初中数学竞赛《排列与组合问题》练习题及答案 (26)

合集下载

初中数学竞赛《排列与组合问题》练习题及答案 (2)

初中数学竞赛《排列与组合问题》练习题及答案 (2)

初中数学竞赛《排列与组合问题》练习题
1.将2个相同的黑球和11个相同的白球排在一个圆周上,共有6种不同的排法.(旋转,翻转相同的方法算同一种)
【分析】按2个相同的黑球之间白球个数的不同,即可得出不同的排法的种数.注意如果两球间隔6球的话,那就只剩下5个白球,即和两球间隔5球方法相同,因为排法可翻转、旋转,以此类推…
【解答】解:①●●两球相邻;
②●〇●两球间隔1球;
③●〇〇●两球间隔2球;
④●〇〇〇●两球间隔3球;
⑤●〇〇〇〇●两球间隔4球;
⑥●〇〇〇〇〇●两球间隔5球.
共六种方法.
故答案为:6.
【点评】本题考查了排列与组合问题,解题的关键是以2个相同的黑球为基础,根据2个相同的黑球之间白球个数的不同,得出不同的排法的种数.。

(完整word版)排列组合竞赛训练题(含答案),推荐文档

(完整word版)排列组合竞赛训练题(含答案),推荐文档

排列组合一、选择题1、公共汽车上有4位乘客,其中任何两人都不在同一车站下车,汽车沿途停靠6个站,那么这4位乘客不同的下车方式共有A、15种B、24种C、360种D、480种2、把10个相同的球放入三个不同的盒子中,使得每个盒子中的球数不少于2,则不同的放法有A、81种B、15种C、10种D、4种3、12辆警卫车护送三位高级领导人,这三位领导人分别坐在其中的三辆车中,要求在开行后12辆车一字排开,车距相同,车的颜色相同,每辆车内的警卫的工作能力是一样的,三位领导人所坐的车不能相邻,且不能在首尾位置。

则共()种安排出行的办法A、A99×A310B、A99×A38C、A38D、C384、在正方体的8个顶点、12条棱的中点、6个面的中心及正方体的中心共27个点中,不共线的三点组的个数是A、2898B、2877C、2876D、28725、有两个同心圆,在外圆上有相异的6个点,内圆上有相异的3个点,由这9个点所确定的直线最少可有A、15条B、21条C、36条D、3条6、已知两个实数集A={a1,a2,…,a60}与B={b1,b2,…b25},若从A到B的映射f使得B中每个元素都有原象,且f(a1)≥f(a2)≥…≥f(a60),则这样的映射共有A、C60B、C2459C、C2560D、C2559二、填空题7、4410共有个不同的正约数。

8、有7个人站成一排,其中A、B不能相邻,C、D必须挨在一起,且C要求在A的右侧,则共有站队方法数是。

9、如图,两圆相交于A、B两点,在两圆周上另有六点C、D、E、F、G、H,其中仅E、B、G共线,共他无三点共线,这八点紧多可以确不同圆的个数是。

10、一个圆周上有5个红点,7个白点,要求任两个红点不得相邻,那么共有种排列方法。

11、平面上给定5点,这些点两两间的连线互不平行,又不垂直,也不重合,现从任一点向其余四点两两之间的连线作垂线,则所有这些垂线间的交点数最多是。

初中数学竞赛《排列与组合问题》练习题及答案 (10)

初中数学竞赛《排列与组合问题》练习题及答案 (10)

初中数学竞赛《排列与组合问题》练习题1.世界杯足球赛每个小组共有四个队参加比赛,采用单循环赛制(即每两个队之间要进行一场比赛),每场比赛获胜的一方得3分,负的一方得0分,如果两队战平,那么双方各得1分,小组赛结束后,积分多的前两名从小组出线.如果积分相同,两队可以通过比净胜球或其他如抽签等方式决定谁是第二名,确保有两支队伍出线.(1)某队小组比赛后共得6分,是否一定从小组出线?(2)某队小组比赛后共得3分,能从小组出线吗?(3)某队小组比赛后共得2分,能从小组出线吗?(4)某队小组比赛后共得1分,有没有出线的可能?【分析】(1)假设四个球队分别为A、B、C、D,如四个球队的比赛结果是A战胜了B,D,而B战胜了C,D,C战胜了A,D,D在3场比赛中都输了,可知不能出线,则知不一定从小组出线;(2)假如A在3场比赛中获得全胜,而B战胜了C,C战胜了D,战胜了B,这样,小组赛之后,A积9分,B、C、D都积3分,则可出线;(3)假如A队三战全胜,B、C、D之间的比赛都战平,则有出线的可能;(4)如果只得1分,说明他的3场比赛成绩是1平2负,而他负的两个球队的积分至少是3分,则可知必然被淘汰.【解答】解:(1)不一定.设四个球队分别为A、B、C、D,如四个球队的比赛结果是A战胜了B,D,而B战胜了C,D,C战胜了A,D,D在3场比赛中都输了,这样,小组赛之后,ABC三个球队都得6分,D队积0分,因此小组中的第三名积分是6分,∴不能出线;(2)有可能出线.如A在3场比赛中获得全胜,而B战胜了C,C战胜了D,D战胜了B,这样,小组赛之后,A积9分,B、C、D都积3分,因此这个小组的第二名,一定是3分出线;(3)有可能出线.如A队三战全胜,B、C、D之间的比赛都战平,这样这个小组的第二名的积分一定是2分,自然有出线的可能.(4)不可能出线.如果只得1分,说明他的3场比赛成绩是1平2负,而他负的两个球队的积分至少是3分,他就不可能排到小组的前两名,必然被淘汰.【点评】此题考查了排列组合知识应用,考查了学生的实际应用能力.解题的关键是结合实际举出例子.。

