功 证明了欧胜的专业设计技术 。 ” 该奖项 颁发给那些 能够 “ 展示 其 、务 表现取得 了实 质 I 进 展 、获得 商 、 成功 和运营优 秀 的企业 ”.WM9 3 由 . 71 L
多篇 专 业论 文发 表 。
床结 构 ,使优 势 互 补 ,达 到高 速 测试 、编 程容 易 、 成本 降低 的 目的。
@ @ 姆
欧胜 荣获企 业创 新女王奖
欧胜 微电子有限公 司 目前宣布 ,欧胜荣 获了企业创新 女王奖。这个奖项 的获得 主要是归功于欧胜 WM9 1L的先 73 进技术 。 该产品是一种用于先进多媒体移动 电话 的高集成度
4 飞针和针床 的互补
应该看 到 ,相 对针 床来说 ,飞针是 一种技 术革 新 ,还 在不 断发展 中。随着无 线通 信 和无线 网络 的 发展 ,越来越 多的 P B将增加无线接入能力 ,目前 的 C
率、 飞针测试的灵活 、 可做电气性能测试等方 面 , 仍然 存在其他方法所没有的优势 , 加之技术 的改进和新技术 的配合使用 ,它还将在测试领域具有顽强的生命力 。
2 00。 6:21 23 0 -
飞针在线测试仪与针床在线测试仪具有互补的能 力 ,因而 ,有些 P CB在线测试 的供应 商考虑合 并飞
AOAC 30.1.23A AOAC Official Method 995.13-国外标准规范
30.1.23AAOAC Official Method995.13Carbohydrates in Soluble(Instant)CoffeeAnion-Exchange Chromatographic Methodwith Pulsed Amperometric DetectionFirst Action1995(Applicable for determination of free and total carbohydrates[ex-cept total fructose,which is degraded]in soluble[instant]coffee.) See Tables995.13A–J for the results of the interlaboratory study supporting the acceptance of the method.A.PrincipleFree carbohydrates.—Coffee is dissolved in H2O.Solution is fil-tered through C18disposable cartridge,and then through0.2µm membrane filter.Filtered solution is injected onto LC system.Car-bohydrates are separated on pellicular anion-exchange column and measured by pulsed amperometric detector.Total carbohydrates.—Coffee is hydrolyzed with1M HCl.Solu-tion is filtered and then passed through cation-exchange disposable cartridge in the Ag form to neutralize solution and to eliminate the Cl anion prior to injection onto LC system.B.Apparatus(a)Balance.—Analytical,weighing to0.1mg.(b)Flasks.—250mL round-bottom.(c)Volumetric flasks.—100and1000mL.(d)Pipets.—Delivering200–1000µL and5µL;with disposable tips.(e)Cylinders.—50and1000mL,tall-form,graduated.(f)Funnels.—Analytical,60°C.(g)Vacuum filtering system.—Aspirator with regulating device. System should include:heavy-walled filtering flask with ground cone neck,1L;funnel with ground glass joint,300mL;aluminum assembly clip;connection with vacuum outlet;filter holder,47mm id;and low-water extractable membrane filters,0.2µm porosity, 47mm diameter.(h)Filter papers.—Qualitative,folded,medium fast.(i)C18cartridges.—Octadecylated silica(ca10%C);6mL car-tridge volume;capable of holding500mg test portion;disposable.Con-dition and use cartridges according to manufacturer’s instructions. (j)Cation-exchange cartridges.—Styrene-based resin,Ag form, 1.8–2.0milliequivalent capacity/cartridge;disposable.Condition and use cartridges according to manufacturer’s instructions. (k)Membrane filters.—0.2µm porosity,25mm diameter;dis-posable;polypropylene.(l)Water bath.—Maintaining98±2°C.(m)Liquid chromatograph(LC).—Metal-free,compatible with 300mM NaOH.Operating conditions:mobile phase,isocratic(see Table995.13for mobile phase conditions);column temperature, ambient;flow rate,1.0mL/min;post-column solvent,300mM NaOH at0.6mL/min;detector settings,optimum parameters as pro-vided by e with computing integrator.