初中数学竞赛排列与组合

初中数学竞赛排列与组合

排列与组合基础知识:1.排列:从n个对象中选出m(不超过n)个并进行排序,共有的方法数称为排列数,写成。

2.排列数的计算:约定:0!=1排列数是由乘法原理得到的,因此排列可以看成是乘法原理的一种应用。

3.组合:从n个对象中选出m(不超过n)个,不进行排序,共有的方法数称为组合数,写成。

4.排列与组合的关系:。

5.组合数的计算:6.排列数与组合数的一些性质:例1.4名男生和3名女生站成一排:(1)一共有多少种不同的站法?(2)甲,乙二人必须站在两端的排法有多少种?(3)甲,乙二人不能站在两端的排法有多少种?(4)甲不排头,也不排尾,有多少种排法?(5)甲只能排头或排尾,有多少种排法?[答疑编号5721060101]【答案】(1)5040;(2)240;(3)2400;(4)3600;(5)略【解答】例2.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共多少种?[答疑编号5721060102]【答案】 4186种【解答】至少有3件是次品,分两种情况第一种情况:3件是次品的抽法:从4件次品中中抽出3件是种,其中,,然后,从46件正常品中抽2件,总共种。

其中,所以,3件是次品的抽法共种。

第二种情况:4件是次品的抽法共:种。

任意抽出5件产品,至少有3件是次品的抽法,是将上述两种情况加在一起,所以,总共是4×23×45+46=23×182=4186种。

总结:有序是排列,无序是组合。

例3.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种?[答疑编号5721060103]【答案】 540种【解答】可设三所学校为甲、乙、丙,三位医生去3所学校的分配方案:用排列数表示为=3×2×1=6。

用乘法原理表示为3!=6。

六名护士去学校甲有种选法,剩下4名护士去乙学校,有种选法,剩下两名自然去学校丙。

所以,不同的分配方法共有种。

2020年初中数学竞赛《排列与组合问题》复习题及答案解析

2020年初中数学竞赛《排列与组合问题》复习题及答案解析

2020年初中数学竞赛《排列与组合问题》复习题一.解答题(共20小题)1.用1、2、3、4组成6位数,可以重复,但每一个数都必须用到,问一共有多少个这样的六位数?2.在m(m≥2)个不同数的排列P1P2P3…P m中,若1≤i<j≤m时,P i>P j(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数.记排列(n+1)n(n﹣1)…321的逆序数为a n,如排列21的逆序数a1=1,排列4321的逆序数a3=6.(1)求a4、a5,并写出a n的表达式(用n表示,不要求证明);(2)令b n =+﹣2,求b1+b2+…b n并证明b1+b2+…b n<3,n=1,2,….3.5个人站成一排照相.(1)若甲、乙两人必须相邻,则有多少不同的站队方法?(2)若甲、乙两人必不相邻,则有多少不同的站队方法?4.从1,2,…,16中,最多能选出多少个数,使得被选出的数中,任意三个数都不是两两互质.5.从数1,2,3,…,1995中任意取出n个不同的数(1≤n≤1995)形成一组叫做一个n 元数组,如(1,2,3,4)就是一个四元数组,(4,8,12,20,32)就是一个五元数组.现要给出一个自然数k,使得每一个k元数组中总能找到三个不同的数,此三数能构成一个三角形的三边长,则给出的k至少是多少时才能满足要求?证明你的结论.6.试将7个数字:3、4、5、6、7、8、9分成两组,分别排成一个三位数和一个四位数,并且使这两个数的乘积最大,试问应该如何排列?证明你的结论?7.8分和15分的邮票可以无限制地取用,某些邮资额数,例如7分、29分,不能够刚好凑成,求不能凑成的最大额数n,即大于n的额数都能够凑成(证明你的答案).8.平面上给定了2n个点,其中任意三点不共线,并且n个点染成了红色,n个点染成了蓝色,证明:总可以找到两两没有公共点的n条直线段,使得其中每条线段的两个端点具有不同的颜色.9.如图,是一个计算装置的示意图,A、B是数据入口,C是计算结果的出口,计算过程是第1 页共18 页。

排列组合竞赛训练题(含答案)

排列组合竞赛训练题(含答案)

排列组合一、选择题1、公共汽车上有4位乘客,其中任何两人都不在同一车站下车,汽车沿途停靠6个站,那么这4位乘客不同的下车方式共有A、15种B、24种C、360种D、480种2、把10个相同的球放入三个不同的盒子中,使得每个盒子中的球数不少于2,则不同的放法有A、81种B、15种C、10种D、4种3、12辆警卫车护送三位高级领导人,这三位领导人分别坐在其中的三辆车中,要求在开行后12辆车一字排开,车距相同,车的颜色相同,每辆车内的警卫的工作能力是一样的,三位领导人所坐的车不能相邻,且不能在首尾位置。

则共()种安排出行的办法A、A99×A310B、A99×A38C、A38D、C384、在正方体的8个顶点、12条棱的中点、6个面的中心及正方体的中心共27个点中,不共线的三点组的个数是A、2898B、2877C、2876D、28725、有两个同心圆,在外圆上有相异的6个点,内圆上有相异的3个点,由这9个点所确定的直线最少可有A、15条B、21条C、36条D、3条6、已知两个实数集A={a1,a2,…,a60}与B={b1,b2,…b25},若从A到B的映射f使得B中每个元素都有原象,且f(a1)≥f(a2)≥…≥f(a60),则这样的映射共有A、C60B、C2459C、C2560D、C2559二、填空题7、4410共有个不同的正约数。