(n)LC column.—250×4mm id;packed with polystyrene divinylbenzene substrate(10µm diameter)agglomerated with microbead quaternary amine functionalized latex(350nm diame-ter);5%cross-linked.(o)Pulsed amperometric detector.—With gold electrode.Fill reference cell with300mM NaOH.Select the detector range to avoid saturation of the major peak in chromatogram.(p)Guard column.—50×4mm id,packed with the same mate-rial as analytical column,(n).(q)Post-column solvent delivery system.—Compatible with 300mM NaOH.C.ReagentsUse18MΩ⋅cm demineralized H2O throughout.(a)Sodium hydroxide.—50%(w/w)aqueous solution,contain-ing minimum amount of Na2CO3and Hg.Do not shake or stir solu-tion before use.(b)Hydrochloric acid solution.—1.00M standard volumetric so-lution(83.3mL HCl/L).(c)Eluent A.—18MΩ⋅cm demineralized water.Filter through0.2µm membrane filter.Degas by sparging with He20–30min.Pre-pare fresh eluent A daily.(d)Eluent B.—300mM NaOH.Pipet15.6mL50%NaOH into 985mL eluent A.Degas by sparging with He20–30min.Eluent B is stable2days if stored at room temperature under He.(Note:It is crit-ical to remove dissolved CO2from eluents.Carbonate acts as strong “pusher”on LC column,resulting in drastic reduction in resolution.)(e)Carbohydrates standard solutions.—(1)Standard stock solu-tions.—1mg/mL aqueous stock solutions of arabinose,fructose, fucose,galactose,glucose,mannose,rhamnose monohydrate, ribose,xylose,sucrose,and mannitol.Weigh100mg each carbohy-drate to the nearest0.1mg into separate100mL volumetric flasks, dissolve in H2O,and dilute to volume with H2O.(2)Mixed carbohy-drates standard solution.—Further dilute and mix carbohydrates stock solutions to reach carbohydrate concentrations similar to those found in nonhydrolyzed or hydrolyzed soluble coffee test solutions. Pass diluted carbohydrates standard solution through0.2µm mem-brane filter prior to injection onto LC column.(Note:If resolution of rhamnose from arabinose is difficult to achieve,do not add rhamnose to mixed standard solution.)D.Isolation of CarbohydratesUse soluble coffee as is without grinding or homogenization.(a)Free carbohydrates.—Weigh300mg coffee to the nearest0.1mg into100mL volumetric flask.Add70mL H2O and shake until dissolution is complete.Dilute solution to volume with H2O.Filter 5–10mL solution through C18cartridge.Discard the first1mL.Pass fil-trate through0.2µm membrane filter prior to LC injection.(b)Total carbohydrates.—Weigh300mg coffee to the nearest0.1mg into100mL volumetric flask.Add50mL1.00M HCl and swirl.Place flask in boiling water bath for2.5h.