8、有7个人站成一排,其中A、B不能相邻,C、D必须挨在一起,且C要求在A的右侧,则共有站队方法数是。

9、如图,两圆相交于A、B两点,在两圆周上另有六点C、D、E、F、G、H,其中仅E、B、G共线,共他无三点共线,这八点紧多可以确不同圆的个数是。

10、一个圆周上有5个红点,7个白点,要求任两个红点不得相邻,那么共有种排列方法。

11、平面上给定5点,这些点两两间的连线互不平行,又不垂直,也不重合,现从任一点向其余四点两两之间的连线作垂线,则所有这些垂线间的交点数最多是。

2020年初中数学竞赛复习资料:排列与组合问题含答案解析

2020年初中数学竞赛复习资料:排列与组合问题含答案解析

2020年初中数学竞赛复习资料:排列与组合问题
一.选择题(共19小题)
1.某学校从三楼到四楼的楼梯共9级,上楼可以一步上一级,也可以一步上两级,若规定从三楼到四楼用7步走完,则方法有()
A.21B.28C.35D.36
2.某校九年级6名学生和1位老师共7人在毕业前合影留念(站成一行),若老师站在中间,则不同的站位方法有()
A.6种B.120种C.240种D.720种
3.仪表板上有四个开关,每个开关只能处于开或者关状态,如果相邻的两个开关不能同时是开的,那么所有不同的状态有()
A.6种B.7种C.8种D.9种
4.两本不同的语文书、两本不同的数学书和一本英语书排放在书架上,若同类书不相邻,英语书不放在最左边,则排法的种数为()
A.32B.36C.40D.44
5.甲乙丙丁四位同学站成一横排照相,如果任意安排四位同学的顺序,那么恰好甲乙相临且甲在乙左边的概率是()
A .
B .
C .
D .
6.设(2x﹣1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.则a0﹣a1+a2﹣a3+a4﹣a5=()A.﹣1B.1C.﹣243D.243
7.现有1、2、3、4、5共五个数,从中取若干个数分给A、B两组,两组都不能放空,要使得B组中最小的数比A组中最大的数都大,则有()种分配方法.
A.44B.49C.51D.32
8.将1,2,3,4,5,6,7,8这8个数排成一行,使8的两边各数的和相等,则不同的排列方法有()
A.1152种B.576种C.288种D.144种
9.如图所示,韩梅家的左右两侧各摆了3盆花,韩梅每次按照以下规则往家中搬一盆花,
第1 页共35 页。

排列与组合练习题及解析

排列与组合练习题及解析

排列与组合练习题及解析在数学中,排列和组合是组合数学中的基本概念。

排列是指从给定的元素集合中选取一些元素并按照一定的顺序排列,而组合是指从给定的元素集合中选取一些元素并形成一个集合,不考虑顺序。

在此,我们提供一些排列与组合的练习题,并给出详细的解析过程。

1. 排列问题:(1) 从10个不同的球中,按照一定的顺序取出5个球,问共有多少种不同的结果?解析:排列问题要考虑元素的顺序,因此可以使用排列公式进行计算。

对于这个问题,可以使用10个不同的球中取出5个球的排列数公式:P(10, 5) = 10! / (10-5)! = 10 * 9 * 8 * 7 * 6 = 30,240因此,共有30,240种不同的结果。

(2) 一个由字母组成的字符串,字母顺序可以重复,共有8个字母。

从中选取4个字母组成字符串,问共有多少种不同的结果?解析:同样地,对于这个问题,我们可以使用排列公式进行计算。

从8个字母中选取4个字母的排列数为:P(8, 4) = 8! / (8-4)! = 8 * 7 * 6 * 5 = 1,680因此,共有1,680种不同的结果。

2. 组合问题:(1) 从10个不同的球中,按照任意顺序取出5个球,问共有多少种不同的结果?解析:与排列问题不同的是,组合问题不考虑元素的顺序。

那么我们可以使用组合公式进行计算。

对于这个问题,可以使用10个不同的球中取出5个球的组合数公式:C(10, 5) = 10! / (5! * (10-5)!) = 10 * 9 * 8 * 7 * 6 / (5 * 4 * 3 * 2 * 1) = 252因此,共有252种不同的结果。

(2) 一个由字母组成的字符串,字母顺序可以重复,共有8个字母。

从中选取4个字母组成字符串,问共有多少种不同的结果?解析:同样地,对于这个问题,我们可以使用组合公式进行计算。

从8个字母中选取4个字母的组合数为:C(8, 4) = 8! / (4! * (8-4)!) = 8 * 7 * 6 * 5 / (4 * 3 * 2 * 1) = 70因此,共有70种不同的结果。

初中数学竞赛《排列与组合问题》练习题及答案 (30)

初中数学竞赛《排列与组合问题》练习题及答案 (30)

初中数学竞赛《排列与组合问题》练习题
1.设计一套邮票,设计要求如下:该套邮票由四种不同面值的邮票组成,面值数为正整数,并且对于连续整数1,2…,R中的任一面值数,都能够通过适当选取面值互相不同且不超过三枚的邮票实现.试求出R的最大值,并给出一种相应的设计.
【分析】先求出从四种不同面值的邮票中选取面值互不相同且不超过三张的不同取法,求出R的取值范围,再假设设计四种邮票的面值数分别为1,2,4,8,根据R的取值范围进行验证即可求出答案.
【解答】解:从四种不同面值的邮票中选取面值互不相同且不超过三张的不同取法共有4+6+4=14(种).
不同取法所获得邮票的总面值可能相同,也可能不同,至多只有14种不同的总面值,∴R≤14(5分)
又∵若设计四种邮票的面值数分别为1,2,4,8.(5分)
∵1=1,2=2,3=1+2,4=4,5=1+4,6=2+4,7=1+2+4,
8=8,9=1+8,10=2+8,11=1+2+8,12=4+8,13=1+4+8,14=2+4+8,
∴R≤14
从而R最大为14,上述四种面值数作为一套,即是符合题意的设计.(5分)
故答案为:14.
【点评】本题考查的是排列组合问题,根据题意得出R的取值范围是解答此题的关键,此题难度较大.。

排列组合练习题及答案

排列组合练习题及答案

排列组合一、排列与组合1.从9人中选派2人参加某一活动,有多少种不同选法2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站n>1,则客运车票增加了58种从甲站到乙站与乙站到甲站需要两种不同车票,那么原有的车站有A.12个B.13个C.14个D.15个5.用0,1,2,3,4,5这六个数字,1可以组成多少个数字不重复的三位数2可以组成多少个数字允许重复的三位数3可以组成多少个数字不允许重复的三位数的奇数4可以组成多少个数字不重复的小于1000的自然数5可以组成多少个大于3000,小于5421的数字不重复的四位数二、注意附加条件1.6人排成一列 1甲乙必须站两端,有多少种不同排法2甲乙必须站两端,丙站中间,有多少种不同排法2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是A.3761B.4175C.5132D.61574. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有A.30种B.31种C.32种D.36种5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是A.230种B.236种C.455种D.2640种6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有A.240种B.180种C.120种D.60种7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是 ;三、间接与直接1.有4名女同学,6名男同学,现选3名同学参加某一比赛,至少有1名女同学,由多少种不同选法2. 6名男生4名女生排成一行,女生不全相邻的排法有多少种3.已知集合A 和B 各12个元素,A B 含有4个元素,试求同时满足下列两个条件的集合C 的个数:1()C A B ⊂且C 中含有三个元素;2C A ≠∅,∅表示空集;4. 从5门不同的文科学科和4门不同的理科学科中任选4门,组成一个综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数A.60种B.80种C.120种D.140种5.四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点不同取法有多少种6. 以正方体的8个顶点为顶点的四棱锥有多少个7. 对正方体的8个顶点两两连线,其中能成异面直线的有多少对四、分类与分步1.求下列集合的元素个数.1{(,)|,,6}M x y x y N x y =∈+≤;2{(,)|,,14,15}H x y x y N x y =∈≤≤≤≤.2.一个文艺团队有9名成员,有7人会唱歌,5人会跳舞,现派2人参加演出,其中1名会唱歌,1名会跳舞,有多少种不同选派方法3.已知直线12//l l ,在1l 上取3个点,在2l 上取4个点,每两个点连成直线,那么这些直线在1l 和2l 之间的交点不包括1l 、2l 上的点最多有A. 18个B.20个C.24个D.36个4. 9名翻译人员中,6人懂英语,4人懂日语,从中选拔5人参加外事活动,要求其中3人担任英语翻译,2人担任日语翻译,选拔的方法有 种用数字作答;5.某博物馆要在20天内接待8所学校的学生参观,每天只安排一所学校,其中一所人数较多的学校要连续参观3天,其余学校只参观1天,则在这20天内不同的安排方法为A.372017C A 种 B.820A 种 C.171817C A 种 D.1818A 种6. 从10种不同的作物种子选出6种放入6个不同的瓶子展出,如果甲乙两种种子不许放第一号瓶内,那么不同的放法共有A.24108C A 种B.1599C A 种 C.1589C A 种 D.1598C A 种7. 在画廊要展出1幅水彩画、4幅油画、5幅国画,要求排成一排,并且同一种的画摆放在一起,还要求水彩画不能摆两端,那么不同的陈列方式有A.1545A A 种 B.245345A A A 种 C.145445A A A 种 D.245245A A A 种8. 把一个圆周24等分,过其中任意3个分点,可以连成圆的内接三角形,其中直角三角形的个数是A.122B.132C.2649. 有三张纸片,正、反面分别写着数字1、2、3和4、5、6 ,将这三张纸片上的数字排成三位数,共能组不同三位数的个数是A. 24B.36C.48D.6410.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种11. 如下图,共有多少个不同的三角形解:所有不同的三角形可分为三类:第一类:其中有两条边是原五边形的边,这样的三角形共有5个第二类:其中有且只有一条边是原五边形的边,这样的三角形共有5×4=20个第三类:没有一条边是原五边形的边,即由五条对角线围成的三角形,共有5+5=10个由分类计数原理得,不同的三角形共有5+20+10=35个.12.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有 种不同的放映方法用数字作答;五、元素与位置——位置分析1.7人争夺5项冠军,结果有多少种情况2. 75600有多少个正约数 有多少个奇约数解:75600的约数就是能整除75600的整数,所以本题就是分别求能整除75600的整数和奇约数的个数.由于 75600=24×33×52×71 75600的每个约数都可以写成l k j l 7532⋅⋅⋅的形式,其中40≤≤i ,30≤≤j ,20≤≤k ,10≤≤l于是,要确定75600的一个约数,可分四步完成,即l k j i ,,,分别在各自的范围内任取一个值,这样i 有5种取法,j 有4种取法,k 有3种取法,l 有2种取法,根据分步计数原理得约数的个数为5×4×3×2=120个.2奇约数中步不含有2的因数,因此75600的每个奇约数都可以写成l k j 753⋅⋅的形式,同上奇约数的个数为4×3×2=24个.3. 2名医生和4名护士被分配到两所学校为学生体检,每校分配1名医生和2名护士,不同分配方法有多少种4.有四位同学参加三项不同的比赛,1每位同学必须参加一项竞赛,有多少种不同的结果2每项竞赛只许一位学生参加,有多少种不同的结果解:1每位学生有三种选择,四位学生共有参赛方法:333381⨯⨯⨯=种;2每项竞赛被选择的方法有四种,三项竞赛共有参赛方法:44464⨯⨯=种.六、染色问题1.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为 A. 180 B. 160 C. 96 D. 60若变为图二,图三呢 240种,5×4×4×4=320种2. 某班宣传小组一期国庆专刊,现有红、黄、白、绿、蓝五种颜色的粉笔供选用,要求在黑板中A 、B 、C 、D 如图每一 部分只写一种颜色,相邻两块颜色不同,则不同颜色粉笔书写的方法共有 种用具体数字作答;七、消序 1. 有4名男生,3名女生;现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法2. 书架上有6本书,现再放入3本书,要求不改变原来6本书前后的相对顺序,有多少种不同排法八、分组分配1.某校高中一年级有6个班,分派3名教师任教,每名教师任教二个班,不同的安排方法有多少种2. 高三级8个班,分派4名数学老师任教,每位教师任教2个班,则不同安排方法有多少种3. 6本不同的书分给甲、乙、丙三人,每人一本、二本、三本的不同分法有多少种4.8项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包方案有 种5..六人住A 、B 、C 三间房,每房最多住三人,图一 图二 图三1每间住两人,有种不同的住法,2一间住三人,一间住二人,一间住一人,有种不同的住宿方案;6. 8人住ABC三个房间,每间最多住3人,有多少种不同住宿方案7.有4个不同小球放入四个不同盒子,其中有且只有一个盒子留空,有多少种不同放法7. 把标有a,b,c,d,…的8件不同纪念品平均赠给甲、乙两位同学,其中a、b不赠给同一个人,则不同的赠送方法有种用数字作答;九、捆绑1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法2. 有8本不同的书, 其中科技书3本,文艺书2本,其它书3本,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数与这8本书的不同排法之比为A.1:14B.1:28C.1:140D.1:336十、插空1.要排一个有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法2、4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有A.2880B.1152C.48D.1443. 要排一个有5个歌唱节目和3个舞蹈节目的演出节目单,如果舞蹈节目不相邻,则有多少种不同排法4. 5人排成一排,要求甲、乙之间至少有1人,共有多少种不同排法5..