(Note:Always keep the level of solution in flask below that of H2O in bath.)Swirl flaskTable995.13Conditions of mobile phase for determinationof free and total carbohydrates in solublecoffee by anion-exchange chromatographicmethod with pulsed amperometric detection Time,min Eluent A,%Eluent B,%01000(start acquisition) 50.01000(stop acquisition) 50.10100(start cleanup) 65.00100(stop cleanup) 65.11000(start re-equilibrium) 80.01000(stop re-equilibrium)Test sample N a Mean,%RSD r RSD R r R 17(2)0.024 1.6590.0010.041 1′11(0)0.1797.0500.0350.021 211(1)0.0600.91580.0020.10 2′11(0)0.1517.6460.0320.20 311(0) 1.5 2.89.90.120.44 3′11(1) 1.85 2.2180.120.94 411(0)0.619 3.6240.0630.42 4′11(0)0.782 4.6210.100.45 59(1)0.1928.2340.0450.18 5′11(0)0.30011370.0910.32 68(1)0.0597.1490.0120.083 6′10(0)0.1799.8500.050.25 a N=No.of laboratories after removal of outliers(in parentheses).Table995.13B Interlaboratory study results of the determination of free arabinose in soluble coffeeTest sample N a Mean,%RSD r RSD R r R 111(0)0.891 3.7140.0920.035 1′11(0) 3.54 6.6210.66 2.1 29(2) 1.320 1.6 5.10.0600.19 2′11(0) 4.83 3.3170.45 2.4 311(0)0.464 3.8110.0490.14 3′11(0) 4.76 3.1130.42 1.7 411(0)0.7477.3120.150.25 4′11(0) 4.54 4.618.40.59 2.4 510(1)0.505 4.47.70.0630.11 5′9(2) 4.08 3.0 4.90.340.56 611(0)0.629 4.18.90.0730.16 6′11(0) 3.79 5.7200.61 2.2a N=No.of laboratories after removal of outliers(in parentheses).Table995.13C Interlaboratory study results of the determination of free galactose in soluble coffeeTest sample N Mean,%RSD r RSD R r R 111(0)0.562 3.0 5.30.0470.084 1′10(1)17.88.18.9 4.1 4.8 211(0)0.339 4.18.00.0390.077 2′10(1)18.5 2.312 1.2 6.2 311(0)0.1919.8130.0530.070 3′11(0)8.08 2.78.00.6208.0 411(0)0.438 5.98.30.0740.10 4′11(0)13.3 3.913 1.8 5.9 59(2)0.475 3.1 4.10.0410.055 5′9(2)18.40 1.77.50.87 3.9 611(0)0.362 5.0120.0510.13 6′10(1)17.7 4.38.5 2.2 4.3a N=No.of laboratories after removal of outliers(in parentheses).Test sample N a Mean,%RSD r RSD R r R 111(0)0.1059.9210.0290.062 1′11(0)0.6848.7170.170.32 29(1)0.0421020.00.0120.024 2′10(1)0.8267.4220.170.50 310(1) 2.04 2.5 6.20.140.360 3′11(0)16.6 5.924.0 2.811.0 410(1) 1.66 4.1 6.10.190.29 4′11(0) 4.38 3.8240.47 2.9 510(1)0.18610210.0530.11 5′11(0) 1.95 5.7130.310.69 611(0)0.18610240.0520.12 6′11(0) 1.027.9140.230.40 a N=No.of laboratories after removal of outliers(in parentheses).Table995.13E Interlaboratory study results of the determination of free mannose in soluble coffeeTest sample N a Mean,%RSD r RSD R r R 111(0)0.583 4.9240.0800.40 1′10(1)17.9 5.811 2.9 5.7 210(0)0.1558.2360.0130.16 2′11(0)14.4 2.615 1.1 6.2 311(0)0.470 4.2180.0560.23 3′11(0) 2.60 2.0140.15 1.0 411(0)0.3297.0190.06517 4′11(0) 5.60 3.0150.48 2.4 510(1)0.277 4.2400.0330.31 5′11(0)7.65 2.8110.60 2.3 611(0)0.991 3.8170.110.48 6′10(0)19.1 2.222 1.212.00 a N=No.of laboratories after removal of outliers(in parentheses).Table995.13F Interlaboratory study results of the determination of free fructose in soluble coffeeTest sample N a Mean,%RSD r RSD R r R 19(0)0.17117310.0820.15 1′6(0)0.18924680.130.37 28(1)0.05421340.0320.052 39(2) 3.62 2.9180.30 1.9 3′9(0) 2.01 5.7720.32 4.1 410(1) 3.12 2.9180.26 1.6 4′7(1) 1.37 5.5700.21 2.7 510(0)0.2829.0450.0720.36 5′7(0)0.24420590.140.41 68(2)0.460 5.6160.0670.2 6′9(1)0.3637.3680.0750.70 a N=No.of laboratories after removal of outliers(in parentheses).Test sample N a Mean,%RSD r RSD R r R 17(2)0.07315740.0310.15 27(l)0.04528600.0350.077 58(0)0.10215980.0430.28 55(1)0.08016180.0360.041 67(l)0.1209.1810.0310.28 a N=No.of laboratories after removal of outliers(in parentheses).Table995.13H Interlaboratory study results of the determination of free xylose in soluble coffeeTest sample N a Mean,%RSD r RSD R r R 18(2)0.09723380.0630.10 29(0)0.1469.8200.0400.084 311(0) 1.86 4.6230.240.42 411(0)0.736 3.7280.0770.56 57(0)0.02925230.0200.023 511(0) 1.837.4220.38 1.2 69(0)0.13314240.0530.090 a N=No.of laboratories after removal of outliers(in parentheses).Table995.13I Interlaboratory study results of the determination of free sucrose in soluble coffeeTest sample N a Mean,%RSD r RSD R r R 210(0)0.149 4.8380.0200.16 310(1) 1.32 1.8100.0660.370 410(1)0.746 6.8120.140.25 511(0)0.18115420.0770.21 69(1)0.158 3.4330.0150.15 a N=No.of laboratories after removal of outliers(in parentheses).Table995.13J Interlaboratory study results of the determination of free fucose in soluble coffeeTest sample N a Mean,%RSD r RSD R r R 27(1)0.01620.0460.0090.021 38(0)0.0547.0670.0110.10 47(1)0.03623770.0230.074 57(1)0.011 5.4450.0020.014 66(1)0.02510360.0070.025 a N=No.of laboratories after removal of outliers(in parentheses).by hand every30min.Cool to room temperature under tap water. Dilute solution to100mL with H2O and filter through folded filter paper.Pass3mL filtrate through cation-exchange cartridge.Discard the first1mL.Filter neutralized solution through0.2µm membrane filter prior to LC injection.E.LC DeterminationInject equal volumes(10–20µL)of standard,C(e),and test solu-tions from D(a)or(b)onto LC column.[Note:Retention times and resolution tend to vary from column to column.Start clean-up and re-equilibration sequence only when the last monosaccharide (ribose)has been eluted.It may be necessary to perform2–3injec-tions of carbohydrates standard solution or to increase the re-equilibrium time in order to achieve a good separation of glucose, sucrose,and xylose.]Under normal conditions,approximate retention times of carbo-hydrates are:mannitol,4min;fucose,7min;rhamnose,15min;arabinose,16min;galactose,22min;glucose,25min;sucrose, 27min;xylose,30min;mannose,32min;fructose,40min;and ribose,43min.See Figure995.13for chromatogram of mixed carbo-hydrates standard solution.F.CalculationsCalculate concentration of carbohydrate in sample solution as follows:Carbohydrate,%=(R1/R2)×(W0/V0)×(V/W)×100 where R1=peak response of carbohydrate in test solution;R2=peak response of carbohydrate in carbohydrate standard solution;W0= mass of carbohydrate in the standard solution,mg;V0=total volume of the standard solution,mL;V=volume of standard solution,mL; and W=weight of test portion,mg.Express results as percent free or percent total carbohydrates (as is).References:J.AOAC Int.78,768(1995);79,1400(1996). Revised:June2000Figure995.13—HPAE-PAD chromatogram of mixed carbohydrates standard solution:mannitol,15m g;fucose,15m g/mL;rhamnose,35m g/mL;arabinose,40m g/mL;galactose,50m g/mL;glucose,55m g/mL;sucrose,45m g/mL; xylose,55m g/mL;mannose,45m g/mL;fructose,90m g/mL;and ribose,90m g/mL.。