把5本不同的书排列在书架的同一层上,其中某3本书要排在中间位置,有多少种不同排法6.1到7七个自然数组成一个没有重复数字的七位数,其中偶数不相邻的个数有个.7.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法8.8张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种9. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法10. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法11. 某城市修建的一条道路上有12只路灯,为了节省用电而又不影响正常的照明,可以熄灭其中三只灯,但不能熄灭两端的灯,也不能熄灭相邻的两只灯,那么熄灯的方法共有种A.38C B.38A C.39C D.39A12. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必需有6只灯是关的,且相邻的灯不能同时被关掉,两端的灯必需点亮的要求进行设计,那么不同的点亮方式是A.28种B.84种C.180种D.360种13. 一排长椅上共有10个座位,现有4人就座,恰有五个连续空位的坐法种数为 ;用数字作答十一、隔板法1. 不定方程12347x x x x+++=的正整数解的组数是 ,非负整数解的组数是 ;2.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有A.84种B.120种C.63种D.301种3. 要从7所学校选出10人参加素质教育研讨班,每所学校至少参加1人,则这10个名额共有种分配方法;4.有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有A.9种B.12种C.15种D.18种5.将7只相同的小球全部放入4个不同盒子,每盒至少1球的方法有多少种6.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种十二、对应的思想1.在100名选手之间进行单循环淘汰赛即一场比赛失败要退出比赛,最后产生一名冠军,问要举行几场十三、找规律1.在1~20共20个整数中取两个数相加,使其和大于20的不同取法共有多少种解:分类标准一,固定小加数.小加数为1时,大加数只有20这1种取法;小加数为2时,大加数有19或20两种取法;小加数为3时,大加数为18,19或20共3种取法…小加数为10时,大加数为11,12,…,20共10种取法;小加数为11时,大加数有9种取法…小加数取19时,大加数有1种取法.由分类计数原理,得不同取法共有1+2+…+9+10+9+…+2+1=100种.分类标准二:固定和的值.有和为21,22,…,39这几类,依次有取法10,9,9,8,8, …,2,2,1,1种.由分类计数原理得不同取法共有10+9+9+…+2+2+1+1=100种.2.从1到100的自然数中,每次取出不同的两个数,使它们的和大于一百,则不同的取法有A.50种B.100种C.1275种D.2500种十四、实验——写出所有的排列或组合1.将数字1,2,3,4填入标号1,2,3,4的四个方格中,每个格填一个,则每一个方格的标号与所填的数字均不同的填法有种.A.6B.9C.11D.23⨯⨯⨯=种.解:列表排出所有的分配方案,共有3+3+3=9种,或33119未归类几道题1.从数字0,1,3,5,7中取出不同的三位数作系数,可以组成多少个不同的一元二次方程ax+bx+c=0 其中有实根的方程有多少个变式:若直线Ax+By+C=0的系数A、B可以从0,1,2,3,6,7这六个数字中取不同的数值,则这些方程所表示的直线条数是 AA.18B.20C.12D.222.在100件产品中,有98件合格品,2件不合格品.从这100件产品中任意抽出3件1一共有多少种不同的抽法2抽出的3件中恰好有一件是不合格品的抽法有多少种3抽出的3件中至少有一件是不合格品的抽法有多少种3.10双互不相同的鞋子混装在一只口袋中,从中任意抽取4只,试求各有多少种情况出现如下结果14只鞋子没有成双;2 4只鞋子恰好成双;3 4只鞋子有2只成双,另2只不成双4.f是集合M={a,b,c,d}到N{0,1,2}的映射,且fa+fb+fc+fd=4,则不同的映射有多少个解:根据a,b,c,d 对应的象为2的个数分类,可分为三类:第一类,没有一个元素的象为2,其和又为4,则集合M 所有元素的象都为1,这样的映射只有1个第二类,有一个元素的象为2,其和又为4,则其余3个元素的象为0,1,1,这样的映射有C41C3 1C22个第三类,有两个元素的象为2,其和又为4,则其余2个元素的象必为0,这样的映射有C42C22个 根据加法原理共有 1+ C41C3 1C22 +C42 C22=19个5.四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的方法共有多少种6.由12个人组成的课外文娱小组,其中5个人只会跳舞,5个人只会唱歌,2个人既会跳舞又会唱歌,若从中选出4个会跳舞和4个会唱歌的人去排演节目,共有多少种不同选法排列、组合练习题参考答案:1.2936C =2.2972A =3.解析:设男生有n 人,则女生有8-n 人,由题意得()213831(8)6902n n n n C C A n --⋅⋅=⨯-⨯= 即()1(8)30n n n --= 用选支验证选B4.分类:①恰有两个杯盖和茶杯的编号相同的盖法有25220C ⨯=种; ②恰有三个杯盖和茶杯的编号相同的盖法有3510C =种;③无恰有四个杯盖和茶杯的编号相同的盖法,只有五个杯盖和茶杯的编号完全相同的盖法1种; 故选B31种;5 .分类:①1奇4偶:146530C C = ②3奇2偶:3265200C C = 选A6.分步:122652240C C ⋅⋅=选A7.间接法:33106C C -或分类:1221346464C C +C C +C 8. 间接法:10471047A A A -9. 间接法:33208C C -10.对应:一交点对应1l 、2l 上各两点:223418C C =个选A11. 分类:①英语翻译从单会英语中选派:325460C C = ②英语翻译选派中一人既会英语又会日语:225330C C = 填90 12. 分步:245245A A A 选D 13.元素与位置:以冠军为位置,选人:5777777⨯⨯⨯⨯=14.432756002357=⨯⨯⨯①5432120⨯⨯⨯=;②43224⨯⨯= 15. 分步:5433180⨯⨯⨯= 填18016.消序:9966789A A =⨯⨯=504 或分步插空:789⨯⨯=504 或39A17.先分组后分配:2223642333C C C A A ⋅ 或位置分析:222642C C C18. 先分组后分配:32136313C C C A 懂英语1 懂日语56 A 4B8 819. 位置分析:31228542 C C C C20.1仿17题;2先分组后分配:32136313 C C C A21. 先分组后分配:3323 852322C C CAA⋅或分类,先确定住两人的房间——位置分析:12333863 C C C C重复题目: 先分组后分配:2343C A或分类——位置分析:3211421C C C22.捆绑:53253288128A A AA=选B23. 插空:4345A A 24. 插空:34A 25. 插空:4245A A 26. 插空:3334A C27. 插空:3334A A 28.A38C29. 隔板法:639998784321C C⨯⨯===⨯⨯选A30.1先在编号为2、3的2个盒子分别放入1个小球、2个小球;2对余下7个小球用隔板法2615C=;选C31.对应的思想:100名选手之间进行单循环淘汰赛,最后产生一名冠军,要环淘99名选手,每淘汰1名选手,对应一场比赛;故要举行99场比赛;32. 解法一:找规律:固定小加数.小加数为1时,大加数只有20这1种取法;小加数为2时,大加数有19或20两种取法;小加数为3时,大加数为18,19或20共3种取法…小加数为10时,大加数为11,12,…,20共10种取法;小加数为11时,大加数有9种取法…小加数取19时,大加数有1种取法.由分类计数原理,得不同取法共有1+2+…+9+10+9+…+2+1=100种.法二:固定和的值.有和为21,22,…,39这几类,依次有取法10,9,9,8,8, …,2,2,1,1种.由分类计数原理得不同取法共有10+9+9+…+2+2+1+1=100种.以上两种方法是两种不同的分类;33. 解:列表排出所有的分配方案,共有3+3+3=9种,或33119⨯⨯⨯=种.34.144102C⋅ 2210C 31221092C C⋅⋅35. 解:根据a,b,c,d对应的象为2的个数分类,可分为三类:第一类,没有一个元素的象为2,其和又为4,则集合M所有元素的象都为1,这样的映射只有1个第二类,有一个元素的象为2,其和又为4,则其余3个元素的象为0,1,1,这样的映射有112432C C C=12个第三类,有两个元素的象为2,其和又为4,则其余2个元素的象必为0,这样的映射有2242C C=6个根据加法原理共有 1+112432C C C+2242C C =1+12+6=19个。