AOAC协同研究方法
AOAC协同研究方法AOAC协同研究方法是一种在决策和创新过程中广泛使用的方法。
AOAC代表分析官员协会(OA)和合作伙伴公司在研究和开发中的联合分工合作方法。
该方法为研究人员和专业人士提供了一个共同的平台,以解决现实世界中的复杂问题。
AOAC协同研究方法有助于促进知识共享和技术转移,以提高创新和决策制定的效果。
它通过将不同背景和专业领域的人们聚集在一起来推动此目标。
此外,该方法还促进了跨学科和跨职能的合作,鼓励多种方法的使用以达到最佳解决方案。
AOAC协同研究方法的关键特点之一是通过合作来产生新的知识和洞察力。
在这种方法中,研究人员和专业人士不仅通过共享他们的经验和观点进行合作,而且还可以共同开发新的方法和解决方案。
这种协同合作有助于加快决策和创新过程,从而在较短的时间内得出更好的结果。
在AOAC协同研究方法中,团队成员通过面对面会议和虚拟平台进行交流和协作。
他们分享对特定问题的观点,并根据团队的共同理解制定解决方案。
此外,团队成员还可以共同编写研究报告、发表文章和参加学术会议,以进一步推广他们的研究成果。
AOAC协同研究方法的另一个重要方面是实施多种研究方法。
这意味着研究人员和专业人士使用不同的方法和工具来收集和分析数据。
他们可以使用定性和定量方法,包括访谈、观察、问卷调查和实验。
这种多种方法的使用可以增加研究结果的可靠性和可信度。
AOAC协同研究方法还注重将研究成果转化为实际应用和解决方案。
研究人员和专业人士通过与企业、政府和社会团体等利益相关者进行合作来实现这一目标。
他们共同制定战略性计划,推动研究成果的商业化和落地。
这种实践导向的方法可以确保研究成果对社会和经济发展产生积极的影响。
总的来说,AOAC协同研究方法是一种促进知识共享和协作的有效方法。
它通过将不同背景和专业领域的人们聚集在一起,推动决策和创新过程。
该方法的关键特点包括通过合作产生新的知识和解决方案,实施多种研究方法和将研究成果转化为实际应用。
《2024年美白化妆品普遍化的STS研究》范文
《美白化妆品普遍化的STS研究》篇一一、引言随着人们生活水平的提高,美容化妆品行业快速发展,美白化妆品已成为众多女性的必备护肤品之一。
随着美白化妆品的普及,关于其科学、技术和社会等方面的研究也逐渐增多。
本文将运用STS(科学、技术、社会)的研究方法,对美白化妆品普遍化的现象进行深入探讨。
二、科学角度从科学角度来看,美白化妆品的研发基于皮肤科学、化学、生物科学等多个学科的理论基础。
这些化妆品通常含有能够抑制黑色素形成的成分,如维生素C、熊果苷等,以达到美白肌肤的效果。
此外,还有一些成分如氨基酸、玻尿酸等能够滋润肌肤,提高肌肤的保湿能力。
这些成分的研发和应用,都需要经过严格的科学实验和临床试验,以确保其安全性和有效性。
三、技术角度从技术角度来看,美白化妆品的普及得益于现代生产技术的进步。
随着纳米技术的不断发展,化妆品中的有效成分能够更好地渗透到肌肤深层,提高美白效果。
此外,随着包装技术的改进,如采用真空包装、防氧化包装等,可以更好地保护化妆品的活性成分,延长其保质期。
这些技术的应用,为美白化妆品的普及提供了技术支持。
四、社会角度从社会角度来看,美白化妆品的普及反映了当今社会对美的追求和审美观念的变化。
随着社会的发展和人们生活水平的提高,越来越多的人开始关注自己的外貌和形象,美白化妆品因此得到了广泛的应用。
此外,媒体和广告的宣传也对美白化妆品的普及起到了推动作用。
然而,美白化妆品的过度使用也可能导致一些社会问题,如对皮肤健康的损害、消费心理的扭曲等。
因此,我们需要理性看待美白化妆品的普及,正确使用和消费。
五、结论美白化妆品的普遍化是科学、技术和社会等多个因素共同作用的结果。
从科学角度来看,其研发和应用需要严格遵循科学原则;从技术角度来看,现代生产技术的进步为其提供了技术支持;从社会角度来看,它反映了人们对美的追求和审美观念的变化。
然而,我们也应该理性看待美白化妆品的普及,正确使用和消费,避免过度依赖和滥用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Part selection
Recommended low power support USB 2.0- LPM support for L2/U2 PCIe (WLAN and storage) – support for L1.substate For SATA SSD devices use of Slumber and Device Sleep
D3 device power state support NIC selection
Connected MS requires at least one network devices to be NDIS 6.3 compliant, or the system is placed in disconnected MS
3. Simplified wake story A system stays in the S0 state and waking simply requires a hardware interrupt. Thus, it may
eliminate any need for firmware interaction (Device wake, even in the S3 model, requires functionality
Storage selection If the storage device/solution reports a seek penalty/rotational delay, indicating rotating media, then disconnected will be the default standby mode. If the storage device/solution indicates that it has no rotational delay or seek penalty (for example, is an SSD), then connected will be the default standby mode. Do not recommend enabling connectivity on rotational-only (HDD) systems.
integrated into the BIOS, This makes wake times slower and more cumbersome to develop. )
6
Comparison Summary
7
Benefits
8
Modern standby user experiences
Battery selection Battery life targets vary by form factor and price (get the table)
14
Storage Optimization
New adaptive idle timeout algorithm be introduced in windows 10: Host attempt to average no more than one power state transition per 5-minute interval by default
A miniport driver can opt-in to this behavior: Register a STOR_POFX_DEVICE_V3 with StorPortInitializePoFxPower in the ScsiUnitPoFxPowerInfo unit control callback. Set the STOR_POFX_DEVICE_FLAG_ADAPTIVE_D3_IDLE_TIMEOUT flag in the Flags member of the STOR_POFX_DEVICE_V3 structure. Set the MinimumPowerCyclePeriodInMS member in the STOR_POFX_DEVICE_V3 structure to the value that indicates, in the worst case, how often the device can be power cycled. Units are in milliseconds. We recommend this be at least 5 minutes (i.e. the device should not be power cycled more than once every 5 minutes).
CS and MS Wake patterns while in DRIPS: CS: wake up at least once every 30 seconds from DRIPS to process work MS: postponing non-critical work and removing unnecessary wakeups, particularly on battery power. Some timers are postponed until system is wake or plugged into AC.
5
Advantages of using MS
1. Instant on Resume time from the low power idle model is at least twice as fast as from S3 resume
2. Background activity while the system is “Off” ✓System is still in S0 (a fully running state, ready and able to do work) ✓Desktop apps are stopped by the DAM (Desktop Activity Moderator) ✓Background tasks from Windows Store apps are permitted to do work ✓On a connected modern standby, network is still active and users can receive events ✓On a disconnected modern standby, VoIP calls wouldn’t be available, real-time events can still happen
2
Introduction
Windows8 Connected Standby (CS) : ✓ Enables the smartphone power model on the PC ✓ Provides an instant on/instant off(立即开关机) UE as their phones ✓ S0 low power idle model enables the system to stay up-to-date whenever a suitable network is available ✓ Expect instantly available power model instead of the traditional S3/S4 power model
Windows 10 Modern Standby (MS) ✓ Expands the Windows 8.1 CS power model to be more inclusive and allows system based on rotational media and hybrid media (SSD + HDD or SSHD) ✓ Expands a NIC that doesn’t support all of the prior requirements for CS to still take advantage of the low power idle. MS have the flexibility to configure the default behavior to limit network activity ✓ Only wakes from the lowest power state when absolutely necessary, real time action required (OS maintenance or a user wakes the system) ✓ The low power idle state is accomplished through tight integration between the firmware, chipset, low power components, devices and drivers. ✓ DRIPS – Deepest Runtime Idle Platform State, corresponds to the lowest power state for the SOC during CS or MS
(v=vs.85).aspx
9
Power/Performance Targets
(v=vs.85).aspx
10
System Power State
Link: (v=vs.85).aspx If system support MS, but networking or storage can’t meet MS requirements, system will automatically be placed in a disconnected state
4
Behavior differences
Connected and disconnected MS: Whether maintaining network connection