排列组合练习题及答案

排列组合练习题及答案

排列组合习题精选之欧侯瑞魂创作一、纯排列与组合问题:1.从9人中选派2人介入某一活动,有多少种分歧选法?2.从9人中选派2人介入文艺活动,1人下乡演出,1人在当地演出,有多少种分歧选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别介入全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种分歧的方案,那么男、女同学的人数是()A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种分歧车票),那么原有的车站有()个个个个选C.二、相邻问题:1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种分歧排法?2. 有8本分歧的书,其中3本分歧的科技书,2本分歧的文艺书,3本分歧的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的分歧排法种数为( )A.720B.1440C.2880D.3600三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种分歧排法?2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?3.4名男生和4名女生站成一排,若要求男女相间,则分歧的排法数有()4.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种分歧坐法?5.8张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种分歧坐法?7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种分歧坐法?8. 在一次文艺演出中,需给舞台上方装置一排彩灯共15只,以分歧的点灯方式增加舞台效果,要求设计者依照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不克不及同时熄灭,两端的灯必须点亮的要求进行设计,那么分歧的点亮方式是()种种种种四、定序问题:1. 有4名男生,3名女生。

排列与组合典型问题及方法(含答案)

排列与组合典型问题及方法(含答案)

排列与组合典型问题及方法(含答案)排列与组合——四类典型问题一、摸球问题1、袋中装有6只黑球,4只白球,现从中任取4只球(1)正好2只黑球,2只白球的不同取法共多少种?90(2)至少有3只黑球的不同取法共有多少种?95(3)至多有1只黑球的不同取法共有多少种?252、从0,1,2,…,9这十个数字中任取五个不同数字(1)正好两个奇数,三个偶数的不同取法有多少种?100(2)至多有两个奇数的取法有多少种?126(3)取出的数中含5但不含3的取法有多少种?70二、排队问题1、某排共有七个座位,安排甲乙丙三人就坐(1)共有多少种不同就坐方法?210(2)三人相邻(即三个座位相连)的就坐方法有多少种?30(3)三人不相邻(任意两人中间都有空位)的就坐方法共多少种?602、袋中装有5只白球,6只黑球,依次取4只(1)每次取1只(取后不放回)则共有多少种不同取法?7920(2)每次取1只(取后放回)则共有多少种不同取法?14641(3)每次取1只(取后不放回)则第二次取到白球的取法共有多少种?3600(4)每次取1只(取后放回)则第二次取到白球的取法共有多少种?66553、由0,1,2,3,4,5,(1)可组成多少个无重复数字的不同三位偶数?52(2)可组成多少个不同的三位偶数(允许有重复数字)?90(3)可组成多少个能被5整除的三位数(允许有重复数字)?60三、分房问题(n个人生日问题、投信问题)1、10个人进入8个房间,共有多少种不同的进入方法?8102、从4名候选人中,评选出1名三好学生,1名优秀干部,1名先进团员,若允许1人同时得几个称号,则不同的评选方案共有多少种?43四、分组问题1、分配9个人去完成甲、乙、丙三项任务(1)甲任务需2人,乙任务需3人,丙任务需4人,则不同的选派方法共有多少种?C C C (2)甲任务需2人,乙任务需2人,丙任务需5人,则不同的选派方法共有多少种?225975(3)甲、乙、丙三项任务各需3人,则不同的选派方法共有多少种?2、将9个人以下列三种方式分为三个小组,则不同的分组方法各为多少种?(1)将9个人以2,3,4分为三组.(2)将9个人以2,2,5分为三组. 2259752!C C C (3)将9个人以3,3,3分为三组.3、将将9个人以下列三种方式分为三个小组,去完成三项不同的任务,则不同的分组方法各为多少种?(1)将9个人以2,3,4分为三组.(2)将9个人以2,2,5分为三组. 2259753!2!C C C ? (3)将9个人以3,3,3分为三组.解题方法一、正难则反,等价转化在解决某些排列组合问题,当从正面入手情况复杂、分类较多时,可考虑从反面入手,将其等价转化为一个较简单的问题来处理,即先求总的排列组合数,再减去不符合要求的排列组合数,从而使问题获得解决办法。

排列与组合练习题及答案

排列与组合练习题及答案

排列与组合练习题及答案排列组合与古典概率论关系密切。

今天,店铺为大家整理了排列与组合练习题。

排列与组合练习题一、填空题1.市内某公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数是________.[解析] 由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共3×2×2=12种;如果是第二种偶奇奇的情况,个位(3种情况),十位(2种情况),百位(不能是0,1种情况),共3×2×1=6种,因此总共12+6=18种情况.[答案] 182.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.[解析] 满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C=5(种);二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有C·C=60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种,所以满足条件的取法共有5+60+1=66(种).[答案] 663.(2014·福州调研)若一个三位数的十位数字比个位数字和百位数字都大,称这个数为“伞数”.现从1,2,3,4,5,6这六个数字中取3个数,组成无重复数字的三位数,其中“伞数”有________个.[解析] 分类讨论:若十位数为6时,有A=20(个);若十位数为5时,有A=12(个);若十位数为4时,有A=6(个);若十位数为3时,有A=2(个).因此一共有40个.[答案] 404.一个平面内的8个点,若只有4个点共圆,其余任何4点不共圆,那么这8个点最多确定的圆的个数为________.[解析] 从8个点中任选3个点有选法C种,因为有4点共圆所以减去C种再加1种,共有圆C-C+1=53个.[答案] 535.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有________种.[解析] 分两种情况:选2本画册,2本集邮册送给4位朋友有C=6(种)方法;选1本画册,3本集邮册送给4位朋友有C=4(种)方法,不同的赠送方法共有6+4=10(种).[答案] 106.用数字1,2,3,4,5,6六个数字组成一个六位数,要求数字1,2都不与数字3相邻,且该数字能被5整除,则这样的五位数有________个.[解析] 由题可知,数字5一定在个位上,先排数字4和6,排法有2种,再往排好的数字4和6形成的3个空位中插入数字1和3,插法有6种,最后再插入数字2,插法有3种,根据分步乘法计数原理,可得这样的六位数有2×6×3=36个.[答案] 367.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法有________种.[解析]第一类,含有1张红色卡片,共有不同的取法CC=264(种);第二类,不含有红色卡片,共有不同的取法C-3C=220-12=208(种).由分类计数原理知不同的取法有264+208=472(种).[答案] 4728.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的三位数共有________个.[解析] 在1,2,3,4,5这五个数字中有3个奇数,2个偶数,要求三位数各位数字之和为偶数,则两个奇数一个偶数,符合条件的三位数共有C·C·A=36(个).[答案] 36排列与组合练习题二、解答题9.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是多少?(用数字作答).[解] 分三类:选1名骨科医生,则有C(CC+CC+CC)=360(种);选2名骨科医生,则有C(CC+CC)=210(种);选3名骨科医生,则有CCC=20(种).骨科、脑外科和内科医生都至少有1人的选派方法种数是360+210+20=590种.10.四个不同的小球放入编号为1,2,3,4的四个盒子中.(1)若每个盒子放一球,则有多少种不同的放法?(2)恰有一个空盒的放法共有多少种?[解] (1)每个盒子放一球,共有A=24(种)不同的放法;(2)法一先选后排,分三步完成.第一步:四个盒子中选一只为空盒,有4种选法;第二步:选两球为一个元素,有C种选法;第三步:三个元素放入三个盒中,有A种放法.故共有4×CA=144(种)放法.法二先分组后排列,看作分配问题.第一步:在四个盒子中选三个,有C种选法;第二步:将四个球分成2,1,1三组,有C种放法;第三步:将三组分到选定的三个盒子中,有A种放法.故共有CCA=144种放法.。

2020年初中数学竞赛《排列与组合问题》练习题及答案 (5)

2020年初中数学竞赛《排列与组合问题》练习题及答案 (5)

2020年初中数学竞赛《排列与组合问题》练习题
1.甲乙丙丁四位同学站成一横排照相,如果任意安排四位同学的顺序,那么恰好甲乙相临且甲在乙左边的概率是()
A.B.C.D.
【分析】当甲乙丙丁四位同学任意站成一横排照相,共有4×3×2×1=24种方法,再固定甲乙相临且甲在乙左边,用“甲乙”表示,进一步讨论他们所在位置,求得站的方法解答问题即可.
【解答】解:四位同学任意的顺序站成一横排照相,
共有P44=4×3×2×1=24种方法,
因为甲乙相临且甲在乙左边,有下列情形:
“甲乙”丙丁,“甲乙”丁丙,丙“甲乙”丁,丁“甲乙”丙,丙丁“甲乙”,丁丙“甲乙”共6种情况,
所以恰好甲乙相临且甲在乙左边的概率是=.
故选:A.
【点评】此题主要利用排列组合的计算方法:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,共有P n m种方法.。

(精心整理)排列组合练习题与答案

(精心整理)排列组合练习题与答案

排列组合习题精选一、纯排列与组合问题:1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是()A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有()A.12个B.13个C.14个D.15个2221322选C.二、相邻问题:1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法?2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )A.720B.1440C.2880D.3600答案:1.242448A A=(2) 选B 3253251440A A A=三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?3.4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()A.2880B.1152C.48D.1444.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法?5.8张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是()A.28种B.84种C.180种D.360种答案:1.43451440A A = (2)3434144A A = (3)选B 444421152A A = (4)3424A = (5)4245480A A =(6)333424A C = (7)3334144A A = (8)选A 6828C =四、定序问题:1. 有4名男生,3名女生。

初中数学竞赛《排列与组合问题》练习题及答案 (8)

初中数学竞赛《排列与组合问题》练习题及答案 (8)

初中数学竞赛《排列与组合问题》练习题1.如图,在平面直角坐标系中有一个正方形ABCD,它的4个顶点为A(10,0),B(0,10),C(﹣10,0),D(0,﹣10),则该正方形内及边界上共有221个整点(即纵横坐标都是整数的点).【分析】根据A(10,0),B(0,10),C(﹣10,0),D(0,﹣10)可知正方形ABCD 的四条边的方程分别是x+y=10、x﹣y=﹣10、x+y=﹣10、x﹣y=10;然后分别找出直线y=10、9、8、7...与正方形的边和内部有交点的个数是1、3、5、7...19;对称的正方形在x轴的下发还有同样多,另外最后直线y=0(对角线x轴)上有(﹣10,0)、(﹣9,0)、...(0,0)、...(10,0)共21个;所以符合条件的整点数有:2(1+3+5+ (19)+21(个).【解答】解:正方形ABCD的四条边的方程分别是x+y=10、x﹣y=﹣10、x+y=﹣10、x ﹣y=10.直线y=10与正方形交于B(0,10)(共1个);直线y=9与正方形的边交于(﹣1,9)、(1,9),界于其间的还有(0,9),(共3个);依次是y=8与正方形的边和内部有交点(﹣2,8)、(﹣1,8)、(0,8)、(﹣1,8)、(2,3),(共5个);…直线y=1与正方形的边和内部有交点(﹣9,1)、…、(9,1),(共19个);对称的正方形在x轴的下方还有同样多,最后直线y=0(对角线x轴)上有(﹣10,0)、(﹣9,0)、…(0,0)、…(10,0)共21个所以正方形及其内部共有:2(1+3+5+…+19)+21=2×+21=221(个)整点.故答案为:221.【点评】本题考查了排列、组合问题.解答此题的关键是找出找出直线y=10、9、8、7…与正方形的边和内部有交点的个数是1、3、5、7…19.。

初中数学竞赛《排列与组合问题》练习题及答案 (27)

初中数学竞赛《排列与组合问题》练习题及答案 (27)

初中数学竞赛《排列与组合问题》练习题1.一个自然数a,若将其数字重新排列可得一个新的自然数b.如果a恰是b的3倍,我们称a是一个“希望数”.(1)请你举例说明:“希望数”一定存在.(2)请你证明:如果a,b都是“希望数”,则ab一定是729的倍数.【分析】(1)根据希望数的定义可知,428571=3×142857,故此数即为希望数;(2)由于a、b均为希望数,所以存在一个由a的数字重新排列而成的自然数p,使得a =3p并且a的数字和等于p的数字和,根据整除的判别法可知a为3的倍数、p为9的倍数,再由a,b都是“希望数”,可知a,b都是27的倍数,设a=27n1,b=27n2(n1,n2为正整数)代入ab即可得出答案.【解答】解:(1)∵428571=3×142857,∴428571是一个“希望数”.(2)∵a为“希望数”,依“希望数”定义知,存在一个由a的数字重新排列而成的自然数p,使得a=3p并且a的数字和等于p的数字和.∵a=3p和a为3的倍数,但a的数字和等于P的数字和,∴由整除判别法,知p为3的倍数,∴p=3m,(m为正整数),∴a=3×p=3×3m=9m,∴a被9整除.∵a的数字和等于p的数字和,∴由被9整除的判别法可知p能被9整除,即p=9k(k为整数),∴a=3p=3×9k=27k∴a是27的倍数.∴“希望数”一定能被27整除.∵a,b都是“希望数”,∴a,b都是27的倍数,即a=27n1,b=27n2(n1,n2为正整数).∴ab=(27n1)(27n2)=(27×27)(n1×n2)=729n1n2.∴ab一定是729的倍数.【点评】本题考查的是“希望数”的定义及数的整除性问题,根据题意掌握“希望数”的定义是解答此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛《排列与组合问题》练习题
1.某市有n所中学,第i所中学派出∁i名学生(1≤∁i≤39,1≤i≤n)来到体育馆观看球赛,全部学生总数之和C1+C2+…+∁n=1990,看台上每一横排有199个座位,要求同一学校的学生必须坐在同一横排,问体育馆最少要安排多少横排才能保证全部学生都能坐下?
【分析】①根据199+1=25×8,1990=79×25+15.推知由于每排最多坐7所25人校,故排数不小于【】12;
②逐个整校地将前5排占满(每排的最后一校有人暂时无座位),总共不少于5×200=
1000人,然后计算一下各排最后一校是总人数的最大值,据此可以推知
各校人数如何分布,6排必可坐下不少于1000人.那12排必可坐下2000人了.
【解答】解:199+1=25×8,1990=79×25+15.取n=80,其中79所各25人,1所15人.由于每排最多坐7所25人校,故排数不小于12.
另一方面,逐个整校地将前5排占满(每排的最后一校有人暂时无座位),总共不少于5×200=1000人.
各排最后一校的总人数不多于5×39=195,
可在第6排就坐.因此无论各校人数如何分布,6排必可坐下不少于1000人.
12排必可坐下不少于2000人.
故保证全部学生都能坐下的最少排数是12.
【点评】本题考查了排列组合的问题.解答此题时,关键是找出“每排最多坐7所25人校”这一条件.。

相关文档
最新文档